WO2016189997A1 - バックライト装置およびそれを備えた液晶表示装置 - Google Patents

バックライト装置およびそれを備えた液晶表示装置 Download PDF

Info

Publication number
WO2016189997A1
WO2016189997A1 PCT/JP2016/062070 JP2016062070W WO2016189997A1 WO 2016189997 A1 WO2016189997 A1 WO 2016189997A1 JP 2016062070 W JP2016062070 W JP 2016062070W WO 2016189997 A1 WO2016189997 A1 WO 2016189997A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
types
light emitter
emitters
white
Prior art date
Application number
PCT/JP2016/062070
Other languages
English (en)
French (fr)
Inventor
彩 中谷
塩見 誠
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680028937.7A priority Critical patent/CN107614966A/zh
Priority to US15/576,481 priority patent/US20180157120A1/en
Publication of WO2016189997A1 publication Critical patent/WO2016189997A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a backlight device, and more particularly to a backlight device for a liquid crystal display device that employs an LED (light emitting diode) as a light source.
  • LED light emitting diode
  • the color reproduction range (also referred to as “color gamut”) has been conventionally expanded.
  • the color reproduction range is expanded by improving backlight devices and color filters, for example.
  • a transmissive liquid crystal display device requires a backlight device that can irradiate a liquid crystal panel with white light including a red component, a green component, and a blue component.
  • CCFLs cold cathode tubes
  • the use of LEDs has increased from the viewpoint of low power consumption and ease of brightness control.
  • a transmissive liquid crystal display device requires a backlight device that can irradiate a liquid crystal panel with white light. Therefore, for example, a backlight device (see FIG. 39) using a white light emitter 91 having a structure in which the blue LED element 6 (B) is covered with the yellow phosphor 7 (Y) as a light source, or the blue LED element 6 (B) is used.
  • a backlight device (see FIG. 40) using a white light emitter 92 having a structure covered with a red phosphor 7 (R) and a green phosphor 7 (G) as a light source, or an ultraviolet LED element 6 (P) as a red phosphor 7.
  • a backlight device see FIG.
  • each phosphor emits light when excited by light emitted from the corresponding LED element.
  • An apparatus (see FIG. 42) may be used. The configuration shown in FIG. 42 is employed, for example, when a wider color reproduction range is desired.
  • the appearance of an image displayed on a display device varies greatly depending on the color temperature (the white color temperature when white is displayed). For this reason, it is preferable that the viewer can select a favorite color temperature according to, for example, the type of video to be viewed. Therefore, in general, display devices in recent years are provided with a function of adjusting the color temperature.
  • Japanese Unexamined Patent Application Publication No. 2008-283155 discloses an invention of a light emitting device provided with two or more types of light source modules (each light source module includes an LED element and a phosphor) that emit light having different color temperatures. ing. According to this light emitting device, the color temperature can be changed along the black body locus (black body radiation locus).
  • Japanese Laid-Open Patent Publication No. 2008-205133 discloses a small-size LED element for color adjustment in a light-emitting body that includes a large-size LED element and a phosphor that emits light when excited by light emitted from the LED element.
  • An invention of a backlight device having a configuration incorporating the above is disclosed. According to this backlight device, the color temperature can be adjusted by controlling the luminance of light emitted from the small-size LED element.
  • the color temperature can be adjusted or changed relatively easily.
  • the configuration of the drive circuit becomes complicated, resulting in high cost and high power consumption.
  • an output changes a lot with temperature.
  • the emission wavelength may change due to the piezo effect. It is difficult to suitably control the luminance for three types of LED elements including such a red LED element and a green LED element, and sufficient reliability cannot be obtained.
  • an object of the present invention is to realize a backlight device capable of adjusting / changing the color temperature without reducing the color purity. Another object is to improve the reliability of such a backlight device.
  • a first aspect of the present invention is a backlight device using as a light source a first type illuminant comprising a light emitting element and a wavelength conversion element that converts the wavelength of light emitted from the light emitting element.
  • a plurality of kinds of light emitters including at least two kinds of first type light emitters having the same kind of light emitting elements and having the same kind of wavelength conversion elements; The two or more types of first type light emitters emit light of different chromaticities, The plurality of types of light emitters are configured such that light emission intensity of light emitting elements included in each light emitter is controlled independently for each type of light emitter.
  • the plurality of types of light emitters are three types of light emitters.
  • the chromaticity coordinates on the black body locus corresponding to the color temperature in the range of 4000K to 14000K are included in the range of the triangle connecting the chromaticity coordinates of the light emitted from each of the three types of light emitters. As described above, the amount of the wavelength conversion element included in the two types of first-type light emitters is adjusted.
  • the three types of light emitters are: A first magenta light-emitting body comprising a blue light-emitting diode element as a light-emitting element and a relatively large amount of red phosphor as a wavelength conversion element; A second magenta light-emitting body comprising a blue light-emitting diode element as a light-emitting element and a relatively small amount of red phosphor as a wavelength conversion element; It is characterized by being comprised by the green light-emitting body which consists of a green light emitting diode element as a light emitting element.
  • the seventh aspect of the present invention in the seventh aspect of the present invention, The three types of light emission so that the chromaticity coordinates corresponding to the target color temperature on the xy chromaticity diagram are included within a triangular range connecting the chromaticity coordinates of light emitted from each of the three types of light emitters.
  • the amount of the wavelength conversion element contained in the body is adjusted.
  • the three types of light emitters are: A first white light emitting element comprising a blue light emitting diode element as a light emitting element, a relatively large amount of red phosphor as a wavelength converting element, and a relatively small amount of green phosphor as a wavelength converting element; A second white light emitting element comprising a blue light emitting diode element as a light emitting element, a relatively small amount of red phosphor as a wavelength converting element, and a relatively large amount of green phosphor as a wavelength converting element; It is composed of a blue light emitting diode element as a light emitting element, a third white light emitting element composed of a relatively small amount of red phosphor as a wavelength converting element, and a relatively small amount of green phosphor as a wavelength converting element. It is characterized by being.
  • the plurality of types of light emitters are two types of first type light emitters,
  • the chromaticity coordinates corresponding to the target color temperature are positioned on a line segment connecting the chromaticity coordinates of light emitted from each of the two types of first-type light emitters.
  • the amount of the wavelength conversion element contained in the first type of light emitters is adjusted.
  • the plurality of types of light emitters are two types of first type light emitters,
  • the two types of first type light emitters are: A first white light-emitting body comprising a blue light-emitting diode element as a light-emitting element and a relatively large amount of yellow phosphor as a wavelength conversion element; It is characterized by comprising a blue light emitting diode element as a light emitting element and a second white light emitting element comprising a relatively small amount of yellow phosphor as a wavelength converting element.
  • the light emitting element is a light emitting diode element or a laser diode element.
  • a sixteenth aspect of the present invention is a liquid crystal display device, A liquid crystal panel including a display unit for displaying an image; A backlight device according to the first aspect of the present invention for irradiating the back surface of the liquid crystal panel; And a backlight control unit that controls the light emission intensity of the plurality of types of light emitters for each type of light emitters.
  • a highly reliable backlight device capable of adjusting and changing the color temperature without reducing the color purity is realized. Is done.
  • a highly reliable backlight device capable of adjusting and changing the color temperature without reducing the color purity is realized. Is done. Further, the color temperature can be adjusted / changed more precisely by adjusting the amounts of the red phosphor and the green phosphor contained in the first white light emitter and the second white light emitter.
  • the fourteenth aspect of the present invention no red light emitting diode element is used for the light source constituting the backlight device. Since the red light emitting diode element has a characteristic that the output largely changes depending on the temperature, according to the fourteenth aspect of the present invention in which the red light emitting diode element is not used as the light source, the reliability is improved and the light source Since control becomes easy, cost is reduced. In addition, since the red light emitting diode element has low luminous efficiency, the effect of reducing power consumption can be obtained by not using the red light emitting diode element as a light source.
  • a liquid crystal display device capable of adjusting / changing the color temperature without reducing the color purity is realized.
  • the said 1st Embodiment it is a figure for demonstrating control of the emitted light intensity of a light-emitting body.
  • it is xy chromaticity diagram for demonstrating switching of color temperature.
  • the emitted light intensity of two types of magenta color light-emitting bodies is made equal, it is a figure which shows the emission spectrum of the light emitted from the two types of magenta color light-emitting body.
  • color temperature is set to 6500K, it is a figure which shows the emission spectrum of the light emitted from two types of magenta color light-emitting bodies.
  • FIG. 6 is a diagram showing an emission spectrum of light emitted from two types of magenta light emitters when the light emission intensities of two types of magenta light emitters are made equal in the first modification of the first embodiment.
  • the 1st modification of the said 1st Embodiment it is a figure which shows the emission spectrum of the light emitted from two types of magenta color light-emitting bodies, when color temperature is set to 6500K.
  • the 1st modification of the said 1st Embodiment it is a figure which shows the emission spectrum of the light emitted from two types of magenta color light emitters, when color temperature is set to 9300K.
  • FIG. 25 is an xy chromaticity diagram for describing switching of color temperature in the sixth modification example of the first embodiment. It is a figure which shows the structure of the light source mounted in an LED board in the backlight apparatus which concerns on the 2nd Embodiment of this invention. In the said 2nd Embodiment, it is xy chromaticity diagram for demonstrating switching of color temperature. In the said 2nd Embodiment, it is a figure which shows the emission spectrum of the light emitted from the said three types of white light-emitting body at the time of making the light emission intensity of three types of white light-emitting body equal.
  • the said 3rd Embodiment it is xy chromaticity diagram for demonstrating switching of color temperature.
  • it is a figure which shows the emission spectrum of the light emitted from the said 2 types of white light-emitting body when the light emission intensity of two types of white light-emitting body is made equal.
  • color temperature when color temperature is set to 6500K, it is a figure which shows the emission spectrum of the light emitted from two types of white light-emitting bodies.
  • FIG. 25 is an xy chromaticity diagram for describing color temperature switching in the third modification example of the third embodiment. It is a figure for demonstrating the conventional backlight apparatus. It is a figure for demonstrating the conventional backlight apparatus. It is a figure for demonstrating the conventional backlight apparatus. It is a figure for demonstrating the conventional backlight apparatus. It is a figure for demonstrating the conventional backlight apparatus. It is a figure for demonstrating the conventional backlight apparatus.
  • Each pixel forming unit 4 includes a TFT (thin film transistor) which is a switching element having a gate terminal connected to a gate bus line GL passing through a corresponding intersection and a source terminal connected to a source bus line SL passing through the intersection.
  • TFT thin film transistor
  • the pixel electrode 41 connected to the drain terminal of the TFT 40, the common electrode 44 and the auxiliary capacitance electrode 45 provided in common to the plurality of pixel forming portions 4, the pixel electrode 41 and the common electrode 44, And a storage capacitor 43 formed by the pixel electrode 41 and the storage capacitor electrode 45 are included.
  • the liquid crystal capacitor 42 and the auxiliary capacitor 43 constitute a pixel capacitor 46.
  • the display unit 410 in FIG. 2 only components corresponding to one pixel forming unit 4 are shown.
  • an oxide TFT (a thin film transistor using an oxide semiconductor for a channel layer) can be employed. More specifically, In—Ga—Zn—O (indium gallium zinc oxide) which is an oxide semiconductor mainly containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) is used.
  • In—Ga—Zn—O—TFT indium gallium zinc oxide
  • a TFT in which a channel layer is formed hereinafter referred to as “In—Ga—Zn—O—TFT”
  • In—Ga—Zn—O—TFT In—Ga—Zn—O—TFT
  • a transistor in which an oxide semiconductor other than In—Ga—Zn—O (indium gallium zinc oxide) is used for a channel layer can be employed.
  • an oxide semiconductor other than In—Ga—Zn—O indium gallium zinc oxide
  • at least one of indium, gallium, zinc, copper (Cu), silicon (Si), tin (Sn), aluminum (Al), calcium (Ca), germanium (Ge), and lead (Pb) is included.
  • the present invention does not exclude the use of TFTs other than oxide TFTs.
  • the backlight control unit 500 controls the luminance (light emission intensity) of the light source in the backlight device 600 based on the backlight control signal BS sent from the display control circuit 100.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of the backlight device 600 according to the present embodiment.
  • FIG. 3 is a side view of the liquid crystal panel 400 and the backlight device 600.
  • the backlight device 600 is provided on the back side of the liquid crystal panel 400. That is, the backlight device 600 in this embodiment is a direct type.
  • the backlight device 600 is directed toward an LED substrate 62 on which a plurality of light emitters 60 as light sources are mounted, a diffusion plate 64 for diffusing light emitted from the light emitters 60 to be uniform, and the liquid crystal panel 400. It is comprised by the optical sheet 66 for improving the efficiency of the irradiated light, and the chassis 68 which supports LED board 62 grade
  • the first magenta light emitter 60 (M1) and the second magenta light emitter 60 (M2) are first type light emitters, and the green light emitter 60 (G) is a second type light emitter.
  • the light source is comprised by two types of 1st type light emitters and one type of 2nd type light emitters.
  • Blue light is emitted from the blue LED element 6 (B), and green light is emitted from the green LED element 6 (G).
  • Red light is emitted from the red phosphor 7 (R).
  • the red phosphor 7 (R) emits light when excited by the light emitted from the blue LED element 6 (B). That is, the red phosphor 7 (R) functions as a wavelength conversion element that converts the wavelength of blue light into the wavelength of red light.
  • the first magenta light emitter 60 (M1) includes a relatively large amount of the red phosphor 7 (R)
  • the second magenta light emitter 60 (M2) includes a relatively small amount.
  • a red phosphor 7 (R) is included.
  • FIG. 4 is a diagram showing an arrangement state of the light sources on the LED substrate 62.
  • one first magenta light emitter 60 (M1), one second magenta light emitter 60 (M2), and two green light emitters 60 are provided.
  • a single group is formed by (G). That is, four light emitters 60 are included in one group. Focusing on each group, in plan view, the first magenta light emitter 60 (M1) is disposed at the upper left, the second magenta light emitter 60 (M2) is disposed at the lower right, and the upper right and lower left.
  • a green light emitter 60 (G) is arranged on the side.
  • Such groups are arranged at equal intervals in the extending direction of the gate bus lines GL, and are also arranged at equal intervals in the extending direction of the source bus lines SL.
  • the first magenta light emitter 60 (M1), the second magenta light emitter 60 (M2), and the green light emitter 60 (G) have different chromaticities. Further, depending on the color temperature to be displayed, the light emission intensity is biased. From the above, there is a concern that uneven color and uneven brightness may occur depending on the arrangement state of the light source. Therefore, it is preferable that the four light emitters 60 included in each group are arranged at positions close to each other so that the occurrence of color unevenness and luminance unevenness is suppressed.
  • the first magenta light emitter 60 (M1), the second magenta light emitter 60 (M2), and the green light emitter 60 (G) are each independently a backlight control unit 500. It is connected to the. Since such a configuration is employed, the light emission intensity of the light emitter 60 on the LED substrate 62 is adjusted for each type. That is, the backlight controller 500 causes the light emission intensity of the first magenta light emitter 60 (M1), the light emission intensity of the second magenta light emitter 60 (M2), and the light emission intensity of the green light emitter 60 (G). Are controlled independently.
  • a method for controlling the light emission intensity of the light emitter 60 for example, a method of adjusting the magnitude of the current applied to the LED element 6 in the light emitter 60 or PWM control with a constant current applied to the LED element 6 in the light emitter 60 is performed. It is possible to adopt a technique that gives Note that the light emission intensity of each light emitter 60 is controlled based on the backlight control signal BS sent from the display control circuit 100.
  • the luminance of the reddish magenta color is controlled by controlling the light emission intensity of the first magenta light emitter 60 (M1), and the second magenta light emitter 60.
  • the light emission intensity of (M2) By controlling the light emission intensity of (M2), the bluish magenta brightness is controlled, and by controlling the light emission intensity of the green light emitter 60 (G), the green brightness is controlled.
  • white adjustment (adjustment / change of color temperature) is performed.
  • the light emitter 60 constituting the light source is selected so that the chromaticity coordinates corresponding to the target color temperature are included in the range of the triangle 81.
  • the chromaticity coordinates for the green light emitter 60 (G) are (0.2, 0.7)
  • the chromaticity coordinates for the first magenta light emitter 60 (M1) are ( 0.4, 0.15)
  • the chromaticity coordinates for the second magenta light emitter 60 (M2) are (0.3, 0.1).
  • the light emission intensity of the first magenta light emitter 60 (M1) is equal to the light emission intensity of the second magenta light emitter 60 (M2)
  • the light is emitted from the first magenta light emitter 60 (M1).
  • the light emission spectrum is represented by a curve as indicated by reference numeral 801 in FIG. 8, for example, and the light emission spectrum of the light emitted from the second magenta color light emitter 60 (M2) is indicated by a curve as indicated by reference numeral 802 in FIG. It is represented by
  • the light emission intensity of the first magenta light emitter 60 (M1) is relatively increased, and the second magenta light emitter 60 (M2) has the light intensity.
  • the emission intensity is relatively weakened.
  • an emission spectrum 801 of light emitted from the first magenta light emitter 60 (M1) and an emission spectrum 802 of light emitted from the second magenta light emitter 60 (M2) are, for example, as shown in FIG. It will be something.
  • the chromaticity coordinate of the combined light of the light emitted from the first magenta light emitter 60 (M1) and the light emitted from the second magenta light emitter 60 (M2) is the first magenta light emission.
  • the coordinates are close to the chromaticity coordinates M1 of the light emitted from the body 60 (M1). Further, the light emission intensity of the green light emitter 60 (G) is adjusted so that the white point is positioned on the black body locus 8 on the xy chromaticity diagram. As described above, the color temperature is set to 6500K.
  • the coordinates are close to the chromaticity coordinates M2 of the light emitted from the body 60 (M2). Further, the light emission intensity of the green light emitter 60 (G) is adjusted so that the white point is positioned on the black body locus 8 on the xy chromaticity diagram. As described above, the color temperature is set to 9300K.
  • the light source that constitutes the backlight device 600 includes a green light emitter 60 (G) composed of the green LED element 6 (G) and a blue LED element 6 (B) with a relatively large amount of the red phosphor 7.
  • the light source is constituted by the three types of light emitters 60. Further, these three types of light emitters 60 are configured such that the light emission intensity is independently controlled. As a result, the brightness of the light of the three colors can be controlled independently, so that the color temperature can be adjusted / changed.
  • two types of light emitters are LED elements of the same type as light emitting elements ( LED chip) and the same type of phosphor as the wavelength conversion element.
  • two types of light emitters are configured using two types of red phosphors having different emission wavelengths, that is, as indicated by reference numeral 811 in FIG.
  • two types of magenta light emitters are configured with a magenta light emitter having an emission spectrum represented by a curve and a magenta light emitter having an emission spectrum represented by a curve as indicated by reference numeral 812 in FIG.
  • the curve representing the emission spectrum of the synthesized light is as shown in FIG. As can be seen from FIG. 12, the half width of the emission spectrum (the portion indicated by the arrow 813 in FIG. 12) is larger than the original one. Therefore, when two types of light emitters (two types of magenta color light emitters) are configured using two types of red phosphors having different emission wavelengths, the color purity decreases.
  • the first magenta light emitter 60 (M1) and the second magenta light emitter 60 (M2) include the same kind of LED elements and the same kind of phosphor. It is out.
  • the dominant wavelength of the synthesized light does not change, and
  • the half width of the combined light is maintained at a relatively narrow width. Therefore, the color purity does not decrease.
  • the configuration not using the red LED element is adopted, so that a low power consumption backlight device can be realized at low cost.
  • Red LED elements are less efficient than blue LED elements. For this reason, power consumption is reduced by adopting a configuration that does not use a red LED element.
  • white LEDs are often realized using blue LED elements. For this reason, since the blue LED element is being improved and mass-produced, the unit price of the chip is low.
  • the light source can be easily controlled by reducing the types of LED elements used.
  • the present embodiment employs a configuration that does not use a red LED element that is highly temperature-dependent, so that the control of the light source is remarkably easier and the cost is reduced as compared with the conventional configuration.
  • the first magenta light emitter 60 (M1) when the light emission intensity of the first magenta light emitter 60 (M1) is equal to the light emission intensity of the second magenta light emitter 60 (M2), the first magenta light emitter 60 (M1).
  • the emission spectrum of light emitted from the second magenta light emitter 60 (M2) is represented by, for example, reference numeral 822 in FIG. It is represented by a curve as shown.
  • the first magenta light emitter 60 (M1) and the second magenta light emitter 60 (M2) are used regardless of whether the color temperature is set to 6500K or 9300K. Neither of them becomes a state close to the light-off state. Therefore, the occurrence of uneven brightness is suppressed.
  • the chromaticity coordinates G for the green light emitter 60 (G) the chromaticity coordinates M1 for the first magenta color light emitter 60 (M1), and the second magenta color light emitter 60 (M2).
  • the range of the triangle 82 (see FIG. 13) connecting the chromaticity coordinates M2 with respect to () is wider than that in the first embodiment. Therefore, the displayable color temperature range is widened.
  • the chromaticity coordinates of the light emitted from the first magenta light emitter 60 (M1) and the second magenta light emitter 60 (M2) are the red phosphors 7 (R) included in each light emitter 60. Varies with quantity. Accordingly, the chromaticity coordinates G for the green light emitter 60 (G), the chromaticity coordinates M1 for the first magenta color light emitter 60 (M1), and the chromaticity coordinates for the second magenta color light emitter 60 (M2).
  • the range of the triangle connecting M2 changes according to the amount of the red phosphor 7 (R) included in each of the first magenta light emitter 60 (M1) and the second magenta light emitter 60 (M2). To do.
  • the chromaticity coordinates on the black body locus 8 corresponding to the color temperature in the range of 4000K to 14000K are within a triangular range connecting the chromaticity coordinates of the light emitted from each of the three types of light emitters 60 described above.
  • the red phosphors 7 (R) included in the two types of first-type light emitters (the first magenta light emitter 60 (M1) and the second magenta light emitter 60 (M2)). The amount of is adjusted. By performing such adjustment, the displayable color temperature range becomes 4000K to 14000K.
  • the light sources on the LED substrate 62 are arranged as shown in FIG.
  • the present invention is not limited to this. Accordingly, various examples of light source arrangement on the LED substrate 62 will be described below.
  • the intensity is independently controlled by the backlight control unit 500.
  • the emission intensity of the three types of light emitters 60 constituting the light source is biased depending on the color temperature to be displayed. Therefore, in order to suppress the occurrence of uneven color and uneven brightness due to uneven emission intensity, it is preferable to arrange a light source as in the first embodiment (see FIG. 4).
  • FIG. 18 is a diagram illustrating an arrangement state of light sources in the third modification of the first embodiment.
  • two first magenta light emitters 60 (M1), two second magenta light emitters 60 (M2), and one green light emitter 60 (G) are used as one unit.
  • a coherent group is formed. That is, one group includes five light emitters 60. Paying attention to each group, the first magenta light emitter 60 (M1) is arranged at the upper left and lower right of the green light emitter 60 (G) in plan view with the green light emitter 60 (G) as the center,
  • the second magenta color light emitter 60 (M2) is arranged at the upper right and lower left of the green light emitter 60 (G) in plan view.
  • FIG. 19 is a diagram illustrating an arrangement state of light sources in the fourth modification example of the first embodiment.
  • the configuration according to this modification is a configuration adopted when the backlight device is an edge light type.
  • a plurality of light emitters 60 are arranged in a line at equal intervals.
  • the three types of light emitters 60 are repeatedly arranged in a line in the order of “first magenta light emitter 60 (M1), green light emitter 60 (G), and second magenta light emitter 60 (M2)”.
  • the order of the three types of light emitters 60 is “first magenta light emitter 60 (M1), green light emitter 60 (G), second magenta light emitter 60 (M2)”. It is not limited.
  • the light source mounted on the LED substrate 62 has a structure in which the blue LED element 6 (B) is covered with a relatively large amount of red phosphor 7 (R) as shown in FIG.
  • the present invention is not limited to this. Therefore, a modification of the configuration of the light source mounted on the LED substrate 62 will be described below.
  • the chromaticity coordinate within the range of the triangle 86 connecting the chromaticity coordinate (Y1) and the chromaticity coordinate (greenish yellow chromaticity coordinate) Y2 of the second yellow light emitter 60 (Y2) is selected as the white point. (See FIG. 23). As described above, the color temperature can be adjusted / changed also in this modification.
  • FIG. 24 is a diagram illustrating a configuration of a light source mounted on the LED substrate 62. As shown in FIG. 24, in this embodiment, the light source covers the blue LED element 6 (B) with a relatively large amount of red phosphor 7 (R) and a relatively small amount of green phosphor 7 (G).
  • the arrangement of the light sources on the LED substrate 62 can be the same as in the first embodiment (see FIG. 4).
  • the first magenta light emitter 60 (M1), the second magenta light emitter 60 (M2), and the green light emitter 60 (G) in the first embodiment are, for example, the first magenta light emitter 60 (M1). It is necessary to replace the first white light emitter 60 (W1), the second white light emitter 60 (W2), and the third white light emitter 60 (W3), respectively.
  • the emission intensity of the first white light emitter 60 (W1) is relatively increased, and the emission intensity of the third white light emitter 60 (W3). Is relatively weakened.
  • the light emission intensity of the second white light emitter 60 (W2) is adjusted so that the white point is positioned on the black body locus 8 on the xy chromaticity diagram.
  • the emission spectrum 831 of the light emitted from the first white light emitter 60 (W1), the emission spectrum 832 of the light emitted from the second white light emitter 60 (W2), and the third white light emitter 60 is, for example, as shown in FIG.
  • the color temperature is set to 6500K.
  • the color temperature is set to 9300K
  • the light emission intensity of the first white light emitter 60 (W1) is relatively weak
  • the light intensity of the third white light emitter 60 (W3) is relatively strong.
  • the light emission intensity of the second white light emitter 60 (W2) is adjusted so that the white point is positioned on the black body locus 8 on the xy chromaticity diagram.
  • the emission spectrum 831 of the light emitted from the first white light emitter 60 (W1), the emission spectrum 832 of the light emitted from the second white light emitter 60 (W2), and the third white light emitter 60 An emission spectrum 833 of the light emitted from W3) is, for example, as shown in FIG.
  • the color temperature is set to 9300K.
  • a second white light emitter 60 (Wb) having a structure in which the blue LED element 6 (B) is covered with a relatively small amount of the yellow phosphor 7 (Y).
  • the first white light emitter 60 (Wa) and the second white light emitter 60 (Wb) are first type light emitters.
  • the light source is constituted by two types of first-type light emitters.
  • FIG. 30 is a diagram showing an arrangement state of the light sources on the LED substrate 62.
  • one group is formed by the two first white light emitters 60 (Wa) and the two second white light emitters 60 (Wb).
  • four light emitters 60 are included in one group. Focusing on each group, in plan view, the first white light emitter 60 (Wa) is disposed at the upper right and lower left, and the second white light emitter 60 (Wb) is disposed at the upper left and lower right.
  • Such groups are arranged at equal intervals in the extending direction of the gate bus lines GL, and are also arranged at equal intervals in the extending direction of the source bus lines SL.
  • the four light emitters 60 included in each group are arranged at positions close to each other so that the occurrence of uneven color and uneven brightness is suppressed.
  • the emission intensity of the first white light emitter 60 (Wa) is relatively increased, and the emission intensity of the second white light emitter 60 (Wb). Is relatively weakened.
  • the emission spectrum 841 of light emitted from the first white light emitter 60 (Wa) and the emission spectrum 842 of light emitted from the second white light emitter 60 (Wb) are as shown in FIG. 33, for example. It becomes.
  • the color temperature is set to 6500K.
  • the two types of light emitters 60 include the same type of LED elements (LED chips) as light emitting elements, and also include the same type of phosphors as wavelength conversion elements. For this reason, the combined light of the light emitted from the two types of light emitters 60 becomes the combined light of two lights having the same peak wavelength. Therefore, no matter how the light emission intensity of the two types of light emitters 60 is controlled, the color purity does not deteriorate. Further, as in the first embodiment, the light source does not include a red LED element. As described above, according to the present embodiment, as in the first embodiment, it is possible to realize a highly reliable backlight device that can adjust and change the color temperature without reducing the color purity. The In addition, as in the first embodiment, the effect of reducing power consumption and cost can be obtained.
  • FIG. 35 is a diagram showing an arrangement state of light sources in the first modification of the third embodiment.
  • the light emitters 60 are arranged at equal intervals in this order.
  • the light emitters 60 are arranged at equal intervals in this order.
  • the above configuration is repeated in the extending direction of the gate bus line GL and the extending direction of the source bus line SL.
  • FIG. 36 is a diagram showing an arrangement state of light sources in the second modification of the third embodiment.
  • the configuration according to this modification is a configuration adopted when the backlight device is an edge light type.
  • a plurality of light emitters 60 are arranged in a line at equal intervals.
  • the plurality of light emitters 60 are “a first white light emitter 60 (Ma), a second white light emitter 60 (Mb), a first white light emitter 60 (Ma), and a second white light emitter 60. (Mb) "are repeatedly arranged in a line.
  • the light source mounted on the LED substrate 62 has a structure in which the blue LED element 6 (B) is covered with a relatively large amount of yellow phosphor 7 (Y) as shown in FIG.
  • the first white light emitter 60 (Wa) and the second white light emitter 60 (Wb) having a structure in which the blue LED element 6 (B) is covered with a relatively small amount of yellow phosphor 7 (Y). It was.
  • the present invention is not limited to this. Therefore, a modification of the configuration of the light source mounted on the LED substrate 62 will be described below.
  • FIG. 37 is a diagram showing a configuration of a light source mounted on the LED substrate 62 in the third modification example of the third embodiment.
  • the light source covered the blue LED element 6 (B) with a relatively large amount of red phosphor 7 (R) and a relatively large amount of green phosphor 7 (G).
  • the first white light emitter 60 (Wa) having the structure and the blue LED element 6 (B) are covered with a relatively small amount of red phosphor 7 (R) and a relatively small amount of green phosphor 7 (G). It is comprised by the 2nd white light-emitting body 60 (Wb).
  • the first white light emitter 60 (Wa) and the second white light emitter 60 (Wb) are first type light emitters. As described above, in this modification, the red phosphor 7 (R) and the green phosphor 7 (G) are used instead of the yellow phosphor 7 (Y) in the third embodiment.
  • Blue light is emitted from the blue LED element 6 (B).
  • Red light is emitted from the red phosphor 7 (R)
  • green light is emitted from the green phosphor 7 (G).
  • the red phosphor 7 (R) and the green phosphor 7 (G) are excited by the light emitted from the blue LED element 6 (B) to emit light. That is, the red phosphor 7 (R) functions as a wavelength conversion element that converts the wavelength of blue light into the wavelength of red light, and the green phosphor 7 (G) converts the wavelength of blue light into the wavelength of green light. It functions as a wavelength conversion element that converts to.
  • the first white light emitter 60 (Wa) includes a relatively large amount of red phosphor 7 (R) and a relatively large amount of green phosphor 7 (G), the first white light emitter 60 (Wa). Emits yellowish white light.
  • the second white light emitter 60 (Wb) includes a relatively small amount of red phosphor 7 (R) and a relatively small amount of green phosphor 7 (G), the second white light emitter 60 (Wb). Emits bluish white light.
  • the liquid crystal panel 400 is irradiated with white light.
  • the color temperature is switched in this modification.
  • the light emission intensity of the first white light emitter 60 (Wa) and the light emission intensity of the second white light emitter 60 (Wb) are independently controlled by the backlight control unit 500. That is, the brightness of two colors of yellowish white and bluish white are controlled independently.
  • the chromaticity coordinates on the line segment 87 that connects the coordinates (bluish white chromaticity coordinates) Wb can be selected as the white point (see FIG. 38).
  • the chromaticity coordinates Wa for the first white light emitter 60 (Wa) and the chromaticity coordinates Wb for the second white light emitter 60 (Wb) are preferably chromaticity coordinates corresponding to a color temperature of 6500K.
  • the chromaticity coordinates Wa for the first white light emitter 60 (Wa) are (0.32, 0.337), and the chromaticity coordinates for the second white light emitter 60 (Wb).
  • the coordinate Wb is (0.25, 0.26).
  • the color temperature is set to 6500K
  • the emission intensity of the first white light emitter 60 (Wa) is relatively increased
  • the emission intensity of the second white light emitter 60 (Wb) is relatively decreased.
  • the color temperature is set to 9300K
  • the emission intensity of the first white light emitter 60 (Wa) is relatively weak
  • the emission intensity of the second white light emitter 60 (Wb) is Relatively strong.
  • the color temperature is adjusted and changed in the same manner as in the third embodiment.
  • the first white light emitter 60 (Wa) and the second white light emitter 60 (Wb) include one type of phosphor (yellow phosphor 7 (Y)). It was.
  • the first white light emitter 60 (Wa) and the second white light emitter 60 (Wb) include two types of phosphors (red phosphor 7 (R), green fluorescence). Body 7 (G)). For this reason, by adjusting the amounts of the two types of phosphors, the chromaticity coordinates Wa and Wb for the first white light emitter 60 (Wa) and the second white light emitter 60 (Wb) can be obtained. It can be controlled precisely.
  • Quantum dots can also be used as the wavelength conversion element.
  • a quantum dot that converts a part of light emitted from the blue LED element 6 (B) into a red spectrum instead of the red phosphor 7 (R) can be used. .
  • Black body locus 60 luminous body 60 (C1), 60 (C2): first cyan luminous body, second cyan luminous body 60 (M1), 60 (M2): first magenta luminous body, Second magenta light emitters 60 (Y1), 60 (Y2)... First yellow light emitter, second yellow light emitter 60 (R)... Red light emitter 60 (G)... Green light emitter 60 (B) ... blue light emitters 60 (W1), 60 (W2), 60 (W3) ...

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

色純度を低下させることなく色温度の調整・変更を行うことのできるバックライト装置を実現する。 バックライト装置を構成する光源は、青色LED素子(6(B))と比較的多量の赤色蛍光体(7(R))とからなる第1のマゼンタ色発光体(60(M1))と、青色LED素子(6(B))と比較的少量の赤色蛍光体(7(R))とからなる第2のマゼンタ色発光体(60(M2))と、緑色LED素子(6(G))からなる緑色発光体(60(G))とによって構成される。第1のマゼンタ色発光体(60(M1))の発光強度,第2のマゼンタ色発光体(60(M2))の発光強度,および緑色発光体(60(G))の発光強度は、バックライト制御部によってそれぞれ独立に制御される。

Description

バックライト装置およびそれを備えた液晶表示装置
 本発明は、バックライト装置に関し、より詳しくは、光源にLED(発光ダイオード)を採用している液晶表示装置用のバックライト装置に関する。
 近年、デジタル機器の高機能化・高性能化が顕著であり、各種画像に関する高品質化への要求が高まっている。そこで、表示装置,印刷装置,撮像装置などの分野においては、従来より、色再現範囲(「色域」とも呼ばれている。)の拡大が図られている。液晶テレビジョンなどの液晶表示装置に関しては、例えばバックライト装置やカラーフィルタを改良することによって色再現範囲の拡大が図られている。
 液晶表示装置においては、3原色の加法混色によって色の表示が行われる。このため、透過型の液晶表示装置には、赤色成分,緑色成分,および青色成分を含む白色光を液晶パネルに照射することのできるバックライト装置が必要とされる。バックライト装置の光源には、従来、CCFLと呼ばれる冷陰極管が多く採用されていた。しかしながら、近年、消費電力の低さや輝度制御の容易さなどの観点からLEDの採用が増加している。
 なお、一般的には、チップ状態のLED(LED素子)のみならずLED素子(LEDチップ)がレンズで覆われた状態のもの(パッケージ状態のもの)も「LED」と呼ばれている。しかしながら、本明細書においては、「LED素子」と「LED素子がレンズで覆われた状態のもの」とを明確に区別するために、「LED素子がレンズで覆われた状態のもの」を「発光体」という。
 上述したように、透過型の液晶表示装置には、白色光を液晶パネルに照射することのできるバックライト装置が必要とされる。そこで、例えば、青色LED素子6(B)を黄色蛍光体7(Y)で覆った構造の白色発光体91を光源とするバックライト装置(図39参照)や、青色LED素子6(B)を赤色蛍光体7(R)および緑色蛍光体7(G)で覆った構造の白色発光体92を光源とするバックライト装置(図40参照)や、紫外LED素子6(P)を赤色蛍光体7(R),緑色蛍光体7(G),および青色蛍光体7(B)で覆った構造の白色発光体93を光源とするバックライト装置(図41参照)などが用いられている。なお、上記各構成において、各蛍光体は、対応するLED素子から発せられる光によって励起されて発光する。また、赤色LED素子6(R)からなる赤色発光体94と緑色LED素子6(G)からなる緑色発光体95と青色LED素子6(B)からなる青色発光体96とを光源とするバックライト装置(図42参照)が用いられている場合もある。図42に示す構成は、例えば、より広い色再現範囲が望まれる場合に採用されている。
 ところで、液晶表示装置等の表示装置で表示される映像の見た目は、色温度(白色が表示されるときの当該白色の色温度)によって大きく変化する。このため、例えば視聴する映像の種類に応じて視聴者が好みの色温度を選択できることが好ましい。従って、一般に、近年の表示装置には色温度を調整する機能が設けられている。
 なお、本件発明に関連して、以下の先行技術文献が知られている。日本の特開2008-283155号公報には、互いに異なる色温度の光を発する2種類以上の光源モジュール(各光源モジュールはLED素子と蛍光体とを含む)を設けた発光装置の発明が開示されている。この発光装置によれば、黒体軌跡(黒体輻射の軌跡)に沿って色温度を変更することが可能となっている。また、日本の特開2008-205133号公報には、ラージサイズのLED素子と当該LED素子から発せられる光によって励起されて発光する蛍光体とからなる発光体に色調整用のスモールサイズのLED素子を組み入れた構成を有するバックライト装置の発明が開示されている。このバックライト装置によれば、スモールサイズのLED素子から発せられる光の輝度を制御することによって、色温度を調整することが可能となっている。
日本の特開2008-283155号公報 日本の特開2008-205133号公報
 ところが、光源の構成として図39~図41に示す構成が採用されている場合には、輝度の制御(発光強度の制御)が1種類のLED素子に対してしか行うことができない。このため、色温度の調整や変更をバックライト装置で行うことは困難である。従って、このような場合、色温度の調整や変更を行うためには液晶パネルで色味を変えざるを得ない。具体的には、目標とする色温度に応じて、映像信号のR,G,Bの階調値(輝度値)に対して補正が施される。例えば、R,G,Bのうちの1色または2色の階調値が本来の値よりも小さくなるように補正が施される。このような補正が行われると、輝度の低下,「階調飛び」と呼ばれる現象,「色づき」と呼ばれる現象などが発生する。このように、液晶パネルで色味を変えると、所望の階調や輝度が得られず、表示品位が低下する。
 図42に示す構成や日本の特開2008-205133号公報に開示された構成が採用されている場合には、色温度の調整や変更は比較的容易に行われる。しかしながら、3種類のLED素子に対して輝度の制御を行う必要があるので、駆動回路の構成が複雑になり、高コスト・高消費電力となる。また、赤色LED素子については、温度によって出力が大きく変化する。緑色LED素子については、ピエゾ効果に起因して発光波長が変化することがある。このような赤色LED素子および緑色LED素子を含む3種類のLED素子に対して好適に輝度を制御することは難しく、充分な信頼性が得られない。
 日本の特開2008-283155号公報に開示された構成に関しては、2種類以上の光源モジュールによって白色光源を構成することによって、自然光に近く演色性の高い光を生成することができる。従って、当該構成は、照明用途としては好適である。しかしながら、当該構成によって得られる光については、発光スペクトルの半値幅が大きくなる。このため、色純度が低下する。それ故、日本の特開2008-283155号公報に開示された構成は、表示装置のバックライト用途としては不向きである。
 そこで本発明は、色純度を低下させることなく色温度の調整・変更を行うことのできるバックライト装置を実現することを目的とする。また、そのようなバックライト装置の信頼性を高めることを更なる目的とする。
 本発明の第1の局面は、発光素子と該発光素子から発せられた光の波長を変換する波長変換素子とからなる第1タイプの発光体を光源として用いたバックライト装置であって、
 互いに同種の発光素子を有し、かつ、互いに同種の波長変換素子を有する2種類以上の第1タイプの発光体を少なくとも含む複数種類の発光体を備え、
 前記2種類以上の第1タイプの発光体は、互いに異なる色度の光を発し、
 前記複数種類の発光体は、各発光体に含まれる発光素子の発光強度が発光体の種類毎に独立に制御されるように構成されていることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記複数種類の発光体は、3種類の発光体であることを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 発光素子のみからなる第2タイプの発光体を更に光源として用い、
 前記3種類の発光体は、2種類の第1タイプの発光体と1種類の第2タイプの発光体とによって構成されていることを特徴とする。
 本発明の第4の局面は、本発明の第3の局面において、
 xy色度図上において目標とする色温度に相当する色度座標が前記3種類の発光体のそれぞれから発せられる光の色度座標を結ぶ三角形の範囲内に含まれるよう、前記2種類の第1タイプの発光体に含まれている波長変換素子の量が調整されていることを特徴とする。
 本発明の第5の局面は、本発明の第3の局面において、
 xy色度図上において4000K~14000Kの範囲の色温度に相当する黒体軌跡上の色度座標が前記3種類の発光体のそれぞれから発せられる光の色度座標を結ぶ三角形の範囲内に含まれるよう、前記2種類の第1タイプの発光体に含まれている波長変換素子の量が調整されていることを特徴とする。
 本発明の第6の局面は、本発明の第3の局面において、
 前記3種類の発光体は、
  発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的多量の赤色蛍光体とからなる第1のマゼンタ色発光体と、
  発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的少量の赤色蛍光体とからなる第2のマゼンタ色発光体と、
  発光素子としての緑色発光ダイオード素子からなる緑色発光体と
によって構成されていることを特徴とする。
 本発明の第7の局面は、本発明の第2の局面において、
 前記3種類の発光体は全て第1タイプの発光体であることを特徴とする。
 本発明の第8の局面は、本発明の第7の局面において、
 xy色度図上において目標とする色温度に相当する色度座標が前記3種類の発光体のそれぞれから発せられる光の色度座標を結ぶ三角形の範囲内に含まれるよう、前記3種類の発光体に含まれている波長変換素子の量が調整されていることを特徴とする。
 本発明の第9の局面は、本発明の第7の局面において、
 前記3種類の発光体は、
  発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的多量の赤色蛍光体と、波長変換素子としての比較的少量の緑色蛍光体とからなる第1の白色発光体と、
  発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的少量の赤色蛍光体と、波長変換素子としての比較的多量の緑色蛍光体とからなる第2の白色発光体と、
  発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的少量の赤色蛍光体と、波長変換素子としての比較的少量の緑色蛍光体とからなる第3の白色発光体と
によって構成されていることを特徴とする。
 本発明の第10の局面は、本発明の第1の局面において、
 前記複数種類の発光体は、2種類の第1タイプの発光体であって、
 xy色度図上において目標とする色温度に相当する色度座標が前記2種類の第1タイプの発光体のそれぞれから発せられる光の色度座標を結ぶ線分上に位置するよう、前記2種類の第1タイプの発光体に含まれている波長変換素子の量が調整されていることを特徴とする。
 本発明の第11の局面は、本発明の第1の局面において、
 前記複数種類の発光体は、2種類の第1タイプの発光体であって、
 前記2種類の第1タイプの発光体は、
  発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的多量の黄色蛍光体とからなる第1の白色発光体と、
  発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的少量の黄色蛍光体とからなる第2の白色発光体と
によって構成されていることを特徴とする。
 本発明の第12の局面は、本発明の第1の局面において、
 前記複数種類の発光体は、2種類の第1タイプの発光体であって、
 前記2種類の第1タイプの発光体は、
  発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的多量の赤色蛍光体と、波長変換素子としての比較的多量の緑色蛍光体とからなる第1の白色発光体と、
  発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的少量の赤色蛍光体と、波長変換素子としての比較的少量の緑色蛍光体とからなる第2の白色発光体と
によって構成されていることを特徴とする。
 本発明の第13の局面は、本発明の第1の局面において、
 前記発光素子は、発光ダイオード素子またはレーザーダイオード素子であることを特徴とする。
 本発明の第14の局面は、本発明の第1の局面において、
 前記発光素子は、赤色発光ダイオード素子以外の発光ダイオード素子であることを特徴とする。
 本発明の第15の局面は、本発明の第1の局面において、
 前記波長変換素子は、蛍光体または量子ドットであることを特徴とする。
 本発明の第16の局面は、液晶表示装置であって、
 画像を表示する表示部を含む液晶パネルと、
 前記液晶パネルの背面に光を照射する本発明の第1の局面に係るバックライト装置と、
 前記複数種類の発光体の発光強度を発光体の種類毎に制御するバックライト制御部と
を備えることを特徴とする。
 本発明の第1の局面によれば、光源は複数種類の発光体によって構成されており、各発光体に含まれる発光素子の発光強度は発光体の種類毎に独立に制御される。従って、複数の色の光の輝度を独立に制御することができるので、色温度の調整・変更が可能である。また、上記複数種類の発光体のうちの少なくとも2種類の発光体は、互いに同種の発光素子を有し、かつ、互いに同種の波長変換素子を有している。このため、各発光体に含まれる発光素子の発光強度がどのように制御されても、合成光のピーク波長は変化せず、色純度が低下することはない。以上より、色純度を低下させることなく色温度の調整・変更を行うことのできるバックライト装置が実現される。
 本発明の第2の局面によれば、xy色度図上において3種類の発光体のそれぞれの色度座標を結ぶ三角形の範囲内の色度座標を白色点として選択することができる。このため、より好適に白色点を調整することができる。
 本発明の第3の局面によれば、本発明の第1の局面および本発明の第2の局面と同様の効果が得られる。
 本発明の第4の局面によれば、2種類の第1タイプの発光体(発光素子と波長変換素子とからなる発光体)の発光強度を制御することによって、確実に所望の色温度への設定を行うことができる。
 本発明の第5の局面によれば、設定可能な色温度の範囲が広くなる。また、一般的な設定温度である6500K,9300Kに色温度が設定される際に消灯状態となる発光体が生じる可能性が低くなる。このため、輝度むらの発生が抑制される。
 本発明の第6の局面によれば、本発明の第1の局面および本発明の第2の局面と同様の効果が得られる。また、光源には、温度によって出力が大きく変化するという特性を有する赤色発光ダイオード素子やピエゾ効果に起因して発光波長が変化することがあるという特性を有する緑色発光ダイオード素子は用いられていない。このため、好適な輝度制御を容易に行うことができるので、高い信頼性が得られる。以上より、色純度を低下させることなく色温度の調整・変更を行うことのできる、高い信頼性を有するバックライト装置が実現される。
 本発明の第7の局面によれば、本発明の第1の局面および本発明の第2の局面と同様の効果が得られる。
 本発明の第8の局面によれば、3種類の第1タイプの発光体(発光素子と波長変換素子とからなる発光体)の発光強度を制御することによって、確実に所望の色温度への設定を行うことができる。
 本発明の第9の局面によれば、本発明の第6の局面と同様、色純度を低下させることなく色温度の調整・変更を行うことのできる、高い信頼性を有するバックライト装置が実現される。
 本発明の第10の発明によれば、2種類の第1タイプの発光体(発光素子と波長変換素子とからなる発光体)の発光強度を制御することによって、確実に所望の色温度への設定を行うことができる。
 本発明の第11の局面によれば、本発明の第6の局面と同様、色純度を低下させることなく色温度の調整・変更を行うことのできる、高い信頼性を有するバックライト装置が実現される。
 本発明の第12の局面によれば、本発明の第6の局面と同様、色純度を低下させることなく色温度の調整・変更を行うことのできる、高い信頼性を有するバックライト装置が実現される。また、第1の白色発光体および第2の白色発光体に含まれる赤色蛍光体および緑色蛍光体の量を調整することによって、より精密に色温度の調整・変更を行うことができる。
 本発明の第13の局面によれば、本発明の第1の局面と同様の効果が得られる。
 本発明の第14の局面によれば、バックライト装置を構成する光源には、赤色発光ダイオード素子が用いられていない。赤色発光ダイオード素子は温度によって出力が大きく変化するという特性を有しているので、赤色発光ダイオード素子を光源として用いない本発明の第14の局面によれば、信頼性が向上するとともに、光源の制御が容易となることからコストが低減する。また、赤色発光ダイオード素子は発光効率が悪いので、赤色発光ダイオード素子を光源として用いないことによって、低消費電力化の効果が得られる。
 本発明の第15の局面によれば、本発明の第1の局面と同様の効果が得られる。
 本発明の第16の局面によれば、色純度を低下させることなく色温度の調整・変更を行うことのできる液晶表示装置が実現される。
本発明の第1の実施形態に係るバックライト装置において、LED基板に搭載される光源の構成を示す図である。 上記第1の実施形態に係るバックライト装置を備えた液晶表示装置の全体構成を示すブロック図である。 上記第1の実施形態におけるバックライト装置の概略構成の一例を示す図である。 上記第1の実施形態において、LED基板上における光源の配置状態を示す図である。 上記第1の実施形態において、発光体の発光強度を制御するための構成について説明するための図である。 上記第1の実施形態において、発光体の発光強度を制御について説明するための図である。 上記第1の実施形態において、色温度の切り替えについて説明するためのxy色度図である。 上記第1の実施形態において、2種類のマゼンタ色発光体の発光強度を等しくした場合に当該2種類のマゼンタ色発光体から発せられる光の発光スペクトルを示す図である。 上記第1の実施形態において、色温度が6500Kに設定された際に2種類のマゼンタ色発光体から発せられる光の発光スペクトルを示す図である。 上記第1の実施形態において、色温度が9300Kに設定された際に2種類のマゼンタ色発光体から発せられる光の発光スペクトルを示す図である。 上記第1の実施形態における効果について説明するための図である。 上記第1の実施形態における効果について説明するための図である。 上記第1の実施形態の第1の変形例において、第1のマゼンタ色発光体についての色度座標と第2のマゼンタ色発光体についての色度座標との間の距離について説明するためのxy色度図である。 上記第1の実施形態の第1の変形例において、2種類のマゼンタ色発光体の発光強度を等しくした場合に当該2種類のマゼンタ色発光体から発せられる光の発光スペクトルを示す図である。 上記第1の実施形態の第1の変形例において、色温度が6500Kに設定された際に2種類のマゼンタ色発光体から発せられる光の発光スペクトルを示す図である。 上記第1の実施形態の第1の変形例において、色温度が9300Kに設定された際に2種類のマゼンタ色発光体から発せられる光の発光スペクトルを示す図である。 上記第1の実施形態の第2の変形例における光源の配置状態を示す図である。 上記第1の実施形態の第3の変形例における光源の配置状態を示す図である。 上記第1の実施形態の第4の変形例における光源の配置状態を示す図である。 上記第1の実施形態の第5の変形例において、LED基板に搭載される光源の構成を示す図である。 上記第1の実施形態の第5の変形例において、色温度の切り替えについて説明するためのxy色度図である。 上記第1の実施形態の第6の変形例において、LED基板に搭載される光源の構成を示す図である。 上記第1の実施形態の第6の変形例において、色温度の切り替えについて説明するためのxy色度図である。 本発明の第2の実施形態に係るバックライト装置において、LED基板に搭載される光源の構成を示す図である。 上記第2の実施形態において、色温度の切り替えについて説明するためのxy色度図である。 上記第2の実施形態において、3種類の白色発光体の発光強度を等しくした場合の当該3種類の白色発光体から発せられる光の発光スペクトルを示す図である。 上記第2の実施形態において、色温度が6500Kに設定された際に3種類の白色発光体から発せられる光の発光スペクトルを示す図である。 上記第2の実施形態において、色温度が9300Kに設定された際に3種類の白色発光体から発せられる光の発光スペクトルを示す図である。 本発明の第3の実施形態に係るバックライト装置において、LED基板に搭載される光源の構成を示す図である。 上記第3の実施形態において、LED基板上における光源の配置状態を示す図である。 上記第3の実施形態において、色温度の切り替えについて説明するためのxy色度図である。 上記第3の実施形態において、2種類の白色発光体の発光強度を等しくした場合の当該2種類の白色発光体から発せられる光の発光スペクトルを示す図である。 上記第3の実施形態において、色温度が6500Kに設定された際に2種類の白色発光体から発せられる光の発光スペクトルを示す図である。 上記第3の実施形態において、色温度が9300Kに設定された際に2種類の白色発光体から発せられる光の発光スペクトルを示す図である。 上記第3の実施形態の第1の変形例における光源の配置状態を示す図である。 上記第3の実施形態の第2の変形例における光源の配置状態を示す図である。 上記第3の実施形態の第3の変形例において、LED基板に搭載される光源の構成を示す図である。 上記第3の実施形態の第3の変形例において、色温度の切り替えについて説明するためのxy色度図である。 従来のバックライト装置について説明するための図である。 従来のバックライト装置について説明するための図である。 従来のバックライト装置について説明するための図である。 従来のバックライト装置について説明するための図である。
 以下、添付図面を参照しつつ本発明の実施形態について説明する。なお、第2の実施形態および第3の実施形態に関しては、第1の実施形態と同様の点については適宜説明を省略する。また、本明細書においては、発光素子(LED素子など)と該発光素子から発せられた光の波長を変換する波長変換素子(蛍光体など)とからなる発光体のことを「第1タイプの発光体」といい、発光素子のみからなる発光体のことを「第2タイプの発光体」という。
<1.第1の実施形態>
<1.1 全体構成および動作概要>
 図2は、本発明の第1の実施形態に係るバックライト装置600を備えた液晶表示装置の全体構成を示すブロック図である。この液晶表示装置は、表示制御回路100とゲートドライバ(走査信号線駆動回路)200とソースドライバ(映像信号線駆動回路)300と液晶パネル400とバックライト制御部500とバックライト装置600とによって構成されている。液晶パネル400には、画像を表示するための表示部410が含まれている。なお、ゲートドライバ200あるいはソースドライバ300もしくはその双方が液晶パネル400内に設けられていても良い。
 図2に関し、表示部410には、複数本(n本)のソースバスライン(映像信号線)SL1~SLnと複数本(m本)のゲートバスライン(走査信号線)GL1~GLmとが配設されている。ソースバスラインSL1~SLnとゲートバスラインGL1~GLmとの各交差点に対応して、画素を形成する画素形成部4が設けられている。すなわち、表示部410には、複数個(n×m個)の画素形成部4が含まれている。上記複数個の画素形成部4はマトリクス状に配置されて画素マトリクスを構成している。各画素形成部4には、対応する交差点を通過するゲートバスラインGLにゲート端子が接続されると共に当該交差点を通過するソースバスラインSLにソース端子が接続されたスイッチング素子であるTFT(薄膜トランジスタ)40と、そのTFT40のドレイン端子に接続された画素電極41と、上記複数個の画素形成部4に共通的に設けられた共通電極44および補助容量電極45と、画素電極41と共通電極44とによって形成される液晶容量42と、画素電極41と補助容量電極45とによって形成される補助容量43とが含まれている。液晶容量42と補助容量43とによって画素容量46が構成されている。なお、図2における表示部410内には、1つの画素形成部4に対応する構成要素のみを示している。
 ところで、表示部410内のTFT40としては、例えば酸化物TFT(酸化物半導体をチャネル層に用いた薄膜トランジスタ)を採用することができる。より具体的には、インジウム(In),ガリウム(Ga),亜鉛(Zn),および酸素(O)を主成分とする酸化物半導体であるIn-Ga-Zn-O(酸化インジウムガリウム亜鉛)によりチャネル層が形成されたTFT(以下、「In-Ga-Zn-O-TFT」という。)をTFT40として採用することができる。このようなIn-Ga-Zn-O-TFTを採用することにより、高精細化や低消費電力化の効果が得られるのに加えて、従来よりも書き込み速度を高めることができる。また、In-Ga-Zn-O(酸化インジウムガリウム亜鉛)以外の酸化物半導体をチャネル層に用いたトランジスタを採用することもできる。例えば、インジウム,ガリウム,亜鉛,銅(Cu),シリコン(Si),錫(Sn),アルミニウム(Al),カルシウム(Ca),ゲルマニウム(Ge),および鉛(Pb)のうち少なくとも1つを含む酸化物半導体をチャネル層に用いたトランジスタを採用した場合にも同様の効果が得られる。なお、本発明は、酸化物TFT以外のTFTの使用を排除するものではない。
 次に、図2に示す構成要素の動作について説明する。表示制御回路100は、外部から送られる画像信号DATと水平同期信号や垂直同期信号などのタイミング信号群TGとを受け取り、デジタル映像信号DVと、ゲートドライバ200の動作を制御するためのゲートスタートパルス信号GSPおよびゲートクロック信号GCKと、ソースドライバ300の動作を制御するためのソーススタートパルス信号SSP,ソースクロック信号SCK,およびラッチストローブ信号LSと、バックライト制御部500の動作を制御するためのバックライト制御信号BSとを出力する。
 ゲートドライバ200は、表示制御回路100から送られるゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号G(1)~G(m)の各ゲートバスラインGL1~GLmへの印加を1垂直走査期間を周期として繰り返す。
 ソースドライバ300は、表示制御回路100から送られるデジタル映像信号DV,ソーススタートパルス信号SSP,ソースクロック信号SCK,およびラッチストローブ信号LSを受け取り、ソースバスラインSL1~SLnに駆動用映像信号S(1)~S(n)を印加する。このとき、ソースドライバ300では、ソースクロック信号SCKのパルスが発生するタイミングで、各ソースバスラインSL1~SLnに印加すべき電圧を示すデジタル映像信号DVが順次に保持される。そして、ラッチストローブ信号LSのパルスが発生するタイミングで、上記保持されたデジタル映像信号DVがアナログ電圧に変換される。その変換されたアナログ電圧は、駆動用映像信号S(1)~S(n)として全てのソースバスラインSL1~SLnに一斉に印加される。
 バックライト制御部500は、表示制御回路100から送られるバックライト制御信号BSに基づいて、バックライト装置600内の光源の輝度(発光強度)を制御する。
 以上のようにして、各ゲートバスラインGL1~GLmに走査信号G(1)~G(m)が印加され、各ソースバスラインSL1~SLnに駆動用映像信号駆動用映像信号S(1)~S(n)が印加され、バックライト装置600内の光源の輝度が制御されることにより、外部から送られる画像信号DATに応じた画像が表示部410に表示される。
<1.2 バックライト装置の構成>
 図3は、本実施形態におけるバックライト装置600の概略構成の一例を示す図である。なお、図3は、液晶パネル400およびバックライト装置600を側面から見た図である。このバックライト装置600は、液晶パネル400の背面側に設けられている。すなわち、本実施形態におけるバックライト装置600は、直下型である。バックライト装置600は、光源としての複数の発光体60を搭載したLED基板62と、発光体60から発せられた光を拡散させて均一にするための拡散板64と、液晶パネル400に向けて照射される光の効率を高めるための光学シート66と、LED基板62等を支持するシャーシ68とによって構成されている。
<1.3 光源の構成>
 図1は、LED基板62に搭載される光源の構成を示す図である。図1に示すように、本実施形態においては、光源は、青色LED素子6(B)を比較的多量の赤色蛍光体7(R)で覆った構造の第1のマゼンタ色発光体60(M1)と、青色LED素子6(B)を比較的少量の赤色蛍光体7(R)で覆った構造の第2のマゼンタ色発光体60(M2)と、緑色LED素子6(G)からなる緑色発光体60(G)とによって構成されている。第1のマゼンタ色発光体60(M1)および第2のマゼンタ色発光体60(M2)は第1タイプの発光体であり、緑色発光体60(G)は第2タイプの発光体である。このように、本実施形態においては、2種類の第1タイプの発光体と1種類の第2タイプの発光体とによって光源が構成されている。
 青色LED素子6(B)からは青色光が発せられ、緑色LED素子6(G)からは緑色光が発せられる。赤色蛍光体7(R)からは赤色光が発せられる。なお、赤色蛍光体7(R)は、青色LED素子6(B)から発せられる光によって励起されて発光する。すなわち、赤色蛍光体7(R)は、青色の光の波長を赤色の光の波長に変換する波長変換素子として機能する。上述したように、第1のマゼンタ色発光体60(M1)には比較的多量の赤色蛍光体7(R)が含まれ、第2のマゼンタ色発光体60(M2)には比較的少量の赤色蛍光体7(R)が含まれている。以上より、第1のマゼンタ色発光体60(M1)は、赤みがかったマゼンタ色光を出射し、第2のマゼンタ色発光体60(M2)は、青みがかったマゼンタ色光を出射し、緑色発光体60(G)は、緑色光を出射する。そして、赤みがかったマゼンタ色光,青みがかったマゼンタ色光,および緑色光が合成される結果、白色光が液晶パネル400に照射される。
 図4は、LED基板62上における光源の配置状態を示す図である。図4に示すように、本実施形態においては、1個の第1のマゼンタ色発光体60(M1)と1個の第2のマゼンタ色発光体60(M2)と2個の緑色発光体60(G)とによって1つのまとまりのあるグループが形成されている。すなわち、1つのグループには4個の発光体60が含まれている。各グループに着目すると、平面視で、左上方に第1のマゼンタ色発光体60(M1)が配置され、右下方に第2のマゼンタ色発光体60(M2)が配置され、右上方および左下方に緑色発光体60(G)が配置されている。このようなグループが、ゲートバスラインGLの伸びる方向に等間隔で配置されるとともに、ソースバスラインSLの伸びる方向にも等間隔で配置されている。
 ところで、第1のマゼンタ色発光体60(M1)と第2のマゼンタ色発光体60(M2)と緑色発光体60(G)とは互いに色度が異なっている。また、表示する色温度によっては、それらの発光強度に偏りが生じる。以上のことから、光源の配置状態によっては色むらや輝度むらが発生することが懸念される。従って、色むらや輝度むらの発生が抑制されるよう、各グループに含まれる4個の発光体60は互いに近接した位置に配置されることが好ましい。
<1.4 発光体の発光強度の制御について>
 次に、発光体60の発光強度の制御について説明する。図5は、発光体60の発光強度を制御するための構成について説明するための図である。なお、図5には1つのグループに含まれる発光体60のみを示しているが、全てのグループに含まれる発光体60が同じように制御される。
 図5に示すように、第1のマゼンタ色発光体60(M1),第2のマゼンタ色発光体60(M2),および緑色発光体60(G)は、それぞれ独立してバックライト制御部500に接続されている。このような構成が採用されているので、LED基板62上の発光体60は、種類毎に発光強度が調整される。すなわち、バックライト制御部500によって、第1のマゼンタ色発光体60(M1)の発光強度,第2のマゼンタ色発光体60(M2)の発光強度,および緑色発光体60(G)の発光強度がそれぞれ独立して制御される。発光体60の発光強度を制御する手法としては、例えば、発光体60内のLED素子6に与える電流の大きさを調整する手法や発光体60内のLED素子6に一定電流をPWM制御を行いつつ与える手法を採用することができる。なお、各発光体60の発光強度は、表示制御回路100から送られるバックライト制御信号BSに基づいて制御される。
 以上のようにして、図6に示すように、第1のマゼンタ色発光体60(M1)の発光強度を制御することによって赤みがかったマゼンタ色の輝度が制御され、第2のマゼンタ色発光体60(M2)の発光強度を制御することによって青みがかったマゼンタ色の輝度が制御され、緑色発光体60(G)の発光強度を制御することによって緑色の輝度が制御される。これにより、白色の調整(色温度の調整・変更)が行われる。
<1.5 色温度の切り替え>
 次に、本実施形態においてどのように色温度の切り替えが行われるのかについて説明する。なお、ここでは、6500Kと9300Kとの間で色温度の切り替えが行われる例を挙げて説明する。上述したように、本実施形態においては、第1のマゼンタ色発光体60(M1)の発光強度,第2のマゼンタ色発光体60(M2)の発光強度,および緑色発光体60(G)の発光強度がそれぞれ独立してバックライト制御部500によって制御される。すなわち、赤みがかったマゼンタ色,青みがかったマゼンタ色,および緑色の3色の輝度が独立して制御される。従って、xy色度図上において緑色発光体60(G)についての色度座標(緑色の色度座標)Gと第1のマゼンタ色発光体60(M1)についての色度座標(赤みがかったマゼンタ色の色度座標)M1と第2のマゼンタ色発光体60(M2)についての色度座標(青みがかったマゼンタ色の色度座標)M2とを結ぶ三角形81の範囲内の色度座標を白色点として選択することができる(図7参照)。
 なお、上記三角形81の範囲内に目標とする色温度に相当する色度座標が含まれるよう、光源を構成する発光体60の選択が行われるものとする。図7に示す例では、緑色発光体60(G)についての色度座標は(0.2,0.7)であり、第1のマゼンタ色発光体60(M1)についての色度座標は(0.4,0.15)であり、第2のマゼンタ色発光体60(M2)についての色度座標は(0.3,0.1)である。
 ところで、第1のマゼンタ色発光体60(M1)の発光強度と第2のマゼンタ色発光体60(M2)の発光強度を等しくした場合、第1のマゼンタ色発光体60(M1)から発せられる光の発光スペクトルは例えば図8で符号801で示すような曲線で表され、第2のマゼンタ色発光体60(M2)から発せられる光の発光スペクトルは例えば図8で符号802で示すような曲線で表される。
 以上の前提の下、色温度を6500Kに設定する際には、第1のマゼンタ色発光体60(M1)の発光強度は相対的に強くされ、第2のマゼンタ色発光体60(M2)の発光強度は相対的に弱くされる。これにより、第1のマゼンタ色発光体60(M1)から発せられる光の発光スペクトル801および第2のマゼンタ色発光体60(M2)から発せられる光の発光スペクトル802は、例えば図9に示すようなものとなる。その結果、第1のマゼンタ色発光体60(M1)から発せられる光と第2のマゼンタ色発光体60(M2)から発せられる光との合成光の色度座標は、第1のマゼンタ色発光体60(M1)から発せられる光の色度座標M1に近い座標となる。また、xy色度図上において黒体軌跡8上に白色点が位置するように、緑色発光体60(G)の発光強度が調整される。以上のようにして、色温度が6500Kに設定される。
 色温度を9300Kに設定する際には、第1のマゼンタ色発光体60(M1)の発光強度は相対的に弱くされ、第2のマゼンタ色発光体60(M2)の発光強度は相対的に強くされる。これにより、第1のマゼンタ色発光体60(M1)から発せられる光の発光スペクトル801および第2のマゼンタ色発光体60(M2)から発せられる光の発光スペクトル802は、例えば図10に示すようなものとなる。その結果、第1のマゼンタ色発光体60(M1)から発せられる光と第2のマゼンタ色発光体60(M2)から発せられる光との合成光の色度座標は、第2のマゼンタ色発光体60(M2)から発せられる光の色度座標M2に近い座標となる。また、xy色度図上において黒体軌跡8上に白色点が位置するように、緑色発光体60(G)の発光強度が調整される。以上のようにして、色温度が9300Kに設定される。
<1.6 効果>
 本実施形態においては、バックライト装置600を構成する光源は、緑色LED素子6(G)からなる緑色発光体60(G)と、青色LED素子6(B)を比較的多量の赤色蛍光体7(R)で覆った構造の第1のマゼンタ色発光体60(M1)と、青色LED素子6(B)を比較的少量の赤色蛍光体7(R)で覆った構造の第2のマゼンタ色発光体60(M2)とによって構成されている(図1参照)。このように、3種類の発光体60によって光源が構成されている。また、それら3種類の発光体60は、それぞれ独立に発光強度が制御されるように構成されている。これにより、3つの色の光の輝度を独立に制御することができるので、色温度の調整・変更が可能である。
 上記3種類の発光体60のうちの2種類の発光体(第1のマゼンタ色発光体60(M1)と第2のマゼンタ色発光体60(M2))は、発光素子として同種のLED素子(LEDチップ)を含んでおり、かつ、波長変換素子として同種の蛍光体を含んでいる。これに関し、仮に2種類の発光体(2種類のマゼンタ色発光体)を互いに異なる発光波長を有する2種類の赤色蛍光体を用いて構成した場合、すなわち、仮に図11で符号811で示すような曲線で表される発光スペクトルを有するマゼンタ色発光体と図11で符号812で示すような曲線で表される発光スペクトルを有するマゼンタ色発光体とで2種類のマゼンタ色発光体を構成した場合、当該2種類のマゼンタ色発光体の間で赤色の発光スペクトルが異なるため、合成光の発光スペクトルを表す曲線は図12に示すようなものとなる。図12から把握されるように、発光スペクトルの半値幅(図12で符号813の矢印で示す部分)が本来のものよりも大きくなっている。従って、2種類の発光体(2種類のマゼンタ色発光体)を互いに異なる発光波長を有する2種類の赤色蛍光体を用いて構成した場合には、色純度が低下する。この点、本実施形態においては、第1のマゼンタ色発光体60(M1)と第2のマゼンタ色発光体60(M2)とが、同種のLED素子を含み、かつ、同種の蛍光体を含んでいる。このため、第1のマゼンタ色発光体60(M1)および第2のマゼンタ色発光体60(M2)の発光強度がどのように制御されても、合成光の主波長は変化せず、かつ、合成光の半値幅は比較的狭い幅で維持される。従って、色純度が低下することはない。
 また、本実施形態においては、光源には赤色LED素子は含まれていない。上述したように赤色LED素子は温度によって出力が大きく変化するという特性を有しているので、赤色LED素子を用いない構成を採用することによって、信頼性が向上する。
 以上より、本実施形態によれば、色純度を低下させることなく色温度の調整・変更を行うことのできる高い信頼性を有するバックライト装置が実現される。
 また、本実施形態によれば、上述したように赤色LED素子を用いない構成を採用しているので、低消費電力のバックライト装置を低コストで実現することができる。これについて、以下に説明する。赤色LED素子は青色LED素子に比べて効率が悪い。このため、赤色LED素子を用いない構成を採用することで消費電力が低減される。また、白色LEDは青色LED素子を用いて実現されることが多い。このため、青色LED素子については、改良が進められているとともに大量生産が行われているので、チップの単価が低くなっている。また、本実施形態においては、図42に示した構成や日本の特開2008-205133号公報に開示された構成とは異なり、使用しているLED素子(LEDチップ)は2種類だけである。順方向電圧や温度特性はLED素子の種類毎に異なるので、使用するLED素子の種類を少なくすることによって光源の制御が容易となる。特に、本実施形態においては、温度依存性の高い赤色LED素子を用いない構成を採用しているので、従来の構成と比較して光源の制御が顕著に容易となり、コストが低減される。
<1.7 変形例>
 以下、上記第1の実施形態の変形例について説明する。
<1.7.1 第1の変形例(輝度むら対策について)>
 上記第1の実施形態においては、色温度が6500Kに設定される際には第2のマゼンタ色発光体60(M2)が消灯状態に近い状態となり、色温度が9300Kに設定される際には第1のマゼンタ色発光体60(M1)が消灯状態に近い状態となる。このように消灯状態に近い状態の発光体60が生じると、画面上に輝度むらが生じやすくなる。そこで、本変形例(第1の変形例)においては、第1のマゼンタ色発光体60(M1)についての色度座標M1と第2のマゼンタ色発光体60(M2)についての色度座標M2との間の距離が上記第1の実施形態における距離よりも長くなるように(図13参照)、第1のマゼンタ色発光体60(M1)および第2のマゼンタ色発光体60(M2)のそれぞれに含まれている赤色蛍光体7(R)の量が調整されている。図13に示す例では、緑色発光体60(G)についての色度座標は(0.2,0.7)であり、第1のマゼンタ色発光体60(M1)についての色度座標は(0.5,0.2)であり、第2のマゼンタ色発光体60(M2)についての色度座標は(0.25,0.05)である。
 本変形例においては、第1のマゼンタ色発光体60(M1)の発光強度と第2のマゼンタ色発光体60(M2)の発光強度を等しくした場合、第1のマゼンタ色発光体60(M1)から発せられる光の発光スペクトルは例えば図14で符号821で示すような曲線で表され、第2のマゼンタ色発光体60(M2)から発せられる光の発光スペクトルは例えば図14で符号822で示すような曲線で表される。
 色温度を6500Kに設定する際には、第1のマゼンタ色発光体60(M1)から発せられる光の発光スペクトル821および第2のマゼンタ色発光体60(M2)から発せられる光の発光スペクトル822が図15に示すようなものとなるように、第1のマゼンタ色発光体60(M1)の発光強度および第2のマゼンタ色発光体60(M2)の発光強度が制御される。
 色温度を9300Kに設定する際には、第1のマゼンタ色発光体60(M1)から発せられる光の発光スペクトル821および第2のマゼンタ色発光体60(M2)から発せられる光の発光スペクトル822が図16に示すようなものとなるように、第1のマゼンタ色発光体60(M1)の発光強度および第2のマゼンタ色発光体60(M2)の発光強度が制御される。
 以上のように、本変形例においては、色温度が6500Kおよび9300Kのいずれに設定される場合にも、第1のマゼンタ色発光体60(M1)および第2のマゼンタ色発光体60(M2)のいずれも消灯状態に近い状態とはならない。従って、輝度むらの発生が抑制される。また、xy色度図上において緑色発光体60(G)についての色度座標Gと第1のマゼンタ色発光体60(M1)についての色度座標M1と第2のマゼンタ色発光体60(M2)についての色度座標M2とを結ぶ三角形82の範囲(図13参照)が上記第1の実施形態と比較して広くなる。従って、表示可能な色温度の範囲が広くなる。
 ところで、第1のマゼンタ色発光体60(M1)および第2のマゼンタ色発光体60(M2)から発せられる光の色度座標は、各発光体60に含まれる赤色蛍光体7(R)の量に応じて変化する。従って、緑色発光体60(G)についての色度座標Gと第1のマゼンタ色発光体60(M1)についての色度座標M1と第2のマゼンタ色発光体60(M2)についての色度座標M2とを結ぶ三角形の範囲は、第1のマゼンタ色発光体60(M1)および第2のマゼンタ色発光体60(M2)のそれぞれに含まれる赤色蛍光体7(R)の量に応じて変化する。そこで、例えば、4000K~14000Kの範囲の色温度に相当する黒体軌跡8上の色度座標が上述の3種類の発光体60のそれぞれから発せられる光の色度座標を結ぶ三角形の範囲内に含まれるよう、2種類の第1タイプの発光体(第1のマゼンタ色発光体60(M1)および第2のマゼンタ色発光体60(M2))に含まれている赤色蛍光体7(R)の量が調整される。このような調整が行われることにより、表示可能な色温度の範囲が4000K~14000Kとなる。
<1.7.2 光源の配置について>
 上記第1の実施形態においては、LED基板62上の光源は図4に示すように配置されていた。しかしながら、本発明はこれに限定されない。そこで、以下、LED基板62上における光源の様々な配置例について説明する。なお、以下の各変形例においても、第1のマゼンタ色発光体60(M1)の発光強度,第2のマゼンタ色発光体60(M2)の発光強度,および緑色発光体60(G)の発光強度は、バックライト制御部500によって、それぞれ独立に制御される。
<1.7.2.1 第2の変形例>
 図17は、上記第1の実施形態の第2の変形例における光源の配置状態を示す図である。1行目については、「第1のマゼンタ色発光体60(M1)、第2のマゼンタ色発光体60(M2)、緑色発光体60(G)」の順序で発光体60が等間隔で並べられている。2行目については、「第2のマゼンタ色発光体60(M2)、緑色発光体60(G)、第1のマゼンタ色発光体60(M1)」の順序で発光体60が等間隔で並べられている。3行目については、「緑色発光体60(G)、第1のマゼンタ色発光体60(M1)、第2のマゼンタ色発光体60(M2)」の順序で発光体60が等間隔で並べられている。以上のような構成がゲートバスラインGLの伸びる方向およびソースバスラインSLの伸びる方向に繰り返されている。
 但し、図17に示す構成によれば、表示する色温度によっては、光源を構成する3種類の発光体60の発光強度に偏りが生じる。従って、発光強度の偏りに起因する色むらや輝度むらの発生を抑制するためには、上記第1の実施形態(図4参照)のように光源を配置する方が好ましい。
<1.7.2.2 第3の変形例>
 図18は、上記第1の実施形態の第3の変形例における光源の配置状態を示す図である。本変形例においては、2個の第1のマゼンタ色発光体60(M1)と2個の第2のマゼンタ色発光体60(M2)と1個の緑色発光体60(G)とによって1つのまとまりのあるグループが形成されている。すなわち、1つのグループには5個の発光体60が含まれている。各グループに着目すると、緑色発光体60(G)を中心にして、平面視で当該緑色発光体60(G)の左上および右下に第1のマゼンタ色発光体60(M1)が配置され、平面視で当該緑色発光体60(G)の右上および左下に第2のマゼンタ色発光体60(M2)が配置されている。このようなグループが、ゲートバスラインGLの伸びる方向に等間隔で配置されるとともに、ソースバスラインSLの伸びる方向にも等間隔で配置されている。また、各グループに含まれる5個の発光体60は互いに近接した位置に配置されている。従って、本変形例においても、色むらや輝度むらの発生が抑制される。
<1.7.2.3 第4の変形例>
 図19は、上記第1の実施形態の第4の変形例における光源の配置状態を示す図である。本変形例に係る構成は、バックライト装置がエッジライト型である場合に採用される構成である。図19に示すように、本変形例においては、複数の発光体60が1列に等間隔で並べられている。詳しくは、3種類の発光体60が「第1のマゼンタ色発光体60(M1)、緑色発光体60(G)、第2のマゼンタ色発光体60(M2)」の順序で繰り返し1列に並べられている。なお、3種類の発光体60の順序については、「第1のマゼンタ色発光体60(M1)、緑色発光体60(G)、第2のマゼンタ色発光体60(M2)」という順序には限定されない。
<1.7.3 光源の構成について>
 上記第1の実施形態においては、LED基板62に搭載される光源は、図1に示すように、青色LED素子6(B)を比較的多量の赤色蛍光体7(R)で覆った構造の第1のマゼンタ色発光体60(M1)と、青色LED素子6(B)を比較的少量の赤色蛍光体7(R)で覆った構造の第2のマゼンタ色発光体60(M2)と、緑色LED素子6(G)からなる緑色発光体60(G)とによって構成されていた。しかしながら、本発明はこれに限定されない。そこで、以下、LED基板62に搭載される光源の構成の変形例について説明する。
<1.7.3.1 第5の変形例>
 図20は、上記第1の実施形態の第5の変形例において、LED基板62に搭載される光源の構成を示す図である。図20に示すように、本変形例においては、光源は、青色LED素子6(B)を比較的多量の緑色蛍光体7(G)で覆った構造の第1のシアン色発光体60(C1)と、青色LED素子6(B)を比較的少量の緑色蛍光体7(G)で覆った構造の第2のシアン色発光体60(C2)と、赤色LED素子6(R)からなる赤色発光体60(R)とによって構成されている。第1のシアン色発光体60(C1)および第2のシアン色発光体60(C2)は第1タイプの発光体であり、赤色発光体60(R)は第2タイプの発光体である。
 第1のシアン色発光体60(C1)は、緑みがかったシアン色光を出射し、第2のシアン色発光体60(C2)は、青みがかったシアン色光を出射し、赤色発光体60(R)は、赤色光を出射する。そして、緑みがかったシアン色光,青みがかったシアン色光,および赤色光が合成される結果、白色光が液晶パネル400に照射される。
 本変形例においては、第1のシアン色発光体60(C1)の発光強度,第2のシアン色発光体60(C2)の発光強度,および赤色発光体60(R)の発光強度がそれぞれ独立してバックライト制御部500によって制御される。すなわち、緑みがかったシアン色,青みがかったシアン色,および赤色の3色の輝度が独立して制御される。従って、xy色度図上において赤色発光体60(R)についての色度座標(赤色の色度座標)Rと第1のシアン色発光体60(C1)についての色度座標(緑みがかったシアン色の色度座標)C1と第2のシアン色発光体60(C2)についての色度座標(青みがかったシアン色の色度座標)C2とを結ぶ三角形85の範囲内の色度座標を白色点として選択することができる(図21参照)。このように、本変形例においても色温度の調整・変更が可能である。
<1.7.3.2 第6の変形例>
 図22は、上記第1の実施形態の第6の変形例において、LED基板62に搭載される光源の構成を示す図である。図22に示すように、本変形例においては、光源は、緑色LED素子6(G)を比較的多量の赤色蛍光体7(R)で覆った構造の第1の黄色発光体60(Y1)と、緑色LED素子6(G)を比較的少量の赤色蛍光体7(R)で覆った構造の第2の黄色発光体60(Y2)と、青色LED素子6(B)からなる青色発光体60(B)とによって構成されている。第1の黄色発光体60(Y1)および第2の黄色発光体60(Y2)は第1タイプの発光体であり、青色発光体60(B)は第2タイプの発光体である。
 第1の黄色発光体60(Y1)は、赤みがかった黄色光を出射し、第2の黄色発光体60(Y2)は、緑みがかった黄色光を出射し、青色発光体60(B)は、青色光を出射する。そして、赤みがかった黄色光,緑みがかった黄色光,および青色光が合成される結果、白色光が液晶パネル400に照射される。
 本変形例においては、第1の黄色発光体60(Y1)の発光強度,第2の黄色発光体60(Y2)の発光強度,および青色発光体60(B)の発光強度がそれぞれ独立してバックライト制御部500によって制御される。すなわち、赤みがかった黄色,緑みがかった黄色,および青色の3色の輝度が独立して制御される。従って、xy色度図上において青色発光体60(B)についての色度座標(青色の色度座標)Bと第1の黄色発光体60(Y1)についての色度座標(赤みがかった黄色の色度座標)Y1と第2の黄色発光体60(Y2)についての色度座標(緑みがかった黄色の色度座標)Y2とを結ぶ三角形86の範囲内の色度座標を白色点として選択することができる(図23参照)。このように、本変形例においても色温度の調整・変更が可能である。
<2.第2の実施形態>
<2.1 構成など>
 本発明の第2の実施形態について説明する。全体構成(図2参照)およびバックライト装置600の概略構成(図3参照)については、上記第1の実施形態と同様であるので、説明を省略する。図24は、LED基板62に搭載される光源の構成を示す図である。図24に示すように、本実施形態においては、光源は、青色LED素子6(B)を比較的多量の赤色蛍光体7(R)と比較的少量の緑色蛍光体7(G)とで覆った構造の第1の白色発光体60(W1)と、青色LED素子6(B)を比較的少量の赤色蛍光体7(R)と比較的多量の緑色蛍光体7(G)とで覆った構造の第2の白色発光体60(W2)と、青色LED素子6(B)を比較的少量の赤色蛍光体7(R)と比較的少量の緑色蛍光体7(G)とで覆った構造の第3の白色発光体60(W3)とによって構成されている。第1の白色発光体60(W1),第2の白色発光体60(W2),および第3の白色発光体60(W3)は第1タイプの発光体である。このように、本実施形態においては、3種類の第1タイプの発光体によって光源が構成されている。
 青色LED素子6(B)からは青色光が発せられる。赤色蛍光体7(R)からは赤色光が発せられ、緑色蛍光体7(G)からは緑色光が発せられる。なお、赤色蛍光体7(R)および緑色蛍光体7(G)は、青色LED素子6(B)から発せられる光によって励起されて発光する。すなわち、赤色蛍光体7(R)は青色の光の波長を赤色の光の波長に変換する波長変換素子として機能し、緑色蛍光体7(G)は青色の光の波長を緑色の光の波長に変換する波長変換素子として機能する。
 第1の白色発光体60(W1)には比較的多量の赤色蛍光体7(R)が含まれるので、第1の白色発光体60(W1)は赤みがかった白色光を出射する。第2の白色発光体60(W2)には比較的多量の緑色蛍光体7(G)が含まれるので、第2の白色発光体60(W2)は緑みがかった白色光を出射する。第3の白色発光体60(W3)には比較的少量の赤色蛍光体7(R)と比較的少量の緑色蛍光体7(G)とが含まれるので、第3の白色発光体60(W3)は青みがかった白色光を出射する。そして、赤みがかった白色光,緑みがかった白色光,および青みがかった白色光が合成される結果、白色光が液晶パネル400に照射される。
 LED基板62上における光源の配置については、上記第1の実施形態(図4参照)と同様にすることができる。但し、本実施形態においては、上記第1の実施形態における第1のマゼンタ色発光体60(M1),第2のマゼンタ色発光体60(M2),および緑色発光体60(G)を例えば第1の白色発光体60(W1),第2の白色発光体60(W2),および第3の白色発光体60(W3)にそれぞれ置き換える必要がある。
 また、上記第1の実施形態と同様、本実施形態においても、LED基板62上の発光体60は、種類毎に発光強度が調整される。すなわち、バックライト制御部500によって、第1の白色発光体60(W1)の発光強度,第2の白色発光体60(W2)の発光強度,および第3の白色発光体60(W3)の発光強度がそれぞれ独立して制御される。
 以上より、第1の白色発光体60(W1)の発光強度を制御することによって赤みがかった白色の輝度が制御され、第2の白色発光体60(W2)の発光強度を制御することによって緑みがかった白色の輝度が制御され、第3の白色発光体60(W3)の発光強度を制御することによって青みがかった白色の輝度が制御される。これにより、白色の調整(色温度の調整・変更)が行われる。
<2.2 色温度の切り替え>
 次に、本実施形態においてどのように色温度の切り替えが行われるのかについて説明する。ここでも、6500Kと9300Kとの間で色温度の切り替えが行われる例を挙げて説明する。本実施形態においては、第1の白色発光体60(W1)の発光強度,第2の白色発光体60(W2)の発光強度,および第3の白色発光体60(W3)の発光強度がそれぞれ独立してバックライト制御部500によって制御される。すなわち、赤みがかった白色,緑みがかった白色,および青みがかった白色の3色の輝度が独立して制御される。従って、xy色度図上において第1の白色発光体60(W1)についての色度座標(赤みがかった白色の色度座標)W1と第2の白色発光体60(W2)についての色度座標(緑みがかった白色の色度座標)W2と第3の白色発光体60(W3)についての色度座標(青みがかった白色の色度座標)W3とを結ぶ三角形83の範囲内の色度座標を白色点として選択することができる(図25参照)。なお、上記三角形83の範囲内に目標とする色温度に相当する色度座標が含まれるよう、光源を構成する発光体60の選択が行われるものとする。
 ところで、第1の白色発光体60(W1),第2の白色発光体60(W2),および第3の白色発光体60(W3)の発光強度を等しくした場合、第1の白色発光体60(W1)から発せられる光の発光スペクトルは例えば図26で符号831で示すような曲線で表され、第2の白色発光体60(W2)から発せられる光の発光スペクトルは例えば図26で符号832で示すような曲線で表され、第3の白色発光体60(W3)から発せられる光の発光スペクトルは例えば図26で符号833で示すような曲線で表される。
 以上の前提の下、色温度を6500Kに設定する際には、第1の白色発光体60(W1)の発光強度は相対的に強くされ、第3の白色発光体60(W3)の発光強度は相対的に弱くされる。また、xy色度図上において黒体軌跡8上に白色点が位置するように、第2の白色発光体60(W2)の発光強度が調整される。これにより、第1の白色発光体60(W1)から発せられる光の発光スペクトル831,第2の白色発光体60(W2)から発せられる光の発光スペクトル832,および第3の白色発光体60(W3)から発せられる光の発光スペクトル833は、例えば図27に示すようなものとなる。以上のようにして、色温度が6500Kに設定される。
 色温度を9300Kに設定する際には、第1の白色発光体60(W1)の発光強度は相対的に弱くされ、第3の白色発光体60(W3)の発光強度は相対的に強くされる。また、xy色度図上において黒体軌跡8上に白色点が位置するように、第2の白色発光体60(W2)の発光強度が調整される。これにより、第1の白色発光体60(W1)から発せられる光の発光スペクトル831,第2の白色発光体60(W2)から発せられる光の発光スペクトル832,および第3の白色発光体60(W3)から発せられる光の発光スペクトル833は、例えば図28に示すようなものとなる。以上のようにして、色温度が9300Kに設定される。
<2.3 効果>
 本実施形態においては、バックライト装置600を構成する光源は、青色LED素子6(B)を比較的多量の赤色蛍光体7(R)と比較的少量の緑色蛍光体7(G)とで覆った構造の第1の白色発光体60(W1)と、青色LED素子6(B)を比較的少量の赤色蛍光体7(R)と比較的多量の緑色蛍光体7(G)とで覆った構造の第2の白色発光体60(W2)と、青色LED素子6(B)を比較的少量の赤色蛍光体7(R)と比較的少量の緑色蛍光体7(G)とで覆った構造の第3の白色発光体60(W3)とによって構成されている(図24参照)。このように、3種類の発光体60によって光源が構成されている。また、それら3種類の発光体60は、それぞれ独立に発光強度が制御されるように構成されている。これにより、3つの色の光の輝度を独立に制御することができるので、色温度の調整・変更が可能である。上記3種類の発光体60は、発光素子として同種のLED素子(LEDチップ)を含んでおり、かつ、波長変換素子として同種の蛍光体を含んでいる。このため、上記3種類の発光体60の発光強度がどのように制御されても、合成光の主波長は変化せず、かつ、合成光の半値幅は比較的狭い幅で維持される。従って、色温度の調整・変更が行われても、色純度が低下することはない。また、上記第1の実施形態と同様、光源には赤色LED素子は含まれていない。以上より、本実施形態によれば、上記第1の実施形態と同様、色純度を低下させることなく色温度の調整・変更を行うことのできる高い信頼性を有するバックライト装置を実現が実現される。また、上記第1の実施形態と同様、低消費電力化・低コスト化の効果も得られる。
<3.第3の実施形態>
<3.1 構成など>
 本発明の第3の実施形態について説明する。全体構成(図2参照)およびバックライト装置600の概略構成(図3参照)については、上記第1の実施形態と同様であるので、説明を省略する。図29は、LED基板62に搭載される光源の構成を示す図である。図29に示すように、本実施形態においては、光源は、青色LED素子6(B)を比較的多量の黄色蛍光体7(Y)で覆った構造の第1の白色発光体60(Wa)と、青色LED素子6(B)を比較的少量の黄色蛍光体7(Y)で覆った構造の第2の白色発光体60(Wb)とによって構成されている。第1の白色発光体60(Wa)および第2の白色発光体60(Wb)は第1タイプの発光体である。このように、本実施形態においては、2種類の第1タイプの発光体によって光源が構成されている。
 青色LED素子6(B)からは青色光が発せられる。黄色蛍光体7(Y)からは黄色光が発せられる。なお、黄色蛍光体7(Y)は、青色LED素子6(B)から発せられる光によって励起されて発光する。すなわち、黄色蛍光体7(Y)は青色の光の波長を黄色の光の波長に変換する波長変換素子として機能する。黄色蛍光体7(Y)としては、例えばYAG(Yttrium Aluminium Garnet)蛍光体を用いることができる。
 第1の白色発光体60(Wa)には比較的多量の黄色蛍光体7(Y)が含まれるので、第1の白色発光体60(Wa)は黄みがかった白色光を出射する。第2の白色発光体60(Wb)には比較的少量の黄色蛍光体7(Y)が含まれるので、第2の白色発光体60(Wb)は青みがかった白色光を出射する。そして、黄みがかった白色光および青みがかった白色光が合成される結果、白色光が液晶パネル400に照射される。
 図30は、LED基板62上における光源の配置状態を示す図である。図30に示すように、本実施形態においては、2個の第1の白色発光体60(Wa)と2個の第2の白色発光体60(Wb)とによって1つのまとまりのあるグループが形成されている。すなわち、1つのグループには4個の発光体60が含まれている。各グループに着目すると、平面視で、右上方および左下方に第1の白色発光体60(Wa)が配置され、左上方におよび右下方に第2の白色発光体60(Wb)が配置されている。このようなグループが、ゲートバスラインGLの伸びる方向に等間隔で配置されるとともに、ソースバスラインSLの伸びる方向にも等間隔で配置されている。なお、上記第1の実施形態と同様、色むらや輝度むらの発生が抑制されるよう、各グループに含まれる4個の発光体60は互いに近接した位置に配置されることが好ましい。
 また、上記第1の実施形態と同様、本実施形態においても、LED基板62上の発光体60は、種類毎に発光強度が調整される。すなわち、バックライト制御部500によって、第1の白色発光体60(Wa)の発光強度および第2の白色発光体60(Wb)の発光強度がそれぞれ独立して制御される。
 以上より、第1の白色発光体60(Wa)の発光強度を制御することによって黄みがかった白色の輝度が制御され、第2の白色発光体60(Wb)の発光強度を制御することによって青みがかった白色の輝度が制御される。これにより、白色の調整(色温度の調整・変更)が行われる。
<3.2 色温度の切り替え>
 次に、本実施形態においてどのように色温度の切り替えが行われるのかについて説明する。ここでも、6500Kと9300Kとの間で色温度の切り替えが行われる例を挙げて説明する。本実施形態においては、第1の白色発光体60(Wa)の発光強度および第2の白色発光体60(Wb)の発光強度がそれぞれ独立してバックライト制御部500によって制御される。すなわち、黄みがかった白色および青みがかった白色の2色の輝度が独立して制御される。従って、xy色度図上において第1の白色発光体60(Wa)についての色度座標(黄みがかった白色の色度座標)Waと第2の白色発光体60(Wb)についての色度座標(青みがかった白色の色度座標)Wbとを結ぶ線分84上の色度座標を白色点として選択することができる(図31参照)。なお、上記線分84上に目標とする色温度に相当する色度座標が位置するよう、光源を構成する発光体60の選択が行われるものとする。
 ところで、第1の白色発光体60(Wa)の発光強度と第2の白色発光体60(Wb)の発光強度を等しくした場合、第1の白色発光体60(Wa)から発せられる光の発光スペクトルは例えば図32で符号841で示すような曲線で表され、第2の白色発光体60(Wb)から発せられる光の発光スペクトルは例えば図32で符号842で示すような曲線で表される。
 以上の前提の下、色温度を6500Kに設定する際には、第1の白色発光体60(Wa)の発光強度は相対的に強くされ、第2の白色発光体60(Wb)の発光強度は相対的に弱くされる。これにより、第1の白色発光体60(Wa)から発せられる光の発光スペクトル841および第2の白色発光体60(Wb)から発せられる光の発光スペクトル842は、例えば図33に示すようなものとなる。以上のようにして、色温度が6500Kに設定される。
 色温度を9300Kに設定する際には、第1の白色発光体60(Wa)の発光強度は相対的に弱くされ、第2の白色発光体60(Wb)の発光強度は相対的に強くされる。これにより、第1の白色発光体60(Wa)から発せられる光の発光スペクトル841および第2の白色発光体60(Wb)から発せられる光の発光スペクトル842は、例えば図34に示すようなものとなる。以上のようにして、色温度が9300Kに設定される。
<3.3 効果>
 本実施形態においては、バックライト装置600を構成する光源は、青色LED素子6(B)を比較的多量の黄色蛍光体7(Y)で覆った構造の第1の白色発光体60(Wa)と、青色LED素子6(B)を比較的少量の黄色蛍光体7(Y)で覆った構造の第2の白色発光体60(Wb)とによって構成されている(図29参照)。このように、2種類の発光体60によって光源が構成されている。また、それら2種類の発光体60は、それぞれ独立に発光強度が制御されるように構成されている。これにより、2つの色の光の輝度を独立に制御することができるので、色温度の調整・変更が可能である。上記2種類の発光体60は、発光素子として同種のLED素子(LEDチップ)を含んでおり、かつ、波長変換素子として同種の蛍光体を含んでいる。このため、上記2種類の発光体60から発せられる光の合成光は、同じピーク波長を有する2つの光の合成光となる。従って、上記2種類の発光体60の発光強度がどのように制御されても、色純度が低下することはない。また、上記第1の実施形態と同様、光源には赤色LED素子は含まれていない。以上より、本実施形態によれば、上記第1の実施形態と同様、色純度を低下させることなく色温度の調整・変更を行うことのできる高い信頼性を有するバックライト装置を実現が実現される。また、上記第1の実施形態と同様、低消費電力化・低コスト化の効果も得られる。
<3.4 変形例>
 以下、上記第3の実施形態の変形例について説明する。
<3.4.1 光源の配置について>
 上記第3の実施形態においては、LED基板62上の光源は図30に示すように配置されていた。しかしながら、本発明はこれに限定されない。そこで、以下、LED基板62上における光源の配置に関する変形例について説明する。
<3.4.1.1 第1の変形例>
 図35は、上記第3の実施形態の第1の変形例における光源の配置状態を示す図である。1行目については、「第1の白色発光体60(Wa)、第2の白色発光体60(Wb)、第1の白色発光体60(Wa)、第2の白色発光体60(Wb)」の順序で発光体60が等間隔で並べられている。2行目については、「第2の白色発光体60(Wb)、第1の白色発光体60(Wa)、第2の白色発光体60(Wb)、第1の白色発光体60(Wa)」の順序で発光体60が等間隔で並べられている。以上のような構成がゲートバスラインGLの伸びる方向およびソースバスラインSLの伸びる方向に繰り返されている。
<3.4.1.2 第2の変形例>
 図36は、上記第3の実施形態の第2の変形例における光源の配置状態を示す図である。本変形例に係る構成は、バックライト装置がエッジライト型である場合に採用される構成である。図36に示すように、本変形例においては、複数の発光体60が1列に等間隔で並べられている。詳しくは、複数の発光体60が「第1の白色発光体60(Ma)、第2の白色発光体60(Mb)、第1の白色発光体60(Ma)、第2の白色発光体60(Mb)」の順序で繰り返し1列に並べられている。
<3.4.2 光源の構成について>
 上記第3の実施形態においては、LED基板62に搭載される光源は、図29に示すように、青色LED素子6(B)を比較的多量の黄色蛍光体7(Y)で覆った構造の第1の白色発光体60(Wa)と、青色LED素子6(B)を比較的少量の黄色蛍光体7(Y)で覆った構造の第2の白色発光体60(Wb)とによって構成されていた。しかしながら、本発明はこれに限定されない。そこで、以下、LED基板62に搭載される光源の構成の変形例について説明する。
<3.4.2.1 第3の変形例>
 図37は、上記第3の実施形態の第3の変形例において、LED基板62に搭載される光源の構成を示す図である。図37に示すように、本変形例においては、光源は、青色LED素子6(B)を比較的多量の赤色蛍光体7(R)および比較的多量の緑色蛍光体7(G)で覆った構造の第1の白色発光体60(Wa)と、青色LED素子6(B)を比較的少量の赤色蛍光体7(R)および比較的少量の緑色蛍光体7(G)で覆った構造の第2の白色発光体60(Wb)とによって構成されている。第1の白色発光体60(Wa)および第2の白色発光体60(Wb)は第1タイプの発光体である。このように、本変形例においては、上記第3の実施形態における黄色蛍光体7(Y)に代えて、赤色蛍光体7(R)および緑色蛍光体7(G)が用いられている。
 青色LED素子6(B)からは青色光が発せられる。赤色蛍光体7(R)からは赤色光が発せられ、緑色蛍光体7(G)からは緑色光が発せられる。なお、赤色蛍光体7(R)および緑色蛍光体7(G)は、青色LED素子6(B)から発せられる光によって励起されて発光する。すなわち、赤色蛍光体7(R)は青色の光の波長を赤色の光の波長に変換する波長変換素子として機能し、緑色蛍光体7(G)は青色の光の波長を緑色の光の波長に変換する波長変換素子として機能する。
 第1の白色発光体60(Wa)には比較的多量の赤色蛍光体7(R)および比較的多量の緑色蛍光体7(G)が含まれるので、第1の白色発光体60(Wa)は黄みがかった白色光を出射する。第2の白色発光体60(Wb)には比較的少量の赤色蛍光体7(R)および比較的少量の緑色蛍光体7(G)が含まれるので、第2の白色発光体60(Wb)は青みがかった白色光を出射する。そして、黄みがかった白色光および青みがかった白色光が合成される結果、白色光が液晶パネル400に照射される。
 次に、本変形例においてどのように色温度の切り替えが行われるのかについて説明する。ここでも、6500Kと9300Kとの間で色温度の切り替えが行われる例を挙げて説明する。本変形例においても、第1の白色発光体60(Wa)の発光強度および第2の白色発光体60(Wb)の発光強度がそれぞれ独立してバックライト制御部500によって制御される。すなわち、黄みがかった白色および青みがかった白色の2色の輝度が独立して制御される。従って、xy色度図上において第1の白色発光体60(Wa)についての色度座標(黄みがかった白色の色度座標)Waと第2の白色発光体60(Wb)についての色度座標(青みがかった白色の色度座標)Wbとを結ぶ線分87上の色度座標を白色点として選択することができる(図38参照)。なお、第1の白色発光体60(Wa)についての色度座標Waおよび第2の白色発光体60(Wb)についての色度座標Wbは、好ましくは、色温度6500Kに相当する色度座標と色温度9300Kに相当する色度座標とを通る直線上の色度座標とされる。図38に示す例では、第1の白色発光体60(Wa)についての色度座標Waは(0.32,0.337)であり、第2の白色発光体60(Wb)についての色度座標Wbは(0.25,0.26)である。
 色温度を6500Kに設定する際には、第1の白色発光体60(Wa)の発光強度は相対的に強くされ、第2の白色発光体60(Wb)の発光強度は相対的に弱くされる。これに対して、色温度を9300Kに設定する際には、第1の白色発光体60(Wa)の発光強度は相対的に弱くされ、第2の白色発光体60(Wb)の発光強度は相対的に強くされる。このように、上記第3の実施形態と同様にして色温度の調整・変更が行われる。
 上記第3の実施形態においては、第1の白色発光体60(Wa)および第2の白色発光体60(Wb)には1種類の蛍光体(黄色蛍光体7(Y))が含まれていた。これに対して、本変形例においては、第1の白色発光体60(Wa)および第2の白色発光体60(Wb)には2種類の蛍光体(赤色蛍光体7(R),緑色蛍光体7(G))が含まれている。このため、それら2種類の蛍光体の量を調整することにより、第1の白色発光体60(Wa)および第2の白色発光体60(Wb)のそれぞれについての色度座標Wa,Wbをより精密に制御することができる。すなわち、第1の白色発光体60(Wa)および第2の白色発光体60(Wb)のそれぞれから発せられる光の色度をより精密に制御することが可能となる。従って、上記第3の実施形態と比較して、より精密に色温度の調整・変更を行うことが可能となる。
<4.その他>
 上記各実施形態および各変形例においては、発光体60内の発光素子としてLED素子(発光ダイオード素子)が用いられる例を挙げて説明したが、本発明はこれに限定されない。発光素子としてレーザーダイオード素子を用いることもできる。例えば、上記第1の実施形態の構成に関し、青色LED素子6(B)に代えて青色の光を発するレーザーダイオード素子を用いることもできる。
 また、上記各実施形態および各変形例においては、発光体60内の波長変換素子として蛍光体が用いられる例を挙げて説明したが、本発明はこれに限定されない。波長変換素子として量子ドットを用いることもできる。例えば、上記第1の実施形態の構成に関し、赤色蛍光体7(R)に代えて青色LED素子6(B)から発せられる光の一部を赤色のスペクトルに変換する量子ドットを用いることもできる。
 6(R)…赤色LED素子
 6(G)…緑色LED素子
 6(B)…青色LED素子
 7(R)…赤色蛍光体
 7(G)…緑色蛍光体
 7(Y)…黄色蛍光体
 8…黒体軌跡
 60…発光体
 60(C1),60(C2)…第1のシアン色発光体,第2のシアン色発光体
 60(M1),60(M2)…第1のマゼンタ色発光体,第2のマゼンタ色発光体
 60(Y1),60(Y2)…第1の黄色発光体,第2の黄色発光体
 60(R)…赤色発光体
 60(G)…緑色発光体
 60(B)…青色発光体
 60(W1),60(W2),60(W3)…第1の白色発光体,第2の白色発光体,第3の白色発光体
 60(Wa),60(Wb)…第1の白色発光体,第2の白色発光体
 62…LED基板
 200…ゲートドライバ(走査信号線駆動回路)
 300…ソースドライバ(映像信号線駆動回路)
 400…液晶パネル
 410…表示部
 500…バックライト制御部
 600…バックライト装置

Claims (16)

  1.  発光素子と該発光素子から発せられた光の波長を変換する波長変換素子とからなる第1タイプの発光体を光源として用いたバックライト装置であって、
     互いに同種の発光素子を有し、かつ、互いに同種の波長変換素子を有する2種類以上の第1タイプの発光体を少なくとも含む複数種類の発光体を備え、
     前記2種類以上の第1タイプの発光体は、互いに異なる色度の光を発し、
     前記複数種類の発光体は、各発光体に含まれる発光素子の発光強度が発光体の種類毎に独立に制御されるように構成されていることを特徴とする、バックライト装置。
  2.  前記複数種類の発光体は、3種類の発光体であることを特徴とする、請求項1に記載のバックライト装置。
  3.  発光素子のみからなる第2タイプの発光体を更に光源として用い、
     前記3種類の発光体は、2種類の第1タイプの発光体と1種類の第2タイプの発光体とによって構成されていることを特徴とする、請求項2に記載のバックライト装置。
  4.  xy色度図上において目標とする色温度に相当する色度座標が前記3種類の発光体のそれぞれから発せられる光の色度座標を結ぶ三角形の範囲内に含まれるよう、前記2種類の第1タイプの発光体に含まれている波長変換素子の量が調整されていることを特徴とする、請求項3に記載のバックライト装置。
  5.  xy色度図上において4000K~14000Kの範囲の色温度に相当する黒体軌跡上の色度座標が前記3種類の発光体のそれぞれから発せられる光の色度座標を結ぶ三角形の範囲内に含まれるよう、前記2種類の第1タイプの発光体に含まれている波長変換素子の量が調整されていることを特徴とする、請求項3に記載のバックライト装置。
  6.  前記3種類の発光体は、
      発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的多量の赤色蛍光体とからなる第1のマゼンタ色発光体と、
      発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的少量の赤色蛍光体とからなる第2のマゼンタ色発光体と、
      発光素子としての緑色発光ダイオード素子からなる緑色発光体と
    によって構成されていることを特徴とする、請求項3に記載のバックライト装置。
  7.  前記3種類の発光体は全て第1タイプの発光体であることを特徴とする、請求項2に記載のバックライト装置。
  8.  xy色度図上において目標とする色温度に相当する色度座標が前記3種類の発光体のそれぞれから発せられる光の色度座標を結ぶ三角形の範囲内に含まれるよう、前記3種類の発光体に含まれている波長変換素子の量が調整されていることを特徴とする、請求項7に記載のバックライト装置。
  9.  前記3種類の発光体は、
      発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的多量の赤色蛍光体と、波長変換素子としての比較的少量の緑色蛍光体とからなる第1の白色発光体と、
      発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的少量の赤色蛍光体と、波長変換素子としての比較的多量の緑色蛍光体とからなる第2の白色発光体と、
      発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的少量の赤色蛍光体と、波長変換素子としての比較的少量の緑色蛍光体とからなる第3の白色発光体と
    によって構成されていることを特徴とする、請求項7に記載のバックライト装置。
  10.  前記複数種類の発光体は、2種類の第1タイプの発光体であって、
     xy色度図上において目標とする色温度に相当する色度座標が前記2種類の第1タイプの発光体のそれぞれから発せられる光の色度座標を結ぶ線分上に位置するよう、前記2種類の第1タイプの発光体に含まれている波長変換素子の量が調整されていることを特徴とする、請求項1に記載のバックライト装置。
  11.  前記複数種類の発光体は、2種類の第1タイプの発光体であって、
     前記2種類の第1タイプの発光体は、
      発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的多量の黄色蛍光体とからなる第1の白色発光体と、
      発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的少量の黄色蛍光体とからなる第2の白色発光体と
    によって構成されていることを特徴とする、請求項1に記載のバックライト装置。
  12.  前記複数種類の発光体は、2種類の第1タイプの発光体であって、
     前記2種類の第1タイプの発光体は、
      発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的多量の赤色蛍光体と、波長変換素子としての比較的多量の緑色蛍光体とからなる第1の白色発光体と、
      発光素子としての青色発光ダイオード素子と、波長変換素子としての比較的少量の赤色蛍光体と、波長変換素子としての比較的少量の緑色蛍光体とからなる第2の白色発光体と
    によって構成されていることを特徴とする、請求項1に記載のバックライト装置。
  13.  前記発光素子は、発光ダイオード素子またはレーザーダイオード素子であることを特徴とする、請求項1に記載のバックライト装置。
  14.  前記発光素子は、赤色発光ダイオード素子以外の発光ダイオード素子であることを特徴とする、請求項1に記載のバックライト装置。
  15.  前記波長変換素子は、蛍光体または量子ドットであることを特徴とする、請求項1に記載のバックライト装置。
  16.  液晶表示装置であって、
     画像を表示する表示部を含む液晶パネルと、
     前記液晶パネルの背面に光を照射する請求項1に記載のバックライト装置と、
     前記複数種類の発光体の発光強度を発光体の種類毎に制御するバックライト制御部と
    を備えることを特徴とする、液晶表示装置。
PCT/JP2016/062070 2015-05-25 2016-04-15 バックライト装置およびそれを備えた液晶表示装置 WO2016189997A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680028937.7A CN107614966A (zh) 2015-05-25 2016-04-15 背光装置以及具备该背光装置的液晶显示装置
US15/576,481 US20180157120A1 (en) 2015-05-25 2016-04-15 Backlight device and liquid crystal display device provided therewith

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015105128 2015-05-25
JP2015-105128 2015-05-25

Publications (1)

Publication Number Publication Date
WO2016189997A1 true WO2016189997A1 (ja) 2016-12-01

Family

ID=57393161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062070 WO2016189997A1 (ja) 2015-05-25 2016-04-15 バックライト装置およびそれを備えた液晶表示装置

Country Status (3)

Country Link
US (1) US20180157120A1 (ja)
CN (1) CN107614966A (ja)
WO (1) WO2016189997A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526315A (ja) * 2018-06-05 2021-09-30 ルミレッズ リミテッド ライアビリティ カンパニー 優れた色制御を持つ高発光効率照明用のledと蛍光体の組み合わせ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11244929B2 (en) * 2017-10-30 2022-02-08 Sanken Electric Co., Ltd. Light emitting device and lighting device
CN110630912B (zh) * 2018-05-30 2021-04-27 周卓煇 智能型光源
JP7089181B2 (ja) * 2018-10-12 2022-06-22 日亜化学工業株式会社 発光装置
JP6849139B1 (ja) * 2019-08-02 2021-03-24 日亜化学工業株式会社 発光装置および面発光光源
TWI801848B (zh) * 2021-04-23 2023-05-11 元太科技工業股份有限公司 反射式顯示器及其白光源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197840A (ja) * 2009-02-26 2010-09-09 Hitachi Displays Ltd 液晶表示装置および照明装置
JP2010225842A (ja) * 2009-03-24 2010-10-07 Toyoda Gosei Co Ltd 液晶ディスプレイのバックライト用光源、液晶ディスプレイのバックライト及び液晶ディスプレイ
US20150085529A1 (en) * 2012-04-23 2015-03-26 Samsung Electronics Co., Ltd. White light emitting device and display apparatus
WO2015174144A1 (ja) * 2014-05-14 2015-11-19 シャープ株式会社 バックライト装置およびそれを備えた液晶表示装置
JP2015219277A (ja) * 2014-05-14 2015-12-07 シャープ株式会社 バックライト装置およびそれを備えた液晶表示装置、ならびにバックライト装置の駆動方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256919B1 (ko) * 2004-05-05 2013-04-25 렌슬러 폴리테크닉 인스티튜트 고체-상태 에미터 및 하향-변환 재료를 이용한 고효율 광소스
US8998444B2 (en) * 2006-04-18 2015-04-07 Cree, Inc. Solid state lighting devices including light mixtures
KR101163400B1 (ko) * 2008-03-07 2012-07-12 엘지디스플레이 주식회사 액정표시장치
US8038497B2 (en) * 2008-05-05 2011-10-18 Cree, Inc. Methods of fabricating light emitting devices by selective deposition of light conversion materials based on measured emission characteristics
JP2012199218A (ja) * 2010-09-09 2012-10-18 Mitsubishi Chemicals Corp 発光装置、照明システム及び照明方法
US20130075769A1 (en) * 2011-09-22 2013-03-28 Ledengin, Inc. Selection of phosphors and leds in a multi-chip emitter for a single white color bin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197840A (ja) * 2009-02-26 2010-09-09 Hitachi Displays Ltd 液晶表示装置および照明装置
JP2010225842A (ja) * 2009-03-24 2010-10-07 Toyoda Gosei Co Ltd 液晶ディスプレイのバックライト用光源、液晶ディスプレイのバックライト及び液晶ディスプレイ
US20150085529A1 (en) * 2012-04-23 2015-03-26 Samsung Electronics Co., Ltd. White light emitting device and display apparatus
WO2015174144A1 (ja) * 2014-05-14 2015-11-19 シャープ株式会社 バックライト装置およびそれを備えた液晶表示装置
JP2015219277A (ja) * 2014-05-14 2015-12-07 シャープ株式会社 バックライト装置およびそれを備えた液晶表示装置、ならびにバックライト装置の駆動方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526315A (ja) * 2018-06-05 2021-09-30 ルミレッズ リミテッド ライアビリティ カンパニー 優れた色制御を持つ高発光効率照明用のledと蛍光体の組み合わせ
JP7256210B2 (ja) 2018-06-05 2023-04-11 ルミレッズ リミテッド ライアビリティ カンパニー 優れた色制御を持つ高発光効率照明用のledと蛍光体の組み合わせ

Also Published As

Publication number Publication date
CN107614966A (zh) 2018-01-19
US20180157120A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
US10466534B2 (en) Backlight device, and display apparatus including same
WO2016189997A1 (ja) バックライト装置およびそれを備えた液晶表示装置
KR101521098B1 (ko) 광원 구동 방법 및 이를 수행하기 위한 광원 장치
TWI393100B (zh) Display device and driving method thereof
US8681190B2 (en) Liquid crystal display
US20100188322A1 (en) Color display unit
JP5301729B2 (ja) カラー画像表示装置およびその制御方法
US20190278134A1 (en) Backlight device and display apparatus including same
WO2011036916A1 (ja) 表示装置ならびにその表示方法
WO2015174144A1 (ja) バックライト装置およびそれを備えた液晶表示装置
JP2008209508A (ja) 光源装置および液晶表示装置
CN109389947B (zh) 显示设备
US20100134524A1 (en) Display device
US10317728B2 (en) Backlight device and liquid crystal display device including same
KR102146122B1 (ko) 표시 장치 및 이의 구동 방법
US20100117942A1 (en) Liquid crystal display
US10986707B2 (en) Display device
KR102372062B1 (ko) 표시 장치
JP2016035806A (ja) バックライト装置およびそれを備えた液晶表示装置
JP2013125845A (ja) 液晶表示パネル及び液晶表示装置
JP6478755B2 (ja) バックライト装置およびそれを備えた液晶表示装置
US12027107B2 (en) Display apparatus
TWI819688B (zh) 具非矩形主動區的顯示裝置與其畫素結構
US10083660B2 (en) Liquid-crystal display device and liquid-crystal display device control method
JP2005260116A (ja) 発光素子の駆動回路及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799705

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576481

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP