WO2023216040A1 - 显示基板及其驱动方法、显示装置 - Google Patents

显示基板及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2023216040A1
WO2023216040A1 PCT/CN2022/091553 CN2022091553W WO2023216040A1 WO 2023216040 A1 WO2023216040 A1 WO 2023216040A1 CN 2022091553 W CN2022091553 W CN 2022091553W WO 2023216040 A1 WO2023216040 A1 WO 2023216040A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
area
display substrate
Prior art date
Application number
PCT/CN2022/091553
Other languages
English (en)
French (fr)
Inventor
代伟男
王登宇
郑克宁
周俊毅
马丹阳
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/091553 priority Critical patent/WO2023216040A1/zh
Priority to CN202280001126.3A priority patent/CN117501353A/zh
Publication of WO2023216040A1 publication Critical patent/WO2023216040A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate, a driving method thereof, and a display device.
  • OLED Organic Light Emitting Diode
  • Transparent display is a technology that can both display images and see through the scene on the other side of the screen.
  • Transparent display technology can realize virtual reality/augmented reality (VR/AR) and under-screen cameras and other display functions.
  • VR/AR virtual reality/augmented reality
  • the present disclosure provides a display substrate, including a plurality of island areas separated from each other, and a hole area located between adjacent island areas;
  • the island area includes a plurality of sub-pixels, the plurality of sub-pixels include a first sub-pixel, a second sub-pixel and a third sub-pixel; the first sub-pixel is located at four vertex positions of the virtual quadrilateral; The second sub-pixel and the third sub-pixel are located at the two center lines of the virtual quadrilateral to separate the adjacent first sub-pixels; the center line is a pair of opposite ones in the virtual quadrilateral. The line connecting the midpoints of the set sides.
  • the two center lines include a first center line and a second center line; in the virtual quadrilateral, at least one of the second sub-pixels is arranged sequentially along the first center line, and multiple The third sub-pixel is located on the second center line and is symmetrically arranged on both sides of the second sub-pixel.
  • a plurality of the third sub-pixels are not adjacent to each other.
  • the second sub-pixel has at least a first long side and a first short side, the first long side is parallel to the first midline, and the first short side is parallel to the first midline.
  • the second center line is parallel; and/or,
  • the third sub-pixel has at least a second long side and a second short side, the second long side is parallel to the first midline, and the second short side is parallel to the second midline.
  • the shape of the first sub-pixel is a square, and the shapes of the second sub-pixel and the third sub-pixel are a rectangle;
  • a pair of opposite sides of the square is parallel to the first center line, and the other pair of opposite sides is parallel to the second center line.
  • two second sub-pixels and two third sub-pixels are provided in the virtual quadrilateral.
  • the side of the first sub-pixel close to the second sub-pixel is in contact with the second sub-pixel.
  • the sides of the sub-pixels close to the first sub-pixel are parallel to each other; and/or,
  • the side of the first sub-pixel close to the third sub-pixel and the side of the third sub-pixel close to the first sub-pixel are parallel to each other; and/or,
  • the side of the second sub-pixel close to the third sub-pixel and the side of the third sub-pixel close to the second sub-pixel are parallel to each other.
  • the shape of the sub-pixel includes at least one of the following: polygon, ellipse, sector, waist circle, and track shape.
  • the minimum distance between two adjacent sub-pixels is greater than or equal to 10 micrometers and less than or equal to 30 micrometers.
  • the first sub-pixel is a green sub-pixel
  • the second sub-pixel is a blue sub-pixel
  • the third sub-pixel is a red sub-pixel
  • the first sub-pixel is a green sub-pixel
  • the second sub-pixel is a red sub-pixel
  • the third sub-pixel is a blue sub-pixel.
  • the area of the red sub-pixel is greater than or equal to the area of the green sub-pixel, and is less than or equal to the area of the blue sub-pixel.
  • the ratio between the area of the red sub-pixel, the area of the green sub-pixel and the area of the blue sub-pixel is 2:1.5:5.
  • the island area includes one virtual quadrilateral; or, the island area includes multiple virtual quadrilaterals, and the multiple virtual quadrilaterals are arranged along the row direction and/or the column direction. Cloth, two adjacent virtual quadrilaterals share a side.
  • the shape of the island area is a quadrilateral, and the vertex corners of the sub-pixels arranged close to the vertices of the quadrilateral and close to the vertices of the quadrilateral are chamfered, and the vertex corners of the quadrilateral are chamfered. horn.
  • the display substrate further includes a bridge area connecting adjacent island areas, and a light-emitting device and a driving circuit are provided in the sub-pixel; the driving circuit is connected to the light-emitting device and the signal respectively. Line electrical connection, used to drive the light-emitting device to emit light according to the signal provided by the signal line;
  • the signal line is arranged within the bridge area.
  • the bridge area includes a first bridge area and a second bridge area, the first bridge area connects two adjacent island areas in the first direction, and the second bridge area Connect two adjacent island areas in the second direction;
  • the signal line includes a first signal line and a second signal line, the first signal line extends along the first direction, and the second signal line extends along the second direction;
  • the plurality of first signal lines connected to each of the driving circuits in the same island area are respectively located on different layers and overlapped with each other within the scope of the first bridge area; and each of the first signal lines in the same island area is The plurality of second signal lines connected to the driving circuit are respectively located on different layers and overlap each other within the second bridge area.
  • the plurality of first signal lines connected to each of the driving circuits in the same island area completely overlap in the second direction;
  • the plurality of second signal lines connected to each of the driving circuits completely overlap in the first direction; wherein the first direction and the second direction are perpendicular to each other.
  • the material of the signal line includes transparent metal oxide or metal.
  • the present disclosure provides a display device, including the display substrate described in any one of the above items.
  • the present disclosure provides a driving method for a display substrate, which is applied to any of the display substrates.
  • the driving method includes:
  • Each of the first sub-pixels is driven to emit light independently to form four white pixels within the virtual quadrilateral.
  • Each of the white pixels includes one of the first sub-pixels, one of the second sub-pixels and one of the second sub-pixels.
  • the third sub-pixel, the second sub-pixel and/or the third sub-pixel is shared between two adjacent white pixels.
  • Figure 1 schematically shows a schematic plan view of a display substrate provided by the present disclosure
  • Figure 2 schematically shows a schematic diagram of the pixel structure of the first display substrate provided by the present disclosure
  • Figure 3 schematically shows a schematic diagram of the pixel structure of the second display substrate provided by the present disclosure
  • Figure 4 schematically shows a pixel structure diagram of a third display substrate provided by the present disclosure
  • Figure 5 schematically shows a structural diagram of a white pixel in the first display substrate provided by the present disclosure
  • Figure 6 schematically shows the distribution diagram of the white brightness center in the first display substrate provided by the present disclosure
  • Figure 7 schematically shows a schematic diagram of the pixel structure of the fourth display substrate provided by the present disclosure
  • Figure 8 schematically shows a schematic diagram of the pixel structure of the fifth display substrate provided by the present disclosure
  • Figure 9 schematically shows a schematic diagram of the pixel structure of the sixth display substrate provided by the present disclosure.
