WO2023216627A1 - 同步相位的故障确定方法、故障确定装置、处理器与车辆 - Google Patents

同步相位的故障确定方法、故障确定装置、处理器与车辆 Download PDF

Info

Publication number
WO2023216627A1
WO2023216627A1 PCT/CN2022/143612 CN2022143612W WO2023216627A1 WO 2023216627 A1 WO2023216627 A1 WO 2023216627A1 CN 2022143612 W CN2022143612 W CN 2022143612W WO 2023216627 A1 WO2023216627 A1 WO 2023216627A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
cylinder
synchronization phase
mentioned
peak position
Prior art date
Application number
PCT/CN2022/143612
Other languages
English (en)
French (fr)
Inventor
曹石
姜冰
刘明辉
任利民
张敬博
Original Assignee
潍柴动力股份有限公司
潍坊潍柴动力科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司, 潍坊潍柴动力科技有限责任公司 filed Critical 潍柴动力股份有限公司
Publication of WO2023216627A1 publication Critical patent/WO2023216627A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present application relates to the technical field of engines, such as a synchronization phase fault determination method, a fault determination device, a computer-readable storage medium, a processor and a vehicle.
  • the existing engine synchronization phase diagnosis method is generally confirmed by the relative position deviation of the engine crankshaft signal and the camshaft signal. Due to the machining error or assembly error of the signal disks of the crankshaft and camshaft, the relative position of the crankshaft signal and the camshaft signal will be normal, but the absolute position will deviate. This will cause inaccurate engine ignition and injection, affecting the engine. Normal combustion will affect the performance and emission levels of the engine, and in severe cases may cause engine cylinder damage.
  • This application provides a synchronization phase fault determination method, fault determination device, computer-readable storage medium, processor and vehicle, which can solve the problem in related technologies that it is difficult to accurately diagnose the fault of the engine's synchronization phase.
  • a synchronized phase fault determination method including: an engine includes multiple cylinders, and the fault determination method includes: acquiring an ion current signal and a cylinder pressure peak position of each cylinder signal; when the engine meets the preset conditions, determine whether the synchronization phase of the engine is faulty based on at least the ion current signal of each cylinder and the cylinder pressure peak position signal, the preset The conditions include: there are no faults in the ignition system and injection system of the engine, there are no synchronization phase-related faults in the engine, and the engine is in stable operating conditions.
  • determining whether the synchronization phase of the engine is faulty at least based on the ion current signal of each of the cylinders and the cylinder pressure peak position signal includes: determining the ion current signal of each of the cylinders. Whether it is greater than the corresponding first preset threshold; when the ion current signals of all the cylinders are greater than the corresponding first preset threshold, calculate the cylinder pressure peak position of each cylinder The absolute value of the difference between the signal and the corresponding preset peak position signal is used to obtain a plurality of first differences; at least based on the plurality of first differences, it is determined whether the synchronization phase of the engine is faulty.
  • determining whether the synchronization phase of the engine is faulty is at least based on a plurality of the first differences, including: averaging a plurality of the first differences to obtain a target average; When the target average value is greater than or equal to the third preset threshold and less than the second preset threshold, it is determined that the cylinder pressure peak position of all the cylinders deviates. In this case, calculate the differences between a plurality of first differences and the target average value to obtain a plurality of second differences, and determine whether the synchronization phase of the engine is faulty based on the plurality of second differences. ; When the target average value is less than the third preset threshold, re-determine whether the engine meets the preset condition.
  • determining whether the synchronization phase of the engine is faulty based on a plurality of second differences includes: determining whether a plurality of second differences are within a preset range; If the differences are all within the preset range, it is determined that the synchronization phase of the engine is faulty; if at least one of the second differences is not within the preset range, it is determined that the second difference is not in the preset range.
  • the cylinder pressure peak position signal corresponding to the cylinder in the preset range is used to correct the ignition advance angle and ignition charging time of the corresponding cylinder.
  • the fault determination method further includes: determining the target average value as the The synchronization phase deviation angle of the engine is determined; and the synchronization phase of the engine is corrected according to the synchronization phase deviation angle.
  • correcting the ignition advance angle and ignition charging time of the corresponding cylinder including: searching for the ignition advance angle correction value in the first map according to the cylinder pressure peak position signal and the current speed of the engine, And correct the ignition advance angle of the corresponding cylinder according to the ignition advance angle correction value; find the ignition charging time correction in the second map according to the cylinder pressure peak position signal and the current speed of the engine value, and correct the ignition charging time of the corresponding cylinder according to the ignition charging time correction value.
  • a synchronized phase fault determination device including: the engine includes multiple cylinders, and the fault determination device includes: an acquisition unit for acquiring ions of each cylinder current signal and cylinder pressure peak position signal; a first determination unit configured to, when the engine meets preset conditions, at least based on the ion current signal and the cylinder pressure peak position signal of each cylinder, Determine whether the synchronization phase of the engine is faulty, and the preset conditions include: there are no faults in the ignition system and injection system of the engine, there is no synchronization phase-related fault in the engine, and the engine is in a stable operating condition.
  • a computer-readable storage medium includes a stored program, wherein the program executes any one of the fault determination methods.
  • a processor is also provided, the processor being configured to run a program, wherein when the program is running, any one of the fault determination methods is executed.
  • a vehicle is also provided, the vehicle includes an engine and a synchronization phase fault determination device, and the synchronization phase fault determination device is used to perform any one of the synchronization phase faults. Determine the method.
  • Figure 1 shows a flow chart of a synchronization phase fault determination method according to an embodiment of the present application
  • Figure 2 shows a schematic structural diagram of a synchronization phase fault determination device according to an embodiment of the present application
  • FIG. 3 shows a flow chart of a synchronization phase fault determination method according to a specific embodiment of the present application.
  • a typical implementation of the present application provides a fault determination of the synchronization phase.
  • Method, fault determination device, computer-readable storage medium, processor and vehicle
  • a synchronization phase fault determination method is provided.
  • the synchronization phase fault determination method provided by the embodiments of the present application can be implemented by computer equipment.
  • the computer equipment can be a terminal device or a server.
  • the server can be an independent physical server or a server cluster composed of multiple physical servers. Or a distributed system, or a cloud server that provides cloud computing services.
  • Terminal devices include but are not limited to mobile phones, computers, intelligent voice interaction devices, smart home appliances, vehicle-mounted terminal equipment, etc.
  • the terminal device and the server can be connected directly or indirectly through wired or wireless communication methods, which is not limited in this application.
  • FIG. 1 is a flow chart of a synchronization phase fault determination method according to an embodiment of the present application. As shown in Figure 1, the fault determination method includes the following steps:
  • Step S101 obtain the ion current signal and the cylinder pressure peak position signal of each of the above cylinders;
  • Step S102 When the engine meets preset conditions, determine whether the synchronization phase of the engine is faulty based on at least the ion current signal of each cylinder and the cylinder pressure peak position signal.
  • the preset conditions include: the engine There are no faults in the ignition system and injection system, there are no synchronization phase-related faults in the above-mentioned engines, and the above-mentioned engines are in stable operating conditions.
  • ion current signals and cylinder pressure peak position signals of multiple cylinders of the engine are obtained.
  • the ion current signal of each of the above cylinders is obtained and
  • the above-mentioned cylinder pressure peak position signal determines whether the synchronization phase of the above-mentioned engine is faulty, wherein the above-mentioned preset conditions include that the ignition system and injection system of the above-mentioned engine are not faulty, the above-mentioned engine does not have synchronization phase-related faults, and the above-mentioned engine is in stable operation. condition.
  • the synchronization phase of the engine is used for fault diagnosis, thereby achieving precise control of the engine ignition system and injection system, ensuring sufficient combustion of the engine, and ensuring good engine performance and emission levels.
  • the above-mentioned engine synchronization phase-related faults may be that the crankshaft does not have missing teeth, it may also be that there is no problem with the relative position of the engine's synchronization phases, or it may be that there is no missing signal from the sensor corresponding to the crankshaft and/or camshaft, It can also be that the signals of the sensors corresponding to the crankshaft and/or camshaft have no errors, etc.
  • the synchronization phase-related faults of the above-mentioned engines those skilled in the art can flexibly adjust them according to the actual engine operating conditions. I will not go into details here. .
  • the stable operating conditions of the above-mentioned engine can be that the engine is not in a sudden acceleration, emergency braking, or coasting in gear, etc.
  • the stable operating conditions of the above-mentioned engine are not limited to the above-listed situations. There are also other situations, which I won’t go into details here.
  • the above-mentioned engine can be a 6-cylinder engine, but is not limited to a 6-cylinder engine. It can also be an engine with other cylinder numbers. In this application, the above-mentioned engine is not limited. Those skilled in the art can make the engine according to actual conditions. Determine the appropriate engine based on operating conditions.
  • determining whether the synchronization phase of the engine is faulty at least based on the ion current signal of each of the cylinders and the cylinder pressure peak position signal includes: determining whether the ion current signal of each of the cylinders is faulty. is greater than the corresponding first preset threshold; when the ion current signals of all the above-mentioned cylinders are greater than the corresponding above-mentioned first preset threshold, calculate the above-mentioned cylinder pressure peak position signal of each of the above-mentioned cylinders and the corresponding preset value.
  • the absolute value of the difference between the peak position signals is used to obtain a plurality of first differences; at least based on the plurality of first differences, it is determined whether the synchronization phase of the engine is faulty.
  • whether each cylinder has undergone effective combustion is determined by whether the ion current signal is greater than the first preset threshold. This can further avoid the problem of misjudgment of the synchronization phase of the engine.
  • the ion current of each cylinder is When the current signals are all greater than the first preset threshold, it is determined whether the synchronization phase of the engine is faulty based on the absolute value of the difference between the calculated cylinder pressure peak position signal and the preset position signal. This further ensures that the engine can be detected more accurately. Determine whether the engine's synchronization phase is faulty.
  • each cylinder in the above-mentioned engine corresponds to the above-mentioned first preset threshold.
  • the first cylinder corresponds to a first preset threshold. It is judged whether the ion current signal of the first cylinder is greater than the above-mentioned threshold of the first cylinder.
  • the first preset threshold is the same for other cylinders, so I won’t go into details here.
  • the first preset threshold of a certain cylinder can be determined by searching the third map according to the current rotation speed of the engine and the corresponding ignition advance angle of the cylinder.
  • each cylinder in the engine corresponds to one of the preset peak position signals.
  • the difference between the cylinder pressure peak position signal of each cylinder and the corresponding preset peak signal is calculated.
  • the absolute value is the absolute value of the difference calculated based on the cylinder pressure peak position signal of the above-mentioned cylinder and the preset cylinder pressure peak position signal of the cylinder. For example, based on the cylinder pressure peak position signal of the first cylinder and the cylinder pressure peak position signal of the first cylinder.
  • the preset cylinder pressure peak position signal of a cylinder is used to calculate the absolute value of the difference of the first cylinder.
  • all the cylinders of the above-mentioned engine can also correspond to the same first preset threshold and the same preset peak position signal, so the ion current signal of each cylinder of the above-mentioned engine can also be determined. Whether they are all greater than the same first preset threshold, when the ion current signals of all cylinders are greater than the first preset threshold, calculate the difference between the cylinder pressure peak position signal of each cylinder and the preset peak position signal. Absolute values are used to obtain multiple first difference values, and based on the multiple first difference values, it is determined whether the synchronization phase of the engine is faulty.
  • the preset cylinder pressure peak position signal of a certain cylinder can be determined by searching the fourth map through the current engine speed and the corresponding ignition advance angle of the cylinder, wherein the above-mentioned third map, fourth map The map is different from the first map and the second map in the embodiment below.
  • determining whether the synchronization phase of the engine is faulty is based on at least a plurality of the first differences, including: The differences are averaged to obtain the target average value; when the above target average value is greater than or equal to the second preset threshold, it is determined that the cylinder pressure peak positions of all the above cylinders have deviations; when the above target average value is greater than or equal to the third preset threshold
