WO2021174911A1 - 一种废塑料油化技术嵌入垃圾焚烧方法 - Google Patents

一种废塑料油化技术嵌入垃圾焚烧方法 Download PDF

Info

Publication number
WO2021174911A1
WO2021174911A1 PCT/CN2020/129245 CN2020129245W WO2021174911A1 WO 2021174911 A1 WO2021174911 A1 WO 2021174911A1 CN 2020129245 W CN2020129245 W CN 2020129245W WO 2021174911 A1 WO2021174911 A1 WO 2021174911A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
plastic
garbage
tank
incinerator
Prior art date
Application number
PCT/CN2020/129245
Other languages
English (en)
French (fr)
Inventor
辛本恩
叶宗君
曹卫民
Original Assignee
浙江科茂环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江科茂环境科技有限公司 filed Critical 浙江科茂环境科技有限公司
Priority to EP20922471.6A priority Critical patent/EP3922911B1/en
Publication of WO2021174911A1 publication Critical patent/WO2021174911A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/20Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/12Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of plastics, e.g. rubber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/60Separating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/28Plastics or rubber like materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention belongs to the technical field of solid waste treatment, and specifically relates to a method for embedding waste plastic green oily technology into garbage incineration.
  • Plastics are widely used in various industries, such as textile industry, home appliance industry, construction industry, automobile industry, agriculture, etc. As the consumption of plastic products continues to increase, so does the number of waste plastics. At present, waste plastics in my country are mainly plastic films, plastic filaments and woven products, foamed plastics, plastic packaging boxes and containers, daily plastic products, plastic bags, and agricultural mulch.
  • plastic recycling Compared with metal recycling, the biggest problem with plastic recycling is that it is difficult to automatically sort by machines, and the process involves a lot of manpower.
  • the recycling rate of plastics is generally low, resulting in a huge waste of resources, and the garbage generated from the use of a large number of plastic products will cause serious environmental pollution problems if they are disposed of by burying, incineration, and other methods.
  • the main purpose of the present invention is to provide a method for embedding waste plastic green oilification technology into a garbage incineration method to solve the problem of low social and economic benefits of the existing garbage incineration process.
  • a method for embedding waste plastic green oily technology into garbage incineration includes the following steps:
  • S1 Dry garbage pretreatment unit operation the dry garbage obtained after dry and wet separation of garbage is shredded and transported into the middle section of the first pretreatment tank.
  • the dry garbage includes waste plastic and non-plastic waste.
  • the weight ratio of plastic to dry garbage is 30-50m%; the waste plastic in the first pretreatment tank is melted into liquefied substance by superheated steam and collected at the bottom of the tank, while non-plastic garbage is retained in the first pretreatment tank in a solid form.
  • the middle section of a pretreatment tank when the non-plastic waste accumulates to a certain level, the non-plastic waste is transferred to the purge washing tank, and the residual liquefied material on the non-plastic waste is washed with steam and/or hot water; from the first The steam of the pretreatment tank and the purge washing tank are introduced into the catalytic cracking reactor in the gaseous state;
  • step S2 Liquefaction waste plastic cracking unit operation: the waste plastic liquefaction obtained in step S1 is preheated by the second pre-treatment tank and then pumped out by the pump, and mixed with the superheated steam in the mixer before the catalytic cracking reactor, and after the mixing is uniform Enter the catalytic cracking reactor, under the action of the catalyst, the waste plastic liquefaction is transformed into high-temperature oil and gas and waste residue. After the high-temperature oil and gas are cooled and separated, oil phase components such as diesel and gasoline are obtained, and a certain amount of hydrocarbons are produced at the same time gas;
  • Non-plastic waste incineration unit operation push the cleaned non-plastic waste in step S1 into the incinerator; use the hydrocarbon gas and waste residue generated in step S2 as the fuel of the incinerator for combustion in the incinerator; the incinerator Use direct combustion method or indirect combustion method.
  • non-plastic garbage is still treated in the original incineration method, but because waste plastic garbage no longer enters the incinerator, the temperature of the incinerator does not need to be above 800 DEG C, and only trace amounts of dioxin are produced during the incineration process. Therefore, dry waste is divided into two, namely waste plastic waste and non-plastic waste. Waste plastic waste is treated with oil-chemical technology, while non-plastic waste is treated by incineration, so that after all the dry waste is processed, its total dioxin emission can be large. The reduction in the range, the total dioxin emission is far within the standard value.
  • waste plastics are polyethylene (PE), polypropylene (PP), polystyrene (PS), foamed polystyrene (PSF) and polyvinyl chloride (PVC). Since plastics are products of petrochemical industry, In terms of chemical structure and composition, plastics are high molecular weight hydrocarbons, while gasoline and diesel are low molecular weight hydrocarbons, so waste plastics can be processed and converted into fuel oil.
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • PSF foamed polystyrene
  • PVC polyvinyl chloride
  • a filter element is provided in the middle section of the first pretreatment tank, and an inert heating medium inlet, an inert heating medium outlet, and liquid
  • the outlet and the solid outlet; the inert heating medium inlet and the inert heating medium outlet are respectively arranged at the bottom and top of the first pretreatment tank, and are used for the introduction and discharge of superheated steam, and the waste plastic fragments are heated and melted into liquefaction
  • the liquefied material is collected at the bottom of the first pretreatment tank and can be discharged from the liquid outlet, while the non-plastic waste that cannot be liquefied stays in the upper space of the filter element and can be transferred to the purge and wash from the solid outlet.
  • the operating conditions for melting the waste plastic into a liquefied substance are as follows: a temperature of 100 to 300° C.; and a pressure of 0.01 to 0.5 MPa.
  • the non-liquefied non-plastic waste is directly pushed to the purge washing tank, and the waste plastic liquefied material remaining on the non-plastic waste is purged and washed.
  • the purge and washing medium is steam and heat.
  • the water mixture, the washing process is repeated, the hot water comes from the water phase material separated by the 1# three-phase separator; the washed waste plastic liquefaction is collected on the top of the purge washing tank; the non-plastic waste is retained Purge the lower part of the washing tank.
  • the non-liquefied non-plastic waste can be discharged from the first pretreatment tank in a continuous or intermittent manner, and the discharge method is selected to be pushed by a closed pipeline, and a material level monitoring instrument is installed in the first pretreatment tank.
  • the first pretreatment tank is set separately, the non-liquefied non-plastic waste is discharged from the first pretreatment tank in an intermittent manner; when multiple first pretreatment tanks of the same specification are set in parallel, when the material level is set in the first pretreatment tank
  • the monitoring instrument detects that the non-plastic waste has accumulated to a certain material level, the first pretreatment tank is switched to realize that the non-liquefied non-plastic waste is discharged from the first pretreatment tank in a continuous manner.
  • the dry garbage further includes a certain degree of preliminary treatment before shredding treatment to remove iron, batteries, glass, stones and other solids in the dry garbage. Rubbish.
  • a pipe iron remover known in the art can be used to remove iron, or a manual picking or intelligent identification method can be used to screen out solid wastes such as batteries, glass, rocks and the like in the dry waste.
  • Dry garbage shredding treatment mainly refers to the shredding of waste plastics in dry garbage; through the shredding operation of waste plastics, scrap plastic fragments of appropriate size and uniform distribution are obtained, which is beneficial to improve the heating and melting effect of waste plastics. Furthermore, it is understandable that in the shredding operation of waste plastics in dry garbage, different plastic waste materials with different physical properties can be shredded by different shredding equipment, such as films, packaging bags and other soft plastics, and shredders can be used to shred them. Broken; For hard plastics such as electrical appliance casings, use a crusher to crush them.
  • the superheated steam in step S1 and step S2 has a temperature of 200-500° C. and a pressure of 0.2-0.5 MPa.
  • the second pretreatment tank is divided into a preheating section and a desuperheating section; the preheating operation process of the waste plastic liquefaction through the second pretreatment tank is specifically:
  • the waste plastic liquefied material in the first pretreatment tank is pumped into the upper part of the second preheating section of the second pretreatment tank.
  • the waste plastic liquefied material flows from top to bottom.
  • the countercurrent contact in the treatment tank performs heat exchange; after the waste plastic liquefaction passes through the preheating section and the desuperheating section, the temperature rises plate by plate, and when it reaches the tower kettle, the temperature rises to 250-320°C, and the preheated waste plastic is liquefied
  • part of the material enters the catalytic cracking reactor for catalytic cracking operation, and part of it is recycled back to the first pretreatment tank for preheating fresh dry waste; in the desuperheating section, the high-temperature oil and gas is cooled from superheated state to saturated state, and At the same time, the dust carried by the oil and gas is washed down;
  • the top temperature of the second pretreatment tank is 100-200°C, the pressure is 0.05-0.30MPa; the temperature of the tower kettle is 250-320°C.
  • the cooling separation operation process of the high-temperature oil and gas is specifically: the high-temperature oil and gas from the catalytic cracking reactor and the waste plastic liquefied material are in countercurrent contact in the second pretreatment tank for heat exchange.
  • the high-temperature oil and gas are discharged from the top of the second pretreatment tank, and then the water phase material separated from the 1# three-phase separator is heat-exchanged and cooled to 70 ⁇ 90°C in the 1# heat exchanger, and then cooled by the 1# cooler After reaching 30 ⁇ 50°C, enter 1# three-phase separator for separation operation to obtain three materials of oil phase gasoline and diesel oil, gas phase hydrocarbon gas, and water phase substance respectively.
  • the gas phase hydrocarbon gas is delivered after being pressurized by the compressor.
  • the water phase substance is sequentially preheated by the 1# heat exchanger and heated by the heater, and then converted into superheated steam.
  • Part of the superheated steam is passed into the mixer and mixed with the waste plastic liquefaction and then enters the catalytic cracking reactor.
  • the operating conditions of the catalytic cracking reactor a reaction temperature of 300 to 500° C., a reaction pressure of 0.05 to 0.5 MPa, and a space velocity of 0.1 to 20 h -1 .
  • the catalytic cracking reactor selects a fixed fluidized bed or a fluidized bed; selects a suitable reactor type according to the size of the treatment; selects a fluidized bed reactor, you need to further consider the associated gas, that is, the recovery and utilization of gaseous hydrocarbons;
  • the fixed fluidized bed and associated gas are generally selected as the fuel gas of the incinerator.
