WO2023219019A1 - クロストーク測定方法、及びクロストーク測定装置 - Google Patents

クロストーク測定方法、及びクロストーク測定装置 Download PDF

Info

Publication number
WO2023219019A1
WO2023219019A1 PCT/JP2023/016935 JP2023016935W WO2023219019A1 WO 2023219019 A1 WO2023219019 A1 WO 2023219019A1 JP 2023016935 W JP2023016935 W JP 2023016935W WO 2023219019 A1 WO2023219019 A1 WO 2023219019A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
crosstalk
light
core
power
Prior art date
Application number
PCT/JP2023/016935
Other languages
English (en)
French (fr)
Inventor
勝宏 竹永
茉優 中川
真生 大関
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2023219019A1 publication Critical patent/WO2023219019A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the present invention relates to a crosstalk measurement method and a crosstalk measurement device.
  • Multicore fibers are attracting attention because they can improve space utilization efficiency and can transmit large amounts of information in a limited space.
  • a plurality of cores are arranged in one optical fiber, it is difficult to evaluate the characteristics compared to a single-core fiber. Therefore, there is a need for a technique to efficiently evaluate multi-core fibers.
  • crosstalk measurement is an important measurement item for multi-core fibers, but is not included in the measurement items for single-core fibers, so it is necessary to prepare new measurement equipment.
  • the following non-patent document 1 describes the PM (Power Meter) method.
  • the PM method is a method in which light is incident on one end of a predetermined core of a multicore fiber, and the power of light emitted from the other end of the core that crosstalks with this core is measured.
  • the following non-patent documents 2 and 3 describe the OTDR (Optical Time Domain Reflectometer) method.
  • OTDR Optical Time Domain Reflectometer
  • an object of the present invention is to provide a crosstalk measurement method and a crosstalk measurement device that can easily measure crosstalk using the OTDR method.
  • aspect 1 of the present invention is a method for measuring crosstalk of an optical device having a first optical waveguide and a second optical waveguide that are parallel to each other and include one end and the other end, a connecting step of optically connecting the other end of the waveguide and the other end of the second optical waveguide via a first connecting optical waveguide; and connecting the pulsed incident light emitted from the OTDR to the first optical waveguide.
  • the incident light is caused to crosstalk from the first optical waveguide to the second optical waveguide, and the light is generated from the first optical waveguide through the first connection optical waveguide.
  • the incident light incident on the second optical waveguide includes light generated by crosstalk from the second optical waveguide to the first optical waveguide;
  • a method for measuring crosstalk is characterized by comprising a processing step for determining the crosstalk.
  • the pulsed incident light propagating from one end of the first optical waveguide to the other end propagates from the first optical waveguide to the second optical waveguide while crosstalking. Therefore, the crosstalk light that crosstalks from the first optical waveguide to the second optical waveguide also becomes a pulse, and propagates from one end of the second optical waveguide to the other end while running generally parallel to the incident light.
  • the incident light that reaches the other end of the first optical waveguide enters the first connecting optical waveguide.
  • the pulsed crosstalk light propagating from one end of the second optical waveguide and reaching the other end of the second optical waveguide enters the first connecting optical waveguide from the opposite side to the incident light.
  • the propagation speed of the incident light and the propagation speed of the crosstalk light are equal to each other. Therefore, the incident light and the crosstalk light arrive at the other ends of the first optical waveguide and the second optical waveguide at approximately the same time, and the incident light and the crosstalk light arrive at approximately the midpoint of the first connecting optical waveguide. We passed each other. Then, the incident light enters the second optical waveguide from the other end of the second optical waveguide, and the crosstalk light enters the first optical waveguide from the other end of the first optical waveguide. At this time, the timing at which the incident light enters the second optical waveguide and the timing at which the crosstalk light enters the first optical waveguide are approximately the same timing.
  • the crosstalk light propagates from the other end to one end of the first optical waveguide while running generally parallel to the incident light which propagates from the other end to one end of the second optical waveguide.
  • the incident light propagating through the second optical waveguide propagates into the first optical waveguide while crosstalking. Therefore, the light crosstalking from the second optical waveguide to the first optical waveguide is combined with the crosstalk light propagating through the first waveguide.
  • the combined light is in the form of a pulse
  • the output light emitted from one end of the first optical waveguide includes the pulsed light caused by crosstalk.
  • Light emitted from the first optical waveguide is received by the OTDR, and the power of the emitted light is measured. The measured power of the emitted light is used to determine the magnitude of crosstalk between the first optical waveguide and the second optical waveguide.
  • crosstalk measurement method of this embodiment since the light incident on an optical waveguide using OTDR crosstalks to other optical waveguides, it is possible to avoid crosstalk as in Patent Documents 2 and 3.
  • the power of crosstalking light is greater than when detecting backscattered light.
  • crosstalk light when incident light propagates from one end of the first optical waveguide to the other end, and crosstalk light when incident light propagates from the other end to one end of the second optical waveguide. Since the crosstalk light is combined with the crosstalk light, the power of the pulsed light generated by the crosstalk tends to be large. Therefore, according to the crosstalk measuring method of this aspect, crosstalk can be easily measured.
  • a second aspect of the present invention is the crosstalk measurement method according to the first aspect, wherein the length of the first connecting optical waveguide is longer than the half-width of the incident light.
  • the incident light and the crosstalk light pass each other approximately at the midpoint of the first connection optical waveguide. Therefore, in the OTDR, pulsed light caused by crosstalk appears to be generated approximately at the midpoint of the first connection optical waveguide. Further, the pulse width of the incident light and the pulse width of the crosstalk light are approximately the same. Therefore, according to the crosstalk measurement method of this aspect, it is possible to suppress noise such as reflection at the end of the first connection optical waveguide from affecting the emitted light including the pulsed crosstalk light, and Talk can be measured more accurately.
  • pulsed incident light emitted from the OTDR is made to enter from one end of the second optical waveguide, and the incident light crosstalks from the second optical waveguide to the first optical waveguide.
  • the magnitude of the crosstalk between the first optical waveguide and the second optical waveguide is determined using the power of the output light measured in the first measurement step and the power of the output light measured in the second measurement step.
  • crosstalk light generated by propagating the incident light from the first optical waveguide to the second optical waveguide and crosstalk light generated by propagating the incident light from the second optical waveguide to the first optical waveguide are used.
  • errors can be suppressed and crosstalk can be determined more accurately.
  • Aspect 4 of the present invention is that, in the processing step, the power of the output light measured in the first measurement step and the power of the output light measured in the second measurement step are averaged, and A crosstalk measuring method according to aspect 3, characterized in that the magnitude of the crosstalk between the first optical waveguide and the second optical waveguide is determined.
  • Aspect 5 of the present invention is the crosstalk measuring method according to any one of aspects 1 to 4, wherein the wavelength width of the incident light is 1 nm or more.
  • the error in the power of the emitted light measured by the OTDR can be reduced.
  • Aspect 6 of the present invention is provided between the OTDR and the first optical waveguide, between the first optical waveguide and the first connection optical waveguide, and between the first connection optical waveguide and the second optical waveguide. are optically connected by a fan-in-fan-out device, and in the processing step, the magnitude of crosstalk in the fan-in-fan-out device is removed, and the first optical waveguide 6.
  • the crosstalk measuring method according to any one of aspects 1 to 5, characterized in that the magnitude of the crosstalk between the optical waveguide and the second optical waveguide is determined.
  • a seventh aspect of the present invention is that the optical device further includes a third optical waveguide parallel to the first optical waveguide, and in the processing step, the determined first optical waveguide and the second optical waveguide are connected to each other.
  • the crosstalk measuring method according to any one of aspects 1 to 6, further comprising determining the magnitude of crosstalk between the first optical waveguide and the third optical waveguide based on the magnitude of crosstalk of .
  • the magnitude of crosstalk between the first optical waveguide and third optical waveguide can be easily determined without measuring the power of light due to crosstalk between the first optical waveguide and third optical waveguide.
  • the magnitude of crosstalk between the first optical waveguide and the third optical waveguide is determined.
  • the optical device further includes a third optical waveguide that is parallel to the first optical waveguide, and in the connecting step, the optical device further includes the other end of the first optical waveguide and the third optical waveguide.
  • the other end of the optical waveguide is optically connected to the other end of the optical waveguide via a second connecting optical waveguide having a length different from that of the first connecting optical waveguide, and in the first measuring step, the incident light is connected to the first connecting optical waveguide. and the incident light that enters the third optical waveguide from the first optical waveguide via the second connection optical waveguide from the third optical waveguide.
  • a crosstalk measuring method according to any one of aspects 1 to 6, characterized in that the magnitude of crosstalk is further determined.
  • crosstalk occurs between the first optical waveguide and the second optical waveguide, and output light including pulsed light due to the crosstalk is output from one end of the first optical waveguide.
  • crosstalk occurs between the first optical waveguide and the third optical waveguide, and output light including pulsed light due to the crosstalk is output from one end of the first optical waveguide.
  • the output light including pulsed light due to crosstalk between the first optical waveguide and the second optical waveguide, and the output light including pulsed light due to crosstalk between the first optical waveguide and the third optical waveguide can be measured by receiving each light with an OTDR, and the magnitude of each crosstalk can be determined.
  • the first optical waveguide and the third optical waveguide are optically connected by the connecting optical waveguide, and the first optical waveguide is Compared to the case where the incident light is input again from one end of the optical waveguide and the crosstalk between the first optical waveguide and the third optical waveguide is measured, the crosstalk between the first optical waveguide and the second optical waveguide and the crosstalk between the first optical waveguide and the second optical waveguide and the Crosstalk between the first optical waveguide and the third optical waveguide can be easily measured.
  • the difference between the length of the first connection optical waveguide and the length of the second connection optical waveguide is larger than the half width of the incident light.
  • the optical device further includes a third optical waveguide that is parallel to the second optical waveguide, and in the connecting step, the optical device further includes one end of the second optical waveguide and the third optical waveguide. and one end thereof are optically connected via a second connection optical waveguide, and in the first measurement step, the light is input from the first optical waveguide to the second optical waveguide via the first connection optical waveguide. Light generated by crosstalk of the incident light from the second optical waveguide to the third optical waveguide, and light before entering the third optical waveguide from the second optical waveguide via the second connection optical waveguide.
  • the magnitude of crosstalk between the second optical waveguide and the third optical waveguide is further determined using the power of the emitted light including the light of This is a crosstalk measurement method.
  • crosstalk occurs between the first optical waveguide and the second optical waveguide, and output light including pulsed light due to the crosstalk is output from one end of the first optical waveguide.
  • the pulsed incident light that enters the second optical waveguide from the other end of the second optical waveguide via the first optical waveguide and the first connection optical waveguide is transmitted from the second optical waveguide to the third optical waveguide. It propagates through the optical waveguide while causing crosstalk. Therefore, the crosstalk light that crosstalks from the second optical waveguide to the third optical waveguide also becomes a pulse, and propagates from the other end of the third optical waveguide to one end while running generally parallel to the incident light.
  • the incident light that reaches one end of the second optical waveguide enters the second connecting optical waveguide. Furthermore, the crosstalk light that reaches one end of the third optical waveguide enters the second connection optical waveguide from the opposite side to the incident light. As described above, since the propagation speed of the incident light and the propagation speed of the crosstalk light are equal to each other, the incident light and the crosstalk light, which arrive at one end at about the same time, pass each other at about the midpoint of the second connection optical waveguide. Then, the incident light enters the third optical waveguide from one end of the third optical waveguide, and the crosstalk light enters the second optical waveguide from one end of the second optical waveguide.
  • the timing at which the incident light enters the third optical waveguide and the timing at which the crosstalk light enters the second optical waveguide are approximately the same. Therefore, the crosstalk light propagates from one end of the second optical waveguide to the other end while running generally parallel to the incident light that propagates from one end of the third optical waveguide to the other end. During this time, the incident light propagating through the third optical waveguide propagates to the second optical waveguide while crosstalking. Therefore, the light crosstalking from the third optical waveguide to the second optical waveguide is combined with the crosstalk light propagating through the second waveguide.
  • the combined light is in the form of a pulse, and the output light that is emitted from one end of the first optical waveguide via the first connection optical waveguide and the first optical waveguide is connected to the second optical waveguide and the third optical waveguide.
  • Outgoing light emitted from the first optical waveguide is received by the OTDR, and the power of this outgoing light is measured.
  • pulsed light due to crosstalk between the first optical waveguide and the second optical waveguide and pulsed light due to crosstalk between the second optical waveguide and the third optical waveguide are transmitted to the first optical waveguide at different timings. Emit from one end of the wave path. Therefore, the OTDR receives the output light including the light due to crosstalk between the first optical waveguide and the second optical waveguide, and the output light including the light due to the crosstalk between the second optical waveguide and the third optical waveguide. , the power of each emitted light can be measured, and the magnitude of each crosstalk can be determined.
  • the other end of the second optical waveguide and the other end of the third optical waveguide are optically connected using the connecting optical waveguide.
  • the crosstalk between the second optical waveguide and the third optical waveguide is measured by connecting the incident light to one end of the second optical waveguide and measuring the crosstalk between the first optical waveguide and the second optical waveguide, The crosstalk between the second optical waveguide and the third optical waveguide can be easily measured.
  • the optical device further includes a third optical waveguide that is parallel to the first optical waveguide, and in the connecting step, the optical device further includes one end of the second optical waveguide and the third optical waveguide. and the other end of the OTDR are optically connected to each other via a second connecting optical waveguide, and in the first measurement step, the incident light that is incident on the first optical waveguide from the OTDR is transferred from the first optical waveguide to the first optical waveguide.
  • the light generated by crosstalk to the three optical waveguides is transferred from the first optical waveguide to the third optical waveguide via the first connection optical waveguide, the second connection optical waveguide, and the second connection optical waveguide.
  • the crosstalk measuring method according to any one of aspects 1, 2, 5, and 6, further comprising determining the magnitude of crosstalk between the first optical waveguide and the third optical waveguide.
  • crosstalk occurs between the first optical waveguide and the second optical waveguide, and output light including pulsed light due to the crosstalk is output from one end of the first optical waveguide.
  • the incident light propagating through the first optical waveguide propagates from the first optical waveguide to the third optical waveguide while crosstalking, and crosstalk light that crosstalks from the first optical waveguide to the third optical waveguide occurs.
  • the light also becomes a pulse, and propagates from one end of the third optical waveguide to the other end while running generally parallel to the incident light propagating through the first optical waveguide.
  • the incident light that reaches the other end of the first optical waveguide enters the first connecting optical waveguide.
  • the crosstalk light reaching the other end of the third optical waveguide is incident on the second connecting optical waveguide. Since the propagation speed of the incident light and the propagation speed of the crosstalk light are equal to each other as described above, the incident light and the crosstalk light are connected to the first connection optical waveguide, the second connection optical waveguide, and the second connection optical waveguide. They pass each other approximately at the midpoint of the optical waveguides. Then, the incident light enters the third optical waveguide from the other end of the third optical waveguide via the second connection optical waveguide, and the crosstalk light passes through the first connection optical waveguide and enters the other end of the first optical waveguide. and enters the first optical waveguide.
  • the timing at which the incident light enters the third optical waveguide and the timing at which the crosstalk light enters the first optical waveguide are approximately the same. Therefore, the crosstalk light propagates from the other end to one end of the first optical waveguide while running generally parallel to the incident light which propagates from the other end to one end of the third optical waveguide. During this time, the incident light propagating through the third optical waveguide propagates into the first optical waveguide while crosstalking. Therefore, the crosstalk light from the third optical waveguide to the first optical waveguide is combined with the crosstalk light propagating through the first optical waveguide.
  • the combined light is in the form of a pulse, and the output light emitted from one end of the first optical waveguide includes pulsed light generated by crosstalk between the first optical waveguide and the third optical waveguide.
  • Light emitted from the first optical waveguide is received by the OTDR, and the power of this emitted light is measured.
  • pulsed light due to crosstalk between the first optical waveguide and the second optical waveguide and pulsed light due to crosstalk between the first optical waveguide and the third optical waveguide are transmitted to the first optical waveguide at different timings. Emit from one end of the wave path. Therefore, the OTDR receives the output light including light due to crosstalk between the first optical waveguide and the second optical waveguide, and the output light including light due to crosstalk between the first optical waveguide and the third optical waveguide. , the power of each emitted light can be measured, and the magnitude of each crosstalk can be determined.
  • the other end of the first optical waveguide and the other end of the third optical waveguide are optically connected using the connecting optical waveguide.
  • the crosstalk between the first optical waveguide and the third optical waveguide is measured by connecting the first optical waveguide to the first optical waveguide and inputting the incident light again from one end of the first optical waveguide. It is possible to easily measure each of the crosstalk between the first optical waveguide and the third optical waveguide.
  • Aspect 11 of the present invention is based on aspect 1, characterized in that in the first measurement step, at least one of light loss, reflection intensity, bending loss, and disconnection in the optical device is further measured by the OTDR. This is the crosstalk measurement method according to any one of aspects 10.
  • the above measurements can be performed in parallel, so the effort of measuring other than crosstalk can be reduced.
  • a twelfth aspect of the present invention is that when light of the same power is propagated in the first optical waveguide, the second optical waveguide, and the first connecting optical waveguide, a unit length that occurs in the first connecting optical waveguide is According to any one of aspects 1 to 11, the power of the backscattered light per unit length is smaller than the power of the backscattered light per unit length generated in each of the first optical waveguide and the second optical waveguide. This is a crosstalk measurement method.
  • the ratio of the power of the crosstalk light to the power of the backscattered light becomes large, making it easier to detect the crosstalk light.
  • a thirteenth aspect of the present invention is a crosstalk measuring apparatus for an optical device having a first optical waveguide and a second optical waveguide that are parallel to each other and include one end and the other end, wherein the other end of the first optical waveguide and the second optical waveguide are parallel to each other.
  • a first connecting optical waveguide that optically connects the other end of the second optical waveguide; and a pulsed incident light is made to enter from the one end of the first optical waveguide, and the incident light is transmitted to the first optical waveguide.
  • the light generated by crosstalk from the first optical waveguide to the second optical waveguide, and the incident light that enters the second optical waveguide from the first optical waveguide via the first connection optical waveguide are connected to the second optical waveguide.
  • the crosstalk measuring device is characterized by comprising: a processing unit that determines the magnitude of crosstalk between the first optical waveguide and the second optical waveguide using the power of the emitted light.
  • the crosstalk measurement device of this embodiment since the light incident on an optical waveguide using OTDR crosstalks to other optical waveguides, the crosstalked light is backscattered as in Patent Documents 2 and 3. Compared to the case of detecting light, the power of crosstalk light is greater. Furthermore, in the crosstalk measurement device of this aspect, crosstalk light when incident light propagates from one end of the first optical waveguide to the other end, and crosstalk light when incident light propagates from the other end to one end of the second optical waveguide. Since the crosstalk light is combined with the crosstalk light, the power of the pulsed light generated by the crosstalk tends to be large. Therefore, according to the crosstalk measuring device of this aspect, crosstalk can be easily measured.
  • a crosstalk measurement method and a crosstalk measurement device that can easily measure crosstalk using the OTDR method.
  • FIG. 1 is a diagram showing a cross section perpendicular to the longitudinal direction of a multi-core fiber according to a first embodiment of the present invention.
  • FIG. FIG. 1 is a diagram showing a crosstalk measuring device in a first embodiment.
  • 3 is a flowchart showing the procedure of a crosstalk measurement method according to the first embodiment of the present invention.
  • 4 is a diagram showing how light propagates in the crosstalk measurement device of FIG. 3.
  • FIG. It is a figure which shows the measurement result by OTDR. 6 is an enlarged view of a portion of FIG. 5.
  • FIG. FIG. 3 is a diagram showing the power of crosstalk light measured by OTDR when changing the length of a multi-core fiber.
  • FIG. 3 is a diagram showing the relationship between the power of crosstalk light measured in the first embodiment and the power of crosstalk light measured by the PM method. It is a flowchart which shows the procedure of the crosstalk measurement method in 2nd Embodiment of this invention.
  • FIG. 7 is a diagram showing the state of the crosstalk measurement device in a second measurement step of the second embodiment. It is a figure showing the crosstalk measuring device in a 3rd embodiment of the present invention. It is a figure which shows the measurement result by OTDR in 3rd Embodiment. It is a figure showing the crosstalk measuring device in a 4th embodiment of the present invention. It is a figure showing the crosstalk measuring device in a 5th embodiment of the present invention. In FIG. 4, it is a figure which shows the measurement result by OTDR when a hollow core optical fiber is used as a 1st optical fiber. It is a figure which shows the modification of the crosstalk measuring device of 1st Embodiment.
  • FIG. 1 is a diagram showing a cross section perpendicular to the longitudinal direction of the multicore fiber of this embodiment.
  • the multicore fiber 10 has a plurality of cores 11 to 14 capable of transmitting light, and a cladding 15 surrounding the outer peripheral surface of each of the cores 11 to 14. Note that the outer peripheral surface of the cladding 15 may be surrounded by a coating layer made of resin.
  • Each of the cores 11 to 14 has one end and the other end, and are arranged in parallel with each other along the longitudinal direction of the multi-core fiber 10.
  • the refractive index of the cores 11 to 14 is higher than the refractive index of the cladding 15, and each core 11 to 14 can transmit light. Therefore, each of the cores 11 to 14 can be understood as a first to fourth optical waveguide, and the multi-core fiber 10 is an optical device having a plurality of optical waveguides arranged in parallel with each other.
  • the cores 11 to 14 are made of silica glass doped with a dopant that increases the refractive index, such as germanium (Ge), and the cladding 15 is made of silica glass without any additives.
  • the cores 11 to 14 may be made of silica glass without any additives
  • the cladding 15 may be made of silica glass doped with a dopant that lowers the refractive index such as fluorine (F).
  • the cladding 15 may be made of silica glass doped with a dopant that increases the refractive index
  • the cladding 15 may be made of silica glass doped with a dopant that decreases the refractive index.
  • the dopant that increases the refractive index and the dopant that decreases the refractive index are not particularly limited.
  • FIG. 2 is a diagram showing a crosstalk measuring device in this embodiment.
  • the crosstalk measuring device 1 of this embodiment mainly includes an OTDR 20, a processing section 25, and a first optical fiber 51, and measures crosstalk in the multi-core fiber 10.
  • Multicore fiber 10 has one end 17 and the other end 18.
  • the one end 17 and the other end 18 may also be referred to as the one end 17 and the other end 18 of the cores 11 to 14.
  • the OTDR 20 is used by being connected to an optical fiber or the like, emits pulsed light, measures the power of the light incident from the multi-core fiber 10, and emits the pulsed light and then receives the measured light. It is possible to measure optical loss such as transmission loss, bending loss, splice loss, etc. of optical fibers, detect disconnection points of optical fibers, measure the amount of light reflection, etc. It is a device. In this embodiment, a fan-in-fan-out device 30 is connected to the OTDR 20.
  • the fan-in-fan-out device 30 includes a plurality of optical waveguides (not shown) that can be individually optically connected to the cores 11 to 14 at one end 17 of the multicore fiber 10, and a plurality of optical waveguides (not shown) that can be individually optically connected to the cores 11 to 14 at one end 17 of the multicore fiber 10. It has optical fibers 31 to 34 including connected cores.
  • the core of an optical fiber 31 is connected to the OTDR 20.
  • the optical waveguide connected to the core of the optical fiber 31 is connected to the core 11 of the multi-core fiber 10. Therefore, the optical fiber 31 and the core 11 are optically connected, and the light emitted from the OTDR 20 enters the core 11.
  • a fan-in-fan-out device 40 is connected to the other end 18 of the multi-core fiber 10.
  • the fan-in-fan-out device 40 has the same configuration as the fan-in-fan-out device 30, and includes a plurality of light guides (not shown) that can be individually optically connected to the cores 11 to 14 of the multicore fiber 10.
  • the cores of optical fibers 41 to 44 are individually optically connected to the wave path.
  • the core 11 and the core of the optical fiber 41 are optically connected, and the core 12 and the core of the optical fiber 42 are optically connected.
  • the first optical fiber 51 is a single-core fiber, for example, a single-mode fiber.
  • An optical fiber 41 is connected to one end of the first optical fiber 51, and an optical fiber 42 is connected to the other end of the first optical fiber 51. Therefore, the core of the optical fiber 41 and the core of the optical fiber 42 are optically connected via the core of the first optical fiber 51.
  • the core of the first optical fiber 51 can be understood as a first connection waveguide that optically connects the other end of the first optical waveguide, which is the core 11, and the other end of the second optical waveguide, which is the core 12. can.
  • a processing unit 25 is connected to the OTDR 20, and data related to the power of light received by the OTDR 20 is output to the processing unit 25.