  • the preset threshold is smaller than the second preset threshold, calculate the differences between a plurality of the first differences and the target average value to obtain a plurality of second differences, and based on the plurality of second differences, Determine whether the synchronization phase of the above-mentioned engine is faulty; when the above-mentioned target average value is less than the above-mentioned third preset threshold, re-determine whether the above-mentioned engine meets the above-mentioned preset condition.
  • the above-mentioned target average value is greater than or equal to the second preset threshold, it indicates that the current combustion abnormality of the engine or the synchronization phase deviation is too large, and at this time it has exceeded the value that can be corrected and calibrated by the software. Therefore, in this case, it is necessary to report deviations in the peak cylinder pressure positions of all cylinders of the engine, and at the same time remind the user to perform further engine maintenance.
  • the above-mentioned second preset threshold and the above-mentioned third preset threshold are both determined by searching the fifth map according to the current engine speed and the average ignition advance angle of each cylinder, wherein the above-mentioned fifth map It is different from the above-mentioned third map, the fourth map and the first and second map below.
  • determining whether the synchronization phase of the above-mentioned engine is faulty based on a plurality of the above-mentioned second difference values includes: determining whether a plurality of the above-mentioned second difference values are all within a preset range; When the second difference values are all within the above-mentioned preset range, it is determined that the synchronization phase of the engine is faulty; when at least one of the above-mentioned second difference values is not within the above-mentioned preset range, at least according to the above-mentioned second difference value, it is not in the above-mentioned preset range.
  • the cylinder pressure peak position signal corresponding to the cylinder within the range is used to correct the ignition advance angle and ignition charging time of the corresponding cylinder.
  • the cylinder of each cylinder of the engine The voltage peak position signal has a fixed offset; if at least one of the above-mentioned second differences is not within the above-mentioned preset range, it indicates that it is caused by asynchronous phase deviation.
  • this application determines whether the cylinder pressure peak position signal of the engine has a fixed deviation by whether a plurality of second differences are within a preset range. shift instead of directly determining whether multiple first difference values are the same. That is to say, the fault determination method of this application also takes into account the acquisition error, which ensures that the fault determination method of this application can be more consistent with the actual operating conditions of the engine. Further, determine more accurately whether the synchronization phase of the engine is faulty.
  • the above-mentioned preset range can be a calibrated amount.
  • the above-mentioned preset range can be ⁇ 1°C.
  • the above-mentioned preset range is not limited to ⁇ 1°C and can also be other ranges. In this application, and The above preset range is not limited, and those skilled in the art can flexibly adjust it according to the actual operating conditions of the engine.
  • the above-mentioned fault determination method also includes: determining the above-mentioned target average value as the synchronization phase deviation angle of the above-mentioned engine; according to the above-mentioned synchronization phase deviation angle, synchronization of the above-mentioned engine The phase is corrected.
  • Correcting the ignition advance angle and ignition charging time of the corresponding cylinder includes: finding the ignition advance angle correction value in the first map according to the cylinder pressure peak position signal and the current engine speed, and based on the ignition The advance angle correction value corrects the ignition advance angle of the corresponding cylinder; according to the cylinder pressure peak position signal and the current engine speed, the ignition charging time correction value is found in the second map, and based on the ignition charging time The correction value corrects the ignition charging time of the corresponding cylinder.
  • the ignition advance angle of the corresponding cylinder is corrected according to the ignition advance angle correction value obtained through the first map search, and the corresponding ignition advance angle is corrected according to the ignition charging time correction value obtained through the second map search.
  • the ignition charging time is corrected, which ensures that the ignition advance angle and ignition charging time of the corresponding cylinder are corrected more accurately, further ensuring that the corresponding cylinder can effectively burn.
  • the embodiment of the present application also provides a synchronization phase fault determination device. It should be noted that the synchronization phase fault determination device of the embodiment of the present application can be used to perform the synchronization phase fault determination provided by the embodiment of the present application. method. The synchronization phase fault determination device provided by the embodiment of the present application is introduced below.
  • FIG. 2 is a schematic structural diagram of a synchronization phase fault determination device according to an embodiment of the present application. As shown in Figure 2, the fault determination device includes:
  • the acquisition unit 10 is used to acquire the ion current signal and the cylinder pressure peak position signal of each of the above-mentioned cylinders;
  • the first determination unit 20 is configured to determine whether the synchronization phase of the engine is faulty based on at least the ion current signal of each cylinder and the cylinder pressure peak position signal when the engine meets the preset conditions.
  • the conditions include: there are no faults in the ignition system and injection system of the above-mentioned engine, there are no synchronization phase-related faults in the above-mentioned engine, and the above-mentioned engine is in stable operating conditions.
  • the acquisition unit is used to acquire the ion current signal and the cylinder pressure peak position signal of each of the above-mentioned cylinders; the first determination unit is used to, when the above-mentioned engine meets the preset conditions, at least according to each The above-mentioned ion current signal of each of the above-mentioned cylinders and the above-mentioned cylinder pressure peak position signal determine whether the synchronization phase of the above-mentioned engine is faulty.
  • the above-mentioned preset conditions include: there is no fault in the ignition system and injection system of the above-mentioned engine, and there is no synchronization phase-related fault in the above-mentioned engine.
  • the above engine is in stable operation condition.
  • the fault determination device of this application which determines the relative position deviation of the synchronization phase through the sensor signals corresponding to the crankshaft and camshaft in the related art, and cannot determine the absolute position deviation, in this solution, when the engine meets the preset conditions, according to
  • the obtained ion current signal of each of the above-mentioned cylinders and the above-mentioned cylinder pressure peak position signal are used to determine whether the synchronization phase of the engine is faulty, thereby realizing the detection of the synchronization phase of the engine when there is no problem with the relative position of the synchronization phase of the engine.
  • the absolute position is used to judge the fault.
  • the synchronization phase of the engine is used for fault diagnosis, thereby achieving precise control of the engine ignition system and injection system, ensuring sufficient combustion of the engine, and ensuring good engine performance and emission levels.
  • the above-mentioned engine synchronization phase-related faults may be that the crankshaft does not have missing teeth, it may also be that there is no problem with the relative position of the engine's synchronization phases, or it may be that there is no missing signal from the sensor corresponding to the crankshaft and/or camshaft, It can also be that the signals of the sensors corresponding to the crankshaft and/or camshaft have no errors, etc.
  • the synchronization phase-related faults of the above-mentioned engines those skilled in the art can flexibly adjust them according to the actual engine operating conditions. I will not go into details here. .
  • the stable operating conditions of the above-mentioned engine can be that the engine is not in a sudden acceleration, emergency braking, or coasting in gear, etc.
  • the stable operating conditions of the above-mentioned engine are not limited to the above-listed situations. There are also other situations, which I won’t go into details here.
  • the above-mentioned engine can be a 6-cylinder engine, but is not limited to a 6-cylinder engine. It can also be an engine with other cylinder numbers. In this application, the above-mentioned engine is not limited. Those skilled in the art can make the engine according to actual conditions. Determine the appropriate engine based on operating conditions.
  • the above-mentioned first determination unit includes a first determination module, a calculation module and a second determination module, wherein the above-mentioned first determination module is used to determine whether the above-mentioned ion current signal of each of the above-mentioned cylinders is greater than the corresponding a first preset threshold; the calculation module is used to calculate the cylinder pressure peak position signal of each cylinder and the corresponding value when the ion current signals of all the cylinders are greater than the corresponding first preset threshold.
  • the absolute value of the difference between the preset peak position signals is used to obtain a plurality of first differences; the second determination module is used to determine whether the synchronization phase of the engine is faulty based on at least the plurality of first differences.
  • whether each cylinder has undergone effective combustion is determined by whether the ion current signal is greater than the first preset threshold. This can further avoid the problem of misjudgment of the synchronization phase of the engine.
  • the ion current of each cylinder is When the current signals are all greater than the first preset threshold, it is determined whether the synchronization phase of the engine is faulty based on the absolute value of the difference between the calculated cylinder pressure peak position signal and the preset position signal. This further ensures that the engine can be detected more accurately. Determine whether the engine's synchronization phase is faulty.
  • each cylinder in the above-mentioned engine corresponds to the above-mentioned first preset threshold.
  • the first cylinder corresponds to a first preset threshold. It is judged whether the ion current signal of the first cylinder is greater than the above-mentioned threshold of the first cylinder.
  • the first preset threshold is the same for other cylinders, so I won’t go into details here.
  • the first preset threshold of a certain cylinder can be determined by searching the third map according to the current rotation speed of the engine and the corresponding ignition advance angle of the cylinder.
  • each cylinder in the engine corresponds to one of the preset peak position signals.
  • the difference between the cylinder pressure peak position signal of each cylinder and the corresponding preset peak signal is calculated.
  • the absolute value is the absolute value of the difference calculated based on the cylinder pressure peak position signal of the above-mentioned cylinder and the preset cylinder pressure peak position signal of the cylinder. For example, based on the cylinder pressure peak position signal of the first cylinder and the cylinder pressure peak position signal of the first cylinder.
  • the preset cylinder pressure peak position signal of a cylinder is used to calculate the absolute value of the difference of the first cylinder.
  • all the cylinders of the above-mentioned engine can also correspond to the same first preset threshold and the same preset peak position signal, so the ion current signal of each cylinder of the above-mentioned engine can also be determined. Whether they are all greater than the same first preset threshold, when the ion current signals of all cylinders are greater than the first preset threshold, calculate the difference between the cylinder pressure peak position signal of each cylinder and the preset peak position signal. Absolute values are used to obtain multiple first difference values, and based on the multiple first difference values, it is determined whether the synchronization phase of the engine is faulty.
  • the preset cylinder pressure peak position signal of a certain cylinder can be determined by searching the fourth map through the current engine speed and the corresponding ignition advance angle of the cylinder, wherein the above-mentioned third map, fourth map The map is different from the first map and the second map in the embodiment below.
  • the above-mentioned second determination module includes a calculation sub-module, a first determination sub-module, a second determination sub-module and a third determination sub-module , wherein the above-mentioned calculation sub-module is used to average a plurality of the above-mentioned first difference values to obtain the target average value; the above-mentioned first determination sub-module is used to when the above-mentioned target average value is greater than or equal to the second preset threshold, Determine that there is a deviation in the cylinder pressure peak position of all the above-mentioned cylinders; the above-mentioned second determination sub-module is used to calculate a plurality of the above-mentioned values when the above-mentioned target average value is greater than or equal to the third preset threshold and less than the above-mentioned second preset threshold.
  • the difference between the first difference and the above-mentioned target average value is used to obtain a plurality of second differences, and based on the plurality of the above-mentioned second differences, it is determined whether the synchronization phase of the above-mentioned engine is faulty; the above-mentioned third determination sub-module is used to perform the above-mentioned When the target average value is less than the above-mentioned third preset threshold, it is re-determined whether the above-mentioned engine meets the above-mentioned preset conditions.
  • the above-mentioned target average value is greater than or equal to the second preset threshold, it indicates that the current combustion abnormality of the engine or the synchronization phase deviation is too large, and at this time it has exceeded the value that can be corrected and calibrated by the software. Therefore, in this case, it is necessary to report deviations in the peak cylinder pressure positions of all cylinders of the engine, and at the same time remind the user to perform further engine maintenance.
  • the above-mentioned second preset threshold and the above-mentioned third preset threshold are both determined by searching the fifth map according to the current engine speed and the average ignition advance angle of each cylinder, wherein the above-mentioned fifth map It is different from the above-mentioned third map, the fourth map and the first and second map below.
  • the above-mentioned second determination sub-module includes a determination sub-module, a fourth determination sub-module and a fifth determination sub-module, wherein the above-mentioned determination sub-module is used to determine whether the plurality of second differences are are all within the preset range; the above-mentioned fourth determination sub-module is used to determine that the synchronization phase of the engine fails when a plurality of the above-mentioned second differences are all within the above-mentioned preset range; the above-mentioned fifth determination sub-module is used to determine when When at least one of the above-mentioned second differences is not in the above-mentioned preset range, at least based on the above-mentioned cylinder pressure peak position signal corresponding to the above-mentioned cylinder with the above-mentioned second difference value not in the above-mentioned preset range, the ignition advance angle of the corresponding above-mentioned cylinder
  • the synchronization phase of the engine has deviated and the deviation in each cylinder is basically the same. That is to say, the cylinder of each cylinder of the engine
  • the voltage peak position signal has a fixed offset; if at least one of the above-mentioned second differences is not within the above-mentioned preset range, it indicates that it is caused by asynchronous phase deviation.
  • this application determines whether the cylinder pressure peak position signal of the engine has a fixed deviation by whether a plurality of second differences are within a preset range. shift instead of directly determining whether multiple first difference values are the same. That is to say, the fault determination method of this application also takes into account the acquisition error, which ensures that the fault determination method of this application can be more consistent with the actual operating conditions of the engine. Further, determine more accurately whether the synchronization phase of the engine is faulty.
  • the above-mentioned preset range can be a calibrated amount.
  • the above-mentioned preset range can be ⁇ 1°C.
  • the above-mentioned preset range is not limited to ⁇ 1°C and can also be other ranges. In this application, and The above preset range is not limited, and those skilled in the art can flexibly adjust it according to the actual operating conditions of the engine.
  • the plurality of second differences are all in the above-mentioned
  • the above-mentioned fault determination device further includes a second determination unit and a correction unit, wherein the above-mentioned second determination unit is used to determine the above-mentioned target average value as the synchronization of the above-mentioned engine. Phase deviation angle; the correction unit is used to correct the synchronization phase of the engine according to the synchronization phase deviation angle.
  • the fifth determination sub-module includes a first correction sub-module and a second correction sub-module, wherein the first correction sub-module is used to calculate the peak position signal of the cylinder pressure and the current engine pressure of the engine. Rotation speed, search the ignition advance angle correction value in the first map, and correct the ignition advance angle of the corresponding cylinder according to the ignition advance angle correction value; the second correction sub-module is used to correct the ignition advance angle according to the cylinder pressure peak position signal and the current speed of the engine, search the ignition charging time correction value in the second map, and correct the ignition charging time of the corresponding cylinder according to the ignition charging time correction value.
  • the ignition advance angle of the corresponding cylinder is corrected according to the ignition advance angle correction value obtained through the first map search, and the corresponding ignition advance angle is corrected according to the ignition charging time correction value obtained through the second map search.
  • the ignition charging time is corrected, which ensures that the ignition advance angle and ignition charging time of the corresponding cylinder are corrected more accurately, further ensuring that the corresponding cylinder can effectively burn.
  • the embodiment of the present application also provides a synchronization phase fault determination device. It should be noted that the synchronization phase fault determination device of the embodiment of the present application can be used to perform the synchronization phase fault determination provided by the embodiment of the present application. method. The synchronization phase fault determination device provided by the embodiment of the present application is introduced below.
  • the above-mentioned synchronization phase fault determination device includes a processor and a memory.
  • the above-mentioned acquisition unit and the first determination unit are stored in the memory as program units.
  • the processor executes the above-mentioned program units stored in the memory to implement corresponding functions.
  • the processor contains a core, which retrieves the corresponding program unit from the memory.
  • One or more cores can be set, and the problem in related technologies that it is difficult to accurately diagnose the engine's synchronization phase can be solved by adjusting the core parameters.
  • Memory may include non-permanent memory in computer-readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM).
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Embodiments of the present application provide a computer-readable storage medium on which a program is stored.
  • the program is executed by a processor, the above-mentioned synchronization phase fault determination method is implemented.
  • An embodiment of the present application provides a processor.
  • the processor is configured to run a program.
  • the program is running, the synchronization phase fault determination method is executed.
  • a vehicle in one embodiment, is also provided.
  • the vehicle includes an engine and a synchronization phase fault determination device.
  • the synchronization phase fault determination device is configured to perform any of the above synchronization phase fault determination methods.
  • the above-mentioned vehicle includes an engine and a synchronization phase fault determination device.
  • the above-mentioned synchronization phase fault determination device can also perform any of the above-mentioned synchronization phase fault determination methods.
  • the ion currents of multiple cylinders of the engine are obtained. signal and the cylinder pressure peak position signal.
  • the above-mentioned engine meets the preset conditions, it is determined whether the synchronization phase of the above-mentioned engine is faulty based on the acquired ion current signal of each of the above-mentioned cylinders and the above-mentioned cylinder pressure peak position signal, where,
  • the above-mentioned preset conditions include that the ignition system and injection system of the above-mentioned engine have no faults, the above-mentioned engine does not have synchronization phase-related faults, and the above-mentioned engine is in stable operating conditions.
  • the synchronization phase of the engine is used for fault diagnosis, thereby achieving precise control of the engine ignition system and injection system, ensuring sufficient combustion of the engine, and ensuring good engine performance and emission levels.
  • the embodiment of the present application provides a device.
  • the device includes a processor, a memory, and a program stored in the memory and executable on the processor.
  • the processor executes the program, it implements at least the following steps:
  • Step S101 obtain the ion current signal and the cylinder pressure peak position signal of each of the above cylinders;
  • Step S102 When the engine meets preset conditions, determine whether the synchronization phase of the engine is faulty based on at least the ion current signal of each cylinder and the cylinder pressure peak position signal.
  • the preset conditions include: the engine There are no faults in the ignition system and injection system, there are no synchronization phase-related faults in the above-mentioned engines, and the above-mentioned engines are in stable operating conditions.
  • the devices in this article can be servers, PCs, PADs, mobile phones, etc.
  • This application also provides a computer program product, which, when executed on a data processing device, is suitable for executing a program initialized with at least the following method steps:
  • Step S101 obtain the ion current signal and the cylinder pressure peak position signal of each of the above cylinders;
  • Step S102 When the engine meets preset conditions, determine whether the synchronization phase of the engine is faulty based on at least the ion current signal of each cylinder and the cylinder pressure peak position signal.
  • the preset conditions include: the engine There are no faults in the ignition system and injection system, there are no synchronization phase-related faults in the above-mentioned engines, and the above-mentioned engines are in stable operating conditions.
  • the above preset conditions include that the engine's ignition system and injection system are faultless, the engine has no synchronization phase-related faults, and the engine is in stable operating conditions.
  • the absolute value of the difference between the cylinder pressure peak position signal of each cylinder and the corresponding preset peak position signal is calculated to obtain a plurality of first difference.
  • the target average is calculated based on the plurality of first difference values. Afterwards, it is determined whether the target average value is greater than or equal to the second preset threshold. If the target average value is greater than the second preset threshold, it is reported that there is a deviation in the peak position of the engine's cylinder pressure. When the target average value is less than the second preset threshold, it is determined whether the target average value is greater than or equal to the third preset threshold and less than the second preset threshold. When the target average value is greater than or equal to the third preset threshold and less than the second preset threshold, a plurality of second difference values are calculated based on the target average value and the plurality of first difference values.
  • the angle correction value and correct the ignition advance angle of the corresponding cylinder according to the ignition advance angle correction value; according to the cylinder pressure peak position signal and the current engine speed, find the ignition charging time correction value in the second map, and based on The ignition charging time correction value corrects the ignition charging time of the corresponding cylinder.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above-mentioned units can be a logical function division.
  • multiple units or components can be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the units or modules may be in electrical or other forms.
  • the units described above as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the relevant technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, It includes several instructions to cause a computer device (which can be a personal computer, a server or a network device, etc.) to execute all or part of the steps of the above methods in various embodiments of the present application.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program code. .
  • the ion current signals and cylinder pressure peak position signals of multiple cylinders of the engine are obtained.
  • the ion current signal and the above-mentioned cylinder pressure peak position signal determine whether the synchronization phase of the above-mentioned engine is faulty, wherein the above-mentioned preset conditions include that the ignition system and injection system of the above-mentioned engine are not faulty, the above-mentioned engine does not have synchronization phase-related faults, and the above-mentioned engine is in Stable operating conditions.
  • the synchronization phase of the engine is used for fault diagnosis, thereby achieving precise control of the engine ignition system and injection system, ensuring sufficient combustion of the engine, and ensuring good engine performance and emission levels.
  • the acquisition unit is used to acquire the ion current signal and the cylinder pressure peak position signal of each of the above-mentioned cylinders; the first determination unit is used to obtain the ion current signal and the cylinder pressure peak position signal when the above-mentioned engine meets the preset conditions. , at least based on the above-mentioned ion current signal of each of the above-mentioned cylinders and the above-mentioned cylinder pressure peak position signal, determine whether the synchronization phase of the above-mentioned engine is faulty.
  • the above-mentioned preset conditions include: the ignition system and injection system of the above-mentioned engine are not faulty, and the above-mentioned engine does not exist Synchronization phase related faults and the above engine are in stable operating conditions.
  • the fault determination device of this application which determines the relative position deviation of the synchronization phase through the sensor signals corresponding to the crankshaft and camshaft in the related art, and cannot determine the absolute position deviation, in this solution, when the engine meets the preset conditions, according to The obtained ion current signal of each of the above-mentioned cylinders and the above-mentioned cylinder pressure peak position signal are used to determine whether the synchronization phase of the engine is faulty, thereby realizing the detection of the synchronization phase of the engine when there is no problem with the relative position of the synchronization phase of the engine.
  • the absolute position is used to judge the fault. Since this solution is judged when the engine meets the preset conditions, this ensures that it can more accurately determine whether the synchronization phase of the engine is faulty, thereby being able to deal with the problem of more accurate faults in related technologies.
  • the synchronization phase of the engine is used for fault diagnosis, thereby achieving precise control of the engine ignition system and injection system, ensuring sufficient combustion of the engine, and ensuring good engine performance and emission levels.
  • the vehicle of the present application includes an engine and a synchronization phase fault determination device.
  • the synchronization phase fault determination device can also perform any of the above synchronization phase fault determination methods.
  • multiple engine fault determination methods are obtained.
  • the ion current signal and the cylinder pressure peak position signal of the cylinder when the above-mentioned engine meets the preset conditions, determine whether the synchronization phase of the above-mentioned engine is based on the acquired ion current signal and the above-mentioned cylinder pressure peak position signal of each of the above-mentioned cylinders.
  • the above-mentioned preset conditions include that the ignition system and injection system of the above-mentioned engine are fault-free, the above-mentioned engine does not have synchronization phase-related faults, and the above-mentioned engine is in a stable operating condition.
  • the synchronization phase of the engine is used for fault diagnosis, thereby achieving precise control of the engine ignition system and injection system, ensuring sufficient combustion of the engine, and ensuring good engine performance and emission levels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

一种同步相位的故障确定方法,该故障确定方法包括:获取每个缸的离子电流信号以及缸压峰值位置信号;在发动机满足预设条件的情况下,至少根据每个缸的离子电流信号以及缸压峰值位置信号,确定发动机的同步相位是否故障,预设条件包括:发动机的点火系统和喷射系统无故障、发动机不存在同步相位相关故障以及发动机处于稳定运行的工况。还公开了一种同步相位的故障确定装置、一种计算机可读存储介质、一种处理器以及一种车辆。

Description

同步相位的故障确定方法、故障确定装置、处理器与车辆
本申请要求于2022年05月11日提交中国国家知识产权局、申请号为CN202210510059.X、发明名称为“同步相位的故障确定方法、故障确定装置、处理器与车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及发动机的技术领域,例如一种同步相位的故障确定方法、故障确定装置、计算机可读存储介质、处理器与车辆。
背景技术
现有的发动机同步相位诊断方法,一般是通过发动机曲轴信号和凸轮轴信号的相对位置偏差来确认的。由于存在因曲轴和凸轮轴的信号盘加工误差或装配误差,会造成曲轴信号和凸轮轴信号的相对位置无问题,但绝对位置出现偏差的问题,这样会造成发动机点火和喷射不准确,影响发动机正常燃烧,从而影响发动机的性能和排放水平,严重时造成发动机拉缸损坏。
发明内容
本申请提供一种同步相位的故障确定方法、故障确定装置、计算机可读存储介质、处理器与车辆,能够处理相关技术中难以较为准确地对发动机的同步相位进行故障诊断的问题。
根据本申请实施例的一个方面,提供了一种同步相位的故障确定方法,包括:发动机包括多个缸,所述故障确定方法包括:获取每个所述缸的离子电流信号以及缸压峰值位置信号;在所述发动机满足预设条件的情况下,至少根据每个所述缸的所述离子电流信号以及所述缸压峰值位置信号,确定所述发动机的同步相位是否故障,所述预设条件包括:所述发动机的点火系统和喷射系统无故障、所述发动机不存在同步相位相关故障以及所述发动机处于稳定运行的工况。
可选地,至少根据每个所述缸的所述离子电流信号以及所述缸压峰值位置信号,确定所述发动机的同步相位是否故障,包括:确定每个所述缸的所述离子电流信号是否大于对应的第一预设阈值;在所有的所述缸的所述离子电流信号均大于对应的所述第一预设阈值的情况下,计算每个所述缸的所述缸压峰值位置信号与对应的预设峰值位置信号的差值的绝对值,得到多个第一差值;至少根据多个所述第一差值,确定所述发动机的同步相位是否故障。
可选地,至少根据多个所述第一差值,确定所述发动机的同步相位是否故障,包括:对多个所述第一差值求平均,得到目标平均值;在所述目标平均值大于或者等于第二预设阈值的情况下,确定所有的所述缸的缸压峰值位置出现偏差;在所述目标平均值大于或者等于第三预设阈值且小于所述第二预设阈值的情况下,计算多个所述第一差值与所述目标 平均值的差值,得到多个第二差值,并根据多个所述第二差值,确定所述发动机的同步相位是否故障;在所述目标平均值小于所述第三预设阈值的情况下,重新确定所述发动机是否满足所述预设条件。
可选地,根据多个所述第二差值,确定所述发动机的同步相位是否故障,包括:判断多个所述第二差值是否均在预设范围内;在多个所述第二差值均在所述预设范围的情况下,确定发动机的同步相位发生故障;在至少一个所述第二差值不在所述预设范围的情况下,至少根据所述第二差值不在所述预设范围的所述缸对应的所述缸压峰值位置信号,对对应的所述缸的点火提前角和点火充电时间进行修正。
可选地,在多个所述第二差值均在所述预设范围的情况下,确定发动机的同步相位发生故障之后,所述故障确定方法还包括:将所述目标平均值确定为所述发动机的同步相位偏差角度;根据所述同步相位偏差角度,对所述发动机的同步相位进行修正。
可选地,在至少一个所述第二差值不在所述预设范围的情况下,至少根据所述第二差值不在所述预设范围的所述缸对应的所述缸压峰值位置信号,对对应的所述缸的点火提前角和点火充电时间进行修正,包括:根据所述缸压峰值位置信号以及所述发动机当前的转速,在第一脉谱图中查找点火提前角修正值,并根据所述点火提前角修正值对对应的所述缸的点火提前角进行修正;根据所述缸压峰值位置信号以及所述发动机当前的转速,在第二脉谱图中查找点火充电时间修正值,并根据所述点火充电时间修正值对对应的所述缸的点火充电时间进行修正。
根据本申请实施例的另一方面,还提供了一种同步相位的故障确定装置,包括:发动机包括多个缸,所述故障确定装置包括:获取单元,用于获取每个所述缸的离子电流信号以及缸压峰值位置信号;第一确定单元,用于在所述发动机满足预设条件的情况下,至少根据每个所述缸的所述离子电流信号以及所述缸压峰值位置信号,确定所述发动机的同步相位是否故障,所述预设条件包括:所述发动机的点火系统和喷射系统无故障、所述发动机不存在同步相位相关故障以及所述发动机处于稳定运行的工况。
根据本申请实施例的又一方面,还提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的程序,其中,所述程序执行任意一种所述的故障确定方法。
根据本申请实施例的再一方面,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行任意一种所述的故障确定方法。
根据本申请实施例的一方面,还提供了一种车辆,所述车辆包括发动机和同步相位的故障确定装置,所述同步相位的故障确定装置用于执行任意一种所述的同步相位的故障确定方法。
附图说明
图1示出了根据本申请的一种实施例的同步相位的故障确定方法的流程图;
图2示出了根据本申请的一种实施例的同步相位的故障确定装置的结构示意图;
图3示出了根据本申请的一种具体实施例的同步相位的故障确定方法的流程图。
具体实施方式
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
正如背景技术中所说的,相关技术中的难以较为准确地对发动机的同步相位进行故障诊断,为了解决上述问题,本申请的一种典型的实施方式中,提供了一种同步相位的故障确定方法、故障确定装置、计算机可读存储介质、处理器与车辆。
根据本申请的实施例,提供了一种同步相位的故障确定方法。本申请实施例所提供的同步相位的故障确定方法可以通过计算机设备实施,该计算机设备可以是终端设备或服务器,其中,服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云计算服务的云服务器。终端设备包括但不限于手机、电脑、智能语音交互设备、智能家电、车载终端设备等。终端设备以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本申请在此不做限制。
图1是根据本申请实施例的同步相位的故障确定方法的流程图。如图1所示,该故障确定方法包括以下步骤:
步骤S101,获取每个上述缸的离子电流信号以及缸压峰值位置信号;
步骤S102,在上述发动机满足预设条件的情况下,至少根据每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定上述发动机的同步相位是否故障,上述预设条件包括:上述发动机的点火系统和喷射系统无故障、上述发动机不存在同步相位相关故障以及上述发动机处于稳定运行的工况。
上述的同步相位的故障确定方法中,获取发动机多个缸的离子电流信号以及缸压峰值位置信号,在上述发动机满足预设条件的情况下,根据获取的每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定上述发动机的同步相位是否故障,其中,上述预设条件包括上述发动机的点火系统和喷射系统无故障、上述发动机不存在同步相位相关故障以及上述发动机处于稳定运行的工况。本申请的故障确定方法与相关技术中的通过曲轴和凸轮轴对应的传感器信号确定同步相位的相对位置偏差,无法确定绝对位置偏差相比,本方案中在发动机满足预设条件的情况下,根据获取到的每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定发动机的同步相位是否故障,实现了在发动机的同步相位的相对位置无问题的情况下,对发动机的同步相位的绝对位置进行故障判断,由于本方案是在发动机满足预设条件的情况下进行判断的,这样保证了可以对较为准确地确定发动机的同步相位是否故障,从而能够处理相关技术中难以较为准确地对发动机的同步相位进行故障诊断的问题,进而实现了对发动机点火系统和喷射系统的精确控制、保证了发动机的燃烧较为充分以及保证了发动机的性能和排放水平较好。
具体地,上述发动机的同步相位相关故障可以为曲轴不存在缺齿的问题,还可以为发 动机的同步相位的相对位置无问题,还可以为曲轴和/或凸轮轴对应的传感器的信号无缺失,还可以为曲轴和/或凸轮轴对应的传感器的信号无错误等等,对于上述发动机的同步相位相关故障,本领域技术人员可以根据实际的发动机工况进行灵活调整,这里不一一进行赘述了。
具体地,上述发动机的稳定运行工况可以为发动机并不处于一个突然加速、紧急刹车或者带档滑行等的工况,当然,上述发动机的稳定运行工况并不限于上述所列举的情况下,还可以为其他的情况下,这里不再一一赘述了。
具体地,上述发动机可以为6缸的发动机,但并不限于6缸的发动机,还可以为其他缸数的发动机,在本申请中,并不对上述发动机进行限制,本领域技术人员可以根据实际的工况确定合适的发动机。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请的一种实施例中,至少根据每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定上述发动机的同步相位是否故障,包括:确定每个上述缸的上述离子电流信号是否大于对应的第一预设阈值;在所有的上述缸的上述离子电流信号均大于对应的上述第一预设阈值的情况下,计算每个上述缸的上述缸压峰值位置信号与对应的预设峰值位置信号的差值的绝对值,得到多个第一差值;至少根据多个上述第一差值,确定上述发动机的同步相位是否故障。在该实施例中,通过离子电流信号是否大于第一预设阈值来确定每个缸是否进行了有效燃烧,这样可以进一步地避免对发动机的同步相位进行误判的问题,在每个缸的离子电流信号均大于第一预设阈值的情况下,根据计算的缸压峰值位置信号与预设位置信号的差值的绝对值,确定发动机的同步相位是否故障,这样进一步地保证了可以较为准确地确定发动机的同步相位是否故障。
具体地,上述发动机中的每一个缸均对应一个上述第一预设阈值,上述的实施例中,确定每个上述缸的上述离子电流信号是否大于对应的第一预设阈值,即为上述缸的上述离子电流信号是否大于该缸的第一预设阈值,例如,第一个缸对应有一个第一预设阈值,判断该第一个缸的离子电流信号是否大于该第一个缸的上述第一预设阈值,其他缸同理,这里不再一一赘述。
具体地,上述某一个缸的第一预设阈值可以根据上述发动机当前的转速以及该缸对应的点火提前角,查找第三脉谱图确定的。
具体地,上述发动机中的每一个缸均对应一个上述预设峰值位置信号,在上述实施例中,计算每个上述缸的上述缸压峰值位置信号与对应的上述预设峰值信号的差值的绝对值,即为根据上述缸的缸压峰值位置信号以及该缸的预设缸压峰值位置信号,计算其的差值的绝对值,例如,根据第一个缸的缸压峰值位置信号以及第一个缸的预设缸压峰值位置信号,计算第一个缸的差值的绝对值。
另外,在实际的应用过程中,上述发动机的所有缸还可以对应于同一个第一预设阈值以及对应于同一个预设峰值位置信号,故还可以确定上述发动机的每个缸的离子电流信号 是否均大于同一个第一预设阈值,在所有的缸的离子电流信号均大于第一预设阈值的情况下,计算每个缸的缸压峰值位置信号与预设峰值位置信号的差值的绝对值,得到多个第一差值,并根据多个第一差值,确定发动机的同步相位是否故障。
具体地,上述某一个缸的预设缸压峰值位置信号可以通过发动机当前的转速以及该缸对应的点火提前角,查找第四脉谱图确定的,其中,上述第三脉谱图、第四脉谱图、与下文实施例中的第一脉谱图和第二脉谱图均不相同。
为了进一步较为准确地确定发动机的同步相位是否故障,本申请的另一种实施例中,至少根据多个上述第一差值,确定上述发动机的同步相位是否故障,包括:对多个上述第一差值求平均,得到目标平均值;在上述目标平均值大于或者等于第二预设阈值的情况下,确定所有的上述缸的缸压峰值位置出现偏差;在上述目标平均值大于或者等于第三预设阈值且小于上述第二预设阈值的情况下,计算多个上述第一差值与上述目标平均值的差值,得到多个第二差值,并根据多个上述第二差值,确定上述发动机的同步相位是否故障;在上述目标平均值小于上述第三预设阈值的情况下,重新确定上述发动机是否满足上述预设条件。
具体地,在上述的实施例中,在上述目标平均值大于或者等于第二预设阈值的情况下,则表明发动机当前的燃烧异常或者同步相位偏差太大,此时已经超出软件可以修正校准的范围,因此,在这种情况下,需要报出发动机的所有缸的缸压峰值位置出现偏差,同时提醒用户对发动机进行进一步地检修。
具体地,上述第二预设阈值和上述第三预设阈值均是根据发动机当前的转速和每个缸的平均点火提前角,查找第五脉谱图确定的,其中,上述第五脉谱图与上述第三脉谱图、第四脉谱图以及下文第一脉谱图和第二脉谱图均不相同。
本申请的又一种实施例中,根据多个上述第二差值,确定上述发动机的同步相位是否故障,包括:判断多个上述第二差值是否均在预设范围内;在多个上述第二差值均在上述预设范围的情况下,确定发动机的同步相位发生故障;在至少一个上述第二差值不在上述预设范围的情况下,至少根据上述第二差值不在上述预设范围的上述缸对应的上述缸压峰值位置信号,对对应的上述缸的点火提前角和点火充电时间进行修正。具体地,在多个第二差值均在预设范围内的情况下,则表明发动机的同步相位发生了偏差且每个缸存在的偏差基本相同,也就是说,发动机的每个缸的缸压峰值位置信号发生了固定偏移;在至少一个上述第二差值不在上述预设范围内的情况下,则表明是非同步相位偏差引起的。
另外,为了使得本申请的故障确定方法可以较为符合发动机的实际运行工况,本申请是通过多个第二差值是否在预设范围内来判断发动机的缸压峰值位置信号是否发生了固定偏移,而不是直接判断多个第一差值是否相同,也就是说,本申请的故障确定方法还考虑到了采集误差,这样保证了本申请的故障确定方法可以较为符合发动机的实际运行工况,进一步地较为准确地确定发动机的同步相位是否故障。
具体地,上述预设范围可以为标定量,例如,上述预设范围可以为±1℃,当然,上述预设范围并不限于±1℃,还可以为其他的范围,在本申请中,并不对上述预设范围进行限制,本领域技术人员可以根据发动机的实际工况进行灵活调整。
为了较为准确地对发动机的同步相位进行修正,以及进一步地保证对发动机的点火系统和喷射系统的控制较为精确,本申请的再一种实施例中,在多个上述第二差值均在上述预设范围的情况下,确定发动机的同步相位发生故障之后,上述故障确定方法还包括:将上述目标平均值确定为上述发动机的同步相位偏差角度;根据上述同步相位偏差角度,对上述发动机的同步相位进行修正。
本申请的一种实施例中,在至少一个上述第二差值不在上述预设范围的情况下,至少根据上述第二差值不在上述预设范围的上述缸对应的上述缸压峰值位置信号,对对应的上述缸的点火提前角和点火充电时间进行修正,包括:根据上述缸压峰值位置信号以及上述发动机当前的转速,在第一脉谱图中查找点火提前角修正值,并根据上述点火提前角修正值对对应的上述缸的点火提前角进行修正;根据上述缸压峰值位置信号以及上述发动机当前的转速,在第二脉谱图中查找点火充电时间修正值,并根据上述点火充电时间修正值对对应的上述缸的点火充电时间进行修正。在该实施例中,根据通过第一脉谱图查找得到的点火提前角修正值对对应的缸的点火提前角进行修正,以及根据通过第二脉谱图查找得到的点火充电时间修正值对对应的点火充电时间进行修正,这样保证了对对应缸的点火提前角以及点火充电时间的修正较为准确,进一步地保证了对应的缸能够进行有效地燃烧。
本申请实施例还提供了一种同步相位的故障确定装置,需要说明的是,本申请实施例的同步相位的故障确定装置可以用于执行本申请实施例所提供的用于同步相位的故障确定方法。以下对本申请实施例提供的同步相位的故障确定装置进行介绍。
图2是根据本申请实施例的同步相位的故障确定装置的结构示意图。如图2所示,该故障确定装置包括:
获取单元10,用于获取每个上述缸的离子电流信号以及缸压峰值位置信号;
第一确定单元20,用于在上述发动机满足预设条件的情况下,至少根据每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定上述发动机的同步相位是否故障,上述预设条件包括:上述发动机的点火系统和喷射系统无故障、上述发动机不存在同步相位相关故障以及上述发动机处于稳定运行的工况。
上述的同步相位的故障确定装置中,获取单元用于获取每个上述缸的离子电流信号以及缸压峰值位置信号;第一确定单元用于在上述发动机满足预设条件的情况下,至少根据每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定上述发动机的同步相位是否故障,上述预设条件包括:上述发动机的点火系统和喷射系统无故障、上述发动机不存在同步相位相关故障以及上述发动机处于稳定运行的工况。本申请的故障确定装置与相关技术中的通过曲轴和凸轮轴对应的传感器信号确定同步相位的相对位置偏差,无法确定绝对位置偏差相比,本方案中在发动机满足预设条件的情况下,根据获取到的每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定发动机的同步相位是否故障,实现了在发动机的同步相位的相对位置无问题的情况下,对发动机的同步相位的绝对位置进行故障判断,由于本方案是在发动机满足预设条件的情况下进行判断的,这样保证了可以对较为准确地确定发动机的同步相位是否故障,从而能够处理相关技术中难以较为准确地对发动机的同步相位进行故障诊断的问题,进而实现了对发动机点火系统和喷射系统的精确 控制、保证了发动机的燃烧较为充分以及保证了发动机的性能和排放水平较好。
具体地,上述发动机的同步相位相关故障可以为曲轴不存在缺齿的问题,还可以为发动机的同步相位的相对位置无问题,还可以为曲轴和/或凸轮轴对应的传感器的信号无缺失,还可以为曲轴和/或凸轮轴对应的传感器的信号无错误等等,对于上述发动机的同步相位相关故障,本领域技术人员可以根据实际的发动机工况进行灵活调整,这里不一一进行赘述了。
具体地,上述发动机的稳定运行工况可以为发动机并不处于一个突然加速、紧急刹车或者带档滑行等的工况,当然,上述发动机的稳定运行工况并不限于上述所列举的情况下,还可以为其他的情况下,这里不再一一赘述了。
具体地,上述发动机可以为6缸的发动机,但并不限于6缸的发动机,还可以为其他缸数的发动机,在本申请中,并不对上述发动机进行限制,本领域技术人员可以根据实际的工况确定合适的发动机。
本申请的一种实施例中,上述第一确定单元包括第一确定模块、计算模块和第二确定模块,其中,上述第一确定模块用于确定每个上述缸的上述离子电流信号是否大于对应的第一预设阈值;上述计算模块用于在所有的上述缸的上述离子电流信号均大于对应的上述第一预设阈值的情况下,计算每个上述缸的上述缸压峰值位置信号与对应的预设峰值位置信号的差值的绝对值,得到多个第一差值;上述第二确定模块用于至少根据多个上述第一差值,确定上述发动机的同步相位是否故障。在该实施例中,通过离子电流信号是否大于第一预设阈值来确定每个缸是否进行了有效燃烧,这样可以进一步地避免对发动机的同步相位进行误判的问题,在每个缸的离子电流信号均大于第一预设阈值的情况下,根据计算的缸压峰值位置信号与预设位置信号的差值的绝对值,确定发动机的同步相位是否故障,这样进一步地保证了可以较为准确地确定发动机的同步相位是否故障。
具体地,上述发动机中的每一个缸均对应一个上述第一预设阈值,上述的实施例中,确定每个上述缸的上述离子电流信号是否大于对应的第一预设阈值,即为上述缸的上述离子电流信号是否大于该缸的第一预设阈值,例如,第一个缸对应有一个第一预设阈值,判断该第一个缸的离子电流信号是否大于该第一个缸的上述第一预设阈值,其他缸同理,这里不再一一赘述。
具体地,上述某一个缸的第一预设阈值可以根据上述发动机当前的转速以及该缸对应的点火提前角,查找第三脉谱图确定的。
具体地,上述发动机中的每一个缸均对应一个上述预设峰值位置信号,在上述实施例中,计算每个上述缸的上述缸压峰值位置信号与对应的上述预设峰值信号的差值的绝对值,即为根据上述缸的缸压峰值位置信号以及该缸的预设缸压峰值位置信号,计算其的差值的绝对值,例如,根据第一个缸的缸压峰值位置信号以及第一个缸的预设缸压峰值位置信号,计算第一个缸的差值的绝对值。
另外,在实际的应用过程中,上述发动机的所有缸还可以对应于同一个第一预设阈值以及对应于同一个预设峰值位置信号,故还可以确定上述发动机的每个缸的离子电流信号是否均大于同一个第一预设阈值,在所有的缸的离子电流信号均大于第一预设阈值的情况 下,计算每个缸的缸压峰值位置信号与预设峰值位置信号的差值的绝对值,得到多个第一差值,并根据多个第一差值,确定发动机的同步相位是否故障。
具体地,上述某一个缸的预设缸压峰值位置信号可以通过发动机当前的转速以及该缸对应的点火提前角,查找第四脉谱图确定的,其中,上述第三脉谱图、第四脉谱图、与下文实施例中的第一脉谱图和第二脉谱图均不相同。
为了进一步较为准确地确定发动机的同步相位是否故障,本申请的另一种实施例中,上述第二确定模块包括计算子模块、第一确定子模块、第二确定子模块以及第三确定子模块,其中,上述计算子模块用于对多个上述第一差值求平均,得到目标平均值;上述第一确定子模块用于在上述目标平均值大于或者等于第二预设阈值的情况下,确定所有的上述缸的缸压峰值位置出现偏差;上述第二确定子模块用于在上述目标平均值大于或者等于第三预设阈值且小于上述第二预设阈值的情况下,计算多个上述第一差值与上述目标平均值的差值,得到多个第二差值,并根据多个上述第二差值,确定上述发动机的同步相位是否故障;上述第三确定子模块用于在上述目标平均值小于上述第三预设阈值的情况下,重新确定上述发动机是否满足上述预设条件。
具体地,在上述的实施例中,在上述目标平均值大于或者等于第二预设阈值的情况下,则表明发动机当前的燃烧异常或者同步相位偏差太大,此时已经超出软件可以修正校准的范围,因此,在这种情况下,需要报出发动机的所有缸的缸压峰值位置出现偏差,同时提醒用户对发动机进行进一步地检修。
具体地,上述第二预设阈值和上述第三预设阈值均是根据发动机当前的转速和每个缸的平均点火提前角,查找第五脉谱图确定的,其中,上述第五脉谱图与上述第三脉谱图、第四脉谱图以及下文第一脉谱图和第二脉谱图均不相同。
本申请的又一种实施例中,上述第二确定子模块包括判断子模块、第四确定子模块以及第五确定子模块,其中,上述判断子模块用于判断多个上述第二差值是否均在预设范围内;上述第四确定子模块用于在多个上述第二差值均在上述预设范围的情况下,确定发动机的同步相位发生故障;上述第五确定子模块用于在至少一个上述第二差值不在上述预设范围的情况下,至少根据上述第二差值不在上述预设范围的上述缸对应的上述缸压峰值位置信号,对对应的上述缸的点火提前角和点火充电时间进行修正。具体地,在多个第二差值均在预设范围内的情况下,则表明发动机的同步相位发生了偏差且每个缸存在的偏差基本相同,也就是说,发动机的每个缸的缸压峰值位置信号发生了固定偏移;在至少一个上述第二差值不在上述预设范围内的情况下,则表明是非同步相位偏差引起的。
另外,为了使得本申请的故障确定方法可以较为符合发动机的实际运行工况,本申请是通过多个第二差值是否在预设范围内来判断发动机的缸压峰值位置信号是否发生了固定偏移,而不是直接判断多个第一差值是否相同,也就是说,本申请的故障确定方法还考虑到了采集误差,这样保证了本申请的故障确定方法可以较为符合发动机的实际运行工况,进一步地较为准确地确定发动机的同步相位是否故障。
具体地,上述预设范围可以为标定量,例如,上述预设范围可以为±1℃,当然,上述预设范围并不限于±1℃,还可以为其他的范围,在本申请中,并不对上述预设范围进行限 制,本领域技术人员可以根据发动机的实际工况进行灵活调整。
为了较为准确地对发动机的同步相位进行修正,以及进一步地保证对发动机的点火系统和喷射系统的控制较为精确,本申请的再一种实施例中,在多个上述第二差值均在上述预设范围的情况下,确定发动机的同步相位发生故障之后,上述故障确定装置还包括第二确定单元和修正单元,其中,上述第二确定单元用于将上述目标平均值确定为上述发动机的同步相位偏差角度;上述修正单元用于根据上述同步相位偏差角度,对上述发动机的同步相位进行修正。
本申请的一种实施例中,上述第五确定子模块包括第一修正子模块和第二修正子模块,其中,上述第一修正子模块用于根据上述缸压峰值位置信号以及上述发动机当前的转速,在第一脉谱图中查找点火提前角修正值,并根据上述点火提前角修正值对对应的上述缸的点火提前角进行修正;上述第二修正子模块用于根据上述缸压峰值位置信号以及上述发动机当前的转速,在第二脉谱图中查找点火充电时间修正值,并根据上述点火充电时间修正值对对应的上述缸的点火充电时间进行修正。在该实施例中,根据通过第一脉谱图查找得到的点火提前角修正值对对应的缸的点火提前角进行修正,以及根据通过第二脉谱图查找得到的点火充电时间修正值对对应的点火充电时间进行修正,这样保证了对对应缸的点火提前角以及点火充电时间的修正较为准确,进一步地保证了对应的缸能够进行有效地燃烧。
本申请实施例还提供了一种同步相位的故障确定装置,需要说明的是,本申请实施例的同步相位的故障确定装置可以用于执行本申请实施例所提供的用于同步相位的故障确定方法。以下对本申请实施例提供的同步相位的故障确定装置进行介绍。
上述同步相位的故障确定装置包括处理器和存储器,上述获取单元和第一确定单元等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序单元来实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来解决相关技术中难以较为准确地对发动机的同步相位进行故障诊断的问题。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
本申请实施例提供了一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现上述同步相位的故障确定方法。
本申请实施例提供了一种处理器,上述处理器用于运行程序,其中,上述程序运行时执行上述同步相位的故障确定方法。
本申请的一种实施例中,还提供了一种车辆,该车辆包括发动机和同步相位的故障确定装置,上述同步相位的故障确定装置用于执行任意一种上述的同步相位的故障确定方法。
上述的车辆包括发动机和同步相位的故障确定装置,上述同步相位的故障确定装置还可以执行任意一种上述的同步相位的故障确定方法,上述的故障确定方法中,获取发动机多个缸的离子电流信号以及缸压峰值位置信号,在上述发动机满足预设条件的情况下,根 据获取的每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定上述发动机的同步相位是否故障,其中,上述预设条件包括上述发动机的点火系统和喷射系统无故障、上述发动机不存在同步相位相关故障以及上述发动机处于稳定运行的工况。本申请的故障确定方法与相关技术中的通过曲轴和凸轮轴对应的传感器信号确定同步相位的相对位置偏差,无法确定绝对位置偏差相比,本方案中在发动机满足预设条件的情况下,根据获取到的每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定发动机的同步相位是否故障,实现了在发动机的同步相位的相对位置无问题的情况下,对发动机的同步相位的绝对位置进行故障判断,由于本方案是在发动机满足预设条件的情况下进行判断的,这样保证了可以对较为准确地确定发动机的同步相位是否故障,从而能够处理相关技术中难以较为准确地对发动机的同步相位进行故障诊断的问题,进而实现了对发动机点火系统和喷射系统的精确控制、保证了发动机的燃烧较为充分以及保证了发动机的性能和排放水平较好。
本申请实施例提供了一种设备,设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现至少以下步骤:
步骤S101,获取每个上述缸的离子电流信号以及缸压峰值位置信号;
步骤S102,在上述发动机满足预设条件的情况下,至少根据每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定上述发动机的同步相位是否故障,上述预设条件包括:上述发动机的点火系统和喷射系统无故障、上述发动机不存在同步相位相关故障以及上述发动机处于稳定运行的工况。
本文中的设备可以是服务器、PC、PAD、手机等。
本申请还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有至少如下方法步骤的程序:
步骤S101,获取每个上述缸的离子电流信号以及缸压峰值位置信号;
步骤S102,在上述发动机满足预设条件的情况下,至少根据每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定上述发动机的同步相位是否故障,上述预设条件包括:上述发动机的点火系统和喷射系统无故障、上述发动机不存在同步相位相关故障以及上述发动机处于稳定运行的工况。
为了本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例来说明本申请的技术方案和技术效果。
实施例
如图3所示,首先获取发动机当前的转速、点火提前角、每个缸的缸压峰值位置信号以及离子电流信号。再判断发动机是否满足预设条件,上述预设条件包括发动机的点火系统以及喷射系统无故障、发动机无同步相位相关故障以及发动机处于稳定运行工况。在发动机满足预设条件的情况下,再判断每个缸的离子电流信号是否大于对应的第一预设阈值。在每个缸的离子电流信号大于对应的第一预设阈值的情况下,计算每个缸的缸压峰值位置信号与对应的预设峰值位置信号的差值的绝对值,得到多个第一差值。之后,根据多个第一差值,计算目标平均值。之后,判断目标平均值是否大于或者等于第二预设阈值,在目 标平均值大于第二预设阈值的情况下,报出发动机的缸压的峰值位置出现偏差。在目标平均值小于第二预设阈值的情况下,判断目标平均值是否为大于或者等于第三预设阈值且小于第二预设阈值。在目标平均值大于或者等于第三预设阈值且小于第二预设阈值的情况下,根据目标平均值以及多个第一差值,计算多个第二差值。并判断多个第二差值是否在预设范围内,在目标平均值小于第三预设阈值的情况下,重新确定发动机是否满足预设条件。在多个第二差值均在预设范围内的情况下,报出发动机同步相位故障,并将目标平均值确定为同步相位偏差角度,且根据同步相位偏差角度对发动机的同步相位进行修正。在存在至少一个第二差值不在预设范围内的情况下,根据第二差值不满足预设范围的缸的缸压峰值信号以及发动机当前的转速,在第一脉谱图中查找点火提前角修正值,并根据点火提前角修正值对对应的缸的点火提前角进行修正;根据缸压峰值位置信号以及发动机当前的转速,在第二脉谱图中查找点火充电时间修正值,并根据点火充电时间修正值对对应的缸的点火充电时间进行修正。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例上述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
从以上的描述中,可以看出:
1)、本申请的同步相位的故障确定方法中,获取发动机多个缸的离子电流信号以及缸压峰值位置信号,在上述发动机满足预设条件的情况下,根据获取的每个上述缸的上述离 子电流信号以及上述缸压峰值位置信号,确定上述发动机的同步相位是否故障,其中,上述预设条件包括上述发动机的点火系统和喷射系统无故障、上述发动机不存在同步相位相关故障以及上述发动机处于稳定运行的工况。本申请的故障确定方法与相关技术中的通过曲轴和凸轮轴对应的传感器信号确定同步相位的相对位置偏差,无法确定绝对位置偏差相比,本方案中在发动机满足预设条件的情况下,根据获取到的每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定发动机的同步相位是否故障,实现了在发动机的同步相位的相对位置无问题的情况下,对发动机的同步相位的绝对位置进行故障判断,由于本方案是在发动机满足预设条件的情况下进行判断的,这样保证了可以对较为准确地确定发动机的同步相位是否故障,从而能够处理相关技术中难以较为准确地对发动机的同步相位进行故障诊断的问题,进而实现了对发动机点火系统和喷射系统的精确控制、保证了发动机的燃烧较为充分以及保证了发动机的性能和排放水平较好。
2)、本申请的同步相位的故障确定装置中,获取单元用于获取每个上述缸的离子电流信号以及缸压峰值位置信号;第一确定单元用于在上述发动机满足预设条件的情况下,至少根据每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定上述发动机的同步相位是否故障,上述预设条件包括:上述发动机的点火系统和喷射系统无故障、上述发动机不存在同步相位相关故障以及上述发动机处于稳定运行的工况。本申请的故障确定装置与相关技术中的通过曲轴和凸轮轴对应的传感器信号确定同步相位的相对位置偏差,无法确定绝对位置偏差相比,本方案中在发动机满足预设条件的情况下,根据获取到的每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定发动机的同步相位是否故障,实现了在发动机的同步相位的相对位置无问题的情况下,对发动机的同步相位的绝对位置进行故障判断,由于本方案是在发动机满足预设条件的情况下进行判断的,这样保证了可以对较为准确地确定发动机的同步相位是否故障,从而能够处理相关技术中难以较为准确地对发动机的同步相位进行故障诊断的问题,进而实现了对发动机点火系统和喷射系统的精确控制、保证了发动机的燃烧较为充分以及保证了发动机的性能和排放水平较好。
3)、本申请的车辆包括发动机和同步相位的故障确定装置,上述同步相位的故障确定装置还可以执行任意一种上述的同步相位的故障确定方法,上述的故障确定方法中,获取发动机多个缸的离子电流信号以及缸压峰值位置信号,在上述发动机满足预设条件的情况下,根据获取的每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定上述发动机的同步相位是否故障,其中,上述预设条件包括上述发动机的点火系统和喷射系统无故障、上述发动机不存在同步相位相关故障以及上述发动机处于稳定运行的工况。本申请的故障确定方法与相关技术中的通过曲轴和凸轮轴对应的传感器信号确定同步相位的相对位置偏差,无法确定绝对位置偏差相比,本方案中在发动机满足预设条件的情况下,根据获取到的每个上述缸的上述离子电流信号以及上述缸压峰值位置信号,确定发动机的同步相位是否故障,实现了在发动机的同步相位的相对位置无问题的情况下,对发动机的同步相位的绝对位置进行故障判断,由于本方案是在发动机满足预设条件的情况下进行判断的,这样保证了可以对较为准确地确定发动机的同步相位是否故障,从而能够处理相关技术中难以较为准确地对发动机的同步相位进行故障诊断的问题,进而实现了对发动机点火系统 和喷射系统的精确控制、保证了发动机的燃烧较为充分以及保证了发动机的性能和排放水平较好。

Claims (10)

  1. 一种同步相位的故障确定方法,发动机包括多个缸,所述故障确定方法包括:
    获取每个所述缸的离子电流信号以及缸压峰值位置信号;
    在所述发动机满足预设条件的情况下,至少根据每个所述缸的所述离子电流信号以及所述缸压峰值位置信号,确定所述发动机的同步相位是否故障,所述预设条件包括:所述发动机的点火系统和喷射系统无故障、所述发动机不存在同步相位相关故障以及所述发动机处于稳定运行的工况。
  2. 根据权利要求1所述的故障确定方法,其中,至少根据每个所述缸的所述离子电流信号以及所述缸压峰值位置信号,确定所述发动机的同步相位是否故障,包括:
    确定每个所述缸的所述离子电流信号是否大于对应的第一预设阈值;
    在所有的所述缸的所述离子电流信号均大于对应的所述第一预设阈值的情况下,计算每个所述缸的所述缸压峰值位置信号与对应的预设峰值位置信号的差值的绝对值,得到多个第一差值;
    至少根据多个所述第一差值,确定所述发动机的同步相位是否故障。
  3. 根据权利要求2所述的故障确定方法,其中,至少根据多个所述第一差值,确定所述发动机的同步相位是否故障,包括:
    对多个所述第一差值求平均,得到目标平均值;
    在所述目标平均值大于或者等于第二预设阈值的情况下,确定所有的所述缸的缸压峰值位置出现偏差;
    在所述目标平均值大于或者等于第三预设阈值且小于所述第二预设阈值的情况下,计算多个所述第一差值与所述目标平均值的差值,得到多个第二差值,并根据多个所述第二差值,确定所述发动机的同步相位是否故障;
    在所述目标平均值小于所述第三预设阈值的情况下,重新确定所述发动机是否满足所述预设条件。
  4. 根据权利要求3所述的故障确定方法,其中,根据多个所述第二差值,确定所述发动机的同步相位是否故障,包括:
    判断多个所述第二差值是否均在预设范围内;
    在多个所述第二差值均在所述预设范围的情况下,确定发动机的同步相位发生故障;
    在至少一个所述第二差值不在所述预设范围的情况下,至少根据所述第二差值不在所述预设范围的所述缸对应的所述缸压峰值位置信号,对对应的所述缸的点火提前角和点火充电时间进行修正。
  5. 根据权利要求4所述的故障确定方法,在多个所述第二差值均在所述预设范围的情况下,确定发动机的同步相位发生故障之后,所述故障确定方法还包括:
    将所述目标平均值确定为所述发动机的同步相位偏差角度;
    根据所述同步相位偏差角度,对所述发动机的同步相位进行修正。
  6. 根据权利要求4所述的故障确定方法,其中,在至少一个所述第二差值不在所述预设范围的情况下,至少根据所述第二差值不在所述预设范围的所述缸对应的所述缸压峰值 位置信号,对对应的所述缸的点火提前角和点火充电时间进行修正,包括:
    根据所述缸压峰值位置信号以及所述发动机当前的转速,在第一脉谱图中查找点火提前角修正值,并根据所述点火提前角修正值对对应的所述缸的点火提前角进行修正;
    根据所述缸压峰值位置信号以及所述发动机当前的转速,在第二脉谱图中查找点火充电时间修正值,并根据所述点火充电时间修正值对对应的所述缸的点火充电时间进行修正。
  7. 一种同步相位的故障确定装置,发动机包括多个缸,所述故障确定装置包括:
    获取单元,用于获取每个所述缸的离子电流信号以及缸压峰值位置信号;
    第一确定单元,用于在所述发动机满足预设条件的情况下,至少根据每个所述缸的所述离子电流信号以及所述缸压峰值位置信号,确定所述发动机的同步相位是否故障,所述预设条件包括:所述发动机的点火系统和喷射系统无故障、所述发动机不存在同步相位相关故障以及所述发动机处于稳定运行的工况。
  8. 一种计算机可读存储介质,所述计算机可读存储介质包括存储的程序,其中,所述程序执行权利要求1至6中任意一项所述的故障确定方法。
  9. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至6中任意一项所述的故障确定方法。
  10. 一种车辆,包括:发动机和同步相位的故障确定装置,所述同步相位的故障确定装置用于执行权利要求1至6中任意一项所述的同步相位的故障确定方法。
PCT/CN2022/143612 2022-05-11 2022-12-29 同步相位的故障确定方法、故障确定装置、处理器与车辆 WO2023216627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210510059.XA CN114738133B (zh) 2022-05-11 2022-05-11 同步相位的故障确定方法、故障确定装置、处理器与车辆
CN202210510059.X 2022-05-11

Publications (1)

Publication Number Publication Date
WO2023216627A1 true WO2023216627A1 (zh) 2023-11-16

Family

ID=82285377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143612 WO2023216627A1 (zh) 2022-05-11 2022-12-29 同步相位的故障确定方法、故障确定装置、处理器与车辆

Country Status (2)

Country Link
CN (1) CN114738133B (zh)
WO (1) WO2023216627A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738133B (zh) * 2022-05-11 2023-03-21 潍柴动力股份有限公司 同步相位的故障确定方法、故障确定装置、处理器与车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020798A (ja) * 1999-07-12 2001-01-23 Toyota Motor Corp 可変動弁装置の異常検出装置
JP2007270728A (ja) * 2006-03-31 2007-10-18 Mazda Motor Corp バルブタイミング制御装置の診断装置
US20090055074A1 (en) * 2007-08-21 2009-02-26 Honda Motor Co., Ltd. Control for determining a firing timing of an internal-combustion engine
CN105508069A (zh) * 2016-02-23 2016-04-20 无锡威孚高科技集团股份有限公司 曲轴信号故障时利用凸轮轴信号实现车辆跛行的方法及其凸轮轴信号获取装置
CN113847154A (zh) * 2021-11-02 2021-12-28 潍柴动力股份有限公司 一种喷射阀故障检测方法和装置
CN114738133A (zh) * 2022-05-11 2022-07-12 潍柴动力股份有限公司 同步相位的故障确定方法、故障确定装置、处理器与车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7134423B2 (en) * 2002-11-01 2006-11-14 Visteon Global Technologies, Inc. Ignition diagnosis and combustion feedback control system using an ionization signal
JP2007132223A (ja) * 2005-11-08 2007-05-31 Denso Corp 点火タイミング制御装置
JP2007290663A (ja) * 2006-04-27 2007-11-08 Toyota Motor Corp 内燃機関の故障検出装置
JP5142087B2 (ja) * 2008-04-16 2013-02-13 トヨタ自動車株式会社 内燃機関のイオン電流検出装置
US9951741B2 (en) * 2013-03-11 2018-04-24 Wayne State University Predictive correction in internal combustion engines
US11187201B1 (en) * 2021-02-08 2021-11-30 Fca Us Llc Ion current sensing for estimation of combustion phasing in an internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020798A (ja) * 1999-07-12 2001-01-23 Toyota Motor Corp 可変動弁装置の異常検出装置
JP2007270728A (ja) * 2006-03-31 2007-10-18 Mazda Motor Corp バルブタイミング制御装置の診断装置
US20090055074A1 (en) * 2007-08-21 2009-02-26 Honda Motor Co., Ltd. Control for determining a firing timing of an internal-combustion engine
JP2009047106A (ja) * 2007-08-21 2009-03-05 Honda Motor Co Ltd 内燃機関の着火時期を判定するための制御装置
CN105508069A (zh) * 2016-02-23 2016-04-20 无锡威孚高科技集团股份有限公司 曲轴信号故障时利用凸轮轴信号实现车辆跛行的方法及其凸轮轴信号获取装置
CN113847154A (zh) * 2021-11-02 2021-12-28 潍柴动力股份有限公司 一种喷射阀故障检测方法和装置
CN114738133A (zh) * 2022-05-11 2022-07-12 潍柴动力股份有限公司 同步相位的故障确定方法、故障确定装置、处理器与车辆

Also Published As

Publication number Publication date
CN114738133B (zh) 2023-03-21
CN114738133A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2023216627A1 (zh) 同步相位的故障确定方法、故障确定装置、处理器与车辆
US8392094B2 (en) Control apparatus for an internal combustion engine
JP2019027349A (ja) 内燃機関制御システム
US4527526A (en) Ignition timing control system for internal combustion engine
US20160222893A1 (en) Misfire detection device
CN110230540B (zh) 一种故障确定方法及装置
JP4920092B2 (ja) ノックセンサ装置
JP2001355556A (ja) 内燃機関用ノック制御装置
JP4589956B2 (ja) 点火制御装置
WO2019015350A1 (zh) 一种电机控制模式故障检测方法及装置
US20220034685A1 (en) Method for determining the position of a motor vehicle crankshaft
US10746113B2 (en) Method for compensating noise of crank sensor
US20150363426A1 (en) Method and Device for Recording System Log
CN113187617B (zh) 发动机保护控制方法、装置、设备及存储介质
JPH0299774A (ja) 内燃機関の気筒識別装置
CN110912488B (zh) 电机控制方法和系统
US11836057B2 (en) Fault location in a redundant acquisition system
CN113982806A (zh) 发动机点火提前角的确定方法、装置及计算机存储介质
JP5115507B2 (ja) 筒内圧センサの故障診断装置
US9239014B2 (en) Automotive control device and period measurement method for the same
JP2002180890A (ja) エンジンの気筒判別装置
CN115142975B (zh) 喷油提前角的确定方法、控制器及计算机可读存储介质
WO2024034223A1 (ja) 内燃機関の診断装置及び診断方法
US20230327522A1 (en) Method for fault processing of hall position sensor in brushless direct current motor
KR100692732B1 (ko) 엔진회전수센서 고장시의 캠샤프트포지션센서 동기화방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941559

Country of ref document: EP

Kind code of ref document: A1