WO2019011060A1 - 一种等离子体刻蚀系统的喷淋头 - Google Patents

一种等离子体刻蚀系统的喷淋头 Download PDF

Info

Publication number
WO2019011060A1
WO2019011060A1 PCT/CN2018/088152 CN2018088152W WO2019011060A1 WO 2019011060 A1 WO2019011060 A1 WO 2019011060A1 CN 2018088152 W CN2018088152 W CN 2018088152W WO 2019011060 A1 WO2019011060 A1 WO 2019011060A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma etching
air inlet
intake
etching system
annular flange
Prior art date
Application number
PCT/CN2018/088152
Other languages
English (en)
French (fr)
Inventor
车东晨
李娜
胡冬冬
许开东
Original Assignee
江苏鲁汶仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器有限公司 filed Critical 江苏鲁汶仪器有限公司
Publication of WO2019011060A1 publication Critical patent/WO2019011060A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32807Construction (includes replacing parts of the apparatus)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment

Definitions

  • the present invention relates to the field of microelectronics, and in particular to a plasma etching system, and more particularly to a showerhead of a plasma etching system.
  • Etching is an important part of microfabrication technology, and the rapid development of microelectronics is driving its continuous development.
  • the etching technology can be divided into dry etching and wet etching.
  • the initial etching is mainly wet etching, but as the device is fabricated into the micron and submicron era, the wet etching is performed.
  • the etch is difficult to meet the increasingly high precision requirements.
  • Dry etching generally removes the etched film by a combination of physical and chemical methods. There are many kinds of dry etching commonly used.
  • the working principle is mainly that the etching gas is inductively coupled to glow.
  • Discharge generate active radicals, metastable particles, atoms, etc., while providing a bias voltage in the reaction chamber, providing energy to the plasma, causing the plasma to act perpendicularly on the substrate, reacting with it to form a volatile gaseous substance, and being
  • the pumping equipment is pumped away.
  • the dry etching has the advantages of high etching speed, high selection ratio, good anisotropy, small etching damage, good uniformity of large area, high controllability of the etched section profile, and smooth and smooth etching surface, and the operation is simple. It is convenient for automatic control and can meet the requirements of various micro-structure devices such as VLSI, MEMS and optoelectronic devices.
  • the requirements for plasma etching are getting higher and higher.
  • One of the main parameters describing the etching effect is uniformity, and the most important factor affecting the uniformity is the distribution of plasma in the reaction chamber.
  • the structure and the design of the air intake portion together determine the distribution of the plasma.
  • the inside of the reaction chamber is mostly circular, and the suction port structure is located at the lower part of the periphery of the sample stage, and the reaction gas enters the uniform structure above the chamber from the side of the cavity through the intake pipe, and then enters Into the chamber.
  • the gas enters from one side of the uniform structure Since the gas enters from one side of the uniform structure, the amount of gas in the spray hole near the intake pipe is likely to be large, and the amount of intake air from the spray hole on the side far from the intake pipe is small, resulting in During the process, the surface of the substrate cannot be uniformly contacted with the reaction gas, especially the surface of the substrate away from the side of the inlet is in contact with the reaction gas, and the etching effect of the substrate region is not good, which ultimately affects the etching uniformity.
  • a shower head of a plasma etching system has a disk shape, and a first annular flange, an air inlet groove, a second annular flange and a gas guide are arranged at a near edge of the upper surface of the disk body.
  • the central portion of the disk body is provided with a first air inlet hole which is concentric annularly and evenly distributed inside and outside, and a ring is arranged between the first air inlet hole and the second annular flange of the outer ring of the central portion Or a plurality of turns of a concentric annular, non-uniformly distributed second air intake hole, further comprising a gas stop, wherein the second air intake hole is selectively blocked according to a gas distribution range during the processing.
  • the diameter of the gas stopper is the same as the diameter of the intake end of the second intake hole.
  • a pitch between the adjacent two second annular intake holes is 30 mm to 70 mm.
  • the annular shape of the second annular flange is larger than the cross-sectional distance of the lower electrode of the plasma etching system by 10 mm to 50 mm.
  • the width of the second annular flange is 3 mm to 7 mm.
  • the second air inlet hole of the suction port region near the reaction chamber is sparsely distributed, and the second air inlet hole is away from the region of the air suction port of the reaction chamber.
  • the distribution is dense.
  • two adjacent second intake holes preferably, from the region away from the suction port of the reaction chamber to the suction port region close to the reaction chamber, two adjacent second intake holes The angle between the increments.
  • the aperture of the second air inlet hole is gradually reduced from the area away from the air suction port of the reaction chamber to the air suction port area close to the reaction chamber. small.
  • the material of the gas block may be ceramic, quartz or polytetrafluoroethylene.
  • the shower head of a plasma etching system of the present invention can effectively solve the problem that the reaction gas which is located on the side of the reaction chamber on the side of the reaction chamber cannot be uniformly distributed to the surface of the substrate.
  • the reaction gas enters the vacuum reaction chamber through the shower head of the plasma etching system of the present invention, and is ensured by the arrangement of the air guiding groove, the air guiding channel and the central inner and outer ring air inlet holes.
  • the substrate located in the middle of the reaction chamber can be more uniformly contacted with the reaction gas, thereby improving the uniformity of the plasma etching.
  • one or more non-uniformly distributed second air inlet holes outside the intermediate portion are designed, wherein the air suction port is close to the vacuum chamber
  • the second air intake hole of the area is relatively sparsely distributed, and the second air intake small hole far from the air extracting area is densely distributed.
  • the structure ensures that the process gas has compensation for the intake air at the edge, and the amount of the reaction gas which is in contact with the surface of the substrate is improved, so that the etching uniformity is remarkably improved.
  • the adjustability of the intake air flow is further achieved by providing a gas stop.
  • FIG. 1 is a schematic perspective view of a showerhead of a plasma etching system.
  • FIG. 2 is a top plan view of a showerhead of a plasma etch system.
  • FIG 3 is a schematic cross-sectional view of a showerhead of a plasma etching system.
  • FIG. 4 is a partially enlarged cross-sectional view showing a first intake hole of an inner and outer ring in a central portion of a shower head of a plasma etching system.
  • Fig. 5 is a schematic view showing the distribution trend of the second intake holes of the shower head of the plasma etching system.
  • Figure 6 is a partially enlarged cross-sectional view showing a second intake port of the shower head of the plasma etching system.
  • FIG. 7 is a top plan view of another embodiment of a showerhead of a plasma etch system.
  • FIG. 8 is a cross-sectional structural view showing a gas block of a shower head of a plasma etching system occluding a second intake hole.
  • Fig. 9 is a graph showing an etching depth when a silicon oxide wafer is etched by a shower head of a plasma etching system in which only two inner and outer intake holes are provided in a central portion.
  • Fig. 10 is a graph showing an etching depth when a silicon oxide wafer is etched by a shower head of the plasma etching system of the present invention.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • FIGS. 1 and 2 are schematic perspective views of a showerhead of a plasma etching system.
  • 2 is a top plan view of a showerhead of a plasma etch system.
  • the main body of the shower head of the plasma etching system has a disk shape, and the material of the disk body may be alumina ceramic, quartz, silicon oxide, silicon nitride, aluminum alloy or the like.
  • a first annular flange 1, an air inlet groove 2, a second annular flange 3 and a gas guiding passage 4 are provided near the edge of the upper surface of the disk body, wherein the air inlet groove 2 is disposed at the first annular flange 1 and the second Between the annular flanges 3, the second annular flange 3 and the air guiding passages 4 are alternately distributed and integrally formed in a ring shape, and the reaction gas entering from the upper surface can be guided to the central portion.
  • the annular shape of the second annular flange 3 is larger than the cross-sectional distance of the lower electrode of the plasma etching system.
  • the annular shape of the second annular flange 3 is larger than the cross-sectional distance of the lower electrode of the plasma etching system by 10 mm to 50 mm.
  • the width of the second annular flange is preferably from 3 mm to 7 mm.
  • the shower head has no second annular flange 3 and a gas guiding passage 4 which are evenly distributed in a ring shape.
  • the gas inlet hole of the gas tank 2 enters the inside of the reaction gas, thereby causing the plasma density formed there to be large, and only a small amount of gas is diffused to the gas inlet hole away from the annular gas feed tank 2, and the plasma density of the portion is small, so
  • the surface of the substrate remote from the side of the inlet is in contact with the reactive gas, and the etching effect of the substrate region is not good, which ultimately affects the etching uniformity.
  • the showerhead structure of the plasma etching system of the present invention is introduced into the second annular flange 3 and the air guiding passage 4, and the gas enters from the annular air inlet groove 2, and is hindered by the second annular flange 3. Firstly, it diffuses in the annular air inlet groove 2, and evenly distributes from the air guiding passage 4 into the area having the air inlet hole, thereby ensuring a uniform air intake effect of the air inlet hole and obtaining a uniform plasma density distribution. It is ensured that during the etching, the substrate located in the middle of the reaction chamber is more uniformly contacted with the reaction gas, improving the etching uniformity.
  • the central portion of the disk body is provided with a first air inlet hole which is concentric annularly and evenly distributed inside and outside, that is, the first air inlet hole 5 located in the central inner ring shown in FIG. 1 and FIG. 2 and the first air inlet hole 5 in the central outer ring
  • An air inlet hole 6 ensures that the reaction gas can uniformly enter the reaction chamber of the plasma etching machine.
  • the first intake hole 5 located at the central inner ring and the first intake hole 6 at the central outer ring are counterbored holes, as shown in FIGS. 3 and 4.
  • a partial enlarged view of the first intake aperture in the central inner and outer ring is shown in FIG. As shown in Fig.
  • the intake end aperture a of the first intake hole 6 located at the center outer ring is preferably 2 to 3 mm, and the outlet end opening diameter b is preferably 0.5 to 1.5 mm.
  • the intake end aperture c of the first intake hole 5 located in the central inner ring is preferably 2 to 4 mm, and the outlet end diameter d is preferably 0.5 to 1.5 mm.
  • the height h1 of the countersunk head of the first intake hole 6 of the central outer ring is greater than or equal to the height h2 of the countersunk head of the first intake hole 5 of the central inner ring.
  • a second intake hole 7 which is unevenly distributed is further provided on the outer side of the first intake hole 6 of the center outer ring, the inner side of the second annular flange 3 and the air guide passage 4, a second intake hole 7 which is unevenly distributed is further provided.
  • the second air intake holes 7 shown in FIG. 1 and FIG. 2 are arranged in a circular shape, but the present invention is not limited thereto, and the second air intake holes 7 may not be distributed on the same circumference, and each of the second air intake holes 7 may be It is distributed at any position between the outer side of the first intake hole 6 of the center outer ring and the second annular flange 3.
  • the second intake opening 7 of the suction port region 8 adjacent to the reaction chamber is sparsely distributed, and the second intake opening 7 of the region 9 away from the suction port of the reaction chamber is densely distributed.
  • the angle between the adjacent two second intake holes 7 is ⁇ 1 in this order, ⁇ 2 , ⁇ 3 ,..., the overall trend is increasing, as shown in Figure 5.
  • the invention is not limited thereto, and for example, depending on the characteristics of the additional member around the chamber and its position, it may be a tendency to change irregularly.
  • the diameter of the second intake port 7 from the region 9 away from the suction port of the reaction chamber to the suction port region 8 close to the reaction chamber gradually decreases, reaching the suction port of the reaction chamber
  • the second intake hole 7 of the region has the smallest aperture.
  • the present invention is not limited thereto, and the adaptive adjustment may be performed according to the characteristics of the peripheral members of the chamber. More preferably, the second intake hole 7 is a counterbore, as shown in FIGS. 3 and 6. A partial enlarged view of the second intake port is shown in FIG. As shown in FIG.
  • the inlet end aperture e of the second intake hole 7 is preferably 2 to 3 mm, the outlet end aperture f is preferably 0.5 to 1.5 mm, and the countersunk head height h3 is less than or equal to the first intake hole located at the central outer ring. 6 the height of the countersunk head h1.
  • the inner side of the second annular flange 3 and the air guide passage 4 there are many around the axis
  • the second intake hole 7 is unevenly distributed in the circle.
  • the spacing between the second intake holes of the adjacent two turns is preferably 30 to 70 mm.
  • the structural design can effectively solve the problem that the reaction gas cannot be uniformly distributed to the surface of the substrate due to the side of the suction structure in the reaction chamber, and the reaction gas contacting the surface of the substrate away from the suction port region is compensated to a large extent. Improve the uniformity of substrate etching.
  • the first inlet hole uniformly distributed in the inner and outer rings of the central region ensures that the reaction gas can enter the vacuum chamber, which is the main supply part of the reaction gas during the process, and can be due to the high degree of vacuum inside the cavity. Ensure that the gas quickly disperses after entering.
  • less air intake hole distribution can increase the control range of the cavity reaction pressure and achieve lower cavity pressure priming.
  • one or more non-uniformly distributed second air inlet holes outside the intermediate portion are designed, wherein the air suction port region is close to the vacuum chamber.
  • the second air intake hole is relatively sparsely distributed, and the second air intake small hole far from the air suction port area is densely distributed.
  • the shower head of the plasma etching system of the present invention is further provided with a gas block 10 for selectively blocking the second air inlet hole 7 according to the gas distribution range during the process, as shown in FIG.
  • the diameter of the gas stop is the same as the diameter of the intake end of the second intake port.
  • the material of the gas block may be ceramic, quartz, polytetrafluoroethylene or the like.
  • FIG. 9 is a graph showing the etch depth of an 8 ⁇ silicon oxide wafer etched with carbon tetrafluoride gas only when the first and second annular holes are uniformly distributed in the central region. As shown in Figure 9, the etch depth at the edges is shallower and more pronounced away from the side of the pumping port, affecting the overall uniformity result.
  • FIG. 9 is a graph showing the etch depth of an 8 ⁇ silicon oxide wafer etched with carbon tetrafluoride gas only when the first and second annular holes are uniformly distributed in the central region. As shown in Figure 9, the etch depth at the edges is shallower and more pronounced away from the side of the pumping port, affecting the overall uniformity result.
  • FIG. 10 shows the oxidation of the 8 ⁇ in the case where the inner and outer rings are uniformly distributed in the central region and the outer air holes are uniformly disposed outside the central region or the gas block is used to block a non-uniform air inlet.
  • the shower head of a plasma etching system of the present invention can effectively solve the problem that the reaction gas which is located on the side of the reaction chamber on the side of the reaction chamber cannot be uniformly distributed to the surface of the substrate.
  • the reaction gas enters the vacuum reaction chamber through the shower head of the plasma etching system of the present invention, and is ensured by the arrangement of the air guiding groove, the air guiding channel and the central inner and outer ring air inlet holes.
  • the substrate located in the middle of the reaction chamber can be more uniformly contacted with the reaction gas, thereby improving the uniformity of the plasma etching.
  • one or more non-uniformly distributed second air inlet holes outside the intermediate portion are designed, which ensures the process gas is at the edge.
  • the compensation of the intake air increases the amount of reactive gas that is in contact with the surface of the substrate, so that the etching uniformity is significantly improved.
  • the adjustability of the intake air flow is further achieved by providing a gas stop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明公开了一种等离子体刻蚀系统的喷淋头,主体呈圆盘状,盘体上表面近边缘处设有第一环形凸缘(1)、进气槽(2)、第二环形凸缘(3)和导气通道(4),其中,进气槽(2)设置在第一环形凸缘(1)和第二环形凸缘(3)之间,第二环形凸缘(3)和导气通道(4)交错分布且整体呈环状,盘体中央区域设有内外两圈呈同心环形且均匀分布的第一进气孔(5、6),在中央区域的外圈进气孔(6)与第二环形凸缘(3)之间,还设有一圈或多圈呈同心环形,不均匀分布的第二进气孔(7),还包括气体挡块(10),在工艺加工过程中根据气体分布范围对第二进气孔(7)进行选择性遮挡。本发明能够有效提高等离子体刻蚀的均匀性同时实现了进气匀流的可调节性。

Description

一种等离子体刻蚀系统的喷淋头 技术领域
本发明涉及微电子技术领域,具体涉及等离子体刻蚀系统,尤其涉及等离子体刻蚀系统的喷淋头。
背景技术
刻蚀是微细加工技术的一个重要组成部分,微电子学的快速发展推动其不断向前发展。从总体上说,刻蚀技术可分为干法刻蚀和湿法刻蚀两种,初期的刻蚀以湿法刻蚀为主,但随着器件制作进入微米、亚微米时代,湿法刻蚀难以满足越来越高的精度要求。干法刻蚀一般是通过物理和化学两个方面相结合的办法来去除被刻蚀的薄膜,常用的干法刻蚀有很多种,其工作原理主要是刻蚀气体通过电感耦合的方式辉光放电,产生活性游离基、亚稳态粒子、原子等,同时在反应室内提供偏置电压,给等离子体提供能量,使等离子体垂直作用在基片上,与其反应生成可挥发的气态物质,并被抽气设备抽走。干法刻蚀具有刻蚀速度快、选择比高、各向异性好、刻蚀损伤小、大面积均匀性好、刻蚀断面轮廓可控性高和刻蚀表面平整光滑等优点,操作简单,便于自动控制,可以满足制作超大规模集成电路、MEMS、光电子器件等各种微结构器件的要求。
随着技术的发展,对等离子体刻蚀的要求也越来越高,其中描述刻蚀效果的一个主要参数就是均匀性,而影响均匀性最主要因素就是反应腔内等离子体的分布,腔室的结构与进气部分的设计共同决定了等离子体的分布。目前存在的刻蚀系统中,反应腔室内部多为圆形,而抽气口结构位于样品台周边下部,反应气体经进气管道由腔体一侧进入腔室上方的匀气结构中,之后进入到腔室中。这种结构由于气体从匀气结构的一侧进入,容易造成气体在靠近进气管道一侧的喷淋孔进气量大,远离进气管道一侧的喷淋孔进气量小,导致在工艺过程中基片表面无法均匀接触到反应气体,尤其是远离进气口一侧区域的基片表面接触反应气体不足,该基片区域刻蚀效果不佳,最终影响刻蚀均匀性。
发明内容
为了解决上述问题,一种等离子体刻蚀系统的喷淋头,主体呈圆盘状,盘体上表面近边缘处设有第一环形凸缘、进气槽、第二环形凸缘和导气通道,其中,所述进气槽设置在所述第一环形凸缘和所述第二环形凸缘之间,所述第二环形凸缘和所述导气通道交错分布且整体呈环状,盘体中央区域设有内外两圈呈同心环形且均匀分布的第一进气孔,在所述中央区域的外圈第一进气孔与所述第二环形凸缘之间,还设有一圈或多圈呈同心环形,不均匀分布的第二进气孔,还包括气体挡块,在工艺加工过程中根据气体分布范围对所述第二进气孔进行选择性遮挡。
本发明的等离子体刻蚀系统的喷淋头中,优选为,所述气体挡块的直径与所述第二进气孔进气端的直径相同。
本发明的等离子体刻蚀系统的喷淋头中,优选为,所述相邻两圈第二进气孔之间的间距为30mm~70mm。
本发明的等离子体刻蚀系统的喷淋头中,优选为,所述第二环形凸缘所呈环形的直径比等离子体刻蚀系统的下电极的横截面距离大10mm~50mm。
本发明的等离子体刻蚀系统的喷淋头中,优选为,所述第二环形凸缘的宽度为3mm~7mm。
本发明的等离子体刻蚀系统的喷淋头中,优选为,靠近反应腔室的抽气口区域的第二进气孔分布比较稀疏,远离反应腔室的抽气口的区域的第二进气孔分布比较密集。
本发明的等离子体刻蚀系统的喷淋头中,优选为,从所述远离反应腔室的抽气口的区域到所述靠近反应腔室的抽气口区域,相邻两个第二进气孔之间的角度递增。
本发明的等离子体刻蚀系统的喷淋头中,优选为,从所述远离反应腔室的抽气口的区域到所述靠近反应腔室的抽气口区域,第二进气孔的孔径逐渐减小。
本发明的等离子体刻蚀系统的喷淋头中,优选为,所述气体挡块的材质可为陶瓷、石英或聚四氟乙烯。
本发明的一种等离子体刻蚀系统的喷淋头能够有效地解决因反应腔室上进气结构位于侧边而造成的反应气体无法均匀分布到基片表面的问题。在进行等离子体刻蚀的过程中,反应气体经由本发明的等离子体刻蚀系统的喷淋头进入真空反应腔室内,由于导气槽、导气通道及中央内外圈进气孔的设置,保证了位于反应腔室中部的基片能够与反应气体更加均匀地进行接触,从而提高等离子体刻蚀的均匀性。
进一步地,为了补偿边缘及远离抽气口区域的基片表面接触的反应气体,设计了在中间区域外侧的一圈或多圈不均匀分布的第二进气孔,其中靠近真空腔室上抽气口区域的第二进气孔分布比较稀疏,远离抽气口区域的第二进气小孔分布比较密集。该结构保证了工艺气体在边缘处有补偿进气,提高了边缘与基片表面接触的反应气体量,使刻蚀均匀性明显提高。此外,通过设置气体挡块,进一步实现了进气匀流的可调节性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是等离子体刻蚀系统的喷淋头的立体结构示意图。
图2是等离子体刻蚀系统的喷淋头的俯视图。
图3是等离子体刻蚀系统的喷淋头的剖面示意图。
图4是等离子体刻蚀系统的喷淋头的中央区域的内外圈第一进气孔的剖面局部放大图。
图5是等离子体刻蚀系统的喷淋头的第二进气孔的分布趋势示意图。
图6是等离子体刻蚀系统的喷淋头的第二进气孔的剖面局部放大图。
图7是等离子体刻蚀系统的喷淋头的另一实施方式的俯视图。
图8是等离子体刻蚀系统的喷淋头的气体挡块对第二进气孔进行遮挡时的剖面结构示意图。
图9是利用只在中央区域设置内外两圈进气孔的等离子刻蚀系统的喷淋头对氧化硅晶圆进行刻蚀时的刻蚀深度曲线图。
图10是利用本发明的等离子体刻蚀系统的喷淋头对氧化硅晶圆进行刻蚀时的刻蚀深度曲线图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“中央”、“边缘”、“内”“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
图1是等离子体刻蚀系统的喷淋头的立体结构示意图。图2是等离子体刻蚀系统的喷淋头的俯视图。如图1~2所示,等离子体刻蚀系统的喷淋头的主体呈圆盘状,盘体材质可以为氧化铝陶瓷、石英、氧化硅、氮化硅、铝合金等。盘体上表面靠近边缘处设有第一环形凸缘1、进气槽2、第二环形凸缘3和导气通道4,其中,进气槽2设置在第一环形凸缘1和第二环形凸缘3之间,第二环形凸缘3和导气通道4交错分布且整体呈环状,可以将从上表面进入的反应气体引导至中央区。第二环形凸缘3所呈环形的直径大于等离子体刻蚀系统的下电极的横截面距离。进一步优选地,第二环形凸缘3所呈环形的直径比等离子体刻蚀系统的下电极的横截面距离大10mm~50mm。第二环形凸缘的宽度优选为3mm~7mm。
以往技术的等离子体刻蚀系统的喷淋头没有环形均匀分布的第二环形凸缘3和导气通道4,气体从圆环状进气槽2进入后,大部分气体由靠近圆环状进气槽2的进气孔进入反应气体内部,从而导致该处形成的等离子体密度大,仅少量气体扩散至远离圆环状进气槽2的进气孔,该部分的等离子体密度小,因此在刻蚀期间,远离进气口一侧区域的基片表面接触反应气体不足,该基片区域刻蚀效果不佳,最终影响刻蚀均匀性。本发明的等离子体刻蚀系统的喷淋头结构通过引入第二环形凸缘3和导气通道4,气体从圆环状进气槽2处进入后,受到第二环形凸缘3的阻碍作用,首先在圆环状进气槽2内扩散,均匀分布后从导气通道4处进入具有进气孔的区域,从而保证进气孔产生均匀的进气效果,获得均匀的等离子体密度分布,确保在刻蚀期间,位于反应腔室中部的基片更加均匀的接触反应气体,提高了刻蚀均匀性。
盘体中央区设有内外两圈呈同心环形且均匀分布的第一进气孔,即图1、图2中所示的位于中央内圈的第一进气孔5和位于中央外圈的第一进气孔6,保证反应气体可均匀进入到等离子体刻蚀机的反应腔室内。优选地,位于中央内圈的第一进气孔5和位于中央外圈的第一进气孔6为沉头孔,如图3、图4所示。在图4中示出了位于中央内外圈的第一进气孔的局部放大图。如图4所示,位于中央外圈的第一进气孔6的进气端孔径a优选为2~3mm,出气端孔 径b优选为0.5~1.5mm。位于中央内圈的第一进气孔5的进气端孔径c优选为2~4mm,出气端孔径d优选为0.5~1.5mm。中央外圈的第一进气孔6沉头的高度h1大于等于中央内圈的第一进气孔5沉头的高度h2。
此外,在中央外圈的第一进气孔6的外侧、第二环形凸缘3和导气通道4的内侧,还设有不均匀分布的第二进气孔7。图1、图2中所示的第二进气孔7排列为圆形,但是本发明不限定于此,第二进气孔7也可不分布在同一圆周上,各第二进气孔7可分布在中央外圈第一进气孔6的外侧与第二环形凸缘3之间的任意位置。优选地,靠近反应腔室的抽气口区域8的第二进气孔7分布比较稀疏,远离反应腔室的抽气口的区域9的第二进气孔7的分布比较密集。进一步优选地,例如,从远离反应腔室的抽气口的区域9到靠近反应腔室的抽气口区域8的范围内,相邻两个第二进气孔7之间的角度依次为θ 1,θ 2,θ 3,…,总体趋势呈递增规律,如图5所示。但是发明不限定于此,例如根据腔室周边附加部件的特性及其位置,也可以是不规则变化的趋势等。此外,优选地,根据区域分布,从远离反应腔室的抽气口的区域9到靠近反应腔室的抽气口区域8的第二进气孔7的孔径逐渐减小,到达反应腔室的抽气口区域的第二进气孔7的孔径最小。但是本发明不限定于此,也可根据腔室周边部件的特性进行适应性调整。进一步优选为,第二进气孔7为沉头孔,如图3、图6所示。在图6中所示为第二进气孔的局部放大图。如图6所示,第二进气孔7的进气端孔径e优选为2~3mm,出气端孔径f优选为0.5~1.5mm,沉头高度h3小于等于位于中央外圈第一进气孔6沉头的高度h1。在本发明的另一实施方式中,如图7所示,在中央外圈的第一进气孔6的外侧、第二环形凸缘3和导气通道4的内侧,围绕轴心设有多圈不均匀分布的第二进气孔7。相邻两圈第二进气孔之间的间距优选为30~70mm。
该结构设计可以有效地解决由于反应腔室中抽气结构位于侧边造成的反应气体无法均匀分布到基片表面的问题,补偿远离抽气口区域的基片表面接触的反应气体,在很大程度上提高基片刻蚀的均匀性。首先,位于中心区域的内外两圈环形均匀分布的第一进气孔,保证反应气体可进入到真空腔室内,是工艺期间反应气体的主要提供部分,由于腔体内部较高的真空度,能够保证气体进 入后迅速散开。并且,较少的进气孔分布,能增加腔体反应压力的控制范围,实现较低的腔体压力起辉。另外,为了补偿边缘及远离抽气口区域的基片表面接触的反应气体,设计了在中间区域外侧的一圈或多圈不均匀分布的第二进气孔,其中靠近真空腔室上抽气口区域的第二进气孔分布比较稀疏,远离抽气口区域的第二进气小孔分布比较密集。该结构保证了工艺气体在边缘处有补偿进气,特别是远离抽气口侧较密的孔分布,提高了边缘与基片表面接触的反应气体量,使刻蚀均匀性明显提高。
此外,本发明的等离子体刻蚀系统的喷淋头还设置有气体挡块10,在工艺加工过程中根据气体分布范围对第二进气孔7进行选择性遮挡,如图8所示。优选地,气体挡块的直径与第二进气孔进气端的直径相同。该气体挡块的材质可以是陶瓷、石英、聚四氟乙烯等。通过对不同的第二进气孔进行遮挡,可以形成不同的气体分布范围,这样的设计不仅能够使反应气体与基片均匀接触,提高刻蚀均匀性,而且实现了进气匀流的可调节。在刻蚀工艺过程中,工艺人员可以根据具体工艺参数选择最优进气方案,遮挡设定的第二进气孔,使气体仅从保留的第二进气孔进入反应腔。
为了进一步阐述本发明在提高刻蚀均匀度方面的效果,以下结合具体的实施例进行说明。在本实施例中,在不同的等离子体刻蚀系统的喷淋头下以相同的刻蚀条件对8吋氧化硅晶圆进行刻蚀,对其刻蚀均匀性进行对比。图9显示了只在中央区域设置内外两圈环形均匀分布的第一进气孔时,对8吋氧化硅晶圆以四氟化碳气体进行刻蚀时的刻蚀深度曲线。如图9所示,在边缘处的刻蚀深度较浅,并且远离抽气口侧更加明显,影响了整体均匀性结果。图10中示出了在中央区域设置内外两圈环形均匀分布的第一进气孔以及在中央区域外侧设置或者采用气体挡块遮挡保留一圈不均匀进气孔的情况下,对8吋氧化硅晶圆以四氟化碳气体进行刻蚀时的刻蚀深度曲线。如图10所示,8吋氧化硅晶圆的边缘刻蚀深度与中心基本一致,均匀性明显得到提高。
本发明的一种等离子体刻蚀系统的喷淋头能够有效地解决因反应腔室上进气结构位于侧边而造成的反应气体无法均匀分布到基片表面的问题。在进行等 离子体刻蚀的过程中,反应气体经由本发明的等离子体刻蚀系统的喷淋头进入真空反应腔室内,由于导气槽、导气通道及中央内外圈进气孔的设置,保证了位于反应腔室中部的基片能够与反应气体更加均匀地进行接触,从而提高等离子体刻蚀的均匀性。进一步地,为了补偿边缘及远离抽气口区域的基片表面接触的反应气体,设计了在中间区域外侧的一圈或多圈不均匀分布的第二进气孔,该结构保证了工艺气体在边缘处有补偿进气,提高了边缘与基片表面接触的反应气体量,使刻蚀均匀性明显提高。此外,通过设置气体挡块,进一步实现了进气匀流的可调节性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种等离子体刻蚀系统的喷淋头,主体呈圆盘状,其特征在于,
    盘体上表面近边缘处设有第一环形凸缘、进气槽、第二环形凸缘和导气通道,其中,所述进气槽设置在所述第一环形凸缘和所述第二环形凸缘之间,所述第二环形凸缘和所述导气通道交错分布且整体呈环状,
    盘体中央区域设有内外两圈呈同心环形且均匀分布的第一进气孔,
    在所述中央区域的外圈第一进气孔与所述第二环形凸缘之间,还设有一圈或多圈呈同心环形,不均匀分布的第二进气孔,
    还包括气体挡块,在工艺加工过程中根据气体分布范围对所述第二进气孔进行选择性遮挡。
  2. 根据权利要求1所述的等离子体刻蚀系统的喷淋头,其特征在于,
    所述气体挡块的直径与所述第二进气孔进气端的直径相同。
  3. 根据权利要求1所述的等离子体刻蚀系统的喷淋头,其特征在于,
    所述相邻两圈第二进气孔之间的间距为30mm~70mm。
  4. 根据权利要求1所述的等离子体刻蚀系统的喷淋头,其特征在于,
    所述第二环形凸缘的呈环形的直径比等离子体刻蚀系统的下电极的横截面距离大10mm~50mm。
  5. 根据权利要求1所述的等离子体刻蚀系统的喷淋头,其特征在于,
    所述第二环形凸缘的宽度为3mm~7mm。
  6. 根据权利要求1所述的等离子体刻蚀机的匀气盘,其特征在于,
    靠近反应腔室的抽气口区域的所述第二进气孔分布比较稀疏,远离反应腔室的抽气口区域的所述第二进气孔分布比较密集。
  7. 根据权利要求6所述的等离子体刻蚀机的匀气盘,其特征在于,
    从所述远离反应腔室的抽气口的区域到所述靠近反应腔室的抽气口区域,相邻两个所述第二进气孔之间的角度递增。
  8. 根据权利要求6所述的等离子体刻蚀机的匀气盘,其特征在于,
    从所述远离反应腔室的抽气口的区域到所述靠近反应腔室的抽气口区域,所述第二进气孔的孔径逐渐减小。
  9. 根据权利1所述的等离子体刻蚀系统的喷淋头,其特征在于
    所述气体挡块的材质可为陶瓷、石英或聚四氟乙烯。
PCT/CN2018/088152 2017-07-13 2018-05-24 一种等离子体刻蚀系统的喷淋头 WO2019011060A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710571317.4A CN107516625A (zh) 2017-07-13 2017-07-13 一种等离子体刻蚀系统的喷淋头
CN201710571317.4 2017-07-13

Publications (1)

Publication Number Publication Date
WO2019011060A1 true WO2019011060A1 (zh) 2019-01-17

Family

ID=60721646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088152 WO2019011060A1 (zh) 2017-07-13 2018-05-24 一种等离子体刻蚀系统的喷淋头

Country Status (2)

Country Link
CN (1) CN107516625A (zh)
WO (1) WO2019011060A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021064477A1 (en) 2019-10-03 2021-04-08 FATHURIZKI, Ramadhan Electronic evaporator to transfer medicine or nicotine with perforated heating coil

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107516625A (zh) * 2017-07-13 2017-12-26 江苏鲁汶仪器有限公司 一种等离子体刻蚀系统的喷淋头
CN109360779A (zh) * 2018-11-13 2019-02-19 深圳市华星光电半导体显示技术有限公司 干蚀刻设备的上电极及其制造方法
CN113903644B (zh) * 2020-06-22 2024-10-15 江苏鲁汶仪器股份有限公司 一种用于离子束刻蚀腔的挡件
CN114068272B (zh) * 2020-07-31 2023-09-29 中微半导体设备(上海)股份有限公司 一种气体流量调节装置和调节方法及等离子体处理装置
CN113078045B (zh) * 2021-03-25 2022-06-21 重庆臻宝实业有限公司 一种14nm干刻设备用超大型上部电极的制作方法
CN115410893A (zh) * 2022-09-28 2022-11-29 北京金派尔电子技术开发有限公司 干法刻蚀装置和方法
CN117423599B (zh) * 2023-11-03 2024-03-22 扬州中科半导体照明有限公司 一种可提高刻蚀一致性的刻蚀盘结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034666A (zh) * 2009-10-01 2011-04-27 显示器生产服务株式会社 等离子反应内室的侧部气体喷射器
CN102234791A (zh) * 2010-05-05 2011-11-09 财团法人工业技术研究院 气体分布喷洒模块与镀膜设备
CN106167895A (zh) * 2015-05-22 2016-11-30 朗姆研究公司 用于改善流动均匀性的具有面板孔的低体积喷头
CN107516625A (zh) * 2017-07-13 2017-12-26 江苏鲁汶仪器有限公司 一种等离子体刻蚀系统的喷淋头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827083B2 (ja) * 2006-02-27 2011-11-30 東京エレクトロン株式会社 プラズマエッチング装置およびプラズマエッチング方法
US8475625B2 (en) * 2006-05-03 2013-07-02 Applied Materials, Inc. Apparatus for etching high aspect ratio features
CN101207034B (zh) * 2006-12-20 2010-05-19 北京北方微电子基地设备工艺研究中心有限责任公司 腔室上盖及包含该上盖的反应腔室
CN206312874U (zh) * 2016-12-29 2017-07-07 江苏鲁汶仪器有限公司 一种等离子体刻蚀机的匀气盘

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034666A (zh) * 2009-10-01 2011-04-27 显示器生产服务株式会社 等离子反应内室的侧部气体喷射器
CN102234791A (zh) * 2010-05-05 2011-11-09 财团法人工业技术研究院 气体分布喷洒模块与镀膜设备
CN106167895A (zh) * 2015-05-22 2016-11-30 朗姆研究公司 用于改善流动均匀性的具有面板孔的低体积喷头
CN107516625A (zh) * 2017-07-13 2017-12-26 江苏鲁汶仪器有限公司 一种等离子体刻蚀系统的喷淋头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021064477A1 (en) 2019-10-03 2021-04-08 FATHURIZKI, Ramadhan Electronic evaporator to transfer medicine or nicotine with perforated heating coil

Also Published As

Publication number Publication date
CN107516625A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
WO2019011060A1 (zh) 一种等离子体刻蚀系统的喷淋头
WO2019015388A1 (zh) 一种等离子体刻蚀系统的喷淋头
TWI804472B (zh) 電漿屏、電漿處理腔室和處理基板的方法
TWI623024B (zh) 透過電漿輔助製程處理基板的平面內均勻性的控制方法
US8075728B2 (en) Gas flow equalizer plate suitable for use in a substrate process chamber
US8845806B2 (en) Shower plate having different aperture dimensions and/or distributions
US11715667B2 (en) Thermal process chamber lid with backside pumping
US20070089670A1 (en) Substrate-supporting device
JP2011517116A (ja) 統合型流量平衡器と改良されたコンダクタンスとを備える下部ライナ
KR102346038B1 (ko) 플라즈마 처리 장치 및 가스 공급 부재
TWI777218B (zh) 具有可移動環的電漿處理器
US20210013013A1 (en) Plasma Spreading Apparatus And System
JP2006120853A (ja) 基板処理装置および基板処理方法
KR100943431B1 (ko) 플라즈마 처리장치
TWI745889B (zh) 具有導流器的氣體注射器
TWI791202B (zh) 氣體遮擋環、等離子體處理裝置及調控聚合物分佈的方法
TWI772417B (zh) 絕緣體、基板處理裝置及處理裝置
TW202413701A (zh) 用於處理腔室的泵襯墊
TW202246564A (zh) 具有流動控制環的基板處理設備,以及基板處理方法
TWM643164U (zh) 氣體噴淋頭及等離子體處理裝置
KR102000012B1 (ko) 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
KR20200017252A (ko) 압력 조절링 및 이를 포함하는 플라즈마 처리 장치
US20220064797A1 (en) Showerhead design to control stray deposition
JP2019075516A (ja) プラズマ処理装置及びガス流路が形成される部材
CN116646282A (zh) 进气喷嘴及干法化学蚀刻设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832249

Country of ref document: EP

Kind code of ref document: A1