WO2023216979A1 - 加氢树脂及其制备方法、电介质材料、板材和电器件 - Google Patents

加氢树脂及其制备方法、电介质材料、板材和电器件 Download PDF

Info

Publication number
WO2023216979A1
WO2023216979A1 PCT/CN2023/092202 CN2023092202W WO2023216979A1 WO 2023216979 A1 WO2023216979 A1 WO 2023216979A1 CN 2023092202 W CN2023092202 W CN 2023092202W WO 2023216979 A1 WO2023216979 A1 WO 2023216979A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
hydrogenated
hydrocarbon
reaction
Prior art date
Application number
PCT/CN2023/092202
Other languages
English (en)
French (fr)
Inventor
常同鑫
蔡黎
高峰
罗文�
欧湘慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023216979A1 publication Critical patent/WO2023216979A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric

Definitions

  • the present disclosure relates to the field of polymer materials, and in particular to hydrogenated resins and preparation methods thereof, dielectric materials, plates and electrical devices.
  • Hydrocarbon resins composed of carbon and hydrogen atoms such as polybutadiene, butadiene-styrene copolymer, etc., exhibit lower dielectric loss, making them more suitable for low dielectric loss dielectric materials. application potential.
  • the above-mentioned hydrocarbon resin has a large thermal expansion coefficient and a low glass transition temperature, which requires it to be combined with some rigid cross-linking agents with higher glass transition temperatures (such as terminally modified polyphenylene ether oligomers, horseradish ether oligomers, etc.) When used together with imide resin, etc.), the use of rigid cross-linking agents will increase the dielectric loss of dielectric materials.
  • the present disclosure provides hydrogenated resin and preparation methods thereof, dielectric materials, plates and electrical devices, which can solve the above technical problems.
  • a hydrogenated resin is provided.
  • the hydrogenated resin is obtained by hydrogenating a modified resin intermediate.
  • the modified resin intermediate includes: a hydrocarbon resin main chain and benzocyclobutene. group, the hydrocarbon resin main chain has multiple dangling double bonds, and the benzocyclobutene group is grafted to at least one of the multiple dangling double bonds.
  • the hydrogenated resin provided in the embodiments of the present disclosure grafts benzocyclobutene groups onto the dangling double bonds of the hydrocarbon resin main chain, so that the hydrocarbon resin and benzocyclobutene groups cooperate to obtain improved
  • the modified resin intermediate is hydrogenated, and the unsaturated double bonds contained in the modified resin intermediate are hydrogenated to saturation to obtain a hydrogenated resin.
  • the hydrogenated resin has both benzocyclobutene groups and saturated carbon chains, which gives the hydrogenated resin at least the following advantages: higher glass transition temperature, lower dielectric loss and stronger aging resistance. , among them, the high glass transition temperature makes the hydrogenated resin exhibit low thermal expansion coefficient and excellent high temperature resistance, and the low dielectric loss makes the hydrogenated resin exhibit excellent dielectric properties.
  • the hydrogenated resin provided by the embodiments of the present disclosure is beneficial to the preparation of a resin layer with high heat resistance, aging resistance and low dielectric loss.
  • the resin layer when used in a circuit board, it can not only improve the electrical performance of the circuit board, but also improve the electrical properties of the circuit board. It is beneficial to improve the service life and reliability of the circuit board.
  • the benzocyclobutene group is grafted to a portion of the plurality of dangling double bonds.
  • the hydrocarbon resin backbone is provided by a hydrocarbon resin
  • the hydrocarbon resin includes a plurality of first repeating units
  • the chemical structural formula of the first repeating unit is as follows:
  • R 1 , R 2 , R 4 , and R 5 are each independently selected from hydrogen, a hydrocarbon group containing 1 to 20 carbon atoms, an aryl group, an aralkyl group, an ether group, or a carbonyl group;
  • R 3 is a single bond, a hydrocarbon group containing 1 to 20 carbon atoms, an aryl group, an aralkyl group, an ether group or a carbonyl group.
  • the hydrocarbon resin further includes a plurality of second repeating units, the second repeating units are different from the first repeating units, and the chemical structural formula of the second repeating units is as follows: :
  • R 6 , R 7 , R 9 , and R 10 are each independently selected from hydrogen, a hydrocarbon group containing 1 to 20 carbon atoms, an aryl group, an aralkyl group, an ether group, or a carbonyl group;
  • R 8 is a single bond, a hydrocarbon group containing 1 to 20 carbon atoms, an aryl group, an aralkyl group, an ether group or a carbonyl group.
  • the chemical structural formula of the hydrocarbon resin is as follows:
  • x, z, and w are each an integer from 0 to 500, and y is an integer from 2 to 2000.
  • the chemical structural formula of the hydrocarbon resin is as follows:
  • z, u, v, and w are each an integer from 0 to 500, and x and y are each an integer from 2 to 2000.
  • a method for preparing a hydrogenated resin is also provided.
  • the hydrogenated resin is as described in any one of the above.
  • the method for preparing the hydrogenated resin includes:
  • a hydrocarbon resin and a halide of benzocyclobutene are provided, wherein the hydrocarbon resin has a plurality of dangling double bonds;
  • the modified resin intermediate is subjected to hydrogenation treatment to obtain the hydrogenated resin.
  • the preparation method of hydrogenated resin involves first performing a Heck reaction between the hydrocarbon resin and the halide of benzocyclobutene, and grafting the benzocyclobutene group onto the dangling double bond of the hydrocarbon resin. , to obtain the modified resin intermediate.
  • the modified resin intermediate is then subjected to hydrogenation and saturation treatment to prepare hydrogenated resin.
  • the molar ratio of benzocyclobutene groups in the modified resin intermediate can be adjusted, thereby adjusting the glass transition temperature, thermal expansion coefficient and dielectric loss of the hydrogenated resin, making the hydrogenated resin both It has excellent temperature resistance and dielectric properties to adapt to a variety of application scenarios.
  • the molar ratio of the benzocyclobutene group in the modified resin intermediate can be adjusted accordingly. Saturating the carbon chains in the modified resin intermediate through hydrogenation treatment can effectively improve the symmetry of the molecular structure in the hydrogenated resin and further reduce the dielectric loss. Since there are no double bonds in the hydrogenated resin that are prone to aging, It is also beneficial to improve the aging resistance of hydrogenated resin.
  • the preparation method of hydrogenated resin provided by the embodiments of the present disclosure can not only prepare hydrogenated resin with excellent dielectric properties, high temperature resistance and aging resistance, but also has the advantages of simple preparation process, mild and controllable operating conditions and low cost. It is low and convenient for large-scale promotion.
  • the halide of benzocyclobutene includes: at least one of 4-bromobenzocyclobutene, 4-chlorobenzocyclobutene, and 4-iodobenzocyclobutene. kind.
  • the hydrocarbon resin and the halide of benzocyclobutene are subjected to a Heck reaction to obtain the modified resin intermediate, including:
  • the hydrocarbon resin, the halide of benzocyclobutene, the first catalyst, the acid binding agent and the first solvent are evenly mixed, and the mixture is heated at the set first reaction temperature. Heck reaction is carried out under the condition to obtain the first product system;
  • the first product system is separated and processed to obtain the modified resin intermediate.
  • the first catalyst includes a palladium catalyst and a phosphine ligand.
  • the molar ratio of the palladium catalyst to the halide of benzocyclobutene is 1 to 5:1000.
  • the phosphine ligand The molar ratio of the body to the palladium catalyst is 3 to 5:1.
  • the dosage of the first catalyst is within the above range, it not only has a good catalytic effect, but also reduces the dosage of the first catalyst, thereby achieving the purpose of reducing costs.
  • the palladium catalyst is selected from at least one of palladium acetate, palladium chloride, tetrakis(triphenylphosphine)palladium, palladium carbon, and diphenylphosphine ferrocene palladium dichloride;
  • the phosphine ligand includes at least one of tris(o-methylphenyl)phosphorus and triphenylphosphine.
  • the first reaction temperature is 50°C to 150°C, so that the Heck reaction between the hydrocarbon resin and the halide of benzocyclobutene is more complete and complete.
  • the molar ratio of benzocyclobutene groups in the modified resin intermediate is adjusted by adjusting at least one of the following operating parameters: the hydrocarbon resin and the benzo The molar ratio of the halide of cyclobutene, the reaction time, the first reaction temperature, and the amount of the first catalyst.
  • the conversion rate of the Heck reaction can be controlled, thereby controlling the grafting amount of the benzocyclobutene group within the set range.
  • the progress of the reaction is monitored by chromatography or nuclear magnetic resonance spectroscopy to accurately determine the degree of conversion of the halide of benzocyclobutene, and then prepare to determine the degree of conversion of the halide of benzocyclobutene.
  • the amount of grafted groups can be accurately determined to determine the reaction end point and ensure that the molar ratio of benzocyclobutene groups in the modified resin intermediate is within the set range to obtain the desired thermal stability and dielectric properties.
  • the modified resin intermediate is hydrogenated to obtain the hydrogenated resin, including:
  • the second product system is separated and treated to obtain the hydrogenated resin.
  • a dielectric material is also provided, and the dielectric material includes any one of the above hydrogenated resins.
  • the dielectric material provided by the embodiments of the present disclosure has all the advantages of hydrogenated resin. Based on the fact that hydrogenated resin has lower dielectric loss, the dielectric loss is also correspondingly lower, which can effectively reduce the insertion loss of the circuit board. In addition, the hydrogenated resin also has a low thermal expansion coefficient and high aging resistance, which can effectively improve the temperature resistance and service life of the circuit board. These characteristics enable the dielectric material to support the development of circuit boards with low insertion loss and high reliability. While improving the overall electrical performance of the system, it can also improve the reliability and service life of the system.
  • the dielectric material also includes cross-linking agents, thermal initiators, inorganic fillers, antioxidants, photosensitizers, light stabilizers, flame retardants, antistatic agents, release agents, lubricants, At least one of the toughening agents.
  • a plate which includes a resin layer prepared from any one of the above dielectric materials.
  • the board provided by the embodiments of the present disclosure has all the advantages of dielectric materials.
  • the board may only include a resin layer, or may further include other functional layers and support layers in addition to the resin layer.
  • the functional layers may be stacked on the resin layer.
  • the functional layer is a conductive layer or a circuit layer;
  • the support layer can be used to support a resin layer.
  • the resin layer is formed on the support layer.
  • the support layer can be glass cloth or the like.
  • the board materials include but are not limited to the following: prepreg, copper-clad laminate, circuit board, chip, packaging substrate, etc.
  • an electrical device is also provided, and the electrical device includes the above-mentioned plate.
  • the electrical device includes, but is not limited to: routers, data center switches, smartphones, notebook computers, tablet computers, desktop computers, MP3 players, MP4 players, etc.
  • dielectric materials with excellent dielectric properties have become the key to miniaturization of electronic components. Among them, dielectric materials can be used to prepare circuit boards.
  • Dielectric materials based on thermosetting resins have good dimensional stability, heat resistance and processability, and are widely used.
  • Common thermosetting resins such as epoxy resin, phenolic resin, maleimide resin, etc., such resins usually have More polar groups (such as hydroxyl groups, imide groups, etc.) lead to generally poor dielectric properties (dielectric loss Df ⁇ 0.005@10GHz, measurement method: SPDR), which does not meet the requirements for higher communication rates.
  • Dielectric material requirements Dielectric loss Df ⁇ 0.005@10GHz, measurement method: SPDR
  • Hydrocarbon resins including 1,2-polybutadiene, styrene-butadiene rubber, etc.
  • the resin layer obtained from dielectric materials based on hydrocarbon resins generally has a large thermal expansion coefficient and is resistant to Insufficient warmth, which requires it to be used in conjunction with some rigid cross-linking agents with higher glass transition temperature Tg (such as polyphenylene ether, maleimide resin, etc.), and the use of rigid cross-linking agents will increase the resin layer dielectric loss.
  • Tg glass transition temperature
  • a hydrogenated resin is provided.
  • the hydrogenated resin is obtained by hydrogenating a modified resin intermediate.
  • the modified resin intermediate includes : A hydrocarbon resin main chain and a benzocyclobutene group, the hydrocarbon resin main chain has a plurality of dangling double bonds, and the benzocyclobutene group is grafted to at least one of the plurality of dangling double bonds.
  • the multiple dangling double bonds mentioned above refer to the number of dangling double bonds being two or more.
  • the hydrocarbon resin main chain is provided by the hydrocarbon resin, and the hydrocarbon resin is composed of carbon and hydrogen.
  • the multiple dangling double bonds contained in the hydrocarbon resin main chain can be located at the non-terminal part of the hydrocarbon resin main chain, as well. It may be located at an end portion of the hydrocarbon resin main chain, such as the terminal end.
  • all dangling double bonds in the hydrocarbon resin backbone are each grafted with a benzocyclobutene group.
  • the hydrogenated resin provided in the embodiments of the present disclosure grafts benzocyclobutene groups onto the dangling double bonds of the hydrocarbon resin main chain, so that the hydrocarbon resin and benzocyclobutene groups cooperate to obtain improved
  • the modified resin intermediate is hydrogenated, and the unsaturated double bonds contained in the modified resin intermediate are hydrogenated to saturation to obtain a hydrogenated resin.
  • the hydrogenated resin has both benzocyclobutene groups and saturated carbon chains, which gives the hydrogenated resin at least the following advantages: higher glass transition temperature, lower dielectric loss and stronger aging resistance. , among them, the high glass transition temperature makes the hydrogenated resin exhibit low thermal expansion coefficient and excellent high temperature resistance, and the low dielectric loss makes the hydrogenated resin exhibit excellent dielectric properties.
  • the hydrogenated resin provided by the embodiments of the present disclosure is beneficial to the preparation of a resin layer with high heat resistance, aging resistance and low dielectric loss.
  • the resin layer when used in a circuit board, it can not only improve the electrical performance of the circuit board, but also improve the electrical properties of the circuit board. It is beneficial to improve the service life and reliability of the circuit board.
  • the hydrocarbon resin is first modified with a benzocyclobutene group.
  • the benzocyclobutene group can perform a ring-opening curing reaction at high temperatures, so that the hydrogenated resin has thermal properties. Curing characteristics. Furthermore, by hydrogenating the modified resin intermediate, the temperature resistance and aging resistance of the hydrogenated resin are effectively improved.
  • benzocyclobutene groups are grafted to portions of a plurality of dangling double bonds in a hydrocarbon resin backbone provided by the hydrocarbon resin.
  • the benzocyclobutene group is grafted to the dangling double bond in the hydrocarbon resin main chain.
  • the hydrocarbon resin main chain and the benzocyclobutene group can be adjusted
  • the molar ratio allows the glass transition temperature, thermal expansion coefficient, dielectric loss and dielectric constant of the modified resin intermediate to be adjusted, so that the hydrogenated resin can be adapted to different application scenarios.
  • the hydrocarbon resin backbone is provided by a hydrocarbon resin, and the hydrocarbon resin includes a plurality of first repeating units,
  • the chemical structural formula of the first repeating unit is as follows:
  • the first repeating unit may be located at the non-terminal part of the hydrocarbon resin.
  • the * in the above chemical structural formula indicates a connection site; the first repeating unit may also be located at the end of the hydrocarbon resin.
  • the above chemical formula The * on the right side of the structural formula represents hydrogen, and the * on the left side represents the connection site.
  • the number of the first repeating unit may be 2 to 2000, for example, 2 to 500, 5 to 1000, 10 to 1500, 20 to 2000, etc., including but not limited to: 100, 200, 300, 400, 500, 600, 700 , 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, etc.
  • R 1 , R 2 , R 4 , and R 5 each of them is a monovalent group, and they are each independently selected from hydrogen, a hydrocarbon group containing 1 to 20 carbon atoms, an aryl group, an aralkyl group, and an ether group. , or carbonyl group.
  • the hydrocarbon group containing 1 to 20 carbon atoms can be an alkyl group, an alkenyl group, an alkynyl group, etc.
  • an alkyl group can be a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, etc.
  • an aryl group for example, it can be phenyl, etc.
  • an aralkyl group it refers to a group in which the hydrogen on the aromatic ring is replaced by an alkyl group.
  • the aralkyl group can be a tolyl, ethylphenyl, etc.
  • R 3 is a divalent group, such as a single bond, a hydrocarbon group containing 1 to 20 carbon atoms, an aryl group, an aralkyl group, an ether group or a carbonyl group.
  • the hydrocarbon group containing 1 to 20 carbon atoms can be a divalent alkyl group, a divalent alkenyl group, a divalent alkynyl group, etc.
  • the divalent alkyl group as an example, it can be a methylene group or an ethylene group. , propylene group, butylene group, pentylene group, etc.; aryl group is, for example, divalent phenyl group, etc.
  • n is an integer from 2 to 2000.
  • p is an integer from 1 to 1999
  • m is an integer from 1 to 1999
  • the sum of m+p is an integer from 2 to 2000.
  • the M 1 group and M 2 group involved in the above two chemical formulas respectively represent the two end chains of the hydrocarbon resin main chain. They can be, for example, hydrogen, hydrocarbyl chain, aralkyl chain, ether chain, carbonyl chain, or Initiator residue chain, etc.
  • the hydrocarbon resin provided by the embodiments of the present disclosure also includes a plurality of second repeating units, the second repeating units are different from the first repeating units, and the chemical structural formula of the second repeating units is as follows:
  • the second repeating unit can be located at the non-terminal part of the hydrocarbon resin.
  • the * in the above chemical structural formula represents the connection site; the second repeating unit can also be located at the end of the hydrocarbon resin.
  • the above chemical formula The * on the right side of the structural formula represents hydrogen, and the * on the left side represents the connection site.
  • the chemical structure of the second repeating unit is different from that of the first repeating unit.
  • the chain segment composed of the second repeating unit and the chain segment composed of the first repeating unit may or may not be connected (that is, other segments are connected between the two segments. chain segment or group).
  • R 6 , R 7 , R 9 , and R 10 are each independently selected from hydrogen, a hydrocarbon group containing 1 to 20 carbon atoms, an aryl group, an aralkyl group, an ether group, or a carbonyl group.
  • R 6 , R 7 , R 9 and R 10 they are all monovalent groups.
  • R 1 , R 2 , R 4 and R 5 please refer to the above The limitations of R 1 , R 2 , R 4 and R 5 will not be repeated here.
  • R 8 is a divalent group, which includes but is not limited to a single bond, a hydrocarbon group containing 1 to 20 carbon atoms, an aryl group, an aralkyl group, an ether group or a carbonyl group, etc.
  • R 8 please refer to the above limitations on R 3 , which will not be described again here.
  • the number of the second repeating unit may be 2 to 2000, for example, 2 to 500, 5 to 1000, 10 to 1500, 20 to 2000, etc., including but not limited to: 100, 200, 300, 400, 500, 600, 700 , 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, etc.
  • the hydrocarbon resin only includes a plurality of first repeating units.
  • suitable hydrocarbon resins include, but are not limited to, the following:
  • x, z, w are each an integer from 0 to 500; y is an integer from 2 to 2000, and the chain segment where y is located is the chain segment composed of the first repeating unit.
  • x, z, and w are not 0 at the same time.
  • x, z, and w can each be selected from 1 to 10, 1 to 20, 1 to 30, 1 to 40, 1 to 50, 1 to 60, 1 ⁇ 70, 1 ⁇ 80, 1 ⁇ 90, 1 ⁇ 100, 1 ⁇ 150, 1 ⁇ 200, 1 ⁇ 250, 1 ⁇ 300, 1 ⁇ 350, 1 ⁇ 400, 1 ⁇ 450, etc.
  • x and z are each an integer from 0 to 500; y is an integer from 2 to 2000, and the chain segment where y is located is the chain segment composed of the first repeating unit.
  • x and z are not 0 at the same time.
  • x and z can each be selected from 1 to 10, 1 to 20, 1 to 30, 1 to 40, 1 to 50, 1 to 60, 1 to 70, 1 ⁇ 80, 1 ⁇ 90, 1 ⁇ 100, 1 ⁇ 150, 1 ⁇ 200, 1 ⁇ 250, 1 ⁇ 300, 1 ⁇ 350, 1 ⁇ 400, 1 ⁇ 450, etc.
  • the hydrocarbon resin includes a plurality of first repeating units and a plurality of second repeating units at the same time.
  • suitable hydrocarbon resins include but are not limited to the following:
  • z and w are each an integer from 0 to 500; x and y are each an integer from 2 to 2000.
  • z and w are not 0 at the same time.
  • z and w can each be selected from 1 to 10, 1 to 20, 1 to 30, 1 to 40, 1 to 50, 1 to 60, 1 to 70, 1 ⁇ 80, 1 ⁇ 90, 1 ⁇ 100, 1 ⁇ 150, 1 ⁇ 200, 1 ⁇ 250, 1 ⁇ 300, 1 ⁇ 350, 1 ⁇ 400, 1 ⁇ 450, etc.
  • z is an integer from 0 to 500; x and y are each an integer from 2 to 2000. In some examples, z can be selected from 1 to 10, 1 to 20, 1 to 30, 1 to 40, 1 to 50, 1 to 60, 1 to 70, 1 to 80, 1 to 90, 1 to 100, 1 ⁇ 150, 1 ⁇ 200, 1 ⁇ 250, 1 ⁇ 300, 1 ⁇ 350, 1 ⁇ 400, 1 ⁇ 450, etc.
  • z, u, v, and w are each an integer from 0 to 500; x and y are each an integer from 2 to 2000.
  • z, u, v and w are not 0 at the same time.
  • z, u, v and w can each be selected from 1 ⁇ 10, 1 ⁇ 20, 1 ⁇ 30, 1 ⁇ 40, 1 ⁇ 50, 1 ⁇ 60, 1 ⁇ 70, 1 ⁇ 80, 1 ⁇ 90, 1 ⁇ 100, 1 ⁇ 150, 1 ⁇ 200, 1 ⁇ 250, 1 ⁇ 300, 1 ⁇ 350, 1 ⁇ 400, 1 ⁇ 450, etc. .
  • the hydrocarbon resins containing dangling double bonds involved in the embodiments of the present disclosure include but are not limited to the following: polybutadiene resin (which is 1,2-polybutadiene resin, or 1,2-polybutadiene resin).
  • polybutadiene resin which is 1,2-polybutadiene resin, or 1,2-polybutadiene resin.
  • a mixture of vinyl resin and 1,4-polybutadiene resin is also possible
  • styrene-butadiene copolymer resin styrene-isoprene copolymer resin, polyisoprene rubber resin, styrene -Butadiene-divinylbenzene copolymer resin, hydrogenated diene-butadiene-styrene copolymer resin, etc.
  • the hydrogenated resin involved in the embodiments of the present disclosure has at least the following advantages:
  • the hydrogenated resin is grafted with benzocyclobutene groups, which is beneficial to improving the dielectric properties of the hydrogenated resin. After testing, the dielectric loss of the hydrogenated resin is at least 10% higher than that of the unmodified hydrocarbon resin. 50% lower.
  • rigid cross-linking agents with polar groups are usually introduced into the curing of conventional unmodified hydrocarbon resins to improve their heat resistance.
  • the hydrogenated resin provided by the embodiments of the present disclosure can improve its heat resistance without introducing additional rigid cross-linking agents. This is not only beneficial to reducing costs, but also the reduction of polar groups is beneficial to improving the hydrophobicity of printed circuit boards. Improve its water absorption.
  • a method for preparing a hydrogenated resin is also provided, wherein the hydrogenated resin is as shown in any of the above.
  • the preparation method of the hydrogenated resin includes:
  • a hydrocarbon resin and a halide of benzocyclobutene are provided, wherein the hydrocarbon resin has a plurality of dangling double bonds.
  • the hydrocarbon resin and the halide of benzocyclobutene are subjected to Heck reaction to obtain a modified resin intermediate.
  • the modified resin intermediate is hydrogenated to obtain a hydrogenated resin.
  • the Heck reaction is a common coupling reaction. It has the advantages of mild reaction conditions, simple operation, few by-products and easy separation of products, and low cost, making it easy to be promoted and applied on a large scale.
  • Hydrotreating is a hydrogenation reaction, which refers to the hydrogenation and saturation of unsaturated carbon chains to form saturated carbon chains under a certain hydrogen pressure and the presence of a catalyst. The hydrogenation reaction is a mature process that is easy to operate and convenient. Large-scale promotion and application.
  • the preparation method of hydrogenated resin involves first performing a Heck reaction between the hydrocarbon resin and the halide of benzocyclobutene, and grafting the benzocyclobutene group onto the dangling double bond of the hydrocarbon resin. , to obtain the modified resin intermediate.
  • the modified resin intermediate is then subjected to hydrogenation and saturation treatment to prepare hydrogenated resin.
  • the molar ratio of benzocyclobutene groups in the modified resin intermediate can be adjusted to further
  • the adjustment of the glass transition temperature, thermal expansion coefficient and dielectric loss of the hydrogenated resin enables the hydrogenated resin to have both excellent temperature resistance and dielectric properties to adapt to a variety of application scenarios.
  • the molar ratio of the benzocyclobutene group in the modified resin intermediate can be adjusted accordingly.
  • Saturating the carbon chains in the modified resin intermediate through hydrogenation treatment can effectively improve the symmetry of the molecular structure in the hydrogenated resin and further reduce the dielectric loss. Since there are no double bonds in the hydrogenated resin that are prone to aging, It is also beneficial to improve the aging resistance of hydrogenated resin.
  • the preparation method of hydrogenated resin provided by the embodiments of the present disclosure can not only prepare hydrogenated resin with excellent dielectric properties, high temperature resistance and aging resistance, but also has the advantages of simple preparation process, mild and controllable operating conditions and low cost. It is low and convenient for large-scale promotion.
  • the molar ratio of the dangling double bonds and the benzocyclobutene group in the hydrocarbon resin is 1:0.05 ⁇ 1, that is to say, the benzocyclobutene
  • the alkenyl group can be grafted to all the pendant double bonds in the hydrocarbon resin, or it can be grafted to some of the pendant double bonds in the hydrocarbon resin.
  • the hydrocarbon resin only includes a plurality of first repeating units.
  • suitable hydrocarbon resins include but are not limited to the following:
  • x, z, w are each an integer from 0 to 500; y is an integer from 2 to 2000, and the chain segment where y is located is the chain segment composed of the first repeating unit.
  • x and z are each an integer from 0 to 500; y is an integer from 2 to 2000, and the chain segment where y is located is the chain segment composed of the first repeating unit.
  • the hydrocarbon resin includes a plurality of first repeating units and a plurality of second repeating units at the same time.
  • suitable hydrocarbon resins include but are not limited to the following:
  • z and w are each an integer from 0 to 500; x and y are each an integer from 2 to 2000.
  • z is an integer from 1 to 500; x and y are each an integer from 2 to 2000.
  • z, u, v, and w are each an integer from 0 to 500; x and y are each an integer from 2 to 2000.
  • the hydrocarbon resins containing dangling double bonds involved in the embodiments of the present disclosure include but are not limited to the following: polybutadiene resin (which is 1,2-polybutadiene resin, or 1,2-polybutadiene resin).
  • polybutadiene resin which is 1,2-polybutadiene resin, or 1,2-polybutadiene resin.
  • a mixture of vinyl resin and 1,4-polybutadiene resin is also possible
  • styrene-butadiene copolymer resin styrene-isoprene copolymer resin, polyisoprene rubber resin, styrene -Butadiene-divinylbenzene copolymer resin, hydrogenated diene-butadiene-styrene copolymer resin, etc.
  • some suitable halides of benzocyclobutene include: at least one of 4-bromobenzocyclobutene, 4-chlorobenzocyclobutene, and 4-iodobenzocyclobutene.
  • a substitution reaction is performed between the hydrocarbon resin and the halide of benzocyclobutene to obtain a modified resin intermediate, including:
  • the hydrocarbon resin, the halide of benzocyclobutene, the first catalyst, the acid binding agent and the first solvent are evenly mixed, and the substitution reaction is carried out at the set first reaction temperature.
  • the first product system is obtained.
  • the first product system is separated and processed to obtain a modified resin intermediate.
  • the inert gas may be, for example, nitrogen or argon.
  • inert gases such as nitrogen or argon
  • inert atmosphere conditions are provided and the reaction system is placed under oxygen-free conditions.
  • the reaction system is kept under anhydrous conditions by performing a gas exchange operation on the reaction system.
  • the function of the acid binding agent is to activate the first catalyst and neutralize the acid produced by the reaction.
  • the acid binding agent may be, for example, at least one of triethylamine, diethylamine, potassium carbonate, sodium carbonate, pyridine, and imidazole.
  • the first solvent suitable for embodiments of the present disclosure is dry, including but not limited to dry toluene, acetonitrile, tetrahydrofuran, dioxane, N,N-dimethylformamide, N,N-dimethylethane At least one of the amides.
  • the first catalyst suitable for the above-mentioned Heck reaction includes a palladium catalyst and a phosphine ligand.
  • the phosphine ligand stabilizes and activates the palladium catalyst to achieve good catalytic effect.
  • the molar ratio of the palladium catalyst to the halide of benzocyclobutene is 1 to 5:1000, such as 1:1000, 1.2:1000, 1.5:1000, 1.8:1000, 2:1000, 2.5: 1000, 2.8:1000, 3:1000, 3.2:1000, 3.5:1000, 3.8:1000, 4:1000, 4.5:1000, 4.8:1000, 5:1000, etc.
  • the molar ratio of the phosphine ligand to the palladium catalyst is 3 to 5:1, for example, 3:1, 4:1, 5:1, etc.
  • the dosage of the first catalyst is within the above range, it not only has a good catalytic effect, but also reduces the dosage of the first catalyst, thereby achieving the purpose of reducing costs.
  • the palladium catalyst can be selected from palladium acetate, palladium chloride, tetrakis(triphenylphosphine)palladium, palladium on carbon (Pd/C), 1,1'-bisdiphenylphosphine ferrocene palladium dichloride At least one of them, the phosphine ligand can be tri(o-methylphenyl)phosphorus, triphenylphosphine, etc.
  • the first reaction temperature is 50°C to 150°C, for example, 50°C to 80°C. Including but not limited to: 50°C, 55°C, 56°C, 57°C, 58°C, 59°C, 60°C, 65°C, 70°C, 75°C, 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, etc. It is understandable that the first reaction temperature is also affected by the first solvent, and can be determined based on factors such as the boiling point of the first solvent.
  • reaction time of the above-mentioned Heck reaction can be 10h to 60h, for example, 30h to 60h, which includes but is not limited to: 30h, 35h, 40h, 45h, 46h, 47h, 48h, 49h, 50h, 51h, 52h, 55h , 60h, etc.
  • the molar ratio of benzocyclobutene groups in the modified resin intermediate is adjusted by adjusting at least one of the following operating parameters:
  • the molar ratio of the hydrocarbon resin having a dangling double bond and the halide of benzocyclobutene that is, the molar ratio of the dangling double bond to the benzocyclobutene group
  • reaction time first reaction temperature
  • first catalyst dosage first catalyst dosage
  • the conversion rate of the Heck reaction can be controlled, thereby controlling the grafting amount of the benzocyclobutene group within the set range.
  • the progress of the reaction is monitored through chromatography, nuclear magnetic resonance spectroscopy, etc. to accurately determine the degree of conversion of the halide of benzocyclobutene, and then prepare to determine the grafting amount of the benzocyclobutene group, thereby Accurately determine the reaction end point and ensure that the molar ratio of benzocyclobutene groups in the modified resin intermediate is within the set range to obtain the desired thermal stability and mediator electrical properties.
  • chromatography this includes, but is not limited to: liquid chromatography, gas chromatography, thin layer chromatography, etc.
  • the modified resin intermediate obtained has lower dielectric loss (for example, up to 0.001@10GHz) and higher heat resistance than the unmodified hydrocarbon resin.
  • the glass transition temperature of the modified resin intermediate is increased to greater than or equal to 180°C.
  • the modified resin intermediate with excellent dielectric properties and temperature resistance is hydrogenated and saturated to further improve its temperature resistance and at the same time impart excellent aging resistance to the hydrogenated resin.
  • the above characteristics of hydrogenated resin enable it to support the development of printed circuit boards with high heat resistance and low dielectric loss.
  • the above-mentioned dielectric loss of 0.001@10GHz refers to the use of SPDR (Split Post Dielectric Resonators) split column dielectric resonant cavity.
  • SPDR Split Post Dielectric Resonators
  • the dielectric loss factor is 0.001.
  • modified resin intermediates are hydrogenated to obtain hydrogenated resins, including:
  • the modified resin intermediate, the second solvent and the second catalyst are mixed to obtain a reaction raw material liquid. Pass hydrogen gas into the reaction raw material liquid, and perform a hydrogenation reaction under the set second reaction temperature and reaction pressure to obtain a second product system. The second product system is separated and treated to obtain hydrogenated resin.
  • the second solvent is used to fully dissolve the modified resin intermediate to form a liquid mixture.
  • suitable second solvents include but are not limited to: cyclohexane, toluene, xylene, benzene, trimethylbenzene, etc.
  • the second catalyst can be a common hydrogenation catalyst, which can be a heterogeneous catalyst or a homogeneous catalyst.
  • the heterogeneous catalyst can be a nickel catalyst or a transition metal catalyst supported on a carrier such as activated carbon, alumina, diatomite;
  • the homogeneous catalyst can be an Al/Ni catalytic system, a metallocene catalyst, a noble metal catalyst (for example, Platinum, palladium, rhodium and other metal catalysts), etc.
  • the catalytic hydrogenation reaction is carried out at a second reaction temperature.
  • the second reaction temperature can be 20°C to 100°C, for example, 40°C to 80°C, which includes but is not limited to: 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C, 75°C, etc.
  • reaction pressure of the catalytic hydrogenation system is a hydrogen partial pressure of 0.5MPa to 10MPa, for example, the hydrogen partial pressure is 1MPa, 2MPa, 3MPa, 4MPa, 5MPa, 6MPa, 7MPa, 8MPa, 9MPa, etc.
  • separating the second product system to obtain a hydrogenated resin includes: removing the second catalyst from the second product system through separation means such as filtration or washing to obtain a high-purity hydrogenated resin. Taking washing as an example, you can use dilute hydrochloric acid with a mass concentration of 5% to 8% and water to wash alternately several times (the last wash with water is enough).
  • the preparation process of the hydrogenated resin involved in the embodiments of the present disclosure can be as follows:
  • reaction bottle Vacuum the reaction bottle and vent nitrogen. After repeated operations several times, add hydrocarbon resin, benzocyclobutene halide, first catalyst, acid binding agent and first solvent into the reaction bottle, and mix until uniform reaction system. Under anhydrous and anaerobic conditions, the reaction system is heated to the set first reaction temperature and reacted. After the set reaction time, the heating is stopped and the reaction is terminated. After the first product system is cooled to room temperature, the first product system is heated to room temperature. The product system is separated and processed.
  • the first catalyst includes a palladium catalyst and a phosphine ligand.
  • a dielectric material is also provided.
  • the dielectric material includes any of the above hydrogenated resins.
  • the dielectric material provided by the embodiments of the present disclosure has all the advantages of hydrogenated resin. Based on the fact that hydrogenated resin has lower dielectric loss, the dielectric loss is also correspondingly lower, which can effectively reduce the insertion loss of the circuit board. In addition, the hydrogenated resin also has a low thermal expansion coefficient and high aging resistance, which can effectively improve the temperature resistance and service life of the circuit board. These characteristics enable the dielectric material to support the development of circuit boards with low insertion loss and high reliability. While improving the overall electrical performance of the system, it can also improve the reliability and service life of the system.
  • the benzocyclobutene group can undergo a ring-opening curing reaction at high temperatures, so that the hydrogenated resin has thermal curing properties.
  • the dielectric material provided by embodiments of the present disclosure only includes hydrogenated resin, and the hydrogenated resin can be self-cured by heating to form a cured resin layer.
  • the dielectric material provided by the embodiments of the present disclosure may also optionally include additives.
  • additives include, for example, but are not limited to: cross-linking agents, thermal initiators, inorganic fillers, resists, etc. At least one of an oxidizing agent, a photosensitizer, a light stabilizer, a flame retardant, an antistatic agent, a release agent, a lubricant, and a toughening agent.
  • thermal initiators include but are not limited to: bis-(2-tert-butylperoxyisopropyl)benzene (referred to as BIBP), cumene hydroperoxide, tert-butyl hydroperoxide, di-tert-butyl peroxide Butyl, benzoyl peroxide, etc.; the cross-linking agent is, for example, triallyl isocyanurate (referred to as cross-linking agent TAIC).
  • BIBP bis-(2-tert-butylperoxyisopropyl)benzene
  • TAIC triallyl isocyanurate
  • Inorganic fillers include but are not limited to: montmorillonite, calcium carbonate, magnesium hydroxide, zinc borate, talc, aluminum hydroxide, kaolin, barium sulfate, silica, silica powder, mica powder, hollow glass beads, gas phase dioxide Silicon etc.
  • Antioxidants include, but are not limited to: pentaerythritol tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) ) n-octadecanol propionate, 2,2 methylene bis(4-methyl-6-tert-butylphenol), N,N'-1,6-hexylene-bis[3-(3 , 5-di-tert-butyl-4-hydroxyphenyl)propionamide], tris[2,4-di-tert-butylphenyl]phosphite, bis(2,4-di-tert-butylphenol)pentaerythritol diacetate Phosphate ester, pentaerythritol distearyl diphosphite, distearyl thiodipropionate, distearyl thi
  • Photosensitizers include but are not limited to: ⁇ -acyloxy ester, acylphosphine oxide, benzoin, benzophenone, etc.
  • Light stabilizers include but are not limited to: hindered amine light stabilizers, UV absorbers, titanium dioxide, etc.
  • Flame retardants include but are not limited to: triphenyl phosphate, tetraphenyl (bisphenol-A) diphosphate, tricresyl phosphate, melamine polyphosphate, resorcinol bis(2,6-dimethyl Phenyl)phosphate, decabromodiphenylethane, etc.
  • Antistatic agents include but are not limited to: ethoxylaurylamide, glyceryl stearate, etc.
  • Lubricants include but are not limited to: ethylene bisstearamide, silicone masterbatch, calcium stearate, zinc stearate, polyethylene wax, stearic acid, pentaerythritol stearate, OP wax, etc.
  • Toughening agents include, but are not limited to: styrene-butadiene-styrene block copolymer, hydrogenated styrene/butadiene/styrene block copolymer, styrene-butadiene rubber, hydrogenated styrene-butadiene rubber, ethylene-propylene rubber, Maleic anhydride grafted hydrogenated styrene/butadiene/styrene block copolymer, methyl methacrylate-butadiene-styrene terpolymer, styrene-ethylene-propylene-styrene block copolymer wait.
  • a plate is also provided.
  • the plate includes a resin layer prepared from any of the above-mentioned dielectric materials.
  • the board provided by the embodiments of the present disclosure has all the advantages of dielectric materials.
  • the board may only include a resin layer, or may further include other functional layers and support layers in addition to the resin layer.
  • the functional layers may be stacked on the resin layer.
  • the functional layer is a conductive layer or a circuit layer;
  • the support layer can be used to support a resin layer.
  • the resin layer is formed on the support layer.
  • the support layer can be glass cloth or the like.
  • the board materials include but are not limited to the following: prepreg, copper-clad laminate, circuit board, chip, packaging substrate, etc.
  • an electrical device which includes the above-mentioned plate material and has all the advantages of the plate material.
  • the electrical device includes, but is not limited to: routers, data center switches, smartphones, notebook computers, tablet computers, desktop computers, MP3 players, MP4 players, etc.
  • This embodiment 1 provides a hydrogenated resin, which is prepared by the following method:
  • Thin layer chromatography was used to spot plates during the reaction. Monitor the degree of conversion of 4-bromobenzocyclobutene. After the reaction progress reaches the required level, the heating is stopped and the reaction is completed. After the first product system is cooled to room temperature, the first product system is separated.
  • the hydrogenation catalyst is a mixture of 50 mg of cobalt 2-ethylhexanoate and 250 mg of triisobutylaluminum. The two are mixed evenly at 50°C and allowed to stand for 30 minutes, and then added to the high-pressure reaction kettle.
  • This embodiment 2 provides a hydrogenated resin, which is prepared by the following method:
  • the reaction was completed after 30 hours of reaction, and a spot plate was used to monitor the degree of the reaction during the reaction. After the reaction degree reaches the desired value, the heating is stopped and the reaction is completed. After the first product system is cooled to room temperature, the first product system is separated.
  • the hydrogenation catalyst is a mixture of 50 mg of cobalt 2-ethylhexanoate and 250 mg of triisobutylaluminum. The two are mixed evenly at 50°C and allowed to stand for 30 minutes, and then added to the high-pressure reaction kettle.
  • This embodiment 3 provides a hydrogenated resin, which is prepared by the following method:
  • the reaction was terminated after 48 hours, and a spot plate was used to monitor 4-bromine during the reaction. Degree of benzocyclobutene conversion. After the reaction degree reaches the desired value, the heating is stopped and the reaction is completed. After the first product system is cooled to room temperature, the first product system is separated.
  • the hydrogenation catalyst is a mixture of 50 mg of cobalt 2-ethylhexanoate and 250 mg of triisobutylaluminum. The two are mixed evenly at 50°C and allowed to stand for 30 minutes, and then added to the high-pressure reaction kettle.
  • the dielectric loss, glass transition temperature and thermal expansion coefficient of each resin sheet were tested respectively.
  • the dielectric loss was tested using an SPDR resonant cavity, the glass transition temperature was tested using a static thermomechanical analyzer, and the thermal expansion coefficient was tested. Tested using a thermomechanical analyzer. The test results are as follows:
  • the dielectric loss factor of the resin sheet based on the hydrogenated resin in Example 1 is 0.0013@10GHz, the glass transition temperature Tg>220°C, and the thermal expansion coefficient is 77ppm (50°C ⁇ 125°C). It can be seen that the addition in Example 1 Hydrogen resins exhibit extremely low dielectric losses and higher glass transition temperatures.
  • the dielectric loss factor of the resin sheet based on the hydrogenated resin in Example 2 is 0.0015@10GHz, the glass transition temperature Tg>200°C, and the thermal expansion coefficient is 72ppm (50°C ⁇ 125°C). It can be seen that the hydrogenation in Example 2 Resins exhibit extremely low dielectric losses and higher glass transition temperatures.
  • the dielectric loss factor of the resin sheet based on the hydrogenated resin in Example 3 is 0.002@10GHz, the glass transition temperature Tg>180°C, and the thermal expansion coefficient is 110ppm (50°C ⁇ 125°C). It can be seen that the addition in Example 3 Hydrogen resins exhibit extremely low dielectric losses and higher glass transition temperatures.
  • dielectric materials based on the hydrogenated resin of Examples 1 to 3 prepare multiple dielectric materials, and coat and solidify each dielectric material on 1078-type glass cloth to form multiple dielectric plates. The performance of the board was tested.
  • Table 1 For the formula and performance test results of each dielectric material, please see Table 1 below:
  • hydrogenated polybutadiene resin BI3000 and polybutadiene resin B3000 are both produced by Nippon Soda; dielectric constant Dk and dielectric loss Df are both tested using SPDR resonant cavity; peel strength (N/mm)-1oz copper foil It refers to the force required when arranging 1OZ (35um) copper foil on a dielectric plate, etching the copper foil into thin lines, and peeling it off from the dielectric plate; immersion tin T288 refers to the dielectric If the plate is immersed in the tin liquid at 288°C for 60 seconds and no decomposition phenomena such as bubbling or delamination occur, it is considered OK; otherwise, it is considered a failure and is counted as ⁇ ; the glass transition temperature Tg refers to the dynamic mechanical analysis method (DMA) ) Determination of the glass transition temperature of dielectric sheets.
  • DMA dynamic mechanical analysis method
  • the hydrogenated resin provided by the embodiments of the present disclosure has excellent electrical properties, temperature resistance, aging resistance and peel strength.
  • the above characteristics of the hydrogenated resin enable it to support high heat resistance and low dielectric loss. and the development of printed circuit boards with high communication rates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本申请公开了一种加氢树脂及其制备方法、电介质材料、板材和电器件,属于高分子材料领域。该加氢树脂通过对改性树脂中间体进行加氢处理而获得,该改性树脂中间体包括:碳氢树脂主链和苯并环丁烯基团,该碳氢树脂主链具有多个悬挂双键,该苯并环丁烯基团接枝于多个悬挂双键中的至少一个。该加氢树脂兼具优异的介电性能,优异的耐温性以及优异的耐老化特性。

Description

加氢树脂及其制备方法、电介质材料、板材和电器件
本公开要求于2022年05月10日提交的申请号为202210507973.9、发明名称为“加氢树脂及其制备方法、电介质材料、板材和电器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及高分子材料领域,特别涉及加氢树脂及其制备方法、电介质材料、板材和电器件。
背景技术
随着电子信息技术的快速发展,电子产品趋向于微型化和高度集成化发展,具有优异介电性能的电介质材料成为电子元器件微小型化的关键。
由碳和氢原子组成的碳氢树脂,例如聚丁二烯、丁二烯-苯乙烯共聚物等,表现为较低的介电损耗,使其在低介电损耗的电介质材料方面具有较大的应用潜力。
然而,上述碳氢树脂的热膨胀系数较大,玻璃化转变温度较低,这使其需要和一些玻璃化转变温度较高的刚性交联剂(例如末端改性的聚苯醚低聚物、马来酰亚胺树脂等)配合使用,而刚性交联剂使用又会增加电介质材料的介电损耗。
公开内容
鉴于此,本公开提供了加氢树脂及其制备方法、电介质材料、板材和电器件,能够解决上述技术问题。
具体而言,包括以下的技术方案:
一方面,提供了一种加氢树脂,所述加氢树脂通过对改性树脂中间体进行加氢处理而获得,所述改性树脂中间体包括:碳氢树脂主链和苯并环丁烯基团,所述碳氢树脂主链具有多个悬挂双键,所述苯并环丁烯基团接枝于所述多个悬挂双键中的至少一个。
本公开实施例提供的加氢树脂,通过使苯并环丁烯基团接枝于碳氢树脂主链的悬挂双键上,使得碳氢树脂和苯并环丁烯基团相配合,获得改性树脂中间体,对该改性树脂中间体进行加氢处理,将改性树脂中间体中包含的不饱和双键加氢至饱和,得到加氢树脂。这样,加氢树脂兼具苯并环丁烯基团和饱和碳链,这使得加氢树脂至少具有以下优点:较高的玻璃化转变温度、较低的介电损耗和较强的耐老化特性,其中,高玻璃化转变温度使得加氢树脂表现为低热膨胀系数和优异的耐高温性,低介电损耗使得加氢树脂表现为优异的介电性能。可见,本公开实施例提供的加氢树脂利于制备耐热性高、耐老化和介电损耗低的树脂层,例如,该树脂层用于线路板时,不仅能够提升线路板的电性能,还利于提升线路板的使用寿命及可靠性。
在一些可能的实现方式中,所述苯并环丁烯基团接枝于所述多个悬挂双键中的部分。
在一些可能的实现方式中,所述碳氢树脂主链由碳氢树脂提供,所述碳氢树脂包括多个第一重复单元,所述第一重复单元的化学结构式如下所示:
其中,R1、R2、R4、R5各自独立地选自氢、含1~20个碳原子的烃基、芳基、芳烷基、醚基、或者羰基;
R3为单键、含1~20个碳原子的烃基、芳基、芳烷基、醚基或者羰基。
在一些可能的实现方式中,所述碳氢树脂还包括多个第二重复单元,所述第二重复单元不同于所述第一重复单元,且所述第二重复单元的化学结构式如下所示:
其中,R6、R7、R9、R10各自独立地选自氢、含1~20个碳原子的烃基、芳基、芳烷基、醚基、或者羰基;
R8为单键、含1~20个碳原子的烃基、芳基、芳烷基、醚基或者羰基。
在一些可能的实现方式中,所述碳氢树脂的化学结构式如下所示:

