WO2023218915A1 - 真空脱ガス処理の状態推定方法、操業方法、溶鋼の製造方法及び真空脱ガス処理の状態推定装置 - Google Patents
真空脱ガス処理の状態推定方法、操業方法、溶鋼の製造方法及び真空脱ガス処理の状態推定装置 Download PDFInfo
- Publication number
- WO2023218915A1 WO2023218915A1 PCT/JP2023/016018 JP2023016018W WO2023218915A1 WO 2023218915 A1 WO2023218915 A1 WO 2023218915A1 JP 2023016018 W JP2023016018 W JP 2023016018W WO 2023218915 A1 WO2023218915 A1 WO 2023218915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- vacuum degassing
- gas
- molten steel
- vacuum
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 115
- 229910000831 Steel Inorganic materials 0.000 title claims description 107
- 239000010959 steel Substances 0.000 title claims description 107
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000007872 degassing Methods 0.000 title abstract 10
- 239000007789 gas Substances 0.000 claims abstract description 195
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 155
- 239000001301 oxygen Substances 0.000 claims abstract description 155
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 155
- 238000012545 processing Methods 0.000 claims abstract description 20
- 238000005259 measurement Methods 0.000 claims abstract description 11
- 238000009849 vacuum degassing Methods 0.000 claims description 114
- 238000004364 calculation method Methods 0.000 claims description 65
- 238000004090 dissolution Methods 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 26
- 238000007664 blowing Methods 0.000 claims description 10
- 238000011017 operating method Methods 0.000 claims description 6
- 238000007670 refining Methods 0.000 claims description 6
- 239000000470 constituent Substances 0.000 abstract description 3
- 238000002347 injection Methods 0.000 description 19
- 239000007924 injection Substances 0.000 description 19
- 239000011261 inert gas Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000010992 reflux Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000005261 decarburization Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
Definitions
- the present disclosure relates to a method for estimating the state of vacuum degassing, an operating method, a method for producing molten steel, and a device for estimating the state of vacuum degassing.
- oxygen concentration in the molten steel When casting molten steel using the continuous casting method, it is necessary to keep the oxygen concentration in the molten steel at a very low value.
- a deoxidizing agent is added to molten steel to reduce the oxygen concentration in the molten steel.
- oxygen may be blown into the molten steel in order to increase the oxygen concentration in the molten steel.
- Oxygen injection may be performed, for example, for the purpose of promoting decarburization of steel types with a low target value of carbon concentration in molten steel.
- the reaction in which carbon in molten steel and oxygen in molten steel react to generate CO gas can be balanced at a lower concentration of carbon in molten steel.
- oxygen blowing is sometimes carried out for the purpose of controlling the temperature of molten steel by utilizing heat generated by reaction with constituent elements in molten steel, for example.
- the reacting components in the molten steel do not necessarily exist in the molten steel at the time the oxygen injection is performed, but also include components that are added after the oxygen injection.
- the amount of temperature increase in molten steel is determined by the oxygen concentration in the molten steel.
- blown oxygen the entire amount of oxygen blown into the molten steel does not contribute to an increase in the oxygen concentration in the molten steel.
- a portion of the blown oxygen may react with CO gas in the gas phase to produce CO2 gas.
- a portion of the blown oxygen may be exhausted out of the system while remaining as O 2 gas. Therefore, in order to increase the oxygen concentration in molten steel to a desired value by oxygen injection, it is necessary to accurately estimate the proportion of the blown oxygen that dissolves in the molten steel.
- Blown oxygen either dissolves in the molten steel or is exhausted from the exhaust system, so by measuring the latter amount of oxygen using an exhaust gas measuring device, it is possible to estimate the dissolution rate of the blown oxygen into the molten steel.
- the oxygen exhausted from the vacuum degassing equipment includes oxygen other than oxygen blown during the vacuum degassing process, and these must be subtracted.
- oxygen supply sources include the molten steel to be treated, the air present in the evacuated area before the start of the process, and the air that enters the evacuated area from an insufficiently sealed part of the evacuation system during the process.
- the amount of oxygen supplied from the air can be determined by calculating the amount of N 2 gas contained in the exhaust gas.
- the flow rate of the exhaust gas In the refining process, almost all of the flow rate of the exhaust gas is occupied by components such as CO gas, CO 2 gas, O 2 gas, inert gas blown into the molten steel for stirring, and N 2 gas.
- the CO gas, CO 2 gas, and O 2 gas flow rates are measured by an exhaust gas measuring device. Further, the inert gas flow rate is a manipulated variable for operation. Therefore, it can be estimated that the remainder obtained by subtracting these values from the measured value of the exhaust gas flow rate is the N 2 gas flow rate.
- Patent Document 1 the amount of air that enters the exhaust system during operation is estimated using the calculation method described above for the purpose of deriving converter parameters. Further, Patent Document 2 describes estimation taking into account the amount of air involved as a form of estimating molten metal components in a refining process, and the amount of air involved is estimated by the calculation method described above.
- Patent Document 1 and Patent Document 2 are technologies that target the converter process.
- a converter there is a large gap between the furnace and the skirt, and air enters through this gap, so the flow rate of the incoming air changes greatly over time.
- vacuum degassing equipment the atmospheric pressure is kept very low in the exhaust system, and it is thought that the time-dependent change in the flow rate of air entering from an insufficiently sealed area is not large. Therefore, the estimation methods proposed in Patent Document 1 and Patent Document 2 cannot be directly applied to vacuum degassing treatment.
- Patent Document 1 the ultimate purpose is to derive converter parameters. Further, in Patent Document 2, the ultimate purpose is to estimate the carbon concentration in the molten metal and the FeO concentration in the slag. Therefore, for example, no method has been proposed for estimating the rate at which blown oxygen dissolves in molten steel and the oxygen concentration in molten steel in vacuum degassing treatment.
- the purpose of the present disclosure which was made in view of the above circumstances, is to provide a method for estimating the state of vacuum degassing treatment, an operation method, a method for producing molten steel, and a method for estimating the state of vacuum degassing treatment, which enable highly accurate state estimation in vacuum degassing treatment.
- the goal is to provide equipment.
- a method for estimating the state of vacuum degassing treatment includes: Operational performance regarding the operation amount during vacuum degassing treatment, the flow rate of exhaust gas discharged from the vacuum degassing equipment that performs the vacuum degassing treatment, and the components of CO gas, CO 2 gas, and O 2 gas contained in the exhaust gas. an input step in which the input information is input using time-series exhaust gas measurement values including concentration; Based on the input information, there are multiple origins of the gas constituting the exhaust gas, including blown oxygen and air that has entered the vacuum region of the vacuum degassing equipment before or during the vacuum degassing process. and a calculation step of estimating the composition ratio of the plurality of classified origins.
- the calculation step includes estimating a proportion of N2 gas in the exhaust gas from the input information, and calculating a proportion of air that has entered the evacuated region based on the N2 gas in the exhaust gas.
- the calculation step includes estimating the dissolution rate of blown oxygen into molten steel based on the estimated composition ratio when a reference time or more has elapsed from the end time of oxygen blowing.
- the calculation step includes estimating an increase in oxygen concentration in molten steel based on the estimated dissolution rate.
- the composition ratio is estimated when it is determined that the flow rate of air in the exhaust gas is constant based on the degree of vacuum in the evacuated region.
- the operating method according to an embodiment of the present disclosure includes: The vacuum degassing equipment is operated by executing the vacuum degassing treatment state estimation method of (1) or (2).
- a method for manufacturing molten steel according to an embodiment of the present disclosure includes: Molten steel is refined in a vacuum degassing facility operated by the operating method of (6) to produce the refined molten steel.
- a vacuum degassing treatment state estimation device includes: Operational performance regarding the operation amount during vacuum degassing treatment, the flow rate of exhaust gas discharged from the vacuum degassing equipment that performs the vacuum degassing treatment, and the components of CO gas, CO 2 gas, and O 2 gas contained in the exhaust gas.
- the exhaust gas classification calculation unit estimates the proportion of N 2 gas in the exhaust gas from the input information, and calculates the proportion of air that has entered the vacuum region based on the N 2 gas in the exhaust gas.
- a blown oxygen dissolution rate calculation unit is provided for estimating the dissolution rate of blown oxygen into molten steel based on the estimated composition ratio when a reference time or more has elapsed from the end time of oxygen blowing.
- the method includes a calculation unit for calculating an amount of increase in oxygen concentration in molten steel that estimates an amount of increase in oxygen concentration in molten steel based on the estimated dissolution rate.
- the exhaust gas classification calculation unit estimates the composition ratio when it is determined that the flow rate of air that occupies the exhaust gas is constant based on the degree of vacuum in the evacuated region.