  • the processing unit 25 is an arithmetic device that calculates the magnitude of crosstalk using the power of light measured by the OTDR 20.
  • the processing unit 25 can be an integrated circuit such as a microcontroller, an IC (Integrated Circuit), an LSI (Large-scale Integrated Circuit), or an ASIC (Application Specific Integrated Circuit), or an NC (Numerical Control) device. Further, when an NC device is used, the processing unit 25 may use a machine learning device or may not use a machine learning device.
  • the processing unit 25 calculates the magnitude of crosstalk between the core 11 and the core 12 based on this data, as described later, and calculates the magnitude of the determined crosstalk. output the data related to the Note that the processing unit 25 and the OTDR 20 may be housed in one housing, and some of the components may be shared.
  • FIG. 3 is a flowchart showing the procedure of the crosstalk measurement method in this embodiment.
  • the crosstalk measurement method of this embodiment includes a connection step S1, a first measurement step S2, and a processing step S3.
  • a multi-core fiber 10 as an optical device to be measured is prepared and set in the crosstalk measurement apparatus 1.
  • the length of the multi-core fiber 10 is, for example, 21 km.
  • the other end 18 of the core 11 and the other end 18 of the core 12 are optically connected via the core of the first optical fiber 51.
  • the length of the first optical fiber 51 is, for example, 10 km.
  • the waveguide connected to the optical fiber 41 in the fan-in-fan-out device 40 is connected to the core 11 of the multi-core fiber 10, and the waveguide connected to the optical fiber 42 is connected to the core 12. .
  • the other end of the first optical waveguide and the other end of the second optical waveguide are optically connected via the first connecting optical waveguide, and after this step, light is emitted from one end 17 of the core 11.
  • the light When the light is incident, the light enters the core 12 from the other end 18 of the core 12 via the core of the first optical fiber 51.
  • the OTDR 20 and the core 11 are optically connected. Specifically, a waveguide connected to the optical fiber 31 in the fan-in-fan-out device 30 is connected to the core 11 of the multi-core fiber 10. Therefore, the light emitted from the OTDR 20 enters the core 11 from one end 17 of the core 11.
  • the state shown in FIG. 2 is that the core 11 of the multi-core fiber 10 and the OTDR 20 are optically connected, and the core 11 and the core 12 are optically connected via the core of the first optical fiber 51. It is.
  • First measurement step S2 pulsed incident light emitted from the OTDR 20 is made to enter from one end 17 of the core 11 which is the first optical waveguide, and crosstalk occurs due to the incident light from the core 11 to the core 12 which is the second optical waveguide.
  • the light is combined with the light generated by the crosstalk of the incident light incident from the core 11 to the core 12 from the core 12 to the core 11 via the core of the first optical fiber 51, which is the first connection optical waveguide.
  • the power of the emitted light including waved pulsed light and emitted from one end 17 of the core 11 is measured by the OTDR 20 .
  • FIG. 4 is a diagram showing how light propagates in the crosstalk measurement device of FIG. 3. The above will be specifically explained using this figure. Note that in FIG. 3, the fan-in-fan-out devices 30 and 40 are illustrated in a simplified manner.
  • pulsed light is emitted from the OTDR 20.
  • the wavelength width of this light is preferably 1 nm or more from the viewpoint of stably performing the crosstalk measurement described below, more preferably 3 nm or more, and even more preferably 5 nm or more. Further, the wavelength width of this light is preferably 30 nm or less from the viewpoint of measuring crosstalk at a specific wavelength.
  • the pulse width of the power of the light emitted from the OTDR 20 is appropriately adjusted so that the emitted light including crosstalk light, which will be described later, is not saturated.
  • an attenuator may be interposed between the OTDR 20 and the optical fiber 31.
  • the pulsed light emitted from the OTDR 20 enters the core 11 from one end 17 of the core 11 as incident light, and propagates through the core 11 from the one end 17 to the other end 18.
  • the pulsed incident light propagating through the core 11 propagates from the core 11 to the core 12 while causing crosstalk. Since the incident light is in the form of a pulse, the crosstalk light CL1 that crosstalks from the core 11 to the core 12 is also in the form of a pulse, and propagates from one end 17 side of the core 12 to the other end 18 while running generally parallel to the incident light L.
  • the power of the incident light L decreases according to the distance it propagates through the core 11
  • the power of the crosstalk light CL1 increases according to the distance it propagates through the core 12. do. Since the speeds of light propagating through the cores 11 and 12 are the same, the incident light L and the crosstalk light CL1 reach the other end 18 at approximately the same time.
  • the incident light L and the crosstalk light CL1 enter the core of the first optical fiber 51 almost simultaneously via the fan-in-fan-out device 40.
  • the crosstalk light CL1 enters the core of the first optical fiber 51 from the side opposite to the side on which the incident light L enters.
  • the incident light L that enters the core of the first optical fiber 51 and the crosstalk light CL1 pass each other approximately at the midpoint of the first optical fiber 51.
  • the incident light L and the crosstalk light CL1 reach mutually different ends of the first optical fiber 51 at approximately the same time.
  • the incident light L enters the core 12 from the other end 18 of the core 12 via the fan-in-fan-out device 40, and the crosstalk light CL1 enters the core 11 from the other end 18 of the core 11.
  • the incident light L and the crosstalk light CL1 enter the cores 12 and 11 approximately simultaneously, respectively. Note that even if the lengths of the optical fibers 41 and 43 in the fan-in-fan-out device 40 are different, the incident light L and the crosstalk light CL1 enter the cores 12 and 11, respectively, at approximately the same time. .
  • the incident light L that has entered the core 12 and the crosstalk light CL1 that has entered the core 11 propagate through the respective cores 12 and 11 toward one end 17 while running generally in parallel. During this time as well, the incident light L propagating through the core 12 propagates to the core 11 while crosstalking. Therefore, the light crosstalking from the core 12 to the core 11 is combined with the crosstalk light CL1 propagating through the core 11.
  • the combined light is in the form of a pulse and propagates while gradually increasing its power.
  • Output light in which backscattered light and other light are combined with pulsed crosstalk light CL1 is emitted from one end 17 of the core 11. Therefore, the emitted light includes pulsed crosstalk light CL1.
  • FIG. 5 is a diagram showing the measurement results of the emitted light received by the OTDR 20.
  • the horizontal axis indicates the propagation distance of the incident light L
  • the vertical axis indicates the power of the output light received by the OTDR 20.
  • the vertical axis in FIG. 5 indicates the power of the emitted light in decibels as a ratio to a predetermined power determined for the OTDR 20. For example, if this predetermined power is 1 mW, the unit of the vertical axis may be expressed in dBm.
  • backscattered light is measured as emitted light in the section where the incident light L propagates through the core 11 and the section where the incident light L propagates through the core 12.
  • the slope of the line indicating the emitted light in these sections indicates the loss of the incident light L per unit length due to backscattering. Furthermore, pulsed light is measured at the boundary between the section of the core 11 and the section of the first optical fiber 51, and at the boundary between the section of the first optical fiber 51 and the section of the core 12. , the reflections at the fan-in-fan-out device 40, etc. are shown.
  • Pulsed light is measured approximately at the midpoint of the section indicating the first optical fiber 51. As described above, since the incident light L and the crosstalk light CL1 pass each other approximately at the midpoint of the first optical fiber 51, this pulsed light indicates the crosstalk light CL1. Also, in the section where the incident light L propagates through the first optical fiber 51, the backscattered light is measured as the emitted light. Therefore, the power of the emitted light measured approximately at the midpoint of the first optical fiber 51 includes the power of the crosstalk light CL1 and the power of the backscattered light.
  • a pulse indicating the power of the crosstalk light CL1 is shown approximately at the midpoint of the section indicating the first optical fiber 51.
  • the pulse width of the incident light L and the pulse width of the crosstalk light CL1 are approximately the same. Therefore, in order to prevent the pulse indicating the crosstalk light CL1 from reaching the end of the first optical fiber 51, the core length of the first optical fiber 51, which is the first connection optical waveguide, is set to half the length of the incident light L. It is preferable that it is longer than the price range.
  • the length of the first optical fiber 51 is L SCF
  • the half-value time width of the incident light L is ⁇ T pulse
  • the refractive index of the core of the first optical fiber 51 is n
  • the high speed is c
  • the OTDR 20 outputs data related to the measured power of the emitted light to the processing unit 25.
  • FIG. 6 is an enlarged view of the emitted light measured approximately at the midpoint of the first optical fiber 51 in FIG.
  • backscattered light also occurs in the first optical fiber 51. Therefore, the power of this backscattered light is measured in areas other than the area where the pulsed light is shown. Therefore, based on the data input from the OTDR 20, the processing unit 25 first calculates the area where the pulsed light is shown based on the power of the emitted light in the area other than the area where the pulsed light including the crosstalk light CL1 is shown. Find the power P BS of the backscattered light at .
  • the processing unit 25 calculates the power PBS of the backscattered light by, for example, linearly approximating the power of the emitted light in a region other than the region where the pulsed light is shown.
  • the processing unit 25 determines the difference between the power P OUT of the emitted light in the area where the pulsed light is shown and the determined power P BS of the backscattered light. This difference becomes the power of the pulsed light.
  • the power of this pulsed light includes the power P XT_MCF of the crosstalk light CL1 and the power P XT_FIFO of the crosstalk in the fan-in-fan-out devices 30 and 40.
  • the power of the pulsed light may be the power P XT ⁇ MCF of the crosstalk light CL1.
  • the power P XT_FIFO can be measured in advance.
  • the fan-in-fan-out device 30 and the fan-in-fan-out device 40 are directly connected.
  • the length of the multi-core fiber 10 becomes 0, and when the power of the emitted light is measured in the same manner as in the above first measurement step S2, it is measured at approximately the midpoint of the first optical fiber 51.
  • the power P OUT of the pulsed light includes the power P XT_FIFO and the power P BS . Therefore, the power P XT_FIFO can be determined by determining the difference between the power P OUT and the power P BS in the same manner as described above.
  • the processing unit 25 converts the obtained power PXT_MCF of the crosstalk light CL1 into the magnitude of crosstalk and outputs it. At this time, the processing unit 25 may convert the magnitude of the crosstalk into decibels indicating the power ratio of the incident light L emitted from the one end 17 of the core 12 and output the converted value. Further, the processing unit 25 may convert the signal into decibels, which indicates a ratio to a predetermined power determined in the OTDR 20 shown in FIGS. 5 and 6, and output the converted signal. In this way, the magnitude of crosstalk is determined.
  • the processing unit 25 may further determine the magnitude of crosstalk between core 11 and core 13, for example, based on the determined magnitude of crosstalk between core 11 and core 12. .
  • the processing unit 25 determines, for example, the magnitude of crosstalk between core 11 and core 12 and the magnitude of crosstalk between core 11 and core 13, based on the magnitude of crosstalk between core 11 and core 12.
  • the magnitude of the crosstalk between the cores 11 and 13 is determined using a relational expression showing the relationship.
  • the multi-core fiber 10, which is an optical device has a core 13, which is a third optical waveguide, which is parallel to the core 11, which is a first optical waveguide, in processing step S3, Based on the magnitude of the crosstalk between the waveguide and the second waveguide, the magnitude of the crosstalk between the first waveguide and the third waveguide is further determined.
  • the magnitude of the crosstalk between the cores 11 and 13 can be easily determined without measuring the power of light due to the crosstalk between the cores 11 and 13.
  • the magnitude of crosstalk between core 11 and core 14 may be determined in the same manner as the magnitude of crosstalk between core 11 and core 13.
  • FIG. 7 shows pulsed light composed of crosstalk light CL1 in the multi-core fiber 10 and crosstalk light in the fan-in-fan-out devices 30 and 40 measured by the OTDR 20 in the same manner as in the above embodiment. It is a diagram showing power, and the power of backscattered light is removed from the power of light incident on the OTDR 20. As shown in FIG. 7, in this example, the lengths of the multi-core fiber 10 were set to 0 km, 21 km, 42 km, and 84 km. The FIFO indicated by the dotted line in FIG.
  • fan-in-fan-out devices 30 and 40 were connected to each of the multi-core fibers 10 used in the measurement in FIG. 7, and the magnitude of crosstalk was measured by the PM method.
  • light is input from the core of the optical fiber 31 of the fan-in-fan-out device 30 that is optically connected to the core 11 of the multi-core fiber 10, and is optically connected to the core 12 of the multi-core fiber 10.
  • the magnitude of crosstalk between the cores 11 and 12 was measured. Therefore, the magnitude of this crosstalk is the ratio of the power of the crosstalk light to the power of the incident light L emitted from one end 17 of the core 12.
  • Peak Size in Table 1 is the power of the pulsed light shown in FIG. 7, and Crosstalk is the magnitude of crosstalk measured by the PM method.
  • FIG. 8 is a diagram showing the relationship between the power of crosstalk light measured in this embodiment and the power of crosstalk light measured by the PM method, shown in Table 1. As shown in FIG. 8, these relationships are linear. Therefore, it was shown that the power of the crosstalk light measured by the crosstalk measuring method of this embodiment is generally correlated with the magnitude of the crosstalk measured by the PM method. When each point shown in FIG. 8 is approximated by a straight line, the straight line is expressed by the following equation.
  • XT calculation is the magnitude of crosstalk determined using the above linear approximation formula
  • XT measurement is the magnitude of crosstalk measured by the PM method.
  • the results of crosstalk measurements according to this embodiment and the results of crosstalk measurements using the PM method generally matched. Therefore, in processing step S3, when the processing unit 25 converts the magnitude of crosstalk into decibels indicating the power ratio of the incident light L output from one end 17 of the core 12, the power of the pulsed crosstalk light is x
  • the magnitude of crosstalk XT may be determined from the above linear approximation equation.
  • the length of the multi-core fiber 10 be L MCF
  • the length of the first optical fiber 51 be L SCF .
  • the power when the incident light L enters the core 11 of the multi-core fiber 10 from one end 17 is P0
  • the power when the incident light L exits from the other end 18 is P'0
  • the power when the incident light L enters the core 11 of the multi-core fiber 10 from the other end 18 is P'0.
  • the power when entering the core 12 from the end 18 and exiting from the one end 17 of the core 12 is assumed to be P''0.Also , while the incident light L propagates through the core 11, there is crosstalk from the core 11 to the core 12.
  • the power of the crosstalk light emitted from the core 12 be P XT (L MCF ), and while the incident light L propagates through the core 11 and the core 12, that is, while the incident light L travels back and forth through the multi-core fiber 10, the power of the crosstalk light emitted from the core 12 is
  • the power of the crosstalk light emitted from the core 11 after crosstalk with the core 12 is assumed to be P XT (2L MCF ).
  • the multi-core fiber 10 will be explained as a two-core fiber that includes cores 11 and 12 but does not include cores 13 and 14. Furthermore, transmission losses in the multi-core fiber 10 and first optical fiber 51 are ignored, and losses and crosstalk in the fan-in-fan-out devices 30 and 40 are also ignored.
  • P' 0 , P" 0 , P XT (L MCF ), and P XT (2L MCF ) can be expressed as the following equation (1 ) to (4).
  • h is the power coupling coefficient between the cores 11 and 12 that cause crosstalk.
  • the unit of light power here is expressed in watts, for example, without being converted into decibels.
  • the magnitude of crosstalk from the core 11 to the core 12 while the incident light L propagates through the core 11 is expressed in decibels as a ratio to P'0 . 11 and the core 12, that is, while the incident light L travels back and forth through the multi-core fiber 10, the magnitude of the crosstalk between the core 11 and the core 12 is expressed in decibels as a ratio to P" 0 .
  • XT(2L MCF ) In this case, XT( LMCF ) and XT(2L MCF ) are expressed by the following formulas (5) and (6).
  • the OTDR 20 is optically connected to the core 11 at one end 17 of the multicore fiber 10. Therefore, it is not possible to measure P''0 with an OTDR. Therefore, in order to obtain XT (2L MCF ) from the optical power measured with the OTDR20, the following can be done using equation (6). .
  • the incident light L and the crosstalk light CL1 pass each other approximately at the midpoint of the first optical fiber 51.
  • the distance that the incident light L propagated at this time is the length L MCF of the multi-core fiber 10 and half the length L SCF /2 of the first optical fiber 51. Therefore, the distance from the midpoint of the first optical fiber 51 to the one end 17 of the multi-core fiber 10 is L MCF +L SCF /2. If the intensity of the backscattered light from the midpoint of the first optical fiber 51 measured by the OTDR 20 is defined as P BS (L MCF +L SCF /2), then P BS (L MCF +L SCF /2) is expressed by equation (7). shown
  • ⁇ S_SCF is the backscattering coefficient of the first optical fiber 51 and indicates the probability that the incident light L is Rayleigh scattered by the first optical fiber 51
  • B SCF is the Rayleigh scattering coefficient of the first optical fiber 51. The probability that scattered light propagates through the core of the first optical fiber 51 toward the core 11 of the multi-core fiber 10 is shown.
  • Equation (8) is derived from Equation (2) and Equation (7).
  • equation (9) is obtained.
  • P BS (L MCF +L SCF /2) is calculated from the power of the emitted light in a region other than the region where the pulsed crosstalk light is shown, based on the data input from the OTDR 20. be able to.
  • the power P XT_MCF described in processing step S3 is P XT (2L MCF ). Therefore, P XT (2L MCF ) can be determined as explained in processing step S3. Therefore, by separately calculating the first term of equation (9), XT(2L MCF ) can be obtained from equation (9).
  • the first term of equation (9) is calculated from the relationship between the magnitude of crosstalk determined in advance by the PM method and P BS (L MCF +L SCF /2) and P XT (2L MCF ) measured with OTDR20.
  • the first term of equation (9) may be determined by measuring the first optical fiber 51 in advance.
  • the crosstalk measurement method of this embodiment connects the other end 18 of the core 11, which is the first optical waveguide, and the other end 18 of the core 12, which is the second optical waveguide, using the first connecting optical waveguide.
  • the light generated by the crosstalk of the incident light L entering the core 12 from the core 11 through the core of the first optical fiber 51 crosstalks from the core 12 to the core 11.
  • a first measurement step S2 in which the power of the emitted light including the waved pulsed crosstalk light CL1 and emitted from one end 17 of the core 11 is measured by the OTDR 20; and a processing step S3 for determining the magnitude of crosstalk with No. 12.
  • the crosstalk measurement device of this embodiment connects the core of the first optical fiber 51 that optically connects the other end 18 of the core 11 and the other end 18 of the core 12, and the pulsed incident light L to the core 11.
  • the incident light L enters from one end 17 and is generated by crosstalk from the core 11 to the core 12, and the incident light L enters the core 12 from the core 11 via the core of the first optical fiber 51.
  • the OTDR 20 measures the power of the output light emitted from one end 17 of the core 11, including the pulsed crosstalk light CL1 that is generated by crosstalk from the core 11 to the core 11, and the measured output power.
  • the crosstalk measuring method and a crosstalk measuring device since the light incident on the core 11 using the OTDR 20 uses the light that crosstalks to the core 12, the crosstalk is reduced as in Patent Documents 2 and 3.
  • the power of the crosstalking light is greater than that in the case of detecting the backscattered light of the scattered light.
  • the incident light L crosstalks when propagating from one end 17 of the core 11 to the other end 18, and the incident light L crosstalks when propagating from the one end 17 of the core 11 to the other end 18.
  • crosstalk Since the light that crosstalks when propagating from the end 18 to the one end 17 is combined, the power of the pulsed crosstalk light CL1 generated by the crosstalk tends to be large. Therefore, according to the crosstalk measuring method and crosstalk measuring device of this aspect, crosstalk can be easily measured.
  • FIG. 9 is a flowchart showing the procedure of the crosstalk measurement method in this embodiment.
  • the crosstalk measurement method of this embodiment differs from the crosstalk measurement method of the first embodiment in that it includes a second measurement step S22.
  • the connection step S1 and the first measurement step S2 are performed in the same manner as the crosstalk measurement method of the first embodiment.
  • FIG. 10 is a diagram showing the state of the crosstalk measuring device in this step.
  • the core of the optical fiber 32 of the fan-in-fan-out device 30 is connected to the OTDR 20.
  • the optical waveguide connected to the core of the optical fiber 32 is connected to the core 12 of the multi-core fiber 10. Therefore, the optical fiber 32 and the core 12 are optically connected, and the light emitted from the OTDR 20 enters the core 12 from one end 17.
  • the pulsed incident light emitted from the OTDR 20 is made to enter from one end 17 of the core 12, which is the second optical waveguide.
  • a multi-channel OTDR may be used, and in the first measurement step S2, light is made to enter the core 11 from one channel of the OTDR 20, and in this step, light is made to enter the core 12 from the other channel of the OTDR 20.
  • the power of the incident light L that enters the core 12 from the OTDR 20 is the same as the power of the incident light L that enters the core 12 from the OTDR 20 in the first measurement step S2.
  • the incident light L entering the core 12 crosstalks from the core 12 to the core 11, which is the first optical waveguide.
  • the incident light L propagating to the other end 18 of the core 12 enters the core 11 from the core 12 via the core of the first optical fiber 51, which is the first connection optical waveguide.
  • the incident light L entering the core 11 crosstalks from the core 11 to the core 12.
  • the emitted light including the pulsed crosstalk light CL2 which is a combination of the light generated by crosstalk from the core 12 to the core 11 and the light generated by the crosstalk from the core 11 to the core 12, is The light is emitted from one end 17 of the core 12 .
  • the OTDR 20 measures the power of the emitted light.
  • the power distribution of the emitted light measured in this step is approximately the same as the power of the emitted light measured in the first measurement step shown in FIG.
  • the description of the core 11 and the description of the core 12 in FIG. 5 are interchanged and read.
  • processing step S3 of the present embodiment the processing unit 25 first inverts the range from the core 12 to the core 11 along the horizontal axis in the optical power distribution measured in the second measurement step S22. let Then, the processing unit 25 takes the arithmetic average of the optical power distribution in the range from core 11 to core 12 measured in the first measurement step S2 and the optical power distribution inverted in this step. . By doing this, the power of the light that is backscattered when propagating through the core 11 from one end 17 to the other end 18 and the power of the light that is backscattered when propagating through the core 11 from the other end 18 to the one end 17 can be reduced.
  • crosstalk light which is the average of the crosstalk light CL1 and the crosstalk light CL2, appears in the form of a pulse.
  • the processing unit 25 calculates the magnitude of the crosstalk light from the averaged power of the pulsed crosstalk light in the same manner as in the first embodiment.
  • the crosstalk measurement method of the present embodiment makes the pulsed incident light L emitted from the OTDR 20 enter from one end 17 of the core 12, and The light generated when the light L crosstalks from the core 12 to the core 11, and the incident light L that enters the core 11 from the core 12 via the core of the first optical fiber 51 crosstalks from the core 11 to the core 12.
  • the processing step S3 includes a second measurement step S22 in which the power of the emitted light emitted from one end 17 of the core 12 is measured using the OTDR 20.
  • the magnitude of the crosstalk between the cores 11 and 12 is determined using the power of the emitted light measured in step S2 and the power of the emitted light measured in the second measurement step S22.
  • the crosstalk measuring device of the present embodiment has the OTDR 20 input pulsed incident light L from one end 17 of the core 12 so that the incident light L enters the core 12.
  • the magnitude of the crosstalk between the cores 11 and 12 is determined using the power of the output light that is output and the power of the output light that is output from one end 17 of the core 12 due to the incident light L that is input from the core 12.
  • crosstalk light CL1 is generated by propagating the incident light L from the core 11 to the core 12
  • crosstalk light CL1 is generated by propagating the incident light L from the core 12 to the core 11. Since the crosstalk light CL2 generated by propagating the incident light L from the core 11 to the core 12 is used, the magnitude of the crosstalk can be determined more accurately than when only the crosstalk light CL1 generated by propagating the incident light L from the core 11 to the core 12 is used. .
  • the power of the incident light L incident on the core 11 in the first measurement step S2 and the power of the incident light L incident on the core 12 in the second measurement step S22 are equal to each other, and the power of the incident light L incident on the core 12 in the second measurement step S22 is equal to each other.
  • the magnitude of the crosstalk between the core 11 and the core 12 is determined. There is. By using such averaging processing, the magnitude of crosstalk can be easily and accurately determined.
  • processing step S3 processing is performed taking into account the power of the incident light L. For example, if the power of the incident light L incident on the core 12 in the second measurement step S22 is twice the power of the incident light L incident on the core 11 in the first measurement step S2, the output Averaging processing is performed by halving the power of the emitted light.
  • FIG. 11 is a diagram showing the crosstalk measuring device 1 in this embodiment.
  • the optical fiber 41 of the fan-in-fan-out device 40 is connected to one end of the first optical fiber 51 and the second optical fiber 52 via the coupler 55, and This differs from the crosstalk measuring device 1 of the first embodiment in that the other end of the optical fiber 52 is connected to the optical fiber 43 of the fan-in-fan-out device 40.
  • the optical waveguide connected to the core of the optical fiber 43 is connected to the core 13 of the multi-core fiber 10, and the optical fiber 43 and the core 13 are optically connected.
  • the core of the first optical fiber 51 optically connects the core 11 and the core 12, similar to the first optical fiber 51 of the first embodiment, and the core of the second optical fiber 52 optically connects the core 11 and the core 12. 13 are optically connected.
  • the core of the second optical fiber can be understood as a second connecting waveguide.
  • the length of the second optical fiber 52 is different from the length of the first optical fiber 51. In this embodiment, the second optical fiber 52 will be described as being longer than the first optical fiber 51.
  • the multi-core fiber 10 that is an optical device further includes a third optical waveguide that is parallel to the first optical waveguide that is the core 11. Further, the other end 18 of the first optical waveguide which is the core 11 and the other end 18 of the third optical waveguide which is the core 13 are connected.
  • connection step S1 In this step of the present embodiment, the first optical fiber 51 and the second optical fiber 52 are connected to the optical fiber 41 via the coupler 55, and the end of the second optical fiber 52 on the side opposite to the coupler 55 is connected to the optical fiber. Connect to 43. That is, in this embodiment, in addition to the connection step S1 in the first embodiment, the other end 18 of the core 11 and the other end 18 of the core 13 are connected to the core of the second optical fiber having a different length from the first optical fiber 51. Connect optically via. In this way, core 11 and core 12 are optically connected, and core 11 and core 13 are optically connected.
  • First measurement step S2 In this step of the present embodiment, incident light L is incident on the core 11 from the OTDR 20 in the same manner as in the first embodiment. In this embodiment, in addition to the crosstalk between the core 11 and the core 12 described in the first embodiment, the following crosstalk occurs and is measured. This will be explained below.
  • Incident light L entering the core 11 from the OTDR 20 propagates through the core 11 from one end 17 to the other end 18, crosstalks from the core 11 to the core 12, and also propagates from the core 11 to the core 13 while crosstalking.
  • the light that crosstalks from the core 11 to the core 13 also becomes a pulse, and propagates from one end 17 side of the core 13 to the other end 18 while running generally parallel to the incident light L.
  • the power of this crosstalk light CL2 increases according to the distance it propagates through the core 13.
  • the crosstalk light CL2 enters the second optical fiber 52 from the optical fiber 43 at approximately the same timing as the incident light L enters the second optical fiber 52 from the coupler 55.
  • the incident light L and the crosstalk light CL2 pass each other approximately at the midpoint of the second optical fiber 52.
  • the incident light L enters the core 13 at the other end 18 of the multi-core fiber 10 via the fan-in-fan-out device 40, and the crosstalk light CL2 is determined by the timing at which the incident light L enters the core 13.
  • the light enters the core 11 at approximately the same timing.
  • the incident light L that has entered the core 13 and the crosstalk light CL2 that has entered the core 11 propagate through the respective cores 13 and 11 toward one end 17 while running generally in parallel.
  • the incident light L propagating through the core 13 propagates to the core 11 while crosstalking. Therefore, the light crosstalking from the core 13 to the core 11 is combined with the crosstalk light CL2 propagating through the core 11.
  • the combined light is in the form of a pulse and propagates while gradually increasing its power.
  • Output light is emitted from one end 17 of the core 11, which is a combination of pulsed crosstalk light CL2 and light such as backscattered light. Therefore, the emitted light includes pulsed crosstalk light CL2.
  • the emitted light emitted from the core 11 enters the OTDR 20 via the fan-in-fan-out device 30, is received by the OTDR 20, and its power is measured by the OTDR 20.
  • FIG. 12 is a diagram showing the measurement results with the OTDR in this embodiment. Since the lengths of the first optical fiber 51 and the second optical fiber 52 are different from each other, as shown in FIG. 12, the output light including the crosstalk light CL1 and the output light including the crosstalk light CL2 have different timings. Then, it enters the OTDR 20. In this embodiment, since the second optical fiber 52 is longer than the first optical fiber 51, the emitted light including the crosstalk light CL2 enters the OTDR at a later timing than the emitted light including the crosstalk light CL1. Therefore, the OTDR 20 can measure each of these emitted lights. Therefore, the OTDR 20 measures the power of the emitted light including pulsed light twice.
  • the difference between the length of the first optical fiber 51 and the length of the second optical fiber 52 is preferably larger than the half-width of the incident light. In this case, it is possible to suppress interference between pulsed light due to crosstalk between core 11 and core 12 and pulsed light due to crosstalk between core 11 and core 13, and the magnitude of crosstalk can be further reduced. Can be measured accurately.
  • processing unit 25 uses the measured power of the emitted light to determine the magnitude of crosstalk between the cores 11 and 12 in the same manner as in the first embodiment. Furthermore, in this step of the present embodiment, the processing unit 25 determines the magnitude of crosstalk between the cores 11 and 13. Since backscattered light also occurs in the first optical fiber 51 and the second optical fiber 52, the power of this backscattered light is measured in areas other than the area where the pulsed light including the crosstalk light CL2 is shown. has been done.
  • the processing unit 25 calculates the pulsed light including the crosstalk light CL2 from the power of the emitted light in a region other than the region where the pulsed light including the crosstalk light CL2 is shown. Find the power of backscattered light in the region where is shown. Specifically, the processing unit 25 calculates the power of the backscattered light in the emitted light including the crosstalk light CL2 in the same manner as when the power PBS of the backscattered light was found in the first embodiment. Next, the processing unit 25 determines the difference between the power of the emitted light in the area where the pulsed light including the crosstalk light CL2 is shown and the power of the determined backscattered light.
  • the crosstalk power P XT_FIFO in the fan-in-fan-out devices 30 and 40 is so small as to be ignored, the power may be ignored.
  • the processing unit 25 converts the power of the crosstalk light CL1 obtained in the same manner as in the first embodiment into the magnitude of crosstalk and outputs it, and also converts the power of the obtained crosstalk light CL2 into the magnitude of crosstalk. Convert and output. At this time, the processing unit 25 may convert the magnitude of the crosstalk light CL2 into decibels indicating the power ratio of the incident light L emitted from one end 17 of the core 13, and output the converted decibel. Further, the processing unit 25 may convert the power into decibels indicating a ratio to a predetermined power determined by the OTDR 20 and output the converted power. In this way, the magnitude of crosstalk between core 11 and core 12 as well as the magnitude of crosstalk between core 11 and core 13 is determined.
  • the other end 18 of the core 11 and the other end 18 of the core 13 are connected to the first optical fiber. 51 and the core of the second optical fiber 52 having a different length, and in the first measurement step S2, the light generated by crosstalk of the incident light L from the core 11 to the core 13;
  • the incident light L that enters the core 13 from the core 11 through the core of the second optical fiber 52 includes pulsed light that is generated by crosstalk from the core 13 to the core 11.
  • the power of the emitted light emitted from the one end 17 is further measured by the OTDR 20, and in processing step S3, the power of the emitted light including the pulsed crosstalk light CL2 generated by the crosstalk between the core 11 and the core 13 is used. Then, the magnitude of crosstalk between core 11 and core 13 is further determined.
  • the crosstalk measuring device 1 of the present embodiment also includes a first light beam that optically connects the other end 18 of the core 11 and the other end 18 of the core 13.
  • the OTDR 20 further includes a core of a second optical fiber 52 having a different length from the core of the fiber 51, and the OTDR 20 combines light generated by crosstalk of the incident light L from the core 11 to the core 13 with the core of the second optical fiber 52.
  • Output light emitted from one end 17 of the core 11 includes light generated by crosstalk of the incident light L that enters the core 13 from the core 11 through the core 11
  • the processing unit 25 further measures the power of the emitted light including the pulsed crosstalk light CL2 caused by the crosstalk between the cores 11 and 13, and uses the power of the emitted light to detect the crosstalk between the cores 11 and 13. Further find the size of.
  • the emitted light including the crosstalk light between the core 11 and the core 12 and the crosstalk light between the core 11 and the core 13 are measured.
  • the power of each output light can be measured by receiving each of the output lights including the output light with the OTDR 20, and the magnitude of each crosstalk can be determined. Therefore, as in the first embodiment, the magnitude of the crosstalk between the core 11 and the core 12 is measured, and then, the core 11 and the core 13 are optically connected using a connecting optical waveguide.
  • the magnitude of crosstalk between core 11 and core 12 and the magnitude of crosstalk between core 11 and core 13 are measured. It is possible to easily measure the magnitude of each crosstalk with the
  • the second optical fiber 52 is longer than the first optical fiber 51 in this embodiment, it is sufficient that the length of the first optical fiber 51 and the second optical fiber 52 are different.
  • One optical fiber 51 may be longer than the second optical fiber 52.
  • FIG. 13 is a diagram illustrating the state of the crosstalk measuring device in this embodiment, similar to FIG. 4.
  • the crosstalk measuring device 1 of this embodiment includes a second optical fiber 52, and one end 17 of the core 12, which is a second optical waveguide, and one end of the core 13, which is a third optical waveguide, are a second connecting optical waveguide.
  • the length of the first optical fiber 51 and the length of the second optical fiber 52 may be different from each other or may be the same.
  • connection step S1 In this step of the present embodiment, in addition to the connection step S1 of the first embodiment, one end 17 of the core 12 and one end 17 of the core 13 are optically connected via the core of the second optical fiber 52. Specifically, one end of the second optical fiber 52 is connected to the optical fiber 32 of the fan-in-fan-out device 30, and the other end of the second optical fiber 52 is connected to the fan-in-fan-out device 30. Connect to the optical fiber 33 of the out device 30. In this way, core 12 and core 13 are optically connected.
  • First measurement step S2 In this step of the present embodiment, incident light L is incident on the core 11 from the OTDR 20 in the same manner as in the first embodiment. In this embodiment, in addition to the crosstalk between the core 11 and the core 12 described in the first embodiment, the following crosstalk occurs and is measured. This will be explained below.
  • Incident light L entering the core 11 from the OTDR 20 propagates through the core 11 from one end 17 to the other end 18, and then enters the core 12 via the first optical fiber 51.
  • the incident light L propagating through the core 12 from the other end 18 to the one end 17 crosstalks from the core 12 to the core 11 and from the core 12 to the core 13 as described in the first embodiment.
  • the light that crosstalks from the core 12 to the core 13 also becomes a pulse, and propagates from the other end 18 side of the core 13 to the one end 17 while running generally parallel to the incident light L.
  • the power of this crosstalk light CL2 increases according to the distance it propagates through the core 13.
  • the incident light L enters the core 13 from the core 12 via the second optical fiber 52, and the crosstalk light CL2 enters the core 12 from the core 13 via the second optical fiber 52.
  • the incident light L and the crosstalk light CL2 pass each other approximately at the midpoint of the second optical fiber 52. Therefore, the timing at which the incident light L enters the core 13 and the timing at which the crosstalk light CL2 enters the core 12 are approximately the same.
  • the incident light L that has entered the core 13 and the crosstalk light CL2 that has entered the core 12 propagate through the respective cores 13 and 12 from one end 17 to the other end 18 while running generally in parallel. During this time as well, the incident light L propagating through the core 13 propagates to the core 12 while crosstalking.
  • the light crosstalking from the core 13 to the core 12 is combined with the crosstalk light CL2 propagating through the core 12.
  • the combined light is in the form of a pulse and propagates while gradually increasing its power.
  • the light including this pulsed crosstalk light CL2 enters the core 11 from the core 12 via the first optical fiber 51, and from one end 17 of the core 11, the crosstalk light CL2 and backscattered light etc.
  • the combined output light is emitted. Therefore, the emitted light includes pulsed crosstalk light CL2.
  • the emitted light emitted from the core 11 enters the OTDR 20, is received by the OTDR 20, and its power is measured by the OTDR 20.
  • the timing at which the emitted light including the crosstalk light CL2 enters the OTDR 20 is different from the timing at which the emitted light including the crosstalk light CL1 enters the OTDR 20.
  • the time required for light to propagate through the core 11 is delayed. Therefore, the OTDR 20 can measure each of these emitted lights. Therefore, the OTDR 20 measures the power of the pulsed light twice.
  • processing unit 25 uses the measured power of the emitted light to determine the magnitude of crosstalk between the cores 11 and 12 in the same manner as in the first embodiment. Furthermore, in this step of the present embodiment, the processing unit 25 determines the magnitude of crosstalk between the cores 12 and 13.
  • the method for determining the crosstalk between the cores 12 and 13 is the same as the method for determining the crosstalk between the cores 11 and 13 in the third embodiment.
  • the processing unit 25 converts the power of the crosstalk light CL1 obtained in the same manner as in the first embodiment into the magnitude of crosstalk and outputs it, and also converts the power of the obtained crosstalk light CL2 into the magnitude of crosstalk. Convert and output. At this time, the processing unit 25 may convert the magnitude of the crosstalk into decibels indicating the power ratio of the incident light L emitted from the other end 18 of the core 13 and output the converted value. Further, the processing unit 25 may convert the power into decibels indicating a ratio to a predetermined power determined by the OTDR 20 and output the converted power. In this way, the magnitude of crosstalk between core 11 and core 12 as well as the magnitude of crosstalk between core 11 and core 13 is determined.
  • one end 17 of the core 12 and one end 17 of the core 13 are further connected to the second optical fiber 52.
  • the incident light L crosstalks from the core 12 to the core 13 and the light generated by the crosstalk from the core 12 to the core 52 passes through the core of the second optical fiber 52.
  • 13 includes light generated by crosstalk from the core 13 to the core 12, and pulsed light that is combined with the light L, which is incident on the core 13 through the first optical fiber 51 and the core 11.
  • the power of the emitted light emitted from the core 12 and the core 13 is further measured by the OTDR 20, and in processing step S3, the power of the emitted light including the pulsed crosstalk light CL2 generated by the crosstalk between the core 12 and the core 13 is used to The magnitude of the crosstalk between the core 13 and the core 13 is further determined.
  • the crosstalk measuring device 1 of this embodiment also includes a second optical fiber 52 that optically connects one end 17 of the core 12 and one end 17 of the core 13.
  • the OTDR 20 further includes a core, and the OTDR 20 includes light generated by crosstalk of the incident light L from the core 12 to the core 13 and the incident light L incident from the core 12 to the core 13 via the core of the second optical fiber 52.
  • the power of the emitted light that is emitted from one end 17 of the core 11 via the first optical fiber 51 and the core 11 is Further, the processing unit 25 measures the magnitude of the crosstalk between the cores 12 and 13 using the power of the emitted light including the pulsed crosstalk light CL2 caused by the crosstalk between the cores 12 and 13. further seek.
  • the emitted light including the crosstalk light between the core 11 and the core 12 and the crosstalk light between the core 12 and the core 13 are measured.
  • the power of each output light can be measured by receiving each of the output lights including the output light with the OTDR 20, and the magnitude of each crosstalk can be determined.
  • the magnitude of the crosstalk between the core 11 and the core 12 is measured, and then the core 12 and the core 13 are optically connected with a connecting optical waveguide, and the core 11 is Compared to the case where the incident light is incident again from one end 17 and the magnitude of crosstalk between core 12 and core 13 is measured, the magnitude of crosstalk between core 11 and core 12 and the magnitude of crosstalk between core 12 and core 13 are measured. It is possible to easily measure the magnitude of each crosstalk with the
  • a second measurement step S22 may be provided after the first measurement step S2.
  • the pulsed incident light L emitted from the OTDR 20 is made to enter from the other end 18 of the core 13.
  • the OTDR 20 includes light generated by crosstalk of incident light L from core 13 to core 12 and incident light L incident from core 13 to core 12 that crosstalks from core 12 to core 13 via second optical fiber 52.
  • the power of the emitted light emitted from the other end 18 of the core 13 is measured, including the light generated by the talk and the pulsed light that is multiplexed.
  • the OTDR 20 includes light generated by crosstalk from the core 12 to the core 11 while the incident light L propagates through the core 12 from one end 17 to the other end 18, and light that enters the core 11 via the first optical fiber 51.
  • the light generated by crosstalk of the incident light L from the core 11 to the core 12 and the pulsed light that is multiplexed are transmitted from one end 17 of the core 12 via the second optical fiber 52 and the core 13
  • the power of the emitted light emitted from the other end 18 of 13 is measured.
  • the power of the emitted light measured in the first measurement step S2 and the power of the emitted light measured in the second measurement step S22 are used to Find the magnitude of crosstalk with.
  • FIG. 14 is a diagram illustrating the state of the crosstalk measuring device in this embodiment, similar to FIG. 4.
  • the crosstalk measuring device 1 of this embodiment includes a second optical fiber 52 as a second connection waveguide, one end 17 of the core 12 as the second optical waveguide and the other end of the core 13 as the third optical waveguide.
  • This is different from the crosstalk measuring device 1 of the first embodiment in that the crosstalk measuring device 1 and the crosstalk measuring device 1 of the first embodiment are optically connected via a second optical fiber 52.
  • the length of the first optical fiber 51 and the length of the second optical fiber 52 may be different from each other or may be the same.
  • connection step S1 In this step of the present embodiment, in addition to the connection step S1 of the first embodiment, one end 17 of the core 12 and the other end 18 of the core 13 are optically connected via the core of the second optical fiber 52. Specifically, one end of the second optical fiber 52 is connected to the optical fiber 32 of the fan-in-fan-out device 30, and the other end of the second optical fiber 52 is connected to the fan-in-fan-out device 30. Connect to the optical fiber 43 of the out device 40. In this way, core 12 and core 13 are optically connected.
  • First measurement step S2 In this step of the present embodiment, incident light L is incident on the core 11 from the OTDR 20 in the same manner as in the first embodiment. In this embodiment, in addition to the crosstalk between the core 11 and the core 12 described in the first embodiment, the following crosstalk occurs and is measured. This will be explained below.
  • Incident light L entering the core 11 from the OTDR 20 propagates through the core 11 from one end 17 to the other end 18, crosstalks from the core 11 to the core 12, and also propagates from the core 11 to the core 13 while crosstalking.
  • the light that crosstalks from the core 11 to the core 13 also becomes a pulse, and propagates from one end 17 side of the core 13 to the other end 18 while running generally parallel to the incident light L.
  • the power of this crosstalk light CL2 increases according to the distance it propagates through the core 13.
  • the incident light L and the crosstalk light CL2 arrive at the other end 18 at approximately the same timing.
  • the incident light L enters the core 13 from the other end 18 of the core 11 via the first optical fiber 51, the core 12, and the second optical fiber 52.
  • the crosstalk light CL2 enters the core 11 from the other end 18 of the core 11 via the second optical fiber 52, the core 12, and the first optical fiber 51.
  • the incident light L and the crosstalk light CL2 pass each other approximately at the midpoint of the waveguide including the core of the first optical fiber 51, the core 12, and the core of the second optical fiber 52. Therefore, the timing at which the incident light L enters the core 13 and the timing at which the crosstalk light CL2 enters the core 11 are approximately the same.
  • the incident light L that has entered the core 13 and the crosstalk light CL2 that has entered the core 11 propagate through the respective cores 13 and 11 from the other end 18 to the one end 17 while running generally in parallel.
  • the incident light L propagating through the core 13 propagates to the core 11 while crosstalking. Therefore, the light crosstalking from the core 13 to the core 11 is combined with the crosstalk light CL2 propagating through the core 11.
  • the combined light is in the form of a pulse and propagates while gradually increasing its power.
  • Output light is emitted from one end 17 of the core 11, which is the pulsed crosstalk light CL2 combined with light such as backscattered light. Therefore, the emitted light includes pulsed crosstalk light CL2.
  • the emitted light emitted from the core 11 enters the OTDR 20, is received by the OTDR 20, and its power is measured by the OTDR 20.
  • the timing at which the emitted light including the crosstalk light CL2 enters the OTDR 20 is delayed by the time required for the light to propagate through the second optical fiber 52 and the core 13 relative to the timing at which the emitted light including the crosstalk light CL1 enters the OTDR 20. Become. Therefore, the OTDR 20 can measure each of these emitted lights. Therefore, the OTDR 20 measures the power of the pulsed light twice.
  • processing unit 25 uses the measured power of the emitted light to determine the magnitude of crosstalk between the cores 11 and 12 in the same manner as in the first embodiment. Furthermore, in this step of the present embodiment, the processing unit 25 determines the magnitude of crosstalk between the cores 11 and 13.
  • the method for determining the crosstalk between the core 11 and the core 13 is the same as the method for determining the crosstalk between the core 11 and the core 13 in the third embodiment.
  • the processing unit 25 converts the power of the crosstalk light CL1 obtained in the same manner as in the first embodiment into the magnitude of crosstalk and outputs it, and also converts the power of the obtained crosstalk light CL2 into the magnitude of crosstalk. Convert and output. At this time, the processing unit 25 may convert the magnitude of the crosstalk into decibels indicating the power ratio of the incident light L emitted from the one end 17 of the core 13 and output the converted value. Further, the processing unit 25 may convert the power into decibels indicating a ratio to a predetermined power determined by the OTDR 20 and output the converted power. In this way, the magnitude of crosstalk between core 11 and core 12 as well as the magnitude of crosstalk between core 11 and core 13 is determined.
  • one end 17 of the core 12 and the other end 18 of the core 13 are further connected to the second optical fiber 52.
  • the incident light L crosstalks from the core 11 to the core 13, and the light generated through the core 12 and the core of the second optical fiber 52.
  • the power of the emitted light emitted from one end 17 of the core 11 includes the light generated by crosstalk of the incident light L that enters the core 13 from the core 11 to the core 11, and the pulsed light that is multiplexed. is further measured by the OTDR 20, and in processing step S3, the crosstalk between the cores 11 and 13 is measured using the power of the emitted light including the pulsed crosstalk light CL2 caused by the crosstalk between the cores 11 and 13. Further find the size of.
  • the crosstalk measuring device 1 of the present embodiment also includes a second optical fiber that optically connects one end 17 of the core 12 and the other end 18 of the core 13.
  • the OTDR 20 further includes 52 cores, and the OTDR 20 receives light generated by crosstalk of the incident light L from the core 11 to the core 13, and enters the light from the core 11 to the core 13 via the core 12 and the core of the second optical fiber 52.
  • the power of the emitted light emitted from one end 17 of the core 11 is further measured, and the power of the emitted light, which includes light generated by crosstalk of the incident light L from the core 13 to the core 11 and pulsed light that is multiplexed, is emitted from the one end 17 of the core 11. further determines the magnitude of the crosstalk between the cores 11 and 13 using the power of the emitted light including the pulsed crosstalk light CL2 caused by the crosstalk between the cores 11 and 13.
  • the emitted light including the crosstalk light between the core 11 and the core 12 and the crosstalk light between the core 11 and the core 13 are measured.
  • the power of each output light can be measured by receiving each of the output lights including the output light with the OTDR 20, and the magnitude of each crosstalk can be determined. Therefore, as in the first embodiment, the magnitude of the crosstalk between the core 11 and the core 12 is measured, and then, the core 11 and the core 13 are optically connected using a connecting optical waveguide.
  • the magnitude of crosstalk between core 11 and core 12 and the magnitude of crosstalk between core 11 and core 13 are measured. It is possible to easily measure the magnitude of each crosstalk with the
  • a second measurement step S22 may be provided after the first measurement step S2.
  • the pulsed incident light L emitted from the OTDR 20 is made to enter from one end 17 of the core 13.
  • the OTDR 20 includes light generated by crosstalk of the incident light L from the core 13 to the core 11, and light incident from the core 13 to the core 11 via the second optical fiber 52, the core 12, and the first optical fiber 51.
  • the power of the emitted light emitted from one end 17 of the core 13 is measured, including the light generated by crosstalk of the light L from the core 11 to the core 13 and the pulsed light that is combined.
  • the OTDR 20 includes light generated by crosstalk from the core 12 to the core 11 while the incident light L propagates through the core 12 from one end 17 to the other end 18, and light that enters the core 11 via the first optical fiber 51.
  • the light generated by crosstalk of the incident light L from the core 11 to the core 12 and the pulsed light that is multiplexed are transmitted from one end 17 of the core 12 via the second optical fiber 52 and the core 13
  • the power of the emitted light emitted from one end 17 of 13 is measured.
  • the power of the emitted light measured in the first measurement step S2 and the power of the emitted light measured in the second measurement step S22 are used to Find the magnitude of crosstalk with.
  • the arrangement and number of cores of the multi-core fiber 10 may be different from those in the above embodiment.
  • a multi-core fiber was used as an example of an optical device in which waveguides are arranged in parallel, but the optical device of the present invention is not limited to a multi-core fiber.
  • an optical fiber cable in which multiple optical fibers are arranged in an array an optical fiber tape in which multiple optical fibers are arranged in a plane, and multiple bare optical fibers in one coating layer. It can be applied to multi-element fibers installed and crosstalk measurements of the entire transmission system.
  • the OTDR 20 measures at least one of light loss, reflection intensity, bending loss, and disconnection in the optical device such as the multi-core fiber 10. Further measurements may be taken.
  • the form of the fan-in-fan-out devices 30, 40 is not particularly limited. Further, the crosstalk measuring device 1 does not need to include at least one of the fan-in/fan-out devices 30 and 40.
  • the core of the multi-core fiber 10 and the core of the first optical fiber 51 or the core of the second optical fiber 52 are directly connected. Further, at least one of the first optical fiber 51 and the second optical fiber 52 may be made of a connected body of a plurality of optical fibers.
  • the slope of the power of the backscattered light measured by the OTDR 20 is approximately the same in the sections of the core 11, the core 12, the first optical fiber 51, and the like. This indicates that the loss of the incident light L per unit length due to backscattering is approximately the same in the sections of the core 11, the core 12, the first optical fiber 51, and the like. Therefore, in the above embodiment, when light of the same power is propagated through the core 11, the core 12, the first optical fiber 51, etc., the power of the backscattered light per unit length generated in each section is approximately the same. It's the size.
  • the power of the backscattered light per unit length generated in the first optical fiber 51 is It is preferable that the power of the backscattered light per unit length generated in each of the above is smaller than the power of backscattered light per unit length.
  • the first optical fiber 51 for example, a hollow core optical fiber having a hollow core can be mentioned.
  • the first optical fiber 51 may be an optical fiber in which the relative refractive index difference of the core of the first optical fiber 51 is smaller than that of the light propagating through the core of the multi-core fiber 10, and the effective cross-sectional area of the propagating light is larger. There may be.
  • FIG. 15 is a schematic diagram showing the measurement results of the OTDR 20 when a hollow core optical fiber is used as the first optical fiber 51 in FIG.
  • FIG. 15 is a schematic diagram of the measurement results when a two-core multicore fiber is used. As shown in FIG. 15, it can be seen that in the first optical fiber 51, almost no backscattered light is generated. Therefore, the ratio of the power of the crosstalk light to the power of the backscattered light increases, making it easier to detect the crosstalk light.
  • the power of the backscattered light per unit length generated in the second optical fiber 52 of the third to fifth embodiments is equal to the power of the backscattered light per unit length generated in each of the cores 11 to 13. It is preferable that the power is smaller than the power of backscattered light.
  • FIG. 16 is a diagram showing a modification of the crosstalk measuring device of the first embodiment.
  • the optical fibers 43 and 44 of the fan-in-fan-out device 40 are connected to the second optical fiber 52, and the other end 18 of the core 13 and the other end 18 of the core 14 are connected to the second optical fiber 52.
  • This embodiment differs from the first embodiment in that the two optical fibers are optically connected via the core of the second optical fiber 52.
  • the length of the second optical fiber 52 is the same as the length of the first optical fiber 51.
  • pulsed light is a combination of crosstalk light CL1 in which incident light crosstalks from core 11 to core 12 and crosstalk light CL1 in which incident light crosstalks from core 12 to core 11. was measured.
  • the crosstalk light CL1 that crosstalks from the core 11 to the core 12 includes light that crosstalks from the core 11 to the cores 13 and 14 and further crosstalks to the core 12.
  • the light that crosstalks from the core 12 to the core 11 includes the light that crosstalks from the core 12 to the cores 13 and 14 and the light that further crosstalks to the core 11.
  • the light that crosstalks from the core 11 to the cores 13 and 14 and does not further crosstalk to the core 12 is emitted from the other end 18. It will be done.
  • the light that has crosstalked from the core 11 to the core 13 the light that does not further crosstalk to the core 12 enters the core 14 via the second optical fiber 52, and Of the light that crosstalks to the core 12, the light that does not further crosstalk to the core 12 enters the core 13 via the second optical fiber 52.
  • the distance that light propagates from the other end 18 of the core 13 to the other end 18 of the core 14 is the same as the distance that light propagates from the other end 18 of the core 11 to the other end 18 of the core 12.
  • the timing at which the light enters the cores 14 and 13 via the second optical fiber 52 is approximately the same. With such a configuration, the light that crosstalks to the core 12 via the cores 13 and 14 is reflected in the crosstalk light CL1 on both the outward and return paths.
  • a crosstalk measuring method and a crosstalk measuring device that can easily measure crosstalk using the OTDR method, and It is expected that it will be used in fields such as

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

クロストーク測定方法は、コア11の他端18とコア12の他端18とを第1光ファイバ51のコアを介して光学的に接続する接続ステップS1と、OTDR20からパルス状の入射光Lをコア11の一端17から入射させ、入射光Lがコア11からコア12にクロストークすることで生じる光と、コア11からコア12に入射する入射光Lがコア12からコア11にクロストークすることで生じる光と、が合波したパルス状のクロストーク光CL1を含み、コア11の一端17から出射する出射光のパワーをOTDR20で測定する第1測定ステップS2と、測定された出射光のパワーを用いてコア11とコア12とのクロストークの大きさを求める処理ステップS3と、を備える。

Description

クロストーク測定方法、及びクロストーク測定装置
 本発明は、クロストーク測定方法、及びクロストーク測定装置に関する。
 近年の情報通信量の増大を受け、光ファイバの伝送容量の拡大が求められている。マルチコアファイバは、空間利用効率を高めることが可能で、限られたスペースで大容量の情報伝送が可能であるため注目されている。しかし、1つの光ファイバに複数のコアが配置されているため、シングルコアファイバに比べ、特性を評価することが大変である。そこで、効率よくマルチコアファイバを評価する技術が求められている。特に、クロストークの測定はマルチコアファイバでは重要な測定項目であり、シングルコアファイバの測定項目にはないため、新に測定機器等を準備する必要がある。
 クロストーク測定方法として、下記非特許文献に記載の方法が知られている。下記非特許文献1には、PM(Power Meter)法が示されている。PM法は、マルチコアファイバの所定のコアの一端から光を当該コアに光を入射させ、このコアとクロストークするコアの他端から出射する光のパワーを測定する方法である。下記非特許文献2,3には、OTDR(Optical Time Domain Reflectometer)法が記載されている。OTDR法では、多チャンネルOTDRを用いて、所定のコアに光を入射させ、当該光の後方散乱光が他のコアにクロストークする光を検出して、クロストークの測定を行っている。
[1] K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh and M. Koshiba, "An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction," IEICE TRAN. COMMUN., Vol.E94-B, No.2, 2011. [2] M. Ohashi, K. Kawazu, A. Nakamura, and Y. Miyoshi, "Simple backscattered power technique for measuring crosstalk of multi-core fibers," OptoElectronics and Communications Conference, Busan, South Korea, P1-25, 2012, DOI: https://doi.org/10.1109/OECC.2012.6276724 [3] M. Nakazawa, M. Yoshida, and T. Hirooka, "Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR," Optics Express, vol. 20, Issue 11, pp. 12530-12540, 2012
 PM法では、マルチコアファイバの一端から光を入射させて、他端から出射する光を受光する必要がある。これに対して、OTDR法では、マルチコアファイバの一端から光を入射させ、当該一端から出射する光を受光する。このため、OTDR法を用いてクロストークを測定したいとのニーズがある。しかし、非特許文献2,3に記載のクロストーク測定方法では、クロストークした後の光の後方散乱光を測定するため、測定する光のパワーが小さく、クロストークの測定がしづらい懸念がある。クロストークが小さいタイプのマルチコアファイバでは、更にクロストークの測定が困難である。しかし、上記のように、OTDR法を用いてクロストークの測定を行いたいというニーズがある。このようなニーズは、マルチコアファイバのみならず、クロストークが生じ得る複数の光導波路を有する光デバイスに対しても生じ得る。
 そこで、本発明はOTDR法を用いて、クロストークの測定を容易に行い得るクロストーク測定方法、及びクロストーク測定装置を提供することを目的とする。
 上記課題を解決するため、本発明の態様1は、一端及び他端を含み互いに並列される第1光導波路及び第2光導波路を有する光デバイスのクロストーク測定方法であって、前記第1光導波路の前記他端と前記第2光導波路の前記他端とを第1接続用光導波路を介して光学的に接続する接続ステップと、OTDRから出射するパルス状の入射光を前記第1光導波路の前記一端から入射させ、前記入射光が前記第1光導波路から前記第2光導波路にクロストークすることで生じる光と、前記第1接続用光導波路を介して、前記第1光導波路から前記第2光導波路に入射する前記入射光が前記第2光導波路から前記第1光導波路にクロストークすることで生じる光と、が合波したパルス状の光を含み、前記第1光導波路の前記一端から出射する出射光のパワーを前記OTDRで測定する第1測定ステップと、測定された前記出射光のパワーを用いて前記第1光導波路と前記第2光導波路とのクロストークの大きさを求める処理ステップと、を備えることを特徴とするクロストーク測定方法である。
 第1光導波路の一端から他端に伝搬するパルス状の入射光は、第1光導波路から第2光導波路にクロストークしながら伝搬する。従って、第1光導波路から第2光導波路にクロストークするクロストーク光もパルス状となり、入射光と概ね並走しながら第2光導波路の一端側から他端に伝搬する。第1光導波路の他端に到達する入射光は第1接続用光導波路に入射する。また、第2光導波路の一端側から伝搬して第2光導波路の他端に到達するパルス状のクロストーク光は第1接続用光導波路に入射光と反対側から入射する。光デバイス内における光の速度は一定であるため、入射光の伝搬速度とクロストーク光の伝搬速度とは互いに等しい。従って、入射光とクロストーク光とがそれぞれ概ね同時に第1光導波路及び第2光導波路の他端に到達し、当該入射光と当該クロストーク光とは、第1接続用光導波路の概ね中点ですれ違う。そして、入射光は第2光導波路の他端から第2光導波路に入射し、クロストーク光は第1光導波路の他端から第1光導波路に入射する。このとき、第2光導波路に入射光が入射するタイミングと、第1光導波路にクロストーク光が入射するタイミングとは、概ね同じタイミングである。このため、クロストーク光は、第2光導波路を他端から一端に伝搬する入射光と概ね並走しながら、第1光導波路を他端から一端に伝搬する。この間にも、第2光導波路を伝搬する入射光は第1光導波路にクロストークしながら伝搬する。従って、第2光導波路から第1光導波路にクロストークする光が、第1導波を伝搬するクロストーク光に合波する。合波した光は、パルス状であり、第1光導波路の一端から出射する出射光は、クロストークにより生じたパルス状の光を含む。第1光導波路から出射する光がOTDRで受光され、出射光のパワーが測定される。この測定された出射光のパワーが用いられて、第1光導波路と第2光導波路とのクロストークの大きさが求められる。
 このように、本態様のクロストーク測定方法によれば、OTDRを用いて光導波路に入射する光が他の光導波路にクロストークする光を用いるため、特許文献2,3のようにクロストークした光の後方散乱光を検出する場合と比べて、クロストークする光のパワーが大きい。さらに、本態様のクロストーク測定方法では、入射光が第1光導波路の一端から他端に伝搬する際のクロストーク光と、入射光が第2光導波路の他端から一端に伝搬する際のクロストーク光とが合波されるため、クロストークにより生じるパルス状の光のパワーが大きい傾向にある。従って、本態様のクロストーク測定方法によれば、クロストークの測定を容易に行い得る。
 本発明の態様2は、前記第1接続用光導波路の長さは、前記入射光の半値幅よりも長いことを特徴とする態様1のクロストーク測定方法である。
 上記のように、入射光とクロストーク光とは、第1接続用光導波路の概ね中点ですれ違う。このため、OTDRでは、クロストークにより生じるパルス状の光が第1接続用光導波路の概ね中点で生じたように見える。また、入射光のパルス幅とクロストーク光のパルス幅は概ね同じである。したがって、本態様のクロストーク測定方法によれば、第1接続用光導波路の端部における反射等のノイズがパルス状のクロストーク光を含む出射光に影響することを抑制することができ、クロストークをより正確に測定できる。
 本発明の態様3は、前記OTDRから出射するパルス状の入射光を前記第2光導波路の一端から入射させ、当該入射光が前記第2光導波路から前記第1光導波路にクロストークすることで生じる光と、前記第1接続用光導波路を介して、前記第2光導波路から前記第1光導波路に入射する前記入射光が前記第1光導波路から前記第2光導波路にクロストークすることで生じる光と、が合波したパルス状の光を含み、前記第2光導波路の前記一端から出射する出射光のパワーを前記OTDRで測定する第2測定ステップを更に備え、前記処理ステップでは、前記第1測定ステップで測定した前記出射光のパワー及び前記第2測定ステップで測定した前記出射光のパワーを用いて前記第1光導波路と前記第2光導波路との前記クロストークの大きさを求めることを特徴とする態様1または2のクロストーク測定方法である。
 この場合、第1光導波路から第2光導波路に入射光を伝搬させることで生じるクロストーク光、及び第2光導波路から第1光導波路に入射光を伝搬させることで生じるクロストーク光を用いるため、第1光導波路から第2光導波路に入射光を伝搬させることで生じるクロストーク光のみを用いる場合と比べて、誤差を抑制でき、クロストークをより正確に求め得る。
 本発明の態様4は、前記処理ステップでは、前記第1測定ステップで測定した前記出射光のパワーと、前記第2測定ステップで測定した前記出射光のパワーとを平均化した結果を用いて、前記第1光導波路と前記第2光導波路との前記クロストークの大きさを求めることを特徴とする態様3のクロストーク測定方法である。
 このような平均化処理を用いることで、クロストークの大きさを容易に正確に求め得る。
 本発明の態様5は、前記入射光の波長幅が1nm以上であることを特徴とする態様1から4のいずれかのクロストーク測定方法である。
 この場合、OTDRで測定される出射光のパワーの誤差を小さくし得る。
 本発明の態様6は、前記OTDRと前記第1光導波路との間、前記第1光導波路と前記第1接続用光導波路との間、及び前記第1接続用光導波路と前記第2光導波路との間は、ファン・イン-ファン・アウトデバイスにより、光学的に接続され、前記処理ステップでは、前記ファン・イン-ファン・アウトデバイスでのクロストークの大きさを取り除き、前記第1光導波路と前記第2光導波路との前記クロストークの大きさを求めることを特徴とする態様1から5のいずれかのクロストーク測定方法である。
 この場合、ファン・イン-ファン・アウトデバイスが用いられる場合における当該デバイスでのクロストークの影響を抑制し得、クロストークをより正確に求め得る。
 本発明の態様7は、前記光デバイスは、前記第1光導波路と並列される第3光導波路を更に有し、前記処理ステップでは、求められた前記第1光導波路と前記第2光導波路とのクロストークの大きさに基づいて、前記第1光導波路と前記第3光導波路とのクロストークの大きさを更に求めることを特徴とする態様1から6のいずれかのクロストーク測定方法である。
 この場合、第1光導波路と第3光導波路とのクロストークによる光のパワーを測定せずとも、第1光導波路と第3光導波路とのクロストークの大きさを容易に求めることができる。なお、この場合、例えば、第1光導波路と第2光導波路とのクロストークの大きさと第1光導波路と第3光導波路とのクロストークの大きさとの関係を示す関係式を用いて、第1光導波路と第3光導波路とのクロストークの大きさを求める。
 本発明の態様8は、前記光デバイスは、前記第1光導波路と並列される第3光導波路を更に有し、前記接続ステップでは、更に、前記第1光導波路の前記他端と前記第3光導波路の他端とを前記第1接続用光導波路と異なる長さの第2接続用光導波路を介して光学的に接続し、前記第1測定ステップでは、前記入射光が前記第1光導波路から前記第3光導波路にクロストークすることで生じる光と、前記第2接続用光導波路を介して前記第1光導波路から前記第3光導波路に入射する前記入射光が前記第3光導波路から前記第1光導波路にクロストークすることで生じる光と、が合波したパルス状の光を含み、前記第1光導波路の前記一端から出射する出射光のパワーを前記OTDRで更に測定し、前記処理ステップでは、前記第1光導波路と前記第3光導波路との間のクロストークにより生じるパルス状の光を含む前記出射光のパワーを用いて前記第1光導波路と前記第3光導波路とのクロストークの大きさを更に求めることを特徴とする態様1から6のいずれかのクロストーク測定方法である。
 この場合、態様1で説明したように第1光導波路と第2光導波路間にクロストークが生じ、当該クロストークによるパルス状の光を含む出射光が第1光導波路の一端から出射する。更に、本態様では、第1光導波路と第3光導波路間にクロストークが生じ、当該クロストークによるパルス状の光を含む出射光が第1光導波路の一端から出射する。このとき、第1接続用光導波路と第2接続用光導波路とが異なる長さであるため、第1光導波路と第2光導波路とのクロストークによるパルス状の光と、第1光導波路と第3光導波路とのクロストークによるパルス状の光とが、異なるタイミングで第1光導波路の一端から出射する。従って、第1光導波路と第2光導波路間のクロストークによるパルス状の光を含む出射光と、第1光導波路と第3光導波路間のクロストークによるパルス状の光を含む出射光とをOTDRでそれぞれ受光して、それぞれの出射光のパワーを測定でき、それぞれのクロストークの大きさを求めることができる。従って、態様1のように第1光導波路と第2光導波路とのクロストークを測定した後に、第1光導波路と第3光導波路とを接続用光導波路で光学的に接続して、第1光導波路の一端から再び入射光を入射して、第1光導波路と第3光導波路とのクロストークを測定する場合と比べて、第1光導波路と第2光導波路とのクロストーク、及び第1光導波路と第3光導波路とのクロストークのそれぞれを容易に測定することができる。
 なお、態様8において、前記第1接続用光導波路の長さと前記第2接続用光導波路の長さとの差は、前記入射光の半値幅よりも大きいことが好ましい。
 この場合、第1光導波路と第2光導波路とのクロストークによるパルス状の光と、第1光導波路と第3光導波路とのクロストークによるパルス状の光との干渉を抑制することができ、クロストークの大きさをより正確に測定することができる。
 本発明の態様9は、前記光デバイスは、前記第2光導波路と並列される第3光導波路を更に有し、前記接続ステップでは、更に、前記第2光導波路の一端と前記第3光導波路の一端とを第2接続用光導波路を介して光学的に接続し、前記第1測定ステップでは、前記第1接続用光導波路を介して前記第1光導波路から前記第2光導波路に入射する前記入射光が前記第2光導波路から前記第3光導波路にクロストークすることで生じる光と、前記第2接続用光導波路を介して前記第2光導波路から前記第3光導波路に入射する前記入射光が前記第3光導波路から前記第2光導波路にクロストークすることで生じる光と、が合波したパルス状の光を含み、前記第1接続用光導波路及び前記第1光導波路を介して前記第1光導波路の前記一端から出射する出射光のパワーを前記OTDRで更に測定し、前記処理ステップでは、前記第2光導波路と前記第3光導波路との間のクロストークにより生じるパルス状の光を含む前記出射光のパワーを用いて前記第2光導波路と前記第3光導波路とのクロストークの大きさを更に求めることを特徴とする態様1,2,5,6のいずれかのクロストーク測定方法である。
 この場合、態様1で説明したように第1光導波路と第2光導波路間にクロストークが生じ、当該クロストークによるパルス状の光を含む出射光が第1光導波路の一端から出射する。更に、本態様では、第1光導波路及び第1接続用光導波路を介して、第2光導波路の他端から第2光導波路に入射するパルス状の入射光は、第2光導波路から第3光導波路にクロストークしながら伝搬する。従って、第2光導波路から第3光導波路にクロストークするクロストーク光もパルス状となり、入射光と概ね並走しながら第3光導波路の他端側から一端に伝搬する。第2光導波路の一端に到達する入射光は第2接続用光導波路に入射する。また、第3光導波路の一端に到達するクロストーク光は第2接続用光導波路に入射光と反対側から入射する。上記のように入射光の伝搬速度とクロストーク光の伝搬速度とは互いに等しいため、概ね同時に一端に到達する入射光とクロストーク光とは、第2接続用光導波路の概ね中点ですれ違う。そして、入射光は第3光導波路の一端から第3光導波路に入射し、クロストーク光は第2光導波路の一端から第2光導波路に入射する。このとき、第3光導波路に入射光が入射するタイミングと、第2光導波路にクロストーク光が入射するタイミングとは、概ね同じである。このため、クロストーク光は、第3光導波路を一端から他端に伝搬する入射光と概ね並走しながら、第2光導波路を一端から他端側に伝搬する。この間にも、第3光導波路を伝搬する入射光は第2光導波路にクロストークしながら伝搬する。従って、第3光導波路から第2光導波路にクロストークする光が、第2導波を伝搬するクロストーク光に合波する。合波した光は、パルス状であり、第1接続用光導波路及び第1光導波路を介して、第1光導波路の一端から出射する出射光は、第2光導波路と第3光導波路との間のクロストークにより生じたパルス状の光を含む。第1光導波路から出射する出射光がOTDRで受光され、この出射光のパワーが測定される。
 このとき、第1光導波路と第2光導波路とのクロストークによるパルス状の光と、第2光導波路と第3光導波路とのクロストークによるパルス状の光とが、異なるタイミングで第1光導波路の一端から出射する。従って、第1光導波路と第2光導波路間のクロストークによる光を含む出射光と、第2光導波路と第3光導波路間のクロストークによる光を含む出射光とをOTDRでそれぞれ受光して、それぞれの出射光のパワーを測定でき、それぞれのクロストークの大きさを求めることができる。このため、態様1のように第1光導波路と第2光導波路とのクロストークを測定した後に、第2光導波路の他端と第3光導波路の他端とを接続用光導波路で光学的に接続して、第2光導波路の一端から再び入射光を入射して、第2光導波路と第3光導波路とのクロストークを測定する場合と比べて、第1光導波路と第2光導波路とのクロストーク、及び第2光導波路と第3光導波路とのクロストークのそれぞれを容易に測定することができる。
 本発明の態様10は、前記光デバイスは、前記第1光導波路と並列される第3光導波路を更に有し、前記接続ステップでは、更に、前記第2光導波路の一端と前記第3光導波路の他端とを第2接続用光導波路を介して光学的に接続し、前記第1測定ステップでは、前記OTDRから前記第1光導波路に入射する前記入射光が前記第1光導波路から前記第3光導波路にクロストークすることで生じる光と、前記第1接続用光導波路、前記第2光導波路、及び前記第2接続用光導波路を介して、前記第1光導波路から前記第3光導波路に入射する前記入射光が前記第3光導波路から前記第1光導波路にクロストークすることで生じる光と、が合波したパルス状の光を含み、前記第1光導波路の前記一端から出射する出射光のパワーを前記OTDRで更に測定し、前記処理ステップでは、前記第1光導波路と前記第3光導波路との間のクロストークにより生じるパルス状の光を含む前記出射光のパワーを用いて前記第1光導波路と前記第3光導波路とのクロストークの大きさを更に求めることを特徴とする態様1,2,5,6のいずれかのクロストーク測定方法である。
 この場合、態様1で説明したように第1光導波路と第2光導波路間にクロストークが生じ、当該クロストークによるパルス状の光を含む出射光が第1光導波路の一端から出射する。更に、本態様では、第1光導波路を伝搬する入射光は、第1光導波路から第3光導波路にクロストークしながら伝搬し、第1光導波路から第3光導波路にクロストークするクロストーク光もパルス状となり、第1光導波路を伝搬する入射光と概ね並走しながら第3光導波路の一端側から他端に伝搬する。第1光導波路の他端に到達する入射光は、第1接続用光導波路に入射する。第3光導波路の他端に到達するクロストーク光は第2接続用光導波路に入射する。上記のように入射光の伝搬速度とクロストーク光の伝搬速度とは互いに等しいため、入射光とクロストーク光とは、第1接続用光導波路、第2光導波路、及び第2接続用光導波路を合わせた光導波路の概ね中点ですれ違う。そして、入射光は第2接続用光導波路を介して第3光導波路の他端から第3光導波路に入射し、クロストーク光は第1接続用光導波路を介して第1光導波路の他端から第1光導波路に入射する。このとき、第3光導波路に入射光が入射するタイミングと、第1光導波路にクロストーク光が入射するタイミングとは、概ね同じである。このため、クロストーク光は、第3光導波路を他端から一端に伝搬する入射光と概ね並走しながら、第1光導波路を他端から一端に伝搬する。この間にも、第3光導波路を伝搬する入射光は第1光導波路にクロストークしながら伝搬する。従って、第3光導波路から第1光導波路にクロストークする光が、第1光導波路を伝搬するクロストーク光に合波する。合波した光は、パルス状であり、第1光導波路の一端から出射する出射光は、第1光導波路と第3光導波路との間のクロストークにより生じたパルス状の光を含む。第1光導波路から出射する光がOTDRで受光され、この出射光のパワーが測定される。
 このとき、第1光導波路と第2光導波路とのクロストークによるパルス状の光と、第1光導波路と第3光導波路とのクロストークによるパルス状の光とが、異なるタイミングで第1光導波路の一端から出射する。従って、第1光導波路と第2光導波路間のクロストークによる光を含む出射光と、第1光導波路と第3光導波路間のクロストークによる光を含む出射光とをOTDRでそれぞれ受光して、それぞれの出射光のパワーを測定でき、それぞれのクロストークの大きさを求めることができる。このため、態様1のように第1光導波路と第2光導波路とのクロストークを測定した後に、第1光導波路の他端と第3光導波路の他端とを接続用光導波路で光学的に接続して、第1光導波路の一端から再び入射光を入射して、第1光導波路と第3光導波路とのクロストークを測定する場合と比べて、第1光導波路と第2光導波路とのクロストーク、及び第1光導波路と第3光導波路とのクロストークのそれぞれを容易に測定することができる。
 本発明の態様11は、前記第1測定ステップにおいて、前記OTDRにより、前記光デバイスにおける光の損失、反射強度、曲げ損失、及び断線の少なくとも1つを更に測定することを特徴とする態様1から態様10のいずれかのクロストーク測定方法である。
 この場合、クロストークの測定に加えて、上記の測定を並行して行うことができるため、クロストーク以外の測定の手間を抑制することができる。
 本発明の態様12は、前記第1光導波路、前記第2光導波路、及び前記第1接続用光導波路に同じパワーの光を伝搬させる場合に、前記第1接続用光導波路で生じる単位長さ当たりの後方散乱光のパワーは、前記第1光導波路及び前記第2光導波路のそれぞれで生じる単位長さ当たりの後方散乱光のパワーよりも小さいことを特徴とする態様1から11のいずれかのクロストーク測定方法である。
 第1接続用光導波路において、後方散乱光のパワーが小さいことで、後方散乱光のパワーに対するクロストーク光のパワーの比が大きくなり、クロストーク光を検出し易くすることができる。
 本発明の態様13は、一端及び他端を含み互いに並列される第1光導波路及び第2光導波路を有する光デバイスのクロストーク測定装置であって、前記第1光導波路の前記他端と前記第2光導波路の前記他端とを光学的に接続する第1接続用光導波路と、パルス状の入射光を前記第1光導波路の前記一端から入射させ、前記入射光が前記第1光導波路から前記第2光導波路にクロストークすることで生じる光と、前記第1接続用光導波路を介して、前記第1光導波路から前記第2光導波路に入射する前記入射光が前記第2光導波路から前記第1光導波路にクロストークすることで生じる光と、が合波したパルス状の光を含み、前記第1光導波路の前記一端から出射する出射光のパワーを測定するOTDRと、測定された前記出射光のパワーを用いて前記第1光導波路と前記第2光導波路とのクロストークの大きさを求める処理部と、を備えることを特徴とするクロストーク測定装置である。
 本態様のクロストーク測定装置によれば、OTDRを用いて光導波路に入射する光が他の光導波路にクロストークする光を用いるため、特許文献2,3のようにクロストークした光の後方散乱光を検出する場合と比べて、クロストークする光のパワーが大きい。さらに、本態様のクロストーク測定装置では、入射光が第1光導波路の一端から他端に伝搬する際のクロストーク光と、入射光が第2光導波路の他端から一端に伝搬する際のクロストーク光とが合波されるため、クロストークにより生じるパルス状の光のパワーが大きい傾向にある。従って、本態様のクロストーク測定装置によれば、クロストークの測定を容易に行い得る。
 以上のように、本発明によれば、OTDR法を用いて、クロストークの測定を容易に行い得るクロストーク測定方法、及びクロストーク測定装置が提供される。
本発明の第1実施形態に係るマルチコアファイバの長手方向に垂直な断面を示す図である。 第1実施形態におけるクロストーク測定装置を示す図である。 本発明の第1実施形態におけるクロストーク測定方法の手順を示すフローチャートである。 図3のクロストーク測定装置における光の伝搬の様子を示す図である。 OTDRでの測定結果を示す図である。 図5の一部の拡大図である。 マルチコアファイバの長さを変化させた場合のOTDRで測定されるクロストーク光のパワーを示す図である。 第1実施形態で測定されるクロストーク光のパワーとPM法で測定されるクロストーク光のパワーとの関係を示す図である。 本発明の第2実施形態におけるクロストーク測定方法の手順を示すフローチャートである。 第2実施形態の第2測定ステップにおけるクロストーク測定装置の様子を示す図である。 本発明の第3実施形態におけるクロストーク測定装置を示す図である。 第3実施形態におけるOTDRでの測定結果を示す図である。 本発明の第4実施形態におけるクロストーク測定装置を示す図である。 本発明の第5実施形態におけるクロストーク測定装置を示す図である。 図4において、第1光ファイバとして中空コア光ファイバを用いた場合におけるOTDRでの測定結果を示す図である。 第1実施形態のクロストーク測定装置の変形例を示す図である。
 以下、本発明に係るクロストーク測定方法、及びクロストーク測定装置を実施するための形態が添付図面とともに例示される。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、以下の実施形態から変更、改良することができる。なお、以下で参照する図面では、理解を容易にするために、各部材の寸法を変えて示す場合がある。
 (第1実施形態)
 図1は、本実施形態のマルチコアファイバの長手方向に垂直な断面を示す図である。マルチコアファイバ10は、光の伝搬が可能な複数のコア11~14と、それぞれのコア11~14の外周面を囲うクラッド15と、を有する。なお、クラッド15の外周面が樹脂から成る被覆層で囲われてもよい。
 それぞれのコア11~14は、一端及び他端を有しており、マルチコアファイバ10の長手方向に沿って、互いに並列している。コア11~14の屈折率は、クラッド15の屈折率よりも高く、それぞれのコア11~14は光の伝搬が可能である。このため、それぞれのコア11~14は、第1光導波路~第4光導波路と解することができ、マルチコアファイバ10は、互いに並列される複数の光導波路を有する光デバイスである。
 本実施形態では、コア11~14はゲルマニウム(Ge)等の屈折率が高くなるドーパントが添加されたシリカガラスから成り、クラッド15は何ら添加物の無いシリカガラスから成る。なお、例えば、コア11~14は何ら添加物の無いシリカガラスから成り、クラッド15はフッ素(F)等の屈折率が低くなるドーパントが添加されたシリカガラスから成ってもよく、コア11~14は屈折率が高くなるドーパントが添加されたシリカガラスから成り、クラッド15は屈折率が低くなるドーパントが添加されたシリカガラスから成っていてもよい。また、屈折率が高くなるドーパント及び屈折率が低くなるドーパントは特に制限されるものではない。
 次に、本実施形態の光デバイスにおけるクロストーク測定装置について説明する。図2は、本実施形態におけるクロストーク測定装置を示す図である。図2に示すように本実施形態のクロストーク測定装置1は、OTDR20と、処理部25と、第1光ファイバ51と、を主な構成として備え、マルチコアファイバ10におけるクロストークを測定する。マルチコアファイバ10は、一端17及び他端18を有する。なお、以下の説明において、一端17及び他端18をコア11~14の一端17及び他端18としても説明する場合がある。
 OTDR20は、光ファイバ等に接続されて用いられ、パルス状の光を出射し、マルチコアファイバ10から入射する光のパワーの測定、及びパルス状の光を出射してから測定される光が入射するまでの時間の測定を行うことができ、光ファイバ等の伝送損失や曲げ損失、接続損失等といった光の損失測定、光ファイバ等の断線箇所の検出、光の反射量等を測定することができる機器である。本実施形態では、OTDR20にファン・イン-ファン・アウトデバイス30が接続されている。
 ファン・イン-ファン・アウトデバイス30は、マルチコアファイバ10の一端17においてコア11~14と個別に光学的に接続可能な不図示の複数の光導波路と、それぞれの光導波路に個別に光学的に接続されているコアを含む光ファイバ31~34と、を有する。本例では、OTDR20に光ファイバ31のコアが接続されている。また、本例では、光ファイバ31のコアに接続される光導波路がマルチコアファイバ10のコア11に接続されている。従って、光ファイバ31とコア11とは、光学的に接続されており、OTDR20から出射する光はコア11に入射する。
 マルチコアファイバ10の他端18には、ファン・イン-ファン・アウトデバイス40が接続されている。ファン・イン-ファン・アウトデバイス40は、ファン・イン-ファン・アウトデバイス30と同様の構成であり、マルチコアファイバ10のコア11~14と個別に光学的に接続可能な不図示の複数の光導波路に光ファイバ41~44のコアが個別に光学的に接続されている。本例ではコア11と光ファイバ41のコアとが光学的に接続されており、コア12と光ファイバ42のコアとが光学的に接続されている。
 第1光ファイバ51は、シングルコアファイバであり、例えばシングルモードファイバである。第1光ファイバ51の一方の端部には、光ファイバ41が接続され、第1光ファイバ51の他方の端部には、光ファイバ42が接続されている。従って、光ファイバ41のコアと光ファイバ42のコアとは、第1光ファイバ51のコアを介して光学的に接続されている。第1光ファイバ51のコアは、コア11である第1光導波路の他端とコア12である第2光導波路の他端とを光学的に接続する第1接続用導波路と解することができる。
 OTDR20には、処理部25が接続されており、OTDR20が受光する光のパワーに係るデータが処理部25に出力される。処理部25は、OTDR20が測定する光のパワーを用いて、クロストークの大きさを求める演算装置である。処理部25は、例えば、マイクロコントローラ、IC(Integrated Circuit)、LSI(Large-scale Integrated Circuit)、ASIC(Application Specific Integrated Circuit)などの集積回路やNC(Numerical Control)装置を用いることができる。また、処理部25は、NC装置を用いた場合、機械学習器を用いたものであってもよく、機械学習器を用いないものであってもよい。処理部25は、OTDR20から光のパワーに係るデータが入力すると、このデータに基づいて、後述のように、コア11とコア12とのクロストークの大きさを求めて、求めたクロストークの大きさに係るデータを出力する。なお、処理部25とOTDR20とが1つの筐体内に入れられ、部品の一部が共用されてもよい。
 次に、本実施形態の光デバイスにおけるクロストーク測定方法について説明する。図3は、本実施形態におけるクロストーク測定方法の手順を示すフローチャートである。図3に示すように、本実施形態のクロストーク測定方法は、接続ステップS1と、第1測定ステップS2と、処理ステップS3と、を備える。
 (接続ステップS1)
 本ステップに先立ち、被測定光デバイスとしてのマルチコアファイバ10を準備し、クロストーク測定装置1にセットする。マルチコアファイバ10の長さは、例えば21kmである。このとき、本ステップでは、コア11の他端18とコア12の他端18とを第1光ファイバ51のコアを介して光学的に接続する。第1光ファイバ51の長さは、例えば10kmである。具体的には、ファン・イン-ファン・アウトデバイス40における光ファイバ41と接続される導波路をマルチコアファイバ10のコア11に接続し、光ファイバ42と接続される導波路をコア12に接続する。従って、本ステップでは、第1光導波路の他端と第2光導波路の他端とを第1接続用光導波路を介して光学的に接続し、本ステップの後に、コア11の一端17から光が入射する場合、当該光は、第1光ファイバ51のコアを介してコア12の他端18からコア12に入射する。
 また、OTDR20とコア11とを光学的に接続する。具体的には、ファン・イン-ファン・アウトデバイス30における光ファイバ31と接続される導波路をマルチコアファイバ10のコア11に接続する。従って、OTDR20から出射する光はコア11の一端17からコア11に入射する。
 このように、マルチコアファイバ10のコア11とOTDR20とが光学的に接続され、コア11とコア12とが第1光ファイバ51のコアを介して光学的に接続された状態が図2に示す状態である。
 (第1測定ステップS2)
 本ステップでは、OTDR20から出射するパルス状の入射光を第1光導波路であるコア11の一端17から入射させ、入射光がコア11から第2光導波路であるコア12にクロストークすることで生じる光と、第1接続用光導波路である第1光ファイバ51のコアを介して、コア11からコア12に入射する入射光がコア12からコア11にクロストークすることで生じる光と、が合波したパルス状の光を含み、コア11の一端17から出射する出射光のパワーをOTDR20で測定する。
 図4は、図3のクロストーク測定装置における光の伝搬の様子を示す図である。本図を用いて、上記を具体的に説明する。なお、図3では、ファン・イン-ファン・アウトデバイス30,40は簡略化して記載されている。まず、OTDR20からパルス状の光を出射する。この光の波長幅は、1nm以上であることが、後述のクロストーク測定を安定して行い得る観点から好ましく、3nm以上であることがより好ましく、5nm以上であることがさらに好ましい。また、この光の波長幅は、30nm以下であることが、ある特定の波長でクロストークを測定するという観点から好ましい。また、OTDR20から出射する光のパワーは、後述のクロストーク光を含む出射光が飽和しないよう適宜パルス幅が調整されることが好ましい。この場合、OTDR20と光ファイバ31との間にアッテネータを介在させてもよい。
 OTDR20から出射するパルス状の光は、入射光として、コア11の一端17からコア11に入射し、コア11を一端17から他端18に伝搬する。コア11を伝搬するパルス状の入射光は、コア11からコア12にクロストークしながら伝搬する。入射光がパルス状であるため、コア11からコア12にクロストークするクロストーク光CL1もパルス状となり、入射光Lと概ね並走しながらコア12の一端17側から他端18に伝搬する。この間、コア11からコア12にクロストークするため、入射光Lのパワーは、コア11を伝搬する距離に応じて低下し、クロストーク光CL1のパワーは、コア12を伝搬する距離に応じて増加する。コア11及びコア12を伝搬する光の速度は同じであるため、入射光Lとクロストーク光CL1とは概ね同時に他端18に達する。
 次に、入射光Lとクロストーク光CL1とは、ファン・イン-ファン・アウトデバイス40を介して、概ね同時に第1光ファイバ51のコアに入射する。このとき、クロストーク光CL1は、第1光ファイバ51のコアに入射光Lが入射する側と反対側から入射する。第1光ファイバ51のコアに入射する入射光Lとクロストーク光CL1とは、第1光ファイバ51の概ね中点ですれ違う。入射光Lとクロストーク光CL1とは、第1光ファイバ51の互いに異なる端部にそれぞれ概ね同時に達する。そして、ファン・イン-ファン・アウトデバイス40を介して、入射光Lは、コア12の他端18からコア12に入射し、クロストーク光CL1は、コア11の他端18からコア11に入射する。このとき、入射光Lとクロストーク光CL1とは、概ね同時にコア12,11にそれぞれ入射する。なお、ファン・イン-ファン・アウトデバイス40における光ファイバ41と43との長さが異なる場合であっても、入射光Lとクロストーク光CL1とは、概ね同時にコア12,11にそれぞれ入射する。
 コア12に入射した入射光Lと、コア11に入射したクロストーク光CL1とは、概ね並走しながら、それぞれのコア12,11を一端17に向かって伝搬する。この間にも、コア12を伝搬する入射光Lはコア11にクロストークしながら伝搬する。従って、コア12からコア11にクロストークする光が、コア11を伝搬するクロストーク光CL1に合波する。合波した光は、パルス状であり、徐々にパワーを増しながら伝搬する。コア11の一端17からは、パルス状のクロストーク光CL1に後方散乱光等の光が合波した出射光が出射する。従って、出射光は、パルス状のクロストーク光CL1を含む。
 コア11から出射する出射光は、ファン・イン-ファン・アウトデバイス30を介してOTDR20に入射し、OTDR20で受光され、OTDR20でそのパワーが測定される。
 図5は、OTDR20で受光される出射光の測定結果を示す図である。図5において、横軸は、入射光Lの伝搬距離を示し、縦軸は、OTDR20が受光する出射光のパワーを示す。なお、図5の縦軸は、出射光のパワーが、OTDR20に定められる所定のパワーに対する比としてデシベルで示している。例えば、この所定のパワーが1mWであれば、縦軸の単位はdBmで示されてもよい。図5に示すように、コア11を入射光Lが伝搬する区間、及びコア12を入射光Lが伝搬する区間では、後方散乱光が出射光として測定されている。これら区間における出射光を示す線の傾きは、後方散乱による単位長さ当たりの入射光Lの損失を示す。また、コア11の区間と第1光ファイバ51の区間との境界、及び第1光ファイバ51の区間とコア12の区間との境界において、パルス状の光が測定されているが、この光は、ファン・イン-ファン・アウトデバイス40等における反射を示している。
 第1光ファイバ51を示す区間の概ね中点において、パルス状の光が測定されている。上記のように、入射光Lとクロストーク光CL1とは、第1光ファイバ51の概ね中点ですれ違うため、このパルス状の光が、クロストーク光CL1を示している。また、第1光ファイバ51を入射光Lが伝搬する区間においても、後方散乱光が出射光として測定されている。従って、第1光ファイバ51の概ね中点で測定される出射光のパワーには、クロストーク光CL1のパワーと後方散乱光のパワーとが含まれている。
 このように第1光ファイバ51を示す区間の概ね中点において、クロストーク光CL1のパワーを示すパルスが示されている。入射光Lのパルス幅とクロストーク光CL1のパルス幅とは概ね同じである。従って、クロストーク光CL1を示すパルスが第1光ファイバ51の端部にかからない様にするため、第1接続用光導波路である第1光ファイバ51のコアの長さは、入射光Lの半値幅よりも長いことが好ましい。つまり、第1光ファイバ51の長さをLSCFとし、入射光Lの半値時間幅をΔTpulseとし、第1光ファイバ51のコアの屈折率をnとし、高速をcとする場合、次の式を満たすことが好ましい。
SCF>ΔTpulse×c/n
 なお、下記式を満たすことが、第1光ファイバ51の端部の影響がパルスに及ぶことをより抑制する観点からより好ましい。
SCF>1.2×ΔTpulse×c/n
 OTDR20は、測定した出射光のパワーに係るデータを処理部25に出力する。
 (処理ステップS3)
 本ステップでは、測定された出射光のパワーを用いてコア11とコア12とのクロストークの大きさを求める。図6は、図5における第1光ファイバ51の概ね中点で測定される出射光の拡大図である。上記のように第1光ファイバ51でも後方散乱光が生じている。従って、パルス状の光が示される領域以外の領域では、この後方散乱光のパワーが測定されている。そこで、処理部25は、まず、OTDR20から入力するデータに基づいて、クロストーク光CL1を含むパルス状の光が示される領域以外の領域における出射光のパワーから、パルス状の光が示される領域における後方散乱光のパワーPBSを求める。具体的には、処理部25は、パルス状の光が示される領域以外の領域における出射光のパワーを例えば直線近似して、後方散乱光のパワーPBSを求める。次に、処理部25は、パルス状の光が示される領域の出射光のパワーPOUTと求めた後方散乱光のパワーPBSとの差を求める。この差がパルス状の光のパワーとなる。ただし、このパルス状の光のパワーには、クロストーク光CL1のパワーPXT_MCFとファン・イン-ファン・アウトデバイス30,40におけるクロストークのパワーPXT_FIFOとが含まれている。パワーPXT_FIFOが無視できるくらい小さい場合、パルス状の光のパワーをクロストーク光CL1のパワーPXT-MCFとすればよい。ただし、このパルス状の光のパワーからパワーPXT_FIFOを取り除いたパワーをクロストーク光CL1のパワーPXT_MCFとすることが、より正確にパワーPXT_MCFを求める観点から好ましい。
 パワーPXT_FIFOは、事前に測定することができる。例えば、クロストーク測定装置1において、ファン・イン-ファン・アウトデバイス30とファン・イン-ファン・アウトデバイス40とを直接接続する。こうすることで、マルチコアファイバ10の長さが0の状態になり、上記の第1測定ステップS2と同様にして、出射光のパワーを測定すると、第1光ファイバ51の概ね中点に測定されるパルス状の光のパワーPOUTには、パワーPXT_FIFOとパワーPBSとが含まれる。そこで、上記と同様にして、パワーPOUTとパワーPBSとの差を求めることで、パワーPXT_FIFOを求めることができる。
 処理部25は、求めたクロストーク光CL1のパワーPXT_MCFをクロストークの大きさに変換して出力する。このとき、処理部25は、クロストークの大きさをコア12の一端17から出射する入射光Lのパワーの比を示すデシベルに換算して、出力してもよい。また、処理部25は、図5、図6に示すOTDR20に定められる所定のパワーに対する比を示すデシベル換算して出力してもよい。こうして、クロストークの大きさが求められる。
 なお、本ステップにおいて、処理部25は、求められたコア11とコア12とのクロストークの大きさに基づいて、例えば、コア11とコア13とのクロストークの大きさを更に求めてもよい。この場合、処理部25は、コア11とコア12とのクロストークの大きさに基づいて、例えば、コア11とコア12とのクロストークの大きさとコア11とコア13とのクロストークの大きさとの関係を示す関係式を用いて、コア11とコア13とのクロストークの大きさを求める。この場合、光デバイスであるマルチコアファイバ10は、第1光導波路であるコア11と並列される第3光導波路であるコア13を有しているので、処理ステップS3では、求められた第1導波路と第2導波路とのクロストークの大きさに基づいて、第1導波路と第3導波路とのクロストークの大きさを更に求めることになる。この場合、コア11とコア13とのクロストークによる光のパワーを測定せずとも、コア11とコア13とのクロストークの大きさを容易に求めることができる。また、コア11とコア14とのクロストークの大きさを、コア11とコア13とのクロストークの大きさと同様に求めてもよい。
 次に本実施形態におけるクロストークの測定の信頼性について、説明する。
 図7は、上記実施形態と同様にして、OTDR20で測定されるマルチコアファイバ10でのクロストーク光CL1とファン・イン-ファン・アウトデバイス30,40におけるクロストーク光とから成るパルス状の光のパワーを示す図であり、OTDR20に入射する光のパワーから後方散乱光のパワーが除かれている。図7に示すように、本例では、マルチコアファイバ10の長さを0km,21km,42km,84kmとした。図7の点線で示すFIFOは、ファン・イン-ファン・アウトデバイス30とファン・イン-ファン・アウトデバイス40とを直接接続し、マルチコアファイバ10の長さが0kmであることを示しており、上記のパワーPXT_FIFOに相当する。図7に示すように、マルチコアファイバ10が長いほどクロストークにより生じる光のパワーが大きくなることが分かる。
 次に、図7の測定に用いたそれぞれのマルチコアファイバ10にファン・イン-ファン・アウトデバイス30,40をそれぞれ接続して、PM法によりクロストークの大きさを測定した。具体的には、マルチコアファイバ10のコア11に光学的に接続されるファン・イン-ファン・アウトデバイス30の光ファイバ31のコアから光を入射し、マルチコアファイバ10のコア12に光学的に接続されるファン・イン-ファン・アウトデバイス40の光ファイバ41,42のコアから出射するそれぞれの光を測定することで、コア11とコア12とのクロストークの大きさを測定した。従って、このクロストークの大きさは、コア12の一端17から出射する入射光Lのパワーに対するクロストーク光のパワーの比である。上記結果を下記テーブル1に示す。
Figure JPOXMLDOC01-appb-I000001
 テーブル1におけるPeak Sizeは、図7に示すパルス状の光のパワーであり、Crosstalkは、PM法により測定したクロストークの大きさである。図8は、テーブル1に示す、本実施形態で測定されるクロストーク光のパワーと、PM法で測定されるクロストーク光のパワーとの関係を示す図である。図8に示す通り、これらの関係はリニアな関係となる。従って、本実施形態のクロストーク測定方法で測定したクロストーク光のパワーは、PM法で測定したクロストークの大きさと概ね相関が取れていることが示された。図8に示すそれぞれのポイントを直線近似すると、当該直線は次の式で示される。
XT=2.57x-58.9
=0.986
ただし、この式において、XTはクロストークの大きさを示し、xはクロストーク光のパワーを示し、Rは、決定係数である。このように決定係数が1にかなり近く、上記相関が高いことが示されている。
 次に、他の複数のマルチコアファイバ10を準備して、本実施形態と同様にして、クロストークの大きさを測定した。この際、第1測定ステップS2と同様にしてパルス状のクロストーク光のパワーを測定して、このパワーの大きさを上記式のxに代入して、図8の縦軸のデシベルで示されるクロストークの大きさを求めた。また、それぞれのマルチコアファイバ10のクロストークをPM法により測定した。その結果をテーブル2に示す。
Figure JPOXMLDOC01-appb-I000002
 テーブル2において、XT calculationは、上記の直線近似された式を用いて求めたクロストークの大きさであり、XT measurementは、PM法により測定したクロストークの大きさである。テーブル2に示すように、本実施形態によるクロストークの測定の結果と、PM法によるクロストークの測定の結果とが概ね一致した。従って、処理ステップS3において、処理部25がクロストークの大きさをコア12の一端17から出力する入射光Lのパワーの比を示すデシベルに換算する場合、パルス状のクロストーク光のパワーをxとして、上記直線近似の式からクロストークの大きさXTを求めてもよい。
 以上より、本実施形態のクロストークの測定が信頼性を有することが示された。
 次に本実施形態のクロストークの測定を数式を用いて説明する。
 マルチコアファイバ10の長さをLMCFとし、第1光ファイバ51の長さをLSCFとする。また、入射光Lが一端17からマルチコアファイバ10のコア11に入射する際のパワーをPとし、入射光Lが他端18から出射する際のパワーをP’とし、入射光Lが他端18からコア12に入射してコア12の一端17から出射する際のパワーをP”とする。また、入射光Lがコア11を伝搬する間にコア11からコア12にクロストークしてコア12から出射するクロストーク光のパワーをPXT(LMCF)とし、入射光Lがコア11及びコア12を伝搬する間、すなわち入射光Lがマルチコアファイバ10を往復する間に、コア11とコア12との間をクロストークしてコア11から出射するクロストーク光のパワーPXT(2LMCF)とする。
 簡単のため以下の数式を用いた説明では、マルチコアファイバ10は、コア11,12を備え、コア13,14を備えていない2コアファイバとして説明をする。また、マルチコアファイバ10、第1光ファイバ51の伝送損失を無視し、ファン・イン-ファン・アウトデバイス30、40での損失及びクロストークも無視する。この場合、非特許文献1の式(21a)、式21(b)を参照すると、P’、P”、PXT(LMCF)、PXT(2LMCF)は、下記の式(1)~(4)で示される。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 なお、上記式において、hは、クロストークするコア11とコア12とのパワー結合係数である。ここでの光のパワーの単位は、デシベル化されずに、例えばワットで示される。
 また、入射光Lがコア11を伝搬する間におけるコア11からコア12へのクロストークの大きさをP’に対する比としてデシベルで示す大きさをXT(LMCF)とし、入射光Lがコア11及びコア12を伝搬する間、すなわち入射光Lがマルチコアファイバ10を往復する間において、コア11とコア12との間のクロストークの大きさをP”に対する比としてデシベルで示す大きさをXT(2LMCF)とする。この場合、XT(LMCF)、XT(2LMCF)は、下記式(5)、(6)で示される。
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
 上記のようにOTDR20は、マルチコアファイバ10の一端17においてコア11と光学的に接続されている。従って、OTDRでは、P”を測定することができない。そこで、OTDR20で測定する光のパワーからXT(2LMCF)を求めるには、式(6)を用いて、次のようにすればよい。
 上記のように、入射光Lとクロストーク光CL1とは、第1光ファイバ51の概ね中点ですれ違う。このとき入射光Lが伝搬した距離は、マルチコアファイバ10の長さLMCFと第1光ファイバ51の長さの半分LSCF/2である。従って、第1光ファイバ51の中点からマルチコアファイバ10の一端17までの距離は、LMCF+LSCF/2となる。OTDR20で測定される第1光ファイバ51の中点からの後方散乱光の強度をPBS(LMCF+LSCF/2)とすると、PBS(LMCF+LSCF/2)は式(7)で示される
Figure JPOXMLDOC01-appb-I000009
 式(7)において、αS_SCFは第1光ファイバ51の後方散乱係数で入射光Lが第1光ファイバ51でレイリー散乱する確率を示し、BSCFは、第1光ファイバ51の捕獲率でレイリー散乱した光が第1光ファイバ51のコアをマルチコアファイバ10のコア11に向かって伝搬する確率を示す。
 式(2)及び式(7)から、式(8)が導かれる。
Figure JPOXMLDOC01-appb-I000010
 式(8)からP”を求め、式(6)に代入すると、式(9)を得る。
Figure JPOXMLDOC01-appb-I000011
 処理ステップS3で説明したように、PBS(LMCF+LSCF/2)は、OTDR20から入力するデータに基づいて、パルス状のクロストーク光が示される領域以外の領域における出射光のパワーから求めることができる。また、本説明ではファン・イン-ファン・アウトデバイス30、40でのクロストークを無視するため、処理ステップS3で説明したパワーPXT_MCFがPXT(2LMCF)である。従って、PXT(2LMCF)は、処理ステップS3で説明したように求めることができる。従って、式(9)の第1項を別途算出しておくことで、式(9)からXT(2LMCF)を求めることができる。なお、式(9)の第1項は、事前にPM法で求めたクロストークの大きさと、OTDR20で測定したPBS(LMCF+LSCF/2)及びPXT(2LMCF)との関係から求めてもよく、第1光ファイバ51を事前に測定して、式(9)の第1項を求めてもよい。
 以上説明したように、本実施形態のクロストーク測定方法は、第1光導波路であるコア11の他端18と第2光導波路であるコア12の他端18とを第1接続用光導波路である第1光ファイバ51のコアを介して光学的に接続する接続ステップS1と、OTDR20から出射するパルス状の入射光Lをコア11の一端17から入射させ、入射光Lがコア11からコア12にクロストークすることで生じる光と、第1光ファイバ51のコアを介して、コア11からコア12に入射する入射光Lがコア12からコア11にクロストークすることで生じる光と、が合波したパルス状のクロストーク光CL1を含み、コア11の一端17から出射する出射光のパワーをOTDR20で測定する第1測定ステップS2と、測定された出射光のパワーを用いてコア11とコア12とのクロストークの大きさを求める処理ステップS3と、を備える。
 また、本実施形態のクロストーク測定装置は、コア11の他端18とコア12の他端18とを光学的に接続する第1光ファイバ51のコアと、パルス状の入射光Lをコア11の一端17から入射させ、入射光Lがコア11からコア12にクロストークすることで生じる光と、第1光ファイバ51のコアを介して、コア11からコア12に入射する入射光Lがコア12からコア11にクロストークすることで生じる光と、が合波したパルス状のクロストーク光CL1を含み、コア11の一端17から出射する出射光のパワーを測定するOTDR20と、測定された出射光のパワーを用いてコア11とコア12とのクロストークの大きさを求める処理部25と、を備える。
 このような、クロストーク測定方法、及びクロストーク測定装置によれば、OTDR20を用いてコア11に入射する光がコア12にクロストークする光を用いるため、特許文献2,3のようにクロストークした光の後方散乱光を検出する場合と比べて、クロストークする光のパワーが大きい。さらに、本実施形態のクロストーク測定方法、及びクロストーク測定装置では、入射光Lがコア11の一端17から他端18に伝搬する際にクロストークする光と、入射光Lがコア12の他端18から一端17に伝搬する際にクロストークする光とが合波されるため、クロストークにより生じるパルス状のクロストーク光CL1のパワーが大きい傾向にある。従って、本態様のクロストーク測定方法、及びクロストーク測定装置によれば、クロストークの測定を容易に行い得る。
 (第2実施形態)
 次に、本発明の第2実施形態について図9、図10を参照して詳細に説明する。なお、上記実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図9は、本実施形態におけるクロストーク測定方法の手順を示すフローチャートである。図9に示すように、本実施形態のクロストークの測定方法は、第2測定ステップS22を備える点において、第1実施形態のクロストークの測定方法と異なる。本実施形態では、第1実施形態のクロストークの測定方法と同様にして、接続ステップS1及び第1測定ステップS2を行う。
 (第2測定ステップS22)
 本実施形態では第1測定ステップS2の後に、本ステップを行う。図10は、本ステップにおけるクロストーク測定装置の様子を示す図である。図10に示すように、本ステップでは、OTDR20にファン・イン-ファン・アウトデバイス30の光ファイバ32のコアを接続する。光ファイバ32のコアに接続される光導波路はマルチコアファイバ10のコア12に接続されている。従って、光ファイバ32とコア12とは、光学的に接続され、OTDR20から出射する光は一端17からコア12に入射する。
 本ステップでは、OTDR20から出射するパルス状の入射光を第2光導波路であるコア12の一端17から入射させる。この場合、多チャンネルOTDRを用いてもよく、第1測定ステップS2では、OTDR20の一方のチャンネルからコア11に光を入射させ、本工程では、OTDR20の他方のチャンネルからコア12に光を入射させもよい。本ステップで、OTDR20からコア12に入射する入射光Lのパワーは、第1測定ステップS2で、OTDR20からコア12に入射する入射光Lのパワーと同様である。コア12に入射する入射光Lは、コア12から第1光導波路であるコア11にクロストークする。コア12の他端18に伝搬する入射光Lは、第1接続用光導波路である第1光ファイバ51のコアを介して、コア12からコア11に入射する。コア11に入射する入射光Lは、コア11からコア12にクロストークする。このようにコア12からコア11にクロストークすることで生じる光と、コア11からコア12にクロストークすることで生じる光と、が合波したパルス状のクロストーク光CL2を含む出射光が、コア12の一端17から出射する。
 OTDR20は、その出射光のパワーを測定する。本ステップで測定される出射光のパワーの分布は、図5に示す第1測定ステップで測定される出射光のパワーと概ね同じである。ただし、図5のコア11の記載とコア12の記載を入れ替えて読む。
 (処理ステップS3)
 本実施形態の処理ステップS3では、まず、処理部25は、第2測定ステップS22で測定された光のパワーの分布のうち、コア12からコア11までの範囲を横軸に方向に沿って反転させる。そして、処理部25は、第1測定ステップS2で測定されたコア11からコア12までの範囲の光のパワーの分布と、本ステップで反転された光のパワーの分布との相加平均を取る。このようにすることで、コア11を一端17から他端18に伝搬する際に後方散乱する光のパワーと、コア11を他端18から一端17に伝搬する際に後方散乱する光のパワーとが平均化され、図5のコア11の範囲での光のパワーの分布の傾きが概ね無くなる。同様に、図5のコア12の範囲を示す光のパワーの分布の傾き、及び第1光ファイバ51の範囲での光のパワーの分布の傾きが概ね無くなる。また、第1光ファイバ51の概ね中点には、クロストーク光CL1とクロストーク光CL2とが平均化されたクロストーク光がパルス状に表れる。
 次に本ステップでは、処理部25は、平均化されたパルス状のクロストーク光のパワーからクロストーク光の大きさを第1実施形態と同様にして求める。
 以上説明したように、本実施形態のクロストーク測定方法は、第1実施形態のクロストーク測定方法に加えて、OTDR20から出射するパルス状の入射光Lをコア12の一端17から入射させ、入射光Lがコア12からコア11にクロストークすることで生じる光と、第1光ファイバ51のコアを介して、コア12からコア11に入射する入射光Lがコア11からコア12にクロストークすることで生じる光と、が合波したパルス状の光を含み、コア12の一端17から出射する出射光のパワーをOTDR20で測定する第2測定ステップS22を備え、処理ステップS3では、第1測定ステップS2で測定した出射光のパワー及び第2測定ステップS22で測定した出射光のパワーを用いてコア11とコア12とのクロストークの大きさを求める。
 また、本実施形態のクロストーク測定装置は、第1実施形態のクロストーク測定装置に加えて、OTDR20は、パルス状の入射光Lをコア12の一端17から入射させ、入射光Lがコア12からコア11にクロストークすることで生じる光と、第1光ファイバ51のコアを介して、コア12からコア11に入射する入射光Lがコア11からコア12にクロストークすることで生じる光と、が合波したパルス状の光を含み、コア12の一端17から出射する出射光のパワーをOTDR20で測定し、処理部25は、コア11から入射する入射光Lによりコア11の一端17から出射する出射光のパワー、及びコア12から入射する入射光Lによりコア12の一端17から出射する出射光のパワーを用いてコア11とコア12とのクロストークの大きさを求める。
 本実施形態のクロストーク測定方法、及びクロストーク測定装置によれば、コア11からコア12に入射光Lを伝搬させることで生じるクロストーク光CL1、及びコア12からコア11に入射光Lを伝搬させることで生じるクロストーク光CL2を用いるため、コア11からコア12に入射光Lを伝搬させることで生じるクロストーク光CL1のみを用いる場合と比べて、クロストークの大きさをより正確に求め得る。
 また、第1測定ステップS2でコア11に入射される入射光Lのパワーと、第2測定ステップS22でコア12に入射される入射光Lのパワーとは、互いに等しく、処理ステップS3では、第1測定ステップS2で測定した出射光のパワーと、第2測定ステップS22で測定した出射光のパワーとを平均化した結果を用いて、コア11とコア12とのクロストークの大きさを求めている。このような平均化処理を用いることで、クロストークの大きさを容易に正確に求め得る。なお、第1測定ステップS2でコア11に入射される入射光Lのパワーと、第2測定ステップS22でコア12に入射される入射光Lのパワーとはが互いに異なってもよい。この場合、処理ステップS3では、入射光Lのパワーを加味して、処理を行う。例えば、第2測定ステップS22においてコア12に入射される入射光Lのパワーが、第1測定ステップS2コア11に入射される入射光Lのパワーの2倍であれば、処理ステップS3において、出射する出射光のパワーを半分にして平均化処理を行う。
 (第3実施形態)
 次に、本発明の第3実施形態について図11、図12を参照して詳細に説明する。なお、上記実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図11は、本実施形態におけるクロストーク測定装置1を示す図である。本実施形態のクロストーク測定装置1は、ファン・イン-ファン・アウトデバイス40の光ファイバ41が、カプラ55を介して第1光ファイバ51及び第2光ファイバ52の一端に接続され、第2光ファイバ52の他方の端部は、ファン・イン-ファン・アウトデバイス40の光ファイバ43に接続される点において、第1実施形態のクロストーク測定装置1と異なる。光ファイバ43のコアに接続される光導波路はマルチコアファイバ10のコア13に接続されており、光ファイバ43とコア13とは、光学的に接続されている。従って、第1光ファイバ51のコアは第1実施形態の第1光ファイバ51と同様に、コア11とコア12とを光学的に接続し、第2光ファイバ52のコアは、コア11とコア13とを光学的に接続している。第2光ファイバのコアは、第2接続用導波路と解することができる。第2光ファイバ52の長さは第1光ファイバ51の長さと異なる。本実施形態では、第2光ファイバ52が、第1光ファイバ51よりも長いものとして説明する。
 ここで、本実施形態では、光デバイスであるマルチコアファイバ10は、コア11である第1光導波路と並列される第3光導波路を更に有する。また、コア11である第1光導波路の他端18とコア13である第3光導波路の他端18とが第1接続用光導波路と異なる長さの第2接続用光導波路を介して光学的に接続されている。
 このようなクロストーク測定装置1を用いる本実施形態のクロストーク測定方法の手順は、図3に示すフローチャートと同様である。ただし、それぞれのステップが以下にように異なる。以下に異なる点を主に説明する。
 (接続ステップS1)
 本実施形態の本ステップでは、第1光ファイバ51及び第2光ファイバ52をカプラ55を介して光ファイバ41に接続し、第2光ファイバ52におけるカプラ55側と反対側の端部を光ファイバ43に接続する。つまり、本実施形態では、第1実施形態における接続ステップS1に加えて、コア11の他端18とコア13の他端18とを第1光ファイバ51と異なる長さの第2光ファイバのコアを介して光学的に接続する。こうして、コア11とコア12とが光学的に接続されると共に、コア11とコア13とが光学的に接続される。
 (第1測定ステップS2)
 本実施形態の本ステップでは、第1実施形態と同様にして、OTDR20からコア11に入射光Lが入射される。本実施形態では、第1実施形態で説明したコア11とコア12とのクロストークに加えて次のようにクロストークが生じ、当該クロストークが測定される。以下説明する。
 OTDR20からコア11に入射する入射光Lは、コア11を一端17から他端18に伝搬し、コア11からコア12にクロストークすると共に、コア11からコア13にクロストークしながら伝搬する。コア11からコア13にクロストークする光もパルス状となり、入射光Lと概ね並走しながらコア13の一端17側から他端18に伝搬する。このクロストーク光CL2のパワーは、コア13を伝搬する距離に応じて増加する。クロストーク光CL2は、入射光Lがカプラ55から第2光ファイバ52に入射するのと概ね同じタイミングで、光ファイバ43から第2光ファイバ52に入射する。入射光Lとクロストーク光CL2とは、第2光ファイバ52の概ね中点ですれ違う。そして、ファン・イン-ファン・アウトデバイス40を介して、マルチコアファイバ10の他端18において、入射光Lはコア13に入射し、クロストーク光CL2は、入射光Lがコア13に入射するタイミングと概ね同じタイミングでコア11に入射する。コア13に入射した入射光Lと、コア11に入射したクロストーク光CL2とは、概ね並走しながら、それぞれのコア13,11を一端17に向かって伝搬する。この間にも、コア13を伝搬する入射光Lはコア11にクロストークしながら伝搬する。従って、コア13からコア11にクロストークする光が、コア11を伝搬するクロストーク光CL2に合波する。合波した光は、パルス状であり、徐々にパワーを増しながら伝搬する。コア11の一端17からは、パルス状のクロストーク光CL2に後方散乱光等の光が合波した出射光が出射する。従って、出射光は、パルス状のクロストーク光CL2を含む。コア11から出射する出射光は、ファン・イン-ファン・アウトデバイス30を介してOTDR20に入射し、OTDR20で受光され、OTDR20でそのパワーが測定される。
 図12は、本実施形態におけるOTDRでの測定結果を示す図である。第1光ファイバ51の長さと第2光ファイバ52の長さとは互いに異なるため、図12に示すように、クロストーク光CL1を含む出射光と、クロストーク光CL2を含む出射光とは異なるタイミングで、OTDR20に入射する。本実施形態では、第2光ファイバ52が、第1光ファイバ51よりも長いため、クロストーク光CL2を含む出射光は、クロストーク光CL1を含む出射光よりも遅いタイミングでOTDRに入射する。従って、OTDR20は、これらの出射光をそれぞれ測定することができる。このため、OTDR20は、パルス状の光を含む出射光のパワーを2回測定する。
 なお、第1光ファイバ51の長さと第2光ファイバ52の長さとの差は、入射光の半値幅よりも大きいことが好ましい。この場合、コア11とコア12とのクロストークによるパルス状の光と、コア11とコア13とのクロストークによるパルス状の光との干渉を抑制することができ、クロストークの大きさをより正確に測定することができる。
 (処理ステップS3)
 本ステップでは、処理部25は、測定された出射光のパワーを用いて、第1実施形態と同様にしてコア11とコア12とのクロストークの大きさを求める。更に、本実施形態の本ステップでは、処理部25は、コア11とコア13とのクロストークの大きさを求める。第1光ファイバ51や第2光ファイバ52においても、後方散乱光が生じているため、クロストーク光CL2を含むパルス状の光が示される領域以外の領域では、この後方散乱光のパワーが測定されている。そこで、処理部25は、OTDR20から入力するデータに基づいて、クロストーク光CL2を含むパルス状の光が示される領域以外の領域における出射光のパワーから、クロストーク光CL2を含むパルス状の光が示される領域における後方散乱光のパワーを求める。具体的には、処理部25は、第1実施形態で後方散乱光のパワーPBSを求めたときと同様にして、クロストーク光CL2を含む出射光における後方散乱光のパワーを求める。次に、処理部25は、クロストーク光CL2を含むパルス状の光が示される領域の出射光のパワーと求めた後方散乱光のパワーとの差を求める。この差がクロストーク光CL2のパワーとなる。本実施形態においても、ファン・イン-ファン・アウトデバイス30,40におけるクロストークのパワーPXT_FIFOが無視できるくらい小さい場合、当該パワーを無視してもよい。ただし、求めたパルス状の光のパワーからパワーPXT_FIFOを取り除いたパワーをクロストーク光CL2のパワーとすることが、より正確にクロストーク光CL2のパワーPを求める観点から好ましい。
 処理部25は、第1実施形態と同様にして求めたクロストーク光CL1のパワーをクロストークの大きさに変換して出力すると共に、求めたクロストーク光CL2のパワーをクロストークの大きさに変換して出力する。このとき、処理部25は、クロストーク光CL2の大きさをコア13の一端17から出射する入射光Lのパワーの比を示すデシベルに換算して、出力してもよい。また処理部25は、OTDR20に定められる所定のパワーに対する比を示すデシベルに換算して出力してもよい。こうして、コア11とコア12とのクロストークの大きさと共に、コア11とコア13とのクロストークの大きさが求められる。
 本実施形態のクロストーク測定方法では、第1実施形態のクロストーク測定方法に加えて、接続ステップS1では、更に、コア11の他端18とコア13の他端18とを、第1光ファイバ51のコアと異なる長さの第2光ファイバ52のコアを介して光学的に接続し、第1測定ステップS2では、入射光Lがコア11からコア13にクロストークすることで生じる光と、第2光ファイバ52のコアを介してコア11からコア13に入射する入射光Lがコア13からコア11にクロストークすることで生じる光と、が合波したパルス状の光を含み、コア11の一端17から出射する出射光のパワーをOTDR20で更に測定し、処理ステップS3では、コア11とコア13との間のクロストークにより生じるパルス状のクロストーク光CL2を含む出射光のパワーを用いてコア11とコア13とのクロストークの大きさを更に求める。
 また、本実施形態のクロストーク測定装置1は、第1実施形態のクロストーク測定装置1に加えて、コア11の他端18とコア13の他端18とを光学的に接続する第1光ファイバ51のコアと異なる長さの第2光ファイバ52のコアを更に備え、OTDR20は、入射光Lがコア11からコア13にクロストークすることで生じる光と、第2光ファイバ52のコアを介してコア11からコア13に入射する入射光Lがコア13からコア11にクロストークすることで生じる光と、が合波したパルス状の光を含み、コア11の一端17から出射する出射光のパワーを更に測定し、処理部25は、コア11とコア13との間のクロストークにより生じるパルス状のクロストーク光CL2を含む出射光のパワーを用いてコア11とコア13とのクロストークの大きさを更に求める。
 本実施形態のクロストーク測定方法、及びクロストーク測定装置1によれば、コア11とコア12との間のクロストーク光を含む出射光と、コア11とコア13との間のクロストーク光を含む出射光とをOTDR20でそれぞれ受光して、それぞれの出射光のパワーを測定でき、それぞれのクロストークの大きさを求めることができる。従って、第1実施形態のようにコア11とコア12とのクロストークの大きさを測定し、更にその後、コア11とコア13とを接続用光導波路で光学的に接続して、コア11の一端17から再び入射光を入射して、コア11とコア13とのクロストークの大きさを測定する場合と比べて、コア11とコア12とのクロストークの大きさ、及びコア11とコア13とのクロストークの大きさそれぞれを容易に測定することができる。
 なお、本実施形態では、第2光ファイバ52が第1光ファイバ51より長いものとして説明したが、第1光ファイバ51の長さと第2光ファイバ52の長さとが異なっていればよく、第1光ファイバ51が第2光ファイバ52より長くてもよい。
 (第4実施形態)
 次に、本発明の第4実施形態について図13を参照して詳細に説明する。なお、上記実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図13は、本実施形態におけるクロストーク測定装置の様子を図4に倣って記載する図である。本実施形態のクロストーク測定装置1は、第2光ファイバ52を備え、第2光導波路であるコア12の一端17と第3光導波路であるコア13の一端とが第2接続用光導波路である第2光ファイバ52のコアを介して光学的に接続される点において、第1実施形態のクロストーク測定装置1と異なる。本実施形態では、第1光ファイバ51の長さと第2光ファイバ52の長さとが互いに異なってもよく、同じであってもよい。
 このようなクロストーク測定装置1を用いる本実施形態のクロストーク測定方法の手順は、図3に示すフローチャートと同様である。ただし、それぞれのステップが以下にように異なる。以下に異なる点を主に説明する。
 (接続ステップS1)
 本実施形態の本ステップでは、第1実施形態の接続ステップS1に加えて、コア12の一端17とコア13の一端17とを第2光ファイバ52のコアを介して光学的に接続する。具体的には、第2光ファイバ52の一方の端部をファン・イン-ファン・アウトデバイス30の光ファイバ32に接続し、第2光ファイバ52の他方の端部をファン・イン-ファン・アウトデバイス30の光ファイバ33に接続する。こうしてコア12とコア13とが光学的に接続される。
 (第1測定ステップS2)
 本実施形態の本ステップでは、第1実施形態と同様にして、OTDR20からコア11に入射光Lが入射される。本実施形態では、第1実施形態で説明したコア11とコア12とのクロストークに加えて次のようにクロストークが生じ、当該クロストークが測定される。以下説明する。
 OTDR20からコア11に入射する入射光Lは、コア11を一端17から他端18に伝搬し、その後、第1光ファイバ51を介して、コア12に入射する。コア12を他端18から一端17に伝搬する入射光Lは、第1実施形態の説明の通りコア12からコア11にクロストークすると共に、コア12からコア13にクロストークする。コア12からコア13にクロストークする光もパルス状となり、入射光Lと概ね並走しながらコア13の他端18側から一端17に伝搬する。このクロストーク光CL2のパワーは、コア13を伝搬する距離に応じて増加する。入射光Lは、コア12から第2光ファイバ52を介してコア13に入射し、クロストーク光CL2は、コア13から第2光ファイバ52を介してコア12に入射する。入射光Lとクロストーク光CL2とは、第2光ファイバ52の概ね中点ですれ違う。このため、入射光Lがコア13に入射するタイミングと、クロストーク光CL2がコア12に入射するタイミングとは概ね同じである。コア13に入射した入射光Lと、コア12に入射したクロストーク光CL2とは、概ね並走しながら、それぞれのコア13,12を一端17から他端18に向かって伝搬する。この間にも、コア13を伝搬する入射光Lはコア12にクロストークしながら伝搬する。従って、コア13からコア12にクロストークする光が、コア12を伝搬するクロストーク光CL2に合波する。合波した光は、パルス状であり、徐々にパワーを増しながら伝搬する。このパルス状のクロストーク光CL2を含む光は、コア12から第1光ファイバ51を介して、コア11に入射し、コア11の一端17からは、クロストーク光CL2に後方散乱光等の光が合波した出射光が出射する。従って、出射光は、パルス状のクロストーク光CL2を含む。コア11から出射する出射光は、OTDR20に入射し、OTDR20で受光され、OTDR20でそのパワーが測定される。
 クロストーク光CL2を含む出射光がOTDR20に入射するタイミングは、クロストーク光CL1を含む出射光がOTDR20に入射するタイミングに対して、第2光ファイバ52、コア12、第1光ファイバ51、及びコア11を光が伝搬する時間だけ遅くなる。従って、OTDR20は、これらの出射光をそれぞれ測定することができる。このため、OTDR20は、パルス状の光のパワーを2回測定する。
 (処理ステップS3)
 本ステップでは、処理部25は、測定された出射光のパワーを用いて、第1実施形態と同様にしてコア11とコア12とのクロストークの大きさを求める。更に、本実施形態の本ステップでは、処理部25は、コア12とコア13とのクロストークの大きさを求める。コア12とコア13とのクロストークの求め方は、第3実施形態におけるコア11とコア13とのクロストークの求め方と同様である。
 処理部25は、第1実施形態と同様にして求めたクロストーク光CL1のパワーをクロストークの大きさに変換して出力すると共に、求めたクロストーク光CL2のパワーをクロストークの大きさに変換して出力する。このとき、処理部25は、クロストークの大きさをコア13の他端18から出射する入射光Lのパワーの比を示すデシベルに換算して、出力してもよい。また処理部25は、OTDR20に定められる所定のパワーに対する比を示すデシベルに換算して出力してもよい。こうして、コア11とコア12とのクロストークの大きさと共に、コア11とコア13とのクロストークの大きさが求められる。
 本実施形態のクロストーク測定方法では、第1実施形態のクロストーク測定方法に加えて、接続ステップS1では、更に、コア12の一端17とコア13の一端17とを、第2光ファイバ52のコアを介して光学的に接続し、第1測定ステップS2では、入射光Lがコア12からコア13にクロストークすることで生じる光と、第2光ファイバ52のコアを介してコア12からコア13に入射する入射光Lがコア13からコア12にクロストークすることで生じる光と、が合波したパルス状の光を含み、第1光ファイバ51及びコア11を介してコア11の一端17から出射する出射光のパワーをOTDR20で更に測定し、処理ステップS3では、コア12とコア13との間のクロストークにより生じるパルス状のクロストーク光CL2を含む出射光のパワーを用いてコア12とコア13とのクロストークの大きさを更に求める。
 また、本実施形態のクロストーク測定装置1は、第1実施形態のクロストーク測定装置1に加えて、コア12の一端17とコア13の一端17とを光学的に接続する第2光ファイバ52のコアを更に備え、OTDR20は、入射光Lがコア12からコア13にクロストークすることで生じる光と、第2光ファイバ52のコアを介してコア12からコア13に入射する入射光Lがコア13からコア12にクロストークすることで生じる光と、が合波したパルス状の光を含み、第1光ファイバ51及びコア11を介してコア11の一端17から出射する出射光のパワーを更に測定し、処理部25は、コア12とコア13との間のクロストークにより生じるパルス状のクロストーク光CL2を含む出射光のパワーを用いてコア12とコア13とのクロストークの大きさを更に求める。
 本実施形態のクロストーク測定方法、及びクロストーク測定装置1によれば、コア11とコア12との間のクロストーク光を含む出射光と、コア12とコア13との間のクロストーク光を含む出射光とをOTDR20でそれぞれ受光して、それぞれの出射光のパワーを測定でき、それぞれのクロストークの大きさを求めることができる。従って、第1実施形態のようにコア11とコア12とのクロストークの大きさを測定し、更にその後、コア12とコア13とを接続用光導波路で光学的に接続して、コア11の一端17から再び入射光を入射して、コア12とコア13とのクロストークの大きさを測定する場合と比べて、コア11とコア12とのクロストークの大きさ、及びコア12とコア13とのクロストークの大きさそれぞれを容易に測定することができる。
 なお、本実施形態において、図9に示すように、第1測定ステップS2の後に、第2測定ステップS22を備えてもよい。この場合、第2測定ステップS22では、OTDR20から出射するパルス状の入射光Lをコア13の他端18から入射させる。OTDR20は、入射光Lがコア13からコア12にクロストークすることで生じる光と、第2光ファイバ52を介して、コア13からコア12に入射する入射光Lがコア12からコア13にクロストークすることで生じる光と、が合波したパルス状の光を含み、コア13の他端18から出射する出射光のパワーを測定する。さらに、OTDR20は、入射光Lがコア12を一端17から他端18に伝搬する間にコア12からコア11にクロストークすることで生じる光と、第1光ファイバ51を介してコア11に入射する入射光Lがコア11からコア12にクロストークすることで生じる光と、が合波したパルス状の光を含み、コア12の一端17から第2光ファイバ52及びコア13を介して、コア13の他端18から出射する出射光のパワーを測定する。この場合の処理ステップS3では、第2実施形態と同様にして、第1測定ステップS2で測定した出射光のパワー及び第2測定ステップS22で測定した出射光のパワーを用いてコア12とコア13とのクロストークの大きさを求める。
 (第5実施形態)
 次に、本発明の第4実施形態について図14を参照して詳細に説明する。なお、上記実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図14は、本実施形態におけるクロストーク測定装置の様子を図4に倣って記載する図である。本実施形態のクロストーク測定装置1は、第2接続用導波路としての第2光ファイバ52を備え、第2光導波路であるコア12の一端17と第3光導波路であるコア13の他端とが第2光ファイバ52を介して光学的に接続される点において、第1実施形態のクロストーク測定装置1と異なる。本実施形態では、第1光ファイバ51の長さと第2光ファイバ52の長さとが互いに異なってもよく、同じであってもよい。
 このようなクロストーク測定装置1を用いる本実施形態のクロストーク測定方法の手順は、図3に示すフローチャートと同様である。ただし、それぞれのステップが以下にように異なる。以下に異なる点を主に説明する。
 (接続ステップS1)
 本実施形態の本ステップでは、第1実施形態の接続ステップS1に加えて、コア12の一端17とコア13の他端18とを第2光ファイバ52のコアを介して光学的に接続する。具体的には、第2光ファイバ52の一方の端部をファン・イン-ファン・アウトデバイス30の光ファイバ32に接続し、第2光ファイバ52の他方の端部をファン・イン-ファン・アウトデバイス40の光ファイバ43に接続する。こうしてコア12とコア13とが光学的に接続される。
 (第1測定ステップS2)
 本実施形態の本ステップでは、第1実施形態と同様にして、OTDR20からコア11に入射光Lが入射される。本実施形態では、第1実施形態で説明したコア11とコア12とのクロストークに加えて次のようにクロストークが生じ、当該クロストークが測定される。以下説明する。
 OTDR20からコア11に入射する入射光Lは、コア11を一端17から他端18に伝搬し、コア11からコア12にクロストークすると共に、コア11からコア13にクロストークしながら伝搬する。コア11からコア13にクロストークする光もパルス状となり、入射光Lと概ね並走しながらコア13の一端17側から他端18に伝搬する。このクロストーク光CL2のパワーは、コア13を伝搬する距離に応じて増加する。入射光Lとクロストーク光CL2とは、概ね同じタイミングで他端18に到達する。入射光Lは、コア11の他端18から、第1光ファイバ51、コア12、及び第2光ファイバ52を介して、コア13の他端18からコア13に入射する。また、クロストーク光CL2は、コア13の他端18から、第2光ファイバ52、コア12、及び第1光ファイバ51を介して、コア11の他端18からコア11に入射する。入射光Lとクロストーク光CL2とは、第1光ファイバ51のコア、コア12、及び第2光ファイバ52のコアとを合わせた導波路の概ね中点ですれ違う。このため、入射光Lがコア13に入射するタイミングと、クロストーク光CL2がコア11に入射するタイミングとは概ね同じである。コア13に入射した入射光Lと、コア11に入射したクロストーク光CL2とは、概ね並走しながら、それぞれのコア13,11を他端18から一端17に向かって伝搬する。この間にも、コア13を伝搬する入射光Lはコア11にクロストークしながら伝搬する。従って、コア13からコア11にクロストークする光が、コア11を伝搬するクロストーク光CL2に合波する。合波した光は、パルス状であり、徐々にパワーを増しながら伝搬する。コア11の一端17からは、このパルス状のクロストーク光CL2に後方散乱光等の光が合波した出射光が出射する。従って、出射光は、パルス状のクロストーク光CL2を含む。コア11から出射する出射光は、OTDR20に入射し、OTDR20で受光され、OTDR20でそのパワーが測定される。
 クロストーク光CL2を含む出射光がOTDR20に入射するタイミングは、クロストーク光CL1を含む出射光がOTDR20に入射するタイミングに対して、第2光ファイバ52、コア13を光が伝搬する時間だけ遅くなる。従って、OTDR20は、これらの出射光をそれぞれ測定することができる。このため、OTDR20は、パルス状の光のパワーを2回測定する。
 (処理ステップS3)
 本ステップでは、処理部25は、測定された出射光のパワーを用いて、第1実施形態と同様にしてコア11とコア12とのクロストークの大きさを求める。更に、本実施形態の本ステップでは、処理部25は、コア11とコア13とのクロストークの大きさを求める。コア11とコア13とのクロストークの求め方は、第3実施形態におけるコア11とコア13とのクロストークの求め方と同様である。
 処理部25は、第1実施形態と同様にして求めたクロストーク光CL1のパワーをクロストークの大きさに変換して出力すると共に、求めたクロストーク光CL2のパワーをクロストークの大きさに変換して出力する。このとき、処理部25は、クロストークの大きさをコア13の一端17から出射する入射光Lのパワーの比を示すデシベルに換算して、出力してもよい。また処理部25は、OTDR20に定められる所定のパワーに対する比を示すデシベルに換算して出力してもよい。こうして、コア11とコア12とのクロストークの大きさと共に、コア11とコア13とのクロストークの大きさが求められる。
 本実施形態のクロストーク測定方法では、第1実施形態のクロストーク測定方法に加えて、接続ステップS1では、更に、コア12の一端17とコア13の他端18とを、第2光ファイバ52のコアを介して光学的に接続し、第1測定ステップS2では、入射光Lがコア11からコア13にクロストークすることで生じる光と、コア12及び第2光ファイバ52のコアを介してコア11からコア13に入射する入射光Lがコア13からコア11にクロストークすることで生じる光と、が合波したパルス状の光を含み、コア11の一端17から出射する出射光のパワーをOTDR20で更に測定し、処理ステップS3では、コア11とコア13との間のクロストークにより生じるパルス状のクロストーク光CL2を含む出射光のパワーを用いてコア11とコア13とのクロストークの大きさを更に求める。
 また、本実施形態のクロストーク測定装置1は、第1実施形態のクロストーク測定装置1に加えて、コア12の一端17とコア13の他端18とを光学的に接続する第2光ファイバ52のコアを更に備え、OTDR20は、入射光Lがコア11からコア13にクロストークすることで生じる光と、コア12及び第2光ファイバ52のコアを介してコア11からコア13に入射する入射光Lがコア13からコア11にクロストークすることで生じる光と、が合波したパルス状の光を含み、コア11の一端17から出射する出射光のパワーを更に測定し、処理部25は、コア11とコア13との間のクロストークにより生じるパルス状のクロストーク光CL2を含む出射光のパワーを用いてコア11とコア13とのクロストークの大きさを更に求める。
 本実施形態のクロストーク測定方法、及びクロストーク測定装置1によれば、コア11とコア12との間のクロストーク光を含む出射光と、コア11とコア13との間のクロストーク光を含む出射光とをOTDR20でそれぞれ受光して、それぞれの出射光のパワーを測定でき、それぞれのクロストークの大きさを求めることができる。従って、第1実施形態のようにコア11とコア12とのクロストークの大きさを測定し、更にその後、コア11とコア13とを接続用光導波路で光学的に接続して、コア11の一端17から再び入射光を入射して、コア11とコア13とのクロストークの大きさを測定する場合と比べて、コア11とコア12とのクロストークの大きさ、及びコア11とコア13とのクロストークの大きさそれぞれを容易に測定することができる。
 なお、本実施形態において、図9に示すように、第1測定ステップS2の後に、第2測定ステップS22を備えてもよい。この場合、第2測定ステップS22では、OTDR20から出射するパルス状の入射光Lをコア13の一端17から入射させる。OTDR20は、入射光Lがコア13からコア11にクロストークすることで生じる光と、第2光ファイバ52、コア12、及び第1光ファイバ51を介して、コア13からコア11に入射する入射光Lがコア11からコア13にクロストークすることで生じる光と、が合波したパルス状の光を含み、コア13の一端17から出射する出射光のパワーを測定する。更に、OTDR20は、入射光Lがコア12を一端17から他端18に伝搬する間にコア12からコア11にクロストークすることで生じる光と、第1光ファイバ51を介してコア11に入射する入射光Lがコア11からコア12にクロストークすることで生じる光と、が合波したパルス状の光を含み、コア12の一端17から第2光ファイバ52及びコア13を介して、コア13の一端17から出射する出射光のパワーを測定する。この場合の処理ステップS3では、第2実施形態と同様にして、第1測定ステップS2で測定した出射光のパワー及び第2測定ステップS22で測定した出射光のパワーを用いてコア11とコア13とのクロストークの大きさを求める。
 以上、本発明について、上記実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 例えば、マルチコアファイバ10のコアの配置や数は、上記実施形態と異なってもよい。
 また、上記実施形態では、導波路が並列される光デバイスとして、マルチコアファイバを例に説明したが、本発明の光デバイスはマルチコアファイバに限定されない。例えば、複数の光ファイバが配列して配置される光ファイバケーブルや、複数の光ファイバが平面状に配列して配置される光ファイバテープや、複数の光ファイバ裸線が1つの被覆層内に配置されるマルチエレメントファイバや、伝送システム全体のクロストーク測定に適用し得る。
 また、上記実施形態の第1測定ステップS2及び第2測定ステップS22の少なくとも一方において、OTDR20により、マルチコアファイバ10等の光デバイスにおける光の損失、反射強度、曲げ損失、及び断線の少なくとも1つを更に測定してもよい。
 また、ファン・イン-ファン・アウトデバイス30,40の形態は特に限定されない。また、クロストーク測定装置1は、ファン・イン-ファン・アウトデバイス30,40の少なくとも一方を備えなくてもよい。この場合、例えば、マルチコアファイバ10のコアと第1光ファイバ51のコアや第2光ファイバ52のコアとを直接接続する。また、第1光ファイバ51及び第2光ファイバ52の少なくとも一方が、複数の光ファイバの接続体から成ってもよい。
 上記実施形態では、例えば、図5に示すように、OTDR20が測定する後方散乱光のパワーの傾きがコア11、コア12、及び第1光ファイバ51等の区間において概ね同じである。これは、コア11、コア12、及び第1光ファイバ51等の区間において後方散乱による単位長さ当たりの入射光Lの損失が概ね同じことを示す。従って、上記実施形態では、コア11、コア12、及び第1光ファイバ51等に同じパワーの光を伝搬させる場合に、それぞれの区間で生じる単位長さ当たりの後方散乱光のパワーはそれぞれ概ね同じ大きさである。しかし、コア11、コア12、及び第1光ファイバ51等に同じパワーの光を伝搬させる場合に、第1光ファイバ51で生じる単位長さ当たりの後方散乱光のパワーが、コア11及びコア12のそれぞれで生じる単位長さ当たりの後方散乱光のパワーよりも小さいことが好ましい。このような第1光ファイバ51としては、例えば、コアが中空である中空コア光ファイバを挙げることができる。或いは、このような第1光ファイバ51として、マルチコアファイバ10のコアを伝搬する光よりも第1光ファイバ51のコアの比屈折率差が小さく、伝搬する光の実効断面積が大きい光ファイバであってもよい。これは、後方散乱光のパワーは、比屈折率差に対応する開口数(NA)に比例するためである。図15は、図4において、第1光ファイバ51として中空コア光ファイバを用いた場合におけるOTDR20での測定結果を示す模式図である。ただし、図15では、2コアのマルチコアファイバを用いる場合の測定結果の模式図である。図15に示すように、第1光ファイバ51では、後方散乱光が殆ど生じていないことが分かる。このため、後方散乱光のパワーに対するクロストーク光のパワーの比が大きくなり、クロストーク光を検出し易くすることができる。なお、上記と同様の理由から、第3から第5実施形態の第2光ファイバ52で生じる単位長さ当たりの後方散乱光のパワーが、コア11からコア13のそれぞれで生じる単位長さ当たりの後方散乱光のパワーよりも小さいことが好ましい。
 また、第1実施形態では、図2,4に示すようにコア13、コア14は、互いに光ファイバで接続されない例で説明した。しかし、本発明はこれに限らない。図16は、第1実施形態のクロストーク測定装置の変形例を示す図である。図16に示すように、本変形例は、ファン・イン-ファン・アウトデバイス40の光ファイバ43,44が第2光ファイバ52に接続され、コア13の他端18とコア14の他端18とが第2光ファイバ52のコアを介して光学的に接続されている点において、第1実施形態と異なる。第2光ファイバ52の長さは、第1光ファイバ51と同じ長さである。このため、コア13の他端18からコア14の他端18までの光が伝搬する距離は、コア11の他端18からコア12の他端18までの光が伝搬する距離と同じである。第1実施形態では、入射光がコア11からコア12にクロストークするクロストーク光CL1と、入射光がコア12からコア11にクロストークするクロストーク光CL1と、が合波したパルス状の光を測定した。しかし、コア11からコア12にクロストークするクロストーク光CL1には、コア11からコア13,14にクロストークする光が更にコア12にクロストークする光も含まれる。同様に、コア12からコア11にクロストークする光には、コア12からコア13,14にクロストークする光が更にコア11にクロストークする光も含まれる。第1実施形態では、コア13とコア14との光学的な接続がないため、コア11からコア13,14にクロストークした光のうちコア12に更にクロストークしない光は、他端18から放出されてしまう。しかし、本変形例によれば、コア11からコア13にクロストークした光のうちコア12に更にクロストークしない光が、第2光ファイバ52を介してコア14に入射し、コア11からコア14にクロストークした光のうちコア12に更にクロストークしない光が、第2光ファイバ52を介してコア13に入射する。第2光ファイバ52を介してコア13,14に入射した光がコア13,14を他端18側から一端17側に伝搬する際に更にコア12クロストークする。また、上記のようにコア13の他端18からコア14の他端18までの光が伝搬する距離は、コア11の他端18からコア12の他端18までの光が伝搬する距離と同じであるため、コア12の他端から出射するクロストーク光CL1がコア11の他端に入射するタイミングと、コア11からコア13,14にクロストークした光のうちコア12に更にクロストークしない光が、第2光ファイバ52を介して、コア14,13に入射するタイミングとが概ね同じである。このような構成により、コア13,14を介してコア12にクロストークする光が、往路、復路の両方でクロストーク光CL1に反映される。従って、本変形例では、第1光導波路であるコア11及び第2光導波路であるコア12のそれぞれとクロストークする第3導波路であるコア13及び第4導波路であるコア14の他端18を第2接続用光導波路である第2光ファイバ52のコアを介して光学的に接続することで、第1実施形態と比べて、クロストークの大きさをより正確に測定し得る。
 以上説明したように、本発明によれば、本発明によれば、OTDR法を用いて、クロストークの測定を容易に行い得るクロストーク測定方法、及びクロストーク測定装置が提供され、光ファイバ通信等の分野で利用することが期待される。

 

Claims (13)

  1.  一端及び他端を含み互いに並列される第1光導波路及び第2光導波路を有する光デバイスのクロストーク測定方法であって、
     前記第1光導波路の前記他端と前記第2光導波路の前記他端とを第1接続用光導波路を介して光学的に接続する接続ステップと、
     OTDR(Optical Time Domain Reflectometer)から出射するパルス状の入射光を前記第1光導波路の前記一端から入射させ、前記入射光が前記第1光導波路から前記第2光導波路にクロストークすることで生じる光と、前記第1接続用光導波路を介して、前記第1光導波路から前記第2光導波路に入射する前記入射光が前記第2光導波路から前記第1光導波路にクロストークすることで生じる光と、が合波したパルス状の光を含み、前記第1光導波路の前記一端から出射する出射光のパワーを前記OTDRで測定する第1測定ステップと、
     測定された前記出射光のパワーを用いて前記第1光導波路と前記第2光導波路とのクロストークの大きさを求める処理ステップと、
    を備える
    ことを特徴とするクロストーク測定方法。
  2.  前記第1接続用光導波路の長さは、前記入射光の半値幅よりも長い
    ことを特徴とする請求項1に記載のクロストーク測定方法。
  3.  前記OTDRから出射するパルス状の入射光を前記第2光導波路の一端から入射させ、当該入射光が前記第2光導波路から前記第1光導波路にクロストークすることで生じる光と、前記第1接続用光導波路を介して、前記第2光導波路から前記第1光導波路に入射する前記入射光が前記第1光導波路から前記第2光導波路にクロストークすることで生じる光と、が合波したパルス状の光を含み、前記第2光導波路の前記一端から出射する出射光のパワーを前記OTDRで測定する第2測定ステップを更に備え、
     前記処理ステップでは、前記第1測定ステップで測定した前記出射光のパワー及び前記第2測定ステップで測定した前記出射光のパワーを用いて前記第1光導波路と前記第2光導波路との前記クロストークの大きさを求める
    ことを特徴とする請求項1または2に記載のクロストーク測定方法。
  4.  前記処理ステップでは、前記第1測定ステップで測定した前記出射光のパワーと、前記第2測定ステップで測定した前記出射光のパワーとを平均化した結果を用いて、前記第1光導波路と前記第2光導波路との前記クロストークの大きさを求める
    ことを特徴とする請求項3に記載のクロストーク測定方法。
  5.  前記入射光の波長幅が1nm以上である
    ことを特徴とする請求項1から4のいずれか1項に記載のクロストーク測定方法。
  6.  前記OTDRと前記第1光導波路との間、前記第1光導波路と前記第1接続用光導波路との間、及び前記第1接続用光導波路と前記第2光導波路との間は、ファン・イン-ファン・アウトデバイスにより、光学的に接続され、
     前記処理ステップでは、前記ファン・イン-ファン・アウトデバイスでのクロストークの大きさを取り除き、前記第1光導波路と前記第2光導波路との前記クロストークの大きさを求める
    ことを特徴とする請求項1から5のいずれか1項に記載のクロストーク測定方法。
  7.  前記光デバイスは、前記第1光導波路と並列される第3光導波路を更に有し、
     前記処理ステップでは、求められた前記第1光導波路と前記第2光導波路とのクロストークの大きさに基づいて、前記第1光導波路と前記第3光導波路とのクロストークの大きさを更に求める
    ことを特徴とする請求項1から6のいずれか1項に記載のクロストーク測定方法。
  8.  前記光デバイスは、前記第1光導波路と並列される第3光導波路を更に有し、
     前記接続ステップでは、更に、前記第1光導波路の前記他端と前記第3光導波路の他端とを前記第1接続用光導波路と異なる長さの第2接続用光導波路を介して光学的に接続し、
     前記第1測定ステップでは、前記入射光が前記第1光導波路から前記第3光導波路にクロストークすることで生じる光と、前記第2接続用光導波路を介して前記第1光導波路から前記第3光導波路に入射する前記入射光が前記第3光導波路から前記第1光導波路にクロストークすることで生じる光と、が合波したパルス状の光を含み、前記第1光導波路の前記一端から出射する出射光のパワーを前記OTDRで更に測定し、
     前記処理ステップでは、前記第1光導波路と前記第3光導波路との間のクロストークにより生じるパルス状の光を含む前記出射光のパワーを用いて前記第1光導波路と前記第3光導波路とのクロストークの大きさを更に求める
    ことを特徴とする請求項1,2,5,6のいずれか1項に記載のクロストーク測定方法。
  9.  前記光デバイスは、前記第2光導波路と並列される第3光導波路を更に有し、
     前記接続ステップでは、更に、前記第2光導波路の一端と前記第3光導波路の一端とを第2接続用光導波路を介して光学的に接続し、
     前記第1測定ステップでは、前記第1接続用光導波路を介して前記第1光導波路から前記第2光導波路に入射する前記入射光が前記第2光導波路から前記第3光導波路にクロストークすることで生じる光と、前記第2接続用光導波路を介して前記第2光導波路から前記第3光導波路に入射する前記入射光が前記第3光導波路から前記第2光導波路にクロストークすることで生じる光、とが合波したパルス状の光を含み、前記第1接続用光導波路及び前記第1光導波路を介して前記第1光導波路の前記一端から出射する出射光のパワーを前記OTDRで更に測定し、
     前記処理ステップでは、前記第2光導波路と前記第3光導波路との間のクロストークにより生じるパルス状の光を含む前記出射光のパワーを用いて前記第2光導波路と前記第3光導波路とのクロストークの大きさを更に求める
    ことを特徴とする請求項1,2,5,6のいずれか1項に記載のクロストーク測定方法。
  10.  前記光デバイスは、前記第1光導波路と並列される第3光導波路を更に有し、
     前記接続ステップでは、更に、前記第2光導波路の一端と前記第3光導波路の他端とを第2接続用光導波路を介して光学的に接続し、
     前記第1測定ステップでは、前記OTDRから前記第1光導波路に入射する前記入射光が前記第1光導波路から前記第3光導波路にクロストークすることで生じる光と、前記第1接続用光導波路、前記第2光導波路、及び前記第2接続用光導波路を介して、前記第1光導波路から前記第3光導波路に入射する前記入射光が前記第3光導波路から前記第1光導波路にクロストークすることで生じる光と、が合波したパルス状の光を含み、前記第1光導波路の前記一端から出射する出射光のパワーを前記OTDRで更に測定し、
     前記処理ステップでは、前記第1光導波路と前記第3光導波路との間のクロストークにより生じるパルス状の光を含む前記出射光のパワーを用いて前記第1光導波路と前記第3光導波路とのクロストークの大きさを更に求める
    ことを特徴とする請求項1,2,5,6のいずれか1項に記載のクロストーク測定方法。
  11.  前記第1測定ステップにおいて、前記OTDRにより、前記光デバイスにおける光の損失、反射強度、曲げ損失、及び断線の少なくとも1つを更に測定する
    ことを特徴とする請求項1から10のいずれか1項に記載のクロストーク測定方法。
  12.  前記第1光導波路、前記第2光導波路、及び前記第1接続用光導波路に同じパワーの光を伝搬させる場合に、前記第1接続用光導波路で生じる単位長さ当たりの後方散乱光のパワーは、前記第1光導波路及び前記第2光導波路のそれぞれで生じる単位長さ当たりの後方散乱光のパワーよりも小さい
    ことを特徴とする請求項1から11のいずれか1項に記載のクロストーク測定方法。
  13.  一端及び他端を含み互いに並列される第1光導波路及び第2光導波路を有する光デバイスのクロストーク測定装置であって、
     前記第1光導波路の前記他端と前記第2光導波路の前記他端とを光学的に接続する第1接続用光導波路と、
     パルス状の入射光を前記第1光導波路の前記一端から入射させ、前記入射光が前記第1光導波路から前記第2光導波路にクロストークすることで生じる光と、前記第1接続用光導波路を介して、前記第1光導波路から前記第2光導波路に入射する前記入射光が前記第2光導波路から前記第1光導波路にクロストークすることで生じる光と、が合波したパルス状の光を含み、前記第1光導波路の前記一端から出射する出射光のパワーを測定するOTDRと、
     測定された前記出射光のパワーを用いて前記第1光導波路と前記第2光導波路とのクロストークの大きさを求める処理部と、
    を備える
    ことを特徴とするクロストーク測定装置。

     
PCT/JP2023/016935 2022-05-10 2023-04-28 クロストーク測定方法、及びクロストーク測定装置 WO2023219019A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-077811 2022-05-10
JP2022077811 2022-05-10
JP2022-138609 2022-08-31
JP2022138609 2022-08-31

Publications (1)

Publication Number Publication Date
WO2023219019A1 true WO2023219019A1 (ja) 2023-11-16

Family

ID=88730451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016935 WO2023219019A1 (ja) 2022-05-10 2023-04-28 クロストーク測定方法、及びクロストーク測定装置

Country Status (1)

Country Link
WO (1) WO2023219019A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104032A (ja) * 1990-08-23 1992-04-06 Sumitomo Electric Ind Ltd 多心コネクタ付光ファイバケーブルの検査方法
JP2012202827A (ja) * 2011-03-25 2012-10-22 Tohoku Univ マルチコア光ファイバ用モード結合測定方法および測定装置
JP2013238592A (ja) * 2012-05-08 2013-11-28 Fluke Corp シングルエンド光学テスト機器用アレイ・コネクタ・テスト・ハーネス
JP2014025921A (ja) * 2012-06-22 2014-02-06 Fujikura Ltd クロストーク測定方法及びクロストーク測定装置
JP2014153116A (ja) * 2013-02-06 2014-08-25 Tohoku Univ マルチモード光ファイバ用モード結合測定装置
JP2014206517A (ja) * 2013-04-16 2014-10-30 日本電信電話株式会社 多コア光ファイバのクロストーク特性の評価方法及びそのシステム
US20160018245A1 (en) * 2014-07-17 2016-01-21 Schlumberger Technology Corporation Measurement Using A Multi-Core Optical Fiber
JP2016057297A (ja) * 2014-09-05 2016-04-21 古河電気工業株式会社 光ファイバ伝送体の測定用部品および測定方法
JP2016225899A (ja) * 2015-06-02 2016-12-28 日本電信電話株式会社 クロストーク推定システム及びクロストーク推定方法
JP2016225900A (ja) * 2015-06-02 2016-12-28 日本電信電話株式会社 光伝送システム及びクロストーク測定方法
JP2018169236A (ja) * 2017-03-29 2018-11-01 アンリツ株式会社 光パルス試験装置及び光パルス試験方法
CN114236675A (zh) * 2021-12-27 2022-03-25 中国联合网络通信集团有限公司 光纤及光纤通信系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104032A (ja) * 1990-08-23 1992-04-06 Sumitomo Electric Ind Ltd 多心コネクタ付光ファイバケーブルの検査方法
JP2012202827A (ja) * 2011-03-25 2012-10-22 Tohoku Univ マルチコア光ファイバ用モード結合測定方法および測定装置
JP2013238592A (ja) * 2012-05-08 2013-11-28 Fluke Corp シングルエンド光学テスト機器用アレイ・コネクタ・テスト・ハーネス
JP2014025921A (ja) * 2012-06-22 2014-02-06 Fujikura Ltd クロストーク測定方法及びクロストーク測定装置
JP2014153116A (ja) * 2013-02-06 2014-08-25 Tohoku Univ マルチモード光ファイバ用モード結合測定装置
JP2014206517A (ja) * 2013-04-16 2014-10-30 日本電信電話株式会社 多コア光ファイバのクロストーク特性の評価方法及びそのシステム
US20160018245A1 (en) * 2014-07-17 2016-01-21 Schlumberger Technology Corporation Measurement Using A Multi-Core Optical Fiber
JP2016057297A (ja) * 2014-09-05 2016-04-21 古河電気工業株式会社 光ファイバ伝送体の測定用部品および測定方法
JP2016225899A (ja) * 2015-06-02 2016-12-28 日本電信電話株式会社 クロストーク推定システム及びクロストーク推定方法
JP2016225900A (ja) * 2015-06-02 2016-12-28 日本電信電話株式会社 光伝送システム及びクロストーク測定方法
JP2018169236A (ja) * 2017-03-29 2018-11-01 アンリツ株式会社 光パルス試験装置及び光パルス試験方法
CN114236675A (zh) * 2021-12-27 2022-03-25 中国联合网络通信集团有限公司 光纤及光纤通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAYU NAKAGAWA, KATSUHIRO TAKENAGA, KENTARO ICHII: "Novel inter-core crosstalk measurement method using loopback OTDR technique", IEICE TECHNICAL REPORT, IEICE, JP, vol. 122, no. 379 - OCS2022-72, 9 February 2023 (2023-02-09), JP , pages 10 - 13, XP009550418, ISSN: 2432-6380 *

Similar Documents

Publication Publication Date Title
US10845268B1 (en) Monitorable hollow core optical fiber
JP6132332B2 (ja) マルチモード光ファイバ用モード結合測定装置
JP7322960B2 (ja) 光ファイバ試験方法および光ファイバ試験装置
Kapron et al. Fiber-optic reflection measurements using OCWR and OTDR techniques
US11156529B2 (en) Nonlinearity measuring method and nonlinearity measuring device
Tuggle et al. Record low loss 0.144 dB/km 2-core optical fiber for submarine transmission
WO2023219019A1 (ja) クロストーク測定方法、及びクロストーク測定装置
Nakagawa et al. Novel Inter-Core Crosstalk Measurement Method Using a Loopback and Bidirectional OTDR Technique
Kobayashi et al. Characterization of Inter-core Crosstalk of Multi-core Fiber as a Function of Bending Radius with Multi-channel OTDR
Nakamura et al. Optical time domain reflectometry for simultaneously characterizing forward and backward crosstalk along multi-core fibers
Liu et al. Simultaneous measurement of MDL and DMGD in FMFs by analyzing the Rayleigh backscattering amplitudes
Wang et al. Evaluation of splicing quality in few-mode optical fibers
JP7006537B2 (ja) ラマン利得効率分布試験方法およびラマン利得効率分布試験装置
JP7405318B1 (ja) 光学特性測定システム及び光学特性測定方法
CN219064543U (zh) 一种多模光纤布里渊光时域分析传感装置
WO2024053224A1 (ja) 光学特性測定システム及び光学特性測定方法
JP7380892B2 (ja) 数モードファイバ試験方法及び数モードファイバ試験装置
KOBAYASHI et al. Measurement of Inter-core Crosstalk of Multicore Fibers with Optical Time Domain Reflectometry
Miyazaki et al. A technique for simultaneous measurement of differential group delay of each core in a multicore fiber
WO2023012875A1 (ja) コア間の電力結合係数を算出する装置、方法及びシステム
WO2024172092A1 (ja) 空間チャネル間クロストーク測定方法および空間チャネル間クロストーク測定装置
Kobayashi et al. Distributed Measurement of Rayleigh Backscattered Crosstalk for Bidirectional Multicore Fiber Transmissions Using Multi-Channel Optical Time Domain Reflectometry
Kamimura et al. Return Loss Measurement Procedure for Multicore Fiber Connectors
US20230288287A1 (en) Power coupling coefficient measuring method and power coupling coefficient measuring device
GB2615561A (en) Optical time domain reflectometry for hollow core optical fibres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024520413

Country of ref document: JP

Kind code of ref document: A