  • the waste residue from the catalytic cracking reactor can also be burned in the incinerator. The incineration will further convert the coke into CO 2 and H 2 O.
  • the cleaned non-plastic garbage is directly pushed to the incinerator from the purge washing tank, and the discharge method is pushed by a closed pipeline, and the purge washing tank is equipped with liquid level and material level monitoring. meter.
  • Non-plastic waste is directly pushed to the incinerator without cooling; the direct supply of materials between upstream and downstream equipment is conducive to the maximum use of energy; the direct supply is used, compared with the direct incineration of the original dry waste (from room temperature to 850°C), Except for the increased energy consumption in the plastic oilification process, the energy consumption required for incineration of non-plastic waste is only reduced, not increased (the temperature rises from 200 to 400°C from room temperature, from 200 to 400°C to the ignition point, and the ignition temperature is significantly lower than 850°C).
  • the operating conditions of the direct combustion mode of the incinerator are: the operating temperature is the ignition point temperature of dry garbage, that is, 400-600°C, the pressure is 0.01-0.5 MPa, and the incinerator is open Into oxygen, non-plastic waste is completely incinerated and converted into carbon dioxide and water for discharge.
  • the operating conditions of the indirect combustion mode of the incinerator are: the operating temperature is 400-650°C, the pressure is 0.1-0.5 MPa, and the non-plastic waste in the incinerator is anaerobic. Carbonization is carried out under high temperature conditions to be converted into coke, and the coke is converted into carbon dioxide and water after being burned; the carbonization process is carried out in a mechanical grate furnace or a fluidized bed incinerator.
  • the carbonization medium uses a high-temperature inert medium, and the high-temperature inert medium uses at least one of superheated steam, carbon dioxide or nitrogen; the temperature of the high-temperature inert medium is 400-600°C, The pressure is 0.2 ⁇ 0.5MPa; in the mechanical grate furnace, the non-plastic undergoes three processes of drying, vaporization and carbonization.
  • the non-plastic After the non-plastic is carbonized, it is burned in the incinerator together with the slag or sieved separately, and heat is released during the incineration process It is used to provide energy for superheated steam; the carbonization of non-plastic waste requires heat, and the carbonized coke emits heat after incineration, and the heat balance between the two is maintained;
  • the fluidized bed incinerator When the carbonization process is carried out in a fluidized bed incinerator, the fluidized bed incinerator is equipped with a catalyst, and non-plastic waste is fluidized and mixed and reacted with the catalyst.
  • the carbonization medium adopts superheated steam and a high-temperature catalyst.
  • the superheated steam The temperature of the high temperature catalyst is 400 ⁇ 600°C, the pressure is 0.2 ⁇ 0.5MPa; the high temperature catalyst temperature is 450 ⁇ 650°C, the fluidized bed pressure is 0.1 ⁇ 0.5MPa; the coke obtained by carbonization and the cooled catalyst enter the regenerating fluidized bed together, and the coke is regenerating and fluidizing.
  • the combustion in the bed transforms into CO 2 and H 2 O; the heat released during the process heats the catalyst and superheated steam;
  • the carbonization process isolates oxygen and conducts the carbon cracking reaction under high temperature conditions, instead of the combustion reaction under aerobic conditions, the problem of insufficient non-plastic combustion will not occur. Therefore, the carbonization process has the following significant advantages: 1) Further reduce the amount of dioxins produced in the incineration process; 2) The temperature of the furnace or bed layer is greatly reduced; 3) The air consumption can be significantly reduced, and the dust content and acid gas concentration in the flue gas are reduced to varying degrees; 4) Incineration The subsequent environmental protection facilities of the furnace are simpler, and their investment and operating costs are lower.
  • the step S2 it also includes the regeneration process of the catalyst, which mainly includes the following steps; Steam stripping removes the oil and gas carried on the catalyst; then the catalyst is transferred to the regenerator, and superheating medium and an appropriate amount of air are passed into the regenerator to convert the carbon deposited on the catalyst into CO 2 and H 2 O, and the catalyst activity can be obtained. Gradually recover; transfer the regenerated catalyst to the dosing tank above the catalytic cracking reactor. After the regenerated catalyst is transferred, the pressure in the dosing tank is increased to be 0.1 ⁇ 0.2MPa higher than the pressure in the catalytic cracking reactor. Under the action of pressure difference and gravity, the catalyst enters the catalytic cracking reactor again.
  • the catalyst After the catalytic cracking reaction for a period of time, the catalyst is deactivated due to carbon deposition. At this time, the catalyst will be regenerated; the catalyst can be reused after regeneration; the catalyst can be recycled for many times, and the regeneration heat source can be superheated media, such as steam, nitrogen, etc.; during regeneration A certain amount of air should be introduced into the superheated medium; when the catalytic cracking reactor uses a fluidized bed as the reactor, the catalyst is continuously circulated between the reactor and the regenerator, and air is directly introduced into the regenerator.
  • the garbage incineration method of the present invention can completely separate waste plastic and non-plastic garbage in dry garbage.
  • the waste plastic garbage adopts oily technology, and the total yield of gasoline and diesel is 20-40% of dry garbage instead of plastic garbage.
  • the dioxin emission value after incineration is much lower than the standard value.
  • the garbage incinerator of the present invention Compared with the existing incinerator operating temperature greater than 800°C, the garbage incinerator of the present invention has mild operating conditions and only needs 400 to 600°C to meet the requirements of garbage incineration, which can greatly save equipment and operating costs, and has significant advantages Economic and social benefits.
  • the hydrocarbon gas and waste residues associated with the catalytic cracking process of waste plastics can be used as the fuel of the incinerator. There is no need to add additional fuel for the incineration operation during the garbage incineration process, and has the advantages of comprehensive recycling of by-products and low-cost operation. advantage.
  • the garbage incineration method of the present invention not only has low overall energy consumption, but also further reduces equipment investment and operating costs.
  • Figure 1 is a process flow diagram of Embodiment 1 of the method for embedding waste incineration with green oily technology of waste plastics according to the present invention
  • Embodiment 2 is a process flow diagram of Embodiment 2 of the method for embedding waste incineration with green oily technology of waste plastics according to the present invention
  • conveyor belt 1 pipeline iron remover 2, shredder 3, screw propeller 4, first pretreatment tank 5, second pretreatment tank 6, catalytic cracking reactor 7, purge washing tank 8, incinerator 9, 1# three-phase separator 10, compressor 11, mixer 12, 1# heat exchanger 13, 1# cooler 14, heater 15, buffer tank 16, regenerator 17, dosing tank 18, two-phase separator 19.
  • 2# heat exchanger 20 2# cooler 21, water pump 22, 1# liquefied material pump 51, 2# liquefied material pump 61, 1# circulating pump 62, 2# circulating pump 81.
  • the green oily technology of waste plastics embedded in the garbage incineration method of this embodiment includes the following steps:
  • Dry garbage pretreatment unit operation the dry garbage (waste moisture content is less than 15%) obtained after the dry and wet separation of the garbage is transported through the conveyor belt 1.
  • the large batteries, glass, and stones are manually picked. Wait for the solid waste to be removed, and then remove the iron mass in the dry garbage through the pipe iron separator 2, and shred by the shredder 3, and then be transported into the middle section of the first pretreatment tank 5 by the screw propeller 4.
  • Dry waste includes waste plastic and non-plastic waste.
  • the waste plastic accounts for 42% of the dry waste.
  • the waste plastic is mainly soft plastic such as plastic film and plastic packaging bags.
  • the non-plastic waste mainly refers to kitchen waste.
  • the waste plastics are melted into a liquefied substance and collected at the bottom of the tank.
  • the operating conditions for the waste plastics to be melted into a liquefied substance by heating are as follows: temperature 250°C; pressure 0.2MPa, while non-plastic waste stays in the first pretreatment tank in solid form The middle section of 5; when the non-plastic waste accumulates to a certain level, the non-plastic waste is transferred to the purge washing tank 8, and steam and hot water are used to rinse the residual liquefied material on the non-plastic waste; from the first pretreatment tank 5 And the steam of the purge washing tank 8 are introduced into the catalytic cracking reactor 7 in a gaseous state;
  • the middle section of the first pretreatment tank 5 is provided with filter elements, and the tank body of the first pretreatment tank 5 is also provided with an inert heating medium inlet, an inert heating medium outlet, a liquid outlet and a solid outlet; the inert heating medium inlet And the inert heating medium outlet are respectively set at the bottom and top of the first pretreatment tank 5 for the introduction and discharge of superheated steam.
  • the waste plastic fragments are heated and melted into liquefied material, and the liquefied material is filtered by the filter element and collected At the bottom of the first pretreatment tank 5, it can be discharged from the liquid outlet, while the non-plastic waste that cannot be liquefied stays in the upper space of the filter element and can be transferred to the purge washing tank 8 from the solid outlet;
  • the non-liquefied non-plastic garbage is directly sent to the purge washing tank 8, and the waste plastic liquefied material remaining on the non-plastic garbage is purged and washed.
  • the purge and washing medium is a mixture of steam and hot water.
  • the washing process is through the 1# circulating pump 62 Carry out cyclic and repeated washing operations.
  • the hot water comes from the water phase material separated by the 1# three-phase separator 10; the washed waste plastic liquefaction is collected on the top of the purge washing tank 8; non-plastic waste is retained in the blower Sweep the middle and lower parts of the washing tank 8; the non-liquefied non-plastic waste is discharged from the first pretreatment tank 5 in an intermittent manner, and the discharge method is pushed by a closed pipeline.
  • the first pretreatment tank 5 is equipped with a material level monitoring instrument;
  • step S2 the waste plastic liquefaction obtained in step S1 is preheated by the second pretreatment tank 6 and then drawn out by the 1# liquefaction pump 51, and mixed with superheated steam before the catalytic cracking reactor 7
  • the mixture in the vessel 12 is mixed and uniformly mixed and then enters the catalytic cracking reactor 7.
  • the waste plastic liquefaction is transformed into 400°C high-temperature oil and gas and waste residue. After the high-temperature oil and gas are cooled and separated, diesel and gasoline are obtained.
  • the oil phase component produces a certain amount of hydrocarbon gas at the same time;
  • the catalytic cracking reactor 7 uses a fixed fluidized bed, and the catalyst loaded is a catalyst compounded by a Y-type molecular sieve with a mass ratio of 5:1 and a type-selective molecular sieve.
  • the operating conditions of the catalytic cracking reactor 7 reaction temperature 400 °C, reaction pressure 0.2 MPa, space velocity 10h -1 ;
  • the second pre-treatment tank 6 is divided into a pre-heating section and a de-overheating section; the pre-heating operation process of the waste plastic liquefied material in the second pre-treatment tank 6 is specifically: the waste from the first pre-treatment tank 5 The plastic liquefied material is pumped into the upper part of the preheating section of the second pretreatment tank 6 through the 1# liquefied material pump 51.
  • the pre-treatment tank 6 is in countercurrent contact for heat exchange; after the waste plastic liquefaction passes through the preheating section and the desuperheating section, the temperature is increased plate by plate, and when it reaches the tower kettle, its temperature is increased to 280°C, and the preheated waste plastic is liquefied Part of the material passes through the mixer 12 through the 1# liquefied material pump 51 and then enters the catalytic cracking reactor 7 for catalytic cracking operation, and the part is circulated back to the first pretreatment tank 5 through the 1# circulating pump 62 for preheating fresh dry waste.
  • the second pretreatment tank 6 has a tower top temperature of 200°C and a pressure of 0.15MPa; the tower kettle temperature is 280°C;
  • the cooling and separation operation process of the high-temperature oil and gas is specifically: the high-temperature oil and gas from the catalytic cracking reactor 7 and the waste plastic liquefaction are in countercurrent contact in the second pretreatment tank 6 for heat exchange, and the 200°C high-temperature oil and gas after the heat exchange It is discharged from the top of the second pretreatment tank 6, and then the water phase material separated from the 1# three-phase separator 10 is heat-exchanged and cooled to 80°C in the 1# heat exchanger 13, and then cooled by the 1# cooler 14. After reaching 40°C, enter 1# three-phase separator 10 for separation operation to obtain three materials of oil phase gasoline and diesel oil, gas phase hydrocarbon gas, and water phase substance respectively.
  • the gas phase hydrocarbon gas is delivered after being pressurized by compressor 11.
  • the water phase material is sequentially preheated by the 1# heat exchanger 13 and heated by the heater 15, and then transformed into 500 °C superheated steam.
  • the superheated steam is partially passed into the mixer 12 and the waste plastic liquefied material After mixing, it enters the catalytic cracking reactor 7 and partly passes into the catalyst regenerator 17 for the activity recovery operation of the catalyst;
  • Non-plastic waste incineration unit operation the non-plastic waste washed in step S1 is directly pushed into the incinerator 9 without cooling; and the hydrocarbon gas and waste residue generated in step S2 are used as the fuel of the incinerator 9,
  • the incinerator 9 is used for burning; the incinerator 9 uses direct combustion to incinerate non-plastic waste, and its operating conditions are as follows: the temperature is the ignition temperature of dry waste, that is, 500°C, and the pressure is 0.2MPa. Into the right amount of air, the non-plastic waste is completely incinerated and converted into carbon dioxide and water for discharge.
  • the cleaned non-plastic waste is directly sent to the incinerator 9 from the purge washing tank 8 and the discharge method is a closed pipeline.
  • the purge and washing tank 8 is equipped with liquid level and material level monitoring instruments to monitor the waste plastic liquefied substances. The degree of accumulation of solid non-plastic waste in the purge washing tank 8 in order to better adjust the feed amount of the purge washing medium.
  • step S1 the waste plastics in the dry garbage are liquefied in the first pretreatment tank 5, and then liquid-solid separation is performed to realize the complete separation of waste plastics and non-plastics, which makes it possible to realize the green oily operation of waste plastics;
  • step S2 the preheated waste plastic liquefaction passes through the mixer 12 together with the superheated steam before entering the catalytic cracking reactor 7.
  • the two can not only play a uniform mixing effect in the mixer 12, but also liquefy the waste plastic.
  • the material is further heated; the uniformly mixed materials enter the catalytic cracking reactor 7 from the top of the catalytic cracking reactor 7, and the feed is evenly distributed on the catalyst bed in the reactor by the distributor, after the catalytic cracking reaction and subsequent separation ,
  • the waste plastic green petrochemical technology embedding waste incineration method of the present invention is equivalent to a "zero emission" process combination, because petrochemical technology embeds
  • the method of garbage incineration can not only obtain a large amount of high-quality gasoline and diesel, but also the associated gas or even the discharged waste slag can be recycled into the incinerator 9; the total yield of gasoline and diesel is that of dry garbage. 30m%;
  • step S3 the incineration process of the incinerator 9 has the following significant advantages: 1) The plastic waste is separated into the oilification unit in advance, and no longer enters the downstream incinerator 9; 2) The total emission concentration of dioxins during the incineration process is lower than 0.5ngTEQ/m 3 ; 3) During incineration, the furnace temperature can be reduced from greater than 850°C to the ignition point temperature of non-plastic waste, that is, 400-600°C, and the temperature drop is obvious; 4) The furnace temperature is greatly reduced, and the furnace, burner and other equipment are put in And operation and maintenance costs are reduced; 5) Waste plastic does not enter the incinerator 9, the air consumption of the furnace can be significantly reduced, and the dust content in the flue gas and the acid gas concentration are reduced to varying degrees; 6) The subsequent environmental protection facilities of the incinerator 9 are simpler , Its investment and operating costs are lower.
  • the waste plastic green oilification technology of this embodiment is embedded in the waste incineration method, which also includes the following processing steps: S1 dry waste pretreatment unit operation; S2 liquefaction waste plastic cracking unit operation; and S3 non-plastic waste incineration unit operate.
  • step S2 it also includes the regeneration process of the catalyst, which mainly includes the following steps; the catalyst leaves the catalytic cracking reactor 7 through the unloading line, and is collected in the buffer tank 16. Steam stripping is passed into the buffer tank 16 to remove the oil and gas carried on the catalyst; then the catalyst is transferred to the regenerator 17, and superheating medium and a proper amount of air are passed into the regenerator 17 to convert the carbon deposited on the catalyst into CO 2 And H 2 O, the catalyst activity is gradually restored; the regenerated catalyst is transferred to the dosing tank 18 above the catalytic cracking reactor 7. After the regenerated catalyst is transferred, the pressure in the dosing tank 18 is increased to make it higher than the catalytic cracking reactor 7.
  • the pressure in the cracking reactor 7 is 0.1 ⁇ 0.2MPa. Under the action of pressure difference and gravity, the catalyst enters the catalytic cracking reactor 7 again; the hot flue gas discharged from the top of the regenerator 17 is successively cooled by 2# heat exchanger 20 and 2# After cooling, the device 21 enters the two-phase separator 19 to separate the regeneration flue gas and water vapor.
  • the separated cooling water is used as the cooling medium of the 2# heat exchanger 20 to exchange heat with the hot flue gas, and the regeneration flue gas is directly discharged outside.
  • the cooling water delivered by the water pump 22 is preheated and then converged to the preheated water after the 1# heat exchanger 13. Phase materials can be recycled.
  • the superheated medium generated in the process is used for catalytic regeneration, which not only restores the activity of the deactivated catalyst in the catalytic cracking reactor 7, but also keeps the restored catalyst at a temperature point above the reaction temperature. It is added to the catalytic cracking reactor 7 cyclically, thereby ensuring the normal operation of the catalytic cracking reactor 7 more energy-saving and high-efficiency.
  • the green oily waste plastic technology of this embodiment is embedded in the garbage incineration method, which also includes the following processing steps: S1 dry garbage pretreatment unit operation; S2 liquefaction waste plastic cracking unit operation; and S3 non-plastic garbage incineration unit operation.
  • Example 1 The difference from Example 1 is that in the step S3, the incinerator 9 adopts indirect combustion, and its operating conditions are: the operating temperature is 550°C, the pressure is 0.2 MPa, and the non-plastic in the incinerator 9 Garbage is carbonized under anaerobic high temperature conditions and converted into coke, which is converted into carbon dioxide and water after being burned; the carbonization process is performed in a mechanical grate furnace.
  • the carbonization medium adopts superheated steam; the temperature of the superheated steam is 600°C and the pressure is 0.2MPa; in the mechanical grate furnace, the non-plastic undergoes three processes of drying, vaporization and carbonization.
  • the non-plastic After the non-plastic is carbonized, it enters the incinerator together with the slag 9 Incineration, the heat released during the incineration process is used to provide energy for the superheated steam; the carbonization of non-plastic waste requires heat, and the carbonized coke incineration emits heat, and the heat balance between the two is maintained;
  • the carbonization process isolates oxygen and conducts the carbon cracking reaction under high temperature conditions, instead of the combustion reaction under aerobic conditions, the problem of insufficient non-plastic combustion will not occur. Therefore, the carbonization process has the following significant advantages: 1) Further reduce the amount of dioxins produced in the incineration process; 2) The furnace temperature is greatly reduced; 3) The air consumption can be significantly reduced, and the dust content in the flue gas and the acid gas concentration are reduced to varying degrees; 4) The follow-up of the incinerator 9 Its environmental protection facilities are simpler, and its investment and operating costs are lower.
  • the green oily waste plastic technology of this embodiment is embedded in the garbage incineration method, which also includes the following processing steps: S1 dry garbage pretreatment unit operation; S2 liquefaction waste plastic cracking unit operation; and S3 non-plastic garbage incineration unit operation.
  • Example 1 The difference from Example 1 is that in the step S3, the incinerator 9 adopts indirect combustion, and its operating conditions are: the operating temperature is 550°C, the pressure is 0.2 MPa, and the non-plastic in the incinerator 9
  • the garbage is carbonized under anaerobic high temperature conditions and converted into coke, which is converted into carbon dioxide and water after being burned; the carbonization process is performed in the fluidized bed incinerator 9.
  • the fluidized bed incinerator 9 is equipped with a catalyst, and the non-plastic waste is fluidized and mixed and reacted with the catalyst.
  • the carbonization medium adopts superheated steam and a high-temperature catalyst.
  • the temperature of the superheated steam is 600°C and the pressure is 0.2MPa; the temperature of the high-temperature catalyst is 550°C and the pressure of the fluidized bed is 0.2MPa; the coke obtained by carbonization and the cooled catalyst enter the regenerated fluidized bed together, and the coke is being regenerated
  • the combustion in the fluidized bed transforms into CO 2 and H 2 O; the heat released during the period heats the catalyst and superheated steam;
  • the carbonization process has the following significant The advantages: 1) Further reduce the amount of dioxins produced during the incineration process; 2) The bed temperature of the fluidized bed incinerator 9 is greatly reduced; 3) The air consumption can be significantly reduced, and the dust content in the flue gas and the acid gas concentration are different The degree of reduction; 4) The subsequent environmental protection facilities of the incinerator 9 are simpler, and its input and operating costs are lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

一种废塑料油化技术嵌入垃圾焚烧方法,包括以下步骤:首先,垃圾干湿分离,干垃圾进废塑料油化装置的预处理单元;预处理单元将干垃圾中废塑料液化,非塑料垃圾经过液固分离设备处理后分开;其次,液化后废塑料送入裂解单元,产出汽油和柴油等产品;非塑料垃圾仍将其排入焚烧炉(9)采取焚烧处理;此过程二噁英排放远远低于标准值。该废塑料油化技术嵌入垃圾焚烧方法,一则废塑料垃圾从"煤炭"的价值提升为"燃料油"的价值,二则废塑料垃圾不再进焚烧炉(9)焚烧,其二噁英产生量微乎其微,焚烧炉(9)燃烧温度大幅度降低,可大幅节约设备投资和运行成本,具有显著地经济效益和社会效益。

Description

[根据细则37.2由ISA制定的发明名称] 一种废塑料油化技术嵌入垃圾焚烧方法 技术领域
本发明属于固废处理技术领域,具体涉及一种废塑料绿色油化技术嵌入垃圾焚烧方法。
背景技术
塑料被广泛应用在各行各业,例如:纺织工业、家电行业、建筑行业、汽车行业、农业等,随着塑料制品消费量不断增大,废弃塑料也不断增多。目前我国废弃塑料主要为塑料薄膜、塑料丝及编织品、泡沫塑料、塑料包装箱及容器、日用塑料制品、塑料袋和农用地膜等。
与金属回收比较,塑料回收最大问题是难以用机器进行自动分类,工序牵涉大量人力。塑料的重复回收利用率普遍较低,形成了巨大的资源浪费,而大量塑料制品的使用产生的垃圾如果通过掩埋、焚烧等方法处理则会造成严重的环境污染问题。
由鉴于此,亟需提供一种高社会效益和高经济效益的废塑料垃圾处理方法。
发明内容
鉴于以上现有技术的不足之处,本发明的主要目的在于提供一种废塑料绿色油化技术嵌入垃圾焚烧方法,以解决现有垃圾焚烧过程社会效益和经济效益低的问题。
为了实现上述目的,本发明采用以下技术方案:
一种废塑料绿色油化技术嵌入垃圾焚烧方法,其包括以下步骤:
S1干垃圾预处理单元操作:将垃圾干湿分离后得到的干垃圾,经撕碎处理后输送进第一预处理罐的中间段,所述干垃圾包括废塑料和非塑料垃圾,所述废塑料占干垃圾的重量比为30-50m%;采用过热蒸汽将所述第一预处理罐中的废塑料熔化成液化物收集在罐底,而非塑料垃圾则以固态形式滞留在所述第一预处理罐的中间段;当非塑料垃圾积累到一定料位,将非塑料垃圾转移至吹扫洗涤罐,采用蒸汽和/或热水冲洗非塑料垃圾上残留液化物;来自所述第一预处理罐和吹扫洗涤罐的蒸汽均以气相状态引入催化裂解反应器;
S2液化废塑料裂解单元操作:将步骤S1中得到的废塑料液化物,经第二预处理罐预热后由泵抽出,在催化裂解反应器前与过热蒸汽在混合器内混合,混合均匀后进入催化裂解反应器,在催化剂的作用下,所述废塑料液化物转变为高温油气和废渣,所述高温油气经过冷却分离后,得到柴油和汽油等油相组份,同时产生一定量烃类气体;
S3非塑料垃圾焚烧单元操作:将步骤S1冲洗干净后的非塑料垃圾推送进焚烧炉;并将步骤S2中伴生的烃类气体和废渣作为焚烧炉的燃料,供焚烧炉燃烧;所述焚烧炉采用直接燃烧方式或间接燃烧方式进行。
本发明的垃圾焚烧方法,非塑料垃圾仍以原焚烧方式处理,但因为废塑料垃圾不再进入焚烧炉,焚烧炉的温度也不需要800℃以上,其焚烧过程中二噁英仅微量产生。因此干垃圾一分为二,即废塑料垃圾和非塑料垃圾,废塑料垃圾采用油化技术,而非塑料垃圾采用焚烧处理,这样干垃圾全部处理后,其二噁英总排放量则可大幅度的降低,二噁英总排放远在标准值以内。
废旧塑料的主要成分是聚乙烯(PE),聚丙烯(PP),聚苯乙烯(PS),泡沫聚苯乙烯(PSF)和聚氯乙烯(PVC)等,由于塑料是石油化工的产物,从化学结构以及所含成分上看,塑料为高分子碳氢化合物,而汽油、柴油则是低分子碳氢化合物,所以可以将废塑料处理转化为燃料油。
作为优选的技术方案,在所述步骤S1中,所述第一预处理罐中间段设置过滤元件,所述第一预处理罐罐体上还设有惰性加热介质进口、惰性加热介质出口、液体出口以及固体出口;所述惰性加热介质进口和惰性加热介质出口分别设在所述第一预处理罐的罐底和罐顶,用于过热蒸汽的通入和排出,废塑料碎片受热熔化成液化物,液化物经过滤元件过滤后收集在第一预处理罐底部,并可由液体出口排出,而未能液化的非塑料垃圾则滞留在过滤元件的上部空间,并可由固体出口转移至吹扫洗涤罐。
作为优选的技术方案,在所述步骤S1中,所述废塑料受热熔化成液化物的操作条件为:温度100~300℃;压力0.01~0.5MPa。
作为优选的技术方案,在所述步骤S1中,未液化的非塑料垃圾直接推送至吹扫洗涤罐,吹扫冲洗残留在非塑料垃圾上的废塑料液化物,吹扫冲洗介质为蒸汽和热水的混合物,冲洗过程循环反复,所述热水来自1#三相分离器分离出的水相物质;冲洗下来的废塑料液化物则收集在吹扫洗涤罐罐顶;非塑料垃圾则滞留在吹扫洗涤罐罐中下部。
未液化的非塑料垃圾可采用连续或间断方式排出第一预处理罐,排出方式选用密闭管道推送,所述第一预处理罐内设料位监控仪表。单独设置第一预处理罐时,未液化的 非塑料垃圾采用间断方式排出第一预处理罐;并联方式设置多个相同规格的第一预处理罐时,当第一预处理罐内设料位监控仪表检测到非塑料垃圾积累到一定料位时,切换第一预处理罐,即可实现未液化的非塑料垃圾以连续方式排出第一预处理罐。
作为优选的技术方案,在所述步骤S1中,所述干垃圾在撕碎处理前还包括一定程度的初选处理,用以剔除所述干垃圾中的铁、电池、玻璃、石块等固体垃圾。
具体地,可以采用本领域公知的管道除铁器除铁,或者采用人工挑拣或者智能识别的方式筛除干垃圾中的诸如电池、玻璃、石块等固体垃圾。
干垃圾撕碎处理,主要是指干垃圾中废塑料的撕碎;通过废塑料的撕碎操作,得到大小尺寸适度且分布均匀的废塑料碎片,以利于提高废塑料加热熔化的效果。进一步地,可以理解的是,干垃圾中废塑料撕碎操作,不同物性的废塑料物质,可选用不同的撕碎设备,如膜类,包装袋类等软塑料,选用撕碎机将其撕碎;如电器外壳类等硬质塑料,选用粉碎机将其粉碎。
作为优选的技术方案,所述步骤S1和步骤S2中的过热蒸汽,其温度为200~500℃,压力为0.2~0.5MPa。
作为优选的技术方案,在所述步骤S2中,第二预处理罐内分为预热段和脱过热段;所述废塑料液化物经第二预处理罐预热操作过程具体为:将来自于第一预处理罐的废塑料液化物经泵打入第二预处理罐预热段的上部,废塑料液化物从上往下流动,与来自于催化裂解反应器的高温油气在第二预处理罐内逆流接触进行换热;所述废塑料液化物经过预热段和脱过热段后,温度逐板提升,至塔釜时其温度提高至250~320℃,预热后的废塑料液化物部分经过混合器后进入催化裂解反应器进行催化裂解操作,部分循环返回至第一预处理罐,用于预热新鲜干垃圾;在脱过热段,高温油气从过热状态冷却至饱和状态,与此同时油气携带的粉尘被洗涤下来;第二预处理罐塔顶温度100~200℃,压力0.05~0.30MPa;塔釜温度250~320℃。
作为优选的技术方案,所述高温油气的冷却分离操作过程具体为:将来自于催化裂解反应器的高温油气与废塑料液化物在第二预处理罐内逆流接触进行换热,换热后的高温油气从第二预处理罐的塔顶排出,然后与1#三相分离器分离后的水相物质在1#换热器中换热冷却至70~90℃,再经过1#冷却器冷却至30~50℃后进入1#三相分离器进行分离操作,分别得到油相汽油和柴油,气相烃类气体,及水相物质三股物料,所述气相烃类气体经过压缩机加压后输送至焚烧炉。所述水相物质依次经过1#换热器预热和加热器加热后,转变为过热蒸汽,该股过热蒸汽部分通入到混合器与废塑料液化物混合后进入催化裂 解反应器,部分通入催化剂再生器,用于催化剂的活性恢复操作。
作为优选的技术方案,在所述步骤S2中,所述催化裂解反应器的操作条件:反应温度300~500℃、反应压力0.05~0.5MPa、空速0.1~20h -1
所述催化裂解反应器的反应条件缓和,隔绝空气,也不接触氧气,在催化剂作用下,废塑料中的氯绝大多数转变为氯化氢,因此废塑料在油化过程中,其二噁英排放远远低于标准值。
所述催化裂解反应器选用固定流化床或流化床;根据处理规模大小选用合适的反应器型式;选用流化床反应器,则需进一步考虑伴生气,即气体烃类的回收利用;选用固定流化床,伴生气一般选择作焚烧炉的燃料气,催化裂解反应器排出的废渣,也可选择进焚烧炉焚烧,焚烧将其中的焦炭进一步转为CO 2和H 2O。
