WO2023216464A1 - 一种光刻设备中的硅片承载装置 - Google Patents

一种光刻设备中的硅片承载装置 Download PDF

Info

Publication number
WO2023216464A1
WO2023216464A1 PCT/CN2022/115005 CN2022115005W WO2023216464A1 WO 2023216464 A1 WO2023216464 A1 WO 2023216464A1 CN 2022115005 W CN2022115005 W CN 2022115005W WO 2023216464 A1 WO2023216464 A1 WO 2023216464A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
outlet
inlet
annular
air channel
Prior art date
Application number
PCT/CN2022/115005
Other languages
English (en)
French (fr)
Inventor
王军
张利
朱啸爽
Original Assignee
北京华卓精科科技股份有限公司
北京优微精密测控技术研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京华卓精科科技股份有限公司, 北京优微精密测控技术研究有限公司 filed Critical 北京华卓精科科技股份有限公司
Publication of WO2023216464A1 publication Critical patent/WO2023216464A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Definitions

  • the present application relates to the field of silicon wafer carrying technology, and specifically, to a silicon wafer carrying device in a photolithography equipment.
  • the silicon wafer carrying device in the lithography equipment is an important component in the ultra-precision lithography equipment and is a key factor that directly affects the success of the silicon wafer exposure, which is the molding object of the lithography machine.
  • the silicon wafer carrying device in commonly used lithography equipment mostly carries the silicon wafer in the form of vacuum adsorption. There is an air channel on it, and the vacuum gas is used to adsorb the silicon wafer.
  • air channel forms include built-in and There are two types of external air channels. Since the external air channels have problems such as taking up a large space and not being tightly sealed with the supporting surface, the built-in air channels of the device carrying the silicon wafer are often used. However, existing lithography equipment has built-in air channels.
  • the silicon wafer carrying device of the air channel adsorbs and supports the silicon wafer, although it solves the problem of large space occupation and can also adsorb and support the silicon wafer to a certain extent, in order to ensure the adsorption effect of the silicon wafer, there will be liquid above the silicon wafer Too fast loss affects the exposure accuracy of the silicon wafer, and it is also prone to warping of the silicon wafer.
  • the purpose of this application is to provide a silicon wafer carrying device in lithography equipment to alleviate the problems in the prior art that the silicon wafer carrying device in lithography equipment easily causes the silicon wafer to warp and the liquid above the silicon wafer to drain too quickly. And technical issues that affect exposure accuracy.
  • the silicon wafer carrying device in the photolithography equipment provided by this application includes a carrier body, the top of the carrier body is configured to carry the silicon wafer.
  • a blocking ring is fixedly connected to the top edge of the carrier body.
  • the blocking ring surrounds the bearing area of the carrier body, and there is an annular ring between the portion of the blocking ring close to the inner ring and the carrier body. aisle.
  • a first air channel is provided on the carrier, and the first air channel has a first inlet and a first outlet.
  • the first inlet is configured to be connected to a vacuum pump;
  • the first outlet includes a plurality of main outlets and A plurality of auxiliary outlets, the main outlet is arranged opposite to the blocking ring, and the main outlet communicates with the annular channel, the auxiliary outlet is opposite to the edge of the load-bearing area, and the cross-sectional area of the plurality of main outlets is The sum is greater than the sum of the cross-sectional areas of the auxiliary outlets.
  • annular liquid accumulation tank is provided on the carrier body, the main outlet is located at the bottom of the annular liquid accumulation tank, and the annular liquid accumulation tank is arranged opposite to the blocking ring. , and the annular accumulation tank is connected with the load-bearing area.
  • a plurality of the main outlets are dispersedly arranged along the circumference of the blocking ring;
  • auxiliary outlets there are two auxiliary outlets, and the two auxiliary outlets are symmetrically distributed relative to the bearing area.
  • the first airway has a first annular chamber and a plurality of first outlet channels
  • the plurality of first outlet channels include a plurality of main outlet channels and a plurality of auxiliary outlet channels, One end of each of the main outlet channels is provided with the main outlet, and the other end of each of the main outlet channels is connected to the first annular chamber; one end of each of the auxiliary outlet channels is provided with the auxiliary outlet.
  • the other end of each auxiliary outlet channel is in communication with the first annular chamber, and the volume of the first annular chamber is greater than the total volume of the plurality of first outlet channels.
  • a second air channel is provided on the carrier, the second air channel has a second inlet and a second outlet, and the second inlet is configured to communicate with the vacuum pump;
  • the second outlet is located at the top of the carrier and is configured to be opposite to the silicon wafer, and the second outlet is located close to the edge of the carrier area;
  • a third air channel is provided on the carrier, the third air channel has a third inlet and a third outlet, the third inlet is configured to communicate with the vacuum pump; the third outlet is located on the The top of the carrier is configured to be opposite to the silicon wafer, and the third outlet is provided in the middle area of the carrier.
  • the second airway has a second annular chamber, the second inlet is located at the bottom of the second annular chamber, and the second outlet is located at the second annular chamber. the top of the chamber;
  • the third airway has a strip buffer section and a third annular chamber, the third inlet is located at one end of the strip buffer section, and the other end of the strip buffer section is connected to the third annular chamber.
  • the bottoms of the three annular chambers are connected, and the third outlet is located at the top of the third annular chamber.
  • the second airway further has a plurality of second outlet channels, and one end of each second outlet channel is provided with the second outlet, and each second outlet channel
  • the other ends of the second annular chamber are connected to the second annular chamber, and the volume of the second annular chamber is greater than the total volume of the plurality of second outlet channels;
  • the third airway further has a plurality of third outlet channels, one end of each third outlet channel is provided with the third outlet, and the other end of each third outlet channel is connected to the third outlet channel.
  • the third annular chambers are connected to each other, and the volume of the third annular chamber is greater than the total volume of the plurality of third outlet channels.
  • third outlets there are multiple third outlets, and the plurality of third outlets are evenly arranged along a third annular curve, and the center of the third annular curve coincides with the center of the carrier.
  • a first annular boss is provided on the outside of the second annular curve, and there is a height difference between the top of the first annular boss and the silicon wafer carrying surface of the carrier. ;
  • a second annular boss is provided inside the second annular curve, and there is a height difference between the top of the second annular boss and the silicon wafer carrying surface of the carrier.
  • the silicon wafer carrying device in the photolithography equipment further includes a support frame, the support frame is provided with a fourth air channel, a fifth air channel and a sixth air channel, and the The fourth air channel is connected to the first inlet, and the first air channel is connected to the vacuum pump through the fourth air channel; the fifth air channel is connected to the second inlet, and the third air channel is connected to the second inlet.
  • the second air channel communicates with the vacuum pump through the fifth air channel;
  • the sixth air channel is fit and connected with the third inlet, and the third air channel communicates with the vacuum pump through the sixth air channel;
  • the bottom of the carrier is provided with a third annular boss, the first inlet, the second inlet and the third inlet all protrude from the bottom surface of the carrier, and the third The bottom end surface of one inlet, the bottom end surface of the second inlet and the bottom end surface of the third inlet are all flush with the bottom surface of the third annular boss;
  • the first entrance is a waist-shaped hole
  • the second inlet is a circular hole
  • the first inlet, the second inlet and the third inlet can also be connected to the fan;
  • the top of the carrier is provided with a support protrusion, and the support protrusion is configured to hold up the silicon wafer;
  • the carrier is made of silicon carbide, aluminum oxide or silicon nitride.
  • the silicon wafer carrier device in the photolithography equipment provided by this application needs to absorb the silicon wafer, the silicon wafer can be placed on the top of the carrier first, and then the vacuum pump is turned on, and the vacuum pump is used to provide a negative pressure environment for the first air channel. Therefore, a negative pressure environment will be formed at the first outlet of the first air channel, and a thin vacuum layer will be formed between the edge of the silicon wafer and the carrier, thereby preventing the edge of the silicon wafer from warping and deforming, and the silicon wafer is not easily It is not easy to be scrapped if exposure quality defects occur.
  • the liquid flowing above the silicon wafer will enter the vacuum layer through the gap between the edge of the silicon wafer and the blocking ring under the action of its own gravity and the negative pressure adsorption force at the first outlet, and part of the liquid will flow directly into the vacuum layer.
  • the auxiliary outlet opposite to the edge of the load-bearing area other liquids will enter the main outlet and are eventually discharged from the first inlet of the first air channel. This can reduce the contact area between the lower surface of the silicon wafer and the upper liquid and reduce the exposure accuracy of the silicon wafer. Impact.
  • main outlet and auxiliary outlet are both outlets of the first air passage, so the vacuum levels near the two are close, and the sum of the cross-sectional areas of the multiple main outlets is greater than the sum of the cross-sectional areas of the auxiliary outlets. Therefore, the main outlet has a large pumping flow rate of liquid, and the auxiliary outlet has a small pumping flow rate of liquid, that is, most of the liquid will enter the first airway and be discharged from the main outlet. Since the main outlet is far away from the gap between the edge of the silicon wafer and the blocking ring and the channel between the two is tortuous, the liquid faces greater flow resistance when flowing from the gap toward the main outlet, so it affects the top of the silicon wafer.
  • the liquid suction force is small, so it can slow down the loss rate of liquid above the silicon wafer and improve the exposure accuracy of the silicon wafer; in addition, the auxiliary outlet is closer to the silicon wafer and can directly provide the area between the edge of the silicon wafer and the carrier.
  • the vacuum environment facilitates further increasing the vacuum degree in this area, allowing the liquid entering the vacuum layer to be quickly discharged, ensuring that the liquid does not flow into the central area of the silicon wafer as much as possible, and further improving the exposure accuracy of the silicon wafer.
  • the silicon wafer carrying device in the photolithography equipment can not only ensure a better adsorption effect when adsorbing and supporting the silicon wafer, making the silicon wafer less likely to warp, but also ensure that the liquid is as small as possible.
  • the liquid loss rate above the silicon wafer can be slowed down, thereby ensuring the exposure accuracy of the silicon wafer.
  • Figure 1 is a schematic longitudinal cross-sectional structural diagram of a silicon wafer carrying device in a photolithography equipment carrying silicon wafers provided by an embodiment of the present application;
  • Figure 2 is an enlarged view of part A in Figure 1;
  • Figure 3 is a schematic cross-sectional structural view of the silicon wafer carrying device in the photolithography equipment provided by the embodiment of the present application;
  • Figure 4 is a bottom view of the silicon wafer carrying device in the lithography equipment provided by the embodiment of the present application;
  • Figure 5 is a schematic top structural view of the carrier in the silicon wafer carrier device in the photolithography equipment provided by the embodiment of the present application;
  • Figure 6 is an enlarged view of part B in Figure 5.
  • 100-carrying body 110-first airway; 111-first inlet; 112-main outlet; 113-auxiliary outlet; 114-first annular chamber; 115-main outlet channel; 116-auxiliary outlet channel; 120- Second airway; 121-second inlet; 122-second outlet; 123-second annular chamber; 124-second outlet channel; 130-third airway; 131-third inlet; 132-third outlet ; 133-strip buffer section; 134-third annular chamber; 135-third outlet channel; 140-annular accumulation tank; 150-support protrusion; 160-first annular boss; 170-second annular boss platform; 180-third annular boss; 200-blocking ring; 300-silicon wafer.
  • this embodiment provides a silicon wafer carrying device in a photolithography equipment, which includes a carrying body 100.
  • the top of the carrying body 100 is configured to carry a silicon wafer 300.
  • the top edge of the carrying body 100 is fixed
  • the carrier 100 is provided with a first air channel 110.
  • the first air channel 110 has a first inlet 111 and a first outlet.
  • the first inlet 111 is configured to be connected to the vacuum pump;
  • the first outlet includes a plurality of main outlets 112 and a plurality of auxiliary outlets 113.
  • the main outlet 112 is connected with the blocking ring 200 They are arranged oppositely, and the main outlet 112 is connected to the annular channel, and the auxiliary outlet 113 is opposite to the edge of the bearing area.
  • the sum of the cross-sectional areas of the plurality of main outlets 112 is greater than the sum of the cross-sectional areas of the auxiliary outlets 113 .
  • the silicon wafer carrier device in the photolithography equipment needs to absorb the silicon wafer 300
  • the silicon wafer 300 can be placed on the top of the carrier 100, and then the vacuum pump can be turned on, and the vacuum pump can be used to open the first air channel 110.
  • the vacuum pump can be turned on, and the vacuum pump can be used to open the first air channel 110.
  • Provide a negative pressure environment thereby forming a negative pressure environment at the first outlet of the first air channel 110, and forming a thin vacuum layer between the edge of the silicon wafer 300 and the carrier 100, thereby preventing the silicon wafer from 300 edges are warped and deformed, and the silicon wafer 300 is not prone to exposure quality defects or scrapped.
  • the liquid flowing above the silicon wafer 300 will enter the vacuum layer through the gap between the edge of the silicon wafer 300 and the blocking ring 200 under the action of its own gravity and the negative pressure adsorption force at the first outlet, and part of the liquid will It will directly flow into the auxiliary outlet 113 opposite to the edge of the bearing area, and other liquids will enter the main outlet 112 and finally be discharged from the first inlet 111 of the first air channel 110, thereby reducing the contact between the lower surface of the silicon wafer 300 and the upper liquid. area, reducing the impact on the exposure accuracy of the silicon wafer 300.
  • main outlet 112 and the auxiliary outlet 113 are both outlets of the first air channel 110, so the vacuum levels near them are close, and the sum of the cross-sectional areas of the multiple main outlets 112 is greater than the cross-sectional area of the auxiliary outlets 113.
  • the sum of the cross-sectional areas therefore, the main outlet 112 has a large pumping flow rate of liquid, and the auxiliary outlet 113 has a small pumping flow rate of liquid, that is, most of the liquid will enter the first air channel 110 through the main outlet 112 and be discharged.
  • the auxiliary outlet 113 is close to the silicon wafer 300 and can directly provide the silicon wafer 300 with The area between the edge of the silicon wafer and the carrier 100 provides a vacuum environment to further increase the vacuum degree in this area, so that the liquid entering the vacuum layer can be quickly discharged, ensuring that the liquid does not flow into the central area of the silicon wafer as much as possible, further improving the silicon wafer 300 exposure accuracy.
  • the silicon wafer carrying device in the photolithography equipment can not only ensure a better adsorption effect when adsorbing and supporting the silicon wafer 300, making the silicon wafer 300 less likely to warp, but also ensure that the liquid On the basis of not flowing into the central area of the silicon wafer as much as possible, the liquid loss speed above the silicon wafer 300 can be slowed down, thereby ensuring the exposure accuracy of the silicon wafer 300 .
  • annular liquid collecting tank 140 can be provided on the carrier 100, and the above-mentioned main outlet 112 is opened at the bottom of the annular liquid collecting tank 140.
  • the annular liquid collecting tank 140 is arranged opposite to the blocking ring 200, and the annular liquid collecting tank 140 is arranged opposite to the blocking ring 200.
  • the liquid tank 140 is connected to the load-bearing area. In this way, the liquid from the gap between the edge of the silicon wafer 300 and the blocking ring 200 will first enter the annular liquid collecting tank 140 and then enter the main outlet 112. Among them, the annular liquid collecting tank 140 can accumulate a certain amount of liquid.
  • the plurality of main outlets 112 can be dispersedly arranged along the circumferential direction of the blocking ring 200, so as to make the vacuum degree of each part of the annular liquid tank 140 tend to be consistent, so that the liquid flowing down from the top of the silicon wafer 300 can flow more smoothly.
  • the ground is sucked into the annular liquid tank 140 , reducing the contact area between the lower surface of the silicon wafer 300 and the upper liquid, and reducing the impact on the exposure accuracy of the silicon wafer 300 .
  • the plurality of main outlets 112 are evenly distributed along the circumferential direction of the blocking ring 200 to further improve the uniformity of the vacuum degree in various parts of the annular accumulation tank 140 .
  • auxiliary outlets 113 There can be two auxiliary outlets 113 , and the two auxiliary outlets 113 can be arranged symmetrically with respect to the load-bearing area, which can not only ensure a good drainage effect, but also make the force on the silicon wafer 300 more balanced.
  • the first air channel 110 has a first annular chamber 114 and a plurality of first outlet channels.
  • the plurality of first outlet channels include a plurality of main outlet channels 115 and a plurality of auxiliary outlet channels 116.
  • One end of each main outlet channel 115 The above-mentioned main outlet 112 is provided, and the other end of each main outlet channel 115 is communicated with the first annular chamber 114; one end of each auxiliary outlet channel 116 is provided with the above-mentioned auxiliary outlet 113, and the other end of each auxiliary outlet channel 116 is provided with the above-mentioned main outlet 112.
  • One end is connected to the first annular chamber 114, and the volume of the first annular chamber 114 is set to be larger than the total volume of the plurality of first outlet channels. In this way, the fluctuation influence of the vacuum pressure of the first air channel 110 can be buffered and reduced. Small pressure fluctuations affect the ability to pump liquid above the silicon wafer 300.
  • a second air channel 120 can be opened on the carrier 100.
  • the second air channel 120 has a second inlet 121 and a second outlet 122.
  • the second inlet 121 is used to communicate with the vacuum pump, so that the vacuum pump can be used to provide the second air.
  • the channel 120 provides a negative pressure environment, thereby forming a negative pressure environment at the second outlet 122 of the second air channel 120.
  • the second outlet 122 is arranged on the top of the carrier 100, and the second outlet 122 is arranged close to the carrier.
  • the edge area of the area enables the second outlet 122 to adsorb and support the edge area of the silicon wafer 300. In this way, the problem of warpage and deformation of the edge area of the silicon wafer 300 can be further alleviated or even eliminated.
  • a second annular chamber 123 can be provided, the second inlet 121 is provided at the bottom of the second annular chamber 123, and the second outlet 122 is provided at The top of the second annular chamber 123.
  • the air flow can enter through the second outlet 122 at the top of the second annular chamber 123.
  • the air flow can enter from the bottom of the second annular chamber 123.
  • the second inlet 121 is sucked out by the vacuum pump, so that a negative pressure environment can be formed at the second outlet 122 at the top of the second annular chamber 123.
  • the second annular chamber 123 can disperse the air flow more evenly at each second outlet 122, so that the adsorption force of each second outlet 122 to the silicon wafer 300 is more balanced, so that the edge of the silicon wafer 300 Areas are less prone to warping.
  • the second annular chamber 123 may be a donut chamber.
  • the second air channel 120 has a plurality of second outlet channels 124.
  • One end of each second outlet channel 124 is provided with the above-mentioned second outlet 122, and the other end of each second outlet channel 124 is connected to the second annular cavity.
  • the chambers 123 are connected, and the volume of the second annular chamber 123 is set to be larger than the total volume of the plurality of second outlet channels 124. In this way, a buffering effect can be achieved from the gas at the second outlet 122, so that the edge area of the silicon wafer 300 is The adsorption pressure is stable, reducing the impact of pressure fluctuations on the accuracy of the silicon wafer 300.
  • a third air channel 130 can also be provided on the carrier 100.
  • the third air channel 130 has a third inlet 131 and a third outlet 132.
  • the third inlet 131 is used to communicate with the vacuum pump, so that the vacuum pump can be used as the third air channel.
  • 130 provides a negative pressure environment, thereby forming a negative pressure environment at the third outlet 132 of the third air channel 130.
  • the third outlet 132 is arranged on the top of the carrier 100, and the third outlets 132 are dispersedly arranged on the carrier.
  • the middle area of 100 enables the third outlet 132 to adsorb and support the middle area of the bottom of the silicon wafer 300. In this way, the stress on each part of the middle area of the silicon wafer 300 is relatively uniform, which can alleviate or even eliminate the middle area of the silicon wafer 300. Regional warping deformation problem.
  • a strip buffer section 133 and a third annular chamber 134 can be provided, and the third inlet 131 is set at one end of the strip buffer section 133, and The other end of the strip buffer section 133 is connected to the bottom of the third annular chamber 134, and the third outlet 132 is set at the top of the third annular chamber 134.
  • the third outlet 132 at the top of 134 enters through the third annular chamber 134 and the strip buffer section 133 in sequence. After that, it is sucked out by the vacuum pump through the third inlet 131 of the strip buffer section 133.
  • the third annular cavity can be A negative pressure environment is formed at the third outlet 132 at the top of the chamber 134.
  • the third annular chamber 134 can disperse the air flow more evenly at each third outlet 132, so that the adsorption force of each third outlet 132 to the silicon wafer 300 is more balanced; in addition, the strip buffer section 133 The existence of the gas can guide and buffer the gas. In this way, the air flow at the third outlet 132 is more stable, and the adsorption force on the silicon wafer 300 is more uniform. Therefore, the middle area of the silicon wafer 300 is less likely to warp. Phenomenon.
  • the third annular chamber 134 can be a circular ring chamber.
  • the third annular chamber 134 can be a sector ring chamber, provided that the avoidance requirements are met. Below, the larger the central angle corresponding to the fan ring chamber, the better.
  • the third inlet 131 can be provided at the bottom of the carrier 100 near the edge, so as to extend the length of the strip buffer section 133 and ensure the buffering effect of the strip buffer section 133 .
  • the third air channel 130 also has a plurality of third outlet channels 135, and one end of each third outlet channel 135 is provided with the above-mentioned third outlet 132.
  • the other ends of the outlet channels 135 are all in communication with the third annular chamber 134.
  • the volume of the third annular chamber 134 is set to be larger than the total volume of the plurality of third outlet channels 135. In this way, the gas at the third outlet 132 can be The buffering effect is achieved to stabilize the pressure adsorbed on the middle area of the silicon wafer 300 and reduce the impact of pressure fluctuations on the accuracy of the silicon wafer 300 .
  • a plurality of third outlets 132 on the third air channel 130 can be provided, and the plurality of third outlets 132 are evenly arranged along the third annular curve, wherein the center of the third annular curve is aligned with the carrier 100
  • the center of the third annular curve coincides with the center of the silicon wafer 300 . In this way, the force balance of various parts of the middle region of the silicon wafer 300 can be further improved.
  • a first annular boss 160 can be provided outside the second annular curve, and a height difference is reserved between the top of the first annular boss 160 and the silicon wafer carrying surface of the carrier 100, so that the silicon wafer is 300 is placed on the carrier 100, there will be a gap between the silicon wafer 300 and the first annular boss 160.
  • the existence of the first annular boss 160 can prevent the silicon wafer 300 from flowing down. The liquid is blocked to prevent the liquid from flowing to the middle area below the silicon chip 300 as much as possible.
  • a second annular boss 170 can be provided inside the second annular curve, and a height difference is reserved between the top of the second annular boss 170 and the silicon wafer bearing surface of the carrier 100, so that the silicon wafer is After the chip 300 is placed on the carrier 100, there will be a gap between the silicon chip 300 and the second annular boss 170.
  • the existence of the second annular boss 170 can secondary block the liquid flowing down from the top of the silicon chip 300, and further Prevent the liquid from flowing to the middle area below the silicon wafer 300; in addition, the gap between the second annular boss 170 and the silicon wafer 300 can realize the communication between the vacuum layer above the second outlet 122 and the vacuum layer above the third outlet 132, so that The entire lower surface of the silicon wafer 300 is evenly adsorbed to maximize the reliability of the adsorption of the silicon wafer 300 .
  • the third air channel 130 can be evacuated first to ensure that the central area of the silicon wafer 300 and the carrier 100 are closely adsorbed, and then, while the third air channel 130 is evacuated, the second gas can be evacuated.
  • the channel 120 is evacuated to make the edge area of the silicon wafer 300 closely adhere to the carrier 100 for adsorption. After that, the vacuum air source of the third air channel 130 is closed. At this point, the entire plane of the silicon wafer 300 can be evenly adsorbed; when the silicon wafer When 300 is exposed, there will be flowing liquid above.
  • the first air channel 110 is evacuated, and the liquid above the silicon wafer 300 is stabilized by the continuous opening and cooperation of the second air channel 120 and the first air channel 110. Extraction, thereby ensuring the exposure quality accuracy of the silicon wafer 300.
  • a support frame can also be provided, a fourth air channel is opened on the support frame, and the fourth air channel is connected with the first inlet of the first air channel 110 111 is fit and docked so that the first air channel 110 can communicate with the vacuum pump through the fourth air channel.
  • the fit and docking of the fourth air channel and the first air channel 110 can reduce vacuum loss and improve the working efficiency of the vacuum pump.
  • a fifth air channel is opened on the support frame, and the fifth air channel is closely connected with the second inlet 121 of the second air channel 120 so that the second air channel 120 can communicate with the vacuum pump through the fifth air channel;
  • a sixth air channel is provided on the support frame, and the sixth air channel is closely connected with the third inlet 131 of the third air channel 130 so that the third air channel 130 can communicate with the vacuum pump through the sixth air channel.
  • first inlets 111 are provided, and the plurality of first inlets 111 are evenly distributed along the edge of the carrier 100; both the third inlet 131 and the second inlet 121 are provided as one.
  • a third annular boss 180 can be provided at the bottom of the carrier 100, the first inlet 111, the second inlet 121 and the third inlet 131 are provided as protruding structures, and the bottom end surface of the first inlet 111 and the third inlet are The bottom end surface of the second inlet 121 and the bottom end surface of the third inlet 131 are set flush with the bottom surface of the third annular boss 180. In this way, it is easier to improve the sealing performance of the first inlet 111 and the fourth air channel.
  • both the second inlet 121 and the first inlet 111 may be disposed outside the third annular boss 180 ; the third inlet 131 may be disposed inside the third annular boss 180 and adjacent to the third annular boss 180 .
  • the second inlet 121 may be configured as a circular hole, and the first inlet 111 may be configured as a waist-shaped hole.
  • first inlet 111, the second inlet 121 and the third inlet 131 can also be connected to a fan, that is, the fan can be used to replace the vacuum pump, and the fan can be started to smoothly remove the silicon wafer 300.
  • the carrier 100 provided in this embodiment can be made of a material that is close to the physical properties of the silicon wafer 300. In this way, it can adapt to the material requirements of thermal conductivity and expansion coefficient performance required by the exposure environment of the silicon wafer 300, and reduce the need for material changes.
  • the deformation effect on the silicon wafer 300 is caused by the different physical properties of the silicon wafer 300 .
  • the selected material has similar physical properties to the silicon wafer 300 , it will not bring ion contamination to the silicon wafer 300 .
  • support protrusions 150 can be provided on the top of the carrier 100 , and the silicon wafer 300 can be lifted up using the support protrusions 150 .
  • the silicon wafer 300 can be lifted up using the support protrusions 150 .
  • the vacuum pump there will be a gap between the third outlet 132 and the silicon wafer 300 and between the second outlet 122 and the silicon wafer.
  • a vacuum layer will be formed between the silicon wafer 300 and the silicon wafer 300 . This vacuum layer can be used to adsorb the silicon wafer 300 , further improving the force balance of various parts of the middle area of the silicon wafer 300 .
  • silicon carbide, aluminum oxide or silicon nitride can be used to make the carrier 100 .
  • silicon carbide, aluminum oxide or silicon nitride can be used to make the carrier 100 .
  • other materials with similar physical properties to the silicon wafer 300 can also be used to make the carrier 100 .
  • the silicon wafer carrying device in the lithography equipment provided in this embodiment When the silicon wafer carrying device in the lithography equipment provided in this embodiment is adsorbed and supported, the stress on each part of the silicon wafer is relatively uniform, and warping is less likely to occur in the middle and at the edges. Therefore, the silicon wafer is less likely to warp. Exposure quality defects are not easy to be scrapped.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本申请涉及硅片承载技术领域,具体而言,涉及一种光刻设备中的硅片承载装置。该光刻设备中的硅片承载装置包括承载体,承载体的顶部配置成承载硅片,承载体的顶部边缘部位固接有一圈阻挡环,阻挡环环绕在承载体的承载区域外,且阻挡环的靠近内环的部位与承载体之间存在环形通道;承载体上开设有第一气道,第一气道具有第一入口和第一出口,第一入口配置成与真空泵相接;第一出口包括多个主出口和若干辅出口,主出口与阻挡环相对设置,并与环形通道相通,辅出口与承载区域的边缘相对,主出口的横截面积的总和大于辅出口的横截面积的总和。本申请提供的光刻设备中的硅片承载装置,在对硅片进行吸附支撑时,可使硅片不易翘曲,可减缓硅片上方的液体流失速度,从而,可保证硅片的曝光精度。

Description

一种光刻设备中的硅片承载装置
相关申请的交叉引用
本申请要求于2022年05月11日提交中国专利局的申请号为2022105094974、名称为“一种光刻设备中的硅片承载装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及硅片承载技术领域,具体而言,涉及一种光刻设备中的硅片承载装置。
背景技术
光刻设备中的硅片承载装置属于超精密光刻设备中的重要部件,是直接影响光刻机的成形对象-硅片曝光成功与否的关键因素。
目前,常用的光刻设备中的硅片承载装置对硅片的承载形式多为真空吸附式,其上设置有气道,通以真空气体对硅片进行吸附,常用的气道形式有内置和外置两种,因外置气道存在占用空间大、无法与所支撑面密闭不严等问题,故常以承载硅片装置自身内置气道为主;然而,现有的光刻设备中具有内置气道的硅片承载装置对硅片进行吸附支撑时,虽然解决了空间占用大问题,也能一定程度对硅片进行吸附支撑,但是为了保证对硅片的吸附效果,会存在硅片上方液体流失过快而影响硅片曝光精度的问题,也易发生硅片翘曲现象。
综上,如何克服现有的光刻设备中的硅片承载装置的上述缺陷是本领域技术人员亟待解决的技术问题。
发明内容
本申请的目的在于提供一种光刻设备中的硅片承载装置,以缓解现有技术中的光刻设备中的硅片承载装置存在的易导致硅片翘曲,硅片上方液体流失过快而影响曝光精度的技术问题。
本申请提供的光刻设备中的硅片承载装置,包括承载体,所述承载体的顶部配置成承载硅片。
所述承载体的顶部边缘部位固接有一圈阻挡环,所述阻挡环环绕在所述承载体的承载区域外,且所述阻挡环的靠近内环的部位与所述承载体之间存在环形通道。
所述承载体上开设有第一气道,所述第一气道具有第一入口和第一出口,所述第一入口配置成与真空泵相接;所述第一出口包括多个主出口和若干辅出口,所述主出口与阻挡环相对设置,且所述主出口与所述环形通道相通,所述辅出口与所述承载区域的边缘相对,多个所述主出口的横截面积的总和大于所述辅出口的横截面积的总和。
优选地,作为一种可实施方式,所述承载体上开设有环形积液槽,所述主出口位于所述环形积液槽的槽底,所述环形积液槽与所述阻挡环相对设置,且所述环形积液槽与所述承载区域相通。
优选地,作为一种可实施方式,多个所述主出口沿所述阻挡环的周向分散排布;
和/或,所述辅出口为两个,两个所述辅出口相对所述承载区域对称分布。
优选地,作为一种可实施方式,所述第一气道具有第一环形腔室和多个第一出口通道,多个所述第一出口通道包括多个主出口通道和若干辅出口通道,各个所述主出口通道的一端均设置有所述主出口,各个所述主出口通道的另一端均与所述第一环形腔室相通;各个所述辅出口通道的一端均设置有所述辅出口,各个所述辅出口通道的另一端均与所述第一环形腔 室相通,所述第一环形腔室的容积大于多个所述第一出口通道的总容积。
优选地,作为一种可实施方式,所述承载体上开设有第二气道,所述第二气道具有第二入口和第二出口,所述第二入口配置成与真空泵连通;所述第二出口位于所述承载体的顶部,并配置成与硅片相对,且所处第二出口靠近所述承载区域的边缘;
和/或,所述承载体上开设有第三气道,所述第三气道具有第三入口和第三出口,所述第三入口配置成与真空泵连通;所述第三出口位于所述承载体的顶部,并配置成与硅片相对,所述第三出口设置在所述承载体的中间区域。
优选地,作为一种可实施方式,所述第二气道具有第二环形腔室,所述第二入口位于所述第二环形腔室的底部,所述第二出口位于所述第二环形腔室的顶部;
和/或,所述第三气道具有条形缓冲段和第三环形腔室,所述第三入口位于所述条形缓冲段的一端,所述条形缓冲段的另一端与所述第三环形腔室的底部连通,所述第三出口位于所述第三环形腔室的顶部。
优选地,作为一种可实施方式,所述第二气道还具有多个第二出口通道,各个所述第二出口通道的一端均设置有所述第二出口,各个所述第二出口通道的另一端均与所述第二环形腔室相通,所述第二环形腔室的容积大于多个所述第二出口通道的总容积;
和/或,所述第三气道还具有多个第三出口通道,各个所述第三出口通道的一端均设置有所述第三出口,各个所述第三出口通道的另一端均与所述第三环形腔室相通,所述第三环形腔室的容积大于多个所述第三出口通道的总容积。
优选地,作为一种可实施方式,所述第二出口为多个,且多个所述第二出口沿第二环形曲线均匀排布,所述第二环形曲线的中心与所述承载体 的中心重合;
和/或,所述第三出口为多个,且多个所述第三出口沿第三环形曲线均匀排布,所述第三环形曲线的中心与所述承载体的中心重合。
优选地,作为一种可实施方式,所述第二环形曲线的外侧设置有第一环形凸台,所述第一环形凸台的顶部与所述承载体的硅片承载面之间存在高度差;
和/或,所述第二环形曲线的内侧设置有第二环形凸台,所述第二环形凸台的顶部与所述承载体的硅片承载面之间存在高度差。
优选地,作为一种可实施方式,所述光刻设备中的硅片承载装置还包括支撑架,所述支撑架上开设有第四气道、第五气道和第六气道,所述第四气道与所述第一入口贴合对接,所述第一气道通过所述第四气道与真空泵连通;所述第五气道与所述第二入口贴合对接,所述第二气道通过所述第五气道与真空泵连通;所述第六气道与所述第三入口贴合对接,所述第三气道通过所述第六气道与真空泵连通;
和/或,所述承载体的底部设置有第三环形凸台,所述第一入口、所述第二入口和所述第三入口均凸出于所述承载体的底面,且所述第一入口的底部端面、所述第二入口的底部端面和所述第三入口的底部端面均与所述第三环形凸台的底面平齐;
和/或,所述第一入口为腰型孔;
和/或,所述第二入口为圆形孔;
和/或,所述第一入口、所述第二入口和所述第三入口还能够与风机连通;
和/或,所述承载体的顶部设有支撑凸起,所述支撑凸起配置成托举硅片;
和/或,所述承载体的材质为碳化硅、氧化铝或氮化硅。
与现有技术相比,本申请的有益效果在于:
本申请提供的光刻设备中的硅片承载装置,在需要吸附硅片时,可先将硅片置于承载体的顶部,然后,开启真空泵,利用真空泵为第一气道提供负压环境,从而,在第一气道的第一出口处会形成负压环境,在硅片的边缘与承载体之间会形成较薄的真空层,从而,可防止硅片边缘翘曲变形,硅片不易出现曝光质量缺陷,也不易报废。与此同时,硅片上方流动的液体会在自身重力以及第一出口处的负压吸附力的作用下,经由硅片边缘与阻挡环之间的缝隙,进入真空层内,部分液体会直接流入与承载区域边缘相对的辅出口,其他液体则会进入主出口,最终由第一气道的第一入口排出,从而,可减少硅片下表面与上方液体接触的面积,降低对硅片曝光精度的影响。
需要说明的是,上述主出口和辅出口均为第一气道的出口,故二者附近的真空程度接近,而多个主出口的横截面积的总和大于辅出口的横截面积的总和,故主出口对液体的抽排流量较大,辅出口对液体的抽排流量较小,即大部分液体会由主出口进入第一气道排出。因主出口距离硅片边缘与阻挡环之间的缝隙较远且二者之间的通道较曲折,故液体在由该缝隙朝向主出口流动时,承受的流阻较大,故对硅片上方的液体吸力较小,因此,可减缓硅片上方液体的流失速度,提高硅片的曝光精度;此外,辅出口距离硅片较近,可直接为硅片的边缘与承载体之间的区域提供真空环境,便于进一步提高该区域的真空度,使得进入真空层内的液体能够快速排出,保证液体尽可能不流入硅片中心区域,进一步提高硅片的曝光精度。
综上,本实施例提供的光刻设备中的硅片承载装置,在对硅片进行吸附支撑时,不但可保证较好的吸附效果,使得硅片不易发生翘曲,而且在保证液体尽可能不流入硅片中心区域的基础上,可减缓硅片上方的液体流失速度,从而,可保证硅片的曝光精度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的承载有硅片的光刻设备中的硅片承载装置的纵向剖视结构示意图;
图2为图1中A部分的放大图;
图3为本申请实施例提供的光刻设备中的硅片承载装置的横向剖视结构示意图;
图4为本申请实施例提供的光刻设备中的硅片承载装置的仰视图;
图5为本申请实施例提供的光刻设备中的硅片承载装置中的承载体的俯视结构示意图;
图6为图5中B部分的放大图。
附图标记说明:
100-承载体;110-第一气道;111-第一入口;112-主出口;113-辅出口;114-第一环形腔室;115-主出口通道;116-辅出口通道;120-第二气道;121-第二入口;122-第二出口;123-第二环形腔室;124-第二出口通道;130-第三气道;131-第三入口;132-第三出口;133-条形缓冲段;134-第三环形腔室;135-第三出口通道;140-环形积液槽;150-支撑凸起;160-第一环形凸台;170-第二环形凸台;180-第三环形凸台;200-阻挡环;300-硅片。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
下面通过具体的实施例子并结合附图对本申请做进一步的详细描述。
参见图1-图6,本实施例提供了一种光刻设备中的硅片承载装置,其包括承载体100,承载体100的顶部配置成承载硅片300,承载体100的顶部边缘部位固接有一圈阻挡环200,阻挡环200环绕在承载体100的承载区域外,且阻挡环200的靠近内环的部位与承载体100之间存在环形通道;承载体100上开设有第一气道110,第一气道110具有第一入口111和第一出口,第一入口111配置成与真空泵相接;第一出口包括多个主出口112和若干辅出口113,主出口112与阻挡环200相对设置,且主出口112与环形通道相通,辅出口113与承载区域的边缘相对,多个主出口112的横截面积的总和大于辅出口113的横截面积的总和。
本实施例提供的光刻设备中的硅片承载装置,在需要吸附硅片300时,可先将硅片300置于承载体100的顶部,然后,开启真空泵,利用真空泵为第一气道110提供负压环境,从而,在第一气道110的第一出口处会形成负压环境,在硅片300的边缘与承载体100之间会形成较薄的真空层,从而,可防止硅片300边缘翘曲变形,硅片300不易出现曝光质量缺陷,也不易报废。与此同时,硅片300上方流动的液体会在自身重力以及第一出口处的负压吸附力的作用下,经由硅片300边缘与阻挡环200之间的缝 隙,进入真空层内,部分液体会直接流入与承载区域边缘相对的辅出口113,其他液体则会进入主出口112,最终由第一气道110的第一入口111排出,从而,可减少硅片300下表面与上方液体接触的面积,降低对硅片300曝光精度的影响。
需要说明的是,上述主出口112和辅出口113均为第一气道110的出口,故二者附近的真空程度接近,而多个主出口112的横截面积的总和大于辅出口113的横截面积的总和,故主出口112对液体的抽排流量较大,辅出口113对液体的抽排流量较小,即大部分液体会由主出口112进入第一气道110排出。因主出口112距离硅片300边缘与阻挡环200之间的缝隙较远且二者之间的通道较曲折,故液体在由该缝隙朝向主出口112流动时,承受的流阻较大,故对硅片300上方的液体吸力较小,因此,可减缓硅片300上方液体的流失速度,提高硅片300的曝光精度;此外,辅出口113距离硅片300较近,可直接为硅片300的边缘与承载体100之间的区域提供真空环境,便于进一步提高该区域的真空度,使得进入真空层内的液体能够快速排出,保证液体尽可能不流入硅片中心区域,进一步提高硅片300的曝光精度。
综上,本实施例提供的光刻设备中的硅片承载装置,在对硅片300进行吸附支撑时,不但可保证较好的吸附效果,使得硅片300不易发生翘曲,而且在保证液体尽可能不流入硅片中心区域的基础上,可减缓硅片300上方的液体流失速度,从而,可保证硅片300的曝光精度。
优选地,在承载体100上可开设环形集液槽140,将上述主出口112开设在环形集液槽140的槽底,将该环形集液槽140与阻挡环200相对设置,并使环形集液槽140与承载区域相通,如此,由硅片300边缘与阻挡环200之间的缝隙处的液体,会先进入环形集液槽140,然后才会进入主出口112,其中,环形积液槽140能够积存一定量的液体,当流入环形积液槽140的 液体流量较大,主出口112无法及时排出时,可暂时积存在环形积液槽140内,尽可能地降低环形积液槽140内的液体满溢的问题,保证液体尽可能不流入硅片中心区域。
具体地,可将多个主出口112沿阻挡环200的周向分散排布,便于使得环形积液槽140各个部位的真空程度趋于一致,从而,由硅片300上方流下的液体能够更加顺利地被吸入环形积液槽140内,减少硅片300下表面与上方液体接触的面积,降低对硅片300曝光精度的影响。
优选地,将多个主出口112沿阻挡环200的周向均匀分布,进一步提高环形积液槽140各个部位的真空程度的一致形。
辅出口113可设置为两个,并将两个辅出口113相对承载区域对称设置,不但可保证良好的排液效果,而且可使得硅片300受力更均衡。
具体地,第一气道110具有第一环形腔室114和多个第一出口通道,多个第一出口通道包括多个主出口通道115和若干辅出口通道116,各个主出口通道115的一端均设置有上述主出口112,将各个主出口通道115的另一端均与第一环形腔室114相通;各个辅出口通道116的一端均设置有上述辅出口113,将各个辅出口通道116的另一端均与第一环形腔室114相通,将第一环形腔室114的容积设置为大于多个第一出口通道的总容积,如此,能够缓冲第一气道110的真空压力的波动影响,减小压力波动对硅片300上方液体抽排的能力影响。
此外,可在承载体100上开设第二气道120,该第二气道120具有第二入口121和第二出口122,第二入口121用来与真空泵连通,以能够利用真空泵为第二气道120提供负压环境,从而,在第二气道120的第二出口122处会形成负压环境,将第二出口122设置在承载体100的顶部,并将第二出口122设置在靠近承载区域的边缘的区域,能够使得第二出口122对硅片300的边缘区域进行吸附支撑,如此,可进一步缓解甚至消除硅片300 的边缘区域的翘曲变形问题。
参见图2-图5,在第二气道120的具体结构中可设置第二环形腔室123,将第二入口121设置在第二环形腔室123的底部,并将第二出口122设置在第二环形腔室123的顶部,如此,在开启真空泵后,气流能够由第二环形腔室123顶部的第二出口122进入,经由第二环形腔室123后,由第二环形腔室123底部的第二入口121被真空泵吸出,如此,便可在第二环形腔室123顶部的第二出口122处形成一个负压环境。
需要说明的是,第二环形腔室123能够将气流较均匀地分散在各个第二出口122处,从而,各个第二出口122对硅片300的吸附力更加均衡,从而,硅片300的边缘区域更不易出现翘曲现象。
具体地,第二环形腔室123可以是圆环腔室。
具体地,第二气道120具有多个第二出口通道124,各个第二出口通道124的一端均设置有上述第二出口122,将各个第二出口通道124的另一端均与第二环形腔室123相通,将第二环形腔室123的容积设置为大于多个第二出口通道124的总容积,如此,能够从第二出口122处的气体实现缓冲作用,使得对硅片300的边缘区域吸附的压力稳定,减小压力波动对硅片300精度的影响。
可将第二气道120上的第二出口122设置为多个,并将多个第二出口122沿第二环形曲线均匀分布,其中,第二环形曲线的中心与承载体100的中心重合(即第二环形曲线的中心与硅片300的中心重合),如此,可进一步提高硅片300边缘区域各个部位的受力平衡性。
还可在承载体100上开设第三气道130,该第三气道130具有第三入口131和第三出口132,第三入口131用来与真空泵连通,以能够利用真空泵为第三气道130提供负压环境,从而,在第三气道130的第三出口132处会形成负压环境,将第三出口132设置在承载体100的顶部,并将第三出 口132分散设置在承载体100的中间区域,能够使得第三出口132实现对硅片300的底部的中间区域进行吸附支撑,如此,硅片300的中间区域的各个部位受力较均匀,可缓解甚至消除硅片300的中间区域的翘曲变形问题。
参见图2-图4,在上述第三气道130的具体结构中可设置条形缓冲段133和第三环形腔室134,将第三入口131设置在条形缓冲段133的一端,并将条形缓冲段133的另一端与第三环形腔室134的底部连通,将第三出口132设置在第三环形腔室134的顶部,如此,在开启真空泵后,气流能够由第三环形腔室134顶部的第三出口132进入,依次经由第三环形腔室134和条形缓冲段133,之后,由条形缓冲段133的第三入口131被真空泵吸出,如此,便可在第三环形腔室134顶部的第三出口132处形成一个负压环境。
需要说明的是,第三环形腔室134能够将气流较均匀地分散在各个第三出口132处,从而,各个第三出口132对硅片300的吸附力更加均衡;此外,条形缓冲段133的存在,能够对气体进行引导并能对气体进行缓冲,如此,第三出口132处的气流更加平稳,对硅片300的吸附力更加均匀,从而,硅片300的中间区域更不易出现翘曲现象。
具体地,第三环形腔室134可以是圆环腔室,当第三环形腔室134需要避让水道或其他结构时,第三环形腔室134可以是扇环腔室,在满足避让要求的前提下,扇环腔室对应的圆心角越大越好。
可选地,参见图4,第三入口131可设置在承载体100的底部靠近边缘的位置,便于延长条形缓冲段133的长度,保证条形缓冲段133的缓冲效果。
具体地,参见图3、图5和图6,上述第三气道130还具有多个第三出口通道135,各个第三出口通道135的一端均设置有上述第三出口132,将 各个第三出口通道135的另一端均与第三环形腔室134相通,将第三环形腔室134的容积设置为大于多个第三出口通道135的总容积,如此,能够从第三出口132处的气体实现缓冲作用,使得对硅片300的中间区域吸附的压力稳定,减小压力波动对硅片300精度的影响。
优选地,可将第三气道130上的第三出口132设置为多个,并将多个第三出口132沿第三环形曲线均匀排布,其中,第三环形曲线的中心与承载体100的中心重合(即第三环形曲线的中心与硅片300的中心重合),如此,可进一步提高硅片300中间区域各个部位的受力平衡性。
优选地,在第二环形曲线的外侧可设置第一环形凸台160,并在第一环形凸台160的顶部与承载体100的硅片承载面之间预留高度差,如此,在硅片300放到承载体100上后,硅片300与第一环形凸台160之间会存在缝隙,当硅片300曝光时,第一环形凸台160的存在,能够对由硅片300上方流下的液体进行阻挡,尽可能地阻止液体流向硅片300下方的中间区域。
可选地,在第二环形曲线的内侧可设置第二环形凸台170,并在第二环形凸台170的顶部与承载体100的硅片承载面之间预留高度差,如此,在硅片300放到承载体100上后,硅片300与第二环形凸台170之间会存在缝隙,第二环形凸台170的存在,能够对硅片300上方流下的液体进行二次阻挡,进一步阻止液体流向硅片300下方的中间区域;此外,第二环形凸台170与硅片300之间的缝隙能够实现第二出口122上方的真空层与第三出口132上方的真空层相通,这样能对硅片300整个下表面均匀地吸附,更大限度地实现对硅片300吸附的可靠性。
在实际使用时,可采取先对第三气道130进行抽真空,确保硅片300中心区域与承载体100紧密贴合吸附,然后,在第三气道130抽真空的同时,对第二气道120进行抽真空,使硅片300的边缘区域与承载体100紧 密贴合吸附,之后,关闭第三气道130的真空气源,至此可实现硅片300整个平面的平整吸附;当硅片300进行曝光时,上方会存在流动的液体,此时,对第一气道110进行抽真空,通过第二气道120与第一气道110的持续开启配合,实现硅片300上方液体的稳定抽排,进而,保证硅片300的曝光质量精度。
在本实施例提供的光刻设备中的硅片承载装置的具体结构中还可设置支撑架,在支撑架上开设第四气道,将第四气道与第一气道110的第一入口111贴合对接,使第一气道110能够通过第四气道与真空泵连通,第四气道与第一气道110贴合对接,能够减少真空损失,提高真空泵的工作效率。
相应地,在支撑架上开设第五气道,将第五气道与第二气道120的第二入口121贴合对接,使第二气道120能够通过第五气道与真空泵连通;在支撑架上开设第六气道,将第六气道与第三气道130的第三入口131贴合对接,使第三气道130能够通过第六气道与真空泵连通。
具体地,将第一入口111设置为多个,并将多个第一入口111沿承载体100的边缘均匀分布;将第三入口131和第二入口121均设置为一个。
优选地,可在承载体100的底部设置第三环形凸台180,将第一入口111、第二入口121和第三入口131设置为凸出结构,并将第一入口111的底部端面、第二入口121的底部端面和第三入口131的底部端面设置为与第三环形凸台180的底面平齐,如此,更便于提高第一入口111与第四气道的贴合密封性,第二入口121与第五气道的贴合密封性,以及第三入口131与第六气道的贴合密封性。
具体地,第二入口121和第一入口111均可设置在第三环形凸台180的外侧;第三入口131可设置在第三环形凸台180的内侧,并紧邻第三环形凸台180。
可将第二入口121可设置为圆形孔,第一入口111可设置为腰型孔。
此外,上述第一入口111、第二入口121和第三入口131还可与风机连通,即可利用风机替换真空泵,启动风机,可将硅片300顺利取下。
特别地,本实施例提供的承载体100可选择接近于硅片300的物理特性的材质,如此,便能适应硅片300曝光环境需要的热导率和膨胀系数性能的材质要求,减少因材料本身的物理特性不同引起的对硅片300的变形影响,此外,因选用的材质与硅片300物理特性类似,故不会给硅片300带来离子污染等。
优选地,参见图5和图6,可在承载体100的顶部设置支撑凸起150,利用支撑凸起150将硅片300托举起来,如此,在将硅片300置于承载体100上后,处于承载体100上的第三出口132和第二出口122与硅片300之间便会存在间隙,启动真空泵后,在第三出口132与硅片300之间以及第二出口122与硅片300之间便均会形成真空层,从而,可利用该真空层对硅片300进行吸附,进一步提高了硅片300中间区域各个部位的受力平衡性。
具体地,可选用碳化硅、氧化铝或氮化硅制造承载体100,当然也可选择其他与硅片300物理特性类似的材质制造承载体100。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
工业实用性
本实施例提供的光刻设备中的硅片承载装置,在对硅片进行吸附支撑 时,硅片的各个部位受力较均匀,中间和边缘均不易出现翘曲现象,从而,硅片不易出现曝光质量缺陷,也不易报废。

Claims (20)

  1. 一种光刻设备中的硅片承载装置,其特征在于,包括承载体(100),所述承载体(100)的顶部配置成承载硅片(300);
    所述承载体(100)的顶部边缘部位固接有一圈阻挡环(200),所述阻挡环(200)环绕在所述承载体(100)的承载区域外,且所述阻挡环的靠近内侧壁的部位与所述承载体之间存在环形通道;
    所述承载体(100)上开设有第一气道(110),所述第一气道(110)具有第一入口(111)和第一出口,所述第一入口(111)配置成与真空泵相接;所述第一出口包括多个主出口(112)和若干辅出口(113),所述主出口(112)与阻挡环(200)相对设置,且所述主出口(112)与所述环形通道相通,所述辅出口(113)与所述承载区域的边缘相对,多个所述主出口(112)的横截面积的总和大于所述辅出口(113)的横截面积的总和。
  2. 根据权利要求1所述的光刻设备中的硅片承载装置,其特征在于,所述承载体(100)上开设有环形积液槽(140),所述主出口(112)位于所述环形积液槽(140)的槽底,所述环形积液槽(140)与所述阻挡环(200)相对设置,且所述环形积液槽(140)与所述承载区域相通。
  3. 根据权利要求1或2所述的光刻设备中的硅片承载装置,其特征在于,多个所述主出口(112)沿所述阻挡环(200)的周向分散排布。
  4. 根据权利要求1-3任一项所述的光刻设备中的硅片承载装置,其特征在于,所述辅出口(113)为两个,两个所述辅出口(113)相对所述承载区域对称分布。
  5. 根据权利要求1-4任一项所述的光刻设备中的硅片承载装置,其特征在于,所述第一气道(110)具有第一环形腔室(114)和多个第一出口通道,多个所述第一出口通道包括多个主出口通道(115)和若干辅出口通道(116),各个所述主出口通道(115)的一端均设置有所述主出口(112), 各个所述主出口通道(115)的另一端均与所述第一环形腔室(114)相通;各个所述辅出口通道(116)的一端均设置有所述辅出口(113),各个所述辅出口通道(116)的另一端均与所述第一环形腔室(114)相通,所述第一环形腔室(114)的容积大于多个所述第一出口通道的总容积。
  6. 根据权利要求1-5任一项所述的光刻设备中的硅片承载装置,其特征在于,所述承载体(100)上开设有第二气道(120),所述第二气道(120)具有第二入口(121)和第二出口(122),所述第二入口(121)配置成与真空泵连通;所述第二出口(122)位于所述承载体(100)的顶部,并配置成与硅片(300)相对,且所述第二出口(122)靠近所述承载区域的边缘。
  7. 根据权利要求6所述的光刻设备中的硅片承载装置,其特征在于,所述承载体(100)上开设有第三气道(130),所述第三气道(130)具有第三入口(131)和第三出口(132),所述第三入口(131)配置成与真空泵连通;所述第三出口(132)位于所述承载体(100)的顶部,并配置成与硅片(300)相对,所述第三出口(132)设置在所述承载体(100)的中间区域。
  8. 根据权利要求6或7所述的光刻设备中的硅片承载装置,其特征在于,所述第二气道(120)具有第二环形腔室(123),所述第二入口(121)位于所述第二环形腔室(123)的底部,所述第二出口(122)位于所述第二环形腔室(123)的顶部。
  9. 根据权利要求7所述的光刻设备中的硅片承载装置,其特征在于,所述第三气道(130)具有条形缓冲段(133)和第三环形腔室(134),所述第三入口(131)位于所述条形缓冲段(133)的一端,所述条形缓冲段(133)的另一端与所述第三环形腔室(134)的底部连通,所述第三出口(132)位于所述第三环形腔室(134)的顶部。
  10. 根据权利要求8所述的光刻设备中的硅片承载装置,其特征在于,所述第二气道(120)还具有多个第二出口通道(124),各个所述第二出口通道(124)的一端均设置有所述第二出口(122),各个所述第二出口通道(124)的另一端均与所述第二环形腔室(123)相通,所述第二环形腔室(123)的容积大于多个所述第二出口通道(124)的总容积。
  11. 根据权利要求9所述的光刻设备中的硅片承载装置,其特征在于,所述第三气道(130)还具有多个第三出口通道(135),各个所述第三出口通道(135)的一端均设置有所述第三出口(132),各个所述第三出口通道(135)的另一端均与所述第三环形腔室(134)相通,所述第三环形腔室(134)的容积大于多个所述第三出口通道(135)的总容积。
  12. 根据权利要求6-11任一项所述的光刻设备中的硅片承载装置,其特征在于,所述第二出口(122)为多个,且多个所述第二出口(122)沿第二环形曲线均匀排布,所述第二环形曲线的中心与所述承载体(100)的中心重合。
  13. 根据权利要求7或9-11任一项所述的光刻设备中的硅片承载装置,其特征在于,所述第三出口(132)为多个,且多个所述第三出口(132)沿第三环形曲线均匀排布,所述第三环形曲线的中心与所述承载体(100)的中心重合。
  14. 根据权利要求12所述的光刻设备中的硅片承载装置,其特征在于,所述第二环形曲线的外侧设置有第一环形凸台(160),所述第一环形凸台(160)的顶部与所述承载体(100)的硅片承载面之间存在高度差;
    和/或,所述第二环形曲线的内侧设置有第二环形凸台(170),所述第二环形凸台(170)的顶部与所述承载体(100)的硅片承载面之间存在高度差。
  15. 根据权利要求7或9-11任一项所述的光刻设备中的硅片承载装置, 其特征在于,所述光刻设备中的硅片承载装置还包括支撑架,所述支撑架上开设有第四气道、第五气道和第六气道,所述第四气道与所述第一入口(111)贴合对接,所述第一气道(110)通过所述第四气道与真空泵连通;所述第五气道与所述第二入口(121)贴合对接,所述第二气道(120)通过所述第五气道与真空泵连通;所述第六气道与所述第三入口(131)贴合对接,所述第三气道(130)通过所述第六气道与真空泵连通。
  16. 根据权利要求7或9-11任一项所述的光刻设备中的硅片承载装置,其特征在于,所述承载体的底部设置有第三环形凸台(180),所述第一入口(111)、所述第二入口(121)和所述第三入口(131)均凸出于所述承载体(100)的底面,且所述第一入口(111)的底部端面、所述第二入口(121)的底部端面和所述第三入口(131)的底部端面均与所述第三环形凸台(180)的底面平齐。
  17. 根据权利要求6-16任一项所述的光刻设备中的硅片承载装置,其特征在于,所述第一入口(111)为腰型孔;
    和/或,所述第二入口(121)为圆形孔。
  18. 根据权利要求7或9-11任一项所述的光刻设备中的硅片承载装置,其特征在于,所述第一入口(111)、所述第二入口(121)和所述第三入口(131)还能够与风机连通。
  19. 根据权利要求1-18任一项所述的光刻设备中的硅片承载装置,其特征在于,所述承载体(100)的顶部设有支撑凸起(150),所述支撑凸起(150)配置成托举硅片(300)。
  20. 根据权利要求1-19任一项所述的光刻设备中的硅片承载装置,其特征在于,所述承载体(100)的材质为碳化硅、氧化铝或氮化硅。
PCT/CN2022/115005 2022-05-11 2022-08-26 一种光刻设备中的硅片承载装置 WO2023216464A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210509497.4A CN115101467A (zh) 2022-05-11 2022-05-11 一种光刻设备中的硅片承载装置
CN202210509497.4 2022-05-11

Publications (1)

Publication Number Publication Date
WO2023216464A1 true WO2023216464A1 (zh) 2023-11-16

Family

ID=83287575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115005 WO2023216464A1 (zh) 2022-05-11 2022-08-26 一种光刻设备中的硅片承载装置

Country Status (2)

Country Link
CN (1) CN115101467A (zh)
WO (1) WO2023216464A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117081A1 (ja) * 2004-05-28 2005-12-08 Tokyo Electron Limited 液処理装置及び液処理方法
JP2006120889A (ja) * 2004-10-22 2006-05-11 Sony Corp 半導体装置の製造方法及びその方法に用いられる半導体ウェハホルダ
JPWO2007083592A1 (ja) * 2006-01-17 2009-06-11 株式会社ニコン 基板保持装置及び露光装置、並びにデバイス製造方法
CN104698767A (zh) * 2013-12-10 2015-06-10 上海微电子装备有限公司 一种浸没式光刻机的液体控制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117081A1 (ja) * 2004-05-28 2005-12-08 Tokyo Electron Limited 液処理装置及び液処理方法
JP2006120889A (ja) * 2004-10-22 2006-05-11 Sony Corp 半導体装置の製造方法及びその方法に用いられる半導体ウェハホルダ
JPWO2007083592A1 (ja) * 2006-01-17 2009-06-11 株式会社ニコン 基板保持装置及び露光装置、並びにデバイス製造方法
CN104698767A (zh) * 2013-12-10 2015-06-10 上海微电子装备有限公司 一种浸没式光刻机的液体控制装置

Also Published As

Publication number Publication date
CN115101467A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
US10141210B2 (en) Purge module and load port having the same
TW201834111A (zh) 用於有效氣體分配組件冷卻的具有同心或螺旋通道的兩區域流動冷卻板設計
JP2012119591A (ja) 吸着装置および吸着方法
US9230839B2 (en) Reticle pod having gas guiding apparatus
US10199225B2 (en) Substrate processing apparatus
WO2023216464A1 (zh) 一种光刻设备中的硅片承载装置
WO2019011060A1 (zh) 一种等离子体刻蚀系统的喷淋头
JP7370499B1 (ja) 半導体プロセス機器
JP7441900B2 (ja) 正確な温度及び流量制御を備えたマルチステーションチャンバリッド
TWI828046B (zh) 等離子體處理裝置
KR20170003211U (ko) 균일하게 차단되는 에어 커튼이 구비된 유동-장 장치
KR20180124114A (ko) 균일한 진공펌핑의 이중 스테이션 진공처리기
JP2023027776A (ja) 気体拡散装置、及びそれを含むウェーハ容器
US20130153418A1 (en) Sensing device and fabricating method thereof
JP2009021440A (ja) 基板処理装置及び基板処理方法並びに記憶媒体
WO2018094876A1 (zh) 光学元件支撑装置及检测系统
KR20220000928A (ko) 프로세스 챔버들에서의 개선된 유동 제어를 위한 장치
KR20110080132A (ko) 진공 척
CN221596401U (zh) 舟片、舟结构以及反应炉
JPH11284056A (ja) 吸着固定装置
KR101317164B1 (ko) 역압 대응구조를 갖춘 고속구동 진자식 게이트밸브
CN221176195U (zh) 一种半导体转移装置
CN114381798A (zh) 一种单晶炉泄漏引流装置及单晶炉
CN219647198U (zh) 异丙醇与氮气混合罐
JP2019145827A (ja) ウエハ保持台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941405

Country of ref document: EP

Kind code of ref document: A1