WO2020248534A1 - 一种废塑料高压热转化制备燃油的方法 - Google Patents

一种废塑料高压热转化制备燃油的方法 Download PDF

Info

Publication number
WO2020248534A1
WO2020248534A1 PCT/CN2019/122520 CN2019122520W WO2020248534A1 WO 2020248534 A1 WO2020248534 A1 WO 2020248534A1 CN 2019122520 W CN2019122520 W CN 2019122520W WO 2020248534 A1 WO2020248534 A1 WO 2020248534A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste plastics
reaction vessel
thermal conversion
pressure
temperature
Prior art date
Application number
PCT/CN2019/122520
Other languages
English (en)
French (fr)
Inventor
袁浩然
程磊磊
顾菁
陈勇
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2020248534A1 publication Critical patent/WO2020248534A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure

Definitions

  • the invention relates to the technical field of resource recycling and utilization, in particular to a method for preparing fuel by high-pressure thermal conversion of waste plastics.
  • plastic waste in my country is about 10 million tons, causing serious "white pollution” problems and causing great distress to the society.
  • a large amount of domestic plastic waste is discarded, landfilled, and incinerated. It not only causes waste of land resources, pollution of soil, water quality, and atmospheric environment, but also loses opportunities for resource utilization.
  • Plastic is a petroleum product, rich in carbon and hydrogen, and has a certain energy value.
  • the methods of recycling waste plastics mainly include incineration power generation, melting regeneration, thermal cracking, etc.
  • the waste gas generated by incineration of power generation causes air pollution; the quality of recycled plastics is poor and will still be converted into waste in the short term; the plastic waste is converted into industrial raw materials or fuel products through thermal conversion, which not only eliminates environmental pollution, but also realizes waste resources ⁇ utilization.
  • the complete thermal conversion of waste plastics into product oil requires a temperature condition of at least 430°C-550°C.
  • the catalyst is mixed with the raw materials, and the carbon residue produced by the thermal conversion of waste plastic is stuck on the surface of the catalyst, which makes the catalyst easy to deactivate and difficult to recycle and reuse, which increases the operating cost.
  • the present invention aims to solve the problems existing in the prior art and provide a method for preparing fuel by high-pressure thermal conversion of waste plastics.
  • the method has reduced energy consumption and cost, and does not produce secondary pollution, and is a kind of resource utilization of waste plastics.
  • Environmentally friendly processing technology is used.
  • the present invention provides a method for preparing fuel by high-pressure thermal conversion of waste plastics, including the following steps: feeding pretreated waste plastics into a reaction vessel, and blowing nitrogen into the reaction vessel to replace the air in the reaction vessel, and the replacement is completed Then close the gas outlet on the reaction vessel, and then pass nitrogen and hydrogen through the gas inlet on the reaction vessel to make the pressure in the reaction vessel reach 0.6-2.1MPa, and heat the reaction vessel to the reaction temperature of 340°C ⁇ 380°C for reaction. After the reaction vessel is cooled to normal temperature, high-pressure gas and product oil are obtained.
  • the product oil includes aromatic hydrocarbons, cyclic hydrocarbons, and isomerized alkanes to increase the octane number of fuels.
  • nitrogen and hydrogen are first introduced into the autoclave to produce a high-pressure atmosphere, and after appropriate initial temperature and pressure conditions are set, the waste plastics undergo thermal conversion under these conditions.
  • the reaction temperature and pressure reach a certain value, stop heating the reaction vessel, relying on the secondary reaction exotherm and the resulting pressurization effect, so that the long chains of the thermal conversion products of waste plastics continue to break into shorter chains.
  • the experiment proves that the final The product carbon number distribution of the product oil is the same as that of gasoline/diesel.
  • the exothermic principle of the reaction is: under high pressure, 340°C and above, the plastic carbon chain breaks into free radicals.
  • the product oil is fractionated to obtain gasoline components, diesel components and heavy oil components, and the gasoline components and diesel components are further upgraded to reach the industrial oil standard; the heavy oil components are recycled to The high-pressure container is mixed with waste plastic for the next thermal conversion reaction.
  • the heavy oil components obtained by fractionation are transported back to the reaction vessel as a heat transfer agent for recycling, which increases the thermal conductivity of waste plastics and prevents agglomeration during thermal conversion of waste plastics.
  • the mass ratio of the heavy oil component to the waste plastic is 0-0.4:1.
  • the volume ratio of nitrogen and hydrogen is 9-19:1.
  • the pretreatment of the pretreated waste plastics includes the following steps: collecting waste plastics, and performing impurity removal and drying treatments on them to obtain pretreated waste plastics.
  • the mass of the waste plastic is 1/8 to 1/5 of the mass that the reaction vessel can hold.
  • the waste plastic is selected from one of polyethylene, polypropylene and polystyrene.
  • the present invention uses the fly-temperature effect of the thermal conversion of waste plastics under high pressure to increase the thermal conversion temperature by about 100°C, which indirectly reduces the initial heating temperature, thereby reducing energy consumption. Because the number of reactants that cause the fly-temperature phenomenon is small, it is not Uncontrollable flying temperature will occur.
  • the present invention does not need to use a catalyst to achieve the effect of upgrading the product oil and reduce the cost.
  • the fuel oil of the present invention has a high yield, and the fuel products are mainly gasoline, diesel fractions and a small amount of heavy oil fractions, without secondary pollution.
  • Figure 1 is a schematic diagram of the device structure for implementing the method for preparing fuel by high-pressure thermal conversion of waste plastics according to the present invention
  • the equipment and reagents used in the present invention are conventional commercially available products in the technical field.
  • a device for achieving a method for preparing fuel by high-pressure thermal conversion of waste plastics includes an autoclave reactor 6, an electric heating jacket 7 is provided at the bottom of the outer side of the autoclave reactor 6, and an outer side of the autoclave reactor 6 is also provided There is a temperature controller 4, the top of the autoclave reactor 6 is provided with a gas inlet, a gas outlet, and a feed port. The waste plastic is put into the autoclave reactor 6 through the feed port, and the bottom of the autoclave reactor 6 is provided with liquid At the outlet, a magnetic stirrer 5 is also provided in the autoclave reactor 6.
  • the nitrogen and hydrogen stored in the nitrogen tank 1 are delivered to the autoclave reactor 6 through the gas inlet by the gas pump 2, and the delivery volume of the nitrogen and hydrogen is adjusted by the inlet valve 3.
  • the high-pressure gas is delivered to the gas collecting tank 10 through the gas outlet through the high-pressure gas delivery pipeline.
  • the high-pressure gas delivery pipeline is provided with a gas outlet valve 9 and a pressure gauge 8, and the product oil is delivered to the gas collector through the product oil delivery pipeline through the liquid outlet.
  • a liquid outlet valve 11 is provided on the product oil delivery pipeline.
  • the product oil is fractionated by the fractionation tower 12 to obtain gasoline components, diesel components and heavy oil components.
  • the temperature controller 4 sets the initial temperature of 340°C, and turns on the electric heating jacket 7 Switch, the temperature controller 4 will cut off the power after reaching the initial temperature, rely on the flying temperature to continue heating to the maximum temperature of 430°C, remove the electric heating jacket 7, and the autoclave reactor 6 is rapidly cooled in the air.
  • Polyethylene mainly undergoes chain scission and dehydrogenation reactions to generate alkanes and alkenes. High-pressure conditions are conducive to the generation of shorter molecular chains. At the same time, there are secondary reactions to generate cyclic and aromatic hydrocarbons, and linear hydrocarbons are isomerized. A series of secondary reactions leads to an increase in the octane number of the product fuel.
  • the mass ratio of heavy oil component to polyethylene is 0.4:1. Under the conditions of this example, the yield of gas products is 4.12%, liquid yield is 92.38%, and coke yield is 3.5. %.
  • the heavy oil component is mixed with polyethylene for thermal conversion reaction to increase the thermal conductivity of polyethylene. Under the same power input, the temperature of the reactant rises faster. At the same time, the hydrogen produced during the thermal conversion of polyethylene is used as a hydrogen source to hydrogenate a small amount of olefins in the heavy oil into alkanes, and the gas product yield and liquid product yield are slightly reduced, and there is a small amount of coke.
  • a liquid collection tank is placed in the cold trap to maintain the normal pressure inside the autoclave reactor, and a gas collection bag is used to collect gas after the liquid collection tank.
  • a gas collection bag is used to collect gas after the liquid collection tank.
  • 1/8 of the mass of polyethylene that can be contained is added. Nitrogen was first introduced into the autoclave reactor for 20 minutes to exhaust the air in the reactor, and then catalytic thermal conversion was carried out under normal pressure.
  • the temperature controller was set to an initial temperature of 340°C, and no flying temperature occurred during the reaction.
  • the gas bag is used to collect the gas phase product, the liquid phase product is collected in the liquid collection tank and the anti-autoclave reactor, and the solid phase product is collected in the autoclave reactor.
  • the yield and group composition of the obtained product are shown in Table 2:
  • a liquid collection tank is placed in the cold trap to maintain the normal pressure inside the autoclave reactor, and a gas collection bag is used to collect gas after the liquid collection tank.
  • the mass ratio of polyethylene to catalyst is 20:1.
  • Nitrogen was first introduced into the autoclave reactor for 20 minutes to exhaust the air in the reactor, and then catalytic thermal conversion was carried out under normal pressure.
  • the temperature controller was set to an initial temperature of 340°C, and no flying temperature occurred during the reaction.
  • the gas bag is used to collect the gas phase product, the liquid phase product is collected in the liquid collection tank and the autoclave reactor, and the solid phase product is collected in the autoclave reactor.
  • the product yield and group composition are shown in Table 3:
  • Example 1 Compared with the high-pressure state of Example 1, the catalytic thermal conversion under normal pressure produces more gas products, and the fuel yield is reduced; the reduction in the carbon number of the product oil comes from catalysis, rather than the flying temperature effect generated under high pressure.
  • the temperature controller 4 sets the initial temperature of 340°C, turns on the switch of the electric heating jacket 7, and when the temperature controller 4 reaches the initial temperature, it will cut off the power supply, rely on the flying temperature to continue heating to the maximum temperature of 436°C, and remove the electric heating jacket 7.
  • the autoclave reactor 6 is rapidly cooled in air.
  • Polyethylene mainly undergoes chain scission and dehydrogenation reactions to generate alkanes and alkenes. High-pressure conditions are conducive to the generation of shorter molecular chains. At the same time, there are secondary reactions to generate cyclic and aromatic hydrocarbons, and linear hydrocarbons are isomerized. A series of secondary reactions leads to an increase in the octane number of the product fuel.
  • the heavy oil component is mixed with polyethylene for thermal conversion reaction to increase the thermal conductivity of polyethylene. Under the same power input, the temperature of the reactant rises faster. At the same time, hydrogen and hydrogen produced during the thermal conversion of polyethylene are used as a hydrogen source to hydrogenate part of the olefins in the heavy oil into alkanes. The gas product yield and liquid product yield are slightly reduced, and there is a small amount of coke.
  • the temperature controller 4 sets the initial temperature of 360°C and turns on the switch of the electric heating jacket 7. When the temperature controller 4 reaches the initial temperature, it will cut off the power supply, rely on the flying temperature to continue heating to the highest temperature of 465°C, and remove the electric heating jacket 7.
  • the autoclave reactor 6 is rapidly cooled in air.
  • Polyethylene mainly undergoes chain scission and dehydrogenation reactions to generate alkanes and alkenes. High-pressure conditions are conducive to the generation of shorter molecular chains.
  • the temperature controller set the initial temperature of 360°C. None appeared during the reaction. Flying temperature phenomenon.
  • the gas bag is used to collect the gas phase product, the liquid phase product is collected in the liquid collection tank and the autoclave reactor, and the solid phase product is collected in the reactor.
  • the yield and family composition of the obtained product are shown in Table 6:
  • Example 3 Compared with the high-pressure state of Example 3, the catalytic thermal conversion under normal pressure produces more gas products and coke, and the fuel yield is reduced; the reduction of the product oil carbon number is due to catalysis, rather than the fly temperature generated under high pressure effect.
  • the temperature controller 4 sets the initial temperature of 380°C, turn on the switch of the electric heating jacket 7. When the temperature controller 4 reaches the initial temperature, it will cut off the power supply, rely on the flying temperature to continue heating to the maximum temperature of 482°C, remove the electric heating jacket 7.
  • the autoclave reactor 6 is rapidly cooled in air.
  • Polyethylene mainly undergoes chain scission and dehydrogenation reactions to generate alkanes and alkenes. High pressure conditions are conducive to the generation of shorter molecular chains; at the same time, there are secondary reactions to generate cyclic and aromatic hydrocarbons, and linear hydrocarbons are isomerized. A series of secondary reactions leads to an increase in the octane number of the product fuel.
  • the temperature controller 4 sets the initial temperature of 380°C, turns on the switch of the electric heating jacket 7, and when the temperature controller 4 reaches the initial temperature, it will cut off the power supply, rely on the flying temperature to continue heating to the maximum temperature of 474°C, and remove the electric heating jacket 7.
  • the autoclave reactor 6 is rapidly cooled in air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种废塑料高压热转化制备燃油的方法,包括如下步骤:将预处理后的废塑料进料至反应容器中,向反应容器中通入氮气置换反应容器内空气,置换完成后关闭反应容器上的气体出口,通过反应容器上的气体进口再通入氮气和氢气使反应容器内的压力达到0.6~2.1MPa,加热反应容器至反应温度340℃~380℃进行反应,待反应结束反应容器空气冷却至常温,得到高压气体和产物油。借助高压条件下废塑料热转化的飞温效应使热转化温度提高100℃左右,间接使加热初温降低,进而降低能耗,因引发飞温现象的反应物数量少,不将出现不可控飞温现象。

Description

一种废塑料高压热转化制备燃油的方法 技术领域:
本发明涉及资源循环再生利用技术领域,尤其是涉及一种废塑料高压热转化制备燃油的方法。
背景技术:
目前,我国塑料废弃物每年产量在1000万吨左右,造成严重的“白色污染”问题,给社会造成很大困扰。国内大量塑料废弃物被丢弃、填埋、焚烧。既造成土地资源的浪费,以及土壤、水质、大气环境的污染,又失去资源化利用的机会。塑料是石油制品,含丰富碳、氢元素,具有一定的能源价值。目前,废塑料资源化利用的方式主要包括焚烧发电、熔融再生、热裂解等。焚烧发电产生的废气造成大气污染;再生塑料质量差,短期内仍将转化为废弃物;将塑料废弃物通过热转化转化为工业原料或燃油制品,不仅消除环境污染,还可实现废弃物的资源化利用。
常压条件下废塑料完全热转化为产物油至少要求430℃-550℃的温度条件。催化热转化过程中催化剂与原料混合,废塑料热转化产生炭渣粘贴在催化剂表面,使催化剂易失活且难以回收重复使用,增加运行成本。
因此,开发一种高效热转化废塑料制备高附加值产品的非催化方法具有重要意义。
发明内容:
本发明旨在针对现有技术存在的问题,提供一种废塑料高压热转化制备燃油的方法,该方法的能耗及成本降低,且不产生二次污染,是一种废塑料资源化利用的环境友好处理技术。
本发明的提供了一种废塑料高压热转化制备燃油的方法,包括如下步骤:将预处理后的废塑料进料至反应容器中,向反应容器中通入氮气置换反应容器内空气,置换完成后关闭反应容器上的气体出口,通过反应容器上的气体进口再通入氮气和氢气使反应容器内的压力达到0.6~2.1MPa,加热反应容器至反应温度340℃~380℃进行反应,待反应结束反应容器空气冷却至常温,得到高压气体和产物油。产物油包括芳烃、环烃、异构化烷烃,提高燃油辛烷值。
本发明首先向高压釜内通入氮气、氢气制造高压气氛,设定适当初始温度及压力条件后,废塑料在此条件下进行热转化。当反应温度和压力达到一定值后,停止对反应容器加热,依靠二次反应放热和由此产生的增压效应,使废塑料热转化产物长链继续断裂成较短链,实验证明最终的产物油产物碳数分布与汽油/柴油相同。反应放热原理为:在高压、340℃及以上温度条件下,塑料碳链断裂为自由基,因反应体系处于高压氛围,大部分自由基保留在液相区域,碳链自由基在液相区域发生碰撞的机会更大,因此再结合放出热量使反应体系温度升高100℃左右。同时,小分子烯烃经双烯合成和进一步的脱氢反应生成芳烃,碳链自由基环化形成环烃,部分环烃进一步脱氢形成芳烃,烯烃产量降低,异构烷烃产量也增加,因此燃油产物的辛烷值增加。
优选地,所述的产物油经分馏得到汽油组分、柴油组分和重油组分,汽油组分和柴油组分经过进一步提质后达到工业用油标准;所述的重油组分循环输送至高压容器与废塑料混合进行下一次热转化反应。分馏所得重油组分输送回反应容器作为导热剂循环使用,增加废塑料热转化导热系数,防止废塑料热转化时结块现象。
进一步优选,所述的重油组分与废塑料的质量比为0~0.4:1。
优选地,所述的氮气和氢气的体积比为9~19:1。
优选地,所述的预处理后的废塑料的预处理包括如下步骤:收集废塑料,并对其进行除杂、干燥处理,即得到预处理后的废塑料。
优选地,所述的废塑料的质量为反应容器所能容纳质量的1/8~1/5。
优选地,所述的废塑料选自聚乙烯、聚丙烯和聚苯乙烯中的一种。
本发明的有益效果是:
(1)本发明借助高压条件下废塑料热转化的飞温效应使热转化温度提高100℃左右,间接使加热初温降低,进而降低能耗,因引发飞温现象的反应物数量少,不将出现不可控飞温现象。
(2)本发明不需使用催化剂即可实现产物油的提质效果,降低成本。
(3)本发明燃油产率高,燃油产物主要为汽油、柴油馏分及少量重油馏分,无二次污染。
(4)本发明整体工艺流程简单,设备制造成熟,实际操作简单,易于放大。
附图说明:
图1为实现本发明废塑料高压热转化制备燃油的方法的装置结构示意图;
附图标记说明:1、氮气罐;2、输气泵;3、进气阀;4、温度控制器;5、磁力搅拌器;6、高压釜反应器;7、电加热套;8、压力表;9、出气阀;10、集气罐;11、液体出口阀;12、分馏塔。
具体实施方式:
下面结合具体实例,进一步阐明本发明。应该理解,这些实施例仅用于说明本发明,而不用于限定本发明的保护范围。在实际应用中技术人员根据本发明做出的改进和调整,仍属 于本发明的保护范围。
除特别说明,本发明使用的设备和试剂为本技术领域常规市购产品。
如图1所示,一种实现废塑料高压热转化制备燃油的方法的装置,包括高压釜反应器6,高压釜反应器6外侧底部设置有电加热套7,高压釜反应器6外侧还设置有温度控制器4,高压釜反应器6的顶部设置有气体进口、气体出口和进料口,废塑料通过进料口放入高压釜反应器6中,高压釜反应器6的底部设置有液体出口,高压釜反应器6内还设置有磁力搅拌器5。存储在氮气罐1中的氮气以及氢气通过输气泵2经气体进口输送至高压釜反应器6,氮气和氢气的输送量通过进气阀3来调节。反应结束后高压气体经气体出口通过高压气体输送管路输送至集气罐10中,高压气体输送管路上设置有出气阀9和压力表8,产物油经过液体出口通过产物油输送管路输送至分馏塔中,产物油输送管路上设置有液体出口阀11。产物油经过分馏塔12分馏后得到汽油组分、柴油组分和重油组分。
实施例1
采用聚乙烯废塑料为实验原料,在图1所示装置内对其进行加压热转化,包括如下步骤:
向高压釜反应器6内加入所能容纳质量的1/8质量的聚乙烯,关闭液体出口阀11,打开进气阀3和出气阀9,向高压釜反应器6通入氮气20min排尽高压釜反应器6内空气,关闭出气阀9封闭高压釜反应器6,然后通入氮气达到2.1MPa初始压力,关闭进气阀3;温度控制器4设定340℃初始温度,打开电加热套7开关,温度控制器4至初始温度后即断开电源,依靠飞温继续加热至最高温度值430℃,卸下电加热套7,高压釜反应器6在空气中快速冷却。聚乙烯主要发生断链反应和脱氢反应,生成烷烃和烯烃, 高压条件有利于生成更短分子链;同时伴有二次反应生成环烃和芳香烃,直链烃发生异构化,这一系列二次反应导致产物燃油辛烷值增加。
冷却至常温后,先打开出气阀9释放高压釜反应器6内高压气体,再打开液体出口阀11放出液态产物油;产物油进入分馏塔12进行分馏,获得柴油组分、汽油组分、重油组分;收集重油组分与聚乙烯混合进行下一次热转化。所得产物产率及族组成如表1所示:
表1
Figure PCTCN2019122520-appb-000001
将重油组分与聚乙烯混合重复上述反应,重油组分与聚乙烯的质量比为0.4:1,在本实施例条件下,气体产物收率4.12%,液体收率92.38%,焦炭收率3.5%。
将重油组分与聚乙烯混合进行热转化反应,增加聚乙烯热转化导热系数,在相同功率输入情况下,反应物温度升高更快。同时,聚乙烯热转化时产生的氢作为氢源使重油中少量烯烃加氢转化为烷烃,气体产物收率和液体产物收率略有降低,有少量的焦炭。
对比例1
在高压釜反应器后设置液体收集罐置于冷阱中以保持高压釜反应器内部的常压状态,液体收集罐后采用气体收集袋收集气体。在高压釜反应器中加入所能容纳质量的1/8质量的聚乙烯。先向高压釜反应器通入氮气20min排尽反应釜内空气,然后在常压状态下进行催化热转化,温度控制器设定340℃初始温度,反应过程中未出现飞温现象。使用气袋收集气相产物,在液体收集罐和反高压釜反应器中收集液相产物,高压釜反应 器中收集固相产物,所得产物产率及族组成如表2所示:
表2
Figure PCTCN2019122520-appb-000002
相比于实施例1的高压状态,常压状态下进行热转化产生较多蜡质;不存在飞温效应。因此,产物油碳数分布较低。此外,燃油中不存在芳香烃和异构烷烃,导致燃油辛烷值低。
对比例2
在高压釜反应器后设置液体收集罐置于冷阱中以保持高压釜反应器内部的常压状态,液体收集罐后采用气体收集袋收集气体。在高压釜反应器中加入所能容纳质量的1/8质量的聚乙烯,采用H-ZSM-5催化剂(硅铝比=23),聚乙烯与催化剂质量比为20:1。先向高压釜反应器通入氮气20min排尽反应釜内空气,然后在常压状态下进行催化热转化,温度控制器设定340℃初始温度,反应过程中未出现飞温现象。使用气袋收集气相产物,在液体收集罐和高压釜反应器中收集液相产物,高压釜反应器中收集固相产物,所得产物产率及族组成如表3所示:
表3
Figure PCTCN2019122520-appb-000003
相比于实施例1的高压状态,常压状态下进行催化热转化产生较多气体产物,燃油收率降低;产物油碳数的降低来源于催化作用,而非高压下产生的飞温效应。
实施例2
采用聚乙烯废塑料为实验原料,在图1所示装置内对其进行加压热转化,包括如下步骤:
向高压釜反应器6内加入所能容纳质量的1/8质量的聚乙烯,关闭液体出口阀11,打开进气阀3和出气阀9,向高压釜反应器6通入氮气20min排尽高压釜反应器6内空气,关闭出气阀9封闭高压釜反应器6,然后通入体积分数为90%的氮气和体积分数为10%的氢气混合气达到2.1MPa初始压力,关闭进气阀3;温度控制器4设定340℃初始温度,打开电加热套7开关,温度控制器4至初始温度后即断开电源,依靠飞温继续加热至最高温度值436℃,卸下电加热套7,高压釜反应器6在空气中快速冷却。聚乙烯主要发生断链反应和脱氢反应,生成烷烃和烯烃,高压条件有利于生成更短分子链;同时伴有二次反应生成环烃和芳香烃,直链烃发生异构化,这一系列二次反应导致产物燃油辛烷值增加。
冷却至常温后,先打开出气阀9释放高压釜反应器6内高压气体,再打开液体出口阀11放出液态产物油;产物油进入分馏塔12进行分馏,获得柴油组分、汽油组分、重油组分;收集重油组分与聚乙烯混合进行下一次热转化。所得产物产率、族组成及平均碳数如表4所示:
表4
Figure PCTCN2019122520-appb-000004
将重油组分与聚乙烯混合重复上述反应,重油组分与聚乙烯的质量比为0.4:1,在本实施例条件下,气体产物收率4.65%,液体收率91.16%,焦炭收率4.19%。
将重油组分与聚乙烯混合进行热转化反应,增加聚乙烯热转化导热系数,在相同功率输入情况下,反应物温度升高更快。同时,氢气和聚乙烯热转化时产生的氢共同作为氢源使重油中部分烯烃加氢转化为烷烃,气体产物收率和液体产物收率略有降低,有少量的焦炭。
实施例3
采用聚乙烯废塑料为实验原料,在图1所示装置内对其进行加压热转化,包括如下步骤:
向高压釜反应器6内加入所能容纳质量的1/5质量的聚乙烯,关闭液体出口阀11,打开进气阀3和出气阀9,向高压釜反应器6通入氮气20min排尽高压釜反应器6内空气,关闭出气阀9封闭高压釜反应器6,然后通入体积分数为90%的氮气和体积分数为10%的氢气混合气达到1.6MPa初始压力,关闭进气阀3;温度控制器4设定360℃初始温度,打开电加热套7开关,温度控制器4至初始温度后即断开电源,依靠飞温继续加热至最高温度值465℃,卸下电加热套7,高压釜反应器6在空气中快速冷却。聚乙烯主要发生断链反应和脱氢反应,生成烷烃和烯烃,高压条件有利于生成更短分子链;同时伴有二次反应生成环烃和芳香烃,直链烃发生异构化,这一系列二次反应导致产物燃油辛烷值增加。
冷却至常温后,先打开出气阀9释放高压釜反应器6内高压气体,再打开液体出口阀11放出液态产物油;产物油进入分馏塔12进行分馏,获得柴油组分、汽油组分、重油组分;收集重油组分与聚乙烯混合进行下一次热转化。所得产物产率、族组成及平均碳数如表5所示:
表5
Figure PCTCN2019122520-appb-000005
对比例3
在高压釜反应器前设置体积分数为90%的氮气和体积分数为10%的氢气混合气气瓶以及气体流量计,高压釜反应器后设置液体收集罐置于冷阱中以保持高压釜反应器内部的常压状态,液体收集罐后采用气体收集袋收集气体。在高压釜反应器中加入所能容纳质量的1/5质量的聚乙烯,采用H-ZSM-5催化剂(硅铝比=23),聚乙烯与催化剂质量比为20:1。先向高压釜反应器通入氮气20min排尽反应釜内空气,然后在常压状态下进行催化热转化,通入氮气氢气混合气,温度控制器设定360℃初始温度,反应过程中未出现飞温现象。使用气袋收集气相产物,在液体收集罐和高压釜反应器中收集液相产物,反应釜中收集固相产物,所得产物产率及族组成如表6所示:
表6
Figure PCTCN2019122520-appb-000006
相比于实施例3的高压状态,常压状态下进行催化热转化产生较多气体产物和焦炭,燃油收率降低;产物油碳数的降低来源于催化作用,而非高压下产生的飞温效应。
实施例4
采用聚乙烯废塑料为实验原料,在图1所示装置内对其进行加压热转化,包括如下步骤:
向高压釜反应器6内加入所能容纳质量的1/5质量的聚乙烯,关闭液体出口阀11,打开进气阀3和出气阀9,向高压釜反应器6通入氮气20min排尽高压釜反应器6内空气,关闭出气阀9封闭高压釜反应器6,然后通入体积分数为90%的氮气和体积分数为10%的氢气混合气达到2.1MPa初始压力,关闭进气阀3;温度控制器4设定380℃初始温度,打开电加热套7开关,温度控制器4至初始温度后即断开电源,依靠飞温继续加热至最高温度值482℃,卸下电加热套7,高压釜反应器6在空气中快速冷却。聚乙烯主要发生断链反应和脱氢反应,生成烷烃和烯烃,高压条件有利于生成更短分子链;同时伴有二次反应生成环烃和芳香烃, 直链烃发生异构化,这一系列二次反应导致产物燃油辛烷值增加。
冷却至常温后,先打开出气阀9释放高压釜反应器6内高压气体,再打开液体出口阀11放出液态产物油;产物油进入分馏塔12进行分馏,获得柴油组分、汽油组分、重油组分;收集重油组分与聚乙烯混合进行下一次热转化。所得产物产率、族组成及平均碳数如表7所示:
表7
Figure PCTCN2019122520-appb-000007
实施例5
向高压釜反应器6内加入所能容纳质量的1/8质量的聚乙烯,关闭液体出口阀11,打开进气阀3和出气阀9,向高压釜反应器6通入氮气20min排尽高压釜反应器6内空气,关闭出气阀9封闭高压釜反应器6,然后通入体积分数为90%的氮气和体积分数为10%的氢气混合气达到1.1MPa初始压力,关闭进气阀3;温度控制器4设定380℃初始温度,打开电加热套7开关,温度控制器4至初始温度后即断开电源,依靠飞温继续加热至最高温度值474℃,卸下电加热套7,高压釜反应器6在空气中快速冷却。冷却至常温后,先打开出气阀9释放高压釜反应器6内高压气体,再打开液体出口阀11放出液态产物油;产物油进入分馏塔12进行分馏,获得柴油组分、汽油组分、重油组分;收集重油组分与聚乙烯混合进行下一次热转化。所得产物产率、族组成及平均碳数如表8所示:
表8
Figure PCTCN2019122520-appb-000008
实施例6
向高压釜反应器6内加入所能容纳水质量的1/5质量的聚乙烯,关闭液体出口阀11,打开进气阀3和出气阀9,向高压釜反应器6通入氮气20min排尽釜内空气,关闭出气阀9封闭高压釜反应器6,然后通入体积分数为95%的氮气和体积分数为5%的氢气混合气达到0.6MPa初始压力,关闭进气阀3;温度控制器4设定380℃初始温度,打开电加热套7开关,至初始温度后即断开加热电源,依靠飞温继续加热至最高温度值463℃,卸下电加热套7,高压釜反应器6在空气中快速冷却。冷却至常温后,先打开出气阀9释放高压釜反应器6内高压气体,再打开液体出口阀11放出液态产物油;产物油进入分馏塔12进行分馏,获得柴油组分、汽油组分、重油组分;收集重油组分与聚乙烯混合进行下一次热转化。所得产物产率及族组成如表9所示:
表9
Figure PCTCN2019122520-appb-000009
上列详细说明是针对本发明之一可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的专利范围中。

Claims (7)

  1. 一种废塑料高压热转化制备燃油的方法,其特征在于,包括如下步骤:将预处理后的废塑料进料至反应容器中,向反应容器中通入氮气置换反应容器内空气,置换完成后关闭反应容器上的气体出口,通过反应容器上的气体进口再通入氮气和氢气使反应容器内的压力达到0.6~2.1MPa,加热反应容器至反应温度340℃~380℃进行反应,待反应结束反应容器空气冷却至常温,得到高压气体和产物油。
  2. 根据权利要求1所述的废塑料高压热转化制备燃油的方法,其特征在于,所述的产物油经分馏得到汽油组分、柴油组分和重油组分,汽油组分和柴油组分经过进一步提质后达到工业用油标准;所述的重油组分循环输送至高压容器与废塑料混合进行下一次热转化反应。
  3. 根据权利要求2所述的废塑料高压热转化制备燃油的方法,其特征在于,所述的重油组分与废塑料的质量比为0~0.4:1。
  4. 根据权利要求1所述的废塑料高压热转化制备燃油的方法,其特征在于,所述的氮气和氢气的体积比为9~19:1。
  5. 根据权利要求1或2所述的废塑料高压热转化制备燃油的方法,其特征在于,所述的预处理后的废塑料的预处理包括如下步骤:收集废塑料,并对其进行除杂、干燥处理,即得到预处理后的废塑料。
  6. 根据权利要求1或2所述的废塑料高压热转化制备燃油的方法,其特征在于,所述的废塑料的质量为反应容器所能容纳质量的1/8~1/5。
  7. 根据权利要求1或2所述的废塑料高压热转化制备燃油的方法,其特征在于,所述的废塑料选自聚乙烯、聚丙烯和聚苯乙烯中的一种。
PCT/CN2019/122520 2019-06-12 2019-12-03 一种废塑料高压热转化制备燃油的方法 WO2020248534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910507635.3A CN110229685B (zh) 2019-06-12 2019-06-12 一种废塑料高压热转化制备燃油的方法
CN201910507635.3 2019-06-12

Publications (1)

Publication Number Publication Date
WO2020248534A1 true WO2020248534A1 (zh) 2020-12-17

Family

ID=67859778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122520 WO2020248534A1 (zh) 2019-06-12 2019-12-03 一种废塑料高压热转化制备燃油的方法

Country Status (2)

Country Link
CN (1) CN110229685B (zh)
WO (1) WO2020248534A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229685B (zh) * 2019-06-12 2020-08-25 中国科学院广州能源研究所 一种废塑料高压热转化制备燃油的方法
CN113429994B (zh) * 2021-06-15 2022-11-08 佛山市科恒博环保技术有限公司 一种聚烯烃废塑料自放热相变热裂解工艺
CN114380663B (zh) * 2021-12-23 2024-01-19 中国科学院广州能源研究所 一种聚烯烃塑料废弃物热转化定向制备高碳醇的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87101612A (zh) * 1986-01-24 1987-10-28 莱茵褐煤动力燃料联合股份公司 改进的含碳废料的回收工艺
CN1640989A (zh) * 2004-12-15 2005-07-20 西南交通大学 利用废聚乙烯塑料制油的方法
US20150247096A1 (en) * 2014-02-28 2015-09-03 Honeywell International Inc. Methods for converting plastic to wax
CN105018126A (zh) * 2014-04-30 2015-11-04 中国科学院过程工程研究所 一种利用废聚烯烃制取液态烃的温和裂解方法
CN106833711A (zh) * 2017-03-16 2017-06-13 中国科学院广州能源研究所 一种有机固废焦油与塑料废弃物共处理方法
WO2017103022A1 (en) * 2015-12-18 2017-06-22 Solvay Sa Process for producing waxes and liquid fuels from waste plastic
CN110229685A (zh) * 2019-06-12 2019-09-13 中国科学院广州能源研究所 一种废塑料高压热转化制备燃油的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092096A (zh) * 1993-12-30 1994-09-14 姜皓 利用废旧塑料提炼汽油、柴油馏分和液化气的方法与装置
ES2168033B1 (es) * 1999-04-29 2003-05-01 Univ Valencia Politecnica Proceso para el craqueo catalitico de residuos plasticos.
JP2003160788A (ja) * 2001-11-28 2003-06-06 Yasushi Sekine プラスチック分解油の製造方法
CN101352721B (zh) * 2007-07-23 2011-07-27 周鼎力 一种连续化处理生活垃圾的方法
SK287556B6 (sk) * 2008-06-19 2011-02-04 Martin Bajus Spôsob výroby motorových palív z polymérnych materiálov
CN101845317B (zh) * 2010-06-13 2012-10-31 昆明理工大学 一种二氧化碳与废塑料综合利用的方法
EA201390160A1 (ru) * 2010-07-26 2013-06-28 Эмиль А.Й. Визер-Линхарт Установка и способ для производства топлива из биомассы/пластических масс
CN102408905B (zh) * 2011-10-25 2014-02-26 中国科学院广州能源研究所 利用废旧塑料生产石油产品的方法
WO2016142809A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. A robust integrated process for conversion of waste plastics to final petrochemical products

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87101612A (zh) * 1986-01-24 1987-10-28 莱茵褐煤动力燃料联合股份公司 改进的含碳废料的回收工艺
CN1640989A (zh) * 2004-12-15 2005-07-20 西南交通大学 利用废聚乙烯塑料制油的方法
US20150247096A1 (en) * 2014-02-28 2015-09-03 Honeywell International Inc. Methods for converting plastic to wax
CN105018126A (zh) * 2014-04-30 2015-11-04 中国科学院过程工程研究所 一种利用废聚烯烃制取液态烃的温和裂解方法
WO2017103022A1 (en) * 2015-12-18 2017-06-22 Solvay Sa Process for producing waxes and liquid fuels from waste plastic
CN106833711A (zh) * 2017-03-16 2017-06-13 中国科学院广州能源研究所 一种有机固废焦油与塑料废弃物共处理方法
CN110229685A (zh) * 2019-06-12 2019-09-13 中国科学院广州能源研究所 一种废塑料高压热转化制备燃油的方法

Also Published As

Publication number Publication date
CN110229685A (zh) 2019-09-13
CN110229685B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2020248534A1 (zh) 一种废塑料高压热转化制备燃油的方法
WO2021174910A1 (zh) 一种乙烯或丙烯最大化的生产方法
CN106520176B (zh) 一种用聚烯烃塑料制取小分子烯烃的方法
CN110819372B (zh) 一种聚烯烃废塑料催化热转化制备芳烃及富氢燃气的方法
Zeng et al. Microwave catalytic co-pyrolysis of waste cooking oil and low-density polyethylene to produce monocyclic aromatic hydrocarbons: Effect of different catalysts and pyrolysis parameters
CN104479717A (zh) 一种采用废聚烯烃塑料与生物质共催化提高生物油品质的方法
WO2009152667A1 (zh) 一种处理废旧塑料的还原方法及其系统
CN108559543A (zh) 超临界水热处理废塑料和秸秆混合物生产烃油的工艺
CN103360547B (zh) 双环戊二烯加氢石油树脂生产系统及方法
CN101260309A (zh) 混合型废塑料连续催化裂解生产燃油的方法
EP3352928A1 (en) System and process for production of biofuel
CN212770593U (zh) 一种高塑惰性垃圾两步催化热解制备富氢合成气的装置
CN113429994B (zh) 一种聚烯烃废塑料自放热相变热裂解工艺
CN111647442A (zh) 一种高塑惰性垃圾两步催化热解制备富氢合成气的方法与装置
CN2223297Y (zh) 一种用废橡胶生产汽油柴油和炭黑的设备
CN113443799B (zh) 用于危废含油泥砂转化为固废的催化处理工艺及系统
CN114874800A (zh) 一种生物质基有机液体储氢系统及方法
CN105018126B (zh) 一种利用废聚烯烃制取液态烃的温和裂解方法
CN108384577A (zh) 一种联合芳烃生产线预加氢单元
KR100759583B1 (ko) 폐플라스틱의 유화방법 및 이 방법을 위한 반응기
CN106833711B (zh) 一种有机固废焦油与塑料废弃物共处理方法
KR20020072889A (ko) 폐합성수지의 유화방법 및 유화 설비 시스템
CN102311797A (zh) 一种重油改质的组合工艺方法
Diaz Silvarrey Advanced pyrolysis of plastic waste for chemicals, fuel and materials
KR100508334B1 (ko) 무촉매 열분해 반응을 수행하는 대체 연료유 제조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19932407

Country of ref document: EP

Kind code of ref document: A1