作为优选的技术方案,在所述步骤S3中,冲洗干净后的非塑料垃圾由吹扫洗涤罐直接推送至焚烧炉,排出方式选用密闭管道推送,吹扫洗涤罐内设液位和料位监控仪表。
非塑料垃圾采取不降温的情况下直接推送至焚烧炉;上下游设备间物料直供有利于能量的最大化利用;采用直供,与原干垃圾直接焚烧(从室温升温到850℃)对比,除塑料油化过程增加部分能耗外,非塑料垃圾焚烧所需的能耗只降低,不增加(从室温升温200~400℃,200~400℃到燃点,燃点温度明显低于850℃)。
作为优选的技术方案,在所述步骤S3中,所述焚烧炉直接燃烧方式的操作条件为:操作温度为干垃圾燃点温度,即400~600℃,压力为0.01~0.5MPa,焚烧炉内通入氧气,非塑料垃圾完全焚烧后转化为二氧化碳和水排出。
作为优选的技术方案,在所述步骤S3中,所述焚烧炉间接燃烧方式的操作条件为:操作温度为400~650℃,压力为0.1~0.5MPa,焚烧炉内的非塑料垃圾在绝氧高温条件下进行碳化,转化为焦炭,所述焦炭经过燃烧后转化为二氧化碳和水;所述碳化过程在机械炉排炉或流化床焚烧炉内进行。
当所述碳化过程在机械炉排炉内进行时,碳化介质采用高温惰性介质,所述高温惰性介质选用过热蒸汽、二氧化碳或者氮气中的至少一种;所述高温惰性介质温度400~600℃,压力0.2~0.5MPa;在机械炉排炉内,非塑料经历干燥、汽化和碳化三个过程,所述非塑料碳化后,与炉渣一起或筛分后单独进焚烧炉焚烧,焚烧过程中放出热量用于为过热蒸汽提供能量;非塑料垃圾碳化需要热量,碳化后的焦炭焚烧放出热量,两者间维持热平衡;
当所述碳化过程在流化床焚烧炉内进行时,所述流化床焚烧炉内装有催化剂,非 塑料垃圾与催化剂流化混合和反应,碳化介质采用过热蒸汽和高温催化剂,所述过热蒸汽的温度400~600℃,压力0.2~0.5MPa;高温催化剂温度450~650℃,流化床压力0.1~0.5MPa;碳化得到的焦炭和冷却后催化剂一起进再生流化床,焦炭在再生流化床内燃烧转变为CO 2和H 2O;期间放出的热量加热催化剂和过热蒸汽;
碳化过程由于隔绝氧气,在高温条件下进行碳的裂解反应,而不再进行有氧条件下的燃烧反应,因此,不会发生非塑料燃烧不充分的问题,故碳化过程具有以下显著的优点:1)进一步降低焚烧过程中二噁英产生量;2)炉膛或床层温度大幅降温;3)耗风量可明显降低,烟气中粉尘含量,酸性气体浓度均有不同程度的减少;4)焚烧炉后续的环保设施更简单,其投入和运行费用更低等。
作为优选的技术方案,在所述步骤S2中,还包括催化剂的再生过程,其主要包括以下步骤;催化剂通过卸剂线离开催化裂解反应器,收集在缓冲罐内,所述缓冲罐内通入蒸汽汽提,清除催化剂上携带的油气;然后将催化剂转送至再生器,在所述再生器内通入过热介质和适量空气,将催化剂上积碳转变为CO 2和H 2O,催化剂活性得以逐渐恢复;将再生后的催化剂转送至催化裂解反应器上方的加剂罐,再生催化剂转送完后将加剂罐内压力升高,使其高于催化裂解反应器内压力0.1~0.2MPa,在压差和重力的作用下,催化剂再次进入催化裂解反应器。
催化裂解反应一段时间后,催化剂因积碳而失活,此时催化剂将进行再生;再生后催化剂可再次利用;催化剂可循环多次,再生热源可采用过热介质,如蒸汽,氮气等;再生时过热介质中要通入一定量的空气;当催化裂解反应器选用流化床作为反应器时,催化剂则在反应器与再生器之间连续循环,再生器内直接通入空气。
本发明的有益效果:
本发明的垃圾焚烧方法,可将干垃圾中废塑料与非塑料垃圾彻底分开,废塑料垃圾采用油化技术,得到汽油和柴油的总收率为干垃圾的20~40m%,而非塑料垃圾继续采用焚烧处理,焚烧后的二噁英排放值远低于标准值。
相较于现有大于800℃的焚烧炉操作温度,本发明的垃圾焚烧炉,操作条件温和,只需400~600℃即可满足垃圾焚烧要求,可大幅节约设备和运行成本,具有显著地的经济效益和社会效益。
本发明的垃圾焚烧方法,废塑料催化裂解过程中伴生的烃类气体和废渣可作为焚烧炉的燃料,垃圾焚烧过程中无需额外添加燃料进行焚烧操作,具有副产物综合循环利用和低成本运行的优点。
本发明的垃圾焚烧方法,通过热量的综合利用,不仅整体能耗低,而且进一步降低了设备的投资和运行成本。
附图说明
图1为本发明废塑料绿色油化技术嵌入垃圾焚烧方法实施例1的工艺流程图;
图2为本发明废塑料绿色油化技术嵌入垃圾焚烧方法实施例2的工艺流程图;
其中,传送带1、管道除铁器2、撕碎机3、螺旋推进机4、第一预处理罐5、第二预处理罐6、催化裂解反应器7、吹扫洗涤罐8、焚烧炉9、1#三相分离器10、压缩机11、混合器12、1#换热器13、1#冷却器14、加热器15、缓冲罐16、再生器17、加剂罐18、两相分离器19、2#换热器20、2#冷却器21、水泵22、1#液化物泵51、2#液化物泵61、1#循环泵62、2#循环泵81。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
实施例1
如图1所示,本实施例的废塑料绿色油化技术嵌入垃圾焚烧方法,包括以下步骤:
S1干垃圾预处理单元操作:将垃圾干湿分离后得到的干垃圾(垃圾含水率小于15%)通过传送带1输送,在此过程中通过人工挑拣的方式将大块的电池、玻璃、石块等固体废物予以剔除,然后经管道除铁器2除去干垃圾中的铁块物质,并经撕碎机3撕碎处理后通过螺旋推进机4输送进第一预处理罐5的中间段,所述干垃圾包括废塑料和非塑料垃圾,所述废塑料占干垃圾的比重为42m%,所述废塑料主要以塑料薄膜、塑料包装袋等软塑料为主,所述非塑料垃圾主要是指厨余类、木竹类、纸类、纺织类、金属类、玻璃类、砖瓦陶瓷类、灰土类和其他(诸如电池类)等垃圾;采用过热蒸汽将所述第一预处理罐5中的废塑料熔化成液化物收集在罐底,所述废塑料受热熔化成液化物的操作条件为:温度250℃;压力0.2MPa,而非塑料垃圾则以固态形式滞留在所述第一预处理罐5的中间段;当非塑料垃圾积累到一定料位,将非塑料垃圾转移至吹扫洗涤罐8,采用蒸汽和热水冲洗非塑料垃圾上残留液化物;来自所述第一预处理罐5和吹扫洗涤罐8的蒸汽均以气相状态引入催化裂解反应器7;
所述第一预处理罐5中间段设置过滤元件,所述第一预处理罐5罐体上还设有惰 性加热介质进口、惰性加热介质出口、液体出口以及固体出口;所述惰性加热介质进口和惰性加热介质出口分别设在所述第一预处理罐5的罐底和罐顶,用于过热蒸汽的通入和排出,废塑料碎片受热熔化成液化物,液化物经过滤元件过滤后收集在第一预处理罐5底部,并可由液体出口排出,而未能液化的非塑料垃圾则滞留在过滤元件的上部空间,并可由固体出口转移至吹扫洗涤罐8;
未液化的非塑料垃圾直接推送至吹扫洗涤罐8,吹扫冲洗残留在非塑料垃圾上的废塑料液化物,吹扫冲洗介质为蒸汽和热水的混合物,冲洗过程通过1#循环泵62进行循环反复冲洗操作,所述热水来自1#三相分离器10分离出的水相物质;冲洗下来的废塑料液化物则收集在吹扫洗涤罐8罐顶;非塑料垃圾则滞留在吹扫洗涤罐8罐中下部;未液化的非塑料垃圾采用间断方式排出第一预处理罐5,排出方式选用密闭管道推送,所述第一预处理罐5内设料位监控仪表;
S2液化废塑料裂解单元操作:将步骤S1中得到的废塑料液化物,经第二预处理罐6预热后由1#液化物泵51抽出,在催化裂解反应器7前与过热蒸汽在混合器12内混合,混合均匀后进入催化裂解反应器7,在催化剂的作用下,所述废塑料液化物转变为400℃高温油气和废渣,所述高温油气经过冷却分离后,得到柴油和汽油等油相组份,同时产生一定量烃类气体;所述催化裂解反应器7选用固定流化床,所装填的催化剂为质量比5:1的Y型分子筛和择型分子筛复配而成的催化剂;所述催化裂解反应器7的操作条件:反应温度400℃、反应压力0.2MPa、空速10h -1