- the origin of the gas constituting the exhaust gas of the vacuum degassing process includes blown oxygen and air that has entered the vacuum area of the vacuum degassing equipment before or during the start of the vacuum degassing process. Classify into multiple origins. Then, by estimating the composition ratio of multiple classified origins, a method for estimating the state of vacuum degassing treatment, an operation method, a method for manufacturing molten steel, and a vacuum degassing method that can estimate the state with high accuracy in vacuum degassing treatment.
- a processing state estimation device can be provided.
- FIG. 1 is a schematic diagram showing the configuration of a state estimating device for vacuum degassing treatment, which is an embodiment of the present disclosure.
- FIG. 2 is a flowchart showing the flow of processing executed by the state estimation device.
- FIG. 3 is a time-series calculation result of the exhaust gas composition ratio in a vacuum degassing treatment charge to which an embodiment of the present disclosure is applied.
- FIG. 4 shows time-series measurement and calculation results of the blown oxygen flow rate, the blown oxygen flow rate in exhaust gas, and the vacuum degree of the vacuum chamber in a vacuum degassing treatment charge to which an embodiment of the present disclosure is applied.
- the vacuum degassing process will be described as an RH vacuum degassing process performed using RH vacuum degassing equipment, but is not limited to the RH vacuum degassing process.
- this is carried out using equipment that has only one immersion tube that is immersed in a vacuum tank and a ladle and sucks up the molten steel into the vacuum tank, or equipment that does not have a vacuum tank and creates a vacuum on the surface of the molten steel in the ladle.
- the state estimation method described below can also be implemented for vacuum degassing treatment.
- FIG. 1 is a schematic diagram showing the configuration of a state estimation device 20 and a vacuum degassing facility 100 according to the present embodiment.
- the state estimating device 20 is a device that estimates the internal state of the vacuum degassing facility 100 while the vacuum degassing facility 100 is performing vacuum degassing processing.
- the vacuum degassing equipment 100 is operated by the state estimating device 20 executing a method for estimating the state of the vacuum degassing process, which will be described later. That is, as a method of operating the vacuum degassing equipment 100, the state estimation of the vacuum degassing process is performed.
- the vacuum degassing equipment 100 constitutes a part of molten steel manufacturing equipment.
- a method for producing molten steel is executed in a molten steel production facility, and includes refining molten steel in a vacuum degassing facility 100 to produce refined molten steel.
- the RH vacuum degassing equipment 100 includes a vacuum chamber 101 and a ladle 102, which are connected by two immersion tubes 103.
- the vacuum chamber 101 is connected to an exhaust duct 104, and the gas inside the vacuum chamber 101 is exhausted through this to reduce the pressure in the vacuum chamber 101, and the molten steel in the ladle 102 is sucked up. Then, by blowing inert gas through the piping 105 from one side of the immersion tube 103, the molten steel flows back between the vacuum tank 101 and the ladle 102. Oxygen can be blown into the molten steel from a blowing lance 106 installed in the vacuum chamber 101.
- the vacuum chamber 101 is an example of a evacuated area of the vacuum degassing equipment 100, that is, an area that is depressurized to become a vacuum.
- the evacuated area of the vacuum degassing equipment 100 also includes an exhaust duct 104 connected to the vacuum chamber 101.
- an exhaust gas flow meter 107 and an exhaust gas component concentration meter 108 are installed inside the exhaust duct 104.
- the exhaust gas flow meter 107 measures the flow rate of exhaust gas.
- the exhaust gas component concentration meter 108 measures the concentration of components in the exhaust gas including CO gas, CO 2 gas, and O 2 gas.
- a vacuum degassing control system to which the vacuum degassing process state estimating device 20 is applied includes a control device 10 and a vacuum degassing process state estimating device 20 as main components.
- the control device 10 is configured by an information processing device such as a computer, and controls the displacement of the exhaust equipment so that the component concentration and temperature of the molten steel fall within the target range after the vacuum degassing treatment from the actual values before the vacuum degassing treatment. Controls operational variables such as the flow rate of inert gas for reflux and the flow rate of blown oxygen.
- control device 10 collects operational performance value data including the degree of vacuum in the vacuum chamber 101, the flow rate of inert gas for reflux, the flow rate of blown oxygen, the flow rate of exhaust gas, and the concentration of exhaust gas components, and outputs it to the state estimation device 20. do.
- the state estimation device 20 includes an operation information input section 21, a calculation section, and an output section 25.
- the calculation unit is a functional unit that performs calculations for estimating the state of vacuum degassing treatment.
- the calculation section includes an exhaust gas classification calculation section 22, a blown oxygen dissolution rate calculation section 23, and an oxygen concentration increase amount calculation section 24 in molten steel.
- the operation information input unit 21 inputs the operation results regarding the operation amount during the vacuum degassing process, the flow rate of the exhaust gas discharged from the vacuum degassing equipment 100 that performs the vacuum degassing process, and CO gas and CO 2 gas contained in the exhaust gas. Input information is input using time-series exhaust gas measurement values including component concentrations of O 2 gas.
- the exhaust gas classification calculation unit 22 classifies the origin of the gas constituting the exhaust gas discharged from the vacuum degassing equipment 100 into a plurality of origins based on the input information acquired by the operation information input unit 21, and Estimate the composition ratio of the origin of The sources include blown oxygen and air that enters the evacuated region of the vacuum degassing facility 100 before or during the initiation of the vacuum degassing process. Furthermore, the exhaust gas classification calculation unit 22 may estimate the proportion of N 2 gas in the exhaust gas from the input information, and calculate the proportion of air that has entered the vacuum region based on the N 2 gas in the exhaust gas.
- the blown oxygen dissolution rate calculation unit 23 estimates the dissolution rate of blown oxygen into molten steel based on the composition ratios of the plurality of origins estimated by the exhaust gas classification calculation unit 22.
- the molten steel oxygen concentration increase calculation unit 24 estimates the molten steel oxygen concentration increase based on the dissolution rate estimated by the blown oxygen dissolution rate calculation unit 23.
- the output unit 25 outputs to the control device 10 the calculation results performed by the calculation unit to estimate the state of the vacuum degassing process.
- the control device 10 may control the amount of operation related to the operation based on the calculation result obtained from the output unit 25.
- the vacuum degassing treatment state estimation device 20 is configured by an information processing device such as a computer.
- the state estimating device 20 for vacuum degassing processing includes an operation information input section 21, an exhaust gas classification calculation section 22, a blown oxygen It functions as a dissolution rate calculation section 23, an oxygen concentration increase amount calculation section 24 in molten steel, and an output section 25.
- the vacuum degassing processing state estimating device 20 having such a configuration classifies the gases constituting the exhaust gas and estimates the composition ratio by performing the vacuum degassing processing state estimation processing described below. For charges that have been blown with oxygen during processing, the dissolution rate of blown oxygen into molten steel is estimated from the estimated exhaust gas composition ratio, and the results are used to accurately estimate the amount of increase in oxygen concentration in molten steel due to blown oxygen. be able to.
- the operation of the vacuum degassing processing state estimating device 20 will be explained with reference to the flowchart shown in FIG. 2. Here, in the following description, it is assumed that oxygen is blown during the vacuum degassing process.
- FIG. 2 is a flowchart showing the flow of state estimation processing for vacuum degassing processing, which is an embodiment of the present disclosure.
- the flowchart shown in FIG. 2 starts at the timing when an execution command for vacuum degassing processing is input, and the state estimation processing proceeds to step S1.
- step S1 the operation information input unit 21 acquires molten steel information before the start of decarburization.
- the molten steel information may include, for example, measurement and analysis results obtained by analyzing the weight and components of molten steel.
- the operation information input unit 21 acquires the operation performance value regarding the operation amount during the vacuum degassing process.
- the operational performance values items necessary for calculation in the exhaust gas classification calculation section 22, the blown oxygen dissolution rate calculation section 23, and the molten steel oxygen concentration increase amount calculation section 24 are acquired.
- the operation information input unit 21 acquires, for example, the degree of vacuum within the vacuum chamber 101, the flow rate of the inert gas for reflux, and the flow rate of blown oxygen as operational performance values.
- the operation information input unit 21 receives, as input information, time-series exhaust gas measurement values including the exhaust gas flow rate and the component concentrations of CO gas, CO 2 gas, and O 2 gas contained in the exhaust gas, together with actual operation values. get.
- step S1 and step S2 correspond to input steps.
- the exhaust gas classification calculation unit 22 classifies the gases constituting the exhaust gas and estimates the composition ratio of the exhaust gas discharged during the vacuum degassing process.
- exhaust gas supply sources are classified into the following five types.
- impurity components contained in molten steel that are removed as gas by depressurization inert gas for reflux, air present in the vacuum chamber 101 before the start of vacuum degassing treatment, and vacuum generated during vacuum degassing treatment.
