WO2023221356A1 - 大飞机用超声融合胶及其制备工艺 - Google Patents

大飞机用超声融合胶及其制备工艺 Download PDF

Info

Publication number
WO2023221356A1
WO2023221356A1 PCT/CN2022/121177 CN2022121177W WO2023221356A1 WO 2023221356 A1 WO2023221356 A1 WO 2023221356A1 CN 2022121177 W CN2022121177 W CN 2022121177W WO 2023221356 A1 WO2023221356 A1 WO 2023221356A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
ultrasonic fusion
glue
flame retardant
large aircraft
Prior art date
Application number
PCT/CN2022/121177
Other languages
English (en)
French (fr)
Inventor
杨晓明
夏厚君
李耀邦
聂胜
Original Assignee
浙江福莱新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江福莱新材料股份有限公司 filed Critical 浙江福莱新材料股份有限公司
Publication of WO2023221356A1 publication Critical patent/WO2023221356A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/40Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C09J161/32Modified amine-aldehyde condensates

Definitions

  • the present invention relates to the technical field of fusion glue, and in particular to an ultrasonic fusion glue for large aircraft and its preparation process.
  • the aircraft inner wall sealing bag is prepared by filling the film bag with glass fiber mat and then ultrasonic heat-sealing the film bag body.
  • the existing technology when the flame-retardant fused adhesive layer in the insulating film rises from room temperature to 125°C, the mechanical properties of the flame-retardant fused adhesive layer decrease rapidly and the weather resistance is poor.
  • the object of the present invention is to provide an ultrasonic fusion glue for large aircraft.
  • the ultrasonic fusion glue for large aircraft improves the toughness of the glue while maintaining the toughness and stability of the glue as the temperature increases, thereby improving the flame retardant fusion glue layer. weather resistance; and at the same time, a preparation process for ultrasonic fusion glue for the above-mentioned large aircraft is provided.
  • the technical solution adopted by the present invention is: an ultrasonic fusion glue for large aircraft.
  • the ultrasonic fusion glue is located between two film base material layers.
  • the ultrasonic fusion glue is modified by 70 to 90 parts. Composed of melamine formaldehyde resin and 10 to 30 parts of halogen-free phosphorus-containing flame retardants;
  • the modified melamine formaldehyde resin consists of the following components by weight
  • the mass percentage of the formaldehyde solution is 35 to 40%.
  • the halogen-free phosphorus-containing flame retardant is a mixture of at least two of BDP, PDD and PSBPBP.
  • the method and technical solution adopted by the present invention is: a preparation process for the above-mentioned ultrasonic fusion glue, which includes the following steps:
  • Step 1 Mix 100 parts of melamine, 150 to 250 parts of formaldehyde solution, 2 to 6 parts of polyethylene glycol, 8 to 20 parts of ethylene glycol, 10 to 30 parts of urea, 10 to 15 parts of paraformaldehyde, and 3 parts of hexahydrophthalic anhydride ⁇ 8 parts and 2-4 parts of carbodiimide are put into the mixing tank and stirred for 2-3 hours to obtain a mixed solution;
  • Step 2 Raise the temperature of the mixture to 60 to 70°C, then add 10 to 30 parts of halogen-free phosphorus-containing flame retardant, stir again, and then filter to obtain the ultrasonic fusion glue.
  • the stirring speed in step one is 100-200r/min.
  • the present invention has the following advantages compared with the prior art:
  • the ultrasonic fusion glue for large aircraft of the present invention and its preparation process include the modified melamine formaldehyde resin in the ultrasonic fusion glue added with 3 to 8 parts of hexahydrophthalic anhydride and 2 to 4 parts of carbodiimide, so that the flame retardant fusion glue layer is While improving the toughness of the glue, the stability of the toughness of the glue is maintained as the temperature rises, thereby improving the weather resistance of the flame-retardant fusion glue layer.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; It can be directly connected, or it can be indirectly connected through an intermediary, or it can be an internal connection between two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • Embodiments 1 to 4 An ultrasonic fusion glue for large aircraft.
  • the ultrasonic fusion glue is located between two film base material layers.
  • the ultrasonic fusion glue is composed of 70 to 90 parts of modified melamine formaldehyde resin and 10 to 30 parts. Composed of halogen-free phosphorus-containing flame retardants;
  • the modified melamine formaldehyde resin consists of the following components by weight, as shown in Table 1:
  • Example 1 Example 2
  • Example 3 Example 4
  • Melamine 100 parts 100 copies 100 copies 100 copies 100 copies 100 copies Formaldehyde solution 150 ⁇ 250 parts 200 copies 180 copies 200 copies 220 copies 2 to 6 parts of polyethylene glycol 4 parts 3 copies 5 servings 4 parts 8 to 20 parts of ethylene glycol 10 servings 15 servings 10 servings 15 servings 10 to 30 parts of urea 20 servings 28 servings 15 servings 20 servings 10 to 15 parts of paraformaldehyde 12 servings 10 servings 12 servings 14 servings 3 to 8 parts of hexahydrophthalic anhydride 5 servings 6 servings 4 parts 6 servings
  • the flame retardant fusion adhesive layer 3 is composed of 75 parts of modified melamine formaldehyde resin and 25 parts of halogen-free phosphorus-containing flame retardant.
  • the flame retardant fusion adhesive layer 3 is composed of 85 parts of modified melamine formaldehyde resin. and 15 parts of halogen-free phosphorus-containing flame retardant.
  • the flame-retardant fusion adhesive layer 3 is composed of 75 parts of modified melamine formaldehyde resin and 25 parts of halogen-free phosphorus-containing flame retardant.
  • the flame-retardant fusion Adhesive layer 3 is composed of 85 parts of modified melamine formaldehyde resin and 15 parts of halogen-free phosphorus-containing flame retardant.
  • Example 1 the mass percentage of the formaldehyde solution is 37%.
  • the halogen-free phosphorus-containing flame retardant is a mixture of BDP and PDD in parts by weight of 1:1.
  • the first film base material layer 1 and the second film base material layer The material layer 2 is a polyimide film, and the thickness of the first film base material layer 1 and the second film base material layer 2 is 0.02 mm.
  • Example 2 the mass percentage of the formaldehyde solution is 37%.
  • the halogen-free phosphorus-containing flame retardant is a mixture of BDP and PSBPBP in parts by weight of 1:2.
  • the first film base material layer 1 and the second film base layer The material layer 2 is polyester film, and the thickness of the first film base material layer 1 and the second film base material layer 2 is 0.03 mm.
  • Example 3 the mass percentage of the formaldehyde solution is 37%, the halogen-free phosphorus-containing flame retardant is a mixture of BDP, PDD and PSBPBP in parts by weight of 1:1:2 ⁇ , and the first film base material layer 1.
  • the second film base material layer 2 is a polyimide film, and the thickness of the first film base material layer 1 and the second film base material layer 2 is 0.02 mm.
  • Example 4 the mass percentage of the formaldehyde solution is 37%.
  • the halogen-free phosphorus-containing flame retardant is a mixture of BDP and PDD in parts by weight of 1:1.
  • the first film base material layer 1 and the second film base material layer The material layer 2 is a polyvinylidene fluoride film, and the thickness of the first film base material layer 1 and the second film base material layer 2 is 0.03 mm.
  • a preparation process for the above-mentioned ultrasonic fusion glue including the following steps:
  • Step 1 Mix 100 parts of melamine, 150 to 250 parts of formaldehyde solution, 2 to 6 parts of polyethylene glycol, 8 to 20 parts of ethylene glycol, 10 to 30 parts of urea, 10 to 15 parts of paraformaldehyde, and 3 parts of hexahydrophthalic anhydride ⁇ 8 parts and 2 ⁇ 4 parts of carbodiimide are put into the mixing tank and stirred for 2.5 hours to obtain a mixed solution;
  • Step 2 Raise the temperature of the mixture to 65°C, then add a halogen-free phosphorus-containing flame retardant, stir again, and then filter to obtain the flame-retardant fusion glue.
  • the stirring speed in the above step one is 150r/min.
  • the above-mentioned flame-retardant fusion glue is subsequently cured in an oven.
  • Comparative Examples 1 to 3 An ultrasonic fusion adhesive for large aircraft.
  • the flame retardant fusion adhesive layer 3 is composed of 70 to 90 parts of modified melamine formaldehyde resin and 10 to 30 parts of halogen-free phosphorus-containing flame retardant;
  • the modified melamine formaldehyde resin consists of the following components by weight, as shown in Table 2:
  • Formaldehyde solution 200 copies 200 copies 200 copies 200 copies 200 copies 200 copies polyethylene glycol 4 parts 5 servings 4 parts 5 servings Ethylene glycol 10 servings 10 servings 10 servings 10 servings Urea 20 servings 15 servings 20 servings 15 servings paraformaldehyde 12 servings 12 servings 12 servings 12 servings Hexahydrophthalic anhydride - 4 parts 5 servings - carbodiimide 3 copies - - 2 servings ;
  • the flame-retardant fusion adhesive layer 3 of Comparative Examples 1 to 4 is composed of 75 parts of modified melamine formaldehyde resin and 25 parts of halogen-free phosphorus-containing flame retardant.
  • the mass percentage of the formaldehyde solution in Comparative Example 1 and Comparative Examples 3 to 4 is 37%
  • the halogen-free phosphorus-containing flame retardant is a mixture of BDP and PDD in parts by weight of 1:1
  • the first film base material layer 1 is 0.02 mm.
  • the mass percentage of the formaldehyde solution is 37%
  • the halogen-free phosphorus-containing flame retardant is a mixture of BDP, PDD and PSBPBP in parts by weight of 1:1:2 ⁇
  • the first film base material layer 1 is 0.02 mm.
  • the preparation method of the comparative example is the same as that of the embodiment.
  • the melamine formaldehyde resin in Examples 1 to 4 contains hexahydrophthalic anhydride and carbodiimide. After high temperature and relative to normal temperature, the shear impact strength of the flame-retardant fusion adhesive layer changes little;
  • the melamine-formaldehyde resin lacks hexahydrophthalic anhydride, and in Comparative Examples 2 and 3, the melamine-formaldehyde resin lacks carbodiimide.
  • the shear impact strength of the flame-retardant fusion adhesive layer big change.
  • the flame-retardant fusion adhesive layer used in the insulating film of a large aircraft according to the embodiment of the present invention improves the toughness of the adhesive and maintains the toughness and stability of the adhesive as the temperature increases, thereby improving the weather resistance of the flame-retardant fusion adhesive layer. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种大飞机用超声融合胶及其制备工艺,所述超声融合胶位于2层薄膜基材层之间,所述超声融合胶是由70~90份改性三聚氰胺甲醛树脂和10~30份无卤含磷阻燃剂组成;所述改性三聚氰胺甲醛树脂由以下重量份的组分组成:三聚氰胺100份、甲醛溶液150~250份、聚乙二醇2~6份、乙二醇8~20份、尿素10~30份、多聚甲醛10~15份、六氢苯酐3~8份、碳化二亚胺2~4份。本发明超声融合胶在改善胶的韧性同时,随着温度的升高保持了胶的韧性稳定性,从而提高了阻燃融合胶层的耐气候性。

Description

大飞机用超声融合胶及其制备工艺 技术领域
本发明涉及融合胶技术领域,尤其涉及一种大飞机用超声融合胶及其制备工艺。
背景技术
商用大飞机在客舱内装饰层和机体蒙皮之间安装了一种隔音绝缘密封袋,该材料具有隔热、隔音、阻燃和绝缘的功能。飞机内壁密封袋是通过向薄膜袋内填充玻璃纤维毡,再经过超声热合薄膜袋袋体制备而成。现有的隔音绝缘密封袋中密封袋。现有技术中绝缘薄膜中阻燃融合胶层从室温升高到125℃阻燃融合胶层,力学性能下降较快,耐气候性差。
发明内容
本发明目的在于提供一种大飞机用超声融合胶,该大飞机用超声融合胶在改善胶的韧性同时,随着温度的升高保持了胶的韧性稳定性,从而提高了阻燃融合胶层的耐气候性;同时提供一种用于上述大飞机用超声融合胶的制备工艺。
为达到上述目的,本发明采用的技术方案是:一种大飞机用超声融合胶,所述超声融合胶位于2层薄膜基材层之间,所述超声融合胶是由70~90份改性三聚氰胺甲醛树脂和10~30份无卤含磷阻燃剂组成;
所述改性三聚氰胺甲醛树脂由以下重量份的组分组成
Figure PCTCN2022121177-appb-000001
上述技术方案中进一步改进的技术方案如下:
1、上述方案中,所述甲醛溶液的质量百分比为35~40%。
2、上述方案中,所述无卤含磷阻燃剂为BDP、PDD和PSBPBP中至少2种形成的混合物。
本发明采用的方法技术方案是:一种用于上述超声融合胶的制备工艺,包括以下步骤:
步骤一、将三聚氰胺100份、甲醛溶液150~250份、聚乙二醇2~6份、乙二醇8~20份、尿素10~30份、多聚甲醛10~15份、六氢苯酐3~8份、碳化二亚胺2~4份投入混合料槽中搅拌2~3小时获得混合液;
步骤二、将混合液温度升高到60~70℃,然后加入10~30份无卤含磷阻燃剂,再搅拌后经过过滤处理,获得所述超声融合胶。
上述技术方案中进一步改进的技术方案如下:
上述方案中,所述步骤一中搅拌速度为100~200r/min。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
本发明大飞机用超声融合胶及其制备工艺,其超声融合胶中的改性三聚氰胺甲醛树脂添加了六氢苯酐3~8份、碳化二亚胺2~4份,使得阻燃融合胶层在改善胶的韧性同时,随着温度的升高保持了胶的韧性的稳定性,从而提高了阻燃融合胶层的耐气候性。
具体实施方式
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于技术方案方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性;此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面结合实施例对本发明作进一步描述:
实施例1~4:一种大飞机用超声融合胶,所述超声融合胶位于2层薄膜基材层之间,所述超声融合胶是由70~90份改性三聚氰胺甲醛树脂和10~30份无卤含磷阻燃剂组成;
所述改性三聚氰胺甲醛树脂由以下重量份的组分组成,如表1所示:
表1
组分 实施例1 实施例2 实施例3 实施例4
三聚氰胺100份 100份 100份 100份 100份
甲醛溶液150~250份 200份 180份 200份 220份
聚乙二醇2~6份 4份 3份 5份 4份
乙二醇8~20份 10份 15份 10份 15份
尿素10~30份 20份 28份 15份 20份
多聚甲醛10~15份 12份 10份 12份 14份
六氢苯酐3~8份 5份 6份 4份 6份
碳化二亚胺2~4份 3份 4份 2份 3份
实施例1中阻燃融合胶层3是由75份改性三聚氰胺甲醛树脂和25份无卤含磷阻燃剂组成,实施例2中阻燃融合胶层3是由85份改性三聚氰胺甲醛树脂和15份无卤含磷阻燃剂组成,实施例3中阻燃融合胶层3是由75份改性三聚氰胺甲醛树脂和25份无卤含磷阻燃剂组成,实施例4中阻燃融合胶层3是由85份改性三聚氰胺甲醛树脂和15份无卤含磷阻燃剂组成。
实施例1中甲醛溶液的质量百分比为37%,所述无卤含磷阻燃剂为BDP、PDD按照重量份1:1形成的混合物,所述第一薄膜基材层1、第二薄膜基材层2为聚酰亚胺薄膜,所述第一薄膜基材层1、第二薄膜基材层2的厚度为0.02毫米。
实施例2中甲醛溶液的质量百分比为37%,所述无卤含磷阻燃剂为BDP、PSBPBP按照重量份1:2形成的混合物,所述第一薄膜基材层1、第二薄膜基材层2聚酯薄膜,所述第一薄膜基材层1、第二薄膜基材层2的厚度为0.03毫米。
实施例3中甲醛溶液的质量百分比为37%,所述无卤含磷阻燃剂为BDP、PDD和PSBPBP按照重量份1:1:2·形成的的混合物,所述第一薄膜基材层1、第二薄膜基材层2为聚酰亚胺薄膜,所述第一薄膜基材层1、第二薄膜基材层2的厚度为0.02毫米。
实施例4中甲醛溶液的质量百分比为37%,所述无卤含磷阻燃剂为BDP、PDD按照重量份1:1形成的混合物,所述第一薄膜基材层1、第二薄膜基材层2为聚偏二氟乙烯薄膜,所述第一薄膜基材层1、第二薄膜基材层2的厚度为0.03毫米。
一种用于上述超声融合胶的制备工艺,包括以下步骤:
步骤一、将三聚氰胺100份、甲醛溶液150~250份、聚乙二醇2~6份、乙二醇8~20份、尿素10~30份、多聚甲醛10~15份、六氢苯酐3~8份、碳化二亚胺2~4份投入混合料槽中搅拌2.5小时获得混合液;
步骤二、将混合液温度升高到65℃,然后加入无卤含磷阻燃剂,再搅拌后经过过滤处理,获得所述阻燃融合胶。
上述步骤一中搅拌速度为150r/min。
上述阻燃融合胶后续进入烘箱固化。
对比例1~3:一种大飞机用超声融合胶,所述阻燃融合胶层3是由70~90份改性三聚氰胺甲醛树脂和10~30份无卤含磷阻燃剂组成;
所述改性三聚氰胺甲醛树脂由以下重量份的组分组成,如表2所示:
表2
组分 对比例1 对比例2 对比例3 对比例4
三聚氰胺 100份 100份 100份 100份
甲醛溶液 200份 200份 200份 200份
聚乙二醇 4份 5份 4份 5份
乙二醇 10份 10份 10份 10份
尿素 20份 15份 20份 15份
多聚甲醛 12份 12份 12份 12份
六氢苯酐 - 4份 5份 -
碳化二亚胺 3份 - - 2份
对比例1~4的阻燃融合胶层3中阻燃融合胶层3是由75份改性三聚氰胺甲醛树脂和25份无卤含磷阻燃剂组成。
对比例1、对比例3~4中甲醛溶液的质量百分比为37%,所述无卤含磷阻燃剂为BDP、PDD按照重量份1:1形成的混合物,所述第一薄膜基材层1、第二薄膜基材层2为聚酰亚胺薄膜,所述第一薄膜基材层1、第二薄膜基材层2的厚度为0.02毫米。
对比例2中甲醛溶液的质量百分比为37%,所述无卤含磷阻燃剂为BDP、PDD和PSBPBP按照重量份1:1:2·形成的的混合物,所述第一薄膜基材层1、第二薄膜基材层2为聚酰亚胺薄膜,所述第一薄膜基材层1、第二薄膜基材层2的厚度为0.02毫米。
对比例的制备方法同实施例的制备方法。
上述实施例1~4和对比例1~3制得的超声融合胶,性能如表3所示:
表3
Figure PCTCN2022121177-appb-000002
如表3的评价结果所示,实施例1~4中三聚氰胺甲醛树脂具有六氢苯酐、碳化二亚胺,经过高温和相对于常温,阻燃融合胶层的剪切冲击强度变化较小;
对比例1和对比例4中三聚氰胺甲醛树脂缺少六氢苯酐,对比例2和对比例3中三聚氰胺甲醛树脂缺少碳化二亚胺,经过高温和相对于常温,阻燃融合胶层的剪切冲击强度变化较大。本发明实施例用于大飞机的绝缘薄膜中阻燃融合胶层在改善胶的韧性同时,随着温度的升高保持了胶的韧性稳定性,从而提高了阻燃融合胶层的耐气候性。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (5)

  1. 一种大飞机用超声融合胶,其特征在于:所述超声融合胶位于2层薄膜基材层之间,所述超声融合胶是由70~90份改性三聚氰胺甲醛树脂和10~30份无卤含磷阻燃剂组成;
    所述改性三聚氰胺甲醛树脂由以下重量份的组分组成:
    Figure PCTCN2022121177-appb-100001
  2. 根据权利要求1所述的大飞机用超声融合胶,其特征在于:所述甲醛溶液的质量百分比为35~40%。
  3. 根据权利要求1所述的大飞机用超声融合胶,其特征在于:所述无卤含磷阻燃剂为BDP、PDD和PSBPBP中至少2种形成的混合物。
  4. 一种用于权利要求1~3中任一项所述超声融合胶的制备工艺,其特征在于,包括以下步骤:
    步骤一、将三聚氰胺100份、甲醛溶液150~250份、聚乙二醇2~6份、乙二醇8~20份、尿素10~30份、多聚甲醛10~15份、六氢苯酐3~8份、碳化二亚胺2~4份投入混合料槽中搅拌2~3小时获得混合液;
    步骤二、将混合液温度升高到60~70℃,然后加入10~30份无卤含磷阻燃剂,再搅拌后经过过滤处理,获得所述超声融合胶。
  5. 根据权利要求1所述的超声融合胶的制备工艺,其特征在于:所述步骤一中搅拌速度为100~200r/min。
PCT/CN2022/121177 2022-05-17 2022-09-26 大飞机用超声融合胶及其制备工艺 WO2023221356A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210532504.2 2022-05-17
CN202210532504.2A CN117106395A (zh) 2022-05-17 2022-05-17 大飞机用超声融合胶及其制备工艺

Publications (1)

Publication Number Publication Date
WO2023221356A1 true WO2023221356A1 (zh) 2023-11-23

Family

ID=88795291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121177 WO2023221356A1 (zh) 2022-05-17 2022-09-26 大飞机用超声融合胶及其制备工艺

Country Status (2)

Country Link
CN (1) CN117106395A (zh)
WO (1) WO2023221356A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288444A (ja) * 2000-04-04 2001-10-16 Showa Highpolymer Co Ltd 含浸用および接着用樹脂組成物
US20030065133A1 (en) * 2001-05-17 2003-04-03 Frank Scholl Aqueous amino resin blends
CN106497471A (zh) * 2016-10-28 2017-03-15 浙江欧仁新材料有限公司 一种阻燃超声融合胶及其制备方法
CN106564263A (zh) * 2016-10-28 2017-04-19 浙江欧仁新材料有限公司 一种超声融合薄膜及其制备方法
CN108608710A (zh) * 2018-04-18 2018-10-02 苏州纽劢特新材料科技有限公司 一种用于轨道交通隔音隔热的超声融合薄膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288444A (ja) * 2000-04-04 2001-10-16 Showa Highpolymer Co Ltd 含浸用および接着用樹脂組成物
US20030065133A1 (en) * 2001-05-17 2003-04-03 Frank Scholl Aqueous amino resin blends
CN106497471A (zh) * 2016-10-28 2017-03-15 浙江欧仁新材料有限公司 一种阻燃超声融合胶及其制备方法
CN106564263A (zh) * 2016-10-28 2017-04-19 浙江欧仁新材料有限公司 一种超声融合薄膜及其制备方法
CN108608710A (zh) * 2018-04-18 2018-10-02 苏州纽劢特新材料科技有限公司 一种用于轨道交通隔音隔热的超声融合薄膜及其制备方法

Also Published As

Publication number Publication date
CN117106395A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
WO2022012379A1 (zh) 一种隔热保温复合板及其制备方法
CN105694665A (zh) 一种阻燃卷材及其制备方法
CN104893614A (zh) 一种瓦楞纸箱用高强度防水粘合剂
CN106867444A (zh) 汽车动力电池用低比重阻燃导热灌封胶及其制备方法
CN102533189B (zh) 一种耐湿热汽车折边胶及其制备方法
WO2017092471A1 (zh) 热固性烷基多元醇缩水甘油醚树脂组合物及其应用
CN109370496A (zh) 一种汽车用环氧结构胶及其制备方法
CN108621497B (zh) 一种a级阻燃铝箔气泡隔热材料及其制备方法
CN105199159A (zh) 一种接枝石墨烯阻燃橡胶及制备方法
WO2023221356A1 (zh) 大飞机用超声融合胶及其制备工艺
WO2023221355A1 (zh) 用于大飞机的绝缘薄膜
WO2015018138A1 (zh) 导电银胶及其制备方法
CN116004082A (zh) 一种用于汽车动力电池包和储能设备的轻质无溶剂环氧膨胀型防火涂料及其制备方法
CN110746929B (zh) 一种自粘改性沥青防水卷材涂盖料及其制备方法和被动式建筑专用铝箔面自粘沥青防水卷材
JP7223600B2 (ja) 断熱部材およびその製造方法
CN106117914A (zh) 一种含载银纳米沸石的抗菌耐热pvc‑nbr复合发泡板及其制备方法
CN103881307A (zh) 超低密度复合材料、树脂组合物预浸料及其制备方法和用途
CN114381086A (zh) 大飞机用隔热隔音棉毡
JP2011042731A (ja) 充填用発泡組成物および充填発泡部材
CN107674428A (zh) 一种环保无毒阻燃太阳能光伏电缆
CN105255394B (zh) 一种真金板用阻燃型胶黏剂及其制备方法和应用
JP4699834B2 (ja) ポリイソシアヌレート発泡体の製造方法
CN114213642B (zh) 耐高温、高强度的pet发泡材料及其制备方法和应用
KR102477271B1 (ko) 고인성 및 난연성을 가지는 열경화성 수지 조성물
KR101926865B1 (ko) 전도성 및 차열성을 가지는 멀티레이어 강판의 제조 방법 및 이에 의해 제조되는 멀티레이어 강판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942384

Country of ref document: EP

Kind code of ref document: A1