所述第二预处理罐6内分为预热段和脱过热段;所述废塑料液化物经第二预处理罐6预热操作过程具体为:将来自于第一预处理罐5的废塑料液化物经1#液化物泵51打入第二预处理罐6预热段的上部,废塑料液化物从上往下流动,与来自于催化裂解反应器7的400℃高温油气在第二预处理罐6内逆流接触进行换热;所述废塑料液化物经过预热段和脱过热段后,温度逐板提升,至塔釜时其温度提高至280℃,预热后的废塑料液化物通过1#液化物泵51部分经过混合器12后进入催化裂解反应器7进行催化裂解操作,部分再通过1#循环泵62循环返回至第一预处理罐5,用于预热新鲜干垃圾;在脱过热段,高温油气从过热状态冷却至饱和状态,与此同时油气携带的粉尘被洗涤下来;第二预处理罐6塔顶温度200℃,压力0.15MPa;塔釜温度280℃;
所述高温油气的冷却分离操作过程具体为:将来自于催化裂解反应器7的高温油气与废塑料液化物在第二预处理罐6内逆流接触进行换热,换热后的200℃高温油气从第二预处理罐6的塔顶排出,然后与1#三相分离器10分离后的水相物质在1#换热器13中 换热冷却至80℃,再经过1#冷却器14冷却至40℃后进入1#三相分离器10进行分离操作,分别得到油相汽油和柴油,气相烃类气体,及水相物质三股物料,所述气相烃类气体经过压缩机11加压后输送至焚烧炉9;所述水相物质依次经过1#换热器13预热和加热器15加热后,转变为500℃过热蒸汽,该股过热蒸汽部分通入到混合器12与废塑料液化物混合后进入催化裂解反应器7,部分通入催化剂再生器17,用于催化剂的活性恢复操作;
S3非塑料垃圾焚烧单元操作:将步骤S1冲洗干净后的非塑料垃圾采取不降温的情况下直接推送进焚烧炉9;并将步骤S2中伴生的烃类气体和废渣作为焚烧炉9的燃料,供焚烧炉9燃烧;所述焚烧炉9采用直接燃烧的方式进行非塑料垃圾的焚烧,其操作条件:温度为干垃圾燃点温度,即500℃,压力为0.2MPa,焚烧炉内在焚烧过程中通入适量的空气,非塑料垃圾完全焚烧后转化为二氧化碳和水排出。
冲洗干净后的非塑料垃圾由吹扫洗涤罐8直接推送至焚烧炉9,排出方式选用密闭管道推送,吹扫洗涤罐8内设液位和料位监控仪表,分别用以监控废塑料液化物和固体非塑料垃圾在吹扫洗涤罐8的堆积程度,以便更好地调节吹扫洗涤介质的进料量。
步骤S1中,在第一预处理罐5内将干垃圾中的废塑料液化,然后进行液固分离,实现废塑料和非塑料地彻底分离,为实现废塑料的绿色油化操作提供可能;
步骤S2中,预热后的废塑料液化物进入催化裂解反应器7前与过热蒸汽一起经混合器12,两者在混合器12内不仅可以起到均匀混合的作用,同时可将废塑料液化物进一步升温;混合均匀后的物料从催化裂解反应器7顶部进入催化裂解反应器7,并由分配器将进料均匀分布在反应器内的催化剂床层上,经过催化裂解反应及后续分离后,得到油相汽油和柴油,气相烃类气体,及水相物质三股物料;本发明的废塑料绿色油化技术嵌入垃圾焚烧方法相当于一种“零排放”的工艺结合,因为油化技术嵌入垃圾焚烧的方法不仅可获得大量的较高品质的汽油和柴油,而且无论是伴生气,甚至是排出的废渣都可以进焚烧炉9再次利用;所述汽油和柴油的总收率为干垃圾的30m%;
步骤S3中,焚烧炉9的焚烧过程具有以下显著的优点:1)塑料垃圾提前分离进油化装置,不再进下游的焚烧炉9;2)焚烧过程中二噁英类总排放浓度低于0.5ngTEQ/m 3;3)焚烧时炉膛温度可以从大于850℃降低到非塑料垃圾的燃点温度,即400~600℃,降温幅度明显;4)炉温大幅降低,炉膛,火嘴等设备投入和运行维护成本减少;5)废塑料不进焚烧炉9,炉子耗风量可明显降低,烟气中粉尘含量,酸性气体浓度均有不同程度的减少;6)焚烧炉9后续的环保设施更简单,其投入和运行费用更低。
本实施例可替代部分技术方案的操作条件和处理效果如表1所示:
表1
Figure PCTCN2020129245-appb-000001
实施例2
如图2所示,本实施例的废塑料绿色油化技术嵌入垃圾焚烧方法,同样包括以下处理步骤:S1干垃圾预处理单元操作;S2液化废塑料裂解单元操作;及S3非塑料垃圾焚烧单元操作。
与实施例1不同之处在于,在所述步骤S2中,还包括催化剂的再生过程,其主要包括以下步骤;催化剂通过卸剂线离开催化裂解反应器7,收集在缓冲罐16内,所述缓冲罐16内通入蒸汽汽提,清除催化剂上携带的油气;然后将催化剂转送至再生器17,在所述再生器17内通入过热介质和适量空气,将催化剂上积碳转变为CO 2和H 2O,催化剂活性得以逐渐恢复;将再生后的催化剂转送至催化裂解反应器7上方的加剂罐18,再生催化剂转送完后将加剂罐18内压力升高,使其高于催化裂解反应器7内压力0.1~0.2MPa,在压差和重力的作用下,催化剂再次进入催化裂解反应器7;再生器17顶部排出的热烟气依次经过2#换热器20和2#冷却器21冷却后进入两相分离器19进行再生烟气和水蒸气的分离,分离后的冷却水作为2#换热器20的冷却介质与热烟气进行换热,再生烟气直接 外排,而通过水泵22输送的冷却水经过预热后汇流至1#换热器13后的预热水,两股预热后的水相物质经过加热器15加热,转变为500℃过热蒸汽,使得水相物质得以循环利用。本实施例的催化剂再生过程,采用工艺过程产生的过热介质进行催化再生,不仅使得催化裂解反应器7中的失活催化剂得以恢复活性,并使恢复活性后的催化剂保持在反应温度以上的温度点循环加入到催化裂解反应器7中,从而更加节能、高效地保证催化裂解反应器7的正常运行。
实施例3
本实施例的废塑料绿色油化技术嵌入垃圾焚烧方法,同样包括以下处理步骤:S1干垃圾预处理单元操作;S2液化废塑料裂解单元操作;及S3非塑料垃圾焚烧单元操作。
与实施例1不同之处在于,在所述步骤S3中,所述焚烧炉9采用间接燃烧方式进行,其操作条件为:操作温度为550℃,压力为0.2MPa,焚烧炉9内的非塑料垃圾在绝氧高温条件下进行碳化,转化为焦炭,所述焦炭经过燃烧后转化为二氧化碳和水;所述碳化过程在机械炉排炉内进行。碳化介质采用过热蒸汽;所述过热蒸汽温度600℃,压力0.2MPa;在机械炉排炉内,非塑料经历干燥、汽化和碳化三个过程,所述非塑料碳化后,与炉渣一起进焚烧炉9焚烧,焚烧过程中放出热量用于为过热蒸汽提供能量;非塑料垃圾碳化需要热量,碳化后的焦炭焚烧放出热量,两者间维持热平衡;
碳化过程由于隔绝氧气,在高温条件下进行碳的裂解反应,而不再进行有氧条件下的燃烧反应,因此,不会发生非塑料燃烧不充分的问题,故碳化过程具有以下显著的优点:1)进一步降低焚烧过程中二噁英产生量;2)炉膛温度大幅降温;3)耗风量可明显降低,烟气中粉尘含量,酸性气体浓度均有不同程度的减少;4)焚烧炉9后续的环保设施更简单,其投入和运行费用更低等。
实施例4
本实施例的废塑料绿色油化技术嵌入垃圾焚烧方法,同样包括以下处理步骤:S1干垃圾预处理单元操作;S2液化废塑料裂解单元操作;及S3非塑料垃圾焚烧单元操作。
与实施例1不同之处在于,在所述步骤S3中,所述焚烧炉9采用间接燃烧方式进行,其操作条件为:操作温度为550℃,压力为0.2MPa,焚烧炉9内的非塑料垃圾在绝氧高温条件下进行碳化,转化为焦炭,所述焦炭经过燃烧后转化为二氧化碳和水;所述碳化过程在流化床焚烧炉9内进行。所述流化床焚烧炉9内装有催化剂,非塑料垃圾与催化剂流化混合和反应,碳化介质采用过热蒸汽和高温催化剂,所述催化剂为质量比5:1的Y型分子筛和择型分子筛复配而成的催化剂,所述过热蒸汽的温度600℃,压力0.2MPa;高 温催化剂温度550℃,流化床压力0.2MPa;碳化得到的焦炭和冷却后催化剂一起进再生流化床,焦炭在再生流化床内燃烧转变为CO 2和H 2O;期间放出的热量加热催化剂和过热蒸汽;
同样的,碳化过程由于隔绝氧气,在高温条件下进行碳的裂解反应,而不再进行有氧条件下的燃烧反应,因此,不会发生非塑料燃烧不充分的问题,故碳化过程具有以下显著的优点:1)进一步降低焚烧过程中二噁英产生量;2)流化床焚烧炉9床层温度大幅降温;3)耗风量可明显降低,烟气中粉尘含量,酸性气体浓度均有不同程度的减少;4)焚烧炉9后续的环保设施更简单,其投入和运行费用更低等。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (12)