- the leak air entering the area is blown oxygen.
- the main impurity components contained in molten steel are hydrogen, nitrogen, and carbon.
- the amount of substances other than carbon generated is negligible.
- carbon is removed from molten steel as CO gas, the amount of emissions can be determined by measuring exhaust gas.
- the inert gas for reflux is a manipulated variable for operation, its amount can be grasped.
- the air existing in the vacuum chamber 101 before the start of the vacuum degassing process and the leaked air that enters the vacuum area during the process can be distinguished by calculating the amount of N2 contained in the exhaust gas.
- the constituent components of the exhaust gas are CO gas, CO 2 gas, O 2 gas, inert gas blown for stirring the molten steel, and N 2 gas, which account for almost all of the flow rate. It is possible to calculate the exhaust amount of components other than N2 gas from the exhaust gas measurement results or operational control results.Assuming that the unknown component of the exhaust gas is N2 gas, the amount can be calculated using the following formula (1). You can ask for it.
- f N2 is the flow rate of N 2 in the exhaust gas [Nm 3 /h].
- f g is the exhaust gas flow rate [Nm 3 /h].
- r CO is the CO concentration [vol%] in the exhaust gas.
- r CO2 is the CO 2 concentration [vol%] in the exhaust gas.
- r O2 is the O 2 concentration [vol%] in the exhaust gas.
- f Circ is the flow rate of blown Ar gas for reflux [Nm 3 /h].
- the exhaust gas classification calculation unit 22 performs the calculation of equation (1) after removing or reducing the known error. .
- the known error is assumed to be, for example, an error such as an offset included in the measured value. Furthermore, if the time required for the reflux inert gas to reach the exhaust gas flow meter is known, it is desirable to use f Circ that reflects the time delay in the calculation of equation (1).
- the present inventor has determined that when the vacuum chamber 101 is evacuated to near the ultimate vacuum level (target vacuum level) in the vacuum degassing process, the above formula (2) is satisfied.
- the air flow rate in the exhaust gas calculated by this method takes a nearly constant value. Since the change in vacuum level is small near the ultimate vacuum level, it can be assumed that the entire amount of air in the exhaust gas comes from leaks during processing, and if the pressure inside the vacuum chamber 101 is sufficiently low, the leak air flow rate will be constant. , it is reasonable that the air flow rate in the exhaust gas is approximately constant.
- the composition ratios of four types other than blown oxygen can be quantitatively estimated.
- the remainder can be estimated to be exhaust gas originating from blown oxygen.
- step S4 it is determined whether a predetermined reference time T or more has elapsed from the time when the exhaust gas composition ratio was estimated to the end time of oxygen injection. If the elapsed time after oxygen injection is shorter than the reference, the process returns to step S2 and the subsequent processes are executed again. On the other hand, if the elapsed time is longer than the reference, the state estimation process proceeds to step S5. The reason for performing such conditional branch processing will be explained in conjunction with the explanation of the processing in step S5.
- step S5 the blown oxygen dissolution rate calculation unit 23 estimates the proportion of blown oxygen dissolved in the molten steel.
- the amount of oxygen in the exhaust gas can be calculated using the following formula (3).
- the amount of oxygen in the exhaust gas is evaluated by converting it into an O 2 volumetric flow rate.
- f O2 is the O 2 flow rate [Nm 3 /h] in the exhaust gas.
- the amount of oxygen in the exhaust gas is evaluated by converting it into the O 2 volumetric flow rate.
- the flow rate f O2,deC [Nm 3 /h] of that derived from decarburization can be calculated from the following equation (4) since all of it is supplied to the vacuum chamber 101 as CO.
- the flow rate f O2,b [Nm 3 /h] of that derived from oxygen injection can be calculated from the following formula (6).
- the present inventor obtained three points of knowledge regarding the temporal change of f O2,b based on the actual data of vacuum degassing treatment. First, there is a time delay from the start of oxygen injection until f O2,b increases. Next, after the end of oxygen injection, f O2,b rapidly converges to 0 after a certain time delay. Finally, the time from when blown oxygen that does not dissolve in molten steel is blown into molten steel until it is observed by an exhaust gas measuring device cannot be regarded as constant. The third finding means that the temporal change pattern of f O2,b cannot be considered the same as the oxygen injection pattern, and it is difficult to continuously estimate the dissolution rate of the injection oxygen.
- the difference in the pattern is that part of the blown oxygen reacts with the CO gas released into the vacuum chamber 101 to generate CO2 gas, but depending on the time required for this reaction, the time required for this reaction is to wait until the exhaust gas measuring device receives the oxygen. This is thought to be due to variations in the time it takes to reach the destination.
- a reference time T in which f O2,b reliably converges to 0 after the completion of oxygen injection is set, and the oxygen dissolution rate x of the blown oxygen is estimated from the following equation (7).
- the time T can be determined, for example, by the following method.
- a threshold value is set for f O2,b , and the time difference between the time when it falls below the threshold value and the end time of oxygen injection is calculated for multiple charges. The maximum of these is set as time T.
- t0 is the oxygen injection start time or the time when time T is added to the oxygen injection start time.
- t1 is the time when time T is added to the end time of oxygen injection.
- Q O2 is the total amount of blown oxygen [Nm 3 ].
- Conditional branch processing is performed in step S4 so that the estimation calculation of the oxygen dissolution rate x is performed accurately using equation (7).
- step S5 the process in step S5 is completed, and the state estimation process proceeds to the process in step S6.
- step S6 the molten steel oxygen concentration increase calculation unit 24 estimates the molten steel oxygen concentration increase.
- the molten steel oxygen concentration increase amount calculation unit 24 calculates the molten steel oxygen concentration increase amount ⁇ [O][ppm] due to oxygen injection from the oxygen dissolution rate x of the blown oxygen estimated in the process of step S5 using the following formula (8). can be calculated.
- ⁇ O2 is the oxygen density [kg/Nm 3 ].
- W is the weight of molten steel [kg].
- steps S3 to S6 correspond to calculation steps.
- step S7 various information estimated in the previous processes, particularly the dissolution rate of blown oxygen into molten steel and the amount of increase in oxygen concentration in molten steel, are output to the control device 10.
- the vacuum degassing treatment state estimation method, operating method, molten steel manufacturing method, and vacuum degassing treatment state estimation device 20 have the above-described configuration and steps.
- the origins of the gases that make up exhaust gas are classified into multiple origins. By estimating the composition ratio of the plurality of classified origins, highly accurate state estimation in the vacuum degassing process is possible.
- the dissolution rate of blown oxygen into molten steel and the amount of increase in oxygen concentration in molten steel based on the results of state estimation.
- the estimated increase in oxygen concentration in molten steel is further used to estimate the oxygen concentration in molten steel, and the oxygen concentration in molten steel is estimated with high accuracy.
- Based on the estimated oxygen concentration in molten steel it is possible to finish the decarburization process at an appropriate time and determine whether additional oxygen injection is necessary to control the molten steel temperature to the desired value. .
- the composition ratio of exhaust gas was continuously estimated for three charges of vacuum degassing treatment in which oxygen was blown, and the blown oxygen dissolution rate and the increase in oxygen concentration in molten steel were estimated. estimated.
- FIG. 3 is a stacked graph of the exhaust gas flow rate, showing the change over time in the exhaust gas composition ratio after the start of oxygen blowing.
- FIG. 4 shows temporal changes in the blown oxygen flow rate, the blown oxygen flow rate in the exhaust gas (molten steel undissolved oxygen flow rate), and the degree of vacuum in the vacuum chamber 101.
- the exhaust gas classification calculation process executed by the exhaust gas classification calculation section 22 is executed when the degree of vacuum becomes equal to or less than a threshold value so that the air flow rate in the exhaust gas is stabilized. That is, the exhaust gas classification calculation process is preferably executed when it is determined that the flow rate of air in the exhaust gas is constant based on the degree of vacuum in the evacuated region.
- the threshold value may be determined based on the ultimate vacuum degree or past performance data.
- the amount of blown oxygen in the exhaust gas increases with a delay after oxygen blowing starts, and when the oxygen blowing ends, the amount of blown oxygen in the exhaust gas quickly converges to 0 with a delay. It can be seen that the temporal change in the amount of blown oxygen in the exhaust gas differs greatly from the pattern of blown oxygen, making it difficult to continuously estimate the oxygen dissolution rate.
- Table 1 shows the estimated values of the oxygen dissolution rate and the amount of increase in oxygen concentration in molten steel due to blown oxygen, and the actual value of the amount of increase in oxygen concentration in molten steel.
- the actual value of the increase in oxygen concentration in molten steel is calculated using the actual measured values of carbon concentration and oxygen concentration in molten steel before and during vacuum degassing treatment. Here, since no deoxidizing agent was introduced, the reaction between oxygen and the metal components in the molten steel can be ignored.
- the amount of increase in oxygen concentration in molten steel estimated by the method of the above embodiment matches well with the actual results. From the above, it was confirmed that the method of the above embodiment is effective for estimating the oxygen dissolution rate of blown oxygen and the increase in oxygen concentration in molten steel with high accuracy.
- Control device 20 State estimation device 21 Operation information input section 22 Exhaust gas classification calculation section 23 Blown oxygen dissolution rate calculation section 24 Oxygen concentration increase amount calculation section in molten steel 25 Output section 100 Vacuum degassing equipment 101 Vacuum tank 102 Ladle 103 Immersion tube 104 Exhaust duct 105 Piping 106 Blow lance 107 Exhaust gas flow meter 108 Exhaust gas component concentration meter
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
真空脱ガス処理における高精度な状態推定が可能な真空脱ガス処理の状態推定方法等が提供される。真空脱ガス処理の状態推定方法は、真空脱ガス処理の処理中の操作量に関する操業実績及び真空脱ガス処理を行う真空脱ガス設備から排出された排ガスの流量、排ガスに含まれるCOガス、CO2ガス及びO2ガスの成分濃度を含む時系列排ガス計測値を入力情報として、入力情報が入力される入力ステップ(S1、S2)と、入力情報に基づいて、排ガスを構成する気体の由来について、吹き込み酸素及び真空脱ガス処理の開始前又は処理中に真空脱ガス設備の真空化領域に進入した空気を含む複数の由来に分類し、分類された複数の由来の構成比を推定する計算ステップ(S3)と、を含む。
Description
本開示は、真空脱ガス処理の状態推定方法、操業方法、溶鋼の製造方法及び真空脱ガス処理の状態推定装置に関する。
連続鋳造法により溶鋼を鋳造する場合、溶鋼中酸素濃度を非常に低い値に保つことが必要である。一般的な製鋼プロセスにおいては、溶鋼に脱酸剤を加えることで溶鋼中酸素濃度を低下させる。一方、転炉処理後に真空脱ガス処理を用いて二次精錬を行う場合に、溶鋼中酸素濃度を上昇させるために溶鋼への酸素吹き込みを行う場合がある。酸素吹き込みは、例えば溶鋼中炭素濃度の目標値が低い鋼種について脱炭を促進させる目的で行われることがある。溶鋼中酸素濃度を増加させることで、溶鋼中炭素と溶鋼中酸素が反応してCOガスが発生する反応を、より低い溶鋼中炭素濃度で平衡させることができる。また、酸素吹き込みは、例えば溶鋼中成分元素との反応に伴う発熱を利用して溶鋼の温度調節を行う目的で行われることがある。ここで、反応する溶鋼中成分は酸素吹き込みが行われた時点で溶鋼中に存在するとは限らず、酸素吹き込み後に投入される成分も含む。特に酸素吹き込み後に脱酸剤を投入する場合、溶鋼温度上昇量は溶鋼中酸素濃度によって決定される。以上のように、二次精錬を行うことで溶鋼成分及び温度を所望の値へ制御するためには、溶鋼中酸素濃度を所望の値へ制御することが必要である。
ここで、酸素吹き込みで吹き込まれた酸素(以下「吹き込み酸素」)は、全量が溶鋼へ溶解し、溶鋼中酸素濃度の上昇に寄与するわけでない。吹き込み酸素は、一部が気相中のCOガスと反応してCO2ガスを生成することがある。また、吹き込み酸素は、一部がO2ガスのまま系外へと排気されることがある。したがって、酸素吹き込みによって溶鋼中酸素濃度を所望の値まで上昇させるためには、吹き込み酸素のうち溶鋼に溶解するものの割合を正確に推定する必要がある。
吹き込み酸素は溶鋼に溶解するか排気系統より排出されるかのいずれかであるから、後者の酸素量を排ガス計測装置により把握することで、吹き込み酸素の溶鋼への溶解率を推定することができる。しかし、真空脱ガス設備から排気される酸素は、真空脱ガス処理中の酸素吹き込みによるもの以外が含まれ、これらを差し引く必要がある。このような酸素供給源として、処理対象の溶鋼、処理開始前に真空化領域に存在する空気及び処理中に真空排気系統の密閉が不十分な部分から真空化領域に進入する空気が挙げられる。
空気からの酸素供給量は、排ガスに含まれるN2ガス量を計算することで求めることが可能である。精錬プロセスにおいて、排ガスは、COガス、CO2ガス、O2ガス、溶鋼攪拌のために吹き込まれる不活性ガス、N2ガスといった成分で流量のほぼ全てが占められる。COガス、CO2ガス、O2ガス流量は排ガス計測装置によって計測される。また、不活性ガス流量は操業の操作量である。そのため、排ガス流量の測定値から、これらを差し引いた残部がN2ガス流量であると推定できる。
例えば特許文献1では、転炉パラメータの導出を目的として、上記のような計算方法によって、操業中に排気系統へ進入する空気量を推定している。また、特許文献2では、精錬プロセスにおける溶湯成分推定を実施する形態として、巻き込み空気量を考慮した推定について説明しており、上記のような計算方法によって巻き込み空気量を推定している。
しかしながら、特許文献1、特許文献2ともに転炉プロセスを対象とする技術である。転炉では炉とスカートの間に大きな隙間が存在し、ここから空気が進入するため進入空気流量の時間変化が大きい。一方で、真空脱ガス設備では排気系統内で気圧が非常に低く保たれており、密閉が不十分な部分から進入する空気の流量の時間変化は大きくないと考えられる。従って、特許文献1、特許文献2で提案されている推定方法をそのまま真空脱ガス処理に適用することができない。
また、特許文献1では転炉パラメータの導出を最終的な目的とする。また、特許文献2では溶湯中炭素濃度とスラグ中FeO濃度の推定を最終的な目的とする。したがって、例えば真空脱ガス処理において吹き込み酸素が溶鋼に溶解する割合及び溶鋼中酸素濃度を推定する方法については提案されていない。
かかる事情に鑑みてなされた本開示の目的は、真空脱ガス処理における高精度な状態推定が可能な真空脱ガス処理の状態推定方法、操業方法、溶鋼の製造方法及び真空脱ガス処理の状態推定装置を提供することにある。
(1)本開示の一実施形態に係る真空脱ガス処理の状態推定方法は、
真空脱ガス処理の処理中の操作量に関する操業実績及び前記真空脱ガス処理を行う真空脱ガス設備から排出された排ガスの流量、前記排ガスに含まれるCOガス、CO2ガス及びO2ガスの成分濃度を含む時系列排ガス計測値を入力情報として、前記入力情報が入力される入力ステップと、
前記入力情報に基づいて、前記排ガスを構成する気体の由来について、吹き込み酸素及び前記真空脱ガス処理の開始前又は処理中に前記真空脱ガス設備の真空化領域に進入した空気を含む複数の由来に分類し、分類された前記複数の由来の構成比を推定する計算ステップと、を含む。
真空脱ガス処理の処理中の操作量に関する操業実績及び前記真空脱ガス処理を行う真空脱ガス設備から排出された排ガスの流量、前記排ガスに含まれるCOガス、CO2ガス及びO2ガスの成分濃度を含む時系列排ガス計測値を入力情報として、前記入力情報が入力される入力ステップと、
前記入力情報に基づいて、前記排ガスを構成する気体の由来について、吹き込み酸素及び前記真空脱ガス処理の開始前又は処理中に前記真空脱ガス設備の真空化領域に進入した空気を含む複数の由来に分類し、分類された前記複数の由来の構成比を推定する計算ステップと、を含む。
(2)本開示の一実施形態として、(1)において、
前記計算ステップは、前記入力情報から前記排ガスに占めるN2ガスの割合を推定し、前記排ガス中のN2ガスに基づいて前記真空化領域に進入した空気の割合を計算することを含む。
前記計算ステップは、前記入力情報から前記排ガスに占めるN2ガスの割合を推定し、前記排ガス中のN2ガスに基づいて前記真空化領域に進入した空気の割合を計算することを含む。
(3)本開示の一実施形態として、(1)又は(2)において、
前記計算ステップは、酸素吹き込みの終了時刻から基準の時間以上が経過した場合に、推定された前記構成比に基づいて、吹き込み酸素の溶鋼への溶解率を推定すること、を含む。
前記計算ステップは、酸素吹き込みの終了時刻から基準の時間以上が経過した場合に、推定された前記構成比に基づいて、吹き込み酸素の溶鋼への溶解率を推定すること、を含む。
(4)本開示の一実施形態として、(3)において、
前記計算ステップは、推定された前記溶解率に基づいて、溶鋼中酸素濃度上昇量を推定すること、を含む。
前記計算ステップは、推定された前記溶解率に基づいて、溶鋼中酸素濃度上昇量を推定すること、を含む。
(5)本開示の一実施形態として、(1)又は(2)において、
前記計算ステップは、前記真空化領域の真空度に基づいて前記排ガスに占める空気の流量が一定であると判定される場合に、前記構成比を推定する。
前記計算ステップは、前記真空化領域の真空度に基づいて前記排ガスに占める空気の流量が一定であると判定される場合に、前記構成比を推定する。
(6)本開示の一実施形態に係る操業方法は、
(1)又は(2)の真空脱ガス処理の状態推定方法を実行して、前記真空脱ガス設備を操業する。
(1)又は(2)の真空脱ガス処理の状態推定方法を実行して、前記真空脱ガス設備を操業する。
(7)本開示の一実施形態に係る溶鋼の製造方法は、
(6)の操業方法によって操業される真空脱ガス設備において溶鋼を精錬して、精錬された前記溶鋼を製造する。
(6)の操業方法によって操業される真空脱ガス設備において溶鋼を精錬して、精錬された前記溶鋼を製造する。
(8)本開示の一実施形態に係る真空脱ガス処理の状態推定装置は、
真空脱ガス処理の処理中の操作量に関する操業実績及び前記真空脱ガス処理を行う真空脱ガス設備から排出された排ガスの流量、前記排ガスに含まれるCOガス、CO2ガス及びO2ガスの成分濃度を含む時系列排ガス計測値を入力情報として、前記入力情報が入力される操業情報入力部と、
前記入力情報に基づいて、前記排ガスを構成する気体の由来について、吹き込み酸素及び前記真空脱ガス処理の開始前又は処理中に前記真空脱ガス設備の真空化領域に進入した空気を含む複数の由来に分類し、分類された前記複数の由来の構成比を推定する排ガス分類計算部と、を備える。
真空脱ガス処理の処理中の操作量に関する操業実績及び前記真空脱ガス処理を行う真空脱ガス設備から排出された排ガスの流量、前記排ガスに含まれるCOガス、CO2ガス及びO2ガスの成分濃度を含む時系列排ガス計測値を入力情報として、前記入力情報が入力される操業情報入力部と、
前記入力情報に基づいて、前記排ガスを構成する気体の由来について、吹き込み酸素及び前記真空脱ガス処理の開始前又は処理中に前記真空脱ガス設備の真空化領域に進入した空気を含む複数の由来に分類し、分類された前記複数の由来の構成比を推定する排ガス分類計算部と、を備える。
(9)本開示の一実施形態として、(8)において、
前記排ガス分類計算部は、前記入力情報から前記排ガスに占めるN2ガスの割合を推定し、前記排ガス中のN2ガスに基づいて前記真空化領域に進入した空気の割合を計算する。
前記排ガス分類計算部は、前記入力情報から前記排ガスに占めるN2ガスの割合を推定し、前記排ガス中のN2ガスに基づいて前記真空化領域に進入した空気の割合を計算する。
(10)本開示の一実施形態として、(8)又は(9)において、
酸素吹き込みの終了時刻から基準の時間以上が経過した場合に、推定された前記構成比に基づいて、吹き込み酸素の溶鋼への溶解率を推定する吹き込み酸素溶解率計算部を備える。
酸素吹き込みの終了時刻から基準の時間以上が経過した場合に、推定された前記構成比に基づいて、吹き込み酸素の溶鋼への溶解率を推定する吹き込み酸素溶解率計算部を備える。
(11)本開示の一実施形態として、(10)において、
推定された前記溶解率に基づいて、溶鋼中酸素濃度上昇量を推定する溶鋼中酸素濃度上昇量計算部を備える。
推定された前記溶解率に基づいて、溶鋼中酸素濃度上昇量を推定する溶鋼中酸素濃度上昇量計算部を備える。
(12)本開示の一実施形態として、(8)又は(9)において、
前記排ガス分類計算部は、前記真空化領域の真空度に基づいて前記排ガスに占める空気の流量が一定であると判定される場合に、前記構成比を推定する。
前記排ガス分類計算部は、前記真空化領域の真空度に基づいて前記排ガスに占める空気の流量が一定であると判定される場合に、前記構成比を推定する。
本開示の手法によれば、真空脱ガス処理の排ガスを構成する気体の由来について、吹き込み酸素及び真空脱ガス処理の開始前又は処理中に真空脱ガス設備の真空化領域に進入した空気を含む複数の由来に分類する。そして、分類された複数の由来の構成比を推定することによって、真空脱ガス処理における高精度な状態推定が可能な真空脱ガス処理の状態推定方法、操業方法、溶鋼の製造方法及び真空脱ガス処理の状態推定装置を提供することができる。
以下、図面を参照して本開示の実施形態に係る真空脱ガス処理の状態推定装置及び状態推定方法が説明される。本実施形態において、真空脱ガス処理は、RH真空脱ガス設備を使用して行われるRH真空脱ガス処理であるとして説明するが、RH真空脱ガス処理に限られるものではない。例えば真空槽と取鍋に浸漬して溶鋼真空槽に吸い上げる浸漬管を1本だけ持つ設備又は真空槽を持たず取鍋内溶鋼表面を真空状態にする設備(装置)などを使用して行われる真空脱ガス処理についても以下に説明する状態推定方法を実施可能である。
[構成]
図1は、本実施形態に係る状態推定装置20と真空脱ガス設備100の構成を示す模式図である。状態推定装置20は、真空脱ガス設備100での真空脱ガス処理の実行中に、真空脱ガス設備100の内部の状態などを推定する装置である。本実施形態において、状態推定装置20が後述する真空脱ガス処理の状態推定方法を実行することによって、真空脱ガス設備100が操業される。つまり、真空脱ガス設備100の操業方法として、真空脱ガス処理の状態推定が実行される。また、本実施形態において、真空脱ガス設備100は溶鋼の製造設備の一部を構成する。溶鋼の製造設備において溶鋼の製造方法が実行され、溶鋼の製造方法は、真空脱ガス設備100において溶鋼を精錬して、精錬された溶鋼を製造することを含む。
図1は、本実施形態に係る状態推定装置20と真空脱ガス設備100の構成を示す模式図である。状態推定装置20は、真空脱ガス設備100での真空脱ガス処理の実行中に、真空脱ガス設備100の内部の状態などを推定する装置である。本実施形態において、状態推定装置20が後述する真空脱ガス処理の状態推定方法を実行することによって、真空脱ガス設備100が操業される。つまり、真空脱ガス設備100の操業方法として、真空脱ガス処理の状態推定が実行される。また、本実施形態において、真空脱ガス設備100は溶鋼の製造設備の一部を構成する。溶鋼の製造設備において溶鋼の製造方法が実行され、溶鋼の製造方法は、真空脱ガス設備100において溶鋼を精錬して、精錬された溶鋼を製造することを含む。
RH真空脱ガス設備100は、真空槽101と取鍋102を備え、その間が2本の浸漬管103でつながっている。真空槽101は排気ダクト104とつながっており、ここを通して真空槽101内部の気体を排気することで真空槽101を減圧し、取鍋102内の溶鋼を吸い上げる。そして、浸漬管103の片方から配管105を通して不活性ガスを吹き込むことで、溶鋼は真空槽101と取鍋102の間を還流する。真空槽101に設置された吹き込みランス106から酸素を吹き込み、溶鋼に酸素を供給することができる。真空槽101は、真空脱ガス設備100の真空化領域、すなわち真空になるように減圧される領域の一例である。また、真空脱ガス設備100の真空化領域は、真空槽101につながる排気ダクト104も含む。
排気ダクト104の内部には、排ガス流量計107及び排ガス成分濃度計108が設置されている。排ガス流量計107は、排ガスの流量を計測する。排ガス成分濃度計108は、COガス、CO2ガス、O2ガスを含む排ガス中成分の濃度を計測する。
真空脱ガス処理の状態推定装置20が適用される真空脱ガス処理制御システムは、制御装置10と真空脱ガス処理の状態推定装置20を主な構成要素として備えている。制御装置10は、コンピュータ等の情報処理装置によって構成され、溶鋼の成分濃度及び温度について、真空脱ガス処理前の実績値から真空脱ガス処理後の目標範囲内になるよう排気設備の排気量、還流用不活性ガス流量、吹き込み酸素流量を始めとする操業に係る操作量を制御する。また、制御装置10は、真空槽101内真空度、還流用不活性ガス流量、吹き込み酸素流量、排ガス流量、排ガス成分濃度を始めとする操業実績値データを収集して、状態推定装置20に出力する。
図1に示すように、状態推定装置20は、操業情報入力部21、計算部及び出力部25を備える。計算部は、真空脱ガス処理の状態を推定するための計算を実行する機能部である。本実施形態において、計算部は、排ガス分類計算部22、吹き込み酸素溶解率計算部23及び溶鋼中酸素濃度上昇量計算部24を含む。
操業情報入力部21は、真空脱ガス処理の処理中の操作量に関する操業実績及び真空脱ガス処理を行う真空脱ガス設備100から排出された排ガスの流量、排ガスに含まれるCOガス、CO2ガス及びO2ガスの成分濃度を含む時系列排ガス計測値を入力情報として、入力情報が入力される。
排ガス分類計算部22は、操業情報入力部21が取得した入力情報に基づいて、真空脱ガス設備100から排出された排ガスを構成する気体の由来について、複数の由来に分類し、分類された複数の由来の構成比を推定する。複数の由来は、吹き込み酸素及び真空脱ガス処理の開始前又は処理中に真空脱ガス設備100の真空化領域に進入した空気を含む。また、排ガス分類計算部22は、入力情報から排ガスに占めるN2ガスの割合を推定し、排ガス中のN2ガスに基づいて真空化領域に進入した空気の割合を計算してよい。
吹き込み酸素溶解率計算部23は、排ガス分類計算部22によって推定された複数の由来の構成比に基づいて、吹き込み酸素の溶鋼への溶解率を推定する。
溶鋼中酸素濃度上昇量計算部24は、吹き込み酸素溶解率計算部23によって推定された溶解率に基づいて、溶鋼中酸素濃度上昇量を推定する。
出力部25は、計算部が真空脱ガス処理の状態を推定するために実行した計算結果を、制御装置10に出力する。制御装置10は、出力部25から得た計算結果に基づいて、操業に係る操作量を制御してよい。
真空脱ガス処理の状態推定装置20はコンピュータ等の情報処理装置によって構成されている。真空脱ガス処理の状態推定装置20は、情報処理装置内のCPU(Central Processing Unit)等の演算処理装置がコンピュータプログラムを実行することにより、操業情報入力部21、排ガス分類計算部22、吹き込み酸素溶解率計算部23、溶鋼中酸素濃度上昇量計算部24及び出力部25として機能する。
このような構成を有する真空脱ガス処理の状態推定装置20は、以下に示す真空脱ガス処理の状態推定処理を行うことによって、排ガスを構成する気体を分類し構成比を推定する。処理中に酸素吹き込みを行ったチャージについて、推定した排ガス構成比から吹き込み酸素の溶鋼への溶解率を推定し、その結果を使用して吹き込み酸素による溶鋼中酸素濃度上昇量を高精度に推定することができる。以下、図2に示すフローチャートを参照して、真空脱ガス処理の状態推定装置20の動作が説明される。ここで、以下の説明においては真空脱ガス処理の処理中に酸素吹き込みを行うことを前提とする。
図2は、本開示の一実施形態である真空脱ガス処理の状態推定処理の流れを示すフローチャートである。図2に示すフローチャートは、真空脱ガス処理の実行命令が入力されたタイミングで開始となり、状態推定処理がステップS1の処理に進む。
ステップS1の処理では、操業情報入力部21が、脱炭処理開始前の溶鋼情報を取得する。溶鋼情報は、例えば溶鋼の重量及び成分分析によって得られた計測・分析結果を含んでよい。これにより、ステップS1の処理が完了し、状態推定処理はステップS2の処理に進む。
ステップS2の処理では、操業情報入力部21が、真空脱ガス処理中の操作量に関する操業実績値を取得する。操業実績値は排ガス分類計算部22、吹き込み酸素溶解率計算部23及び溶鋼中酸素濃度上昇量計算部24における計算に必要な項目が取得される。操業情報入力部21は、例えば真空槽101内真空度、還流用不活性ガス流量及び吹き込み酸素流量を、操業実績値として取得する。また、本実施形態において、操業情報入力部21は、排ガス流量、排ガスに含まれるCOガス、CO2ガス及びO2ガスの成分濃度を含む時系列排ガス計測値を、操業実績値とともに入力情報として取得する。これにより、ステップS2の処理が終了し、状態推定処理はステップS3の処理に進む。ここで、ステップS1及びステップS2は入力ステップに対応する。
[排ガス分類計算処理]
ステップS3の処理では、排ガス分類計算部22が、真空脱ガス処理中に排出される排ガスについて、排ガスを構成する気体を分類し構成比を推定する。
ステップS3の処理では、排ガス分類計算部22が、真空脱ガス処理中に排出される排ガスについて、排ガスを構成する気体を分類し構成比を推定する。
RH真空脱ガス処理において、排ガスの供給源は次の5種類に分類される。すなわち、溶鋼に含まれる不純物成分であって減圧によりガスとして取り除かれるもの、還流用不活性ガス、真空脱ガス処理の開始前に真空槽101内に存在する空気、真空脱ガス処理中に真空化領域(真空槽101及び排気ダクト104)に進入するリーク空気、吹き込み酸素である。
ここで、溶鋼に含まれる主要な不純物成分は水素、窒素、炭素である。ただし、ほとんどの鋼種で炭素以外の発生量は無視できるほど少ない。また、炭素はCOガスとして溶鋼から取り除かれるから、排ガス計測により排出量を把握することができる。また、還流用不活性ガスは操業の操作量であるため、その量を把握可能である。
真空脱ガス処理の開始前に真空槽101内に存在する空気及び処理中に真空化領域に進入するリーク空気については、排ガスに含まれるN2量を計算することで区別することができる。排ガスの構成成分はCOガス、CO2ガス、O2ガス、溶鋼攪拌のために吹き込まれる不活性ガス、N2ガスで流量のほぼ全てを占める。N2ガス以外の成分は排ガス計測結果又は操業の制御実績から排気量を計算することが可能であり、排ガスのうち成分不明部分がN2ガスであるとして、その量を下記式(1)から求めることができる。
ここで、fN2は排ガス中のN2流量[Nm3/h]である。fgは排ガス流量[Nm3/h]である。rCOは排ガス中のCO濃度[vol%]である。rCO2は排ガス中のCO2濃度[vol%]である。rO2は排ガス中のO2濃度[vol%]である。fCircは還流用吹き込みArガス流量[Nm3/h]である。ここで、排ガスの流量及び成分濃度の計測結果に既知の誤差が含まれる場合に、排ガス分類計算部22が既知の誤差を除去又は低減してから式(1)の計算を実行することが好ましい。ここで、既知の誤差とは、例えば計測値に含まれるオフセットのような誤差が想定される。また、還流用不活性ガスが排ガス流量計に到達するまでの時間が既知であれば、式(1)の計算では、その時間遅れを反映したfCircを用いることが望ましい。
式(1)によって排ガス中のN2流量が求められた場合に、空気中の窒素存在比から下記式(2)の通り、排ガス中の空気流量fa[Nm3/h]を計算することができる。
ここで、本発明者は、真空脱ガス処理の実績データに基づいて、真空脱ガス処理において真空槽101が到達真空度(目標とする真空度)付近まで真空引きされると上記式(2)より計算される排ガス中の空気流量がほぼ一定の値をとるという知見を得た。到達真空度付近では真空度変化が小さいため、排ガス中空気の全量が処理中のリークに由来すると考えてよいこと、真空槽101内の気圧が十分に低ければリーク空気流量が一定になることから、排ガス中の空気流量がほぼ一定の値をとることは妥当である。
以上のように、排ガスを構成する5種類の供給源のうち、吹き込み酸素以外の4種類について構成比を定量的に推定することができる。そして、残部が吹き込み酸素に由来する排ガスと推定することができる。これにより、複数の由来の全ての構成比が推定されて、ステップS3の処理が終了し、状態推定処理はステップS4の処理に進む。
[吹き込み酸素溶解率計算処理]
ステップS4の処理では、排ガス構成比推定を行った時刻が酸素吹き込みの終了時刻からあらかじめ定められた基準の時間T以上経過しているかを判定する。酸素吹き込み後の経過時間が基準より短ければステップS2の処理へ戻り、以降の処理が再び実行される。一方で、経過時間が基準より長ければ、状態推定処理はステップS5の処理に進む。このような条件分岐処理を行う理由については、ステップS5の処理の説明において合わせて説明する。
ステップS4の処理では、排ガス構成比推定を行った時刻が酸素吹き込みの終了時刻からあらかじめ定められた基準の時間T以上経過しているかを判定する。酸素吹き込み後の経過時間が基準より短ければステップS2の処理へ戻り、以降の処理が再び実行される。一方で、経過時間が基準より長ければ、状態推定処理はステップS5の処理に進む。このような条件分岐処理を行う理由については、ステップS5の処理の説明において合わせて説明する。
ステップS5の処理では、吹き込み酸素溶解率計算部23が、吹き込み酸素のうち溶鋼に溶解したものの割合を推定する。
まず、排ガス中酸素量は下記式(3)より計算できる。
ここで、排ガス中酸素量はO2体積流量に換算して評価している。fO2は排ガス中O2流量[Nm3/h]である。以下において、同様に、排ガス中酸素量はO2体積流量に換算して評価される。
排ガス中酸素量のうち、脱炭に由来するものの流量fO2,deC[Nm3/h]は、すべてCOとして真空槽101に供給されることから、下記式(4)より計算できる。
排ガス中酸素量のうち、進入空気に由来するものの流量fO2,a[Nm3/h]は、空気中の酸素存在比から下記式(5)より計算できる。
排ガスへの酸素供給源は他に吹き込み酸素のみである。そのため、排ガス中酸素量のうち、酸素吹き込みに由来するものの流量fO2,b[Nm3/h]は、下記式(6)より計算できる。
本発明者は、真空脱ガス処理の実績データに基づいて、fO2,bの時間変化についての3点の知見を得た。まず、酸素吹き込み開始からfO2,bが増加するまでに時間遅れがある。次に、酸素吹き込み終了後、一定の時間遅れの後にfO2,bが急速に0へと収束する。最後に、溶鋼に溶解しない吹き込み酸素が、溶鋼へ吹き込まれてから排ガス計測装置にて観測されるまでの時間を一定と見なすことができない。3つ目の知見は、fO2,bの時間変化パターンを酸素吹き込みパターンと同一とみなすことができず、吹き込み酸素の溶解率を連続的に推定することが困難であることを意味する。パターンの違いは、吹き込み酸素のうちの一部が真空槽101に放出されたCOガスと反応してCO2ガスを生成するが、この反応に要する時間によって酸素が吹き込まれてから排ガス計測装置に到達するまでの時間がばらつくことによると考えられる。
以上の知見より、酸素吹き込み終了後に、fO2,bが確実に0へと収束する基準の時間Tを設定し、吹き込み酸素の酸素溶解率xを下記式(7)より推定する。時間Tは例えば次のような方法で求めることができる。fO2,bに閾値を設け、閾値を下回った時刻と酸素吹き込み終了時刻との時間差が複数チャージについて計算される。これらのうち最大のものが時間Tと設定される。
ここで、t0は酸素吹き込み開始時刻又は酸素吹き込み開始時刻に時間Tを加算した時刻である。t1は酸素吹き込み終了時刻に時間Tを加算した時刻である。QO2は吹き込み酸素の総量[Nm3]である。
式(7)によって正確な酸素溶解率xの推定計算が行われるように、ステップS4で条件分岐処理が行われる。
以上の計算処理により、ステップS5の処理が終了し、状態推定処理はステップS6の処理に進む。
[溶鋼中酸素濃度上昇量推定計算処理]
ステップS6の処理では、溶鋼中酸素濃度上昇量計算部24が、溶鋼中酸素濃度上昇量を推定する。
ステップS6の処理では、溶鋼中酸素濃度上昇量計算部24が、溶鋼中酸素濃度上昇量を推定する。
溶鋼中酸素濃度上昇量計算部24は、ステップS5の処理で推定した吹き込み酸素の酸素溶解率xから、酸素吹き込みによる溶鋼中酸素濃度上昇量Δ[O][ppm]を下記式(8)より計算することができる。
ここで、ρO2は酸素密度[kg/Nm3]である。Wは溶鋼重量[kg]である。
以上の計算処理により、ステップS6の処理が終了し、状態推定処理はステップS7の処理に進む。ここで、ステップS3~ステップS6は計算ステップに対応する。
ステップS7の処理ではこれまでの処理で推定した諸情報、特に吹き込み酸素の溶鋼への溶解率と溶鋼中酸素濃度上昇量を制御装置10に出力する。
以上のように、本実施形態に係る真空脱ガス処理の状態推定方法、操業方法、溶鋼の製造方法及び真空脱ガス処理の状態推定装置20は、上記の構成及び工程によって、真空脱ガス処理の排ガスを構成する気体の由来について複数の由来に分類する。そして、分類された複数の由来の構成比を推定することによって、真空脱ガス処理における高精度な状態推定が可能である。
また、状態推定の結果に基づいて、吹き込み酸素の溶鋼への溶解率と溶鋼中酸素濃度上昇量を推定することが可能である。推定された溶鋼中酸素濃度上昇量はさらに溶鋼中酸素濃度推定に利用され、溶鋼中酸素濃度が高精度に推定される。推定された溶鋼中酸素濃度に基づいて、適切なタイミングで脱炭処理を終了させ、また、溶鋼温度を所望の値に制御するために追加の酸素吹き込みが必要であるかを判断することができる。これにより、高精度な溶鋼成分及び溶鋼温度の調整を可能とする真空脱ガス設備の操業方法及び溶鋼の製造方法を提供することができる。
(実施例)
以下、本開示の効果を実施例に基づいて具体的に説明するが、本開示は実施例の内容に限定されるものではない。
以下、本開示の効果を実施例に基づいて具体的に説明するが、本開示は実施例の内容に限定されるものではない。
本実施例では、RH真空脱ガス設備を使用し、酸素吹き込みを実施した3チャージの真空脱ガス処理について排ガスの構成比を連続的に推定し、吹き込み酸素溶解率と溶鋼中酸素濃度上昇量を推定した。
図3は、排ガス流量の積み上げグラフであって、酸素吹き込み開始後の排ガス構成比の時間変化を示す。図4は吹き込み酸素流量、排ガス中の吹き込み酸素流量(溶鋼未溶解酸素流量)及び真空槽101の真空度の時間変化を示す。真空槽101の真空引きが進み、到達真空度近くまで排気が進んだ真空脱ガス処理の後半では、排ガス中の空気流量がほぼ一定の値をとっている。したがって、排ガス分類計算部22が実行する排ガス分類計算処理は、排ガス中の空気流量が安定するように、真空度が閾値以下となった場合に実行されることが好ましい。つまり、排ガス分類計算処理は、真空化領域の真空度に基づいて排ガスに占める空気の流量が一定であると判定される場合に、実行されることが好ましい。ここで、閾値は、到達真空度又は過去の実績データに基づいて定められてよい。
また、図4から分かる通り、酸素吹き込みが開始した後に遅れて排ガス中の吹き込み酸素量が増加し、酸素吹き込みが終了すると排ガス中の吹き込み酸素量は遅れて急速に0へと収束する。排ガス中の吹き込み酸素量の時間変化は吹き込み酸素のパターンとは大きく異なり、酸素溶解率を連続的に推定することが困難であることが分かる。
表1は、吹き込み酸素による酸素溶解率及び溶鋼中の酸素濃度上昇量の推定値と、溶鋼中の酸素濃度上昇量の実績値を示す。溶鋼中の酸素濃度上昇量の実績値は、真空脱ガス処理の処理前及び処理中における溶鋼中の炭素濃度及び酸素濃度の実測値を用いて計算したものである。ここで、脱酸剤の投入は行われなかったため、酸素と溶鋼中金属成分との反応について無視できる。表1に示すように、上記の実施形態の方法により推定された溶鋼中の酸素濃度上昇量は実績とよく一致している。以上のことから、上記の実施形態の方法が吹き込み酸素の酸素溶解率及び溶鋼中の酸素濃度上昇量を高精度に推定するために効果的であることが確認された。
本開示の実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部又は各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部又はステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。本開示に係る実施形態は装置が備えるプロセッサにより実行されるプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。
10 制御装置
20 状態推定装置
21 操業情報入力部
22 排ガス分類計算部
23 吹き込み酸素溶解率計算部
24 溶鋼中酸素濃度上昇量計算部
25 出力部
100 真空脱ガス設備
101 真空槽
102 取鍋
103 浸漬管
104 排気ダクト
105 配管
106 吹き込みランス
107 排ガス流量計
108 排ガス成分濃度計
20 状態推定装置
21 操業情報入力部
22 排ガス分類計算部
23 吹き込み酸素溶解率計算部
24 溶鋼中酸素濃度上昇量計算部
25 出力部
100 真空脱ガス設備
101 真空槽
102 取鍋
103 浸漬管
104 排気ダクト
105 配管
106 吹き込みランス
107 排ガス流量計
108 排ガス成分濃度計
Claims (12)
- 真空脱ガス処理の処理中の操作量に関する操業実績及び前記真空脱ガス処理を行う真空脱ガス設備から排出された排ガスの流量、前記排ガスに含まれるCOガス、CO2ガス及びO2ガスの成分濃度を含む時系列排ガス計測値を入力情報として、前記入力情報が入力される入力ステップと、
前記入力情報に基づいて、前記排ガスを構成する気体の由来について、吹き込み酸素及び前記真空脱ガス処理の開始前又は処理中に前記真空脱ガス設備の真空化領域に進入した空気を含む複数の由来に分類し、分類された前記複数の由来の構成比を推定する計算ステップと、を含む、真空脱ガス処理の状態推定方法。 - 前記計算ステップは、前記入力情報から前記排ガスに占めるN2ガスの割合を推定し、前記排ガス中のN2ガスに基づいて前記真空化領域に進入した空気の割合を計算することを含む、請求項1に記載の真空脱ガス処理の状態推定方法。
- 前記計算ステップは、酸素吹き込みの終了時刻から基準の時間以上が経過した場合に、推定された前記構成比に基づいて、吹き込み酸素の溶鋼への溶解率を推定すること、を含む、請求項1又は2に記載の真空脱ガス処理の状態推定方法。
- 前記計算ステップは、推定された前記溶解率に基づいて、溶鋼中酸素濃度上昇量を推定すること、を含む、請求項3に記載の真空脱ガス処理の状態推定方法。
- 前記計算ステップは、前記真空化領域の真空度に基づいて前記排ガスに占める空気の流量が一定であると判定される場合に、前記構成比を推定する、請求項1又は2に記載の真空脱ガス処理の状態推定方法。
- 請求項1又は2に記載の真空脱ガス処理の状態推定方法を実行して、前記真空脱ガス設備を操業する、操業方法。
- 請求項6に記載の操業方法によって操業される真空脱ガス設備において溶鋼を精錬して、精錬された前記溶鋼を製造する、溶鋼の製造方法。
- 真空脱ガス処理の処理中の操作量に関する操業実績及び前記真空脱ガス処理を行う真空脱ガス設備から排出された排ガスの流量、前記排ガスに含まれるCOガス、CO2ガス及びO2ガスの成分濃度を含む時系列排ガス計測値を入力情報として、前記入力情報が入力される操業情報入力部と、
前記入力情報に基づいて、前記排ガスを構成する気体の由来について、吹き込み酸素及び前記真空脱ガス処理の開始前又は処理中に前記真空脱ガス設備の真空化領域に進入した空気を含む複数の由来に分類し、分類された前記複数の由来の構成比を推定する排ガス分類計算部と、を備える、真空脱ガス処理の状態推定装置。 - 前記排ガス分類計算部は、前記入力情報から前記排ガスに占めるN2ガスの割合を推定し、前記排ガス中のN2ガスに基づいて前記真空化領域に進入した空気の割合を計算する、請求項8に記載の真空脱ガス処理の状態推定装置。
- 酸素吹き込みの終了時刻から基準の時間以上が経過した場合に、推定された前記構成比に基づいて、吹き込み酸素の溶鋼への溶解率を推定する吹き込み酸素溶解率計算部を備える、請求項8又は9に記載の真空脱ガス処理の状態推定装置。
- 推定された前記溶解率に基づいて、溶鋼中酸素濃度上昇量を推定する溶鋼中酸素濃度上昇量計算部を備える、請求項10に記載の真空脱ガス処理の状態推定装置。
- 前記排ガス分類計算部は、前記真空化領域の真空度に基づいて前記排ガスに占める空気の流量が一定であると判定される場合に、前記構成比を推定する、請求項8又は9に記載の真空脱ガス処理の状態推定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023544607A JP7405312B1 (ja) | 2022-05-09 | 2023-04-21 | 真空脱ガス処理の状態推定方法、操業方法、溶鋼の製造方法及び真空脱ガス処理の状態推定装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-077105 | 2022-05-09 | ||
JP2022077105 | 2022-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023218915A1 true WO2023218915A1 (ja) | 2023-11-16 |
Family
ID=88730296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/016018 WO2023218915A1 (ja) | 2022-05-09 | 2023-04-21 | 真空脱ガス処理の状態推定方法、操業方法、溶鋼の製造方法及び真空脱ガス処理の状態推定装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7405312B1 (ja) |
TW (1) | TW202407631A (ja) |
WO (1) | WO2023218915A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03134114A (ja) * | 1989-10-17 | 1991-06-07 | Sumitomo Metal Ind Ltd | Rh精錬の溶鋼中炭素濃度推定方法 |
JPH08260030A (ja) * | 1995-03-20 | 1996-10-08 | Nisshin Steel Co Ltd | 極低炭素ステンレス鋼の真空精錬方法 |
JP2001140012A (ja) * | 1999-11-15 | 2001-05-22 | Nippon Steel Corp | 溶鋼の真空脱炭推定方法 |
JP2013112835A (ja) * | 2011-11-25 | 2013-06-10 | Nippon Steel & Sumitomo Metal Corp | 溶鋼の精錬方法 |
WO2019181562A1 (ja) * | 2018-03-19 | 2019-09-26 | Jfeスチール株式会社 | 溶湯成分推定装置、溶湯成分推定方法、及び溶湯の製造方法 |
-
2023
- 2023-04-21 JP JP2023544607A patent/JP7405312B1/ja active Active
- 2023-04-21 WO PCT/JP2023/016018 patent/WO2023218915A1/ja unknown
- 2023-05-05 TW TW112116683A patent/TW202407631A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03134114A (ja) * | 1989-10-17 | 1991-06-07 | Sumitomo Metal Ind Ltd | Rh精錬の溶鋼中炭素濃度推定方法 |
JPH08260030A (ja) * | 1995-03-20 | 1996-10-08 | Nisshin Steel Co Ltd | 極低炭素ステンレス鋼の真空精錬方法 |
JP2001140012A (ja) * | 1999-11-15 | 2001-05-22 | Nippon Steel Corp | 溶鋼の真空脱炭推定方法 |
JP2013112835A (ja) * | 2011-11-25 | 2013-06-10 | Nippon Steel & Sumitomo Metal Corp | 溶鋼の精錬方法 |
WO2019181562A1 (ja) * | 2018-03-19 | 2019-09-26 | Jfeスチール株式会社 | 溶湯成分推定装置、溶湯成分推定方法、及び溶湯の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202407631A (zh) | 2024-02-16 |
JP7405312B1 (ja) | 2023-12-26 |
JPWO2023218915A1 (ja) | 2023-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI643957B (zh) | 熔鋼中磷濃度推定方法及轉爐吹煉控制裝置 | |
TWI681059B (zh) | 熔態金屬成分推定裝置、熔態金屬成分推定方法及熔態金屬之製造方法 | |
JP6515385B2 (ja) | 溶銑予備処理方法及び溶銑予備処理制御装置 | |
WO2023218915A1 (ja) | 真空脱ガス処理の状態推定方法、操業方法、溶鋼の製造方法及び真空脱ガス処理の状態推定装置 | |
TWI700374B (zh) | 熔融金屬成分推定裝置、熔融金屬成分推定方法、及熔融金屬之製造方法 | |
JP6966029B1 (ja) | 減圧下における溶鋼の脱炭精錬方法 | |
WO2023218914A1 (ja) | 真空脱ガス設備の制御装置、真空脱ガス設備の制御方法、操業方法及び溶鋼の製造方法 | |
TWI627284B (zh) | 熔融生鐵預備處理方法及熔融生鐵預備處理控制裝置 | |
TWI841072B (zh) | 爐內狀態推定裝置、爐內狀態推定方法及鋼水製造方法 | |
CN113076505A (zh) | 一种转炉钢水脱碳速率计算方法 | |
JP2006104521A (ja) | Rh真空脱ガス装置における溶鋼脱炭方法 | |
TWI732490B (zh) | 轉爐型脫磷精煉爐之吹煉控制方法及吹煉控制裝置 | |
JP3827852B2 (ja) | 含クロム溶鋼の脱窒方法 | |
JP7115665B1 (ja) | 供給熱量推定方法、供給熱量推定装置、供給熱量推定プログラム、及び高炉の操業方法 | |
JP6943300B2 (ja) | 真空脱ガス設備の制御装置及び制御方法 | |
JP4289214B2 (ja) | 溶鋼の脱炭処理方法および溶鋼製造方法 | |
JPH03134114A (ja) | Rh精錬の溶鋼中炭素濃度推定方法 | |
JP5353320B2 (ja) | 溶鋼の真空脱ガス方法、真空脱ガス装置および製造方法 | |
JPWO2023095647A5 (ja) | ||
JPH06256840A (ja) | 真空脱ガス精錬方法 | |
JPS62224623A (ja) | 転炉吹錬制御方法 | |
JPH10195525A (ja) | クロム含有鋼の精錬方法および装置 | |
JPH10130716A (ja) | 真空脱炭炉における脱炭量推定方法 | |
JP2007291414A (ja) | 真空脱ガス装置の異常を検出する異常検出方法、異常検出システム及び異常検出装置 | |
JPH0841528A (ja) | 真空脱ガス精錬方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023544607 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23803397 Country of ref document: EP Kind code of ref document: A1 |