WO2023216978A1 - 一种多塔联动式空中吊装平台 - Google Patents

一种多塔联动式空中吊装平台 Download PDF

Info

Publication number
WO2023216978A1
WO2023216978A1 PCT/CN2023/092201 CN2023092201W WO2023216978A1 WO 2023216978 A1 WO2023216978 A1 WO 2023216978A1 CN 2023092201 W CN2023092201 W CN 2023092201W WO 2023216978 A1 WO2023216978 A1 WO 2023216978A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
support
bracket
lifting
square
Prior art date
Application number
PCT/CN2023/092201
Other languages
English (en)
French (fr)
Inventor
王帅
李文祥
游�明
王明昭
陆通
杜振东
胡宗友
熊文辉
刘晨
钱晨
董云洁
吴克洋
王理
杨威
何骏
方一丰
李翔
徐杨军
葛元榜
杨小龙
程浩哲
涂释友
Original Assignee
武汉建工集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉建工集团股份有限公司 filed Critical 武汉建工集团股份有限公司
Publication of WO2023216978A1 publication Critical patent/WO2023216978A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C6/00Girders, or track-supporting structures, specially adapted for cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C7/00Runways, tracks or trackways for trolleys or cranes
    • B66C7/08Constructional features of runway rails or rail mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C9/00Travelling gear incorporated in or fitted to trolleys or cranes
    • B66C9/10Undercarriages or bogies, e.g. end carriages, end bogies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a multi-tower linkage aerial hoisting platform, which is mainly used in the fields of engineering construction and building construction.
  • Tower crane is the most commonly used lifting equipment on construction sites. It is used to lift construction raw materials such as steel bars, wooden corrugations, concrete, and steel pipes. It is an indispensable equipment on construction sites.
  • Conventional tower cranes have limited lifting capabilities when the lifting distance is long due to their force-arm balancing method.
  • the concept of green construction is deeply rooted in the hearts of the people. People have put forward higher requirements for the construction quality and construction speed of buildings, especially the gradual development of prefabricated housing. Many walls and components are completed in factories. , to the construction site for safety, and these prefabricated wall components have a large self-weight.
  • the traditional tower crane base is poured entirely with reinforced concrete in a pit. After the tower crane is dismantled and moved, the poured concrete tower crane base is left underground, causing inconvenience to project maintenance and land reuse, consuming manpower and material resources, and delaying the progress of the project. And generate a lot of construction waste.
  • multiple tower cranes are usually installed, but there are also construction areas that cannot be covered.
  • the construction of many large-area group buildings is usually divided into areas and sections. The traditional tower crane base cannot be moved.
  • the area tower cranes that have been constructed on site will be idle or completely dismantled after the construction of this part of the project. Its turnover rate is lower.
  • the existing tower crane only has a lifting function. When the material reaches a specified height, it moves horizontally. However, it cannot provide effective horizontal thrust or installation platform in the horizontal direction, resulting in low efficiency of material transportation, installation, and construction.
  • the purpose of the present invention is to provide a multi-tower linkage aerial hoisting platform.
  • the tower body lifting part is a self-climbing lifting system fixed to the tower crane body.
  • the standard section tower is used as a support
  • the hydraulic cylinder is used as the lifting power
  • the pneumatic locking mechanism is used to automatically complete the lifting action along the tower body.
  • the four tower lifting parts are fixedly placed on the periphery of the building, forming a skeleton of the rectangular lifting platform.
  • a moving beam connection mechanism is set up so that the main lifting beam and the auxiliary lifting beam can move together.
  • the hoisting platform surrounded by four support beams has good stability and strong load capacity.
  • the four support beams can move vertically and horizontally.
  • the hoisting platform can cover the construction area three-dimensionally, facilitating the implementation of various processes such as rapid transportation, masonry, and painting operations.
  • it is equipped with a mobile tower crane base platform, which changes the traditional pouring tower crane base into a removable and recycled tower crane base, which is suitable for the use of tower cranes in mid- and high-rise residential buildings and overcomes the disadvantage that traditional tower crane bases cannot be moved.
  • the device can be used to build the base of freight elevators on construction sites. It can quickly build a reliable and stable load-bearing platform in different terrain locations.
  • the steel plate above the bracket has a variety of expansion mounting holes, which can be expanded into a medium-sized anchor point support to build steel cables. , used in steel cable span transportation, etc.
  • a multi-tower linkage aerial hoisting platform including:
  • the four tower lifting parts are respectively arranged in a rectangular shape around the outer periphery of the building, including the tower crane body and a self-climbing lifting system that can climb and descend step by step along the tower crane body;
  • the four tower connecting support beams are respectively set on two opposite self-climbing lifting systems.
  • the self-climbing lifting system drives the hoisting platform surrounded by the tower connecting supporting beams to move up and down synchronously;
  • the auxiliary moving beam is slidably installed below the two opposite tower connecting support beams;
  • the main moving beam is located below the auxiliary moving beam and relatively perpendicular to it. It is slidingly arranged below the other two opposite tower connection support beams, and extends out of the frame surrounded by four tower connection support beams at both ends. The lower end is slidably equipped with a lifting trolley;
  • Four mobile tower crane bases are respectively provided at the lower ends of the four lifting parts of the tower body, including a mobile chassis that serves as a mobile support and can change the platform angle, and a bracket portion provided on the mobile chassis.
  • the four corners of the bracket portion Rotary drill fixing parts are respectively provided on them.
  • the self-climbing lifting system includes a plurality of I-beam standard brackets spliced and installed along the side of the tower crane body and a locking system a and a climbing system provided on the I-beam standard bracket,
  • the two I-beams a are connected by square steel a and square steel b, and the formed I-beam track matches the four I-beam pulleys b of the climbing system;
  • the lower part of the steel plate is connected to the I-beam a, and the upper part of the steel plate is connected to the locking system a;
  • a plurality of hinge seats are provided on the steel plate, and the three hinge seats located at the lower part are used to hinge and fix the end standard section of the support beam.
  • the locking system a includes a locking system bracket.
  • the locking system bracket is a square frame welded by high-strength steel.
  • Four I-beam pulleys a are provided on the four corner sides of the locking system bracket. At the side position, the four I-beam pulleys a match the I-beam track of the I-beam standard bracket;
  • the two ends of the rotating shaft a and the rotating shaft b are respectively connected with four support bearings, and the two inner ends are connected with the locking push rod a and the locking push rod b respectively.
  • the locking push rod a and the locking push rod b are respectively provided with openings, and the openings are used to clamp the cross beams between the I-beam standard brackets;
  • the two connecting rods are connected to the heads of the Y-shaped joints of the two short hydraulic cylinders.
  • the tails of the Y-shaped joints of the two short hydraulic cylinders are connected to the telescopic rod heads of the two short hydraulic cylinders.
  • the tail part of the short hydraulic cylinder is hinged with the cross beam of the locking system bracket through the short hydraulic cylinder hinge seat.
  • the climbing system includes a locking system b with the same structure as the locking system a.
  • Four I-beam pulleys b are connected to the upper parts of the four I-beam pulleys of the locking system b.
  • the beam pulley b matches the I-beam a and is used to move along the axis of the I-beam a;
  • Two long hydraulic cylinder hinge seats a are arranged on the side of the square steel a, and a long hydraulic cylinder hinge seat b is arranged on the side of the bracket beam of the locking system b.
  • the tail parts of the two long hydraulic cylinders are respectively connected with the two The long hydraulic cylinder hinge base b is connected.
  • the telescopic end heads of the two long hydraulic cylinders are respectively connected to the tail ends of the Y-shaped joints of the two long hydraulic cylinders.
  • the heads of the Y-shaped joints of the two long hydraulic cylinders are respectively connected to the long hydraulic cylinder hinge bases. a connection.
  • a sliding trolley is provided at the lower end of the tower connecting support beam
  • the two ends of the auxiliary moving beam are respectively connected to the sliding trolleys at the lower ends of the two opposite tower connecting support beams.
  • the sliding trolley is used to drive the auxiliary moving beam to move along the axis direction of the tower connecting supporting beam;
  • the two ends of the main moving beam are respectively connected to the sliding trolleys provided at the lower ends of the two opposite tower connecting support beams.
  • the sliding trolley is used to drive the main moving beam to move along the axis direction of the tower connecting supporting beam;
  • the lower end of the auxiliary moving beam and the upper end of the main moving beam are connected through a moving beam connecting mechanism.
  • the bracket part includes two rectangular steels arranged perpendicularly to each other, and the ends of the rectangular steels are used to fixedly connect the fixed part of the rotary drill;
  • the top steel plate of the bracket is fixed to the top of the bracket part by bolts.
  • the rotary drill fixed part includes a rotary drill bracket part and a rotary drill power part provided on the rotary drill bracket part;
  • the rotary drill bracket part includes a vertical steel frame, and above the vertical steel frame is A relatively thin door-shaped frame is used to support, stabilize and guide the auger drill head to move up and down.
  • a thicker door-shaped frame which is hingedly connected to the end of the rectangular steel; the upper end of the vertical steel frame is provided with pulley;
  • the power part of the rotary drill includes a winch arranged at the upper end of the vertical steel frame, a power transmission box and a guide slider slidably arranged on the vertical steel frame in sequence, and a speed reducer arranged at the lower end of the vertical steel frame.
  • the output end of the reducer is connected to a square transmission shaft, and the other end of the square transmission shaft is connected to the upper end of the vertical steel frame;
  • a motor is provided on the side of the reducer, and the output shaft of the motor is connected to The input shaft of the deceleration is connected;
  • the square transmission shaft is equipped with an inner square hole sprocket;
  • the inner square hole sprocket is an interference fit with the bearing in the small hole; the transmission shaft of the spiral drill bit and the large hole in the power transmission box are in interference fit. Bearing interference fit;
  • the wire rope of the winch crosses the pulley and is connected to the guide slider.
  • the winch is used to pull the guide slider to move up and down, thereby controlling the feeding and withdrawal of the auger bit.
  • the mobile chassis includes a crawler running part and an angle-changing system
  • the crawler running part includes a crawler power system and a lifting cylinder located between the crawler power system
  • the angle-changing system includes an angle-changing system base plate provided on the upper end of the lifting cylinder, a plurality of angle-changing oil cylinders evenly distributed on the upper end of the angle-changing system base plate, and a variable-angle system bearing steel plate provided on the upper end of the angle-changing oil cylinder. , located in the middle of multiple variable angle cylinders, a main bearing oil cylinder is provided between the bottom plate of the variable angle system and the bearing steel plate of the variable angle system.
  • the main load-bearing oil cylinder includes a main support frame centrally located on the bottom plate of the variable angle system.
  • An inclined support plate is provided around the upper part of the main support frame, and the lower end of the inclined support plate is fixed on the base plate. Describe the centers of the four sides of the base plate of the variable angle system;
  • the upper end of the main support frame is provided with a mounting hole for installing the main support servo hydraulic cylinder.
  • the cylinder body of the main support servo hydraulic cylinder is located inside the main support frame, and its telescopic end is located above the main support frame;
  • the telescopic end of the main support servo hydraulic cylinder is provided with a Y-shaped pin head, and the Y-shaped pin head is fixed to the lower end of the variable angle system bearing steel plate.
  • a diagonal support part is provided between the bracket part and the rotary drill fixing part, and the diagonal support part includes three sets of threaded diagonal rods;
  • One end of these three groups of threaded diagonal rods is hinged to the upper part of the bracket.
  • the other ends of the two groups of threaded diagonal rods located on both sides are hinged to the vertical steel frame.
  • the other end of the group of threaded diagonal rods located in the middle is connected to the vertical steel frame. Rectangular steel hinge.
  • the present invention at least has the following benefits:
  • the lifting part of the tower body of this device is a self-climbing lifting system fixed on the tower crane body. It makes full use of the tower body structure of the construction tower crane, but does not affect the existing tower crane work, improves resource utilization, and speeds up construction efficiency.
  • the connection structure of this device uses existing tower crane standard sections on the market, and can use the assembly principle of tower crane standard sections to expand the area of the hoisting area.
  • the device is an all-steel frame combination design with good stability, low cost, and strong combination and expansion capabilities.
  • the hoisting platform can be automatically lifted and lowered.
  • the structure of the hydraulic step-by-step lifting system is more stable and reliable, with a stronger load-bearing capacity, which can provide a basis for intelligent construction systems. platform.
  • the mobile beam connection mechanism is set up so that the main hoisting beam and the auxiliary hoisting beam can move together.
  • the hoisting platform surrounded by four support beams has good stability and strong load capacity, forming a three-dimensional space for the building area. coverage.
  • the auxiliary moving beam can be controlled to drive the main moving beam to move along the axis of the main moving beam. Initially, both ends of the main moving beam extend a certain distance using standard sections. After the main moving beam moves, one end can extend two times the initial distance, the hoisting trolley can move outside the area surrounded by the hoisting platform to carry out hoisting, solving the problem that engineering vehicles cannot enter the construction area to load and unload goods.
  • the traditional pouring tower crane base cannot be taken out after use and can only be buried underground and discarded.
  • This device changes the traditional pouring tower crane base into a removable and recyclable tower crane base, which is suitable for the use of tower cranes in mid- and high-rise residential buildings. Recycling reduces the cost of pouring piles in advance without causing large-scale damage to the ground.
  • the all-steel structure is simple and reliable, with low manufacturing cost; the threaded adjustment legs at the bottom ensure the level of the base, and large-span rotary excavation is used to fix it deep into the ground to increase the stability of the base.
  • Each rotary drill part works independently, which reduces the possibility of simultaneous failure of four rotary drills in the device and renders it unusable.
  • variable-angle mobile base can move short distances under load and has a wider hoisting range; the servo cylinder variable-angle system ensures the horizontal stability of the tower crane base and can still ensure the stability of the tower crane in complex terrain, slopes and other environments. Stable build.
  • the state is: when driving on a horizontal slope, the lifting cylinders of the front and rear crawler walking parts have the same lifting height to ensure that the bearing steel plate of the upper variable angle system remains horizontal, thereby keeping the fixed part of the rotary drill horizontal; when driving into a slope, the lifting cylinder of the crawler running part in the front is lowered, and the lifting cylinder of the crawler running part in the rear is raised.
  • variable angle system is controlled to adjust the angle, which also ensures that the load-bearing steel plate of the upper variable angle system remains level; thereby ensuring that the entire Stability of the device when moving uphill.
  • the entire device completes a step-by-step process of climbing up the steps.
  • Figure 1 is the overall axial view of the hoisting platform
  • Figure 2 is a structural diagram of the mobile tower crane base
  • Figure 3 is a structural diagram of the tower connection support beam connection
  • Figure 4 is a structural diagram of the tower crane body
  • Figure 5 is a structural diagram of the connection structure of the standard section at the end of the support beam
  • Figure 6 is a structural diagram of the self-climbing lifting system
  • Figure 7 shows the internal details of the self-climbing lifting system
  • Figure 8 is a structural diagram of the locking system
  • FIG. 9 shows the internal details of the locking system
  • Figure 10 is the structural diagram of the climbing system
  • Figure 11 is a structural diagram of the I-beam standard bracket
  • Figure 12 is a structural diagram of the locking system bracket
  • Figure 13 is a structural diagram of the locking push rod
  • Figure 14 is a structural diagram of the standard section at the end of the support beam
  • Figure 15 is a structural diagram of the standard section in the middle of the support beam
  • Figure 16 is a structural diagram of sliding car a
  • Figure 17 is the structural diagram of the standard section of the auxiliary moving beam
  • Figure 18 is a structural diagram of the moving beam connection mechanism
  • Figure 19 is the structural diagram of sliding car b
  • Figure 20 is a structural diagram of the connection between the main moving beam and the auxiliary moving beam
  • Figure 21 is a structural diagram of the standard section at the end of the main moving beam
  • Figure 22 is a structural diagram of the connection between the main moving beam and the sliding car
  • Figure 23 is the structural diagram of the hoisting trolley
  • Figure 24 is the overall structure diagram of the bearing platform
  • Figure 25 is a detailed view of the bearing platform structure
  • Figure 26 is a partial structural diagram of the bracket
  • Figure 27 is a detailed view of the bracket
  • Figure 28 is a structural diagram of the cable-stayed reinforcement part
  • Figure 29 is a structural diagram of a threaded diagonal tie rod
  • Figure 30 is a partial structural diagram of the rotary drill
  • Figure 31 is a structural diagram of the power part of the rotary drill
  • Figure 32 is a detailed view of the power transmission part of the rotary drill
  • Figure 33 is a structural diagram of the guide slider
  • Figure 34 is the structural diagram of the power transmission box
  • Figure 35 is a structural diagram of a conventional tower crane base
  • Figure 36 is a structural diagram of the variable angle bearing system
  • Figure 37 is a structural diagram of the variable angle cylinder
  • Figure 38 is the structural diagram of the variable angle load-bearing cylinder
  • Figure 39 is a structural diagram of the walking track
  • Figure 40 is the logic block diagram of the climbing structure
  • Figure 41 is a schematic diagram of the connection between the middle and end standard sections of the support beam.
  • 2000a-Tower body connection support beam a 2000b-Tower body connection support beam b, 2000c-Tower body connection support beam c, 2000d-Tower body connection support beam d;
  • the multi-tower linkage aerial hoisting platform provided by the present invention is shown in Figure 1-41.
  • the tower body lifting part 1000 is a self-climbing lifting system fixed on the tower crane body. By using the standard section tower body as a support, a hydraulic cylinder is used as a support.
  • the lifting power combined with the pneumatic locking mechanism, can automatically complete the lifting movement along the tower body.
  • the four tower lifting parts 1000a, 1000b, 1000c, and 1000d are fixedly placed on the outer periphery of the building and form a rectangular shape. Their automatic climbing mechanism can drive the hoisting platform surrounded by the tower connecting support beams 2000 to move up and down synchronously to realize the hoisting platform. Overall lifting work.
  • the two ends of the tower connecting support beam 2000 are connected to the tower lifting part 1000 through multiple hinge seats, which are used to connect two adjacent tower lifting parts 1000, stabilize the tower, and simultaneously hold the main moving beam 4000 and the auxiliary moving beam 3000.
  • the tower lifting part 1000 is a self-climbing lifting system fixed on the tower crane body.
  • the steel wire winch can pull the sliding trolley to move along the tower connection support beam 2000.
  • the tower connection support beam 2000 includes: the tower connection support beam a2000a, connected between the tower lifting part a1000a and the tower lifting part d1000d; the tower connection support beam b2000b, connected between the tower lifting part a1000a and the tower lifting part between parts b1000b; the tower connecting support beam c2000c is connected between the tower lifting part b1000b and the tower lifting part c1000c; the tower connecting support beam d2000d is connected between the tower lifting part c1000c and the tower lifting part d1000d ; Both ends of the auxiliary moving beam 3000 are respectively fixed under the sliding trolley of the tower connecting support beam b2000b and the tower connecting supporting beam d2000d.
  • the sliding trolley can drive the auxiliary moving beam 3000 along the tower connecting support beam b2000b and the tower connecting support.
  • the axis direction of beam d2000d moves.
  • Both ends of the main moving beam 4000 are respectively fixed under the sliding trolley of the tower connecting support beam a2000a and the tower connecting supporting beam c2000c.
  • the sliding trolley can drive the main moving beam 4000 along the tower connecting supporting beam a2000a and the tower connecting supporting beam.
  • the axis direction of c2000c moves.
  • the auxiliary moving beam 3000 and the main moving beam 4000 are relatively vertical. I-beams are installed below the auxiliary moving beam 3000 and above the main moving beam 4000. The two are connected through the moving beam connection mechanism 3200.
  • the specific structure of the moving beam connection mechanism 3200 is as shown in the figure. As shown in 18; when the two-way cylinder is extended, the lower part of the moving beam connecting mechanism 3200 cooperates with the I-beam above the main moving beam 4000 through the I-beam pulley; the upper part of the moving beam connecting mechanism 3200 cooperates with the auxiliary moving beam through the I-beam pulley.
  • the auxiliary movable beam 3000 can move along the axis of the main movable beam 4000.
  • the auxiliary movable beam 3000 moves synchronously with the lifting trolley of the main movable beam 4000, it can move on the bearing of the main movable beam 4000.
  • Provide support at the loading position improve the load-bearing capacity of the main moving beam 4000, and increase stability and hoisting capacity.
  • the two-way hydraulic cylinder at the end of the control I-beam pulley C2303 extends, the brake is released, the two-way hydraulic cylinder retracts, and the moving beam connecting mechanism 3200 and the I-beam lock above the main moving beam 4000
  • the upper part of the movable beam connection mechanism 3200 is matched with the I-beam below the auxiliary movable beam 3000 through a fixed I-beam pulley.
  • the auxiliary movable beam 3000 can move a certain distance along the axis of the main movable beam 4000, while ensuring the main movement.
  • the two-way cylinder at the end of the I-beam pulley C2303 is controlled to retract, the brake is locked, the main moving beam 4000 is stuck and fixed, and the hoisting trolley below it can move to the square area. Hoisting goods outside solves the problem that engineering vehicles cannot enter the construction area to load and unload goods.
  • the specific logical relationship of the above structure is as follows:
  • the tower lifting part 1000 includes a tower crane body 1100 and a self-climbing lifting system 1200 installed on the tower crane body 1100; the four tower crane bodies 1100 are the tower bodies of the tower cranes at the construction site and are fixedly installed at the four corners of the building. The outer perimeter of the square area is used as the load-bearing support of the hoisting platform.
  • the I-beam standard bracket 1201 of the self-climbing lifting system 1200 is fixedly connected through the connecting bolts of the tower crane standard section.
  • the self-climbing lifting system 1200 can climb and descend step by step along the tower crane body 1100, driving the tower connecting support beam 2000 to rise and fall. Then the lifting platform is raised and lowered according to the height of the construction building.
  • the self-climbing lifting system 1200 includes an I-beam standard bracket 1201, an I-beam a1202, a steel plate 1203, a hinge base 1204, a locking system a1210, and a climbing system 1220; the logical relationship between the above components is as follows:
  • the structure of the I-beam standard bracket 1201 is shown in Figure 11. It is a ladder steel frame welded by high-strength beams and two I-beams. Bolt holes are welded at both ends of the beams on the lower bottom of the two I-beams. Through the tower crane The bolts between the standard sections of the body 1100 are fixedly connected to the tower crane body 1100. The cross beam between the two I-beams is used to reinforce the I-beam standard bracket 1201.
  • the locking push rods of the locking system a1210 and the locking system b1221 The slot on the top can catch the crossbeam and is used to fix the locking system a1210 and the locking system b1221 to the I-beam standard bracket 1201, and then the locking system a1210, the locking system b1221 and the climbing system 1220 cooperate to complete the self-climbing Lifting system 1200 lifting actions.
  • Multiple I-beam standard brackets 1201 can be spliced and installed along the side of the tower crane body 1100. According to the construction requirements, the height of the I-beam standard bracket can be increased to improve the entire hoisting platform.
  • I-beam a1202 is an I-beam track composed of two high-strength I-beam steels. The two are welded and fixed by square steel a1223a and square steel b1223b to form a whole.
  • the combined I-beam track and four I-beam pulleys When matched with b1222, I-beam a1202 can only move along its axis; steel plate 1203 is a high-strength steel plate, the lower part of the lower surface is fixed to the upper surface of I-beam a1202 by welding, and the upper part of the lower surface is fixed by bolts
  • On the upper part of the four I-beam pulleys a1211 when the I-beam a1202 moves along its axis, it drives the steel plate 1203 to move up and down, which in turn drives the locking system a1210 to move up and down.
  • the hinge seat 1204 includes a plurality of hinge supports, which are fixed to the upper surface of the steel plate 1203 through bolts.
  • the specific structure is shown in Figure 6.
  • the lower three are used to hinge and fix the standard section 2100 at the end of the support beam, and the upper two hinge supports are with One end of the steel wire rope is connected, and the other end of the steel wire rope is connected to the upper anchor point of the standard section 2200 in the middle of the support beam.
  • the tower body is connected to the support beam 2000 by diagonally pulling the steel wire rope.
  • Locking system a1210 includes I-beam pulley a1211, rotating shaft a1212a, rotating shaft b1212b, locking system bracket 1213, short hydraulic cylinder Y-type joint 1214, short hydraulic cylinder 1215, locking push rod a1216a, locking push rod b1216b, Short hydraulic cylinder hinge seat 1217, support bearing 1218; the specific logical relationship of the above components is as follows:
  • the structure of the locking system bracket 1213 is shown in Figure 8. It is a square frame just welded by high strength to support and carry the locking system a1210; the four I-beam pulleys a1211 are fixed on the locking system according to the structure shown in Figure 8. At the four corners of the system bracket 1213, the four I-beam pulleys a1211 match the I-beam rails of the I-beam standard bracket 1201. The locking system bracket 1213 can only go up and down along the I-beam rails of the I-beam standard bracket 1201. move.
  • Four support bearings 1218 are fixed at the four corners of the locking system bracket 1213 and are used to support and constrain the rotation axis a1212a and the rotation axis b1212b; the structures of the rotation axis a1212a and the rotation axis b1212b are as shown in Figure 9, with interference at both ends. It is connected with the inner holes of the four support bearings 1218; the structure is shown in Figure 8, and the two inner ends are matched through keyways.
  • the heads are connected; the head pin holes of the Y-type joints 1214 of the two short hydraulic cylinders are connected to the two connecting rods of the rotation axis a1212a through the pin shaft, and the tail parts of the Y-type joints 1214 of the two short hydraulic cylinders are connected to the two short hydraulic cylinders 1215
  • the telescopic rod head is threaded; the tail of the short hydraulic cylinder 1215 is hinged with the cross beam of the locking system bracket 1213 through the short hydraulic cylinder hinge seat 1217;
  • the specific working principle of the locking system a1210 is as follows: when the telescopic ends of the two short hydraulic cylinders 1215 extend and push the two connecting rods of the rotating shaft a1212a to rotate, the rotating shaft a1212a is driven to rotate around the axis, which in turn drives the locking push rod a1216a The special-shaped piece at one end rotates 90 degrees around the axis of the rotation axis a1212a.
  • the special-shaped piece pulls the locking push rod a1216a, and the middle link of the locking push rod b1216b moves, driving the special-shaped piece at the other end to rotate 90 degrees around the rotation axis b1212b, locking
  • the special-shaped parts at both ends of the push rod a1216a and the locking push rod b1216b are respectively provided with openings. After rotating 90 degrees, the openings can catch the cross beam between the two I-beams of the I-beam standard bracket 1201 to achieve fixed locking.
  • the locking system a1210 is fixedly connected to the I-beam standard bracket 1201, and the self-climbing lifting system 1200 is fixedly connected to the tower crane body 1100 to prevent the locking system a1210 and the steel plate 1203 fixed to it from falling. If the locking system is disconnected from the I-beam standard bracket 1201, control the telescopic rods of the two short hydraulic cylinders 1215 to retract, pull the locking push rod of the locking system b1221 to reversely rotate 90 degrees, and release the I-beam standard bracket. The cross beam of the bracket 1201 can be detached.
  • Climbing system 1220 includes locking system b1221, I-beam pulley b1222, square steel a1223a, square steel b1223b, long hydraulic cylinder hinge seat a1224, long hydraulic cylinder Y-type joint 1225, long hydraulic cylinder 1226, long hydraulic cylinder hinge seat b1227;
  • the logical relationship between each component is as follows:
  • the structure of the locking system b1221 is the same as that of the locking system a1210, and the working principle is the same: when the telescopic ends of the two short hydraulic cylinders extend and push the two connecting rods of the rotating shaft to rotate, the rotating shaft is driven to rotate around the axis, which in turn drives the lock.
  • the special-shaped piece at one end of the thrust rod rotates 90 degrees around the axis of the rotation axis.
  • the special-shaped piece pulls the locking push rod, and the middle connecting rod of the locking push rod moves, driving the special-shaped piece at the other end to rotate 90 degrees around the rotation axis, locking
  • the special-shaped parts at both ends of the push rod and the locking push rod are respectively provided with openings.
  • the opening can catch the cross beam between the two I-beams of the I-beam standard bracket 1201 to achieve fixed locking.
  • the locking system is fixedly connected to the I-beam standard bracket 1201, and the self-climbing lifting system 1200 is fixedly connected to the tower crane body 1100 to prevent the locking system and the steel plate fixed to it from falling.
  • the locking system b1221 can only move axially along the two I-beam rails of the I-beam standard bracket 1201, and can be fixedly connected to the I-beam standard bracket 1201 through the above locking principle.
  • the four I-beam pulleys b1222 are fixedly connected to the upper parts of the four I-beam pulleys of the locking system b1221 according to the structure shown in Figure 10.
  • the four I-beam pulleys b1222 match the I-beam a1202 and can only be used along the I-beam.
  • the axis of steel a1202 moves; square steel a1223a, square steel b1223b and two I-beams a1202 are welded and fixed into a whole; two long hydraulic cylinder hinge seats a1224 are fixed to the side of square steel a1223a through bolts, and two long hydraulic cylinder hinge seats b1227 is fixed to the side of the bracket beam of the locking system b1221 through bolts; the tail parts of the two long hydraulic cylinders 1226 are connected to the two long hydraulic cylinder hinge seats b1227 through pins, and the telescopic ends of the two long hydraulic cylinders 1226 They are threadedly connected to the tail portions of the two long hydraulic cylinder Y-shaped joints 1225, and the heads of the two long hydraulic cylinder Y-shaped joints 1225 are respectively connected to the long hydraulic cylinder hinge base a1224
  • the working principle of the self-climbing lifting system 1200 is as follows:
  • the locking system b1221 moves relative to the I-beam a1202 through the I-beam pulley b1222, and the two long hydraulic cylinders 1226 telescopic rods are fully extended.
  • the locking system a1210 reaches the highest climbing position and is fixedly connected to the I-beam standard bracket 1201 through the locking push rod; the self-climbing lifting system 1200 rises to the height of a standard section and is connected to the I-beam standard bracket. 1201 fixed connection.
  • the short hydraulic cylinder is controlled to pull the locking push rod of the locking system b1221 to reversely rotate 90 degrees.
  • 2Descent process control the short hydraulic cylinder to pull the locking push rod of the locking system b1221 and rotate it 90 degrees in the opposite direction, loosen the beam of the I-beam standard bracket 1201, and fully extend the telescopic rods of the two long hydraulic cylinders 1226 to push the locking System b1221 moves downward, and the I-beam pulley b1222 fixed to the locking system b1221 moves downward along the I-beam a1202.
  • the locking system b1221 connects to the I-beam standard bracket 1201 through the locking push rod.
  • the crossbeam is stuck to achieve a fixed connection; further, control the short hydraulic cylinder 1215 to pull the locking push rod a1216a of the locking system a1210 to reversely rotate 90 degrees, loosen the crossbeam of the I-beam standard bracket 1201, and the locking system a1210 and The I-beam standard bracket 1201 is detached; when the telescopic rods of the two long hydraulic cylinders 1226 are controlled to retract, the two I-beam a1202 can be pulled to move downward, which in turn drives the steel plate 1203 fixed to it and the locking system a1210 to move downward.
  • the locking system b1221 moves relative to the I-beam a1202 through the I-beam pulley b1222.
  • the locking system a1210 When the two long hydraulic cylinders 1226 telescopic rods are fully retracted, the locking system a1210 is lowered to the lowest position. Through the locking push rod and the I-beam standard Bracket 1201 is fixedly connected.
  • the self-climbing lifting system 1200 lowers the height of one standard section and is fixedly connected to the I-beam standard bracket 1201. When continuing to lower the height, repeat the above actions to descend step by step along the tower body. After descending to the designated position, the locking system a1210 and the locking system b1221 are fixedly connected to the I-beam standard bracket 1201 through the locking push rod to ensure the stability of the hoisting platform and the tower structure.
  • the two ends of the tower connecting support beam 2000 are connected to the tower lifting part 1000 through three hinged seats, which are used to connect two adjacent tower lifting parts 1000, stabilize the tower, and simultaneously hold the main moving beam 4000 and the auxiliary moving beam 3000.
  • Wire winches are installed on the standard sections at both ends of each tower connection support beam 2000.
  • the tower connection support beam 2000 includes: the tower connection support beam a2000a, connected between the tower lifting part a1000a and the tower lifting part d1000d; the tower connection support beam b2000b, connected between the tower lifting part a1000a and the tower lifting part between parts b1000b; the tower connecting support beam c2000c is connected between the tower lifting part b1000b and the tower lifting part c1000c; the tower connecting support beam d2000d is connected between the tower lifting part c1000c and the tower lifting part d1000d .
  • the support beam end standard section 2100 includes a winch a2101 and an end standard section 2102; one end of the end standard section 2102 is fixedly connected to the self-climbing lifting system 1200 through three hinged seats 1204.
  • the winch a2101 is fixed above the end standard section 2102 according to the structure shown in Figure 14, and can pull the sliding trolley a2300 to move along the axis of the tower connecting support beam 2000 through the steel wire rope.
  • the structure of the middle standard section 2200 of the support beam is shown in Figure 15 and Figure 41.
  • One end is fixedly connected to the end standard section 2100 of the support beam, and the other end is connected to the middle standard section 2200 of other support beams. According to the distance between the lifting parts 1000 of the two towers distance, multiple central standard sections 2200 of the support beam can be connected. Changing the number of connections of the central standard section 2200 of the support beam can change the length of the tower connecting the support beam 2000.
  • the sliding trolley a2300 includes trolley wheels 2301, trolley brackets 2302, and I-beam pulleys c2303; according to the structure shown in Figure 16, the trolley wheels 2301 are installed on both sides of the trolley bracket 2302, and are connected to the tower body with the I-beam track at the bottom of the support beam 2000.
  • the sliding trolley a2300 can move along the axis of the tower connection support beam 2000; the structure of the trolley bracket 2302 is shown in Figure 16, and a large rotating turntable is installed at the bottom to prevent the tower connection support beam 2000 on the opposite side from being
  • the moving distance of the sliding car a2300 is out of synchronization error or shaking, causing the auxiliary moving beam 3000 and the main moving beam 4000 to generate internal forces.
  • the rotating turntable can allow the auxiliary moving beam 3000 and the main moving beam 4000 to produce slight deformation and rotation;
  • the I-beam pulley C2303 is passed through the bolt Large rotating turntable fixedly installed on the trolley bracket 2302 below, and cooperates with the I-beam c4102 above the middle standard section 4100 of the main moving beam;
  • the end of the I-beam pulley c2303 is also equipped with a brake with the same structure as the moving beam connection mechanism 3200, and is equipped with a two-way cylinder installation block 3203, two-way The oil cylinder 3204, the brake block installation plate 3205, and the brake block 3206 components can block the main moving beam 4000 to prevent one end from moving away from the sliding trolley due to movement along the axis during the hoisting process; when the main moving beam 4000 needs to move axially, control
  • the two-way hydraulic cylinder at the end of the I-beam pulley c2303 extends, the brake is released, the two-way hydraulic cylinder
  • the auxiliary moving beam 3000 can move a certain distance along the axis of the main moving beam 4000, ensuring that one end of the main moving beam 4000 Without breaking away from the sliding car, the other end of the entire main moving beam 4000 extends a certain distance outside the square area surrounded by the tower connection support beam 2000; further, the end bidirectional oil cylinder of the I-beam pulley c2303 is controlled. After retracting and locking the brakes, the main moving beam 4000 is stuck and fixed.
  • the hoisting trolley under the main moving beam 4000 can move outside the square area to hoist goods, solving the problem that engineering vehicles cannot enter the construction area to load and unload goods.
  • the structure of the auxiliary movable beam 3000 is shown in Figure 20, including the auxiliary movable beam standard section 3100, the movable beam connection mechanism 3200, and the sliding trolley b3300;
  • the auxiliary movable beam standard section 3100 is composed of the auxiliary movable beam standard section steel frame 3101 and I-beam b3102 , the structure is shown in Figure 17.
  • the I-beam b3102 is welded and fixed above the standard section steel frame 3101 of the auxiliary moving beam.
  • the bottom I-beam of the standard section steel frame 3101 of the auxiliary moving beam is fixedly connected with the bottom bolt of the sliding trolley b3300.
  • the beam b3102 cooperates with the I-beam pulley e3202 of the moving beam connecting mechanism 3200.
  • the structure of the sliding trolley b3300 is the same as that of the sliding trolley a2300. It is under the tower connecting support beam b2000b and the tower connecting supporting beam d2000d respectively.
  • the winch can drive the auxiliary moving beam 3000 along the tower connecting supporting beam b2000b and the tower connecting supporting beam. d2000d axis movement.
  • the auxiliary movable beam standard sections 3100 can be combined end-to-end in pairs. The number of auxiliary movable beam standard sections 3100 can be changed according to construction requirements, thereby changing the length of the auxiliary movable beam 3000;
  • the moving beam connection mechanism 3200 includes an I-beam pulley d3201, an I-beam pulley e3202, a two-way cylinder installation block 3203, a two-way cylinder 3204, a brake block installation plate 3205, and a brake block 3206; the top of the I-beam pulley d3201 is connected to the I-beam pulley The top of e3202 is fixedly connected, and the two are vertical at 90 degrees. The structure is shown in Figure 18.
  • the I-beam pulley d3201 can move along the I-beam c4102 of the standard section 4100 in the middle of the main moving beam.
  • the I-beam pulley e3202 can move along The I-beam b3102 moves with the standard section 3100 of the moving beam.
  • the two-way cylinder mounting block 3203 is fixedly connected to the side of the I-beam pulley d3201.
  • the two-way cylinder 3204 is fixed to the side of the two-way cylinder mounting block 3203 through bolts.
  • the two brake block mounting plates 3205 are fixed to the two telescopic ends of the two-way cylinder 3204.
  • the two brake blocks 3206 are respectively fixed under the two brake block installation plates 3205.
  • the solenoid valve controls the inlet and outlet oil passage reversal of the two-way cylinder 3204.
  • both ends of the two-way cylinder 3204 are retracted, driving the two brake blocks 3206.
  • the brake block installation plates 3205 are close to each other.
  • the brake block 3206 installed on the brake block installation plate 3205 clamps the I-beam c4102 of the standard section 4100 in the middle of the main moving beam and is fixed with the main moving beam 4000; when the high-pressure oil is disconnected, the two-way Both ends of the oil cylinder 3204 extend to push the two brake block installation plates 3205 away from each other.
  • the brake block 3206 installed on the brake block installation plate 3205 releases the I-beam c4102 of the middle standard section 4100 of the main moving beam to achieve separation.
  • the two-way hydraulic cylinder at the end of the control I-beam pulley c2303 extends, the brake is released, the two-way hydraulic cylinder 3204 of the moving beam connection mechanism 3200 retracts, and the moving beam connection mechanism and the main moving beam 4000
  • the upper I-beam is locked and fixed; the upper part of the moving beam connection mechanism 3200 is matched with the I-beam below the auxiliary moving beam 3000 through a fixedly connected I-beam pulley, and the auxiliary moving beam 3000 can move along the axis of the main moving beam 4000
  • the other end of the entire main moving beam 4000 extends a certain distance outside the square area enclosed by the tower connection support beam 2000; further,
  • the two-way cylinder at the end of the I-beam pulley c2303 is controlled to retract, the brake is locked, the main moving beam 4
  • the auxiliary moving beam 3000 can move along the axis of the main moving beam 4000.
  • the auxiliary moving beam 3000 moves synchronously with the hoisting trolley of the main moving beam 4000, it can move on the main moving beam.
  • the load-bearing position of 4000 provides support, improves the load-bearing capacity of the main moving beam 4000, and increases stability and hoisting capacity.
  • the main moving beam 4000 includes a main moving beam middle standard section 4100, a main moving beam end standard section 4200, and a hoisting trolley 4300.
  • the main moving beam middle standard section 4100 is fixed at both ends of the main moving beam 4000.
  • the main moving beam middle standard section It is composed of steel frame 4101 and I-beam c4102.
  • the standard section steel frame 4101 in the middle of the main moving beam plays the role of load-bearing and support.
  • the I-beam c4102 is fixed above the standard section steel frame 4101 in the middle of the main moving beam, and is connected with the I-beam pulley.
  • the d3201 and I-beam pulley c2303 cooperate to transfer the load of the middle standard section 4100 of the main moving beam to the auxiliary moving beam 3000 and the tower connecting support beam 2000; the middle standard section 4100 of the main moving beam can be connected in pairs end-to-end, according to the construction
  • the demand changes the number of middle standard sections 4100 of the main moving beam, thereby changing the length of the main moving beam; the end standard sections 4200 of the main moving beam are fixed at both ends of the main moving beam 4000, and are composed of the winch b4201 and the end standard section steel frame 4202 , the structure is shown in Figure 21.
  • the hoist b4201 is fixed above the standard section steel frame 4202 at the end of the main moving beam.
  • the hoist b4201 includes two independently controlled rope reels. It pulls the hoisting trolley 4300 to move through the wire rope and controls the hook 4303 at the same time. of lifting.
  • the lifting trolley 4300 includes a lifting trolley frame 4301, a pulley group 4302, and a hook 4303. The structure is shown in Figure 23.
  • the trolley frame 4301 can move along the main moving beam 4000, the pulley group 4302 is fixed on the trolley frame 4301, and the winch b4201 can
  • the hook 4303 is controlled to rise and fall across the pulley block 4302.
  • the hook 4303 is fixed to the wire rope for lifting heavy objects in the winch b4201 and is used for lifting heavy objects.
  • the bracket part 5000 serves as the main body to transmit the load of the upper tower crane to the ground through the bracket part 5000.
  • a rotary drill fixing part a7000a At the four corners of the bracket part 5000, there are respectively installed a rotary drill fixing part a7000a, a rotary drill fixing part b7000b, a rotary drill fixing part c7000c, and a rotary drill fixing part c7000c.
  • the fixed part d7000d and is fixedly connected to the bracket part 5000 through the cable-stayed support part a6000a, the cable-stayed support part b6000b, the cable-stayed support part c6000c, the cable-stayed support part d6000d and the bracket part 5000.
  • the rotary drill fixed part 7000 is driven into the ground with a spiral drill bit, and the entire The device is stable on the ground; the above parts are described in detail below:
  • the bracket part 5000 is composed of rectangular steel 5100, threaded adjustment legs 5300, and bracket top steel plate 5200.
  • the specific logical connection relationship is as follows:
  • Bracket part 5000 The specific structure of the bracket part 5000 is shown in Figure 26.
  • Two rectangular steels 5100 are perpendicular to each other below.
  • the ends of the rectangular steel 5100 are used to fixedly connect the rotary drill fixed part 7000.
  • the longer span ensures a good supporting moment and improves the Stability of the device; short square steels are welded and fixed at the four corners of the divided parts to form the base of the bracket part 5000.
  • Four short square steels are welded perpendicular to the base of the bracket part 5000 as columns, and the square steel is used to square the four columns.
  • the upper parts of the steel are welded and fixed in pairs to form a square frame above the bracket part 5000; at the same time, the upper square frame is diagonally welded and reinforced with square steel of appropriate length to form a three-dimensional steel structure bracket part 5000; the above square steels are all It is a high-strength special steel with good rigidity and ability to resist deformation, ensuring that the device has a stable basic structure.
  • the main body of the threaded adjustment leg 5300 is a threaded support rod.
  • the bottom of the support rod is equipped with a load-bearing steel plate 8232.
  • the steel plate is perpendicular to the support rod.
  • the steel plate increases the overall bearing capacity of the upper threaded leg 5300, making the device more stable; such as In the structure shown in Figure 25, mounting holes are opened in the square steel at the bottom four corners of the bracket part 5000, which are fixed above the variable angle system bearing steel plate 8232 through bolts; the steel plate 5200 at the top of the bracket is fixed to the top of the bracket part 5000 through bolts, and the top of the bracket is
  • the steel plate 5200 has a certain thickness and stiffness, and is provided with installation holes corresponding to the conventional tower crane base 1101 to facilitate the fixed installation of the tower crane base.
  • the diagonal support part 6000 is composed of short square steel 6100, a binaural hinged support 6200, and a threaded diagonal brace 6300.
  • the binaural hinged support 6200 includes a binaural hinged bearing a6200a, a binaural hinged bearing b6200b, and a binaural hinged support.
  • threaded diagonal tie rod 6300 includes threaded diagonal tie rod a6300a, threaded diagonal tie rod a6300a Rod b6300b, threaded diagonal rod c6300c, threaded diagonal rod d6300d; their logical relationships are described in detail below:
  • the cable-stayed support part 6000 includes a cable-stayed support part a6000a, a cable-stayed support part b6000b, a cable-stayed support part c6000c, and a cable-stayed support part d6000d, which are respectively located at both ends of the rectangular steel 5100 and are used to reinforce the bracket part 5000 and fix the connection screws.
  • the base of the double-ear hinged support d6200d is welded and fixed on the top of the rectangular steel 5100. There are two pin holes on the top of the double-ear hinged support 6200. Through the pins and the threaded diagonal tie rod 6300 The single-ear hinge base is hinged and used to reinforce and connect the bracket part 5000 and the rotary drill fixing part 7000.
  • the structure of the threaded diagonal tie rod 6300 is shown in Figure 29, including single-ear hinge seat a6301a, single-ear hinge seat b6301b, internal thread sleeve a6302a, internal thread sleeve b6302b, external thread rod 6303; single-ear hinge seat a6301a has a lock pin hole, the base part is fixedly connected to one end of the internally threaded sleeve a6302a.
  • the internally threaded sleeve a6302a is a steel hollow structure with a left-hand internal thread inside; the single-ear hinge seat b6301b has a lock pin hole, and the base part is connected to the internally threaded sleeve One end of b6302b is fixedly connected.
  • the internally threaded sleeve b6302b is a hollow steel structure with right-hand internal threads.
  • the externally threaded rod 6303 is a solid cylindrical steel rod with threads at both ends and a flat grinding port in the middle.
  • Both ends of the externally threaded rod 6303 are threaded.
  • the internal thread sleeve a6302a and the internal thread sleeve b6302b can be screwed in or out to realize the extension, relaxation or shortening function of the diagonal tie rod 6300; one end of the threaded diagonal tie rod a6300a is connected to the binaural hinged support a6200a through a lock pin.
  • the other end is connected to the binaural pin seat b7102b through a lock pin; one end of the threaded diagonal rod b6300b is connected to the binaural hinge support c6200c through a lock pin, and the other end is connected to the binaural pin seat a7102a through a lock pin; one end of the threaded diagonal rod c6300c It is connected to the binaural hinge support b6200b through a lock pin, and the other end is connected to the binaural pin seat d6200d through a lock pin; used to tighten the reinforcement bracket part 5000 and the rotary drill fixed part 7000.
  • the rotary drill fixed part 7000 includes a rotary drill support part 7100 and a rotary drill power part 7200; wherein, the rotary drill support part 7100 includes a vertical steel frame 7101, a double-ear pin seat a7102a, a double-ear pin seat b7102b, and a pulley 7103; the rotary drill power part Part 7200 includes reducer 7201, square drive shaft 7202, inner square hole sprocket 7203, motor 7204, auger bit 7205, guide slider 7206, power transmission box 7207, and winch 7208; the logical relationship of the above components is described in detail below:
  • the rotary drill fixed part 7000 includes a rotary drill fixed part a7000a, a rotary drill fixed part b7000b, a rotary drill fixed part c7000c, and a rotary drill fixed part d7000d, which are respectively fixed on the ends of the rectangular steel 5100 of the bracket part 5000 and drilled by the auger bit 7205. into the ground.
  • the auger bit 7205 can be freely combined and connected to lengthen according to the driving depth, and a longer auger bit can be driven into the ground to achieve fixation and stability of the device.
  • the rotary drill bracket part 7100 serves as the main bearing structure of the rotary drill fixed part, as shown in Figure 30.
  • the vertical steel frame 7101 structure is shown in Figure 32.
  • the upper part is a relatively thin door-shaped frame, which is used to support the stability and guide the spiral.
  • the drill bit 7205 moves up and down;
  • the lower part is a thicker door-shaped frame, which is connected to the end of the rectangular steel 5100 by hinges;
  • the double-ear pin seat a7102a and double-ear pin seat b7102b are welded and fixed to the lower part of the thicker door-shaped frame On the side, it has two pin holes.
  • One end of the threaded diagonal rod a6300a is connected to the binaural hinge support a6200a through a lock pin, and the other end is connected to the binaural pin seat b7102b through a lock pin; one end of the threaded diagonal rod b6300b is hinged to the binaural support.
  • the support c6200c is connected through a lock pin, and the other end is connected to the double ear pin seat a7102a through a lock pin.
  • the threaded diagonal tie rod a6300a and the threaded diagonal tie rod b6300b hinge and tighten the rotary drill fixed part 7000 and the bracket part 5000.
  • the pulley 7103 is fixed above the rotary drill bracket part 7100.
  • the wire rope of the winch 7208 crosses the pulley 7103 and is fixedly connected to the guide slider 7206.
  • the winch 7208 is used to pull the guide slider 7206 to move up and down, thereby controlling the feeding and withdrawal of the spiral drill bit 7205
  • the rotary drill power part 7200 consists of a reducer 7201, a square drive shaft 7202, an inner square hole sprocket 7203, and a motor 7204. It consists of a spiral drill bit 7205, a guide slider 7206, a power transmission box 7207, and a winch 7208; the reducer 7201 is a worm right-angle reducer, fixed at the bottom of the rotary drill bracket part 7100, and its output end is connected to the square transmission shaft 7202 to drive the square transmission
  • the shaft 7202 rotates synchronously; the motor 7204 is fixed to the side of the reducer 7201 through bolts, and its output shaft is connected with the input shaft keyway of the reducer 7201.
  • the motor 7204 transmits power to the reducer 7201, and then passes it to the square drive shaft after deceleration and distance increase. 7202;
  • the inner hole of the inner square hole sprocket 7203 is sleeved on the square transmission shaft 7202, and can rotate synchronously with the square transmission shaft 7202 and move up and down along the axis of the square transmission shaft 7202;
  • the structure of the power transmission box 7207 is shown in Figure 31, with two There is a groove at the end to match the relatively thin door-shaped frame of the vertical steel frame 7101, and it can move up and down along the vertical steel frame 7101.
  • the wheel 7203 has an interference fit with the bearing in the small hole.
  • the transmission shaft of the auger bit 7205 is fitted with a small sprocket through a keyway.
  • the small sprocket is located inside the power transmission box 7207, and the transmission shaft of the auger bit 7205 is in contact with the power transmission box 7207.
  • the bearing in the large hole has an interference fit, and the small sprocket of the spiral drill bit 7205 is connected through the inner square hole sprocket 7203 of the chain.
  • the power of the inner square hole sprocket 7203 is transmitted to the spiral drill bit 7205 through the chain, and then the power of the square drive shaft 7202 is transmitted to the spiral drill bit. 7205;
  • the structure of the guide slider 7206 is shown in Figure 33.
  • the inner hole of the inner square hole sprocket 7203 is sleeved on the square transmission shaft 7202, and can rotate synchronously with the square transmission shaft 7202 and move up and down along the axis of the square transmission shaft 7202.
  • the winch 7208 pulls the guide slider 7206 to move up and down and drives the spiral drill bit 7205 Moving up and down along the vertical steel frame 7101, the power transmission box 7207 moves up and down at the same time, but does not affect the square transmission shaft 7202 to transmit power to the auger bit 7205;
  • the rotary drill power part 7200 achieves the following functions: start the motor 7204 to rotate forward, and The power is transmitted to the reducer 7201, and then transmitted to the square transmission shaft 7202 after deceleration and lengthening; the inner square hole sprocket 7203 is used to drive the spiral drill bit 7205 to rotate; the winch 7208 is controlled to pull the guide slider 7206 to move up and down and drive the spiral drill bit 7205 along the vertical steel
  • the frame 7101 moves
  • the starter motor 7204 is reversed, and the auger bit 7205 is reversed.
  • the winch 7208 uses the wire rope to pull the guide slider 7206 to move upward, and the auger bit 7205 is withdrawn from the ground; the device is unfixed, and the tower crane base can be quickly dismantled.
  • variable platform angle mobile chassis 8000 Two identical variable platform angle mobile chassis 8000 are installed at the bottom of the rotary drill fixed part 7000; the variable platform angle mobile chassis 8000 is composed of a crawler walking part 8100 and a variable angle system 8200; among which, the crawler walking part 8100 includes a crawler track Power system 8101, lifting cylinder 8102; variable angle system 8200 includes variable angle cylinder 8210, main bearing cylinder 8220, variable angle system bottom plate 8231 and variable angle system bearing steel plate 8232.
  • the crawler walking part 8100 serves as the bottom support part of the entire device and uses hydraulic drive to travel.
  • the four crawler walking systems move together at the same time, and the hoisting platform can be moved at the same time.
  • the driving state when driving on a slope 9000, the driving state is: when driving on a horizontal slope, the lifting heights of the lifting cylinders 8102 of the front and rear crawler walking parts 8100 are the same to ensure that the upper variable angle system bearing steel plate 8232 remains horizontal. , thereby keeping the fixed part 7000 of the rotary drill horizontal; when driving into the slope, the lifting cylinder 8102 of the crawler running part 8100 in the front is lowered, and the lifting cylinder 8102 of the crawler running part 8100 in the rear is raised, and at the same time, the angle changing system 8200 is controlled to adjust Angle, also ensures that the upper bearing steel plate 8232 of the variable angle system remains horizontal; thereby ensuring the stability of the entire device when moving uphill.
  • the bottom plate 8231 of the variable angle system in the variable angle system 8200 is fixedly installed above the lifting cylinder 8102 of the crawler walking part 8100. When carrying the weight of the hoisting platform above, it can solve the problem of the lifting platform tilting due to uneven ground where the crawler walking part 8100 is located. .
  • the tail thread of the Y-shaped pin head a8211a is fixed to the bottom of the variable angle system load-bearing steel plate 8232 through bolts. Its Y-shaped opening is connected to the tail pin hole of the Y-shaped pin head b8211b through a pin.
  • the Y-shaped opening of the Y-shaped pin head b8211b The pin is connected to the head of the variable angle servo hydraulic cylinder 8212.
  • the tail thread of the Y-shaped pin head d8211d is fixed on the top of the variable angle system base plate 8231 through bolts. Its Y-shaped opening is connected to the tail of the Y-shaped pin head c8211c through the pin. Pin hole connection, the Y-shaped opening of the Y-shaped pin head c8211c is connected to the tail of the variable-angle servo hydraulic cylinder 8212 through the pin shaft.
  • the above four Y-shaped pin heads are hinged to ensure that the variable-angle servo hydraulic cylinder 8212 will not be affected by the telescopic action. Non-axial forces produce stress, causing damage to the hydraulic cylinder.
  • the main load-bearing cylinder a8220 is composed of an inclined support plate 8221, a main support frame 8222, a Y-shaped pin head e8223, a Y-shaped pin head f8224, and a main support servo hydraulic cylinder 8225; the main support frame 8222 is welded by a steel plate, and the lower part is welded and fixed to the variable angle system There is a mounting hole in the center and upper part of the bottom plate 8231 for fixed installation of the main support servo hydraulic cylinder 8225.
  • the cylinder body of the main support servo hydraulic cylinder 8225 is located inside the main support frame 8222, and its telescopic end is located above the main support frame 8222;
  • the tail pin hole of the Y-shaped pin head e8223 is connected to the telescopic end head of the supporting servo hydraulic cylinder 8225, and its Y-shaped opening is connected to the Y-shaped opening of the Y-shaped pin head f8224 through the pin shaft, and the tail thread of the Y-shaped pin head f8224 passes through
  • the bolts are fixed below the variable angle system bearing steel plate 8232;
  • the main support servo hydraulic cylinder 8225 is a large-tonnage oil cylinder, which mainly carries the load above the variable angle system bearing steel plate 8232.
  • An inclination sensor is provided above the variable angle system bearing steel plate 8232 for The angle between the bearing steel plate 8232 of the variable angle system and the horizontal plane is detected, and the signal is fed back to the device controller.
  • the hydraulic servo system is controlled by the controller.
  • the four variable angle servo hydraulic cylinders 8212 at the four corners are telescopic and cooperate with each other to adjust the variable angle system.
  • the inclination angle of the load-bearing steel plate 8232 to the horizontal plane ensures that the hoisting platform above is always in a vertical state; the four inclined support plates 8221 are welded by steel plates, and the two ends are welded and fixed to the four-side center and main support of the variable angle system base plate 8231.
  • bracket part 5000 When in use, use the crawler walking system to move to the designated hardened ground to ensure that the bracket part 5000 is in a horizontal state. Place a large-tonnage counterweight block in the internal space of the bracket part 5000 to reduce the center of gravity of the tower crane device and further improve the stability of the tower crane.
  • the barrel a6302a and the internal thread sleeve b6302b realize the elongation, relaxation or shortening function of the diagonal tie rod 6300; one end of the threaded diagonal tie rod a6300a is connected to the binaural hinge support a6200a through a lock pin, and the other end is connected to the binaural pin seat b7102b through Lock pin connection; one end of the threaded diagonal rod b6300b is connected to the binaural hinged support c6200c through a lock pin, and the other end is connected to the binaural pin seat a7102a through a lock pin; one end of the threaded diagonal rod c6300c is connected to the binaural hinged support b6200b through a lock Pin connection, the other end is connected to the double ear pin seat D6200d through a locking pin; used to tighten the reinforcement bracket part 5000 and the rotary drill fixing part 7000.
  • the starter motor 7204 transmits the power to the reducer 7201, and then to the square transmission shaft 7202 after deceleration and distance increase; the inner square hole sprocket 7203 is used to drive the spiral drill bit 7205 to rotate; the winch 7208 is controlled to pull the guide slider 7206 to move up and down.
  • the auger bit 7205 drills downward into the ground.
  • the winch 7208 uses the wire rope to pull the guide slider 7206 to move downward.
  • the auger bit 7205 continuously feeds and drills into the ground to achieve deep underground fixation and keep the device stable.
  • the starter motor 7204 is reversed, and the auger bit 7205 is reversed.
  • the winch 7208 uses the wire rope to pull the guide slider 7206 to move upward, and the auger bit 7205 is withdrawn from the ground; the device is unfixed, and the tower crane base can be quickly dismantled.
  • the conventional tower crane base 1101 is fixed above the steel plate 5200 on the top of the bracket through bolts.
  • the working principle of the self-climbing lifting system 1200 is as follows:
  • the tower lifting part 1000 is a self-climbing lifting system fixed on the tower crane body.
  • the standard section tower body as a support
  • using a hydraulic cylinder as a lifting power, and cooperating with a pneumatic locking mechanism it can automatically complete the lifting action along the tower body.
  • the four tower lifting parts are fixedly placed at the four corners of the building, forming a rectangle.
  • the climbing process In the initial state, when the locking system b1221 is fixedly connected to the I-beam standard bracket 1201 through the locking push rod, the short hydraulic cylinder is controlled to pull The locking push rod of the locking system a1210 rotates 90 degrees in the opposite direction to loosen the beam of the I-beam standard bracket 1201.
  • the locking system a1210 is separated from the I-beam standard bracket 1201; when the two long hydraulic cylinders 1226 telescopic rods extend , the lower length of I-beam a1202 is longer, which can push the two I-beam a1202 to move upward, thereby driving the steel plate 1203 fixed to it and the locking system a1210 to move upward.
  • the locking system b1221 connects to the I-beam through the I-beam pulley b1222 Steel a1202 moves relatively, and when the telescopic rods of the two long hydraulic cylinders 1226 are fully extended to the maximum position, the locking system a1210 reaches the highest climbing position and is fixedly connected to the I-beam standard bracket 1201 through the locking push rod; self-climbing lifting system 1200 Raise the height of one standard section and firmly connect it to the I-beam standard bracket 1201.
  • the short hydraulic cylinder is controlled to pull the locking push rod of the locking system b1221 to reversely rotate 90 degrees, loosen the beam of the I-beam standard bracket 1201, and the two long hydraulic cylinders 1226 telescopic rods are fully retracted, pulling the locking system b1221 moves upward, and the I-beam pulley b1222 fixed to the locking system b1221 moves upward along the I-beam a1202.
  • the locking system b1221 is stuck with the beam of the I-beam standard bracket 1201 through the locking push rod. to achieve a fixed connection; when continuing to climb upward, repeat the above actions to climb step by step along the tower crane body.
  • the locking system a1210 and the locking system b1221 are fixedly connected to the I-beam standard bracket 1201 through the locking push rod to ensure the stability of the hoisting platform and the tower structure.
  • Descent process control the short hydraulic cylinder to pull the locking push rod of the locking system b1221 and rotate it 90 degrees in the opposite direction, loosen the beam of the I-beam standard bracket 1201, and fully extend the telescopic rods of the two long hydraulic cylinders 1226 to push the locking system b1221 moves downward, and the I-beam pulley b1222 fixed to the locking system b1221 moves downward along the I-beam a1202.
  • the locking system b1221 connects with the I-beam standard bracket 1201 through the locking push rod.
  • the crossbeam is stuck to achieve a fixed connection; further, control the short hydraulic cylinder to pull the locking push rod of the locking system a1210 to reversely rotate 90 degrees, loosen the crossbeam of the I-beam standard bracket 1201, and the locking system a1210 and the I-beam
  • the standard bracket 1201 is detached; when the telescopic rods of the two long hydraulic cylinders 1226 are controlled to retract, the two I-beams a1202 can be pulled to move downward, which in turn drives the steel plate 1203 fixed to them and the locking system a1210 to move downward, and the locking system b1221 moves relative to the I-beam a1202 through the I-beam pulley b1222.
  • the locking system a1210 When the two long hydraulic cylinders 1226 telescopic rods are fully retracted, the locking system a1210 is lowered to the lowest position and is fixed to the I-beam standard bracket 1201 through the locking push rod. connect.
  • the self-climbing lifting system 1200 lowers the height of one standard section and is fixedly connected to the I-beam standard bracket 1201.
  • the locking system a1210 and the locking system b1221 After descending to the designated position, the locking system a1210 and the locking system b1221 are fixedly connected to the I-beam standard bracket 1201 through the locking push rod to ensure the stability of the hoisting platform and the tower structure.
  • the two ends of the tower connecting support beam 2000 are connected to the tower lifting part 1000 through three hinged seats, which are used to connect two adjacent tower lifting parts 1000, stabilize the tower, and simultaneously hold the main moving beam 4000 and the auxiliary moving beam 3000.
  • Wire winches are installed on the standard sections at both ends of each tower connecting support beam 2000.
  • the steel wire winch can pull the sliding trolley to move along the tower connecting support beam 2000; the tower connecting support beam 2000 includes: the tower connecting support beam 2000a, which is connected to the tower body.
  • the tower body connecting support beam 2000b is connected between the tower body lifting part 1000a and the tower body lifting part 1000b;
  • the tower body connecting support beam 2000c is connected to the tower body lifting part 1000b and the tower lifting part 1000c;
  • the tower connecting support beam 2000d is connected between the tower lifting part 1000c and the tower lifting part 1000d.
  • the auxiliary movable beam 3000 and the main movable beam 4000 are relatively vertical. I-beams are installed below the auxiliary movable beam 3000 and above the main movable beam 4000. The two are connected through the movable beam connection mechanism 3200.
  • the specific structure of the movable beam connection mechanism is shown in Figure 20 As shown; when the two-way cylinder is extended, the lower part of the moving beam connection mechanism 3200 cooperates with the I-beam above the main moving beam 4000 through an I-beam pulley; the upper part of the moving beam connection mechanism 3200 cooperates with the auxiliary moving beam through an I-beam pulley.
  • the auxiliary movable beam 3000 can move along the axis of the main movable beam 4000.
  • the auxiliary movable beam 3000 moves synchronously with the hoisting trolley of the main movable beam 4000, it can move at the load-bearing position of the main movable beam 4000.
  • the two-way hydraulic cylinder at the end of the control I-beam pulley C2303 extends, the brake is released, the two-way hydraulic cylinder retracts, and the moving beam connecting mechanism 3200 and the I-beam lock above the main moving beam 4000
  • the upper part of the movable beam connection mechanism 3200 is matched with the I-beam below the auxiliary movable beam 3000 through a fixed I-beam pulley.
  • the auxiliary movable beam 3000 can move a certain distance along the axis of the main movable beam 4000, while ensuring the main movement.
  • the other end of the entire main moving beam 4000 extends a certain distance outside the area enclosed by the tower connecting support beam 2000. Further, the I-beam pulley c2303 is controlled. The two-way hydraulic cylinder at the end is retracted, the brake is locked, and the main moving beam 4000 is stuck and fixed. The hoisting trolley below it can move outside the square area to hoist goods, solving the problem that engineering vehicles cannot enter the construction area to load and unload goods.
  • the crawler walking part 8100 serves as the bottom support part of the entire device and uses hydraulic drive to travel.
  • the crawler power system 8101 is a large crawler-type mobile chassis on the market, with strong load-bearing capacity and stability; the lifting cylinder 8102 can rotate under the load above, and the hydraulic servo changes the angle at the same time
  • the platform ensures that the tower body is always in a vertical state, ensuring that the upper hoisting platform can better adjust its relative position when moving or working, and preventing stress distortion of the hoisting platform due to uneven terrain; when driving on a slope of 9000, the driving state is: When driving on a horizontal slope, the lifting cylinders 8102 of the front and rear crawler walking parts 8100 have the same lifting height to ensure that the upper bearing steel plate 8232 of the variable angle system remains horizontal, thereby keeping the fixed part 7000 of the rotary drill horizontal; when driving onto a slope, The lifting cylinder 8102 of the crawler running part 8100 in the front is lowered, and the lifting cylinder 8102 of the crawler running part 8100 in the rear is raised.
  • variable angle system 8200 is controlled to adjust the angle, which also ensures that the upper variable angle system bearing steel plate 8232 remains level; thereby ensuring that the entire Stability of the device when moving uphill.
  • Part 8100 steps onto the steps, so that the entire device completes a step-by-step process of climbing up the steps.
  • the barrel a6302a and the internal thread sleeve b6302b realize the elongation, relaxation or shortening function of the diagonal tie rod 6300; the threaded diagonal tie rod a6300a One end of the threaded diagonal rod b6300b is connected to the binaural hinge support a6200a through a lock pin, and the other end is connected to the binaural pin seat b7102b through a lock pin; The pin seat a7102a is connected through a lock pin; one end of the threaded diagonal rod c6300c is connected to the binaural hinge support b6200b through a lock pin, and the other end is connected to the binaural pin seat d6200d through a lock pin; used to tighten the reinforcement bracket part 5000 and the rotary drill Fixed part 7000.
  • the starter motor 7204 rotates forward and transmits the power to the reducer 7201, and then transmits it to the square transmission shaft 7202 after deceleration and distance increase; the inner square hole sprocket 7203 is used to drive the spiral drill bit 7205 to rotate; the winch 7208 is controlled to pull the guide slider 7206 to move up and down.
  • the auger bit 7205 drives the auger bit 7205 to move up and down along the vertical steel frame 7101; when the fixed part 7000 of the auger is working, the auger bit 7205 drills downward into the ground, and the winch 7208 uses the wire rope to pull the guide slider 7206 to move downward, and the auger bit 7205 continues to advance. It is drilled into the ground to achieve deep underground fixation and keep the device stable.
  • the starter motor 7204 is reversed, and the auger bit 7205 is reversed.
  • the winch 7208 uses the wire rope to pull the guide slider 7206 to move upward, and the auger bit 7205 is withdrawn from the ground; the device is unfixed, and the tower crane base can be quickly dismantled.
  • the tower body of the hoisting platform is fixedly connected to the tower crane base 1101 through bolts, and a hoisting platform is built at a low place.
  • the conventional tower crane base 1101 is fixed above the steel plate 5200 on the top of the bracket through bolts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Jib Cranes (AREA)

Abstract

本发明公开了一种多塔联动式空中吊装平台,其特征在于,包括:四个塔体升降部分,分别设置于建筑物的外周围成矩形,包括塔吊塔体和可沿塔吊塔体逐级爬升下降的自爬升升降系统;四个塔体连接支撑梁,分别设置于两个相对的自爬升升降系统上,通过自爬升升降系统带动塔体连接支撑梁围成的吊装平台同步上下移动;四个移动式塔吊基座,分别设置于四个所述塔体升降部分下端,包括作为移动支撑且可变平台角度的移动底盘和设置于所述移动底盘上的支架部分,所述支架部分四角上分别设置有旋钻固定部分。配备有移动式塔吊基座平台,将传统的浇筑塔吊底座改为可移动和循环使用的塔吊底座,适用于中高层民房建筑中塔吊搭建的使用。

Description

一种多塔联动式空中吊装平台 技术领域
本发明涉及一种多塔联动式空中吊装平台,主要应用在工程建设,建筑施工领域。
背景技术
随着我国基建设施的快速发展,大量的建筑工事、房屋、写字楼等军民用建筑物需要快速建设。塔吊是建筑工地上最常用的一种起重设备,用来吊施工用的钢筋、木楞、混凝土、钢管等施工的原材料,是工地上一种必不可少的设备。常规塔吊由于其采用力臂平衡的方式,当起吊距离较远时,其吊装能力有限。随着我国经济水平的不断提高,绿色施工理念深入人心,人们对建筑物的建造品质、建造速度提出了较高的要求,尤其是装配式住宅的逐步发展,许多墙体、构件在工厂完成制作,到施工现场进行安全,而这些装配式墙体部件,其自重较大,传统塔吊在进行此类吊运、安装时逐渐显得力不从心,无法很好满足施工需求;因此需要吊装能力更大的吊装平台;同时,常规塔吊的塔体仅仅起到支撑和稳定吊臂的作用,除此之外,塔吊的塔体还可以扩展为升降电梯的支架、建造平台的支撑柱等,实现塔吊塔体的多功能利用,可以极大提高施工效率,并可以为未来的智能建造系统提供支撑平台,需要进行再次更新利用。
传统的塔吊底座是在土坑里用钢筋混凝土整体灌注而成,塔吊拆除换位置后,浇筑的混凝土塔吊底座遗留地下,给工程维护和土地再次利用带来不便,耗费人力物力,拖延工程进度,且产生大量建筑垃圾。目前也有装配式塔基支座,但其应用尚不广泛,同时遇到大面积群体性建筑工程时,通常会设置多个塔吊,但也会存在覆盖不到的施工区域。同时而许多大面积群体建筑的建造通常是分片区、分段建造,传统的塔吊底座无法移动,导致现场施工完的片区塔吊,在该部分工程施工完毕后,存在闲置或完全拆除情况,其周转率较低。与此同时,现有的塔吊只具备起吊功能,当材料达到指定高度后,进行水平移动,但其水平方向上无法提供有效水平推力或者安装平台,致使材料的运输、安装、施工效率较低。
发明内容
为了解决上述的技术问题,本发明的目的在于提供了一种多塔联动式空中吊装平台,在不影响常规塔吊工作的同时,塔体升降部分为固定于塔吊塔体的自爬升升降系统,通过利用标准节塔体作为支撑,以液压缸作为升降动力,配合气动锁止机构,能自动完成沿着塔体升降动作。四个塔体升降部分固定安置在建筑物的外周,围成矩形吊装平台的骨架,设置移动梁连接机构,使主吊装梁和副吊装梁能够配合移动,在增加主吊装梁承载能力的同时,不影响主吊装梁上的吊装小车在施工范围内的自由移动,四支撑梁围成的吊装平台具有较好的的稳定性和强大的荷载能力,四支撑梁可进行垂直和水平方向的运动,使得吊装平台能够立体覆盖建设区域,便于快速运输、砌筑、涂刷作业等多种工序的实施。同时,配备有移动式塔吊基座平台,将传统的浇筑塔吊底座改为可移动和循环使用的塔吊底座,适用于中高层民房建筑中塔吊搭建的使用,克服了传统的塔吊底座无法迁移的缺陷,节省大量建设资金和建筑资源,并减少建筑垃圾,节约工期,利于工期紧迫工程项目的实施。装置可应用于工地货运升降电梯底座的搭建,在不同地形位置,快速搭建出牢靠稳定的承载平台,同时支架上方的钢板具有多种扩展安装孔,可扩展为中型锚点支座,搭建钢索,应用于钢索跨度运输等。
为进一步实现上述目的,本发明采用以下技术方案:
一种多塔联动式空中吊装平台,包括:
四个塔体升降部分,分别设置于建筑物的外周围成矩形,包括塔吊塔体和可沿塔吊塔体逐级爬升下降的自爬升升降系统;
四个塔体连接支撑梁,分别设置于两个相对的自爬升升降系统上,通过自爬升升降系统带动塔体连接支撑梁围成的吊装平台同步上下移动;
副移动梁,滑动设置于两个相对的塔体连接支撑梁下方;
主移动梁,位于所述副移动梁下方并与其相对垂直,滑动设置于另外两个相对的塔体连接支撑梁下方,且两端延伸出四个塔体连接支撑梁围成的框体外,其下端滑动设置有吊装小车;
四个移动式塔吊基座,分别设置于四个所述塔体升降部分下端,包括作为移动支撑且可变平台角度的移动底盘和设置于所述移动底盘上的支架部分,所述支架部分四角上分别设置有旋钻固定部分。
可选的,所述自爬升升降系统包括多根沿着所述塔吊塔体侧面拼接安装的工字钢标准支架和设置于所述工字钢标准支架上的锁止系统a和爬升系统,
两根工字钢a之间通过方钢a和方钢b连接,且形成的工字钢轨道与所述爬升系统具有的四个工字钢滑轮b相配合;
钢板下部与所述工字钢a连接,所述钢板的上部与所述锁止系统a连接;
所述钢板上设置有多个铰接座,位于下部的三个铰接座用于铰接固定支撑梁端部标准节。
进一步的,所述锁止系统a包括锁止系统支架,所述锁止系统支架为通过高强度钢焊接成的方形框架,四个工字钢滑轮a设置于所述锁止系统支架的四角侧边位置,四个工字钢滑轮a与工字钢标准支架的工字钢轨道相配合;
四个支座轴承设置于锁止系统支架的四角底部,用于支撑和约束旋转轴a和旋转轴b;
所述旋转轴a和旋转轴b两端分别与四个支座轴承连接,靠内的两端分别与锁止推杆a、锁止推杆b连接,所述锁止推杆a、锁止推杆b两端具有的异形件分别开设有开口,所述开口用于卡住工字钢标准支架之间的横梁;
所述旋转轴a中部设置有两个连杆,两连杆与两个短液压缸Y型接头的头部连接,两个短液压缸Y型接头的尾部与两个短液压缸的伸缩杆头部连接,短液压缸的尾部通过短液压缸铰接座与所述锁止系统支架的横梁铰接。
进一步的,所述爬升系统包括与所述锁止系统a结构相同的锁止系统b,四个工字钢滑轮b与所述锁止系统b的四个工字钢滑轮上部连接,四个工字钢滑轮b与工字钢a相配合,用于沿着工字钢a的轴线移动;
两个长液压缸铰接座a设置于所述方钢a的侧面,长液压缸铰接座b设置于所述锁止系统b的支架横梁侧面,两个长液压缸的缸体尾部分别与两个长液压缸铰接座b连接,两个长液压缸的伸缩端头部分别与两个长液压缸Y型接头的尾部连接,两个长液压缸Y型接头的头部分别与长液压缸铰接座a连接。
可选的,所述塔体连接支撑梁下端设置有滑动小车;
所述副移动梁的两端分别与相对的两个塔体连接支撑梁下端具有的滑动小车连接,所述滑动小车用以带动副移动梁沿着塔体连接支撑梁轴线方向移动;
所述主移动梁的两端分别与相对的两个塔体连接支撑梁下端设置的滑动小车连接,所述滑动小车用以带动主移动梁沿着塔体连接支撑梁的轴线方向移动;
所述副移动梁的下端和主移动梁的上端通过移动梁连接机构连接。
可选的,所述支架部分包括相互垂直设置的两根长方钢,所述长方钢的端部用于固定连接旋钻固定部分;
两根长方钢上端设置有四根短方钢,再通过方钢将四根短方钢的上方两两固定,构成方形框架,在所述方形框架斜对角设置方钢用以加固;
支架顶部钢板通过螺栓固定于支架部分的顶部。
进一步的,所述旋钻固定部分包括旋钻支架部分和设置于所述旋钻支架部分上的旋钻动力部分;所述旋钻支架部分包括立式钢架,所述立式钢架上方为相对较细的门形框架,用于支撑稳定和导向螺旋钻头上下移动,下方为较粗的门形框架,通过铰接的方式与长方钢的端部连接;所述立式钢架上端设置有滑轮;
所述旋钻动力部分包括设置于所述立式钢架上端的卷扬机、依次滑动设置于所述立式钢架上的动力传递箱和导向滑块以及设置于所述立式钢架下端的减速机,所述减速机的输出端与方形传动轴连接,所述方形传动轴的另一端与所述立式钢架上端连接;所述减速机的侧面设置有电机,所述电机的输出轴与减速的输入轴连接;所述方形传动轴上套设有内方孔链轮;
所述动力传递箱中部间隔开设有一大一小两孔,孔内安装有轴承,所述内方孔链轮与小孔内的轴承过盈配合;螺旋钻头的传动轴与动力传递箱的大孔内的轴承过盈配合;
所述卷扬机的钢丝绳跨过滑轮与导向滑块连接,利用卷扬机拉动导向滑块上下移动,进而控制螺旋钻头的进给与退出。
可选的,所述移动底盘包括履带行走部分和变角度系统,所述履带行走部分包括履带动力系统和位于所述履带动力系统之间的提升油缸;
所述变角度系统包括设置于所述提升油缸上端的变角度系统底板、均布于所述变角度系统底板上端的多个变角度油缸、设置于所述变角度油缸上端的变角度系统承载钢板,位于多个变角度油缸中间在所述变角度系统底板和变角度系统承载钢板之间设置有主承载油缸。
可选的,所述主承载油缸包括居中设置于所述变角度系统底板上的主支撑架,在所述主支撑架的上部四周设置有斜支撑板,所述斜支撑板的下端固定在所述变角度系统底板的四边中心;
所述主支撑架上端开设有安装孔,用于安装主支撑伺服液压缸,所述主支撑伺服液压缸的缸体位于主支撑架的内部,其伸缩端位于主支撑架的上方;
所述主支撑伺服液压缸的伸缩端头部设置有Y形销头,所述Y形销头固定于变角度系统承载钢板下端。
进一步的,在所述支架部分和旋钻固定部分之间设置有斜拉支撑部分,所述斜拉支撑部分包括三组螺纹斜拉杆;
这三组螺纹斜拉杆的一端均与支架部分上部铰接,其中,位于两侧的这两组螺纹斜拉杆的另一端与立式钢架铰接,位于中间的这一组螺纹斜拉杆的另一端与长方钢铰接。
与现有技术相比,本发明至少具有以下效益:
①本装置塔体升降部分为固定于塔吊塔体的自爬升升降系统,充分利用施工塔吊的塔体结构,但不影响已有的塔吊工作,提高了资源利用,加快施工效率。本装置的连接结构使用市场上已有的塔吊标准节,能够利用塔吊标准节的组装原理扩大吊装区域的面积,装置全钢架组合设计,稳定性好,成本低,组合和扩展能力强。
②通过两个锁止系统和液压升降系统配合,自动升降吊装平台,相比于利用卷扬机控制平台升降,液压逐级升降系统的结构更加稳定可靠,承载能力更强,可为智能建造系统提供基础平台。
③设置的移动梁连接机构,使主吊装梁和副吊装梁能够配合移动,在增加主吊装梁 承载能力的同时,不影响主吊装梁上的吊装小车在施工范围内的自由移动,四支撑梁围成的吊装平台具有较好的稳定性和强大的荷载能力,形成对建筑区域的三维立体空间式覆盖。
④利用移动梁连接机构,可控制副移动梁带动主移动梁沿主移动梁轴线移动,初始时主移动梁两端利用标准节各伸出一段距离,主移动梁移动后,一端可伸出两倍的初始距离,吊装小车可移动到吊装平台围成的区域之外展开吊装,解决工程车辆无法进入施工区域时装卸货物的难题。
⑤传统的浇筑塔吊底座使用后无法取出,只能埋入地下作废,本装置将传统的浇筑塔吊底座改为可移动和循环使用的塔吊底座,适用于中高层民房建筑中塔吊搭建的使用,实现循环利用,降低提前浇筑沉桩的成本,且不会对地面造成大面积破坏。
⑥全钢结构简单可靠,制造成本低;底部螺纹调整支腿保证底座水平,采用大跨度旋挖深入地下固定的方式,增加底座的稳定性。各旋钻部分独立工作,降低装置四个旋钻同时故障而无法使用的情况。
⑦不仅适用于中高层塔吊底座的快速搭建,还可应用于工地货运升降电梯底座的搭建,在不同地形位置,快速搭建出牢靠稳定的承载平台,同时支架上方的钢板具有多种扩展安装孔,本装置还可扩展为中型锚点支座,搭建钢索,应用于钢索跨度运输等。
⑧变角度移动基座,能够在带负载情况下短距离移动,吊装范围更广;伺服油缸变角度系统,保证塔吊基座的水平稳定,在复杂地形、坡路等环境下依然能保证塔吊的稳定搭建。当在坡面的行驶状态为:当在水平坡面行驶时,前后两个履带行走部分的提升油缸提升高度相同,确保上方变角度系统承载钢板保持水平,进而使旋钻固定部分保持水平;当驶入坡面时,前方的履带行走部分的提升油缸降低,后方的履带行走部分的提升油缸升高,同时控制变角度系统调整角度,同样确保上方变角度系统承载钢板保持水平;进而确保了整个装置移动上坡时的稳定性。当遇到类似台阶地形时,可先提升后方履带行走部分的提升油缸,前进使前方履带行走部分进入台阶,进入后降低后方履带行走部分的提升油缸,再前进使后方履带行走部分步入台阶,至此使整个装置完成一个跨步式的攀上台阶过程。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为吊装平台整体轴视图;
图2为移动式塔吊底座结构图;
图3为塔体连接支撑梁连接结构图;
图4为塔吊塔体结构图;
图5为支撑梁端部标准节连接结构图;
图6为自爬升升降系统结构图;
图7为自爬升升降系统内部细节图;
图8为锁止系统结构图;
图9为锁止系统内部细节图;
图10为爬升系统结构图;
图11为工字钢标准支架结构图;
图12为锁止系统支架结构图;
图13为锁止推杆结构图;
图14为支撑梁端部标准节结构图;
图15为支撑梁中部标准节结构图;
图16为滑动小车a结构图;
图17为副移动梁标准节结构图;
图18为移动梁连接机构结构图;
图19为滑动小车b结构图;
图20为主移动梁和副移动梁连接结构图;
图21为主移动梁端部标准节结构图;
图22为主移动梁和滑动小车连接结构图;
图23为吊装小车结构图;
图24为承载平台整体结构图;
图25为承载平台结构细节图;
图26为支架部分结构图;
图27为支架部分细节图;
图28为斜拉加固部分结构图;
图29为螺纹斜拉杆结构图;
图30为旋钻部分结构图;
图31为旋钻动力部分结构图;
图32为旋钻部分动力传递细节图;
图33为导向滑块结构图;
图34为动力传递箱结构图;
图35为常规塔吊底座结构图;
图36为变角度承载系统结构图;
图37为变角度油缸按照结构图;
图38为变角度承载油缸结构图;
图39为行走履带结构图;
图40为爬坡结构逻辑框图;
图41为支撑梁中部与端部标准节连接示意图。
图中:
1000-塔体升降部分:
1000a-塔体升降部分a,1000b-塔体升降部分b,1000c-塔体升降部分c,1000d-塔体升降部分d;
1100-塔吊塔体,1101-塔吊底座;
1200-自爬升升降系统:
1201-工字钢标准支架,1202-工字钢a,1203-钢板,1204-铰接座;
1210-锁止系统a;
1211-工字钢滑轮a,1212a-旋转轴a,1212b-旋转轴b,1213-锁止系统支架,1214-短液压缸Y型接头,1215-短液压缸,1216a-锁止推杆a,1216b-锁止推杆b,1217-短液压缸铰接座,1218-支座轴承;
1220-爬升系统;
1221-锁止系统b,1222-工字钢滑轮b,1223a-方钢a,1223b-方钢b,1224-长液压缸铰接座a,1225-长液压缸Y型接头,1226-长液压缸,1227-长液压缸铰接座b;
2000-塔体连接支撑梁:
2000a-塔体连接支撑梁a,2000b-塔体连接支撑梁b,2000c-塔体连接支撑梁c,2000d-塔体连接支撑梁d;
2100-支撑梁端部标准节;
2101-卷扬机a,2102-端部标准节;
2200-支撑梁中部标准节;
2300-滑动小车a;
2301-小车轮子,2302-小车支架,2303-工字钢滑轮c;
3000-副移动梁:
3100-副移动梁标准节;
3101-副移动梁标准节钢架,3102-工字钢b;
3200-移动梁连接机构;
3201-工字钢滑轮d,3202-工字钢滑轮e,3203-双向油缸安装块,3204-双向油缸,3205-刹车块安装板,3206-刹车块;
3300-滑动小车b;
4000-主移动梁:
4100-主移动梁中间标准节;
4101-主移动梁中间标准节钢架,4102-工字钢c;
4200-主移动梁端部标准节;
4201-卷扬机b,4202-端部标准节钢架;
4300-吊装小车;
4301-吊装小车车架,4302-滑轮组,4303-吊钩;
5000-支架部分:
5100-长方钢;
5200-支架顶部钢板;
5300-螺纹调整支腿;
6000-斜拉支撑部分:
6000a-斜拉支撑部分a,6000b-斜拉支撑部分b,6000c-斜拉支撑部分c,6000d-斜拉支撑部分d;
6100-短方钢;
6200-双耳铰接支座;
6200a-双耳铰接支座a,6200b-双耳铰接支座b,6200c-双耳铰接支座c,6200d-双耳铰接支座d;
6300-螺纹斜拉杆;
6300a-螺纹斜拉杆a,6300b-螺纹斜拉杆b,6300c-螺纹斜拉杆c,6300d-螺纹斜拉杆d;
6301a-单耳铰接座a,6301b-单耳铰接座b,6302a-内螺纹套筒a,6302b-内螺纹套筒b,6303-外螺纹杆;
7000-旋钻固定部分:
7000a-旋钻固定部分a,7000b-旋钻固定部分b,7000c-旋钻固定部分c,7000d-旋钻固定部分d;
7100-旋钻支架部分;
7101-立式钢架,7102a-双耳销座a,7102b-双耳销座b,7103-滑轮;
7200-旋钻动力部分;
7201-减速机,7202-方形传动轴,7203-内方孔链轮,7204-电机,7205-螺旋钻头,7206-导向滑块,7207-动力传递箱,7208-卷扬机;
1101-常规塔吊底座:
8000-可变平台角度的移动底盘:
8100-履带行走部分;
8101-履带动力系统,8102-提升油缸;
8200-变角度系统;
8210-变角度油缸;
8211a-Y形销头a,8211b-Y形销头b,8211c-Y形销头c,8211d-Y形销头d,8212-变角度伺服液压缸;
8220-主承载油缸;
8221-斜支撑板,8222-主支撑架,8223-Y形销头e,8224-Y形销头f,8225-主支撑伺服液压缸;
8231-变角度系统底板,8232-变角度系统承载钢板;
9000-坡面。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施示例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
本发明提供的多塔联动式空中吊装平台,如图1-41所示,塔体升降部分1000为固定于塔吊塔体的自爬升升降系统,通过利用标准节塔体作为支撑,以液压缸作为升降动力,配合气动锁止机构,能自动完成沿着塔体升降动作。四个塔体升降部分1000a,1000b,1000c,1000d固定安置在建筑物的外周,围成矩形,其自动爬升机构可以带动塔体连接支撑梁2000围成的吊装平台同步上下移动,实现吊装平台的整体升降工作。塔体连接支撑梁2000的两端与塔体升降部分1000通过多个铰接座连接,用于连接两个相邻塔体升降部分1000,稳定塔体,同时为主移动梁4000和副移动梁3000提供滑动轨道和承载支撑的作用;塔体升降部分1000为固定于塔吊塔体的自爬升升降系统,通过利用标准节塔体作为支撑,以液压缸作为升降动力,配合气动锁止机构,能自动完成沿着塔体升降动作。每个塔体连接支撑梁2000的两端标准节上安装有钢丝绞盘,标准节下方都有滑动小车,具体结构如图3所示,钢丝绞盘可以拉动滑动小车沿着塔体连接支撑梁2000移动;塔体连接支撑梁2000包括:塔体连接支撑梁a2000a,连接在塔体升降部分a1000a和塔体升降部分d1000d之间;塔体连接支撑梁b2000b,连接在塔体升降部分a1000a和塔体升降部分b1000b之间;塔体连接支撑梁c2000c,连接在塔体升降部分b1000b和塔体升降部分c1000c之间;塔体连接支撑梁d2000d,连接在塔体升降部分c1000c和塔体升降部分d1000d之间;副移动梁3000的两端分别固定于塔体连接支撑梁b2000b和塔体连接支撑梁d2000d的滑动小车下方,滑动小车可以带动副移动梁3000沿着塔体连接支撑梁b2000b和塔体连接支撑梁d2000d的轴线方向移动。主移动梁4000的两端分别固定于塔体连接支撑梁a2000a和塔体连接支撑梁c2000c的滑动小车下方,滑动小车可以带动主移动梁4000沿着塔体连接支撑梁a2000a和塔体连接支撑梁c2000c的轴线方向移动。
副移动梁3000和主移动梁4000相对垂直,副移动梁3000的下方和主移动梁4000的上方安装有工字钢,二者通过移动梁连接机构3200连接,移动梁连接机构3200具体结构如图18所示;当双向气缸伸出时,移动梁连接机构3200的下方通过工字钢滑轮与主移动梁4000上方的工字钢配合;移动梁连接机构3200的上方通过工字钢滑轮与副移动梁3000下方的工字钢配合,副移动梁3000可以沿着主移动梁4000的轴线移动,当副移动梁3000随着主移动梁4000的吊装小车同步移动时,可以在主移动梁4000的承 载位置提供支撑力,提高主移动梁4000的承载能力,增加稳定性和吊装能力。主移动梁4000需要轴向移动时,控制工字钢滑轮c2303的端部双向油缸伸出,刹车松开,双向液压缸缩回,移动梁连接机构3200与主移动梁4000上方的工字钢锁止固定;移动梁连接机构3200的上方通过固定的工字钢滑轮与副移动梁3000下方的工字钢配合,副移动梁3000可以沿着主移动梁4000的轴线移动一定距离,在保证主移动梁4000的一端不脱离滑动小车的前提下,整根主移动梁4000的另一端向塔体连接支撑梁2000围成的面积之外外伸出一定距离,即四组塔体升降部分1000可根据建筑物形状进行相应的调整,进一步的,控制工字钢滑轮c2303的端部双向油缸缩回,刹车锁死,主移动梁4000被卡住固定,其下方的吊装小车可以移动到该正方形面积之外吊装货物,解决工程车辆无法进入施工区域时装卸货物的难题。上述结构具体逻辑关系如下:
塔体升降部分1000包括塔吊塔体1100和设置于塔吊塔体1100上的自爬升升降系统1200;四个塔吊塔体1100为施工现场塔吊的塔身,固定安置在建筑物的四角,四个塔吊围成正方形面积的外周,作为吊装平台的承载支撑。自爬升升降系统1200的工字钢标准支架1201通过塔吊标准节的连接螺栓相固定连接,自爬升升降系统1200可沿着塔吊塔体1100逐级爬升下降,带动塔体连接支撑梁2000上下升降,进而根据施工建筑物的高度升降吊装平台。自爬升升降系统1200包括工字钢标准支架1201,工字钢a1202,钢板1203,铰接座1204,锁止系统a1210,爬升系统1220;上述各元件逻辑关系如下:
工字钢标准支架1201结构如图11所示,通过高强度横梁和两根工字钢焊接而成的爬梯钢架,其中两工字钢下底面的横梁两端焊接有螺栓孔,通过塔吊塔体1100标准节之间的螺栓与塔吊塔体1100固定连接,其中两工字钢之间的横梁用于加固工字钢标准支架1201,同时锁止系统a1210和锁止系统b1221的锁止推杆上的卡槽可以卡住横梁,用于将锁止系统a1210,锁止系统b1221与工字钢标准支架1201固定,进而通过锁止系统a1210,锁止系统b1221,爬升系统1220相配合完成自爬升升降系统1200升降动作。多根工字钢标准支架1201可以沿着塔吊塔体1100的侧面拼接安装,根据施工建筑需求增加工字钢标准支架的高度,提高整个吊装平台。工字钢a1202为两根高强度工字钢组成的工字钢轨道,二者之间通过方钢a1223a和方钢b1223b焊接固定成为整体,组合成的工字钢轨道与四个工字钢滑轮b1222相配合,工字钢a1202仅可以沿着其轴线方向移动;钢板1203为一块高强度钢板,下表面的下部通过焊接的方式固定于工字钢a1202的上表面,下表面的上部通过螺栓固定于四个工字钢滑轮a1211的上部,当工字钢a1202沿着其轴线移动时,带动钢板1203上下移动,进而带动锁止系统a1210上下移动。铰接座1204包括多个铰接支座,通过螺栓固定于钢板1203的上表面,具体结构如图6所示,下部三个用于铰接固定支撑梁端部标准节2100,上部两个铰接支座与钢丝绳的一端连接,钢丝绳的另一端与支撑梁中部标准节2200的上部锚接点连接,通过钢丝绳斜拉的方式加固塔体连接支撑梁2000。
锁止系统a1210包括工字钢滑轮a1211,旋转轴a1212a,旋转轴b1212b,锁止系统支架1213,短液压缸Y型接头1214,短液压缸1215,锁止推杆a1216a,锁止推杆b1216b,短液压缸铰接座1217,支座轴承1218;上述各元件具体逻辑关系如下:
锁止系统支架1213结构如图8所示,通过高强度刚焊接成的方形框架,用于支撑和承载锁止系统a1210;四个工字钢滑轮a1211按照如图8所示结构固定于锁止系统支架1213的四角侧边位置,四个工字钢滑轮a1211与工字钢标准支架1201的工字钢轨道相配合,锁止系统支架1213仅可沿着工字钢标准支架1201的工字钢轨上下移动。四个支座轴承1218固定于锁止系统支架1213的四角底部,用于支撑和约束旋转轴a1212a和旋转轴b1212b;旋转轴a1212a和旋转轴b1212b结构如图9所示,两端分别通过过盈配合与四个支座轴承1218的内孔连接;如图8所示结构,靠内的两端通过键槽配合分 别与锁止推杆a1216a,锁止推杆b1216b的轴孔连接;旋转轴a1212a中部固定焊接有两个连杆,两连杆的销孔通过销轴与两个短液压缸Y型接头1214的头部连接;两个短液压缸Y型接头1214的头部销孔通过销轴与旋转轴a1212a的两个连杆连接,两个短液压缸Y型接头1214的尾部与两个短液压缸1215的伸缩杆头部螺纹连接;短液压缸1215的尾部通过短液压缸铰接座1217与锁止系统支架1213的横梁铰接;
锁止系统a1210具体工作原理如下:当两个短液压缸1215的伸缩端伸出,推动旋转轴a1212a的两个连杆旋转时,带动旋转轴a1212a绕轴线转动,进而带动锁止推杆a1216a的一端异形件绕旋转轴a1212a的轴线转动90度,该异形件拉动锁止推杆a1216a,锁止推杆b1216b的中部连杆移动,带动另一端异形件绕着旋转轴b1212b转动90度,锁止推杆a1216a和锁止推杆b1216b的两端异形件分别开设有开口,旋转90度后,该开口能卡住工字钢标准支架1201的两工字钢之间的横梁,实现固定锁止,进而将锁止系统a1210与工字钢标准支架1201固定连接,将自爬升升降系统1200与塔吊塔体1100固定连接,防止锁止系统a1210和与其固定的钢板1203下坠。若使锁止系统与工字钢标准支架1201脱离连接,控制两个短液压缸1215的伸缩杆缩回,拉动锁止系统b1221的锁止推杆反向旋转90度,松开工字钢标准支架1201的横梁,即可完成脱离。
爬升系统1220包括锁止系统b1221,工字钢滑轮b1222,方钢a1223a,方钢b1223b,长液压缸铰接座a1224,长液压缸Y型接头1225,长液压缸1226,长液压缸铰接座b1227;各元件逻辑关系如下:
锁止系统b1221结构与锁止系统a1210结构相同,工作原理相同:当两个短液压缸的伸缩端伸出,推动旋转轴的两个连杆旋转时,带动旋转轴绕轴线转动,进而带动锁止推杆的一端异形件绕旋转轴的轴线转动90度,该异形件拉动锁止推杆,锁止推杆的中部连杆移动,带动另一端异形件绕着旋转轴转动90度,锁止推杆和锁止推杆的两端异形件分别开设有开口,旋转90度后,该开口能卡住工字钢标准支架1201的两工字钢之间的横梁,实现固定锁止,进而将锁止系统与工字钢标准支架1201固定连接,将自爬升升降系统1200与塔吊塔体1100固定连接,防止锁止系统和与其固定的钢板下坠。锁止系统b1221仅可沿着工字钢标准支架1201的两工字钢轨道轴向移动,且可通过上述锁止原理与工字钢标准支架1201固定连接。四个工字钢滑轮b1222按照如图10所示结构与锁止系统b1221的四个工字钢滑轮上部固定连接,四个工字钢滑轮b1222与工字钢a1202相配合,仅可沿着工字钢a1202的轴线移动;方钢a1223a,方钢b1223b与两根工字钢a1202焊接固定成为整体;两个长液压缸铰接座a1224通过螺栓固定于方钢a1223a的侧面,两个长液压缸铰接座b1227通过螺栓固定于锁止系统b1221的支架横梁侧面;两个长液压缸1226的缸体尾部分别通过销轴与两个长液压缸铰接座b1227连接,两个长液压缸1226的伸缩端头部分别与两个长液压缸Y型接头1225的尾部螺纹连接,两个长液压缸Y型接头1225的头部通过销轴分别与长液压缸铰接座a1224连接;
自爬升升降系统1200工作原理如下:
①爬升过程:初始状态时,当锁止系统b1221通过锁止推杆与工字钢标准支架1201固定连接,控制短液压缸1215拉动锁止系统a1210的锁止推杆11216a反向旋转90度,松开工字钢标准支架1201的横梁,锁止系统a1210与工字钢标准支架1201脱离;两个长液压缸1226伸缩杆伸出时,工字钢a1202下部长度较长,可推动两根工字钢a1202向上移动,进而带动与之固定的钢板1203和锁止系统a1210向上移动,锁止系统b1221通过工字钢滑轮b1222与工字钢a1202相对移动,两个长液压缸1226伸缩杆完全伸出到最大位置时,锁止系统a1210到达爬升最高位置,通过锁止推杆与工字钢标准支架1201固定连接;自爬升升降系统1200升高一个标准节的高度,并与工字钢标准支架1201固定连接。进一步的,控制短液压缸拉动锁止系统b1221的锁止推杆反向旋转90度, 松开工字钢标准支架1201的横梁,两个长液压缸1226伸缩杆完全缩回,拉动锁止系统b1221向上移动,与锁止系统b1221相固定的工字钢滑轮b1222沿着工字钢a1202向上移动,移动到最大位置时,锁止系统b1221通过锁止推杆与工字钢标准支架1201的横梁卡住,实现固定连接;继续向上爬升时,重复上述动作即可沿着塔吊塔体逐级爬升。爬升到指定位置后,锁止系统a1210和锁止系统b1221同时通过锁止推杆与工字钢标准支架1201固定连接,保证吊装平台与塔体结构的稳定。
②下降过程:控制短液压缸拉动锁止系统b1221的锁止推杆反向旋转90度,松开工字钢标准支架1201的横梁,两个长液压缸1226伸缩杆完全伸出,推动锁止系统b1221向下移动,与锁止系统b1221相固定的工字钢滑轮b1222沿着工字钢a1202向下移动,移动到最大位置时,锁止系统b1221通过锁止推杆与工字钢标准支架1201的横梁卡住,实现固定连接;进一步的,控制短液压缸1215拉动锁止系统a1210的锁止推杆a1216a反向旋转90度,松开工字钢标准支架1201的横梁,锁止系统a1210与工字钢标准支架1201脱离;控制两个长液压缸1226伸缩杆缩回时,可拉动两根工字钢a1202向下移动,进而带动与之固定的钢板1203和锁止系统a1210向下移动,锁止系统b1221通过工字钢滑轮b1222与工字钢a1202相对移动,两个长液压缸1226伸缩杆完全缩回时,锁止系统a1210降低到最低位置,通过锁止推杆与工字钢标准支架1201固定连接。自爬升升降系统1200降低一个标准节的高度,并与工字钢标准支架1201固定连接。继续降低高度时,重复上述动作即可沿着塔吊塔体逐级下降。下降到指定位置后,锁止系统a1210和锁止系统b1221同时通过锁止推杆与工字钢标准支架1201固定连接,保证吊装平台与塔体结构的稳定。
塔体连接支撑梁2000的两端与塔体升降部分1000通过三个铰接座连接,用于连接两个相邻塔体升降部分1000,稳定塔体,同时为主移动梁4000和副移动梁3000提供滑动轨道和承载支撑的作用。每个塔体连接支撑梁2000的两端标准节上安装有钢丝绞盘,标准节下方都有滑动小车,具体结构如图16所示,钢丝绞盘可以拉动滑动小车沿着塔体连接支撑梁2000移动;塔体连接支撑梁2000包括:塔体连接支撑梁a2000a,连接在塔体升降部分a1000a和塔体升降部分d1000d之间;塔体连接支撑梁b2000b,连接在塔体升降部分a1000a和塔体升降部分b1000b之间;塔体连接支撑梁c2000c,连接在塔体升降部分b1000b和塔体升降部分c1000c之间;塔体连接支撑梁d2000d,连接在塔体升降部分c1000c和塔体升降部分d1000d之间。
支撑梁端部标准节2100包括卷扬机a2101,端部标准节2102;端部标准节2102的一端通过三个铰接座1204与自爬升升降系统1200固定连接,当多个自爬升升降系统1200同步升降时,可带动端部标准节2102同步升降;卷扬机a2101按照图14所示结构固定于端部标准节2102的上方,通过钢丝绳可牵引滑动小车a2300沿着塔体连接支撑梁2000的轴线移动。支撑梁中部标准节2200结构如图15、图41所示,一端与支撑梁端部标准节2100固定连接,另一端与其他支撑梁中部标准节2200连接,根据两个塔体升降部分1000之间的距离,可以连接多个支撑梁中部标准节2200,改变支撑梁中部标准节2200的连接数量,可以改变塔体连接支撑梁2000的长度。
滑动小车a2300包括小车轮子2301,小车支架2302,工字钢滑轮c2303;按照如图16所示结构,小车轮子2301安装在小车支架2302的两边,与塔体连接支撑梁2000下部的工字钢轨道相配合,滑动小车a2300可以沿着塔体连接支撑梁2000的轴线移动;小车支架2302的结构如图16所示,其下部安装有大型旋转转盘,防止相对边的塔体连接支撑梁2000上的滑动小车a2300移动距离不同步误差或者晃动,造成副移动梁3000和主移动梁4000产生内力,旋转转盘可以允许副移动梁3000和主移动梁4000产生轻微变形和转动;工字钢滑轮c2303通过螺栓固定安装在小车支架2302的大型旋转转盘 下方,并与主移动梁中间标准节4100上方的工字钢c4102配合;工字钢滑轮c2303的端部同样安装有与移动梁连接机构3200结构相同的刹车,安装有双向油缸安装块3203,双向油缸3204,刹车块安装板3205,刹车块3206元件,可以卡住主移动梁4000,防止在吊装过程中沿轴线移动导致一端脱离滑动小车,产生危险;主移动梁4000需要轴向移动时,控制工字钢滑轮c2303的端部双向油缸伸出,刹车松开,移动梁连接机构3200的双向液压缸缩回,移动梁连接机构3200与主移动梁4000上方的工字钢锁止固定;移动梁连接机构3200的上方通过固定连接的工字钢滑轮与副移动梁3000下方的工字钢配合,副移动梁3000可以沿着主移动梁4000的轴线移动一定距离,在保证主移动梁4000的一端不脱离滑动小车的前提下,整根主移动梁4000的另一端向塔体连接支撑梁2000围成的正方形面积之外伸出一定距离;进一步的,控制工字钢滑轮c2303的端部双向油缸缩回,刹车锁死,主移动梁4000被卡住固定,主移动梁4000下方的吊装小车可以移动到该正方形面积之外吊装货物,解决工程车辆无法进入施工区域时装卸货物的难题。
副移动梁3000结构如图20所示,包括副移动梁标准节3100,移动梁连接机构3200,滑动小车b3300;副移动梁标准节3100由副移动梁标准节钢架3101,工字钢b3102组成,结构如图17所示,工字钢b3102焊接固定于副移动梁标准节钢架3101的上方,副移动梁标准节钢架3101的底部工字钢与滑动小车b3300的底部螺栓固定连接,工字钢b3102与移动梁连接机构3200的工字钢滑轮e3202配合,当主移动梁4000沿着副移动梁3000的轴线移动时,带动移动梁连接机构3200的工字钢滑轮e3202沿着工字钢b3102移动,保证主移动梁4000沿着副移动梁3000的轴线移动时不会因为副移动梁3000而卡住。滑动小车b3300结构与滑动小车a2300相同,分别在塔体连接支撑梁b2000b和塔体连接支撑梁d2000d的下方,可通过卷扬机带动副移动梁3000沿着塔体连接支撑梁b2000b和塔体连接支撑梁d2000d轴线移动。副移动梁标准节3100可两两首尾连接组合,根据施工需求改变副移动梁标准节3100的数量,进而改变副移动梁3000的长度;
移动梁连接机构3200包括工字钢滑轮d3201,工字钢滑轮e3202,双向油缸安装块3203,双向油缸3204,刹车块安装板3205,刹车块3206;工字钢滑轮d3201的顶部与工字钢滑轮e3202的顶部固定连接,且二者成90度垂直,如图18所示结构,工字钢滑轮d3201可沿着主移动梁中间标准节4100的工字钢c4102移动,工字钢滑轮e3202可沿着副移动梁标准节3100的工字钢b3102移动。双向油缸安装块3203与工字钢滑轮d3201的侧面固定连接,双向油缸3204通过螺栓固定于双向油缸安装块3203的侧面,两块刹车块安装板3205与双向油缸3204的两个伸缩端相固定,两个刹车块3206分别固定于两块刹车块安装板3205的下方,通过电磁阀控制双向油缸3204的进出油路换向,通高压油时,双向油缸3204的两端均缩回,带动两块刹车块安装板3205相互靠近,安装在刹车块安装板3205上的刹车块3206夹住主移动梁中间标准节4100的工字钢c4102,与主移动梁4000固定;当断开高压油时,双向油缸3204的两端均伸出,推动两块刹车块安装板3205相互远离,安装在刹车块安装板3205上的刹车块3206松开主移动梁中间标准节4100的工字钢c4102,实现分离。
主移动梁4000需要轴向移动时,控制工字钢滑轮c2303的端部双向油缸伸出,刹车松开,移动梁连接机构3200的双向液压缸3204缩回,移动梁连接机构与主移动梁4000上方的工字钢锁止固定;移动梁连接机构3200的上方通过固定连接的工字钢滑轮与副移动梁3000下方的工字钢配合,副移动梁3000可以沿着主移动梁4000的轴线移动一定距离,在保证主移动梁4000的一端不脱离滑动小车的前提下,整根主移动梁4000的另一端向塔体连接支撑梁2000围成的正方形面积之外伸出一定距离;进一步的,控制工字钢滑轮c2303的端部双向油缸缩回,刹车锁死,主移动梁4000被卡住固定,主移动梁4000下方的吊装小车4300可以移动到该正方形面积之外吊装货物,解决工程车辆 无法进入施工区域时装卸货物的难题。同时移动梁连接机构3200的刹车松开时,副移动梁3000可以沿着主移动梁4000的轴线移动,当副移动梁3000随着主移动梁4000的吊装小车同步移动时,可以在主移动梁4000的承载位置提供支撑力,提高主移动梁4000的承载能力,增加稳定性和吊装能力。
主移动梁4000包括主移动梁中间标准节4100、主移动梁端部标准节4200、吊装小车4300,主移动梁中间标准节4100固定于主移动梁4000的两端,由主移动梁中间标准节钢架4101,工字钢c4102组成,主移动梁中间标准节钢架4101起到承载和支撑的作用,工字钢c4102固定于主移动梁中间标准节钢架4101的上方,与工字钢滑轮d3201、工字钢滑轮c2303相配合,将主移动梁中间标准节4100的荷载传递给副移动梁3000和塔体连接支撑梁2000;主移动梁中间标准节4100可两两首尾连接组合,根据施工需求改变主移动梁中间标准节4100的数量,进而改变主移动梁的长度;主移动梁端部标准节4200固定于主移动梁4000的两端,由卷扬机b4201,端部标准节钢架4202组成,结构如图21所示,卷扬机b4201固定于主移动梁端部标准节钢架4202的上方,卷扬机b4201包括两个独立控制的卷绳器,通过钢丝绳拉动吊装小车4300移动,同时控制吊钩4303的升降。吊装小车4300包括吊装小车车架4301,滑轮组4302,吊钩4303,结构如图23所示,小车车架4301可沿着主移动梁4000移动,滑轮组4302固定于小车车架4301上,卷扬机b4201可跨过滑轮组4302控制吊钩4303上升和下降。吊钩4303与卷扬机b4201中的起吊重物的钢丝绳固定,用于起吊重物。
支架部分5000作为承载主体,将上方塔吊的载荷通过支架部分5000传递给地面,在支架部分5000的四角位置分别安装有旋钻固定部分a7000a,旋钻固定部分b7000b,旋钻固定部分c7000c,旋钻固定部分d7000d;并通过斜拉支撑部分a6000a,斜拉支撑部分b6000b,斜拉支撑部分c6000c,斜拉支撑部分d6000d与支架部分5000固定连接,旋钻固定部分7000利用螺旋钻头打入地下,将整个装置稳定在地面上;下面对以上几大部分进行详细描述:
支架部分5000由长方钢5100,螺纹调整支腿5300,支架顶部钢板5200组成,具体逻辑连接关系如下:
支架部分5000具体结构如图26所示,两根长方钢5100在下方相互垂直,长方钢5100的端部用于固定连接旋钻固定部分7000,较长的跨度保证良好的支撑力矩,提高装置稳定性;在分割的其四角位置分别焊接固定有短方钢,构成支架部分5000的底座,垂直于支架部分5000的底座焊接四根短方钢作为立柱,再利用方钢将四根立柱方钢的上方两两焊接固定,构成支架部分5000上方的方形框架;同时,在上方的方形框架斜对角,利用合适长度的方钢焊接加固,构成立体的钢结构支架部分5000;上述方钢均为高强度特种钢材,具有良好的刚度和抵抗变形的能力,保证装置具有稳定的基础结构。螺纹调整支腿5300主体为带螺纹的支撑杆,支撑杆底部设置有承载钢板8232,钢板与支撑杆相垂直,钢板使上方螺纹支腿5300整体承载力的面积增大,使装置更加稳定;如图25所示结构,在支架部分5000的底部四角位置方钢开设有安装孔,通过螺栓固定于变角度系统承载钢板8232的上方;支架顶部钢板5200通过螺栓固定于支架部分5000的顶部,支架顶部钢板5200具有一定的厚度和刚度,其上开设有与常规塔吊底座1101对应的安装孔,便于固定安装塔吊底座。使用时,先将装置搬运到指定硬化地面,调整四个螺纹调整支腿5300的高度,保证支架部分5000处于水平状态,在支架部分5000的内部空间放置大吨位的配重块,降低塔吊装置的重心,进一步提高塔吊的稳定性。
斜拉支撑部分6000由短方钢6100,双耳铰接支座6200,螺纹斜拉杆6300组成,其中双耳铰接支座6200包括双耳铰接支座a6200a,双耳铰接支座b6200b,双耳铰接支座c6200c,双耳铰接支座d6200d;螺纹斜拉杆6300包括螺纹斜拉杆a6300a,螺纹斜拉 杆b6300b,螺纹斜拉杆c6300c,螺纹斜拉杆d6300d;下面对其逻辑关系进行详细描述:
斜拉支撑部分6000包括斜拉支撑部分a6000a,斜拉支撑部分b6000b,斜拉支撑部分c6000c,斜拉支撑部分d6000d,分别位于长方钢5100的两端,用于加固支架部分5000以及固定连接旋钻固定部分7000;如图28所示结构,短方钢6100焊接固定于支架部分5000的上方四角位置;双耳铰接支座a6200a,双耳铰接支座b6200b,双耳铰接支座c6200c的底座分别焊接固定于短方钢6100的侧面,双耳铰接支座d6200d的底座焊接固定于长方钢5100的上方,双耳铰接支座6200的上方有两个销孔,通过销子与螺纹斜拉杆6300的单耳铰接座铰接,用于加固、连接支架部分5000和旋钻固定部分7000。
螺纹斜拉杆6300结构如图29所示,包括单耳铰接座a6301a,单耳铰接座b6301b,内螺纹套筒a6302a,内螺纹套筒b6302b,外螺纹杆6303;单耳铰接座a6301a具有一个锁销孔,底座部分与内螺纹套筒a6302a的一端固定连接,内螺纹套筒a6302a为钢制空心结构,内部有左旋内螺纹;单耳铰接座b6301b具有一个锁销孔,底座部分与内螺纹套筒b6302b的一端固定连接,内螺纹套筒b6302b为钢制空心结构,内部有右旋内螺纹;外螺纹杆6303为实心圆柱钢棒,两端具有螺纹,中间具有扁平的打磨口,两端的外螺纹均为右旋方向;安装时,两端的单耳铰接座a6301a、单耳铰接座b6301b与双耳铰接座锁销连接,与单耳铰接座a6301a、单耳铰接座b6301b固定连接的内螺纹套筒a6302a、内螺纹套筒b6302b不会绕轴线转动,利用管钳卡住外螺纹杆6303中间的扁平打磨口,顺时针或逆时针拧动外螺纹杆6303绕轴线转动,外螺纹杆6303两端螺纹可拧进或拧出内螺纹套筒a6302a和内螺纹套筒b6302b,实现斜拉杆6300的伸长放松或缩短拉紧功能;螺纹斜拉杆a6300a的一端与双耳铰接支座a6200a通过锁销连接,另一端与双耳销座b7102b通过锁销连接;螺纹斜拉杆b6300b的一端与双耳铰接支座c6200c通过锁销连接,另一端与双耳销座a7102a通过锁销连接;螺纹斜拉杆c6300c的一端与双耳铰接支座b6200b通过锁销连接,另一端与双耳销座d6200d通过锁销连接;用于拉紧加固支架部分5000和旋钻固定部分7000。
旋钻固定部分7000包括旋钻支架部分7100和旋钻动力部分7200;其中,旋钻支架部分7100包括立式钢架7101,双耳销座a7102a,双耳销座b7102b,滑轮7103;旋钻动力部分7200包括减速机7201,方形传动轴7202,内方孔链轮7203,电机7204,螺旋钻头7205,导向滑块7206,动力传递箱7207,卷扬机7208;下面对以上各元件的逻辑关系进行详细描述:
旋钻固定部分7000包括旋钻固定部分a7000a,旋钻固定部分b7000b,旋钻固定部分c7000c,旋钻固定部分d7000d,分别固定于支架部分5000的长方钢5100的端部,通过螺旋钻头7205打入地下,同时螺旋钻头7205可以根据打入深度自由组合连接加长,在地下打入较长的螺旋钻头,实现装置的固定和稳定。旋钻支架部分7100作为旋钻固定部分的主体承载结构,如图30所示,立式钢架7101结构如图32所示,上方为相对较细的门形框架,用于支撑稳定和导向螺旋钻头7205上下移动;下方为较粗的门形框架,通过铰接的方式与长方钢5100的端部连接;双耳销座a7102a和双耳销座b7102b焊接固定于下方为较粗的门形框架侧面,其具有两个销孔,螺纹斜拉杆a6300a的一端与双耳铰接支座a6200a通过锁销连接,另一端与双耳销座b7102b通过锁销连接;螺纹斜拉杆b6300b的一端与双耳铰接支座c6200c通过锁销连接,另一端与双耳销座a7102a通过锁销连接,螺纹斜拉杆a6300a和螺纹斜拉杆b6300b将旋钻固定部分7000与支架部分5000铰接拉紧。滑轮7103固定于旋钻支架部分7100的上方,卷扬机7208的钢丝绳跨过滑轮7103与导向滑块7206固定连接,利用卷扬机7208拉动导向滑块7206上下移动,进而控制螺旋钻头7205的进给与退出。
旋钻动力部分7200由减速机7201,方形传动轴7202,内方孔链轮7203,电机7204, 螺旋钻头7205,导向滑块7206,动力传递箱7207,卷扬机7208组成;减速机7201为蜗杆直角减速机,固定于旋钻支架部分7100的底部,其输出端与方形传动轴7202连接,带动方形传动轴7202同步转动;电机7204通过螺栓固定于减速机7201的侧面,其输出轴与减速机7201的输入轴键槽链接,电机7204将动力传递给减速机7201,经过减速增距后传递给方形传动轴7202;内方孔链轮7203的内孔套在方形传动轴7202上,可跟随方形传动轴7202同步转动且能沿着方形传动轴7202的轴线上下移动;动力传递箱7207结构如图31所示,两端有凹槽与立式钢架7101的相对较细的门形框架配合,能沿着立式钢架7101上下移动,动力传递箱7207的中间开设有两孔,孔内安装有轴承,内方孔链轮7203与小孔内的轴承过盈配合,螺旋钻头7205的传动轴上通过键槽配合有小链轮,小链轮位于动力传递箱7207内部,且螺旋钻头7205的传动轴与动力传递箱7207的大孔内的轴承过盈配合,螺旋钻头7205的小链轮通过链条内方孔链轮7203连接,内方孔链轮7203的动力通过链条传递给螺旋钻头7205,进而将方形传动轴7202的动力传递给螺旋钻头7205;导向滑块7206结构如图33所示,两端有凹槽与立式钢架7101的相对较细的门形框架配合,能沿着立式钢架7101上下移动,中间一开孔内安装有轴承,轴承与螺旋钻头7205的传动轴过盈配合,导向滑块7206能拉动螺旋钻头7205沿着立式钢架7101上下移动,但不影响螺旋钻头7205的转动过程;
内方孔链轮7203的内孔套在方形传动轴7202上,可跟随方形传动轴7202同步转动且能沿着方形传动轴7202的轴线上下移动,卷扬机7208拉动导向滑块7206上下移动并带动螺旋钻头7205沿着立式钢架7101上下移动,动力传递箱7207同时跟随上下移动,但不影响方形传动轴7202将动力传递给螺旋钻头7205;旋钻动力部分7200达到以下功能:启动电机7204正转,将动力传递给减速机7201,经过减速增距后传递给方形传动轴7202;利用内方孔链轮7203带动螺旋钻头7205旋转;控制卷扬机7208拉动导向滑块7206上下移动并带动螺旋钻头7205沿着立式钢架7101上下移动;旋钻固定部分7000工作时,螺旋钻头7205向下钻入地面,卷扬机7208利用钢丝绳不断放下导向滑块7206,使其在螺旋钻头7205重力作用下向下移动,进而使螺旋钻头7205不断进给,钻入地下,实现深入地下固定,保持装置稳定。当塔吊拆除后,启动电机7204反转,螺旋钻头7205反转的同时,卷扬机7208利用钢丝绳拉动导向滑块7206向上移动,螺旋钻头7205从地面退出;装置取消固定,即可快速拆除塔吊底座。
旋钻固定部分7000底部安设有两个相同的可变平台角度的移动底盘8000;可变平台角度的移动底盘8000由履带行走部分8100,变角度系统8200组成;其中,履带行走部分8100包括履带动力系统8101,提升油缸8102;变角度系统8200包括变角度油缸8210,主承载油缸8220,变角度系统底板8231和变角度系统承载钢板8232。
履带行走部分8100作为整个装置的底层支撑部分,利用液压驱动行走,当移动式塔吊底座分别安装在吊装平台的四个塔体的底部时,四个履带行走系统同时配合移动,可将吊装平台在承重工况下进行短距离移动;履带动力系统8101为市场上大型履带式移动底盘,具有较强的承载能力和稳定性;提升油缸8102可在承载上方的负载下进行上下移动,保证上方吊装平台在移动或工作时能更好的调整相对位置,防止因地形不平造成吊装平台发生应力扭曲;
由图40所示,当在坡面9000上的行驶状态为:当在水平坡面行驶时,前后两个履带行走部分8100的提升油缸8102提升高度相同,确保上方变角度系统承载钢板8232保持水平,进而使旋钻固定部分7000保持水平;当驶入坡面时,前方的履带行走部分8100的提升油缸8102降低,后方的履带行走部分8100的提升油缸8102升高,同时控制变角度系统8200调整角度,同样确保上方变角度系统承载钢板8232保持水平;进而确保了整个装置移动上坡时的稳定性。当遇到类似台阶地形时,可先提升后方履带行走 部分8100的提升油缸8102,前进使前方履带行走部分8100进入台阶,进入后降低后方履带行走部分8100的提升油缸8102,再前进使后方履带行走部分8100步入台阶,至此使整个装置完成一个跨步式的攀上台阶过程。
变角度系统8200内的变角度系统底板8231固定安装在履带行走部分8100的提升油缸8102的上方,在承载上方吊装平台的重量时,能解决履带行走部分8100所处地面不平导致吊装平台倾斜的问题。其中Y形销头a8211a的尾部螺纹通过螺栓固定于变角度系统承载钢板8232的下方,其Y形开口通过销轴与Y形销头b8211b的尾部销孔连接,Y形销头b8211b的Y形开口通过销轴与变角度伺服液压缸8212的头部相连,Y形销头d8211d的尾部螺纹通过螺栓固定于变角度系统底板8231的上方,其Y形开口通过销轴与Y形销头c8211c的尾部销孔连接,Y形销头c8211c的Y形开口通过销轴与变角度伺服液压缸8212的尾部相连,上述四个Y形销头铰接,保证变角度伺服液压缸8212在伸缩动作中不会受到非轴向力产生应力,造成液压缸损坏。
主承载油缸a8220由斜支撑板8221,主支撑架8222,Y形销头e8223,Y形销头f8224,主支撑伺服液压缸8225组成;主支撑架8222由钢板焊接,下部焊接固定于变角度系统底板8231的中心,上部开设有安装孔,用于固定安装主支撑伺服液压缸8225,主支撑伺服液压缸8225的缸体位于主支撑架8222的内部,其伸缩端位于主支撑架8222的上方;Y形销头e8223的尾部销孔与支撑伺服液压缸8225的伸缩端头部相连,其Y形开口通过销轴与Y形销头f8224的Y形开口相连,Y形销头f8224的尾部螺纹通过螺栓固定于变角度系统承载钢板8232的下方;主支撑伺服液压缸8225为大吨位的油缸,主要承载变角度系统承载钢板8232上方的荷载,变角度系统承载钢板8232上方设置有倾角传感器,用于检测变角度系统承载钢板8232与水平面之间的夹角,反馈信号到装置控制器,通过控制器控制液压伺服系统,四角位置的四个变角度伺服液压缸8212相互伸缩配合,可以调节变角度系统承载钢板8232与水平面的倾角,保证上方的吊装平台始终处于竖直状态;所述四个斜支撑板8221由钢板焊接而成,两端分别焊接固定于变角度系统底板8231的四边中心和主支撑架8222的顶部四边。
具体工作原理如下:
①使用时,利用履带行走系统移动到指定硬化地面,保证支架部分5000处于水平状态,在支架部分5000的内部空间放置大吨位的配重块,降低塔吊装置的重心,进一步提高塔吊的稳定性。
②连接斜拉支撑部分6000,单耳铰接座a6301a、单耳铰接座b6301b与双耳铰接座锁销连接,与单耳铰接座a6301a、单耳铰接座b6301b固定连接的内螺纹套筒a6302a不会绕轴线转动,利用管钳卡住外螺纹杆6303中间的扁平打磨口,顺时针或逆时针拧动外螺纹杆6303绕轴线转动,外螺纹杆6303两端螺纹可拧进或拧出内螺纹套筒a6302a和内螺纹套筒b6302b,实现斜拉杆6300的伸长放松或缩短拉紧功能;螺纹斜拉杆a6300a的一端与双耳铰接支座a6200a通过锁销连接,另一端与双耳销座b7102b通过锁销连接;螺纹斜拉杆b6300b的一端与双耳铰接支座c6200c通过锁销连接,另一端与双耳销座a7102a通过锁销连接;螺纹斜拉杆c6300c的一端与双耳铰接支座b6200b通过锁销连接,另一端与双耳销座d6200d通过锁销连接;用于拉紧加固支架部分5000和旋钻固定部分7000。
③将旋钻固定部分a7000a,旋钻固定部分b7000b,旋钻固定部分c7000c,旋钻固定部分d7000d,分别固定于支架部分5000的长方钢5100的端部,通过斜拉支撑杆与支架连接加固。使用时,启动电机7204正传,将动力传递给减速机7201,经过减速增距后传递给方形传动轴7202;利用内方孔链轮7203带动螺旋钻头7205旋转;控制卷扬机7208拉动导向滑块7206上下移动并带动螺旋钻头7205沿着立式钢架7101上下移动; 旋钻固定部分7000工作时,螺旋钻头7205向下钻入地面,卷扬机7208利用钢丝绳拉动导向滑块7206向下移动,螺旋钻头7205不断进给,钻入地下,实现深入地下固定,保持装置稳定。当塔吊拆除后,启动电机7204反转,螺旋钻头7205反转的同时,卷扬机7208利用钢丝绳拉动导向滑块7206向上移动,螺旋钻头7205从地面退出;装置取消固定,即可快速拆除塔吊底座。
④装置固定完成后,常规塔吊底座1101通过螺栓固定于支架顶部钢板5200上方。
下面参照图1-41并结合上述结构技术特征的描述,对本发明的一种多塔联动式空中吊装平台的工作原理进行介绍:装置具体工作原理:
①自爬升升降系统1200工作原理如下:
塔体升降部分1000为固定于塔吊塔体的自爬升升降系统,通过利用标准节塔体作为支撑,以液压缸作为升降动力,配合气动锁止机构,能自动完成沿着塔体升降动作。四个塔体升降部分固定安置在建筑物的四角,围成矩形,爬升过程:初始状态时,当锁止系统b1221通过锁止推杆与工字钢标准支架1201固定连接,控制短液压缸拉动锁止系统a1210的锁止推杆反向旋转90度,松开工字钢标准支架1201的横梁,锁止系统a1210与工字钢标准支架1201脱离;两个长液压缸1226伸缩杆伸出时,工字钢a1202下部长度较长,可推动两根工字钢a1202向上移动,进而带动与之固定的钢板1203和锁止系统a1210向上移动,锁止系统b1221通过工字钢滑轮b1222与工字钢a1202相对移动,两个长液压缸1226伸缩杆完全伸出到最大位置时,锁止系统a1210到达爬升最高位置,通过锁止推杆与工字钢标准支架1201固定连接;自爬升升降系统1200升高一个标准节的高度,并与工字钢标准支架1201固定连接。进一步的,控制短液压缸拉动锁止系统b1221的锁止推杆反向旋转90度,松开工字钢标准支架1201的横梁,两个长液压缸1226伸缩杆完全缩回,拉动锁止系统b1221向上移动,与锁止系统b1221相固定的工字钢滑轮b1222沿着工字钢a1202向上移动,移动到最大位置时,锁止系统b1221通过锁止推杆与工字钢标准支架1201的横梁卡住,实现固定连接;继续向上爬升时,重复上述动作即可沿着塔吊塔体逐级爬升。爬升到指定位置后,锁止系统a1210和锁止系统b1221同时通过锁止推杆与工字钢标准支架1201固定连接,保证吊装平台与塔体结构的稳定。
下降过程:控制短液压缸拉动锁止系统b1221的锁止推杆反向旋转90度,松开工字钢标准支架1201的横梁,两个长液压缸1226伸缩杆完全伸出,推动锁止系统b1221向下移动,与锁止系统b1221相固定的工字钢滑轮b1222沿着工字钢a1202向下移动,移动到最大位置时,锁止系统b1221通过锁止推杆与工字钢标准支架1201的横梁卡住,实现固定连接;进一步的,控制短液压缸拉动锁止系统a1210的锁止推杆反向旋转90度,松开工字钢标准支架1201的横梁,锁止系统a1210与工字钢标准支架1201脱离;控制两个长液压缸1226伸缩杆缩回时,可拉动两根工字钢a1202向下移动,进而带动与之固定的钢板1203和锁止系统a1210向下移动,锁止系统b1221通过工字钢滑轮b1222与工字钢a1202相对移动,两个长液压缸1226伸缩杆完全缩回时,锁止系统a1210降低到最低位置,通过锁止推杆与工字钢标准支架1201固定连接。自爬升升降系统1200降低一个标准节的高度,并与工字钢标准支架1201固定连接。继续详细降低高度时,重复上述动作即可沿着塔吊塔体逐级下降。下降到指定位置后,锁止系统a1210和锁止系统b1221同时通过锁止推杆与工字钢标准支架1201固定连接,保证吊装平台与塔体结构的稳定。
②塔体连接支撑梁2000的工作原理
塔体连接支撑梁2000的两端与塔体升降部分1000通过三个铰接座连接,用于连接两个相邻塔体升降部分1000,稳定塔体,同时为主移动梁4000和副移动梁3000提供滑动轨道和承载支撑的作用。每个塔体连接支撑梁2000的两端标准节上安装有钢丝绞盘, 标准节下方都有滑动小车,具体结构如图16所示,钢丝绞盘可以拉动滑动小车沿着塔体连接支撑梁2000移动;塔体连接支撑梁2000包括:塔体连接支撑梁2000a,连接在塔体升降部分1000a和塔体升降部分1000d之间;塔体连接支撑梁2000b,连接在塔体升降部分1000a和塔体升降部分1000b之间;塔体连接支撑梁2000c,连接在塔体升降部分1000b和塔体升降部分1000c之间;塔体连接支撑梁2000d,连接在塔体升降部分1000c和塔体升降部分1000d之间。
③副移动梁3000和主移动梁4000工作原理
副移动梁3000和主移动梁4000相对垂直,副移动梁3000的下方和主移动梁4000的上方安装有工字钢,二者通过移动梁连接机构3200连接,移动梁连接机构具体结构如图20所示;当双向气缸伸出时,移动梁连接机构3200的下方通过工字钢滑轮与主移动梁4000上方的工字钢配合;移动梁连接机构3200的上方通过工字钢滑轮与副移动梁3000下方的工字钢配合,副移动梁3000可以沿着主移动梁4000的轴线移动,当副移动梁3000随着主移动梁4000的吊装小车同步移动时,可以在主移动梁4000的承载位置提供支撑力,提高主移动梁4000的承载能力,增加稳定性和吊装能力。主移动梁4000需要轴向移动时,控制工字钢滑轮c2303的端部双向油缸伸出,刹车松开,双向液压缸缩回,移动梁连接机构3200与主移动梁4000上方的工字钢锁止固定;移动梁连接机构3200的上方通过固定的工字钢滑轮与副移动梁3000下方的工字钢配合,副移动梁3000可以沿着主移动梁4000的轴线移动一定距离,在保证主移动梁4000的一端不脱离滑动小车的前提下,整根主移动梁4000的另一端向塔体连接支撑梁2000围成的面积之外外伸出一定距离,进一步的,控制工字钢滑轮c2303的端部双向油缸缩回,刹车锁死,主移动梁4000被卡住固定,其下方的吊装小车可以移动到该正方形面积之外吊装货物,解决工程车辆无法进入施工区域时装卸货物的难题。
④变角度移动地盘使用时,利用履带行走系统移动到指定硬化地面,保证支架部分5000处于水平状态,在支架部分5000的内部空间放置大吨位的配重块,降低塔吊装置的重心,进一步提高塔吊的稳定性。履带行走部分8100作为整个装置的底层支撑部分,利用液压驱动行走,当移动式塔吊底座分别安装在吊装平台的四个塔体的底部时,四个履带行走系统同时配合移动,可将吊装平台在承重工况下进行短距离移动;履带动力系统8101为市场上大型履带式移动地盘,具有较强的承载能力和稳定性;提升油缸8102可在承载上方的负载下进行转动,同时液压伺服变角度平台保证塔体始终处于竖直状态,保证上方吊装平台在移动或工作时能更好的调整相对位置,防止因地形不平造成吊装平台发生应力扭曲;当在坡面9000上的行驶状态为:当在水平坡面行驶时,前后两个履带行走部分8100的提升油缸8102提升高度相同,确保上方变角度系统承载钢板8232保持水平,进而使旋钻固定部分7000保持水平;当驶入坡面时,前方的履带行走部分8100的提升油缸8102降低,后方的履带行走部分8100的提升油缸8102升高,同时控制变角度系统8200调整角度,同样确保上方变角度系统承载钢板8232保持水平;进而确保了整个装置移动上坡时的稳定性。当遇到类似台阶地形时,可先提升后方履带行走部分8100的提升油缸8102,前进使前方履带行走部分8100进入台阶,进入后降低后方履带行走部分8100的提升油缸8102,再前进使后方履带行走部分8100步入台阶,至此使整个装置完成一个跨步式的攀上台阶过程。
⑤连接斜拉支撑部分6000,单耳铰接座a6301a、单耳铰接座b6301b与双耳铰接座锁销连接,与单耳铰接座a6301a、单耳铰接座b6301b固定连接的内螺纹套筒a6302a不会绕轴线转动,利用管钳卡住外螺纹杆6303中间的扁平打磨口,顺时针或逆时针拧动外螺纹杆6303绕轴线转动,外螺纹杆6303两端螺纹可拧进或拧出内螺纹套筒a6302a和内螺纹套筒b6302b,实现斜拉杆6300的伸长放松或缩短拉紧功能;螺纹斜拉杆a6300a 的一端与双耳铰接支座a6200a通过锁销连接,另一端与双耳销座b7102b通过锁销连接;螺纹斜拉杆b6300b的一端与双耳铰接支座c6200c通过锁销连接,另一端与双耳销座a7102a通过锁销连接;螺纹斜拉杆c6300c的一端与双耳铰接支座b6200b通过锁销连接,另一端与双耳销座d6200d通过锁销连接;用于拉紧加固支架部分5000和旋钻固定部分7000。
⑥将旋钻固定部分a7000a,旋钻固定部分b7000b,旋钻固定部分c7000c,旋钻固定部分d7000d,分别固定于支架部分5000的长方钢5100的端部,通过斜拉支撑杆与支架连接加固。使用时,启动电机7204正转,将动力传递给减速机7201,经过减速增距后传递给方形传动轴7202;利用内方孔链轮7203带动螺旋钻头7205旋转;控制卷扬机7208拉动导向滑块7206上下移动并带动螺旋钻头7205沿着立式钢架7101上下移动;旋钻固定部分7000工作时,螺旋钻头7205向下钻入地面,卷扬机7208利用钢丝绳拉动导向滑块7206向下移动,螺旋钻头7205不断进给,钻入地下,实现深入地下固定,保持装置稳定。当塔吊拆除后,启动电机7204反转,螺旋钻头7205反转的同时,卷扬机7208利用钢丝绳拉动导向滑块7206向上移动,螺旋钻头7205从地面退出;装置取消固定,即可快速拆除塔吊底座。
⑦变角度移动式底座固定完成后,吊装平台的塔体通过螺栓与塔吊底座1101固定连接,在低处搭建出吊装平台。常规塔吊底座1101通过螺栓固定于支架顶部钢板5200上方。
以上所述,仅为本发明中的具体实施方式,但发明的保护范围并不局限于此,任何熟悉该技术的人在本实用新型所揭露的技术范围内,可理解得到的变换或者替换,都应该涵盖在本发明的包含范围之内。

Claims (10)

  1. 一种多塔联动式空中吊装平台,其特征在于,包括:
    四个塔体升降部分,分别设置于建筑物的外周围成矩形,包括塔吊塔体和可沿塔吊塔体逐级爬升下降的自爬升升降系统;
    四个塔体连接支撑梁,分别设置于两个相对的自爬升升降系统上,通过自爬升升降系统带动塔体连接支撑梁围成的吊装平台同步上下移动;
    副移动梁,滑动设置于两个相对的塔体连接支撑梁下方;
    主移动梁,位于所述副移动梁下方并与其相对垂直,滑动设置于另外两个相对的塔体连接支撑梁下方,且两端延伸出四个塔体连接支撑梁围成的框体外,其下端滑动设置有吊装小车;
    四个移动式塔吊基座,分别设置于四个所述塔体升降部分下端,包括作为移动支撑且可变平台角度的移动底盘和设置于所述移动底盘上的支架部分,所述支架部分四角上分别设置有旋钻固定部分;
    所述副移动梁的下端和主移动梁的上端通过移动梁连接机构连接,利用移动梁连接机构,可控制副移动梁带动主移动梁沿主移动梁轴线移动。
  2. 根据权利要求1所述的多塔联动式空中吊装平台,其特征在于,
    所述自爬升升降系统包括多根沿着所述塔吊塔体侧面拼接安装的工字钢标准支架和设置于所述工字钢标准支架上的锁止系统a和爬升系统,
    两根工字钢a之间通过方钢a和方钢b连接,且形成的工字钢轨道与所述爬升系统具有的四个工字钢滑轮b相配合;
    钢板下部与所述工字钢a连接,所述钢板的上部与所述锁止系统a连接;
    所述钢板上设置有多个铰接座,位于下部的三个铰接座用于铰接固定支撑梁端部标准节。
  3. 根据权利要求2所述的多塔联动式空中吊装平台,其特征在于,
    所述锁止系统a包括锁止系统支架,所述锁止系统支架为通过高强度钢焊接成的方形框架,四个工字钢滑轮a设置于所述锁止系统支架的四角侧边位置,四个工字钢滑轮a与工字钢标准支架的工字钢轨道相配合;
    四个支座轴承设置于锁止系统支架的四角底部,用于支撑和约束旋转轴a和旋转轴b;
    所述旋转轴a和旋转轴b两端分别与四个支座轴承连接,靠内的两端分别与锁止推杆a、锁止推杆b连接,所述锁止推杆a、锁止推杆b两端具有的端部件分别开设有开口,所述开口用于卡住工字钢标准支架之间的横梁;
    所述旋转轴a中部设置有两个连杆,两连杆与两个短液压缸Y型接头的头部连接,两个短液压缸Y型接头的尾部与两个短液压缸的伸缩杆头部连接,短液压缸的尾部通过短液压缸铰接座与所述锁止系统支架的横梁铰接。
  4. 根据权利要求3所述的多塔联动式空中吊装平台,其特征在于,
    所述爬升系统包括与所述锁止系统a结构相同的锁止系统b,四个工字钢滑轮b与所述锁止系统b的四个工字钢滑轮上部连接,四个工字钢滑轮b与工字钢a相配合,用于沿着工字钢a的轴线移动;
    两个长液压缸铰接座a设置于所述方钢a的侧面,长液压缸铰接座b设置于所述锁止系统b的支架横梁侧面,两个长液压缸的缸体尾部分别与两个长液压缸铰接座b连接,两个长液压缸的伸缩端头部分别与两个长液压缸Y型接头的尾部连接,两个长液压缸Y型接头的头部分别与长液压缸铰接座a连接。
  5. 根据权利要求1所述的多塔联动式空中吊装平台,其特征在于,
    所述塔体连接支撑梁下端设置有滑动小车;
    所述副移动梁的两端分别与相对的两个塔体连接支撑梁下端具有的滑动小车连接,所述滑动小车用以带动副移动梁沿着塔体连接支撑梁轴线方向移动;
    所述主移动梁的两端分别与相对的两个塔体连接支撑梁下端设置的滑动小车连接,所述滑动小车用以带动主移动梁沿着塔体连接支撑梁的轴线方向移动。
  6. 根据权利要求1所述的多塔联动式空中吊装平台,其特征在于,
    所述支架部分包括相互垂直设置的两根长方钢,所述长方钢的端部用于固定连接旋钻固定部分;
    两根长方钢上端设置有四根短方钢,再通过方钢将四根短方钢的上方两两固定,构成方形框架,在所述方形框架斜对角设置方钢用以加固;
    支架顶部钢板通过螺栓固定于支架部分的顶部。
  7. 根据权利要求6所述的多塔联动式空中吊装平台,其特征在于,
    所述旋钻固定部分包括旋钻支架部分和设置于所述旋钻支架部分上的旋钻动力部分;所述旋钻支架部分包括立式钢架,所述立式钢架上方为相对较细的门形框架,用于支撑和导向螺旋钻头上下移动,下方为较粗的门形框架,通过铰接的方式与长方钢的端部连接;所述立式钢架上端设置有滑轮;
    所述旋钻动力部分包括设置于所述立式钢架上端的卷扬机、依次滑动设置于所述立式钢架上的动力传递箱和导向滑块以及设置于所述立式钢架下端的减速机,所述减速机的输出端与方形传动轴连接,所述方形传动轴的另一端与所述立式钢架上端连接;所述减速机的侧面设置有电机,所述电机的输出轴与减速的输入轴连接;所述方形传动轴上套设有内方孔链轮;
    所述动力传递箱中部间隔开设有一大一小两孔,孔内安装有轴承,所述内方孔链轮与小孔内的轴承过盈配合;螺旋钻头的传动轴与动力传递箱的大孔内的轴承过盈配合;
    所述卷扬机的钢丝绳跨过滑轮与导向滑块连接,利用卷扬机拉动导向滑块上下移动,进而控制螺旋钻头的进给与退出。
  8. 根据权利要求1所述的多塔联动式空中吊装平台,其特征在于,
    所述移动底盘包括履带行走部分和变角度系统,所述履带行走部分包括履带动力系统和位于所述履带动力系统之间的提升油缸;
    所述变角度系统包括设置于所述提升油缸上端的变角度系统底板、均布于所述变角度系统底板上端的多个变角度油缸、设置于所述变角度油缸上端的变角度系统承载钢板,位于多个变角度油缸中间在所述变角度系统底板和变角度系统承载钢板之间设置有主承载油缸。
  9. 根据权利要求8所述的多塔联动式空中吊装平台,其特征在于,
    所述主承载油缸包括居中设置于所述变角度系统底板上的主支撑架,在所述主支撑架的上部四周设置有斜支撑板,所述斜支撑板的下端固定在所述变角度系统底板的四边中心;
    所述主支撑架上端开设有安装孔,用于安装主支撑伺服液压缸,所述主支撑伺服液压缸的缸体位于主支撑架的内部,其伸缩端位于主支撑架的上方;
    所述主支撑伺服液压缸的伸缩端头部设置有Y形销头,所述Y形销头固定于变角度系 统承载钢板下端。
  10. 根据权利要求8所述的多塔联动式空中吊装平台,其特征在于,
    在所述支架部分和旋钻固定部分之间设置有斜拉支撑部分,所述斜拉支撑部分包括三组螺纹斜拉杆;
    这三组螺纹斜拉杆的一端均与支架部分上部铰接,其中,位于两侧的这两组螺纹斜拉杆的另一端与立式钢架铰接,位于中间的这一组螺纹斜拉杆的另一端与长方钢铰接。
PCT/CN2023/092201 2022-05-09 2023-05-05 一种多塔联动式空中吊装平台 WO2023216978A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210500957.7 2022-05-09
CN202210500957.7A CN114873488B (zh) 2022-05-09 2022-05-09 一种多塔联动式空中吊装平台

Publications (1)

Publication Number Publication Date
WO2023216978A1 true WO2023216978A1 (zh) 2023-11-16

Family

ID=82673534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092201 WO2023216978A1 (zh) 2022-05-09 2023-05-05 一种多塔联动式空中吊装平台

Country Status (2)

Country Link
CN (1) CN114873488B (zh)
WO (1) WO2023216978A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117605286A (zh) * 2024-01-23 2024-02-27 中国电建集团山东电力建设第一工程有限公司 一种风电混塔预应力钢绞线穿束工装及方法
CN118116696A (zh) * 2023-12-06 2024-05-31 中山市柏达精密机电科技有限公司 一种变压器的油箱固定结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873488B (zh) * 2022-05-09 2023-03-28 武汉建工集团股份有限公司 一种多塔联动式空中吊装平台

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081267A (ja) * 1996-09-11 1998-03-31 Norito Terajima クローラ式建設車輌
CN102133907A (zh) * 2011-03-11 2011-07-27 黎志中 履带式山地运输车
CN202089710U (zh) * 2011-06-10 2011-12-28 长沙中联重工科技发展股份有限公司 塔机爬升架及包含该塔机爬升架的塔式起重机
CN108975186A (zh) * 2018-09-03 2018-12-11 中冶建设高新工程技术有限责任公司 一种建筑材料的辅助提升装置
CN109129819A (zh) * 2018-09-25 2019-01-04 中国建筑股份有限公司 一种现场混凝土3d打印设备和建筑施工方法
KR102045221B1 (ko) * 2019-07-30 2019-11-15 에이원커뮤니케이션즈코리아(주) 텔레스코핑 케이지 및 이를 이용한 타워 크레인 인상 방법
CN111320084A (zh) * 2020-03-06 2020-06-23 河南工业大学 装配式建筑构件吊装设备及其偏移监测方法
CN212582721U (zh) * 2020-06-18 2021-02-23 北京新兴保信建设工程有限公司 一种基础车库顶板立塔塔吊承载平台
CN112938774A (zh) * 2021-01-20 2021-06-11 东南大学 一种装配式构件的整体吊装系统及吊装方法
CN113073839A (zh) * 2021-03-04 2021-07-06 北京卓良工程有限公司 一种重载自爬施工装置及其爬升方法
CN113874314A (zh) * 2019-04-05 2021-12-31 利勃海尔工厂比伯拉赫股份有限公司 建筑和/或材料处理机械及用于引导和移动工作头的方法
CN114873488A (zh) * 2022-05-09 2022-08-09 武汉建工集团股份有限公司 一种多塔联动式空中吊装平台

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19748949C2 (de) * 1996-11-29 1999-06-02 Mannesmann Ag Fahrwerk einer Hebevorrichtung
CN201338911Y (zh) * 2009-01-12 2009-11-04 武汉理工大学 大起重量及大起升高度吊装起重机
CN106320713B (zh) * 2016-10-11 2019-12-06 博湃建筑科技(上海)有限公司 3d建筑打印作业平台
CN112431397B (zh) * 2020-12-07 2022-06-28 中国二十冶集团有限公司 高层建筑建造系统及其安装使用方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081267A (ja) * 1996-09-11 1998-03-31 Norito Terajima クローラ式建設車輌
CN102133907A (zh) * 2011-03-11 2011-07-27 黎志中 履带式山地运输车
CN202089710U (zh) * 2011-06-10 2011-12-28 长沙中联重工科技发展股份有限公司 塔机爬升架及包含该塔机爬升架的塔式起重机
CN108975186A (zh) * 2018-09-03 2018-12-11 中冶建设高新工程技术有限责任公司 一种建筑材料的辅助提升装置
CN109129819A (zh) * 2018-09-25 2019-01-04 中国建筑股份有限公司 一种现场混凝土3d打印设备和建筑施工方法
CN113874314A (zh) * 2019-04-05 2021-12-31 利勃海尔工厂比伯拉赫股份有限公司 建筑和/或材料处理机械及用于引导和移动工作头的方法
KR102045221B1 (ko) * 2019-07-30 2019-11-15 에이원커뮤니케이션즈코리아(주) 텔레스코핑 케이지 및 이를 이용한 타워 크레인 인상 방법
CN111320084A (zh) * 2020-03-06 2020-06-23 河南工业大学 装配式建筑构件吊装设备及其偏移监测方法
CN212582721U (zh) * 2020-06-18 2021-02-23 北京新兴保信建设工程有限公司 一种基础车库顶板立塔塔吊承载平台
CN112938774A (zh) * 2021-01-20 2021-06-11 东南大学 一种装配式构件的整体吊装系统及吊装方法
CN113073839A (zh) * 2021-03-04 2021-07-06 北京卓良工程有限公司 一种重载自爬施工装置及其爬升方法
CN114873488A (zh) * 2022-05-09 2022-08-09 武汉建工集团股份有限公司 一种多塔联动式空中吊装平台

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118116696A (zh) * 2023-12-06 2024-05-31 中山市柏达精密机电科技有限公司 一种变压器的油箱固定结构
CN117605286A (zh) * 2024-01-23 2024-02-27 中国电建集团山东电力建设第一工程有限公司 一种风电混塔预应力钢绞线穿束工装及方法

Also Published As

Publication number Publication date
CN114873488A (zh) 2022-08-09
CN114873488B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2023216978A1 (zh) 一种多塔联动式空中吊装平台
US5255489A (en) Construction apparatus for buildings and constructing method therewith
CN108033367B (zh) 一种钢柱筒架交替支撑式钢平台与塔吊同步提升装置及其提升方法
CN106698208A (zh) 一种用于超高层建筑外部运输的吊装设备及吊装方法
CN105544546B (zh) 用于地下工程的废弃物清理运输装置及方法
WO2024169413A1 (zh) 一种扩展式多功能集成施工空中造楼平台及其施工方法
CN2414055Y (zh) 重载塔吊装置
CN113152166B (zh) 跨座式单轨轨道梁滑移架设工装
CN215252400U (zh) 一种波形钢腹板施工自承式同步吊架系统
CN108396749B (zh) 一种基坑内钢支撑的安装系统以及安装方法
WO2024087901A1 (zh) 悬臂浇筑走行一体机
CN211306798U (zh) 一种混凝土预制件生产用脱模装置
CN209835463U (zh) 预制桥面板吊装设备
CN104495653A (zh) 一种多功能大吨位架梁起重机及架梁方法
CN217461535U (zh) 高层建筑悬挑式卸料平台
CN114319145B (zh) 利用架桥机的桥梁架设方法
CN113235904B (zh) 一种循环互爬升降柱及其使用方法
CN111661768B (zh) 一种装配式建筑多块外围构件吊装方法及系统
CN114108446A (zh) 一种高速铁路斜拉索大桥结构及施工方法
CN110172923B (zh) 一种环境友好型下行自行式钢栈桥结构
CN114572854A (zh) 一种装配式浅圆仓仓顶吊装系统及仓顶吊装方法
CN111747313A (zh) 一种仓储物流建筑中预制梁吊装施工方法
CN210066505U (zh) 一种跨桥梁门式吊机支架装置
CN2033034U (zh) 落地井架电动提模装置
CN220223167U (zh) 一种施工电梯用可调式液压支撑装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802750

Country of ref document: EP

Kind code of ref document: A1