  1. 一种废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,所述垃圾焚烧方法包括以下步骤:
    S1干垃圾预处理单元操作:将垃圾干湿分离后得到的干垃圾,经撕碎处理后输送进第一预处理罐的中间段,所述干垃圾包括废塑料和非塑料垃圾;采用过热蒸汽将所述第一预处理罐中的废塑料熔化成液化物收集在罐底,而非塑料垃圾则以固态形式滞留在所述第一预处理罐的中间段;当非塑料垃圾积累到一定料位,将非塑料垃圾转移至吹扫洗涤罐,采用蒸汽和/或热水冲洗非塑料垃圾上残留液化物;来自所述第一预处理罐和吹扫洗涤罐的蒸汽均以气相状态引入催化裂解反应器;
    S2液化废塑料裂解单元操作:将步骤S1中得到的废塑料液化物,经第二预处理罐预热后由泵抽出,在催化裂解反应器前与过热蒸汽在混合器内混合,混合均匀后进入催化裂解反应器,在催化剂的作用下,所述废塑料液化物转变为高温油气和废渣,所述高温油气经过冷却分离操作后,得到柴油和汽油等油相组份,同时产生一定量烃类气体;
    S3非塑料垃圾焚烧单元操作:将步骤S1冲洗干净后的非塑料垃圾推送进焚烧炉;并将步骤S2中伴生的烃类气体和废渣作为焚烧炉的燃料,供焚烧炉燃烧;所述焚烧炉采用直接燃烧方式或间接燃烧方式进行。
  2. 如权利要求1所述的废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,在所述步骤S1中,所述第一预处理罐中间段设置过滤元件,所述第一预处理罐罐体上还设有惰性加热介质进口、惰性加热介质出口、液体出口以及固体出口;所述惰性加热介质进口和惰性加热介质出口分别设在所述第一预处理罐的罐底和罐顶,用于过热蒸汽的通入和排出,废塑料碎片受热熔化成液化物,液化物经过滤元件过滤后收集在第一预处理罐底部,并可由液体出口排出,而未能液化的非塑料垃圾则滞留在过滤元件的上部空间,并可由固体出口转移至吹扫洗涤罐。
  3. 如权利要求1所述的废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,在所述步骤S1中,所述废塑料受热熔化成液化物的操作条件为:温度100~300℃;压力0.01~0.5MPa。
  4. 如权利要求1所述的废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,在所述步骤S1中,未液化的非塑料垃圾直接推送至吹扫洗涤罐,吹扫冲洗残留在非塑料垃圾上的废塑料液化物,吹扫冲洗介质为蒸汽和热水的混合物,冲洗过程循环反复,所述热水来自1#三相分离器分离出的水相物质;冲洗下来的废塑料液化物则收集在吹扫洗涤罐罐 顶;非塑料垃圾则滞留在吹扫洗涤罐罐中下部。
  5. 如权利要求1所述的废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,在所述步骤S1中,所述干垃圾在撕碎处理前还包括一定程度的初选处理,用以剔除所述干垃圾中的铁、电池、玻璃、石块等固体垃圾。
  6. 如权利要求1所述的废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,在所述步骤S2中,第二预处理罐内分为预热段和脱过热段;所述废塑料液化物经第二预处理罐预热操作过程具体为:将来自于第一预处理罐的废塑料液化物经泵打入第二预处理罐预热段的上部,废塑料液化物从上往下流动,与来自于催化裂解反应器的高温油气在第二预处理罐内逆流接触进行换热;所述废塑料液化物经过预热段和脱过热段后,温度逐板提升,至塔釜时其温度提高至250~320℃,预热后的废塑料液化物部分经过混合器后进入催化裂解反应器进行催化裂解操作,部分循环返回至第一预处理罐,用于预热新鲜干垃圾;在脱过热段,高温油气从过热状态冷却至饱和状态,与此同时油气携带的粉尘被洗涤下来;第二预处理罐塔顶温度100~200℃,压力0.05~0.30MPa;塔釜温度250~320℃。
  7. 如权利要求1所述的废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,所述高温油气的冷却分离操作过程具体为:将来自于催化裂解反应器的高温油气与废塑料液化物在第二预处理罐内逆流接触进行换热,换热后的高温油气从第二预处理罐的塔顶排出,然后与1#三相分离器分离后的水相物质在1#换热器中换热冷却至70~90℃,再经过1#冷却器冷却至30~50℃后进入1#三相分离器进行分离操作,分别得到油相汽油和柴油,气相烃类气体,及水相物质三股物料,所述气相烃类气体经过压缩机加压后输送至焚烧炉。
  8. 如权利要求1所述的废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,在所述步骤S2中,所述催化裂解反应器的操作条件:反应温度300~500℃、反应压力0.05~0.5MPa、空速0.1~20h -1
  9. 如权利要求1所述的废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,在所述步骤S3中,冲洗干净后的非塑料垃圾由吹扫洗涤罐直接推送至焚烧炉,排出方式选用密闭管道推送,吹扫洗涤罐内设液位和料位监控仪表。
  10. 如权利要求1所述的废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,在所述步骤S3中,所述焚烧炉直接燃烧方式的操作条件为:操作温度为干垃圾燃点温度,即400~600℃,压力为0.01~0.5MPa,焚烧炉内通入氧气,非塑料垃圾完全焚烧后转化为二氧化碳和水排出。
  11. 如权利要求1所述的废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,在所述步骤S3中,所述焚烧炉间接燃烧方式的操作条件为:操作温度为400~650℃,压力为 0.1~0.5MPa,焚烧炉内的非塑料垃圾在绝氧高温条件下进行碳化,转化为焦炭,所述焦炭经过燃烧后转化为二氧化碳和水;所述碳化过程在机械炉排炉或流化床焚烧炉内进行。
  12. 如权利要求1所述的废塑料绿色油化技术嵌入垃圾焚烧方法,其特征在于,在所述步骤S2中,还包括催化剂的再生过程,其主要包括以下步骤;催化剂通过卸剂线离开催化裂解反应器,收集在缓冲罐内,所述缓冲罐内通入蒸汽汽提,清除催化剂上携带的油气;然后将催化剂转送至再生器,在所述再生器内通入过热介质和适量空气,将催化剂上积碳转变为CO 2和H 2O,催化剂活性得以逐渐恢复;将再生后的催化剂转送至催化裂解反应器上方的加剂罐,再生催化剂转送完后将加剂罐内压力升高,使其高于催化裂解反应器内压力0.1~0.2MPa,在压差和重力的作用下,催化剂再次进入催化裂解反应器。
PCT/CN2020/129245 2020-05-29 2020-11-17 一种废塑料油化技术嵌入垃圾焚烧方法 WO2021174911A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20922471.6A EP3922911B1 (en) 2020-05-29 2020-11-17 Method for embedding waste-plastic oilification technology in garbage incineration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010479658.0 2020-05-29
CN202010479658.0A CN111750358B (zh) 2020-05-29 2020-05-29 一种废塑料绿色油化技术嵌入垃圾焚烧方法

Publications (1)

Publication Number Publication Date
WO2021174911A1 true WO2021174911A1 (zh) 2021-09-10

Family

ID=72674570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129245 WO2021174911A1 (zh) 2020-05-29 2020-11-17 一种废塑料油化技术嵌入垃圾焚烧方法

Country Status (3)

Country Link
EP (1) EP3922911B1 (zh)
CN (1) CN111750358B (zh)
WO (1) WO2021174911A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353904A (zh) * 2022-08-02 2022-11-18 中国矿业大学 一种过热蒸汽体系高效液化塑料垃圾制油的方法及其装置
CN116023962A (zh) * 2021-10-26 2023-04-28 中国石油化工股份有限公司 一种废塑料管式炉热解的方法和系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111750358B (zh) * 2020-05-29 2021-09-10 浙江科茂环境科技有限公司 一种废塑料绿色油化技术嵌入垃圾焚烧方法
CN114262621B (zh) * 2021-12-06 2022-12-13 北京航天石化技术装备工程有限公司 一种废塑料液化热解系统及方法
CN114907872A (zh) * 2022-05-26 2022-08-16 浙江科茂环境科技有限公司 一种废塑料绿色油化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1080312A (zh) * 1992-06-20 1994-01-05 彭培安 用废塑料生产燃料的方法及其装置
WO1994017332A2 (de) * 1993-01-23 1994-08-04 L.& C. Steinmüller Gmbh Verfahren zum verbrennen eines im wesentlichen aus kunststoff bestehenden abfalls, insbesondere pvc-abfall
CN106190213A (zh) * 2015-04-30 2016-12-07 雷建光 一种利用生活垃圾填埋场废旧塑料提取汽油柴油的工艺
CN110848697A (zh) * 2019-11-19 2020-02-28 山东百川同创能源有限公司 基于热解与气化机理的废塑料清洁处理工艺及其应用
CN111750358A (zh) * 2020-05-29 2020-10-09 浙江科茂环境科技有限公司 一种废塑料绿色油化技术嵌入垃圾焚烧方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2922760B2 (ja) * 1993-09-30 1999-07-26 新日本製鐵株式会社 廃プラスチックの油化製造設備
CN1092096A (zh) * 1993-12-30 1994-09-14 姜皓 利用废旧塑料提炼汽油、柴油馏分和液化气的方法与装置
CN1059454C (zh) * 1995-08-31 2000-12-13 张庆祥 利用废弃塑料生产汽、煤、柴油的方法和装置
KR100322663B1 (ko) * 2000-03-20 2002-02-07 곽호준 폐플라스틱을 이용한 휘발유, 등유 및 경유의 연속식제조방법 및 그 시스템
CN1127554C (zh) * 2000-07-12 2003-11-12 北京乐意环保技术有限公司 利用废塑料生产汽油、柴油和液化气的工艺方法及设备
KR20020023473A (ko) * 2000-09-22 2002-03-29 손재익 폐플라스틱의 열분해 오일화 촉매 및 가열방법
US6534689B1 (en) * 2001-08-24 2003-03-18 Pyrocat Ltd. Process for the conversion of waste plastics to produce hydrocarbon oils
CN1200075C (zh) * 2003-03-10 2005-05-04 湖南大学 利用废塑料、废油和重油混合裂解制取燃料油的方法
GB201020810D0 (en) * 2010-12-08 2011-01-19 Univ Manchester Continuous plastics recycling process
CN102604662B (zh) * 2012-03-21 2014-01-15 河北工业大学 废弃塑料油化过程中热裂解气精细回收油品并循环利用工艺
CN102786980B (zh) * 2012-08-01 2015-09-23 山东汇科通用机械有限公司 一种废塑料炼油生产方法及其生产线
JP2019504156A (ja) * 2015-12-18 2019-02-14 ソルヴェイ(ソシエテ アノニム) 廃プラスチックからワックスおよび液体燃料を製造する方法
CN106047395A (zh) * 2016-07-22 2016-10-26 南阳开源石油机械设备有限公司 一种废旧塑料油化设备及其工艺流程
CN107746722A (zh) * 2017-08-22 2018-03-02 南京大学连云港高新技术研究院 一种废塑料裂解制备汽油和柴油的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1080312A (zh) * 1992-06-20 1994-01-05 彭培安 用废塑料生产燃料的方法及其装置
WO1994017332A2 (de) * 1993-01-23 1994-08-04 L.& C. Steinmüller Gmbh Verfahren zum verbrennen eines im wesentlichen aus kunststoff bestehenden abfalls, insbesondere pvc-abfall
CN106190213A (zh) * 2015-04-30 2016-12-07 雷建光 一种利用生活垃圾填埋场废旧塑料提取汽油柴油的工艺
CN110848697A (zh) * 2019-11-19 2020-02-28 山东百川同创能源有限公司 基于热解与气化机理的废塑料清洁处理工艺及其应用
CN111750358A (zh) * 2020-05-29 2020-10-09 浙江科茂环境科技有限公司 一种废塑料绿色油化技术嵌入垃圾焚烧方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3922911A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023962A (zh) * 2021-10-26 2023-04-28 中国石油化工股份有限公司 一种废塑料管式炉热解的方法和系统
CN115353904A (zh) * 2022-08-02 2022-11-18 中国矿业大学 一种过热蒸汽体系高效液化塑料垃圾制油的方法及其装置
CN115353904B (zh) * 2022-08-02 2024-02-23 中国矿业大学 一种过热蒸汽体系高效液化塑料垃圾制油的方法及其装置

Also Published As

Publication number Publication date
EP3922911A4 (en) 2022-06-22
CN111750358A (zh) 2020-10-09
CN111750358B (zh) 2021-09-10
EP3922911A1 (en) 2021-12-15
EP3922911B1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2021174911A1 (zh) 一种废塑料油化技术嵌入垃圾焚烧方法
CN104178226B (zh) 一种生活垃圾热解资源化综合处理系统及方法
CN104087340B (zh) 一种油、气、炭可调的废弃物热解的系统和方法
CN104355519A (zh) 基于水热碳化和微波快速热解的污泥综合处理方法
CN204039347U (zh) 一种生活垃圾热解资源化综合处理系统
CN104787762A (zh) 含水有机物热解生产活性炭的方法和系统
CN104804775A (zh) 生活垃圾热解气化生产可燃气的方法和系统
CN102807884B (zh) 一种竹材热裂解液化制备生物油及生物炭的方法
CN106635079A (zh) 一种固废rdf处理方法
CN112845504B (zh) 生活垃圾资源化利用处理工艺
WO2022067882A1 (zh) 混合废塑料工业连续化按类裂解系统及工艺
CN111019711B (zh) 一种生活垃圾热裂解气化工艺
CN101508902A (zh) 生物质燃料循环气化装置及其方法
CN107674691A (zh) 一种生活垃圾资源化的系统及方法
CN108822878A (zh) 一种有机固废的无氧裂解工艺
CN204607940U (zh) 生活垃圾热解气化生产可燃气的系统
CN106391673A (zh) 处理生活垃圾的系统和方法
CN201864709U (zh) 利用饱和蒸汽进行褐煤提质的设备系统
CN106903135A (zh) 处理生活垃圾的系统和方法
CN204803012U (zh) 含水有机物热解生产活性炭的系统
CN207552243U (zh) 一种生活垃圾资源化的系统
CN114308981B (zh) 一种超临界水处理湿垃圾多联产综合利用系统及处理工艺
CN116477570A (zh) 一种生活垃圾和/或有机物制取氢气的装置及方法
CN105444180A (zh) 一种垃圾气化锅炉及其应用方法
CN109777546A (zh) 气化灰渣综合利用系统及方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020922471

Country of ref document: EP

Effective date: 20210907

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE