WO2023221765A1 - 发光组件、背光模组及其驱动方法、显示装置 - Google Patents

发光组件、背光模组及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2023221765A1
WO2023221765A1 PCT/CN2023/091387 CN2023091387W WO2023221765A1 WO 2023221765 A1 WO2023221765 A1 WO 2023221765A1 CN 2023091387 W CN2023091387 W CN 2023091387W WO 2023221765 A1 WO2023221765 A1 WO 2023221765A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting unit
emitting
pin
cathode pin
Prior art date
Application number
PCT/CN2023/091387
Other languages
English (en)
French (fr)
Other versions
WO2023221765A9 (zh
Inventor
钱鸿飞
胡清柳
赵正祺
薛豪武
吴贞强
徐宏辉
夏小丽
韦琦
生礼华
董文波
Original Assignee
高创(苏州)电子有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高创(苏州)电子有限公司, 京东方科技集团股份有限公司 filed Critical 高创(苏州)电子有限公司
Publication of WO2023221765A1 publication Critical patent/WO2023221765A1/zh
Publication of WO2023221765A9 publication Critical patent/WO2023221765A9/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present disclosure relates to the field of LED packaging technology, and in particular to a light-emitting component, a backlight module and a driving method thereof, and a display device.
  • LEDs Light emitting diodes
  • PDA personal digital assistant
  • Embodiments of the present disclosure provide a light-emitting component, a backlight module and a driving method thereof, and a display device to solve the problems of abnormal edge color and high power consumption of the light-emitting component in related technologies.
  • the embodiment of the present disclosure provides a light-emitting component, including: a red light-emitting unit, a green light-emitting unit, a blue light-emitting unit, a white light-emitting unit, a first anode pin, and a second anode pin; wherein,
  • the red light-emitting unit, the green light-emitting unit, the blue light-emitting unit and the white light-emitting unit are arranged in a matrix;
  • the red light-emitting unit is electrically connected to the first anode pin, and the green light-emitting unit, the blue light-emitting unit and the white light-emitting unit are electrically connected to the same second anode pin.
  • the above-mentioned light-emitting component provided by the embodiment of the present disclosure also includes It includes: a first cathode pin, a second cathode pin, a third cathode pin, and a fourth cathode pin; the red light-emitting unit is electrically connected to the first cathode pin, and the green light-emitting unit is electrically connected to the first cathode pin.
  • the second cathode pin is electrically connected, the blue light-emitting unit is electrically connected to the third cathode pin, and the white light-emitting unit is electrically connected to the fourth cathode pin.
  • each of the light-emitting units includes: a substrate, a light-emitting diode located on the substrate, and a light-emitting diode located away from the light-emitting diode.
  • the reflective layer on one side of the substrate; the side of the substrate facing away from the reflective layer is the light-emitting surface.
  • the light-emitting diodes of the white light-emitting unit are blue light-emitting diodes, and the white light-emitting unit further includes a light-emitting diode located on the substrate away from the substrate.
  • the yellow phosphor layer on one side of the reflective layer.
  • the first anode pin is located on a side of the reflective layer of the red light-emitting unit away from the substrate
  • the second The anode pin is located on a side of the reflective layer of the green light-emitting unit, the blue light-emitting unit and the white light-emitting unit facing away from the substrate
  • the second anode pin is connected to the The reflective layer of the green light-emitting unit, the reflective layer of the blue light-emitting unit and the reflective layer of the white light-emitting unit overlap each other.
  • the light-emitting diode includes an N-type semiconductor layer, a light-emitting layer and a P-type semiconductor layer that are stacked in sequence, and the N-type semiconductor layer Close to the substrate, the P-type semiconductor layer is close to the reflective layer.
  • the surface of the N-type semiconductor layer of the red light-emitting unit away from the substrate has a first exposed area, and the first cathode The pin is arranged in contact with the first exposed area;
  • a surface of the N-type semiconductor layer of the green light-emitting unit away from the substrate has a second exposed area, and the second cathode pin is in contact with the second exposed area;
  • a surface of the N-type semiconductor layer of the blue light-emitting unit away from the substrate has a third exposed area, and the third cathode pin is in contact with the third exposed area;
  • a surface of the N-type semiconductor layer of the white light-emitting unit away from the substrate has a fourth exposed area, and the fourth cathode pin is in contact with the fourth exposed area.
  • the above-mentioned light-emitting component provided by the embodiment of the present disclosure also includes an encapsulation layer located on the side of the substrate of each light-emitting unit away from the reflective layer, and the encapsulation layer fills each The gap between the light-emitting units and covering the side walls of the light-emitting units.
  • an embodiment of the present disclosure also provides a backlight module, including a plurality of the light-emitting components described in any of the above provided in the embodiments of the present disclosure arranged in an array.
  • the above-mentioned backlight module provided by the embodiment of the present disclosure further includes an optical film located on the light exit side of the light-emitting component, and the optical film and the encapsulation layer are in direct contact.
  • the above-mentioned backlight module provided by the embodiment of the present disclosure also includes a first power line, a second power line and a driver IC having a plurality of pins; the first power line and The first anode pin of the light-emitting component is electrically connected, the second power line is electrically connected to the second anode pin of the light-emitting component, and each pin of the driver IC is respectively connected to the first anode pin of the light-emitting component.
  • the cathode pin, the second cathode pin, the third cathode pin and the fourth cathode pin are electrically connected in a one-to-one correspondence.
  • an embodiment of the present disclosure also provides a display device, including a liquid crystal display panel and any one of the above backlight modules provided by the embodiments of the present disclosure located on the light-incident side of the liquid crystal display panel.
  • an embodiment of the present disclosure also provides a driving method for driving any of the above-mentioned backlight modules provided by an embodiment of the present disclosure, including:
  • the first power line inputs the corresponding anode voltage to the first anode pin
  • the second power line inputs the corresponding anode voltage to the second anode pin
  • each of the pins of the driver IC Corresponding light-emitting currents are input to the first cathode pin, the second cathode pin, the third cathode pin and the fourth cathode pin.
  • each pin of the driving IC is connected to the first cathode pin, the second cathode pin, and the third cathode pin.
  • the cathode pin and the fourth cathode pin input the corresponding luminescence current, which specifically includes:
  • the red light emission corresponding to the current backlight brightness value is determined through the light emitting current of the red light emitting unit, the light emitting current of the green light emitting unit, the light emitting current of the blue light emitting unit and the light emitting current of the white light emitting unit corresponding to different backlight brightness values stored in advance.
  • Each pin of the driving IC is adjusted to output the determined light-emitting current.
  • each pin of the driving IC is connected to the first cathode pin, the second cathode pin, and the third cathode pin.
  • the cathode pin and the fourth cathode pin input the corresponding luminescence current, which specifically includes:
  • the driving IC only supplies the first cathode pin of the red light-emitting unit, the second cathode pin of the green light-emitting unit, the third cathode pin of the blue light-emitting unit and the fourth cathode of the white light-emitting unit at the local light-emitting position.
  • the pin inputs the light-emitting current corresponding to the current backlight brightness value, and the first cathode pin of the red light-emitting unit, the second cathode pin of the green light-emitting unit, the third cathode pin of the blue light-emitting unit and the white light-emitting unit at the remaining positions. No luminescence current is input to the fourth cathode pin of the unit.
  • the embodiments of the present disclosure provide a light-emitting component, a backlight module and a driving method thereof, and a display device.
  • the light-emitting component of the present disclosure includes four light-emitting units with different light emitting colors, which can increase the display color gamut, that is, the display color range is more , the display color is more realistic; and four light-emitting units with different light-emitting colors, such as red light-emitting unit, green light-emitting unit, blue light-emitting unit and white light-emitting unit are designed to be arranged in a matrix, by increasing the brightness of the white light-emitting unit, reducing the red light-emitting unit
  • the brightness of the unit, green light-emitting unit, and blue light-emitting unit can be effectively solved by keeping the overall brightness and color point unchanged, which can effectively solve the problem of abnormal edge color of the traditional red, green, and blue three-color light-emitting components.
  • the red light-emitting unit is electrically connected to the first anode pin
  • the green light-emitting unit, the blue light-emitting unit and the white light-emitting unit are electrically connected to the same second anode pin, so that the first anode pin can be used. pin separately inputs the anode voltage to the red light-emitting unit, and simultaneously inputs the anode voltage to the green light-emitting unit, blue light-emitting unit and white light-emitting unit through the second anode pin.
  • the red light-emitting unit Since under the same forward current, the red light-emitting unit The voltage required by the light-emitting unit is the smallest and significantly smaller than the voltage required by the green light-emitting unit and the blue light-emitting unit. However, the voltage required by the green light-emitting unit and the blue light-emitting unit is equivalent. Therefore, it is similar to the voltage required by the related art in which each light-emitting unit shares an anode. Compared with other solutions, the light-emitting component provided by the embodiment of the present disclosure can reduce power consumption.
  • Figure 1 is a schematic structural diagram of a front view of an existing light-emitting component
  • Figure 2 is a schematic structural diagram from the back of an existing light-emitting component
  • Figure 3 is a schematic diagram of the equivalent circuit structure of the light-emitting component shown in Figure 2;
  • Figure 4 is a schematic diagram of the volt-ampere characteristic curve of the light-emitting component
  • FIG. 5A is a schematic front structural view of a light-emitting component provided by an embodiment of the present disclosure
  • FIG. 5B is a schematic structural view from the back of the light-emitting component provided by an embodiment of the present disclosure.
  • Figure 5C is a schematic diagram of the equivalent circuit structure of the light-emitting component shown in Figure 5B;
  • Figure 6A is a schematic cross-sectional view along the direction AA' in Figure 5A;
  • Figure 6B is a schematic cross-sectional view along the CC' direction in Figure 5A;
  • Figure 7A is another schematic cross-sectional view of a light-emitting component provided by an embodiment of the present disclosure.
  • Figure 7B is another schematic cross-sectional view of the light-emitting component provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic plan view of a backlight module provided by an embodiment of the present disclosure.
  • Figure 9A is a schematic cross-sectional view of the backlight module provided by an embodiment of the present disclosure.
  • Figure 9B is another schematic cross-sectional view of the backlight module provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of the color gamut of the emitted light from the backlight module actually measured according to the present disclosure
  • Figure 11 is another structural schematic diagram of a backlight module provided by an embodiment of the present disclosure.
  • Figure 12 is a schematic flow chart of a driving method of the backlight module provided by an embodiment of the present disclosure
  • FIG. 13 is a schematic flowchart of another driving method of the backlight module provided by an embodiment of the present disclosure.
  • each film layer in the drawings do not reflect the actual proportions of the light-emitting component, and are only intended to schematically illustrate the present disclosure.
  • One of the more traditional backlight driving methods is to include multiple light-emitting components distributed in an array.
  • Each light-emitting component uses RGB three-primary color LEDs to directly mix light into white light.
  • RGB three-primary color LEDs uses RGB three-primary color LEDs to directly mix light into white light.
  • CIE 1931XYZ chromaticity diagram of traditional RGB three-primary color LEDs calculating its color gamut can achieve greater than 90% NTSC (National Television Standards Committee, (U.S.) National Television Standards Committee).
  • RGB three-color LED backlights cannot achieve a wider color gamut, and there is also a drawback: red, green, blue and other color fringing phenomena appear at the edge of the backlight, which requires the reflective layer in the backlight to be Color silk screen printing is used to neutralize the edge color problem, which increases the cost and also loses brightness.
  • Figure 1 is a schematic structural view of the light-emitting component from the front.
  • Figure 2 is a schematic structural view of the light-emitting component from the back.
  • Figure 3 is the structure shown in Figures 1 and 2.
  • the equivalent circuit structure diagram of the light-emitting component is shown.
  • the front side of the light-emitting component includes a red light-emitting unit R, a green light-emitting unit G and a blue light-emitting unit B.
  • the back side of the light-emitting component includes an anode pin (+) and three cathode pins.
  • R-, G- and B- that is, the existing light-emitting components use a common anode (the anode voltages of R, G and B are the same) to emit light of the three primary colors.
  • the red light-emitting unit R when the red light-emitting unit R is turned on, the anode pin + and the cathode pin R- are turned on; when the green light-emitting unit G is turned on, the anode pin + and the cathode pin G- are turned on. ; When the blue light-emitting unit B is lit, the anode pin + and cathode pin B- are turned on.
  • Figure 4 is the volt-ampere characteristic curve (V-A Characteristics) report data of the existing light-emitting components, that is, the voltage-current test of the red light-emitting unit R, the green light-emitting unit G and the blue light-emitting unit B. From the data, it can be seen that under the same forward current, the voltage required by the red light-emitting unit R is the smallest (1.8V-2.1V), and is significantly smaller than the voltage required by the green light-emitting unit G and the blue light-emitting unit B (2.4V- 3.3V), and the green light-emitting unit G and the blue light-emitting unit B require the same voltage. Therefore, the solution in the related art that each light-emitting unit shares an anode causes the power consumption of the light-emitting component to be high and also causes heat generation.
  • V-A Characteristics volt-ampere characteristic curve
  • Figure 5A is a schematic structural diagram of the front top view of the light-emitting component.
  • the front side of the light-emitting component includes: red light emitting Unit R, green light-emitting unit G, blue light-emitting unit B, and white light-emitting unit W; red light-emitting unit R, green light-emitting unit G, blue light-emitting unit B and white light-emitting unit W are arranged in a matrix;
  • Figure 5B shows the light-emitting component A schematic diagram of the back structure of the light-emitting component.
  • the back side of the light-emitting component includes: a first anode pin R+ and a second anode pin GBW+.
  • Figure 5C is a schematic diagram of the equivalent circuit structure of the light-emitting component shown in Figure 5A and Figure 5B.
  • the red light-emitting unit R is electrically connected to the first anode pin R+
  • the green light-emitting unit G, the blue light-emitting unit B and the white light-emitting unit W are electrically connected to the same second anode pin GBW+.
  • the above-mentioned light-emitting component provided by the embodiment of the present disclosure includes four light-emitting units with different light emitting colors, which can increase the display color gamut, that is, the display color range is larger and the display color is more realistic; and the four different light emitting colors can be
  • the light-emitting units, such as the red light-emitting unit, green light-emitting unit, blue light-emitting unit and white light-emitting unit are designed to be arranged in a matrix.
  • the red light-emitting unit is electrically connected to the first anode pin
  • the green light-emitting unit, the blue light-emitting unit and the white light-emitting unit are electrically connected to the same second anode pin, so that the first anode pin can be used.
  • the pin separately inputs the anode voltage to the red light-emitting unit, and simultaneously inputs the anode voltage to the green light-emitting unit, blue light-emitting unit and white light-emitting unit through the second anode pin. Because under the same forward current, the voltage required by the red light-emitting unit is the smallest. , and is significantly smaller than the voltage required by the green light-emitting unit and the blue light-emitting unit, while the voltage required by the green light-emitting unit and the blue light-emitting unit is equivalent. Therefore, compared with the solution in the related art where each light-emitting unit shares an anode, the implementation of the present disclosure The light-emitting components provided in the example can reduce power consumption.
  • the back side of the light-emitting component further includes: a first cathode pin R-, a second cathode pin G-, a third cathode pin pin B-, and the fourth cathode pin W-; as shown in Figure 5C, the red light-emitting unit R is electrically connected to the first cathode pin R-, the green light-emitting unit G is electrically connected to the second cathode pin G-, and the blue The color light-emitting unit B is electrically connected to the third cathode pin B-, and the white light-emitting unit W is electrically connected to the fourth cathode pin W-.
  • the red light-emitting unit R when the red light-emitting unit R is turned on, the first anode pin R+ and the first cathode pin R- are turned on; the green light-emitting unit R is turned on.
  • the color light-emitting unit G is turned on, the second anode pin GBW+ and the second cathode pin G- are turned on; when the blue light-emitting unit B is turned on, the second anode pin GBW+ and the third cathode pin B- are turned on; point When the bright white light-emitting unit W is turned on, the second anode pin GBW+ and the fourth cathode pin W- are turned on.
  • the embodiment of the present disclosure uses independent cathode pins to input light-emitting current to the red light-emitting unit R, the green light-emitting unit G, the blue light-emitting unit B, and the white light-emitting unit W respectively.
  • the corresponding light-emitting current can be input to each cathode pin by controlling each pin of the driver IC, thereby realizing the function of adjusting the brightness of the light-emitting component.
  • the component When the light is emitted, When the component is used in a backlight, it can adjust the overall brightness of the backlight, and can also realize the backlight local dimming (backlight area adjustment technology) function to reduce power consumption.
  • the arrangement of the red light-emitting unit R, the green light-emitting unit G, the blue light-emitting unit B and the white light-emitting unit W shown in FIG. 5A is only one of the arrangements provided by the embodiment of the present disclosure. In the specific implementation , the positions of the red light-emitting unit R, the green light-emitting unit G, the blue light-emitting unit B and the white light-emitting unit W can be adjusted.
  • the first anode pin R+, the second anode pin GBW+, the first cathode pin R-, the second cathode pin G-, the third cathode pin B- and the fourth cathode pin W- shown in Figure 5B The arrangement is only one of the arrangements provided by the embodiments of the present disclosure.
  • the first anode pin R+, the second anode pin GBW+, the first cathode pin R-, and the second cathode pin G The positions of -, the third cathode pin B- and the fourth cathode pin W- can be adjusted.
  • each light-emitting unit includes: a substrate, a light-emitting diode located on the substrate, and a reflective layer located on the side of the light-emitting diode away from the substrate; the substrate The side away from the reflective layer is the light-emitting surface.
  • Figure 6A is a schematic cross-sectional view along the AA' direction in Figure 5A
  • Figure 6B is a schematic cross-sectional view along the CC' direction in Figure 5A.
  • the red light-emitting unit R includes: a first substrate 11.
  • the blue light-emitting unit B includes: a third substrate 13 located on The third light-emitting diode 23 on the third substrate 13, and the third reflective layer 33 located on the side of the third light-emitting diode 23 facing away from the third substrate 13; the side of the third substrate 13 facing away from the third reflective layer 33 is for light emitting.
  • the white light-emitting unit W includes: a fourth substrate 14, a fourth light-emitting diode 24 located on the fourth substrate 14, and a fourth reflective layer 34 located on the side of the fourth light-emitting diode 24 away from the fourth substrate 14;
  • the side of the fourth substrate 14 facing away from the fourth reflective layer 34 is the light emitting surface.
  • B-LED As a light source with quantum dot materials to achieve white light.
  • the color gamut can reach greater than 90% NTSC (the standard is CIE 1931 XYZ chromaticity diagram), but it uses
  • NTSC the standard is CIE 1931 XYZ chromaticity diagram
  • quantum dot films have problems such as delamination, edge failure, and short life under high temperature and high humidity conditions. Therefore, at this stage, B-LEDs paired with quantum dot materials have a bluish edge problem that is difficult to solve for display devices.
  • the fourth light-emitting diode 24 of the white light-emitting unit W is a blue light-emitting diode, and the white light-emitting unit W also includes a fourth substrate located away from the fourth substrate 14 .
  • the embodiment of the present disclosure uses a blue light-emitting diode with a yellow phosphor layer 4 to achieve white light. Compared with the traditional blue light-emitting diode with a quantum dot material, the present disclosure can effectively avoid the backlight edge blur due to edge failure of the quantum dot material. Blue question.
  • the first anode pin R+ is located on the first reflective layer 31 of the red light-emitting unit R away from the first substrate 11
  • the second anode pin GBW+ is located on the second reflective layer 32 of the green light-emitting unit G, facing away from the second substrate 12, and the third reflective layer 33 of the blue light-emitting unit B faces away from the third substrate 13 and the white light-emitting unit W.
  • the side of the fourth reflective layer 34 facing away from the fourth substrate 14, and the second anode pin GBW+ is connected to the second reflective layer 32 of the green light-emitting unit G, the third reflective layer 33 of the blue light-emitting unit B and the white light-emitting unit
  • the fourth reflective layers 34 of W overlap each other.
  • the red light-emitting unit R can be electrically connected to the first anode pin R+ alone, while the green light-emitting unit G, the blue light-emitting unit B and the white light-emitting unit W can use a common anode, thereby reducing power consumption.
  • the surface of the first N-type semiconductor layer 211 of the red light-emitting unit R away from the first substrate 11 The surface has a first exposed area D1, and the first cathode pin R- is in contact with the first exposed area D1;
  • the surface of the second N-type semiconductor layer 221 of the green light-emitting unit G away from the second substrate 12 has a second exposed area D2, and the second cathode pin G- is in contact with the second exposed area D2;
  • the surface of the third N-type semiconductor layer 231 of the blue light-emitting unit B away from the third substrate 13 has a third exposed area D3, and the third cathode pin B-is in contact with the third exposed area D3;
  • the surface of the fourth N-type semiconductor layer 241 of the white light-emitting unit W away from the fourth substrate 14 has a fourth exposed area D4, and the fourth cathode pin W- is disposed in contact with the fourth exposed area D4.
  • the first exposed area D1 is located at the edge of the first N-type semiconductor layer 211
  • the second exposed area D2 is located at the edge of the second N-type semiconductor layer 211
  • the third exposed region D3 is located at the edge of the third N-type semiconductor layer 231
  • the fourth exposed region D4 is located at the edge of the fourth N-type semiconductor layer 241 .
  • the light-emitting diode includes an N-type semiconductor layer, a light-emitting layer and a P-type semiconductor layer that are stacked in sequence.
  • the N-type semiconductor layer is close to the substrate, and the P-type semiconductor layer Close to the reflective layer.
  • the first light-emitting diode 21 includes a first N-type semiconductor layer 211 , a first light-emitting layer 212 and a first P-type semiconductor layer 213 which are stacked in sequence.
  • the layer 211 is close to the first substrate 11, and the first P-type semiconductor layer 213 is close to the first reflective layer 31;
  • the second light-emitting diode 22 includes a second N-type semiconductor layer 221, a second light-emitting layer 222 and a second light-emitting layer 221, which are stacked in sequence.
  • P-type semiconductor layer 223, the second N-type semiconductor layer 221 is close to the second substrate 12, the second P-type semiconductor layer 223 is close to the second reflective layer 32;
  • the third light-emitting diode 23 includes a third N-type semiconductor layered in sequence.
  • the fourth light-emitting diode 24 It includes a fourth N-type semiconductor layer 241, a fourth light-emitting layer 242 and a fourth P-type semiconductor layer 243 that are stacked in sequence.
  • the fourth N-type semiconductor layer 241 is close to the fourth substrate 14, and the fourth P-type semiconductor layer 243 is close to the fourth substrate 14.
  • the fourth reflective layer 34 is provided.
  • the red light-emitting unit R uses the first anode pin alone.
  • R+ inputs the anode voltage.
  • the green light-emitting unit G, the blue light-emitting unit B and the white light-emitting unit W share the second anode pin GBW+ inputs the anode voltage, which can reduce power consumption.
  • the current of the first light-emitting diode 21 of the red light-emitting unit R passes through the second anode pin GBW+.
  • An N-type semiconductor layer 211 flows to the first P-type semiconductor layer 213.
  • the first light-emitting layer 212 emits light and emits red light after being reflected by the first reflective layer 31 (shown by arrow L1). It can be adjusted by inputting different sizes of light-emitting currents. Red light intensity.
  • the light-emitting principle of the green light-emitting unit G and the blue light-emitting unit B is the same as the light-emitting principle of the red light-emitting unit R.
  • the light emitted by the green light-emitting unit G is represented by arrow L2
  • the light emitted by the blue light-emitting unit B is represented by arrow L3.
  • the white light-emitting unit is a blue light-emitting diode (24) that emits blue light that is reflected by the fourth reflective layer 34 (indicated by arrow L4) and passes through the yellow phosphor layer 4 to form white light (indicated by arrow L5).
  • the blue light-emitting diode (24) The light-emitting principle is the same as that of the first light-emitting diode 21, so that L1, L2 and L3 mix light to achieve white light. By adding white light (L5), the problem of abnormal edge color of the traditional red, green and blue three-color light-emitting components can be solved.
  • the first substrate 11 , the second substrate 12 , the third substrate 13 and the fourth substrate 14 The material may be, but is not limited to, a sapphire substrate, and the materials of the first reflective layer 31 , the second reflective layer 32 , the third reflective layer 33 and the fourth reflective layer 34 may be metal.
  • the above-mentioned light-emitting component provided by the embodiment of the present disclosure also includes substrates (11, 12, 13) located in each light-emitting unit (R, G, B, W). , 14)
  • the encapsulation layer 5 on the side away from the reflective layer (31, 32, 33, 34), the encapsulation layer 5 fills the gaps between the light-emitting units (R, G, B, W) and covers the light-emitting units (R, G , B, W) side walls.
  • the material of the encapsulating layer 5 may be resin or silicon-based.
  • each anode pin and cathode pin of the light-emitting component need to be fixedly connected to the pad on the driving backplane through welding material, so that The circuit board can transmit signals to the anode and cathode pins by driving lines and pads on the backplane.
  • RGBW LEDs can be independently packaged as a group to obtain an independent RGBW light-emitting component, and then the anode pin and cathode pin of each light-emitting component are connected to the driving back The pads on the board are firmly connected; when Of course, it is also possible to fixedly connect the anode pins and cathode pins of all the LEDs required for the backlight to the pads on the driving backplane, and then independently package the four RGBW LEDs as a group.
  • the light-emitting diodes in the embodiments of the present disclosure may be conventional-sized light-emitting diodes, or may be mini-light emitting diodes (English: Mini Light Emitting Diode, referred to as: Mini LED), also known as sub-millimeter light-emitting diodes, or micro-light emitting diodes ( English: Micro Light Emitting Diode, abbreviation: Micro LED).
  • Mini LED Mini Light Emitting Diode
  • Micro LED Micro Light Emitting Diode, abbreviation: Micro LED
  • the light-emitting component provided by the embodiment of the present disclosure can achieve high color gamut display when used for backlight, effectively solving the problem of abnormal edge color of the light-emitting component including only red LED, green LED and blue LED.
  • the present disclosure can effectively avoid the problem of the edge of the backlight being bluish due to edge failure of the quantum dot material; moreover, the light-emitting components provided by the embodiments of the present disclosure can reduce power consumption and can be used for backlighting. Implement local dimming function and reduce power consumption.
  • an embodiment of the present disclosure also provides a backlight module, as shown in Figure 8.
  • Figure 8 is a schematic plan view of a backlight module.
  • the backlight module includes a plurality of arrays arranged in an array provided by the embodiment of the present disclosure. of the above-mentioned light-emitting components.
  • the principle of solving the problem of the backlight module is similar to that of the aforementioned light-emitting component. Therefore, the implementation of the backlight module can be referred to the implementation of the aforementioned light-emitting component, and the repetitive parts will not be described again.
  • Figure 9A and Figure 9B are schematic cross-sectional views of the backlight module.
  • the backlight module also includes a light emitting component located at the The optical film 6 on the side of the optical film 6 is in direct contact with the encapsulation layer 5, so that there is no need to set the light mixing distance (the light mixing distance is the distance between the light exit surface of the encapsulation layer 5 and the light entry surface of the optical film 6, thus The thickness of the backlight module can be reduced. However, while reducing the thickness of the backlight module, it is also necessary to ensure the efficiency of the light emitted by the backlight module.
  • FIG. 10 is a schematic diagram of the color gamut of the emitted light from the backlight module measured by the inventor.
  • the calculated color gamut can reach 93% NTSC (the standard is CIE 1931 XYZ chromaticity diagram).
  • the height H of the packaging layer 5 may range from 0.65 mm to 1 mm.
  • the above-mentioned relevant dimensions of the light-emitting unit without setting the light mixing distance is only an implementation provided by the embodiment of the present disclosure.
  • the LED of the RGBW LED can also be re-matched. The distances between them all belong to the invention content of this disclosure.
  • the optical film 6 may include a light guide plate, a diffusion layer, a prism layer, etc., and those skilled in the art may select according to actual needs.
  • the backlight module provided by the embodiment of the present disclosure, as shown in Figure 11, it also includes a first power line VDD1, a second power line VDD2 and a plurality of pins (OUT0, OUT1, OUT2...
  • the first power line VDD1 is electrically connected to the first anode pin R+ of the light-emitting component
  • the second power line VDD2 is electrically connected to the second anode pin GBW+ of the light-emitting component
  • each pin of the driver IC 100 (OUT0, OUT1, OUT27) are electrically connected to the first cathode pin R-, the second cathode pin G-, the third cathode pin B- and the fourth cathode pin W- of the light-emitting component respectively.
  • all first anode pins R+ are electrically connected to the first power line VDD1, and all second anode pins GBW+ are electrically connected to the second power line VDD2.
  • the fourth cathode pin W-, the second cathode pin G-, the third cathode pin B- and the first cathode pin R- of the light-emitting component are electrically connected to OUT0, OUT1, OUT2 and OUT3 respectively.
  • the fourth cathode pin W-, the second cathode pin G-, the third cathode pin B- and the first cathode pin R- of the component are electrically connected to OUT4, OUT5, OUT6 and OUT7 respectively.
  • the light-emitting component in the lower left corner The fourth cathode pin W-, the second cathode pin G-, the third cathode pin B- and the first cathode pin R- are electrically connected to OUT8, OUT9, OUT10 and OUT11 respectively.
  • the light-emitting component in the lower right corner The fourth cathode pin W-, the second cathode pin G-, the third cathode pin B- and the first cathode pin R- are electrically connected to OUT12, OUT13, OUT14 and OUT15 respectively, so that through the first power line After VDD1 and the second power line VDD2 input a specific anode voltage to the red light-emitting unit R, the green light-emitting unit G, the blue light-emitting unit B and the white light-emitting unit W, the first voltage can be supplied to the first power supply through each pin of the driving IC 100.
  • the cathode pin R-, the second cathode pin G-, the third cathode pin B- and the fourth cathode pin W- input the corresponding light-emitting current to realize the brightness adjustment function of the light-emitting component.
  • the light-emitting component When using backlight, the overall brightness of the backlight can be adjusted, and the backlight local dimming (backlight area adjustment technology) function can also be realized to reduce power consumption.
  • embodiments of the present disclosure also provide a driving method for driving the above-mentioned backlight module, including:
  • the first power line inputs the corresponding anode voltage to the first anode pin
  • the second power line inputs the corresponding anode voltage to the second anode pin
  • the third cathode pin and the fourth cathode pin input the corresponding luminescence current.
  • the above driving method provided by the embodiment of the present disclosure, as shown in Figure 11, can be used to provide red light-emitting unit R, green light-emitting unit G, blue light-emitting unit B and white light-emitting unit W through the first power line VDD1 and the second power line VDD2.
  • Input a specific anode voltage, and then input the corresponding voltage to the first cathode pin R-, the second cathode pin G-, the third cathode pin B- and the fourth cathode pin W- through each pin of the driver IC 100
  • the light-emitting current can realize the function of adjusting the brightness of the light-emitting component.
  • the backlight local dimming (backlight area adjustment technology) function can also be realized to reduce power consumption.
  • each pin of the driving IC inputs a corresponding signal to the first cathode pin, the second cathode pin, the third cathode pin and the fourth cathode pin.
  • the luminescence current as shown in Figure 12, can specifically include:
  • the current backlight brightness value is calculated to be L6 based on the image signal to be displayed.
  • S1202. Determine the red light emission corresponding to the current backlight brightness value based on the light emitting current of the red light emitting unit, the light emitting current of the green light emitting unit, the light emitting current of the blue light emitting unit and the light emitting current of the white light emitting unit corresponding to different backlight brightness values stored in advance.
  • the luminous current of the unit and the green luminous unit The light-emitting current of the unit, the light-emitting current of the blue light-emitting unit and the light-emitting current of the white light-emitting unit;
  • the light-emitting current of each light-emitting unit corresponding to nine backlight brightness values L1 to L9 is stored in advance, wherein the light-emitting current of the red light-emitting unit R corresponding to the backlight brightness value L1 is I11, and the light-emitting current of the green light-emitting unit G is I12. , the light-emitting current of the blue light-emitting unit B is I13 and the light-emitting current of the white light-emitting unit W is I14.
  • the light-emitting current of the red light-emitting unit R corresponding to the backlight brightness value L2 is I21
  • the light-emitting current of the green light-emitting unit G is I22
  • the light-emitting current of light-emitting unit B is I23 and the light-emitting current of white light-emitting unit W is I24.
  • the light-emitting current of red light-emitting unit R corresponding to the backlight brightness value L3 is I31
  • the light-emitting current of green light-emitting unit G is I32
  • the light-emitting current of blue light-emitting unit B is I31.
  • the light-emitting current of the red light-emitting unit R corresponding to the backlight brightness value L9 is I33, and the light-emitting current of the white light-emitting unit W is I34.
  • the light-emitting current of the green light-emitting unit G is I92, and the light-emitting current of the blue light-emitting unit B corresponds to the backlight brightness value L9.
  • the current is I93 and the light-emitting current of the white light-emitting unit W is I94; since the calculated current backlight brightness value of the image signal to be displayed is L6, it is determined that the light-emitting current of the red light-emitting unit R corresponding to the current backlight brightness value L6 is I61, green
  • the light-emitting current of the light-emitting unit G is I62
  • the light-emitting current of the blue light-emitting unit B is I63
  • the light-emitting current of the white light-emitting unit W is I64.
  • the driver IC can be understood as having an adjustable resistor connected to each internal output channel.
  • the resistor is connected in series with the light-emitting unit. By changing the resistance value of the resistor, the luminescence determined by the output (OUT) of each channel in the driver IC is changed. current to each cathode pin.
  • the driving method shown in FIG. 12 provided by the embodiment of the present disclosure can realize the function of adjusting the brightness of each light-emitting component, thereby realizing the adjustment of the overall brightness of the backlight.
  • each pin of the driving IC inputs a corresponding signal to the first cathode pin, the second cathode pin, the third cathode pin and the fourth cathode pin.
  • the luminescence current as shown in Figure 13, can specifically include:
  • the location where the backlight module needs to emit light is only the central area, and the current backlight brightness value of the central area is L3.
  • the driver IC only illuminates the first cathode pin of the red light-emitting unit, the second cathode pin of the green light-emitting unit, the third cathode pin of the blue light-emitting unit and the fourth cathode pin of the white light-emitting unit at the local light-emitting position.
  • the cathode pin does not input luminescence current;
  • the driving IC only supplies the first cathode pin of the red light-emitting unit, the second cathode pin of the green light-emitting unit, the third cathode pin of the blue light-emitting unit corresponding to the central area of the backlight module through each pin.
  • the fourth cathode pin of the white light-emitting unit inputs each light-emitting current corresponding to the current backlight brightness value of L3, except for the first cathode pin of the red light-emitting unit, the second cathode pin of the green light-emitting unit, and the blue No light-emitting current is input to the third cathode pin of the color light-emitting unit and the fourth cathode pin of the white light-emitting unit.
  • the driving method shown in Figure 13 provided by the embodiment of the present disclosure can control only part of the light-emitting components to emit light as needed, thereby realizing the function of backlight local dimming (backlight area adjustment technology) and reducing power consumption.
  • an embodiment of the present disclosure also provides a display device, including a liquid crystal display panel and the above-mentioned backlight module as provided in the embodiment of the present disclosure located on the light-incident side of the liquid crystal display panel.
  • the principle of solving the problem of the display device is similar to that of the aforementioned backlight module. Therefore, the implementation of the display device can be referred to the implementation of the aforementioned backlight module, and the repetitive parts will not be repeated here.
  • the embodiments of the present disclosure provide a light-emitting component, a backlight module and a driving method thereof, and a display device.
  • the light-emitting component of the present disclosure includes four light-emitting units with different light emitting colors, which can increase the display color gamut, that is, the display color range is more , the display color is more realistic; and four light-emitting units with different light-emitting colors, such as red light-emitting unit, green light-emitting unit, blue light-emitting unit and white light-emitting unit are designed to be arranged in a matrix, by increasing the brightness of the white light-emitting unit, reducing the red light-emitting unit
  • the brightness of the unit, green light-emitting unit, and blue light-emitting unit can be effectively solved by keeping the overall brightness and color point unchanged, which can effectively solve the problem of abnormal edge color of the traditional red, green, and blue three-color light-emitting components.
  • the red light-emitting unit is electrically connected to the first anode pin
  • the green light-emitting unit, the blue light-emitting unit and the white light-emitting unit are electrically connected to the same second anode pin, so that the first anode pin can be used.
  • the anode voltage is input to the red light-emitting unit separately, and the anode voltage is input to the green light-emitting unit, blue light-emitting unit and white light-emitting unit through the second anode pin at the same time. Because under the same forward current, the voltage required by the red light-emitting unit is the smallest.
  • the embodiment of the present disclosure reduce power consumption.

Abstract

一种发光组件、背光模组及其驱动方法、显示装置,发光组件包括四种不同出光颜色的发光单元,可提升显示色域,通过将红色发光单元R与第一阳极引脚(R+)电连接,绿色发光单元G、蓝色发光单元B和白色发光单元W与同一个第二阳极引脚(GBW+)电连接,这样可以通过第一阳极引脚(R+)单独给红色发光单元R输入阳极电压,通过第二阳极引脚(GBW+)同时给绿色发光单元G、蓝色发光单元B和白色发光单元W输入阳极电压,由于在相同正向电流下,红色发光单元R所需的电压最小、且明显小于绿色发光单元G和蓝色发光单元B所需的电压,因此提供的发光组件可以降低功耗。

Description

发光组件、背光模组及其驱动方法、显示装置
相关申请的交叉引用
本公开要求在2022年05月16日提交中国专利局、申请号为202210526175.0、申请名称为“发光组件、背光模组及其驱动方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及LED封装技术领域,特别涉及一种发光组件、背光模组及其驱动方法、显示装置。
背景技术
发光二极管(LED)是当今最热门的光源技术之一,可用于照明装置的光源,而且也用于各种电子产品的光源,如被广泛地用作于诸如TV、蜂窝电话、PC、笔记本PC、个人数字助理(PDA)等的各种显示设备的光源。
发明内容
本公开实施例提供一种发光组件、背光模组及其驱动方法、显示装置,用以解决相关技术中发光组件边缘颜色异常以及功耗较大的问题。
因此,本公开实施例提供了一种发光组件,包括:红色发光单元,绿色发光单元,蓝色发光单元,白色发光单元,第一阳极引脚,以及第二阳极引脚;其中,
所述红色发光单元、所述绿色发光单元、所述蓝色发光单元和所述白色发光单元呈矩阵排列;
所述红色发光单元与所述第一阳极引脚电连接,所述绿色发光单元、所述蓝色发光单元和所述白色发光单元与同一个所述第二阳极引脚电连接。
可选地,在具体实施时,在本公开实施例提供的上述发光组件中,还包 括:第一阴极引脚,第二阴极引脚,第三阴极引脚,以及第四阴极引脚;所述红色发光单元与所述第一阴极引脚电连接,所述绿色发光单元与所述第二阴极引脚电连接,所述蓝色发光单元与所述第三阴极引脚电连接,所述白色发光单元与所述第四阴极引脚电连接。
可选地,在具体实施时,在本公开实施例提供的上述发光组件中,每一所述发光单元均包括:衬底,位于所述衬底上的发光二极管,以及位于所述发光二极管背离所述衬底一侧的反射层;所述衬底背离所述反射层的一面为出光面。
可选地,在具体实施时,在本公开实施例提供的上述发光组件中,所述白色发光单元的发光二极管为蓝色发光二极管,所述白色发光单元还包括位于所述衬底背离所述反射层一侧的黄色荧光粉层。
可选地,在具体实施时,在本公开实施例提供的上述发光组件中,所述第一阳极引脚位于所述红色发光单元的反射层背离所述衬底的一侧,所述第二阳极引脚位于所述绿色发光单元的反射层、所述蓝色发光单元的反射层和所述白色发光单元的反射层背离所述衬底的一侧,且所述第二阳极引脚与所述绿色发光单元的反射层、所述蓝色发光单元的反射层和所述白色发光单元的反射层相互交叠。
可选地,在具体实施时,在本公开实施例提供的上述发光组件中,所述发光二极管包括依次叠层设置的N型半导体层、发光层和P型半导体层,所述N型半导体层靠近所述衬底,所述P型半导体层靠近所述反射层。
可选地,在具体实施时,在本公开实施例提供的上述发光组件中,所述红色发光单元的N型半导体层的远离所述衬底的表面具有第一裸露区域,所述第一阴极引脚与所述第一裸露区域接触设置;
所述绿色发光单元的N型半导体层的远离所述衬底的表面具有第二裸露区域,所述第二阴极引脚与所述第二裸露区域接触设置;
所述蓝色发光单元的N型半导体层的远离所述衬底的表面具有第三裸露区域,所述第三阴极引脚与所述第三裸露区域接触设置;
所述白色发光单元的N型半导体层的远离所述衬底的表面具有第四裸露区域,所述第四阴极引脚与所述第四裸露区域接触设置。
可选地,在具体实施时,在本公开实施例提供的上述发光组件中,还包括位于各所述发光单元的衬底背离所述反射层一侧的封装层,所述封装层填充各所述发光单元之间的间隙且覆盖所述发光单元的侧壁。
相应地,本公开实施例还提供了一种背光模组,包括阵列排布的多个如本公开实施例提供的上述任一项所述的发光组件。
可选地,在具体实施时,在本公开实施例提供的上述背光模组中,还包括位于所述发光组件出光侧的光学膜片,所述光学膜片和所述封装层直接接触设置。
可选地,在具体实施时,在本公开实施例提供的上述背光模组中,还包括第一电源线、第二电源线和具有多个管脚的驱动IC;所述第一电源线与所述发光组件的第一阳极引脚电连接,所述第二电源线与所述发光组件的第二阳极引脚电连接,所述驱动IC的各管脚分别与所述发光组件的第一阴极引脚、第二阴极引脚、第三阴极引脚和第四阴极引脚一一对应电连接。
相应地,本公开实施例还提供了一种显示装置,包括液晶显示面板以及位于所述液晶显示面板入光侧的如本公开实施例提供的上述任一项所述的背光模组。
相应地,本公开实施例还提供了一种用于驱动本公开实施例提供的上述任一项所述的背光模组的驱动方法,包括:
所述第一电源线向所述第一阳极引脚输入对应的阳极电压,所述第二电源线向所述第二阳极引脚输入对应的阳极电压,所述驱动IC的各所述管脚向所述第一阴极引脚、所述第二阴极引脚、所述第三阴极引脚和所述第四阴极引脚输入对应的发光电流。
可选地,在具体实施时,在本公开实施例提供的上述驱动方法中,所述驱动IC的各管脚向所述第一阴极引脚、所述第二阴极引脚、所述第三阴极引脚和所述第四阴极引脚输入对应的发光电流,具体包括:
根据待显示图像信号计算当前背光亮度值;
通过预先存储的不同背光亮度值对应的红色发光单元的发光电流、绿色发光单元的发光电流、蓝色发光单元的发光电流以及白色发光单元的发光电流,确定所述当前背光亮度值对应的红色发光单元的发光电流、绿色发光单元的发光电流、蓝色发光单元的发光电流以及白色发光单元的发光电流;
调整所述驱动IC的各所述管脚输出确定的所述发光电流。
可选地,在具体实施时,在本公开实施例提供的上述驱动方法中,所述驱动IC的各管脚向所述第一阴极引脚、所述第二阴极引脚、所述第三阴极引脚和所述第四阴极引脚输入对应的发光电流,具体包括:
确定所述背光模组的局部发光位置和当前背光亮度值;
所述驱动IC仅向所述局部发光位置的红色发光单元的第一阴极引脚、绿色发光单元的第二阴极引脚、蓝色发光单元的第三阴极引脚和白色发光单元的第四阴极引脚输入所述当前背光亮度值对应的发光电流,其余位置的红色发光单元的第一阴极引脚、绿色发光单元的第二阴极引脚、蓝色发光单元的第三阴极引脚和白色发光单元的第四阴极引脚未输入发光电流。
本公开的有益效果:
本公开实施例提供的发光组件、背光模组及其驱动方法、显示装置,本公开的发光组件中包括四种不同出光颜色的发光单元,可以增加显示色域,也就是显示的颜色范围更多,显示色彩更真实;并且将四种不同出光颜色的发光单元,例如红色发光单元、绿色发光单元、蓝色发光单元和白色发光单元设计呈矩阵排列,通过提升白色发光单元的亮度,降低红色发光单元、绿色发光单元、蓝色发光单元的亮度,保持总体亮度和色点不变,就可以有效解决传统红绿蓝三基色发光组件边缘颜色异常的问题。另外,本公开实施例通过将红色发光单元与第一阳极引脚电连接,绿色发光单元、蓝色发光单元和白色发光单元与同一个第二阳极引脚电连接,这样可以通过第一阳极引脚单独给红色发光单元输入阳极电压,通过第二阳极引脚同时给绿色发光单元、蓝色发光单元和白色发光单元输入阳极电压,由于在相同正向电流下,红色 发光单元所需的电压最小、且明显小于绿色发光单元和蓝色发光单元所需的电压,而绿色发光单元和蓝色发光单元所需的电压相当,因此与相关技术中各发光单元共阳极的方案相比,本公开实施例提供的发光组件可以降低功耗。
附图说明
图1为现有发光组件的正面俯视结构示意图;
图2为现有发光组件的背面俯视结构示意图;
图3为图2所示的发光组件的等效电路结构示意图;
图4为发光组件的伏安特性曲线示意图;
图5A为本公开实施例提供的发光组件的正面俯视结构示意图;
图5B为本公开实施例提供的发光组件的背面俯视结构示意图;
图5C为图5B所示的发光组件的等效电路结构示意图;
图6A为图5A中沿AA’方向的剖面示意图;
图6B为图5A中沿CC’方向的剖面示意图;
图7A为本公开实施例提供的发光组件的又一种剖面示意图;
图7B为本公开实施例提供的发光组件的又一种剖面示意图;
图8为本公开实施例提供的背光模组的平面示意图;
图9A为本公开实施例提供的背光模组的一种剖面示意图;
图9B为本公开实施例提供的背光模组的又一种剖面示意图;
图10为本公开实测的背光模组出射光的色域示意图;
图11为本公开实施例提供的背光模组的又一种结构示意图;
图12为本公开实施例提供的背光模组的一种驱动方法流程示意图;
图13为本公开实施例提供的背光模组的又一种驱动方法流程示意图。
具体实施方式
为了使本公开的目的,技术方案和优点更加清楚,下面结合附图,对本公开实施例提供的发光组件、背光模组及其驱动方法、显示装置的具体实施 方式进行详细地说明。
附图中各层薄膜厚度和形状不反映发光组件的真实比例,目的只是示意说明本公开内容。
传统的背光驱动方式采用较多的一种方式是包括阵列分布的多个发光组件,每一发光组件利用RGB三基色LED来直接混光成白光,通过传统RGB三基色LED的CIE 1931XYZ色度图,计算其色域可以实现大于90%NTSC(National Television Standards Committee,(美国)国家电视标准委员会)。但是传统RGB三基色LED背光驱动的显示设备不能实现更广宽的色域,并且还存在一个弊端:即背光边缘出现泛红、绿、蓝等彩边现象,这需要对背光中的反射层进行彩色丝印来中和边缘泛彩问题,增加成本的同时还会损失亮度。
传统的发光组件的结构,如图1、图2和图3所示,图1为发光组件的正面俯视结构示意图,图2为发光组件的背面俯视结构示意图,图3为图1和图2所示的发光组件的等效电路结构示意图,发光组件的正面包括红色发光单元R、绿色发光单元G和蓝色发光单元B,发光组件的背面包括一个阳极引脚(+)和三个阴极引脚(R-、G-和B-),即现有的发光组件采用共阳极(R、G和B的阳极电压相同)的方式实现发三基色的光。具体地,如图3所示,点亮红色发光单元R时,导通阳极引脚+和阴极引脚R-;点亮绿色发光单元G时,导通阳极引脚+和阴极引脚G-;点亮蓝色发光单元B时,导通阳极引脚+和阴极引脚B-。如图4所示,图4为现有的发光组件的伏安特性曲线(V-A Characteristics)报告数据,即对红色发光单元R、绿色发光单元G和蓝色发光单元B进行的电压-电流的测试数据,可以看出在相同正向电流下,红色发光单元R所需的电压最小(1.8V-2.1V)、且明显小于绿色发光单元G和蓝色发光单元B所需的电压(2.4V-3.3V),而绿色发光单元G和蓝色发光单元B所需的电压相当,因此,相关技术中各发光单元共阳极的方案使得发光组件的功耗较高,同时也会造成发热的情况。
基于上述问题,本公开实施例提供了一种发光组件,如图5A-图5C所示,图5A为发光组件的正面俯视结构示意图,该发光组件的正面包括:红色发光 单元R,绿色发光单元G,蓝色发光单元B,以及白色发光单元W;红色发光单元R、绿色发光单元G、蓝色发光单元B和白色发光单元W呈矩阵排列;图5B为发光组件的背面俯视结构示意图,该发光组件的背面包括:第一阳极引脚R+,以及第二阳极引脚GBW+;图5C为图5A和图5B所示的发光组件的等效电路结构示意图,红色发光单元R与第一阳极引脚R+电连接,绿色发光单元G、蓝色发光单元B和白色发光单元W与同一个第二阳极引脚GBW+电连接。
本公开实施例提供的上述发光组件,发光组件中包括四种不同出光颜色的发光单元,可以增加显示色域,也就是显示的颜色范围更多,显示色彩更真实;并且将四种不同出光颜色的发光单元,例如红色发光单元、绿色发光单元、蓝色发光单元和白色发光单元设计呈矩阵排列,通过提升白色发光单元的亮度,降低红色发光单元、绿色发光单元、蓝色发光单元的亮度,保持总体亮度和色点不变,就可以有效解决传统红绿蓝三基色发光组件边缘颜色异常的问题。另外,本公开实施例通过将红色发光单元与第一阳极引脚电连接,绿色发光单元、蓝色发光单元和白色发光单元与同一个第二阳极引脚电连接,这样可以通过第一阳极引脚单独给红色发光单元输入阳极电压,通过第二阳极引脚同时给绿色发光单元、蓝色发光单元和白色发光单元输入阳极电压,由于在相同正向电流下,红色发光单元所需的电压最小、且明显小于绿色发光单元和蓝色发光单元所需的电压,而绿色发光单元和蓝色发光单元所需的电压相当,因此与相关技术中各发光单元共阳极的方案相比,本公开实施例提供的发光组件可以降低功耗。
在具体实施时,在本公开实施例提供的上述发光组件中,如图5B所示,发光组件的背面还包括:第一阴极引脚R-,第二阴极引脚G-,第三阴极引脚B-,以及第四阴极引脚W-;如图5C所示,红色发光单元R与第一阴极引脚R-电连接,绿色发光单元G与第二阴极引脚G-电连接,蓝色发光单元B与第三阴极引脚B-电连接,白色发光单元W与第四阴极引脚W-电连接。具体地,点亮红色发光单元R时,导通第一阳极引脚R+和第一阴极引脚R-;点亮绿 色发光单元G时,导通第二阳极引脚GBW+和第二阴极引脚G-;点亮蓝色发光单元B时,导通第二阳极引脚GBW+和第三阴极引脚B-;点亮白色发光单元W时,导通第二阳极引脚GBW+和第四阴极引脚W-。本公开实施例通过采用独立的阴极引脚分别向红色发光单元R、绿色发光单元G、蓝色发光单元B和白色发光单元W输入发光电流,这样在给红色发光单元R、绿色发光单元G、蓝色发光单元B和白色发光单元W输入特定的阳极电压后,可通过控制驱动IC的各管脚向各阴极引脚输入相应的发光电流,即可实现发光组件亮度调节的功能,当该发光组件应用于背光时,可以实现背光整体亮度的调节,并且还可以实现背光local dimming(背光区域调节技术)的功能,降低功耗。
需要说明的是,图5A所示的红色发光单元R、绿色发光单元G、蓝色发光单元B和白色发光单元W的排列方式仅是本公开实施例提供的其中一种排列方式,在具体实施时,红色发光单元R、绿色发光单元G、蓝色发光单元B和白色发光单元W的位置可以调整。图5B所示的第一阳极引脚R+、第二阳极引脚GBW+、第一阴极引脚R-、第二阴极引脚G-、第三阴极引脚B-和第四阴极引脚W-的排列方式仅是本公开实施例提供的其中一种排列方式,在具体实施时,第一阳极引脚R+、第二阳极引脚GBW+、第一阴极引脚R-、第二阴极引脚G-、第三阴极引脚B-和第四阴极引脚W-的位置可以调整。
在具体实施时,在本公开实施例提供的上述发光组件中,每一发光单元均包括:衬底,位于衬底上的发光二极管,以及位于发光二极管背离衬底一侧的反射层;衬底背离反射层的一面为出光面。具体地,如图6A和图6B所示,图6A为图5A中沿AA’方向的剖面示意图,图6B为图5A中沿CC’方向的剖面示意图,红色发光单元R包括:第一衬底11,位于第一衬底11上的第一发光二极管21,以及位于第一发光二极管21背离第一衬底11一侧的第一反射层31;第一衬底11背离第一反射层31的一面为出光面;绿色发光单元G包括:第二衬底12,位于第二衬底12上的第二发光二极管22,以及位于第二发光二极管22背离第二衬底12一侧的第二反射层32;第二衬底12背离第二反射层32的一面为出光面;蓝色发光单元B包括:第三衬底13,位于 第三衬底13上的第三发光二极管23,以及位于第三发光二极管23背离第三衬底13一侧的第三反射层33;第三衬底13背离第三反射层33的一面为出光面;白色发光单元W包括:第四衬底14,位于第四衬底14上的第四发光二极管24,以及位于第四发光二极管24背离第四衬底14一侧的第四反射层34;第四衬底14背离第四反射层34的一面为出光面。
目前传统背光驱动方式采用较多的另一种方式是B-LED作为光源搭配量子点材料来实现白光,色域可以达到大于90%NTSC(标准为CIE 1931 XYZ色度图),但其使用的含镉量子点材料在市场受限,而且搭配量子点膜会增加显示设备的厚度,增加材料成本及组装成本;并且量子点膜高温高湿条件下存在分层、边缘失效、寿命短的问题,因此现阶段B-LED搭配量子点材料存在显示设备难以解决的边缘泛蓝的问题。因此,在本公开实施例提供的上述发光组件中,如图6A所示,白色发光单元W的第四发光二极管24为蓝色发光二极管,白色发光单元W还包括位于第四衬底14背离第四反射层34一侧的黄色荧光粉层4。本公开实施例采用蓝色发光二极管搭配黄色荧光粉层4来实现白光,相比传统的蓝色发光二极管搭配量子点材料的方案,本公开可以有效避免量子点材料因边缘失效等导致背光边缘泛蓝的问题。
在具体实施时,在本公开实施例提供的上述发光组件中,如图6A和图6B所示,第一阳极引脚R+位于红色发光单元R的第一反射层31背离第一衬底11的一侧,第二阳极引脚GBW+位于绿色发光单元G的第二反射层32、背离第二衬底12、蓝色发光单元B的第三反射层33背离第三衬底13和白色发光单元W的第四反射层34背离第四衬底14的一侧,且第二阳极引脚GBW+与绿色发光单元G的第二反射层32、蓝色发光单元B的第三反射层33和白色发光单元W的第四反射层34相互交叠。这样红色发光单元R可以单独与第一阳极引脚R+电连接,而绿色发光单元G、蓝色发光单元B和白色发光单元W三者可以采用共阳极的方式,从而可以降低功耗。
在具体实施时,在本公开实施例提供的上述发光组件中,如图6A和图6B所示,红色发光单元R的第一N型半导体层211的远离第一衬底11的表 面具有第一裸露区域D1,第一阴极引脚R-与第一裸露区域D1接触设置;
绿色发光单元G的第二N型半导体层221的远离第二衬底12的表面具有第二裸露区域D2,第二阴极引脚G-与第二裸露区域D2接触设置;
蓝色发光单元B的第三N型半导体层231的远离第三衬底13的表面具有第三裸露区域D3,第三阴极引脚B-与第三裸露区域D3接触设置;
白色发光单元W的第四N型半导体层241的远离第四衬底14的表面具有第四裸露区域D4,第四阴极引脚W-与第四裸露区域D4接触设置。
在具体实施时,在本公开实施例提供的上述发光组件中,如图6A和图6B所示,第一裸露区域D1位于第一N型半导体层211的边缘,第二裸露区域D2位于第二N型半导体层221的边缘,第三裸露区域D3位于第三N型半导体层231的边缘,第四裸露区域D4位于第四N型半导体层241的边缘。
在具体实施时,在本公开实施例提供的上述发光组件中,发光二极管包括依次叠层设置的N型半导体层、发光层和P型半导体层,N型半导体层靠近衬底,P型半导体层靠近反射层。具体地,如图6A和图6B所示,第一发光二极管21包括依次叠层设置的第一N型半导体层211、第一发光层212和第一P型半导体层213,第一N型半导体层211靠近第一衬底11,第一P型半导体层213靠近第一反射层31;第二发光二极管22包括依次叠层设置的第二N型半导体层221、第二发光层222和第二P型半导体层223,第二N型半导体层221靠近第二衬底12,第二P型半导体层223靠近第二反射层32;第三发光二极管23包括依次叠层设置的第三N型半导体层231、第三发光层232和第三P型半导体层233,第三N型半导体层231靠近第二衬底13,第三P型半导体层233靠近第三反射层33;第四发光二极管24包括依次叠层设置的第四N型半导体层241、第四发光层242和第四P型半导体层243,第四N型半导体层241靠近第四衬底14,第四P型半导体层243靠近第四反射层34。
如图6A和图6B所示,在红色发光单元R、绿色发光单元G、蓝色发光单元B和白色发光单元W发光时,红色发光单元R单独采用第一阳极引脚 R+输入阳极电压,绿色发光单元G、蓝色发光单元B和白色发光单元W共用第二阳极引脚GBW+输入阳极电压,可以降低功耗,红色发光单元R的第一发光二极管21的电流经第一N型半导体层211流向第一P型半导体层213,第一发光层212发光,经第一反射层31反射后出射红光(箭头L1所示),可以通过输入不同大小的发光电流以调节红光强度。绿色发光单元G和蓝色发光单元B的发光原理与红色发光单元R的发光原理相同,绿色发光单元G出射的光采用箭头L2表示,蓝色发光单元B出射的光采用箭头L3表示。白色发光单元为蓝色发光二极管(24)发射的蓝光经第四反射层34反射后(箭头L4所示)经过黄色荧光粉层4形成白光(箭头L5所示),蓝色发光二极管(24)的发光原理与第一发光二极管21的发光原理相同,这样L1、L2和L3混光实现白光,通过增加的白光(L5)可以实现解决传统红绿蓝三基色发光组件边缘颜色异常的问题。
在具体实施时,在本公开实施例提供的上述发光组件中,如图6A和图6B所示,第一衬底11、第二衬底12、第三衬底13和第四衬底14的材料可以为但不限于蓝宝石衬底,第一反射层31、第二反射层32、第三反射层33和第四反射层34的材料可以为金属。
在具体实施时,在本公开实施例提供的上述发光组件中,如图7A和图7B所示,还包括位于各发光单元(R、G、B、W)的衬底(11、12、13、14)背离反射层(31、32、33、34)一侧的封装层5,封装层5填充各发光单元(R、G、B、W)之间的间隙且覆盖发光单元(R、G、B、W)的侧壁。具体地,封装层5的材料可以为树脂或硅基等。
需要说明的是,将本公开实施例提供的发光组件设置在驱动背板的过程中,发光组件的各阳极引脚和阴极引脚需要通过焊接材料与驱动背板上的焊盘固定连接,从而电路板可以通过驱动背板上的线路和焊盘将信号以传输至阳极引脚和阴极引脚。在采用封装层5对发光单元进行封装时,可以是以RGBW四个LED为一组进行独立封装,得到独立的RGBW发光组件,然后再将各个发光组件的阳极引脚和阴极引脚与驱动背板上的焊盘固定连接;当 然,也可以是将背光所需的所有LED的阳极引脚和阴极引脚先与驱动背板上的焊盘固定连接,然后再以RGBW四个LED为一组进行独立封装。
具体地,本公开实施例的发光二极管可以是常规尺寸的发光二极管,也可以为迷你发光二极管(英文:Mini Light Emitting Diode,简称:Mini LED),又称次毫米发光二极管,或微型发光二极管(英文:Micro Light Emitting Diode,简称:Micro LED)。
综上所述,本公开实施例提供的发光组件,用于背光时可以实现高色域显示,有效解决仅包括红色LED、绿色LED和蓝色LED的发光组件边缘颜色异常的问题,同时相比蓝色LED搭配量子点材料的方案,本公开可以有效避免量子点材料因边缘失效等导致背光边缘泛蓝的问题;并且,本公开实施例提供的发光组件可以降低功耗,用于背光时可以实现local dimming的功能,降低功耗。
基于同一发明构思,本公开实施例还提供了一种背光模组,如图8所示,图8为背光模组的平面示意图,该背光模组包括阵列排布的多个本公开实施例提供的上述发光组件。该背光模组解决问题的原理与前述发光组件相似,因此该背光模组的实施可以参见前述发光组件的实施,重复之处在此不再赘述。
在具体实施时,在本公开实施例提供的上述背光模组中,如图9A和图9B所示,图9A和图9B为背光模组的剖面示意图,该背光模组还包括位于发光组件出光侧的光学膜片6,光学膜片6和封装层5直接接触设置,这样可以实现无需设置混光距离(混光距离是封装层5的出光表面与光学膜片6入光表面的距离,从而可以降低背光模组厚度。然而,在降低了背光模组厚度的情况下,还要能够保证背光模组出射光的效率,那么就需要对图8所示的背光模组中各个发光单元的尺寸、同一行相邻两个发光单元之间距离d1以及同一列相邻两个发光单元之间的距离d2进行设计,经本案的发明人实测发现,当单个发光单元的正投影尺寸为254μm*254μm,d1=3.64mm,d2=4.09mm时,既无需设置混光距离,又能够实现背光模组较高的出光效率,如图10所 示,图10为发明人实测的背光模组出射光的色域示意图,经计算色域可以达到93%NTSC(标准为CIE 1931 XYZ色度图)。
具体地,如图9A和图9B所示,封装层5的高度H取值范围可以在0.65mm~1mm之间。
具体地,上述无需设置混光距离的发光单元的相关尺寸仅是本公开实施例提供的一种实施情况,当然,在具体实施时,若需调整混光距离,也可以重新匹配RGBW LED的LED之间的距离,均属于本公开的发明内容。
具体地,光学膜片6可以包括导光板、扩散层、棱镜层等,本领域技术人员可以根据实际需要进行选择。
在具体实施时,在本公开实施例提供的上述背光模组中,如图11所示,还包括第一电源线VDD1、第二电源线VDD2和具有多个管脚(OUT0、OUT1、OUT2……)的驱动IC 100;第一电源线VDD1与发光组件的第一阳极引脚R+电连接,第二电源线VDD2与发光组件的第二阳极引脚GBW+电连接,驱动IC 100的各管脚(OUT0、OUT1、OUT2……)分别与发光组件的第一阴极引脚R-、第二阴极引脚G-、第三阴极引脚B-和第四阴极引脚W-一一对应电连接。具体地,以2×2个发光组件为例,所有第一阳极引脚R+均与第一电源线VDD1电连接,所有第二阳极引脚GBW+均与第二电源线VDD2电连接,左上角的发光组件的第四阴极引脚W-、第二阴极引脚G-、第三阴极引脚B-和第一阴极引脚R-分别与OUT0、OUT1、OUT2和OUT3电连接,右上角的发光组件的第四阴极引脚W-、第二阴极引脚G-、第三阴极引脚B-和第一阴极引脚R-分别与OUT4、OUT5、OUT6和OUT7电连接,左下角的发光组件的第四阴极引脚W-、第二阴极引脚G-、第三阴极引脚B-和第一阴极引脚R-分别与OUT8、OUT9、OUT10和OUT11电连接,右下角的发光组件的第四阴极引脚W-、第二阴极引脚G-、第三阴极引脚B-和第一阴极引脚R-分别与OUT12、OUT13、OUT14和OUT15电连接,这样在通过第一电源线VDD1、第二电源线VDD2给红色发光单元R、绿色发光单元G、蓝色发光单元B和白色发光单元W输入特定的阳极电压后,可通过驱动IC 100的各管脚向第一 阴极引脚R-、第二阴极引脚G-、第三阴极引脚B-和第四阴极引脚W-输入相应的发光电流,即可实现发光组件亮度调节的功能,当该发光组件应用于背光时,可以实现背光整体亮度的调节,并且还可以实现背光local dimming(背光区域调节技术)的功能,降低功耗。
需要说明的是,在本公开实施例提供的图11所示的背光模组中,是以两行两列发光组件为例进行说明的,当然,在具体实施时,发光组件的行数和列数不做限定,根据具体需要进行设计。
基于同一发明构思,本公开实施例还提供了一种用于驱动上述背光模组的驱动方法,包括:
第一电源线向第一阳极引脚输入对应的阳极电压,第二电源线向第二阳极引脚输入对应的阳极电压,驱动IC的各管脚向第一阴极引脚、第二阴极引脚、第三阴极引脚和第四阴极引脚输入对应的发光电流。
本公开实施例提供的上述驱动方法,如图11所示,可以通过第一电源线VDD1、第二电源线VDD2给红色发光单元R、绿色发光单元G、蓝色发光单元B和白色发光单元W输入特定的阳极电压,然后通过驱动IC 100的各管脚向第一阴极引脚R-、第二阴极引脚G-、第三阴极引脚B-和第四阴极引脚W-输入相应的发光电流,即可实现发光组件亮度调节的功能,当该发光组件应用于背光时,可以实现背光整体亮度的调节,并且还可以实现背光local dimming(背光区域调节技术)的功能,降低功耗。
在具体实施时,在本公开实施例提供的上述驱动方法中,驱动IC的各管脚向第一阴极引脚、第二阴极引脚、第三阴极引脚和第四阴极引脚输入对应的发光电流,如图12所示,具体可以包括:
S1201、根据待显示图像信号计算当前背光亮度值;
具体地,例如根据待显示图像信号计算当前背光亮度值为L6。
S1202、通过预先存储的不同背光亮度值对应的红色发光单元的发光电流、绿色发光单元的发光电流、蓝色发光单元的发光电流以及白色发光单元的发光电流,确定当前背光亮度值对应的红色发光单元的发光电流、绿色发光单 元的发光电流、蓝色发光单元的发光电流以及白色发光单元的发光电流;
具体地,例如预先存储9个背光亮度值L1~L9对应的各发光单元的发光电流,其中,背光亮度值L1对应的红色发光单元R的发光电流为I11、绿色发光单元G的发光电流为I12、蓝色发光单元B的发光电流为I13以及白色发光单元W的发光电流为I14,背光亮度值L2对应的红色发光单元R的发光电流为I21、绿色发光单元G的发光电流为I22、蓝色发光单元B的发光电流为I23以及白色发光单元W的发光电流为I24,背光亮度值L3对应的红色发光单元R的发光电流为I31、绿色发光单元G的发光电流为I32、蓝色发光单元B的发光电流为I33以及白色发光单元W的发光电流为I34……背光亮度值L9对应的红色发光单元R的发光电流为I91、绿色发光单元G的发光电流为I92、蓝色发光单元B的发光电流为I93以及白色发光单元W的发光电流为I94;由于计算得到的待显示图像信号的当前背光亮度值为L6,则确定当前背光亮度值L6对应的红色发光单元R的发光电流为I61、绿色发光单元G的发光电流为I62、蓝色发光单元B的发光电流为I63以及白色发光单元W的发光电流为I64。
S1203、调整驱动IC的各管脚输出确定的发光电流;
具体地,例如驱动IC可以理解为内部各输出通道连接有可调整的电阻器,该电阻器和发光单元串联,通过改变电阻器的电阻值来改变驱动IC内各通道输出(OUT)确定的发光电流至各阴极引脚。
具体地,本公开实施例提供的图12所示的驱动方法,可以实现各发光组件亮度调节的功能,从而可以实现背光整体亮度的调节。
在具体实施时,在本公开实施例提供的上述驱动方法中,驱动IC的各管脚向第一阴极引脚、第二阴极引脚、第三阴极引脚和第四阴极引脚输入对应的发光电流,如图13所示,具体可以包括:
S1301、确定背光模组的局部发光位置和当前背光亮度值;
具体地,例如确定背光模组需要发光的位置仅为中心区域,并且该中心区域的当前背光亮度值为L3。
S1302、驱动IC仅向局部发光位置的红色发光单元的第一阴极引脚、绿色发光单元的第二阴极引脚、蓝色发光单元的第三阴极引脚和白色发光单元的第四阴极引脚输入当前背光亮度值对应的发光电流,其余位置的红色发光单元的第一阴极引脚、绿色发光单元的第二阴极引脚、蓝色发光单元的第三阴极引脚和白色发光单元的第四阴极引脚未输入发光电流;
具体地,驱动IC通过各管脚仅向背光模组的中心区域对应的红色发光单元的第一阴极引脚、绿色发光单元的第二阴极引脚、蓝色发光单元的第三阴极引脚和白色发光单元的第四阴极引脚输入当前背光亮度值为L3对应的各发光电流,除了中心区域的其余位置的红色发光单元的第一阴极引脚、绿色发光单元的第二阴极引脚、蓝色发光单元的第三阴极引脚和白色发光单元的第四阴极引脚未输入发光电流。
具体地,本公开实施例提供的图13所示的驱动方法,可以根据需要只控制部分发光组件发光,从而可以实现背光local dimming(背光区域调节技术)的功能,降低功耗。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括液晶显示面板以及位于液晶显示面板入光侧的如本公开实施例提供的上述背光模组。该显示装置解决问题的原理与前述背光模组相似,因此该显示装置的实施可以参见前述背光模组的实施,重复之处在此不再赘述。
本公开实施例提供的发光组件、背光模组及其驱动方法、显示装置,本公开的发光组件中包括四种不同出光颜色的发光单元,可以增加显示色域,也就是显示的颜色范围更多,显示色彩更真实;并且将四种不同出光颜色的发光单元,例如红色发光单元、绿色发光单元、蓝色发光单元和白色发光单元设计呈矩阵排列,通过提升白色发光单元的亮度,降低红色发光单元、绿色发光单元、蓝色发光单元的亮度,保持总体亮度和色点不变,就可以有效解决传统红绿蓝三基色发光组件边缘颜色异常的问题。另外,本公开实施例通过将红色发光单元与第一阳极引脚电连接,绿色发光单元、蓝色发光单元和白色发光单元与同一个第二阳极引脚电连接,这样可以通过第一阳极引脚 单独给红色发光单元输入阳极电压,通过第二阳极引脚同时给绿色发光单元、蓝色发光单元和白色发光单元输入阳极电压,由于在相同正向电流下,红色发光单元所需的电压最小、且明显小于绿色发光单元和蓝色发光单元所需的电压,而绿色发光单元和蓝色发光单元所需的电压相当,因此与相关技术中各发光单元共阳极的方案相比,本公开实施例提供的发光组件可以降低功耗。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种发光组件,其中,包括:红色发光单元,绿色发光单元,蓝色发光单元,白色发光单元,第一阳极引脚,以及第二阳极引脚;其中,
    所述红色发光单元、所述绿色发光单元、所述蓝色发光单元和所述白色发光单元呈矩阵排列;
    所述红色发光单元与所述第一阳极引脚电连接,所述绿色发光单元、所述蓝色发光单元和所述白色发光单元与同一个所述第二阳极引脚电连接。
  2. 如权利要求1所述的发光组件,其中,还包括:第一阴极引脚,第二阴极引脚,第三阴极引脚,以及第四阴极引脚;所述红色发光单元与所述第一阴极引脚电连接,所述绿色发光单元与所述第二阴极引脚电连接,所述蓝色发光单元与所述第三阴极引脚电连接,所述白色发光单元与所述第四阴极引脚电连接。
  3. 如权利要求2所述的发光组件,其中,每一所述发光单元均包括:衬底,位于所述衬底上的发光二极管,以及位于所述发光二极管背离所述衬底一侧的反射层;所述衬底背离所述反射层的一面为出光面。
  4. 如权利要求3所述的发光组件,其中,所述白色发光单元的发光二极管为蓝色发光二极管,所述白色发光单元还包括位于所述衬底背离所述反射层一侧的黄色荧光粉层。
  5. 如权利要求3所述的发光组件,其中,所述第一阳极引脚位于所述红色发光单元的反射层背离所述衬底的一侧,所述第二阳极引脚位于所述绿色发光单元的反射层、所述蓝色发光单元的反射层和所述白色发光单元的反射层背离所述衬底的一侧,且所述第二阳极引脚与所述绿色发光单元的反射层、所述蓝色发光单元的反射层和所述白色发光单元的反射层相互交叠。
  6. 如权利要求3所述的发光组件,其中,所述发光二极管包括依次叠层设置的N型半导体层、发光层和P型半导体层,所述N型半导体层靠近所述衬底,所述P型半导体层靠近所述反射层。
  7. 如权利要求6所述的发光组件,其中,所述红色发光单元的N型半导体层的远离所述衬底的表面具有第一裸露区域,所述第一阴极引脚与所述第一裸露区域接触设置;
    所述绿色发光单元的N型半导体层的远离所述衬底的表面具有第二裸露区域,所述第二阴极引脚与所述第二裸露区域接触设置;
    所述蓝色发光单元的N型半导体层的远离所述衬底的表面具有第三裸露区域,所述第三阴极引脚与所述第三裸露区域接触设置;
    所述白色发光单元的N型半导体层的远离所述衬底的表面具有第四裸露区域,所述第四阴极引脚与所述第四裸露区域接触设置。
  8. 如权利要求3-7任一项所述的发光组件,其中,还包括位于各所述发光单元的衬底背离所述反射层一侧的封装层,所述封装层填充各所述发光单元之间的间隙且覆盖所述发光单元的侧壁。
  9. 一种背光模组,其中,包括阵列排布的多个如权利要求1-8任一项所述的发光组件。
  10. 如权利要求9所述的背光模组,其中,还包括位于所述发光组件出光侧的光学膜片,所述光学膜片和所述封装层直接接触设置。
  11. 如权利要求9或10所述的背光模组,其中,还包括第一电源线、第二电源线和具有多个管脚的驱动IC;所述第一电源线与所述发光组件的第一阳极引脚电连接,所述第二电源线与所述发光组件的第二阳极引脚电连接,所述驱动IC的各管脚分别与所述发光组件的第一阴极引脚、第二阴极引脚、第三阴极引脚和第四阴极引脚一一对应电连接。
  12. 一种显示装置,其中,包括液晶显示面板以及位于所述液晶显示面板入光侧的如权利要求9-11任一项所述的背光模组。
  13. 一种用于驱动如权利要求9-11任一项所述的背光模组的驱动方法,其中,包括:
    所述第一电源线向所述第一阳极引脚输入对应的阳极电压,所述第二电源线向所述第二阳极引脚输入对应的阳极电压,所述驱动IC的各所述管脚向 所述第一阴极引脚、所述第二阴极引脚、所述第三阴极引脚和所述第四阴极引脚输入对应的发光电流。
  14. 如权利要求13所述的驱动方法,其中,所述驱动IC的各管脚向所述第一阴极引脚、所述第二阴极引脚、所述第三阴极引脚和所述第四阴极引脚输入对应的发光电流,具体包括:
    根据待显示图像信号计算当前背光亮度值;
    通过预先存储的不同背光亮度值对应的红色发光单元的发光电流、绿色发光单元的发光电流、蓝色发光单元的发光电流以及白色发光单元的发光电流,确定所述当前背光亮度值对应的红色发光单元的发光电流、绿色发光单元的发光电流、蓝色发光单元的发光电流以及白色发光单元的发光电流;
    调整所述驱动IC的各所述管脚输出确定的所述发光电流。
  15. 如权利要求13所述的驱动方法,其中,所述驱动IC的各管脚向所述第一阴极引脚、所述第二阴极引脚、所述第三阴极引脚和所述第四阴极引脚输入对应的发光电流,具体包括:
    确定所述背光模组的局部发光位置和当前背光亮度值;
    所述驱动IC仅向所述局部发光位置的红色发光单元的第一阴极引脚、绿色发光单元的第二阴极引脚、蓝色发光单元的第三阴极引脚和白色发光单元的第四阴极引脚输入所述当前背光亮度值对应的发光电流,其余位置的红色发光单元的第一阴极引脚、绿色发光单元的第二阴极引脚、蓝色发光单元的第三阴极引脚和白色发光单元的第四阴极引脚未输入发光电流。
PCT/CN2023/091387 2022-05-16 2023-04-27 发光组件、背光模组及其驱动方法、显示装置 WO2023221765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210526175.0 2022-05-16
CN202210526175.0A CN114967231A (zh) 2022-05-16 2022-05-16 发光组件、背光模组及其驱动方法、显示装置

Publications (2)

Publication Number Publication Date
WO2023221765A1 true WO2023221765A1 (zh) 2023-11-23
WO2023221765A9 WO2023221765A9 (zh) 2023-12-21

Family

ID=82982397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091387 WO2023221765A1 (zh) 2022-05-16 2023-04-27 发光组件、背光模组及其驱动方法、显示装置

Country Status (2)

Country Link
CN (1) CN114967231A (zh)
WO (1) WO2023221765A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967231A (zh) * 2022-05-16 2022-08-30 高创(苏州)电子有限公司 发光组件、背光模组及其驱动方法、显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101443836A (zh) * 2006-05-09 2009-05-27 皇家飞利浦电子股份有限公司 具有背光的显示设备
CN201820787U (zh) * 2010-08-26 2011-05-04 浙江英特来光电科技有限公司 共极式全彩贴片发光二极管
CN206628467U (zh) * 2017-02-28 2017-11-10 深圳市瑞丰光电子股份有限公司 一种led封装结构
CN209561405U (zh) * 2019-03-20 2019-10-29 佛山市国星光电股份有限公司 一种led发光单元
CN110707195A (zh) * 2019-10-17 2020-01-17 大连德豪光电科技有限公司 倒装发光二极管芯片
CN112242384A (zh) * 2019-07-18 2021-01-19 高创(苏州)电子有限公司 Led灯珠、led显示屏、led显示装置及驱动方法
CN113437197A (zh) * 2021-06-25 2021-09-24 厦门乾照光电股份有限公司 一种倒装led芯片及其制作方法
CN114967231A (zh) * 2022-05-16 2022-08-30 高创(苏州)电子有限公司 发光组件、背光模组及其驱动方法、显示装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504662B2 (ja) * 2003-04-09 2010-07-14 シチズン電子株式会社 Ledランプ
JP4274843B2 (ja) * 2003-04-21 2009-06-10 シャープ株式会社 Ledデバイスおよびそれを用いた携帯電話機器、デジタルカメラおよびlcd表示装置
EP1482566A3 (en) * 2003-05-28 2004-12-08 Chang Hsiu Hen Light emitting diode electrode structure and full color light emitting diode formed by overlap cascaded die bonding
KR100631832B1 (ko) * 2003-06-24 2006-10-09 삼성전기주식회사 백색 발광소자 및 그 제조방법
KR100550852B1 (ko) * 2003-06-25 2006-02-10 삼성전기주식회사 4 리드의 다색 발광 소자
KR100658674B1 (ko) * 2004-08-05 2006-12-15 삼성에스디아이 주식회사 백라이트 구동회로
JP2007206282A (ja) * 2006-01-31 2007-08-16 Toshiba Corp 情報処理装置、及び輝度制御方法
JP2008096492A (ja) * 2006-10-06 2008-04-24 Sharp Corp Ledバックライトユニット及び該ユニットを備える画像表示装置
KR20080073950A (ko) * 2007-02-07 2008-08-12 삼성전자주식회사 백라이트 유닛과 이를 포함한 액정 표시 장치
US8339028B2 (en) * 2009-06-30 2012-12-25 Apple Inc. Multicolor light emitting diodes
CN102782892B (zh) * 2010-03-12 2015-07-01 夏普株式会社 发光装置的制造方法、发光装置、照明装置、背光灯、液晶面板、显示装置、显示装置的制造方法、显示装置的驱动方法及液晶显示装置
WO2017014564A1 (ko) * 2015-07-23 2017-01-26 서울반도체 주식회사 디스플레이 장치 및 그의 제조 방법
CN105206728A (zh) * 2015-10-23 2015-12-30 京东方光科技有限公司 发光二极管芯片、发光二极管、背光源和显示装置
JP2017091866A (ja) * 2015-11-12 2017-05-25 キヤノン株式会社 発光装置
WO2017217703A1 (en) * 2016-06-13 2017-12-21 Seoul Semiconductor Co., Ltd Display apparatus and manufacturing method thereof
KR102503578B1 (ko) * 2017-06-30 2023-02-24 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
TWI800538B (zh) * 2018-10-08 2023-05-01 晶元光電股份有限公司 發光元件
CN110189683A (zh) * 2019-06-26 2019-08-30 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置
CN113109968A (zh) * 2020-01-13 2021-07-13 海信视像科技股份有限公司 一种显示装置及其色温调节方法
WO2021174473A1 (zh) * 2020-03-05 2021-09-10 京东方科技集团股份有限公司 发光基板及其驱动方法、发光模组、显示装置
US11221518B2 (en) * 2020-05-20 2022-01-11 Tcl China Star Optoelectronics Technology Co., Ltd. Backlight module and display panel
US11409161B2 (en) * 2020-09-25 2022-08-09 Dell Products L.P. Systems and methods for implementing a dual green-blue light-emitting diode with different wavelengths
CN114038886A (zh) * 2020-12-17 2022-02-11 广东聚华印刷显示技术有限公司 电致发光器件、其制备方法和显示器件
CN113054066B (zh) * 2021-03-12 2022-12-09 京东方科技集团股份有限公司 一种显示面板及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101443836A (zh) * 2006-05-09 2009-05-27 皇家飞利浦电子股份有限公司 具有背光的显示设备
CN201820787U (zh) * 2010-08-26 2011-05-04 浙江英特来光电科技有限公司 共极式全彩贴片发光二极管
CN206628467U (zh) * 2017-02-28 2017-11-10 深圳市瑞丰光电子股份有限公司 一种led封装结构
CN209561405U (zh) * 2019-03-20 2019-10-29 佛山市国星光电股份有限公司 一种led发光单元
CN112242384A (zh) * 2019-07-18 2021-01-19 高创(苏州)电子有限公司 Led灯珠、led显示屏、led显示装置及驱动方法
CN110707195A (zh) * 2019-10-17 2020-01-17 大连德豪光电科技有限公司 倒装发光二极管芯片
CN113437197A (zh) * 2021-06-25 2021-09-24 厦门乾照光电股份有限公司 一种倒装led芯片及其制作方法
CN114967231A (zh) * 2022-05-16 2022-08-30 高创(苏州)电子有限公司 发光组件、背光模组及其驱动方法、显示装置

Also Published As

Publication number Publication date
CN114967231A (zh) 2022-08-30
WO2023221765A9 (zh) 2023-12-21

Similar Documents

Publication Publication Date Title
KR101519985B1 (ko) 광원 모듈 및 이를 갖는 표시장치
KR101381350B1 (ko) 백라이트 유닛 어셈블리와 이를 포함하는 액정 표시 장치및 이의 디밍 방법
EP2211329A2 (en) Color display unit
WO2021227098A1 (zh) 背光模组和显示面板
US20190236997A1 (en) Display driving method and organic light-emitting display device thereof
US10317728B2 (en) Backlight device and liquid crystal display device including same
WO2023221765A1 (zh) 发光组件、背光模组及其驱动方法、显示装置
KR20120056001A (ko) 백라이트 유닛 및 액정표시장치
WO2016189997A1 (ja) バックライト装置およびそれを備えた液晶表示装置
KR100737060B1 (ko) 발광 장치 및 이의 구동 방법
US8400394B2 (en) Backlight unit assembly, liquid crystal display having the same, and dimming method thereof
US20240126119A1 (en) Illumination unit and display apparatus
EP4024126A1 (en) Light source unit, backlight module and display device
CN113109968A (zh) 一种显示装置及其色温调节方法
US20200124786A1 (en) Display devices using led backlight units and led packages for the backlight units
US20120092361A1 (en) Display device
KR20080073950A (ko) 백라이트 유닛과 이를 포함한 액정 표시 장치
KR101946263B1 (ko) 액정표시장치
US9024923B2 (en) Liquid crystal display panel and liquid crystal display device with backlight chromaticity balance
US20180197444A1 (en) Display device and light source device
US20230307597A1 (en) Display device using micro led
KR102109662B1 (ko) 액정표시장치
US20240021145A1 (en) Display apparatus
KR101831238B1 (ko) 액정표시장치
KR20230147653A (ko) 광원모듈 및 이를 포함하는 led필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806717

Country of ref document: EP

Kind code of ref document: A1