其中,x、z、w各自为0~500的整数,y为2-2000的整数。
在一些可能的实现方式中,所述碳氢树脂的化学结构式如下所示:
其中,z、u、v、w各自为0~500的整数,x和y各自为2-2000的整数。
另一方面,还提供了一种加氢树脂的制备方法,所述加氢树脂如上述任一所述,所述加氢树脂的制备方法包括:
提供碳氢树脂和苯并环丁烯的卤化物,其中,所述碳氢树脂具有多个悬挂双键;
使所述碳氢树脂与所述苯并环丁烯的卤化物进行Heck反应,得到所述改性树脂中间体;
对所述改性树脂中间体进行加氢处理,得到所述加氢树脂。
本公开实施例提供的加氢树脂的制备方法,首先使碳氢树脂与苯并环丁烯的卤化物进行Heck反应,将苯并环丁烯基团接枝于碳氢树脂的悬挂双键上,来获得该改性树脂中间体。然后对改性树脂中间体进行加氢饱和处理,即可制备得到加氢树脂。
通过Heck反应,能够调整苯并环丁烯基团在改性树脂中间体中的摩尔比,进而实现对加氢树脂的玻璃化转变温度、热膨胀系数和介电损耗的调整,使得加氢树脂兼具优异的耐温性和介电性能,以适应于多种应用场景。其中,通过调整碳氢树脂与苯并环丁烯的卤化物的摩尔比、反应时间等操作参数即可相应地调整苯并环丁烯基团在改性树脂中间体中的摩尔比。通过加氢处理来饱和改性树脂中间体中的碳链,这能够有效提升加氢树脂中分子结构的对称性,进一步降低介电损耗,由于加氢树脂中不存在易于发生老化的双键,还利于提升加氢树脂的耐老化特性。
本公开实施例提供的加氢树脂的制备方法,不仅能够制备得到兼具优异的介电性能、耐高温特性和耐老化特性的加氢树脂,还具有制备流程简单,操作条件温和可控,成本较低,便于规模化推广等优点。
在一些可能的实现方式中,所述苯并环丁烯的卤化物包括:4-溴苯并环丁烯、4-氯苯并环丁烯、4-碘苯并环丁烯中的至少一种。
在一些可能的实现方式中,所述使所述碳氢树脂与所述苯并环丁烯的卤化物进行Heck反应,得到所述改性树脂中间体,包括:
在无水及惰性气氛条件下,使所述碳氢树脂、所述苯并环丁烯的卤化物、第一催化剂、缚酸剂和第一溶剂混合均匀,并在设定的第一反应温度下进行Heck反应,得到第一产物体系;
对所述第一产物体系进行分离处理,得到所述改性树脂中间体。
在一些可能的实现方式中,所述第一催化剂包括钯催化剂和膦配体,所述钯催化剂与所述苯并环丁烯的卤化物的摩尔比为1~5:1000,所述膦配体与所述钯催化剂的摩尔比为3~5:1。
第一催化剂的用量在上述范围内,不仅使其具有良好的催化效果,且降低了第一催化剂用量,进而达到降低成本的目的。
在一些可能的实现方式中,所述钯催化剂选自醋酸钯、氯化钯、四(三苯基膦)钯、钯炭、二苯基膦二茂铁二氯化钯中的至少一种;
所述膦配体包括三(邻甲基苯基)磷、三苯基膦中的至少一种。
在一些可能的实现方式中,所述第一反应温度为50℃~150℃,以使碳氢树脂和苯并环丁烯的卤化物进行的Heck反应更加充分和彻底。
在一些可能的实现方式中,通过调节以下操作参数中的至少一种,来调节所述改性树脂中间体中苯并环丁烯基团的摩尔比:所述碳氢树脂与所述苯并环丁烯的卤化物的摩尔比、反应时间、第一反应温度、第一催化剂的用量。
通过对以上各操作参数进行调控,均能够实现对Heck反应的转化率的调控,进而控制苯并环丁烯基团的接枝量在设定范围内。
在一些可能的实现方式中,所述Heck反应过程中,通过色谱法或者核磁共振谱法监控反应进度,以准确判断苯并环丁烯的卤化物的转化程度,进而准备判断苯并环丁烯基团的接枝量,从而准确确定反应终点,确保改性树脂中间体中的苯并环丁烯基团的摩尔比在设定范围内,以获得期望的热稳定性和介电性能。
在一些可能的实现方式中,所述对所述改性树脂中间体进行加氢处理,得到所述加氢树脂,包括:
使所述改性树脂中间体、第二溶剂、第二催化剂混合,获得反应原料液;
向所述反应原料液中通入氢气,并在设定的第二反应温度和反应压力下,进行加氢反应,得到第二产物体系;
对所述第二产物体系进行分离处理,得到所述加氢树脂。
再一方面,还提供了一种电介质材料,所述电介质材料包括上述任一所述的加氢树脂。
本公开实施例提供的电介质材料具有加氢树脂的所有优点,基于加氢树脂具有较低的介电损耗,使得的介电损耗也相应较低,这能够有效降低线路板的插入损耗。另外,该加氢树脂还具有较低的热膨胀系数和较高的耐老化特性,这能够有效改善线路板的耐温性和使用寿命。这些特性使得该电介质材料能够支撑低插入损耗且高可靠性的线路板的开发,在提升系统整体电性能的同时,还可以提升系统的可靠性和使用寿命。
在一些可能的实现方式中,所述电介质材料还包括交联剂、热引发剂、无机填料、抗氧化剂、光敏剂、光稳定剂、阻燃剂、抗静电剂、脱模剂、润滑剂、增韧剂中的至少一种。
再一方面,还提供了一种板材,所述板材包括树脂层,所述树脂层由上述任一所述的电介质材料制备得到。
本公开实施例提供的板材具有电介质材料的所有优点,该板材可以仅包括树脂层,也可以进一步包括除了树脂层之外的其他功能层和支撑层,该功能层可以层叠布置于树脂层上,举例来说,该功能层例如为导电层或者线路层;该支撑层可以用于支撑树脂层,例如,树脂层形成于该支撑层上,举例来说,该支撑层可以为玻璃布等。
举例来说,该板材包括但不限于以下:半固化片、覆铜板、线路板、芯片、封装基板等。
再一方面,还提供了一种电器件,所述电器件包括上述的板材。
示例性地,该电器件包括但不限于:路由器、数据中心交换机、智能手机、笔记本电脑、平板电脑、台式电脑、MP3播放器、MP4播放器等。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将对本公开实施方式作进一步地详细描述。
随着电子信息技术的快速发展,电子产品趋向于微型化和高度集成化发展,具有优异介电性能的电介质材料成为电子元器件微小型化的关键,其中,电介质材料能够用来制备线路板。
基于热固性树脂的电介质材料具有良好的尺寸稳定性、耐热性和加工性,从而被广泛应用,常见的热固性树脂例如环氧树脂、酚醛树脂、马来酰亚胺树脂等,该类树脂通常具有较多的极性基团(如羟基、酰亚胺基团等),导致其介电性能通常较差(介电损耗Df≥0.005@10GHz,测量方法:SPDR),不满足更高通讯速率对于电介质材料要求。
碳氢树脂(包括1,2-聚丁二烯、丁苯橡胶等)不含有强极性基团,然而,基于碳氢树脂的电介质材料所获得的树脂层,其热膨胀系数一般较大,耐温性不足,这使其需要和一些玻璃化转变温度Tg较高的刚性交联剂(例如聚苯醚、马来酰亚胺树脂等)配合使用,而刚性交联剂的使用会增加树脂层的介电损耗。
针对相关技术存在的技术问题,根据本公开实施例的一个方面,提供了一种加氢树脂,该加氢树脂通过对改性树脂中间体进行加氢处理而获得,该改性树脂中间体包括:碳氢树脂主链和苯并环丁烯基团,该碳氢树脂主链具有多个悬挂双键,该苯并环丁烯基团接枝于多个悬挂双键中的至少一个。上述涉及的多个悬挂双键,指的是悬挂双键的数目为两个或者两个以上。
可以理解地,碳氢树脂主链由碳氢树脂提供,碳氢树脂由碳和氢组成,碳氢树脂主链含有的多个悬挂双键可以位于碳氢树脂主链的非端部部分,也可以位于碳氢树脂主链的端部部分,例如末端。
在一些示例中,碳氢树脂主链中所有的悬挂双键各自接枝有一个苯并环丁烯基团。
在一些示例中,碳氢树脂主链中,仅部分悬挂双键各自接枝有一个苯并环丁烯基团,而剩余部分的悬挂双键则是空置的,即不连接有其他任何基团。
本公开实施例提供的加氢树脂,通过使苯并环丁烯基团接枝于碳氢树脂主链的悬挂双键上,使得碳氢树脂和苯并环丁烯基团相配合,获得改性树脂中间体,对该改性树脂中间体进行加氢处理,将改性树脂中间体中包含的不饱和双键加氢至饱和,得到加氢树脂。这样,加氢树脂兼具苯并环丁烯基团和饱和碳链,这使得加氢树脂至少具有以下优点:较高的玻璃化转变温度、较低的介电损耗和较强的耐老化特性,其中,高玻璃化转变温度使得加氢树脂表现为低热膨胀系数和优异的耐高温性,低介电损耗使得加氢树脂表现为优异的介电性能。可见,本公开实施例提供的加氢树脂利于制备耐热性高、耐老化和介电损耗低的树脂层,例如,该树脂层用于线路板时,不仅能够提升线路板的电性能,还利于提升线路板的使用寿命及可靠性。
相关技术中,丁二烯等进行聚合反应而形成1,2-聚丁二烯时,很难实现100%的1位和2位加成,导致大量的双键残留在聚合物主链中。由于位阻的存在,这部分残留在聚合物主链的双键很难完全固化反应,这使得因此1,2-聚丁二烯等树脂中具有大量的双键残留,导致固化后的树脂易于发生热氧老化,这样,利用该类树脂得到的板材的介电性能在使用过程将不断劣化,导致系统插损增加。相关技术对上述1,2-聚丁二烯等碳氢树脂进行加氢处理,虽然,有效提升碳氢树脂的耐老化特性,但是其却会同步使碳氢树脂丧失掉热固化的特性。
本公开实施例提供的加氢树脂,首先对碳氢树脂进行苯并环丁烯基团改性处理,苯并环丁烯基团在高温下能够进行开环固化反应,使得加氢树脂具有热固化特性。进一步地,通过对改性树脂中间体进行加氢处理,有效提升加氢树脂的耐温性和耐老化特性。
在一些示例中,苯并环丁烯基团接枝于碳氢树脂主链中多个悬挂双键中的部分,其中,碳氢树脂主链由碳氢树脂提供。
苯并环丁烯基团接枝于碳氢树脂主链中的悬挂双键,通过调整苯并环丁烯基团的接枝量,可以调整碳氢树脂主链与苯并环丁烯基团的摩尔比,使得该改性树脂中间体的玻璃化转变温度、热膨胀系数、介电损耗和介电常数均可以调整,以便于加氢树脂适应于不同的应用场景。
本公开实施例中,该碳氢树脂主链由碳氢树脂提供,碳氢树脂包括多个第一重复单元, 该第一重复单元的化学结构式如下所示:
该第一重复单元可以位于碳氢树脂的非端部部分,此时,上述化学结构式中的*表示连接位点;该第一重复单元还可以位于碳氢树脂的端部,此时,上述化学结构式中位于右侧的*表示氢,位于左侧的*表示连接位点。
第一重复单元的数目可以为2~2000,例如为2~500,5~1000,10~1500,20~2000等,这包括但不限于:100、200、300、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000等。
对于R1、R2、R4、R5,它们各自为一价基团,并且,它们各自独立地选自氢、含1~20个碳原子的烃基、芳基、芳烷基、醚基、或者羰基。
举例来说,含1~20个碳原子的烃基可以为烷基、烯基、炔基等,以烷基举例来说,其可以为甲基、乙基、丙基、丁基、戊基等。对于芳基,例如其可以是苯基等;对于芳烷基,其指的是芳环上的氢被烷基所取代的基团,例如,芳烷基可以为甲苯基、乙苯基等。
R3为二价基团,例如为单键、含1~20个碳原子的烃基、芳基、芳烷基、醚基或者羰基。举例来说,含1~20个碳原子的烃基可以为二价烷基、二价烯基、二价炔基等,以二价烷基举例来说,其可以为亚甲基、亚乙基、亚丙基、亚丁基、亚戊基等;芳基例如为二价苯基等。
在一些示例中,该改性树脂中间体中所有的悬挂双键均连接有苯并环丁烯基团,该改性树脂中间体的化学结构式可以如下所示:
其中,n为2~2000的整数。
在另一些示例中,该改性树脂中间体中,仅部分悬挂双键连接有苯并环丁烯基团,该改性树脂中间体的化学结构式可以如下所示:
其中,p为1~1999的整数,m为1~1999的整数,且m+p之和为2~2000的整数。
在该类改性树脂中间体中,碳氢树脂主链中仅部分悬挂双键连接有苯并环丁烯基团,其中,连接有苯并环丁烯基团的第一重复单元和不连接苯并环丁烯基团的第一重复单元可以采用任意排布顺序布置,不仅仅限于如上述化学式中所示的排布顺序。
上述两个化学式中涉及的M1基团和M2基团分别代表碳氢树脂主链的两个端链,它们例如可以是氢、烃基链、芳烷基链、醚链、羰基链、或者引发剂残基链等。
在一些实现方式中,本公开实施例提供的碳氢树脂还包括多个第二重复单元,第二重复单元不同于第一重复单元,且第二重复单元的化学结构式如下所示:
该第二重复单元可以位于碳氢树脂的非端部部分,此时,上述化学结构式中的*表示连接位点;该第二重复单元还可以位于碳氢树脂的端部,此时,上述化学结构式中位于右侧的*表示氢,位于左侧的*表示连接位点。
第二重复单元与第一重复单元的化学结构不相同,第二重复单元构成的链段与第一重复单元构成的链段可以相连,也可以不相连(即两个链段之间连接有其他链段或者基团)。
其中,R6、R7、R9、R10各自独立地选自氢、含1~20个碳原子的烃基、芳基、芳烷基、醚基、或者羰基。关于R6、R7、R9、R10均为一价基团,关于它们的上述限定,可以参见上述 就R1、R2、R4、R5的限定,在此不再赘述。
R8为二价基团,其包括但不限于单键、含1~20个碳原子的烃基、芳基、芳烷基、醚基或者羰基等。关于R8的上述限定,可以参见上述就R3的限定,在此不再赘述。
第二重复单元的数目可以为2~2000,例如为2~500,5~1000,10~1500,20~2000等,这包括但不限于:100、200、300、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000等。
在一些示例中,碳氢树脂中仅包括多个第一重复单元,一些适用的碳氢树脂包括但不限于以下:
其中,x、z、w各自为0~500的整数;y为2-2000的整数,y所在链段即为第一重复单元构成的链段。
在一些示例中,x、z和w不同时为0,举例来说,x、z、w各自可以选自1~10、1~20、1~30、1~40、1~50、1~60、1~70、1~80、1~90、1~100、1~150、1~200、1~250、1~300、1~350、1~400、1~450等。
其中,x、z各自为0~500的整数;y为2-2000的整数,y所在链段即为第一重复单元构成的链段。
在一些示例中,x和z不同时为0,举例来说,x、z各自可以选自1~10、1~20、1~30、1~40、1~50、1~60、1~70、1~80、1~90、1~100、1~150、1~200、1~250、1~300、1~350、1~400、1~450等。
在一些示例中,碳氢树脂中同时包括多个第一重复单元和多个第二重复单元,一些适用的碳氢树脂包括但不限于以下:
其中,z、w各自为0~500的整数;x和y各自为2-2000的整数。
在一些示例中,z和w不同时为0,举例来说,z和w各自可以选自1~10、1~20、1~30、1~40、1~50、1~60、1~70、1~80、1~90、1~100、1~150、1~200、1~250、1~300、1~350、1~400、1~450等。
其中,z为0~500的整数;x和y各自为2-2000的整数。在一些示例中,z可以选自1~10、1~20、1~30、1~40、1~50、1~60、1~70、1~80、1~90、1~100、1~150、1~200、1~250、1~300、1~350、1~400、1~450等。
其中,z、u、v、w各自为0~500的整数;x和y各自为2-2000的整数。
在一些示例中,z、u、v和w不同时为0,举例来说,z、u、v和w各自可以选自1~10、1~20、1~30、1~40、1~50、1~60、1~70、1~80、1~90、1~100、1~150、1~200、1~250、1~300、1~350、1~400、1~450等。
进一步举例来说,本公开实施例涉及的含悬挂双键的碳氢树脂包括但不限于以下:聚丁二烯树脂(为1,2-聚丁二烯树脂,或者1,2-聚丁二烯树脂与1,4-聚丁二烯树脂的混合物也是可以的)、苯乙烯‐丁二烯共聚物树脂、苯乙烯‐异戊二烯共聚物树脂、聚异戊二烯橡胶树脂、苯乙烯‐丁二烯‐二乙烯基苯共聚物树脂、氢化二烯‐丁二烯‐苯乙烯共聚物树脂等。
对于1,2-聚丁二烯树脂,其化学结构式如下所示:
对于苯乙烯‐丁二烯共聚物树脂,其化学结构式如下所示:
综上可知,本公开实施例涉及的加氢树脂,至少具有以下优点:
(1)该加氢树脂中接枝了苯并环丁烯基团,利于提高加氢树脂的介电性能,经测试,该加氢树脂的介电损耗相比未改性的碳氢树脂至少降低50%。
(2)与未改性的碳氢树脂相比,该加氢树脂的玻璃化转变温度显著提高,使得该加氢树脂具有优异的耐热性。
(3)在印刷线路板等高耐热的应用场景中,常规的未改性碳氢树脂的固化通常引入带有极性基团的刚性交联剂,以提升其耐热性。而本公开实施例提供的加氢树脂无需引入额外的刚性交联剂就可使其耐热性提高,这不仅利于降低成本,并且极性基团的减少还利于提升印刷线路板的疏水性,改善其吸水现象。
(4)该加氢树脂中无不饱和双键的存在,使得加氢树脂的耐老化特性得以提高,进而利于提高印刷线路板等产品的使用时后面。
根据本公开实施例提供的另一方面,还提供了一种加氢树脂的制备方法,其中该加氢树脂如上述任一种所示。该加氢树脂的制备方法包括:
提供碳氢树脂和苯并环丁烯的卤化物,其中,碳氢树脂具有多个悬挂双键。使碳氢树脂与苯并环丁烯的卤化物进行Heck反应,得到改性树脂中间体。
对改性树脂中间体进行加氢处理,得到加氢树脂。
Heck反应是一种常见的偶联反应,其具有反应条件温和,操作简单,副产物少且产物易于分离,成本低等优点,便于规模化推广应用。加氢处理为加氢反应,其指的是在一定的氢压和催化剂存在条件下,不饱和碳链加氢饱和而形成饱和碳链,加氢反应为成熟的工艺手段,易操作,同样便于规模化推广应用。
本公开实施例提供的加氢树脂的制备方法,首先使碳氢树脂与苯并环丁烯的卤化物进行Heck反应,将苯并环丁烯基团接枝于碳氢树脂的悬挂双键上,来获得该改性树脂中间体。然后对改性树脂中间体进行加氢饱和处理,即可制备得到加氢树脂。
特别地,通过Heck反应,能够调整苯并环丁烯基团在改性树脂中间体中的摩尔比,进 而实现对加氢树脂的玻璃化转变温度、热膨胀系数和介电损耗的调整,使得加氢树脂兼具优异的耐温性和介电性能,以适应于多种应用场景。其中,通过调整碳氢树脂与苯并环丁烯的卤化物的摩尔比、反应时间等操作参数即可相应地调整苯并环丁烯基团在改性树脂中间体中的摩尔比。
通过加氢处理来饱和改性树脂中间体中的碳链,这能够有效提升加氢树脂中分子结构的对称性,进一步降低介电损耗,由于加氢树脂中不存在易于发生老化的双键,还利于提升加氢树脂的耐老化特性。
本公开实施例提供的加氢树脂的制备方法,不仅能够制备得到兼具优异的介电性能、耐高温特性和耐老化特性的加氢树脂,还具有制备流程简单,操作条件温和可控,成本较低,便于规模化推广等优点。
本公开实施例在合成改性树脂中间体的过程中,使碳氢树脂中的悬挂双键与苯并环丁烯基团的摩尔比为1:0.05~1,也就是说,苯并环丁烯基团可以接枝于碳氢树脂中所有的悬挂双键,也可以接枝于碳氢树脂中部分悬挂双键。
关于反应原料碳氢树脂,其可以参见上述就改性树脂中间体的描述,在一些示例中,碳氢树脂中仅包括多个第一重复单元,一些适用的碳氢树脂包括但不限于以下:
其中,x、z、w各自为0~500的整数;y为2-2000的整数,y所在链段即为第一重复单元构成的链段。
其中,x、z各自为0~500的整数;y为2-2000的整数,y所在链段即为第一重复单元构成的链段。
在一些示例中,碳氢树脂中同时包括多个第一重复单元和多个第二重复单元,一些适用的碳氢树脂包括但不限于以下:
其中,z、w各自为0~500的整数;x和y各自为2-2000的整数。
其中,z为1~500的整数;x和y各自为2-2000的整数。
其中,z、u、v、w各自为0~500的整数;x和y各自为2-2000的整数。
进一步举例来说,本公开实施例涉及的含悬挂双键的碳氢树脂包括但不限于以下:聚丁二烯树脂(为1,2-聚丁二烯树脂,或者1,2-聚丁二烯树脂与1,4-聚丁二烯树脂的混合物也是可以的)、苯乙烯‐丁二烯共聚物树脂、苯乙烯‐异戊二烯共聚物树脂、聚异戊二烯橡胶树脂、苯乙烯‐丁二烯‐二乙烯基苯共聚物树脂、氢化二烯‐丁二烯‐苯乙烯共聚物树脂等。
在一些示例中,一些适用的苯并环丁烯的卤化物包括:4-溴苯并环丁烯、4-氯苯并环丁烯、4-碘苯并环丁烯中的至少一种。
在一些实现方式中,使碳氢树脂与苯并环丁烯的卤化物进行取代反应,得到改性树脂中间体,包括:
在无水及惰性气氛条件下,使碳氢树脂、苯并环丁烯的卤化物、第一催化剂、缚酸剂和第一溶剂混合均匀,并在设定的第一反应温度下进行取代反应,得到第一产物体系。对第一产物体系进行分离处理,分离得到改性树脂中间体。
通过提供无水条件以及惰性气氛条件,以避免第一催化剂中毒,保持良好的催化活性。其中,惰性气体例如可以是氮气或者氩气等,通过向反应体系中通入氮气或者氩气等惰性气体,来赋予惰性气氛条件,并使反应体系处于无氧条件下。通过对反应体系进行抽换气操作,使反应体系处于无水条件下。
缚酸剂在其中的作用是活化第一催化剂以及中和反应产生的酸。缚酸剂例如可以是三乙胺、二乙胺、碳酸钾、碳酸钠、吡啶、咪唑中的至少一种。
适用于本公开实施例的第一溶剂为干燥的,这包括但不限于干燥的甲苯、乙腈、四氢呋喃、二氧六环、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中的至少一种。
适用于上述Heck反应的第一催化剂包括钯催化剂和膦配体,通过膦配体来稳定和活化钯催化剂,使其获得良好的催化效果。
在一些示例中,钯催化剂与苯并环丁烯的卤化物的摩尔比为1~5:1000,例如为1:1000、1.2:1000、1.5:1000、1.8:1000、2:1000、2.5:1000、2.8:1000、3:1000、3.2:1000、3.5:1000、3.8:1000、4:1000、4.5:1000、4.8:1000、5:1000等。膦配体与钯催化剂的摩尔比为3~5:1,例如为3:1、4:1、5:1等。
第一催化剂的用量在上述范围内,不仅使其具有良好的催化效果,且降低了第一催化剂用量,进而达到降低成本的目的。
举例来说,钯催化剂可以选自醋酸钯、氯化钯、四(三苯基膦)钯、钯炭(Pd/C)、1,1'-双二苯基膦二茂铁二氯化钯中的至少一种,膦配体可以为三(邻甲基苯基)磷、三苯基膦等。
在一些实现方式中,为了使碳氢树脂和苯并环丁烯的卤化物进行的Heck反应更加充分和彻底,使第一反应温度为50℃~150℃,例如为50℃~80℃,这包括但不限于:50℃、55℃、56℃、57℃、58℃、59℃、60℃、65℃、70℃、75℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃等。可以理解地,第一反应温度也受到第一溶剂的影响,根据第一溶剂的沸点等因素一并确定即可。
进一步地,上述Heck反应的反应时间可以为10h~60h,例如为30h~60h,这包括但不限于:30h、35h、40h、45h、46h、47h、48h、49h、50h、51h、52h、55h、60h等。
特别地,通过调节以下操作参数中的至少一种,来调节改性树脂中间体中苯并环丁烯基团的摩尔比:
具有悬挂双键的碳氢树脂与苯并环丁烯的卤化物的摩尔比(即,悬挂双键与苯并环丁烯基团的摩尔比)、反应时间、第一反应温度、第一催化剂的用量。
通过对以上各操作参数进行调控,均能够实现对Heck反应的转化率的调控,进而控制苯并环丁烯基团的接枝量在设定范围内。
在一些示例中,通过色谱法、核磁共振谱法等来监控反应进度,以准确判断苯并环丁烯的卤化物的转化程度,进而准备判断苯并环丁烯基团的接枝量,从而准确确定反应终点,确保改性树脂中间体中的苯并环丁烯基团的摩尔比在设定范围内,以获得期望的热稳定性和介 电性能。对于色谱法,这包括但不限于:液相色谱法、气相色谱法、薄层色谱法等。
综上可知,基于Heck反应,在碳氢树脂的悬挂双键中接枝苯并环丁烯基团,从而实现对碳氢树脂的改性。所获得的改性树脂中间体,相比未改性的碳氢树脂,其具有更低的具有更低的介电损耗(例如可达0.001@10GHz),还具有更高的耐热性,在无须引入刚性交联剂的前提下,将改性树脂中间体的玻璃化转发温度提升至大于或等于180℃。对兼具优异的介电性能和耐温特性的改性树脂中间体进行加氢饱和,使其耐温性得以进一步提高,同时赋予加氢树脂优异的耐老化特性。加氢树脂的上述特性使其能够支撑高耐热及低介电损耗的印刷线路板的开发。
其中,关于上述涉及的介电损耗为0.001@10GHz指的是,采用SPDR(Split Post Dielectric Resonators)分离柱电介质谐振腔,在10GHz的频率下,介电损耗因数(介质损耗角正切)为0.001。
在一些示例中,对改性树脂中间体进行加氢处理,得到加氢树脂,包括:
使改性树脂中间体、第二溶剂和第二催化剂混合,获得反应原料液。向反应原料液中通入氢气,并在设定的第二反应温度和反应压力下,进行加氢反应,得到第二产物体系。对第二产物体系进行分离处理,得到加氢树脂。
其中,第二溶剂用于使改性树脂中间体充分溶解形成液体混合物,一些适用的第二溶剂包括但不限于:环己烷、甲苯、二甲苯、苯、三甲苯等。
第二催化剂可以采用常见的加氢催化剂,其可以是非均相催化剂,也可以是均相催化剂。举例来说,该非均相催化剂可以为镍催化剂或者负载于活性炭、氧化铝、硅藻土等载体上的过渡金属催化剂;均相催化剂为Al/Ni催化体系、茂金属催化剂、贵金属催化剂(例如铂、钯、铑等金属催化剂)等。
催化加氢反应在第二反应温度下进行,为了使催化加氢反应充分彻底地进行,该第二反应温度可以为20℃~100℃,例如为40℃~80℃,这包括但不限于:25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃等。
进一步地,使催化加氢体系的反应压力为0.5MPa~10MPa的氢分压,例如,氢分压为1MPa、2MPa、3MPa、4MPa、5MPa、6MPa、7MPa、8MPa、9MPa等。
在一些示例中,对第二产物体系进行分离处理,得到加氢树脂,包括:通过过滤或者洗涤等分离手段,从第二产物体系中脱出第二催化剂,得到高纯度的加氢树脂。以洗涤举例来说,可以使用质量浓度为5%~8%的稀盐酸以及水交替洗涤多次(最后一次采用水洗涤即可)。
在一些示例中,本公开实施例涉及的加氢树脂的制备流程可以如下所示:
(1)对反应瓶抽真空通氮气,反复多次后,向反应瓶内加入碳氢树脂、苯并环丁烯的卤化物、第一催化剂、缚酸剂和第一溶剂,混合成均匀的反应体系。在无水无氧条件下,对该反应体系升温至设定的第一反应温度并进行反应,反应设定时间后,停止加热并结束反应,待第一产物体系降温至室温后,对第一产物体系进行分离处理。其中,第一催化剂包括钯催化剂和膦配体。
(2)对第一产物体系进行过滤,以除去其中的固体和钯黑,取滤液对其进行旋蒸浓缩以除去第一溶剂,然后对浓缩液进行硅胶抽滤以除去其中的无机盐,取滤液对其进行蒸馏,以除去其中未反应的原料以及第一溶剂,得到一级粗产物。其中,钯黑为反应后的第一催化剂。
(3)利用甲苯溶解该一级粗产物,冷冻重结晶,对液体混合物进行抽滤以去除残余不溶 物,取滤液进行蒸馏、乙醇沉淀、干燥,得到二级粗产物。
(4)利用甲苯溶解该二级粗产物,对液体混合物水洗多次,利用乙醇沉淀水洗产物并烘干,得到高纯度的改性树脂中间体。
(5)使改性树脂中间体、第二溶剂混合均匀,静置10min~30min后加入至高压反应釜中,利用高纯氮气置换高压反应釜内的空气,然后向高压反应釜内加入催化剂并混合均匀,获得反应原料液。
(6)向高压反应釜内通入氢气至氢分压为0.5MPa~10MPa,在20℃~100℃条件下进行加氢反应,得到第二产物体系。
(7)利用质量浓度为5%~8%的稀盐酸以及水交替洗涤第二产物体系多次,利用乙醇沉淀水洗产物并烘干,得到高纯度的加氢树脂。
根据本公开实施例的再一方面,还提供了一种电介质材料,该电介质材料包括上述任一种加氢树脂。
本公开实施例提供的电介质材料具有加氢树脂的所有优点,基于加氢树脂具有较低的介电损耗,使得的介电损耗也相应较低,这能够有效降低线路板的插入损耗。另外,该加氢树脂还具有较低的热膨胀系数和较高的耐老化特性,这能够有效改善线路板的耐温性和使用寿命。这些特性使得该电介质材料能够支撑低插入损耗且高可靠性的线路板的开发,在提升系统整体电性能的同时,还可以提升系统的可靠性和使用寿命。
本公开实施例涉及的加氢树脂,苯并环丁烯基团在高温下能够进行开环固化反应,使得该加氢树脂具有热固化特性。
在一些示例中,本公开实施例提供的电介质材料仅包括加氢树脂,该加氢树脂可以通过加热的方式进行自固化,以形成固化的树脂层。
在另一些示例中,本公开实施例提供的电介质材料,除了包括上述加氢树脂,还可选择性地包括添加剂,这些添加剂例如包括但不限于:交联剂、热引发剂、无机填料、抗氧化剂、光敏剂、光稳定剂、阻燃剂、抗静电剂、脱模剂、润滑剂、增韧剂中的至少一种。
举例来说,热引发剂包括但不限于:二-(2-特丁基过氧异丙基)苯(简称BIBP)、异丙苯过氧化氢、叔丁基过氧化氢、过氧化二叔丁基、过氧化苯甲酰等;交联剂例如为三烯丙基异三聚氰酸酯(简称交联剂TAIC)。
无机填料包括但不限于:蒙脱土、碳酸钙、氢氧化镁、硼酸锌、滑石、氢氧化铝、高岭土、硫酸钡、二氧化硅、硅微粉、云母粉、空心玻璃微珠、气相二氧化硅等。
抗氧化剂包括但不限于:四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯、2,2亚甲基双(4-甲基-6-叔丁基苯酚)、N,N’-1,6-亚已基-双[3-(3,5-二叔丁基-4-羟基苯基)丙酰胺]、三[2,4-二叔丁基苯基]亚磷酸酯、双(2,4-二叔丁基苯酚)季戊四醇二亚磷酸酯、季戊四醇二亚磷酸双十八酯、硫代二丙酸二硬脂醇酯、硫代二丙酸双十二烷酯等。
光敏剂包括但不限于:α-酰氧基酯、酰基膦氧化物、安息香、二苯甲酮等。
光稳定剂包括但不限于:受阻胺光稳定剂、紫外吸收剂、钛白粉等。
阻燃剂包括但不限于:磷酸三苯酯、四苯基(双酚-A)二磷酸酯、磷酸三甲苯酯、三聚氰胺聚磷酸盐、间苯二酚双二(2,6-二甲基苯基)磷酸酯、十溴二苯乙烷等。
抗静电剂包括但不限于:乙氧基月桂酷胺、甘油硬脂酸酯等。
润滑剂包括但不限于:乙撑双硬脂酰胺、硅酮母粒、硬脂酸钙、硬脂酸锌、聚乙烯蜡、硬脂酸、季戊四醇硬脂酸酯、OP蜡等。
增韧剂包括但不限于:苯乙烯-丁二烯-苯乙烯嵌段共聚物、氢化苯乙烯/丁二烯/苯乙烯嵌段共聚物、丁苯橡胶、氢化丁苯橡胶、乙丙橡胶、马来酸酐接枝氢化苯乙烯/丁二烯/苯乙烯嵌段共聚物、甲基丙烯酸甲酯-丁二烯-苯乙烯三元共聚物、苯乙烯-乙烯-丙烯-苯乙烯嵌段共聚物等。
根据本公开实施例的再一方面,还提供了一种板材,该板材包括树脂层,该树脂层由上述涉及的任一种电介质材料制备得到。
本公开实施例提供的板材具有电介质材料的所有优点,该板材可以仅包括树脂层,也可以进一步包括除了树脂层之外的其他功能层和支撑层,该功能层可以层叠布置于树脂层上,举例来说,该功能层例如为导电层或者线路层;该支撑层可以用于支撑树脂层,例如,树脂层形成于该支撑层上,举例来说,该支撑层可以为玻璃布等。
举例来说,该板材包括但不限于以下:半固化片、覆铜板、线路板、芯片、封装基板等。
根据本公开实施例的再一方面,还提供了一种电器件,该电器件包括上述涉及的板材,并且具有板材所有的优点。
示例性地,该电器件包括但不限于:路由器、数据中心交换机、智能手机、笔记本电脑、平板电脑、台式电脑、MP3播放器、MP4播放器等。
下面将通过更具体的实施例进一步地描述本公开,虽然下面描述了一些具体的实施方式,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行,所用试剂或仪器未注明生产厂商者,均可以为可以通过市购获得的常规产品。
实施例1
本实施例1提供了一种加氢树脂,该加氢树脂通过以下方法制备得到:
(1)对200mL的反应瓶抽真空通氮气,反复3次后,向反应瓶内加入聚丁二烯树脂(型号为B3000,产自Nippon Soda,5.4g)、4-溴苯并环丁烯(9.1g)、醋酸钯(0.15mmol)、三(邻甲基苯基)磷(0.6mmol)、三乙胺(60mmol)、干燥的N,N-二甲基甲酰胺(75g),混合成均匀的反应体系。对该反应体系再次通氮气以保持无水无氧条件,然后利用水浴升温方式使该反应体系的温度升高至150℃进行反应,反应30h后结束反应,反应过程中利用薄层色谱法点板监控4-溴苯并环丁烯的转化程度。待反应进度达到要求后,停止加热并结束反应,待第一产物体系降温至室温后,对第一产物体系进行分离处理。
(2)对第一产物体系进行过滤,以除去其中的固体和钯黑,取滤液对其进行旋蒸浓缩以除去第一溶剂,然后对浓缩液进行硅胶抽滤以除去其中的无机盐,取滤液并在60℃下对其进行减压蒸馏,以除去其中未反应的原料,得到一级粗产物,其为棕黄色固体。
(3)利用甲苯溶解该一级粗产物,对液体混合物进行抽滤以去除残余不溶物,溶液在低温下重结晶,低温过滤除去不溶物,取滤液进行减压蒸馏,用乙醇沉淀、烘干,得到二级粗 产物,其为浅黄色粉末。
(4)利用甲苯溶解该二级粗产物,使用超纯水对甲苯溶液水洗5次,利用乙醇沉淀水洗产物并烘干,得到高纯度的苯并环丁烯改性的聚丁二烯树脂。
(5)使苯并环丁烯改性的1,2-聚丁二烯树脂和环己烷混合均匀形成质量浓度为10%的树脂的环己烷溶液,静置30min后加入至高压反应釜中,利用高纯氮气置换高压反应釜内的空气,然后向高压反应釜内加入催化剂并混合均匀,获得反应原料液。其中,加氢催化剂为50mg的2-乙基己酸钴和250mg的三异丁基铝的混合物,两者在50℃条件混合均匀并静置30min,然后加入至高压反应釜中。
(6)向高压反应釜内通入氢气至氢分压为3MPa,在50℃条件下进行加氢反应1h,得到第二产物体系。
(7)利用质量浓度为6%的稀盐酸以及水交替洗涤第二产物体系多次,利用乙醇沉淀水洗产物并烘干,得到高纯度的加氢树脂。利用核磁共振技术测试得到该加氢树脂的加氢度高于98%。
实施例2
本实施例2提供了一种加氢树脂,该加氢树脂通过以下方法制备得到:
(1)对200mL的反应瓶抽真空通氮气,反复3次后,向反应瓶内加入丁二烯-苯乙烯共聚物(型号为Ricon100,产自Cray valley,6.5g)、4-溴苯并环丁烯(9.1g)、醋酸钯(0.15mmol)、三(邻甲基苯基)磷(0.45mmol)、三乙胺(80mmol)、干燥的N,N-二甲基甲酰胺(75g),混合成均匀的反应体系。对该反应体系再次通氮气以保持无水无氧条件,然后利用水浴升温方式使该反应体系的温度升高至150℃进行反应,反应30h后结束反应,反应过程中利用点板监控反应程度。待反应程度达到期望值后,停止加热并结束反应,待第一产物体系降温至室温后,对第一产物体系进行分离处理。
(2)对第一产物体系进行过滤,以除去其中的固体和钯黑,取滤液对其进行旋蒸浓缩以除去第一溶剂,然后对浓缩液进行硅胶抽滤以除去其中的无机盐,取滤液并在50℃下对其进行减压蒸馏,以除去其中未反应的原料,得到一级粗产物,其为棕黄色固体。
(3)利用甲苯溶解该一级粗产物,对液体混合物进行抽滤以去除残余不溶物,溶液在低温下重结晶,低温过滤除去不溶物,取滤液进行减压蒸馏,用乙醇沉淀、烘干,得到二级粗产物,其为浅黄色粉末。
(4)利用甲苯溶解该二级粗产物,使用超纯水对甲苯溶液水洗5次,利用乙醇沉淀水洗产物并烘干,得到高纯度的苯并环丁烯改性的丁二烯-苯乙烯共聚物树脂。
(5)使苯并环丁烯改性的丁二烯-苯乙烯共聚物树脂和环己烷混合均匀形成质量浓度为10%的树脂的环己烷溶液,静置30min后加入至高压反应釜中,利用高纯氮气置换高压反应釜内的空气,然后向高压反应釜内加入催化剂并混合均匀,获得反应原料液。其中,加氢催化剂为50mg的2-乙基己酸钴和250mg的三异丁基铝的混合物,两者在50℃条件混合均匀并静置30min,然后加入至高压反应釜中。
(6)向高压反应釜内通入氢气至氢分压为5MPa,在55℃条件下进行加氢反应1h,得到第二产物体系。
(7)利用质量浓度为6%的稀盐酸以及水交替洗涤第二产物体系多次,利用乙醇沉淀水 洗产物并烘干,得到高纯度的加氢树脂。利用核磁共振技术测试得到该加氢树脂的加氢度高于98%。
实施例3
本实施例3提供了一种加氢树脂,该加氢树脂通过以下方法制备得到:
(1)对200mL的反应瓶抽真空通氮气,反复3次后,向反应瓶内加入丁二烯-苯乙烯共聚物(型号为Ricon100,产自Cray valley,6.5g)、4-溴苯并环丁烯(3g)、醋酸钯(0.05mmol)、三(邻甲基苯基)磷(0.2mmol)、三乙胺(20mmol)、干燥的N,N-二甲基乙酰胺(75g),混合成均匀的反应体系。对该反应体系再次通氮气以保持无水无氧条件,然后利用水浴升温方式使该反应体系的温度升高至80℃进行反应,反应48h后结束反应,反应过程中利用点板监控4-溴苯并环丁烯转化程度。待反应程度达到期望值后,停止加热并结束反应,待第一产物体系降温至室温后,对第一产物体系进行分离处理。
(2)对第一产物体系进行过滤,以除去其中的固体和钯黑,取滤液对其进行旋蒸浓缩以除去第一溶剂,然后对浓缩液进行硅胶抽滤以除去其中的无机盐,取滤液并在50℃下对其进行减压蒸馏,以除去其中未反应的原料,得到一级粗产物,其为棕黄色固体。
(3)利用甲苯溶解该一级粗产物,对液体混合物进行抽滤以去除残余不溶物,溶液在低温下重结晶,低温过滤除去不溶物,取滤液进行减压蒸馏,用乙醇沉淀、烘干,得到二级粗产物,其为浅黄色粉末。
(4)利用甲苯溶解该二级粗产物,使用超纯水对甲苯溶液水洗5次,利用乙醇沉淀水洗产物并烘干,得到高纯度的苯并环丁烯改性的丁二烯-苯乙烯共聚物树脂。
(5)使苯并环丁烯改性的丁二烯-苯乙烯共聚物树脂和环己烷混合均匀形成质量浓度为10%的树脂的环己烷溶液,静置30min后加入至高压反应釜中,利用高纯氮气置换高压反应釜内的空气,然后向高压反应釜内加入催化剂并混合均匀,获得反应原料液。其中,加氢催化剂为50mg的2-乙基己酸钴和250mg的三异丁基铝的混合物,两者在50℃条件混合均匀并静置30min,然后加入至高压反应釜中。
(6)向高压反应釜内通入氢气至氢分压为4MPa,在60℃条件下进行加氢反应1h,得到第二产物体系。
(7)利用质量浓度为6%的稀盐酸以及水交替洗涤第二产物体系多次,利用乙醇沉淀水洗产物并烘干,得到高纯度的加氢树脂。利用核磁共振技术测试得到该加氢树脂的加氢度高于98%。
测试例1
对实施例1-实施例3中提供的加氢树脂的介电损耗、玻璃化转变温度和热膨胀系数分别进行测试,具体参见以下:
取实施例1-实施例3提供的加氢树脂的粉末2g,将其放置于直径为5cm的模具中,保持压力为50psi,在200℃下恒温固化1h,220℃下恒温固化1h,240℃下恒温固化1h,得到树脂片。
对各树脂片的介电损耗、玻璃化转变温度和热膨胀系数分别进行测试,其中,介电损耗采用SPDR谐振腔进行测试,玻璃化转变温度采用静态热机械分析仪进行测试,热膨胀系数 采用热机械分析仪进行测试。测试结果分别如下所示:
基于实施例1的加氢树脂的树脂片的介电损耗因数为0.0013@10GHz,玻璃化转变温度Tg>220℃,热膨胀系数为77ppm(50℃~125℃),可见,实施例1中的加氢树脂表现为极低的介电损耗和更高的玻璃化转变温度。
基于实施例2的加氢树脂的树脂片的介电损耗因数为0.0015@10GHz,玻璃化转变温度Tg>200℃,热膨胀系数为72ppm(50℃~125℃)可见,实施例2中的加氢树脂表现为极低的介电损耗和更高的玻璃化转变温度。
基于实施例3的加氢树脂的树脂片的介电损耗因数为0.002@10GHz,玻璃化转变温度Tg>180℃,热膨胀系数为110ppm(50℃~125℃),可见,实施例3中的加氢树脂表现为极低的介电损耗和更高的玻璃化转变温度。
测试例2
基于实施例1-实施例3的加氢树脂提供电介质材料,制备得到多个电介质材料,并将各电介质材料涂覆并固化于1078型的玻璃布上形成多个介电板材,对各个介电板材的性能进行测试,其中,各电介质材料的配方及性能测试结果请参见以下表1:
表1

其中,氢化聚丁二烯树脂BI3000和聚丁二烯树脂B3000均产自Nippon Soda;介电常数Dk和介电损耗Df均采用SPDR谐振腔测试得到;剥离强度(N/mm)-1oz铜箔指的是,在介电板材上布置1OZ(35um)的铜箔,将铜箔蚀刻成细线路,使其从介电板材上剥离时候需要的力;浸锡T288,指的是,将介电板材浸入至288℃的锡液中60s,不产生起泡、分层等分解现象则为OK,反之则为失败,计为×;玻璃化转变温度Tg,指的是采用动态力学分析法(DMA)测定介电板材的玻璃化转变温度。
综上可知,本公开实施例提供的加氢树脂,兼具优异的电学性能、耐温性、耐老化特性和剥离强度,加氢树脂的上述特性使其能够支撑高耐热、低介电损耗和高通讯速率的印刷线路板的开发。
以上所述仅是为了便于本领域的技术人员理解本公开的技术方案,并不用以限制本公开。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (19)

  1. 一种加氢树脂,其特征在于,所述加氢树脂通过对改性树脂中间体进行加氢处理而获得,所述改性树脂中间体包括:碳氢树脂主链和苯并环丁烯基团,所述碳氢树脂主链具有多个悬挂双键,所述苯并环丁烯基团接枝于所述多个悬挂双键中的至少一个。
  2. 根据权利要求1所述的加氢树脂,其特征在于,所述苯并环丁烯基团接枝于所述多个悬挂双键中的部分。
  3. 根据权利要求1或2所述的加氢树脂,其特征在于,所述碳氢树脂主链由碳氢树脂提供,所述碳氢树脂包括多个第一重复单元,所述第一重复单元的化学结构式如下所示:
    其中,R1、R2、R4、R5各自独立地选自氢、含1~20个碳原子的烃基、芳基、芳烷基、醚基、或者羰基;
    R3为单键、含1~20个碳原子的烃基、芳基、芳烷基、醚基或者羰基。
  4. 根据权利要求3所述的加氢树脂,其特征在于,所述碳氢树脂还包括多个第二重复单元,所述第二重复单元不同于所述第一重复单元,且所述第二重复单元的化学结构式如下所示:
    其中,R6、R7、R9、R10各自独立地选自氢、含1~20个碳原子的烃基、芳基、芳烷基、醚基、或者羰基;
    R8为单键、含1~20个碳原子的烃基、芳基、芳烷基、醚基或者羰基。
  5. 根据权利要求3所述的加氢树脂,其特征在于,所述碳氢树脂的化学结构式如下所示:
    其中,x、z、w各自为0~500的整数,y为2-2000的整数。
  6. 根据权利要求4所述的加氢树脂,其特征在于,所述碳氢树脂的化学结构式如下所示:

    其中,z、u、v、w各自为0~500的整数,x和y各自为2-2000的整数。
  7. 一种加氢树脂的制备方法,其特征在于,所述加氢树脂如权利要求1-6任一项所述,所述加氢树脂的制备方法包括:
    提供碳氢树脂和苯并环丁烯的卤化物,其中,所述碳氢树脂具有多个悬挂双键;
    使所述碳氢树脂与所述苯并环丁烯的卤化物进行Heck反应,得到所述改性树脂中间体;
    对所述改性树脂中间体进行加氢处理,得到所述加氢树脂。
  8. 根据权利要求7所述的加氢树脂的制备方法,其特征在于,所述苯并环丁烯的卤化物包括:4-溴苯并环丁烯、4-氯苯并环丁烯、4-碘苯并环丁烯中的至少一种。
  9. 根据权利要求7或8所述的加氢树脂的制备方法,其特征在于,所述使所述碳氢树脂与所述苯并环丁烯的卤化物进行Heck反应,得到所述改性树脂中间体,包括:
    在无水及惰性气氛条件下,使所述碳氢树脂、所述苯并环丁烯的卤化物、第一催化剂、缚酸剂和第一溶剂混合均匀,并在设定的第一反应温度下进行Heck反应,得到第一产物体系;
    对所述第一产物体系进行分离处理,得到所述改性树脂中间体。
  10. 根据权利要求9所述的加氢树脂的制备方法,其特征在于,所述第一催化剂包括钯催化剂和膦配体,所述钯催化剂与所述苯并环丁烯的卤化物的摩尔比为1~5:1000,所述膦配体与所述钯催化剂的摩尔比为3~5:1。
  11. 根据权利要求10所述的加氢树脂的制备方法,其特征在于,所述钯催化剂选自醋酸钯、氯化钯、四(三苯基膦)钯、钯炭、二苯基膦二茂铁二氯化钯中的至少一种;
    所述膦配体包括三(邻甲基苯基)磷、三苯基膦中的至少一种。
  12. 根据权利要求9所述的加氢树脂的制备方法,其特征在于,所述第一反应温度为50℃~150℃。
  13. 根据权利要求9-12任一项所述的加氢树脂的制备方法,其特征在于,通过调节以下操作参数中的至少一种,来调节所述改性树脂中间体中苯并环丁烯基团的摩尔比:所述碳氢树脂与所述苯并环丁烯的卤化物的摩尔比、反应时间、第一反应温度、第一催化剂的用量。
  14. 根据权利要求13所述的加氢树脂的制备方法,其特征在于,所述Heck反应过程中,通过色谱法或者核磁共振谱法监控反应进度。
  15. 根据权利要求13所述的加氢树脂的制备方法,其特征在于,所述对所述改性树脂中间体进行加氢处理,得到所述加氢树脂,包括:
    使所述改性树脂中间体、第二溶剂、第二催化剂混合,获得反应原料液;
    向所述反应原料液中通入氢气,并在设定的第二反应温度和反应压力下,进行加氢反应,得到第二产物体系;
    对所述第二产物体系进行分离处理,得到所述加氢树脂。
  16. 一种电介质材料,其特征在于,所述电介质材料包括权利要求1-6任一项所述的加氢树脂。
  17. 根据权利要求16所述的电介质材料,其特征在于,所述电介质材料还包括交联剂、热引发剂、无机填料、抗氧化剂、光敏剂、光稳定剂、阻燃剂、抗静电剂、脱模剂、润滑剂、增韧剂中的至少一种。
  18. 一种板材,其特征在于,所述板材包括树脂层,所述树脂层由权利要求16-17任一项所述电介质材料制备得到。
  19. 一种电器件,其特征在于,所述电器件包括权利要求18所述的板材。
PCT/CN2023/092202 2022-05-10 2023-05-05 加氢树脂及其制备方法、电介质材料、板材和电器件 WO2023216979A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210507973.9 2022-05-10
CN202210507973.9A CN117069878A (zh) 2022-05-10 2022-05-10 加氢树脂及其制备方法、电介质材料、板材和电器件

Publications (1)

Publication Number Publication Date
WO2023216979A1 true WO2023216979A1 (zh) 2023-11-16

Family

ID=88706680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092202 WO2023216979A1 (zh) 2022-05-10 2023-05-05 加氢树脂及其制备方法、电介质材料、板材和电器件

Country Status (2)

Country Link
CN (1) CN117069878A (zh)
WO (1) WO2023216979A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667005A (en) * 1985-12-23 1987-05-19 Shell Oil Company Crystalline alphamonoolefin copolymers
EP0227124A2 (en) * 1985-12-23 1987-07-01 Shell Internationale Researchmaatschappij B.V. Olefinic benzocyclobutene polymers and processes for the preparation thereof
US5422410A (en) * 1992-10-27 1995-06-06 The Dow Chemical Company Method for increasing the molecular weight of thermoplastic polymers of monoalkenyl arenes
US20170369609A1 (en) * 2014-12-23 2017-12-28 Dow Global Technologies Llc Ethylene-Based Interpolymers and Composition Comprising the Same
CN111875759A (zh) * 2019-05-03 2020-11-03 克拉通聚合物研究有限公司 嵌段共聚物及其用途
CN113912795A (zh) * 2021-09-30 2022-01-11 北京石油化工学院 聚异单烯烃共聚物、其制备方法、引发剂及应用
CN114085300A (zh) * 2021-12-24 2022-02-25 南亚新材料科技股份有限公司 改性聚丁二烯树脂及其制备方法、应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667005A (en) * 1985-12-23 1987-05-19 Shell Oil Company Crystalline alphamonoolefin copolymers
EP0227124A2 (en) * 1985-12-23 1987-07-01 Shell Internationale Researchmaatschappij B.V. Olefinic benzocyclobutene polymers and processes for the preparation thereof
US5422410A (en) * 1992-10-27 1995-06-06 The Dow Chemical Company Method for increasing the molecular weight of thermoplastic polymers of monoalkenyl arenes
US20170369609A1 (en) * 2014-12-23 2017-12-28 Dow Global Technologies Llc Ethylene-Based Interpolymers and Composition Comprising the Same
CN111875759A (zh) * 2019-05-03 2020-11-03 克拉通聚合物研究有限公司 嵌段共聚物及其用途
CN113912795A (zh) * 2021-09-30 2022-01-11 北京石油化工学院 聚异单烯烃共聚物、其制备方法、引发剂及应用
CN114085300A (zh) * 2021-12-24 2022-02-25 南亚新材料科技股份有限公司 改性聚丁二烯树脂及其制备方法、应用

Also Published As

Publication number Publication date
CN117069878A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
KR101710854B1 (ko) N-치환 말레이미드기를 갖는 폴리페닐렌에테르 유도체, 및 그것을 사용한 열경화성 수지 조성물, 수지 바니시, 프리프레그, 금속 피복 적층판 및 다층 프린트 배선판
US10882967B2 (en) Method for preparing polyimide film having low dielectric constant and high fracture toughness
TWI700332B (zh) 無鹵素低介電樹脂組合物,使用彼所製得之預浸漬片、金屬箔積層板及印刷電路板
CN109970519B (zh) 含双环戊二烯之官能化聚(2,6-二甲基苯醚)寡聚物、其制造方法及其用途
CN112969749B (zh) 树脂组合物、预浸料、层叠板、树脂膜、多层印刷布线板和毫米波雷达用多层印刷布线板
CN114736096B (zh) 苯并环丁烯类单体、苯并环丁烯树脂及其制备、低介电材料及其应用
TWI752357B (zh) 一種樹脂、由其製成的銅箔基板以及印刷電路板
CN108148196B (zh) 一种苯乙烯基硅氧基聚苯醚树脂及其制备方法和应用
WO2017107588A1 (zh) 有机硅改性的酚醛树脂、制备方法及用途
TW202112846A (zh) 樹脂組成物、預浸體、附樹脂薄膜、附樹脂金屬箔、覆金屬積層板及配線板
WO2019019464A1 (zh) 一种热固性树脂组合物、由其制作的半固化片、覆金属箔层压板及高频电路板
WO2023216979A1 (zh) 加氢树脂及其制备方法、电介质材料、板材和电器件
WO2018098923A1 (zh) 一种苯乙烯基硅氧基酚醛树脂及其制备方法和应用
WO2023216980A1 (zh) 改性树脂及其制备方法、电介质材料、板材和电器件
JP2004231781A (ja) 硬化性ポリフェニレンエーテル系樹脂材料
JP2004269785A (ja) 硬化性ポリフェニレンエーテル系複合材料
JP2004263099A (ja) 硬化性ポリフェニレンエーテル系樹脂組成物
CN117487320A (zh) 树脂组合物、固化物、树脂膜、预浸料、层积体以及电子电路基板用的材料
TWI706964B (zh) 聚苯醚寡聚物、聚合物組分、樹脂組成物、預浸布、金屬箔基板
CN117487319A (zh) 树脂组合物、固化物、树脂膜、预浸料、层积体以及电子电路基板用的材料
CN117903364A (zh) 共轭二烯系共聚物、树脂组合物、固化物、树脂膜、预浸料、层积体以及电子电路基板材料
WO2023167152A1 (ja) ブロック共重合体、樹脂組成物、硬化物、樹脂フィルム、プリプレグ、積層体、及び電子回路基板用の材料
CN116693781A (zh) 嵌段共聚物、树脂组合物、固化物、树脂膜、预浸料、层积体以及电子电路基板用的材料
WO2023167151A1 (ja) ブロック共重合体、樹脂組成物、硬化物、樹脂フィルム、プリプレグ、積層体、及び電子回路基板用の材料
TW202411337A (zh) 樹脂組合物、硬化物、樹脂膜、預浸體、積層體、及電子電路基板用之材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802751

Country of ref document: EP

Kind code of ref document: A1