  • Figure 10 schematically shows a schematic diagram of the pixel structure of the seventh display substrate provided by the present disclosure
  • FIG. 11 schematically shows a pixel structure diagram of an eighth display substrate provided by the present disclosure.
  • the present disclosure provides a display substrate.
  • a schematic plan view of the display substrate provided by the present disclosure is schematically shown.
  • the transparent display area of the display substrate includes a plurality of island areas 21 spaced apart from each other, and hole areas 22 located between adjacent island areas 21 .
  • the island area 21 is used to display images, and the hole area 22 is used to transmit ambient light.
  • the island area 21 may include a plurality of sub-pixels including a first sub-pixel 31 , a second sub-pixel 32 and a third sub-pixel 33 .
  • the first sub-pixel 31 is located at the four vertex positions of the virtual quadrilateral A; the second sub-pixel 32 and the third sub-pixel 33 are located at the two midline positions of the virtual quadrilateral A, so as to separate the adjacent first sub-pixels 31 separated.
  • Each vertex in the virtual quadrilateral A is correspondingly set with a first sub-pixel 31 .
  • the vertex of the virtual quadrilateral A can be located at any position within the range of the first sub-pixel 31 at this position, and is not limited to the center of the first sub-pixel 31 .
  • the second sub-pixel 32 and the third sub-pixel 33 are located at the center line of the virtual quadrilateral A, which means that the center line passes through any position within the range of the second sub-pixel 32 and the third sub-pixel 33, or the second sub-pixel 32 and the third sub-pixel 33 are located at the center line of the virtual quadrilateral A.
  • At least one arrangement direction of the three sub-pixels 33 is substantially along the extending direction of the center line.
  • the center line is the connection line between a pair of opposite side midpoints in the virtual quadrilateral A.
  • the two center lines of the virtual quadrilateral A include a first center line a1 and a second center line a2.
  • the second sub-pixel 32 and the third sub-pixel 33 are set at the positions of the first center line a1 and the second center line a2 of the virtual quadrilateral A, thereby Any two first sub-pixels 31 are separated. That is, any two first sub-pixels 31 are separated by the second sub-pixel 32 and/or the third sub-pixel 33, which ensures that in the virtual quadrilateral A, any two first sub-pixels 31 are not adjacent to each other. , to avoid the centralized arrangement of the first sub-pixels 31, thereby improving the dispersion of the first sub-pixels 31.
  • the first sub-pixel 31 and a surrounding second sub-pixel 32 and a third sub-pixel 33 form a white pixel W.
  • four white pixels W can be formed within one virtual quadrilateral A (shown in pictures a, b, c and d in Figure 5 respectively).
  • FIG. 5 shows a schematic diagram of a white pixel composed of multiple sub-pixels within the same virtual quadrilateral. The pixel structure of the virtual quadrilateral is shown in FIG. 2 .
  • each white pixel W forms a white brightness center C (as shown in Figure 5).
  • the first sub-pixels 31 can be set to have a stronger human eye perception or a higher human eye sensitivity.
  • the first sub-pixel 31 is mixed with the second sub-pixel 32 and the third sub-pixel 33 in the island area 21 to form a
  • the dispersion of the white brightness center C is also increased accordingly, which improves the uniformity of the distribution of the white brightness center C in the island area 21 and avoids the local aggregation of the white brightness center C in the island area 21, which is equivalent to increasing the white brightness center C in the island area 21
  • the number of brightness centers C can improve the fineness of the display screen.
  • the distance between the two white brightness centers C located on the adjacent island areas 21 can be reduced. (Figure 6), thereby reducing the distance between dark areas between adjacent island areas 21 and reducing the graininess of the display screen.
  • Figure 6 shows a schematic diagram of the distribution of white brightness centers in several adjacent island areas.
  • the pixel structure of each island area is shown in Figure 2.
  • each first sub-pixel 31 can be driven independently, and each first sub-pixel 31 corresponds to a white pixel W.
  • Each white pixel W in the virtual quadrilateral A may independently include a first sub-pixel 31.
  • the second sub-pixel 32 and/or the third sub-pixel 33 may be shared between two adjacent white pixels W in the virtual quadrilateral A.
  • two white pixels W corresponding to two adjacent first sub-pixels 31 may share the second sub-pixel 32 or the third sub-pixel 33 located between the two adjacent first sub-pixels 31 .
  • the white pixel W in the lower right corner (shown in Figure 5 a) and the white pixel W in the lower left corner (shown in Figure 5 b) share the first pixel in the lower right corner.
  • the white pixel W in the upper right corner (shown in c in Figure 5) and the white pixel W in the upper left corner (shown in d in Figure 5) share the first sub-pixel in the upper right corner. 31 and the first sub-pixel 31 in the upper left corner.
  • the white pixel W in the lower right corner (shown in Figure 5 a) and the upper right corner white pixel W (shown in Figure 5 c) share the first sub-pixel in the lower right corner. 31 and the first sub-pixel 31 in the upper right corner.
  • the white pixel W in the lower left corner (shown in b in Figure 5) and the white pixel W in the upper left corner (shown in d in Figure 5) share the first sub-pixel in the lower left corner. 31 and the first sub-pixel 31 in the upper left corner.
  • the external driving circuit specifically refers to arranging the light-emitting device of the sub-pixel in the transparent display area, and arranging the driving circuit that drives the light-emitting device to emit light outside the transparent display area.
  • the built-in driving circuit specifically refers to arranging the light-emitting device and the driving circuit that drives the light-emitting device to emit light inside the transparent display area.
  • the display substrate provided by the present disclosure can adopt a solution with a built-in driving circuit, thereby simplifying the structural design and reducing costs.
  • the transmittance of ambient light is usually increased by reducing the pixel density of the transparent display area.
  • reducing the pixel density leads to an increase in the distance between monochromatic sub-pixels, which in turn causes certain difficulties in mixing light between monochromatic sub-pixels.
  • the transparent display area includes a plurality of island areas 21 spaced apart from each other and a hole area 22 located around the island area 21 .
  • the hole area 22 can transmit ambient light, it can increase the ambient light transmittance of the transparent display area, improve the transparency and clarity of the transparent display area, and improve the photo-taking effect of the under-screen camera.
  • the display substrate provided by the present disclosure can also use an external drive circuit in the transparent display area, which can further improve the ambient light transmittance of the transparent display area without reducing the pixel density of the transparent display area and improve The display effect of the transparent display area.
  • an external driving circuit solution transparent wiring can be used to connect the light-emitting device of the sub-pixel and the external driving circuit, thereby reducing the impact of the wiring on the transmittance of the transparent display area.
  • the second sub-pixel 32 and the third sub-pixel 33 are located at the two center lines of the virtual quadrilateral A.
  • At least one second sub-pixel 32 and at least one third sub-pixel 33 are arranged sequentially along the first center line a1, and at least one second sub-pixel 32 and at least one third sub-pixel 33 are arranged along the first center line a1.
  • the second center line a2 is arranged in sequence.
  • a second sub-pixel 32 and a third sub-pixel 33 are arranged in sequence on the first center line a1, and a second sub-pixel 32 and a third sub-pixel 33 are arranged in sequence on the second center line a2. superior.
  • At least one second sub-pixel 32 and a plurality of third sub-pixels 33 are provided in the virtual quadrilateral A, and the at least one second sub-pixel 32 is along the first center line.
  • a1 are arranged in sequence, and a plurality of third sub-pixels 33 are located on the second center line a2 and are symmetrically arranged on both sides of the second sub-pixel 32 .
  • the third sub-pixels 33 are arranged on the second center line a2 and are symmetrically distributed on both sides of the second sub-pixel 32, that is, the second sub-pixel 32 is close to the virtual quadrilateral A.
  • the third sub-pixel 33 is placed close to the edge of the virtual quadrilateral A. Therefore, the edge color shift problem that may occur when the second sub-pixel 32 and the third sub-pixel 33 are placed close to the edge of the virtual quadrilateral A at the same time can be avoided.
  • the third sub-pixels 33 are disposed on both sides of the second sub-pixel 32, the degree of dispersion of the third sub-pixels 33 is high, which can avoid the color shift problem caused by the concentrated placement of the third sub-pixels 33.
  • the third sub-pixel 33 can be set to a color sub-pixel (such as a red sub-pixel) with a higher human eye sensitivity than the second sub-pixel 32, which can further avoid the problem of edge color and reduce color casts. bad.
  • the second sub-pixel 32 is arranged in the middle of the virtual quadrilateral A, the second sub-pixel 32 is arranged more concentratedly, so the second sub-pixel 32 can be set as a color sub-pixel with relatively low human eye sensitivity (such as a blue sub-pixel). pixels), which improves color mixing.
  • the plurality of third sub-pixels 33 are not adjacent to each other.
  • any two third sub-pixels 33 are separated by the second sub-pixel 32 , so that the dispersion of the third sub-pixels 33 can be further improved. degree, further improving edge color deviation.
  • the second sub-pixel 32 has at least a first long side b1 and a first short side c1.
  • the first long side b1 is parallel to the first center line a1
  • the first short side c1 is parallel to the second center line a1.
  • a2 is parallel.
  • the first long side b1 is the long side of the rectangle
  • the first short side c1 is the short side of the rectangle, as shown in FIG. 2 .
  • the shape of the second sub-pixel 32 is a parallelogram
  • the first long side b1 is the long side of the parallelogram
  • the first short side c1 is the short side of the parallelogram.
  • the shape of the second sub-pixel 32 is an ellipse, a waist circle or a race track shape
  • the first long side b1 is the long side of the smallest circumscribed rectangle of the ellipse, waist circle or race track shape.
  • a short side c1 is the short side of the smallest circumscribed rectangle of an ellipse, a waist circle or a runway shape.
  • the third sub-pixel 33 has at least a second long side b2 and a second short side c2, the second long side b2 is parallel to the first center line a1, and the second short side c2 is parallel to the second center line a2.
  • the second long side b2 is the long side of the rectangle
  • the second short side c2 is the short side of the rectangle, as shown in FIG. 2 .
  • the shape of the third sub-pixel 33 is a parallelogram
  • the second long side b2 is the long side of the parallelogram
  • the second short side c2 is the short side of the parallelogram.
  • the shape of the third sub-pixel 33 is an ellipse, a waist circle or a race track shape, as shown in FIG. 9
  • the second long side b2 is the long side of the smallest circumscribed rectangle of the ellipse, waist circle or race track shape.
  • the second short side c2 is the short side of the smallest circumscribed rectangle of an ellipse, a waist circle or a runway shape.
  • the shape of the second sub-pixel 32 is a rectangle, which is not limited in this disclosure.
  • the shape of the third sub-pixel 33 is a rectangle, which is not limited in this disclosure.
  • the shape of the first sub-pixel 31 is a square.
  • a pair of opposite sides of the square may be parallel to the first center line a1, and the other pair of opposite sides may be parallel to the second center line a2.
  • the rectangle can be a chamfered rectangle or a non-chamfered rectangle.
  • the square may be a chamfered square or a non-chamfered square, which is not limited in this disclosure.
  • two second sub-pixels 32 and two third sub-pixels 33 are provided in the virtual quadrilateral A, which is not limited in this disclosure.
  • the first sub-pixel 31 is close to the side of the second sub-pixel 32 and the second sub-pixel 32 Sides close to the first sub-pixel 31 may be parallel to each other.
  • the first sub-pixel 31 is close to the side of the third sub-pixel 33 and the third sub-pixel 33 Sides close to the first sub-pixel 31 may be parallel to each other.
  • the second sub-pixel 32 is close to the side of the third sub-pixel 33 and the third sub-pixel 33 Sides close to the second sub-pixel 32 may be parallel to each other.
  • the shape of the sub-pixel includes at least one of the following: regular graphics or irregular graphics such as polygon, ellipse, sector, waist circle, racetrack shape, etc.
  • polygons may include triangles, rectangles, squares, rhombuses, trapezoids, parallelograms, pentagons, hexagons, octagons, etc.
  • regular graphics or irregular graphics such as polygon, ellipse, sector, waist circle, racetrack shape, etc.
  • polygons may include triangles, rectangles, squares, rhombuses, trapezoids, parallelograms, pentagons, hexagons, octagons, etc.
  • the present disclosure does not limit the shape of each sub-pixel.
  • the shapes of the first sub-pixel 31 , the second sub-pixel 32 and the third sub-pixel 33 are all polygons, or chamfered polygons.
  • the shape of the first sub-pixel 31 is a square, and the shapes of the second sub-pixel 32 and the third sub-pixel 33 are both a rectangle.
  • the first sub-pixel 31 is circular, and the shapes of the second sub-pixel 32 and the third sub-pixel 33 are both track-shaped.
  • the first sub-pixel 31 is fan-shaped, and the second sub-pixel 32 and the third sub-pixel 33 are both rectangular in shape.
  • the shapes of the first sub-pixel 31 , the second sub-pixel 32 and the third sub-pixel 33 are all rectangular.
  • the shape of the four first sub-pixels 31 is a square.
  • the shapes of the second sub-pixel 32 and the third sub-pixel 33 are both rectangular, with long sides and short sides.
  • One side of the first sub-pixel 31 is adjacent to the long side of the second sub-pixel 32 and parallel to each other, and the other side of the first sub-pixel 31 is adjacent to the short side of the third sub-pixel 33. parallel to each other.
  • the long side of the third sub-pixel 33 is adjacent to the long side of the second sub-pixel 32 and parallel to each other.
  • the short sides of the two second sub-pixels 32 are adjacent and parallel to each other.
  • the long side of the first side (such as the left side) of the second sub-pixel 32 is adjacent to a first sub-pixel 31 and a third sub-pixel 33 on the first side, and the second side (such as the right side) of the second sub-pixel 32 ) long side is adjacent to one first sub-pixel 31 and one third sub-pixel 33 on the second side.
  • the minimum distance between two adjacent sub-pixels is greater than or equal to 10 ⁇ m and less than or equal to 30 ⁇ m. Further, the minimum distance between two adjacent sub-pixels may be greater than or equal to 15 ⁇ m and less than or equal to 20 ⁇ m.
  • the minimum distance between two sub-pixels refers to the minimum distance between the opening areas of the two sub-pixels.
  • the opening area of each sub-pixel may be formed by a pixel defining layer.
  • the minimum distance between two adjacent sub-pixels includes: the minimum distance d1 between the second sub-pixel 32 and the third sub-pixel 33, the minimum distance d1 between the first sub-pixel 31 and the second sub-pixel 33.
  • the minimum distance d1 between the second sub-pixel 32 and the third sub-pixel 33 may be greater than or equal to 15 microns and less than or equal to 20 ⁇ m.
  • the minimum distance d2 between the first sub-pixel 31 and the second sub-pixel 32 may be greater than or equal to 15 ⁇ m and less than or equal to 20 ⁇ m.
  • the minimum distance d3 between the first sub-pixel 31 and the third sub-pixel 33 may be greater than or equal to 15 ⁇ m and less than or equal to 20 ⁇ m.
  • the first sub-pixel 31 is a green sub-pixel
  • the second sub-pixel 32 is a blue sub-pixel
  • the third sub-pixel 33 is a red sub-pixel.
  • the first sub-pixel 31 is a green sub-pixel
  • the second sub-pixel 32 is a red sub-pixel
  • the third sub-pixel 33 is a blue sub-pixel.
  • the area of the red sub-pixel is greater than or equal to the area of the green sub-pixel, and is less than or equal to the area of the blue sub-pixel.
  • the life of blue light-emitting devices decays quickly and the luminous efficiency is low, by setting a larger area of blue sub-pixels, the luminous efficiency of the blue sub-pixels can be improved and the service life of the display substrate can be extended.
  • the ratio between the area of the red sub-pixel, the area of the green sub-pixel and the area of the blue sub-pixel may be 2:1.5:5, which is not limited by the present disclosure.
  • the island area 21 may include a virtual quadrilateral A, as shown in FIGS. 2 and 3 .
  • the island area 21 may include multiple virtual quadrilaterals A, the multiple virtual quadrilaterals A are arranged along the row direction and/or the column direction, and two adjacent virtual quadrilaterals A share one side.
  • the island area 21 includes four virtual quadrilaterals A.
  • two virtual quadrilaterals A are arranged along the row direction
  • two virtual quadrilaterals A are arranged along the column direction
  • two virtual quadrilaterals A adjacent in the row direction share a side
  • two virtual quadrilaterals A adjacent in the column direction share one side. share a side.
  • the shape of the island area 21 is a quadrilateral, and the vertex corners of the sub-pixels located close to the vertices of the quadrilateral are chamfered.
  • the vertex corners of the quadrilateral are chamfered.
  • the chamfer can be a round chamfer or a straight chamfer.
  • the interference effect of the right-angle light-emitting area on the ambient light transmitted through the hole area can be reduced.
  • the island area 21 includes a virtual quadrilateral A, and the sub-pixels located close to the vertices of the quadrilateral of the island area 21 are the four first sub-pixels 31 located at the vertices of the virtual quadrilateral A. These four A vertex corner of each of the first sub-pixels 31 close to the vertex of the quadrilateral of the island region 21 is chamfered.
  • the chamfer can be a straight chamfer, as shown in Figures 2 and 3; it can also be a rounded chamfer, as shown in Figure 7.
  • the island area 21 includes four virtual quadrilaterals A.
  • the sub-pixels arranged close to the vertices of the quadrilaterals are four first sub-pixels 31 .
  • a vertex corner close to the vertex of the quadrilateral of the island area 21 is a chamfer.
  • the chamfer is a straight chamfer.
  • the display substrate further includes a bridge area 23 connecting adjacent island areas 21 .
  • a light-emitting device and a driving circuit are provided in the sub-pixel.
  • the driving circuit is electrically connected to the light-emitting device and the signal line 24 respectively, and is used to drive the light-emitting device to emit light according to the signal provided by the signal line 24 .
  • the signal line 24 is provided within the bridge area 23 .
  • a driving circuit is provided in the sub-pixel, that is, the sub-pixel adopts a structure of a built-in driving circuit.
  • sub-pixels of different colors may be provided with light-emitting devices of different colors.
  • a red sub-pixel is provided with a red light-emitting device
  • a green sub-pixel is provided with a green light-emitting device
  • a blue sub-pixel is provided with a blue light-emitting device.
  • Light emitting device is provided.
  • the driving circuit and the light-emitting device can be stacked and arranged in the sub-pixel, and the driving circuit is arranged away from the light-emitting side of the light-emitting device.
  • the driving circuit may include thin film transistors, capacitors, etc.
  • the light-emitting device mainly includes a stacked anode, an organic light-emitting layer and a cathode.
  • the driving circuit can be connected to the anode of the light-emitting device, and is used to provide the anode with a current that drives the light-emitting device to emit light.
  • the bridge area 23 may include a first bridge area 231 and a second bridge area 232.
  • the first bridge area 231 connects the first side.
  • the second bridge area 232 connects the two adjacent island areas 21 in the upward direction and connects the two adjacent island areas 21 in the second direction.
  • the signal line 24 may include a first signal line 241 and a second signal line 242 .
  • the first signal line 241 may extend along the first direction
  • the second signal line 242 may extend along the second direction.
  • a plurality of first signal lines 241 connected to each driving circuit in the same island area 21 are respectively located on different layers and overlapped with each other within the first bridge area 231 .
  • first signal lines 241 By arranging the plurality of first signal lines 241 connecting the driving circuits in the same island area 21 on different film layers, these first signal lines 241 can be overlapped and arranged within the first bridge area 231 , thereby reducing the number of first signal lines 241 .
  • the space occupied by a signal line 241 compresses the area of the first bridge area 231, increases the area of the hole area 22, that is, the transparent area, and increases the ambient light transmittance.
  • a plurality of second signal lines 242 connected to each driving circuit in the same island area 21 are respectively located on different layers and overlapped with each other within the second bridge area 232 .
  • these second signal lines 242 can be overlapped and arranged within the second bridge area 232 , thereby reducing the number of second signal lines 242 .
  • the space occupied by the second signal line 242 compresses the area of the second bridge area 232 to increase the area of the hole area 22, that is, the transparent area, and improve the ambient light transmittance.
  • the first direction and the second direction may be perpendicular to each other.
  • the first signal line 241 may include, for example, a data signal line or the like.
  • the second signal line 242 may include, for example, a gate signal line or the like.
  • the material of the signal line 24 includes transparent metal oxide or metal.
  • the material of the first signal line 241 may include at least one of titanium, aluminum, molybdenum, copper, silver, magnesium, lithium, neodymium, gold, platinum and other metal materials, and may also include indium tin oxide (Indium Tin Oxide). , ITO), indium zinc oxide (Indium Zinc Oxide, IZO) and at least one of transparent metal oxides such as graphene oxide, which is not limited in this embodiment.
  • the material of the first signal line 241 is titanium/aluminum/titanium.
  • the resistance of the first signal line 241 can be reduced. Since the first signal line 241 made of metal is not light-transmitting, in order to improve the ambient light transmittance of the display substrate, a plurality of first signal lines 241 connected to each driving circuit in the same island area 21 can be respectively provided in Different film layers overlap each other or are completely overlapped within the first bridge area 231 , thereby compressing the area of the first bridge area 231 and improving the ambient light transmittance of the display substrate.
  • the material of the first signal line 241 is a transparent metal oxide, due to the light-transmitting characteristics of the first signal line 241 itself, it can avoid blocking the ambient light, so the ambient light transmittance can be improved.
  • the material of the second signal line 242 may include at least one of titanium, aluminum, molybdenum, copper, silver, magnesium, lithium, neodymium, gold, platinum and other metal materials, and may also include indium tin oxide (Indium Tin Oxide). , ITO), indium zinc oxide (Indium Zinc Oxide, IZO) and at least one of transparent metal oxides such as graphene oxide, which is not limited in this embodiment.
  • the material of the second signal line 242 is titanium/aluminum/titanium.
  • the resistance of the second signal line 242 can be reduced. Since the second signal line 242 made of metal material is not light-transmitting, in order to improve the ambient light transmittance of the display substrate, a plurality of second signal lines 242 connected to each driving circuit in the same island area 21 can be respectively provided in Different film layers overlap each other or are completely overlapped within the second bridge area 232, thereby compressing the area of the second bridge area 232 and improving the ambient light transmittance of the display substrate.
  • the material of the second signal line 242 is a transparent metal oxide, due to the light-transmitting characteristics of the second signal line 242 itself, it can avoid blocking the ambient light, so the ambient light transmittance can be improved.
  • the present disclosure provides a display device, including the display substrate provided in any one of the items.
  • the display device includes the above-mentioned display substrate, those skilled in the art can understand that the display device has the advantages of the display substrate provided by the present disclosure, which will not be described again here.
  • the display device in this embodiment can be: a display panel, electronic paper, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, a virtual reality device, an augmented reality device, an under-screen camera device, and a navigator. Any products or components with 2D or 3D display capabilities.
  • the present disclosure provides a driving method for a display substrate, which can be applied to any of the provided display substrates.
  • the driving method includes: driving each first sub-pixel 31 to emit light independently to form four white pixels W within the virtual quadrilateral A.
  • Each white pixel W includes a first sub-pixel 31, a first sub-pixel 31, and a first sub-pixel 31.
  • Two adjacent white pixels W share the second sub-pixel 32 and/or the third sub-pixel 33.
  • each first sub-pixel 31 can be driven independently, and the first sub-pixel 31 and a surrounding second sub-pixel 32 and a third sub-pixel 33 form a white pixel W. In this way, four white pixels W can be formed within the virtual quadrilateral A.
  • each first sub-pixel 31 corresponds to a white pixel W.
  • Each white pixel W in the virtual quadrilateral A may independently include a first sub-pixel 31.
  • the second sub-pixel 32 and/or the third sub-pixel 33 may be shared between two adjacent white pixels W in the virtual quadrilateral A.
  • two white pixels W corresponding to two adjacent first sub-pixels 31 may share the second sub-pixel 32 or the third sub-pixel 33 located between the two adjacent first sub-pixels 31 .
  • the white pixel W in the lower right corner (shown in Figure 5 a) and the white pixel W in the lower left corner (shown in Figure 5 b) share the first pixel in the lower right corner.
  • the white pixel W in the upper right corner (shown in c in Figure 5) and the white pixel W in the upper left corner (shown in d in Figure 5) share the first sub-pixel in the upper right corner. 31 and the first sub-pixel 31 in the upper left corner.
  • the white pixel W in the lower right corner (shown in Figure 5 a) and the upper right corner white pixel W (shown in Figure 5 c) share the first sub-pixel in the lower right corner. 31 and the first sub-pixel 31 in the upper right corner.
  • the white pixel W in the lower left corner (shown in b in Figure 5) and the white pixel W in the upper left corner (shown in d in Figure 5) share the first sub-pixel in the lower left corner. 31 and the first sub-pixel 31 in the upper left corner.
  • each white pixel W forms a white brightness center C (as shown in Figure 5).
  • the first sub-pixel 31 can be set as a color sub-pixel with a stronger human eye perception or a higher human eye sensitivity (such as Green sub-pixel, etc.), due to the high dispersion of the first sub-pixel 31, the dispersion of the white brightness center C formed by the color mixing of the first sub-pixel 31 and the second sub-pixel 32 and the third sub-pixel 33 in the island area 21
  • the brightness is also increased accordingly, which improves the distribution uniformity of the white brightness centers C in the island area 21 and avoids the local accumulation of the white brightness centers C in the island area 21, which is equivalent to increasing the number of white brightness centers C in the island area 21, thereby It can improve the fineness of the display screen.
  • the distance between the two white brightness centers C located on the adjacent island areas 21 can be reduced. (Figure 6), thereby reducing the distance between dark areas between adjacent island areas 21 and reducing the graininess of the display screen.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the present disclosure may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the element claim enumerating several means, several of these means may be embodied by the same item of hardware.
  • the use of the words first, second, third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

显示基板及其驱动方法、显示装置,涉及显示技术领域。显示基板,包括彼此隔开的多个岛区(21),以及位于相邻岛区(21)之间的孔区(22);其中,岛区(21)包括多个子像素,多个子像素包括第一子像素(31)、第二子像素(32)和第三子像素(33);第一子像素(31)位于虚拟四边形的四个顶点位置处;第二子像素(32)和第三子像素(33)位于虚拟四边形的两条中线位置处,以将相邻的第一子像素(31)分隔开;中线为虚拟四边形中一对相对设置的侧边中点之间的连线。

Description

显示基板及其驱动方法、显示装置 技术领域
本公开涉及显示技术领域,特别是涉及一种显示基板及其驱动方法、显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)为主动发光显示器件,具有自发光、广视角、高对比度、低功耗、宽色域、轻薄化、可异形化等优点。
随着显示技术的不断发展,OLED技术越来越多的应用于透明显示中。透明显示是既能够进行画面显示,又能够透过屏幕对侧景象的技术。透明显示技术可以实现虚拟现实/增强现实(Virtual Reality/Augmented Reality,VR/AR)以及屏下摄像头等显示功能。
概述
本公开提供了一种显示基板,包括彼此隔开的多个岛区,以及位于相邻岛区之间的孔区;
其中,所述岛区包括多个子像素,所述多个子像素包括第一子像素、第二子像素和第三子像素;所述第一子像素位于虚拟四边形的四个顶点位置处;所述第二子像素和所述第三子像素位于所述虚拟四边形的两条中线位置处,以将相邻的所述第一子像素分隔开;所述中线为所述虚拟四边形中一对相对设置的侧边中点之间的连线。
在一种可选的实现方式中,所述两条中线包括第一中线和第二中线;在所述虚拟四边形中,至少一个所述第二子像素沿所述第一中线依次排布,多个所述第三子像素位于所述第二中线上且对称设置在所述第二子像素的两侧。
在一种可选的实现方式中,在所述虚拟四边形中,多个所述第三子像素互不相邻。
在一种可选的实现方式中,所述第二子像素至少具有第一长边和第一短 边,所述第一长边与所述第一中线平行,所述第一短边与所述第二中线平行;和/或,
所述第三子像素至少具有第二长边和第二短边,所述第二长边与所述第一中线平行,所述第二短边与所述第二中线平行。
在一种可选的实现方式中,所述第一子像素的形状为正方形,所述第二子像素和所述第三子像素的形状为矩形;
其中,所述正方形中一对相对设置的侧边与所述第一中线平行,另一对相对设置的侧边与所述第二中线平行。
在一种可选的实现方式中,在所述虚拟四边形中设置有两个所述第二子像素和两个所述第三子像素。
在一种可选的实现方式中,相邻设置的所述第一子像素与所述第二子像素中,所述第一子像素靠近所述第二子像素的侧边与所述第二子像素靠近所述第一子像素的侧边相互平行;和/或,
相邻设置的所述第一子像素与所述第三子像素中,所述第一子像素靠近所述第三子像素的侧边与所述第三子像素靠近所述第一子像素的侧边相互平行;和/或,
相邻设置的所述第二子像素与所述第三子像素中,所述第二子像素靠近所述第三子像素的侧边与所述第三子像素靠近所述第二子像素的侧边相互平行。
在一种可选的实现方式中,所述子像素的形状包括以下至少之一:多边形、椭圆形、扇形、腰圆形和跑道形。
在一种可选的实现方式中,相邻设置的两个所述子像素之间的最小距离大于或等于10微米,且小于或等于30μm。
在一种可选的实现方式中,所述第一子像素为绿色子像素,所述第二子像素为蓝色子像素,所述第三子像素为红色子像素;或者,
所述第一子像素为绿色子像素,所述第二子像素为红色子像素,所述第三子像素为蓝色子像素。
在一种可选的实现方式中,所述红色子像素的面积大于或等于所述绿色子像素的面积,且小于或等于所述蓝色子像素的面积。
在一种可选的实现方式中,所述红色子像素的面积、所述绿色子像素的 面积以及所述蓝色子像素的面积之间的比值为2:1.5:5。
在一种可选的实现方式中,所述岛区包括一个所述虚拟四边形;或者,所述岛区包括多个所述虚拟四边形,多个所述虚拟四边形沿行方向和/或列方向排布,相邻的两个所述虚拟四边形共用一个侧边。
在一种可选的实现方式中,所述岛区的形状为四边形,靠近所述四边形顶点设置的子像素中、靠近所述四边形顶点的顶角为倒角,所述四边形的顶角为倒角。
在一种可选的实现方式中,所述显示基板还包括连接相邻岛区的桥区,所述子像素内设置有发光器件和驱动电路;所述驱动电路分别与所述发光器件和信号线电连接,用于根据所述信号线提供的信号,驱动所述发光器件发光;
其中,所述信号线设置在所述桥区范围内。
在一种可选的实现方式中,所述桥区包括第一桥区和第二桥区,所述第一桥区连接第一方向上相邻的两个岛区,所述第二桥区连接第二方向上相邻的两个岛区;
所述信号线包括第一信号线和第二信号线,所述第一信号线沿所述第一方向延伸,所述第二信号线沿所述第二方向延伸;
与同一个岛区内的各所述驱动电路连接的多条所述第一信号线,分别位于不同层且相互交叠设置在所述第一桥区范围内;与同一个岛区内的各所述驱动电路连接的多条所述第二信号线,分别位于不同层且相互交叠设置在所述第二桥区范围内。
在一种可选的实现方式中,与同一个岛区内的各所述驱动电路连接的多条所述第一信号线在所述第二方向上完全交叠;与同一个岛区内的各所述驱动电路连接的多条所述第二信号线在所述第一方向上完全交叠;其中,所述第一方向与所述第二方向相互垂直。
在一种可选的实现方式中,所述信号线的材质包括透明金属氧化物或金属。
本公开提供了一种显示装置,包括任一项所述的显示基板。
本公开提供了一种显示基板的驱动方法,应用于任一项所述的显示基板,所述驱动方法包括:
分别驱动各所述第一子像素独立发光,以在所述虚拟四边形内形成四个白色像素,各所述白色像素包括一个所述第一子像素、一个所述第二子像素和一个所述第三子像素,相邻的两个所述白色像素之间共用所述第二子像素和/或所述第三子像素。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。需要说明的是,附图中的比例仅作为示意并不代表实际比例。
图1示意性地示出了本公开提供的一种显示基板的平面结构示意图;
图2示意性地示出了本公开提供的第一种显示基板的像素结构示意图;
图3示意性地示出了本公开提供的第二种显示基板的像素结构示意图;
图4示意性地示出了本公开提供的第三种显示基板的像素结构示意图;
图5示意性地示出了本公开提供的第一种显示基板中白色像素的结构示意图;
图6示意性地示出了本公开提供的第一种显示基板中白色亮度中心的分布示意图;
图7示意性地示出了本公开提供的第四种显示基板的像素结构示意图;
图8示意性地示出了本公开提供的第五种显示基板的像素结构示意图;
图9示意性地示出了本公开提供的第六种显示基板的像素结构示意图;
图10示意性地示出了本公开提供的第七种显示基板的像素结构示意图;
图11示意性地示出了本公开提供的第八种显示基板的像素结构示意图。
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开提供了一种显示基板,参照图1示意性地示出了本公开提供的一种显示基板的平面结构示意图。如图1所示,该显示基板的透明显示区域包括彼此隔开的多个岛区21,以及位于相邻岛区21之间的孔区22。岛区21用于显示图像,孔区22用于透过环境光线。
参照图2和图3示意性地示出了本公开提供的两种显示基板的像素结构示意图。如图2和图3所示,岛区21可以包括多个子像素,多个子像素包括第一子像素31、第二子像素32和第三子像素33。
其中,第一子像素31位于虚拟四边形A的四个顶点位置处;第二子像素32和第三子像素33位于虚拟四边形A的两条中线位置处,以将相邻的第一子像素31分隔开。
虚拟四边形A中的每个顶点对应设置一个第一子像素31。虚拟四边形A的顶点可以位于该位置处的第一子像素31范围内的任一位置,不仅局限于虚拟四边形A的顶点为该第一子像素31的中心。
第二子像素32和第三子像素33位于虚拟四边形A的中线位置处,是指中线经过第二子像素32和第三子像素33范围内的任一位置,或者第二子像素32和第三子像素33的至少一个排布方向大致沿中线的延伸方向。
其中,中线为虚拟四边形A中一对相对设置的侧边中点之间的连线。如图2和图3所示,虚拟四边形A的两条中线包括第一中线a1和第二中线a2。
本公开中,通过设置第一子像素31位于虚拟四边形A的顶点位置,将第二子像素32和第三子像素33设置在虚拟四边形A的第一中线a1和第二中线a2位置处,从而实现将任意两个第一子像素31分隔开。也就是,任意两个第一子像素31被第二子像素32和/或第三子像素33分隔开,这样可以确保在虚 拟四边形A中,任意两个第一子像素31互不相邻,避免第一子像素31集中设置,从而提高第一子像素31的分散度。
在具体实现中,对于每一个第一子像素31,该第一子像素31与周围的一个第二子像素32和一个第三子像素33构成一个白色像素W。这样,可以在一个虚拟四边形A内形成四个白色像素W(分别示出在图5中的a图、b图、c图和d图中)。其中,图5示出的是同一虚拟四边形内的多个子像素所构成的白色像素示意图,该虚拟四边形的像素结构如图2所示。
在显示的过程中,每个白色像素W的亮度中心形成一个白色亮度中心C(如图5所示)。
本公开提供的显示基板,由于第一子像素31之间的间隔较大,在虚拟四边形A中的分布较为分散,因此可以将第一子像素31设置为人眼感知较为强烈或人眼敏感度较高的颜色子像素(如绿色子像素等),由于第一子像素31的分散度较高,因此第一子像素31与岛区21内的第二子像素32和第三子像素33混色形成的白色亮度中心C的分散度也相应提高,提高了白色亮度中心C在岛区21内的分布均匀性,避免白色亮度中心C在岛区21内局部聚集,相当于增大岛区21内白色亮度中心C的数量,从而可以提升显示画面的精细度。
另外,由于岛区21内白色亮度中心C的分布更加均匀,在岛区21的边缘也分布有白色亮度中心C,因此可以缩小分别位于相邻岛区21上的两个白色亮度中心C的间距(如图6),从而可以缩小相邻岛区21之间的暗区间隔,减少显示画面颗粒感。
其中,图6示出的是相邻的几个岛区中白色亮度中心的分布示意图,各岛区的像素结构如图2所示。
如图5所示,在虚拟四边形A内,每个第一子像素31可以独立驱动,每个第一子像素31对应一个白色像素W。
虚拟四边形A中的各白色像素W可以独立地包括一个第一子像素31。
虚拟四边形A中相邻的两个白色像素W之间可以共用第二子像素32和/或第三子像素33。
具体地,相邻的两个第一子像素31对应的两个白色像素W,可以共用位于这相邻的两个第一子像素31之间的第二子像素32或第三子像素33。
例如,在虚拟四边形A中,右下角的白色像素W(如图5中的a图所示)与左下角的白色像素W(如图5中的b图所示)共用位于右下角的第一子像素31与左下角的第一子像素31之间的第二子像素32。
在虚拟四边形A中,右上角的白色像素W(如图5中的c图所示)与左上角的白色像素W(如图5中的d图所示)共用位于右上角的第一子像素31与左上角的第一子像素31之间的第二子像素32。
在虚拟四边形A中,右下角的白色像素W(如图5中的a图所示)与右上角的白色像素W(如图5中的c图所示)共用位于右下角的第一子像素31与右上角的第一子像素31之间的第三子像素33。
在虚拟四边形A中,左下角的白色像素W(如图5中的b图所示)与左上角的白色像素W(如图5中的d图所示)共用位于左下角的第一子像素31与左上角的第一子像素31之间的第三子像素33。
为了驱动透明显示区域内的子像素进行发光显示,可以采用以下两种方案:即内置驱动电路和外置驱动电路。其中,外置驱动电路具体是指将子像素的发光器件设置在透明显示区域内,将驱动该发光器件发光的驱动电路设置在透明显示区域外。内置驱动电路具体是指将发光器件以及驱动该发光器件发光的驱动电路都设置在透明显示区域内部。
可选地,本公开提供的显示基板可以采用内置驱动电路的方案,从而简化结构设计,降低成本。
相关技术中,当在透明显示区域采用内置驱动电路时,通常通过降低透明显示区域的像素密度来提高环境光线的透过率。然而,降低像素密度导致单色子像素之间的距离增大,进而导致单色子像素之间的光线混合存在一定困难。
本公开中,通过将透明显示区域设计成岛状结构,即透明显示区域包括多个相互间隔设置的岛区21以及位于岛区21周边的孔区22。这样,一方面可以不必降低岛区21内的像素密度,降低岛区21内的多个子像素之间的距离,使得不同颜色子像素之间能够自由地混合出不同颜色,改善显示效果;另一方面,由于孔区22能够透过环境光线,从而可以提高透明显示区域的环境光线透过率,提高透明显示区域的透明度和清晰度,改善屏下摄像头的拍照效果。
需要说明的是,本公开提供的显示基板也可以在透明显示区域采用外置驱动电路的方案,这样可以进一步提高透明显示区域的环境光线透过率,同时不必降低透明显示区域的像素密度,提高透明显示区域的显示效果。当采用外置驱动电路的方案时,可以采用透明走线连接子像素的发光器件和外置的驱动电路,从而降低走线对透明显示区域透过率的影响。
在具体实现中,第二子像素32和第三子像素33位于虚拟四边形A的两条中线位置处的实现方式有多种。
在一种可选的实现方式中,至少一个第二子像素32和至少一个第三子像素33沿第一中线a1依次排布,至少一个第二子像素32和至少一个第三子像素33沿第二中线a2依次排布。如图3所示,一个第二子像素32和一个第三子像素33依次排布在第一中线a1上,一个第二子像素32和一个第三子像素33依次排布在第二中线a2上。
在图3所示的结构中,由于两个第三子像素33相邻且集中设置虚拟四边形A的左上角,两个第二子像素32相邻且集中设置虚拟四边形A的右下角,这种结构很容易出现边缘色偏不良。
在另一种可选的实现方式中,如图2所示,在虚拟四边形A设置有至少一个第二子像素32和多个第三子像素33,至少一个第二子像素32沿第一中线a1依次排布,多个第三子像素33位于第二中线a2上且对称设置在第二子像素32的两侧。
由于第二子像素32沿第一中线a1依次排布,第三子像素33设置在第二中线a2上且对称分布在第二子像素32的两侧,即第二子像素32靠近虚拟四边形A的中间设置,第三子像素33靠近虚拟四边形A的边缘设置,因此可以避免同时将第二子像素32和第三子像素33靠近虚拟四边形A的边缘设置可能产生的边缘色偏问题。
由于第三子像素33设置在第二子像素32的两侧,因此第三子像素33的分散度较高,可以避免集中设置第三子像素33而导致的色偏问题。这种情况下,可以将第三子像素33设置为人眼敏感度相对第二子像素32较高的颜色子像素(如红色子像素),这样可以进一步避免发生边缘彩边的问题,减少色偏不良。
由于第二子像素32设置在虚拟四边形A的中间位置,第二子像素32的 设置较为集中,因此可以将第二子像素32设置为人眼敏感度相对较低的颜色子像素(如蓝色子像素),从而可以改善混色效果。
可选地,在虚拟四边形A中,多个第三子像素33互不相邻。
通过设置多个第三子像素33互不相邻,如图2所示,即任意两个第三子像素33被第二子像素32分隔开,这样可以进一步提高第三子像素33的分散度,进一步改善边缘色偏不良。
可选地,如图2所示,第二子像素32至少具有第一长边b1和第一短边c1,第一长边b1与第一中线a1平行,第一短边c1与第二中线a2平行。
当第二子像素32的形状为矩形时,第一长边b1即矩形的长边,第一短边c1即矩形的短边,如图2所示出的。当第二子像素32的形状为平行四边形时,第一长边b1即平行四边形的长边,第一短边c1即平行四边形的短边。当第二子像素32的形状为椭圆形、腰圆形或跑道形时,如图9所示,第一长边b1即椭圆形、腰圆形或跑道形的最小外接矩形的长边,第一短边c1即椭圆形、腰圆形或跑道形的最小外接矩形的短边。
第三子像素33至少具有第二长边b2和第二短边c2,第二长边b2与第一中线a1平行,第二短边c2与第二中线a2平行。
当第三子像素33的形状为矩形时,第二长边b2即矩形的长边,第二短边c2即矩形的短边,如图2所示出的。当第三子像素33的形状为平行四边形时,第二长边b2即平行四边形的长边,第二短边c2即平行四边形的短边。当第三子像素33的形状为椭圆形、腰圆形或跑道形时,如图9所示,第二长边b2即椭圆形、腰圆形或跑道形的最小外接矩形的长边,第二短边c2即椭圆形、腰圆形或跑道形的最小外接矩形的短边。
可选地,第二子像素32的形状为矩形,本公开对此不作限定。
可选地,第三子像素33的形状为矩形,本公开对此不作限定。
可选地,第一子像素31的形状为正方形。该正方形中一对相对设置的侧边可以与第一中线a1平行,另一对相对设置的侧边可以与第二中线a2平行。
其中,矩形可以为倒角矩形或非倒角矩形。正方形可以为倒角正方形或非倒角正方形,本公开对此不作限定。
可选地,在虚拟四边形A中设置有两个第二子像素32和两个第三子像素33,本公开对此不作限定。
可选地,如图2和图3所示,相邻设置的第一子像素31与第二子像素32中,第一子像素31靠近第二子像素32的侧边与第二子像素32靠近第一子像素31的侧边可以相互平行。
可选地,如图2和图3所示,相邻设置的第一子像素31与第三子像素33中,第一子像素31靠近第三子像素33的侧边与第三子像素33靠近第一子像素31的侧边可以相互平行。
可选地,如图2和图3所示,相邻设置的第二子像素32与第三子像素33中,第二子像素32靠近第三子像素33的侧边与第三子像素33靠近第二子像素32的侧边可以相互平行。
可选地,子像素的形状包括以下至少之一:多边形、椭圆形、扇形、腰圆形和跑道形等规则图形或不规则图形。其中,多边形可以包括三角形、长方形、正方形、菱形、梯形、平行四边形、五边形、六边形以及八边形等。本公开对各子像素的形状不作限定。
示例性地,如图2至图4、图7至图8所示,第一子像素31、第二子像素32和第三子像素33的形状均为多边形,或者倒角的多边形。其中,第一子像素31的形状为正方形,第二子像素32和第三子像素33的形状均为长方形。
示例性地,如图9所示,第一子像素31为圆形,第二子像素32和第三子像素33的形状均为跑道形。
示例性地,如图10所示,第一子像素31为扇形,第二子像素32和第三子像素33的形状均为长方形。
示例性地,如图11所示,第一子像素31、第二子像素32和第三子像素33的形状均为长方形。
示例性地,如图2所示,四个第一子像素31的形状为正方形。第二子像素32和第三子像素33的形状均为长方形,均具有长边和短边。
其中,第一子像素31中的一条侧边与第二子像素32的长边相邻且相互平行,第一子像素31中的另一条侧边与第三子像素33的短边相邻且相互平行。第三子像素33的长边与第二子像素32的长边相邻且相互平行。两个第二子像素32的短边相邻且相互平行。第二子像素32的第一侧(如左侧)长边与第一侧的一个第一子像素31和一个第三子像素33相邻,第二子像素32 的第二侧(如右侧)长边与第二侧的一个第一子像素31和一个第三子像素33相邻。
可选地,相邻设置的两个子像素之间的最小距离大于或等于10微米,且小于或等于30μm。进一步地,相邻设置的两个子像素之间的最小距离可以大于或等于15微米,且小于或等于20μm。
需要说明的是,两个子像素之间的最小距离指的是两个子像素的开口区域之间的最小距离。其中,各子像素的开口区域可以由像素界定层形成。
如图2和图3所示,相邻设置的两个子像素之间的最小距离包括:第二子像素32与第三子像素33之间的最小距离d1,第一子像素31与第二子像素32之间的最小距离d2以及第一子像素31与第三子像素33之间的最小距离d3。
示例性地,第二子像素32与第三子像素33之间的最小距离d1可以大于或等于15微米且小于或等于20μm。第一子像素31与第二子像素32之间的最小距离d2可以大于或等于15微米且小于或等于20μm。第一子像素31与第三子像素33之间的最小距离d3可以大于或等于15微米且小于或等于20μm。
可选地,第一子像素31为绿色子像素,第二子像素32为蓝色子像素,第三子像素33为红色子像素。
可选地,第一子像素31为绿色子像素,第二子像素32为红色子像素,第三子像素33为蓝色子像素。
在图2所示的像素结构中,由于第一子像素31的分散度最大,第二子像素32的分散度最小,并且人眼对绿色子像素的敏感度最大,人眼对蓝色子像素的敏感度最小,因此,当设置第一子像素31为绿色子像素,第二子像素32为蓝色子像素,第三子像素33为红色子像素时,可以进一步提升显示效果,改善边缘色偏问题。
可选地,红色子像素的面积大于或等于绿色子像素的面积,且小于或等于蓝色子像素的面积。
由于蓝色发光器件的寿命衰减较快、发光效率较低,通过设置较大面积的蓝色子像素,可以提高蓝色子像素的发光效率,延长显示基板的使用寿命。
示例性地,红色子像素的面积、绿色子像素的面积以及蓝色子像素的面 积之间的比值可以为2:1.5:5,本公开对此不作限定。
可选地,岛区21可以包括一个虚拟四边形A,如图2和图3所示。
可选地,岛区21可以包括多个虚拟四边形A,多个虚拟四边形A沿行方向和/或列方向排布,相邻的两个虚拟四边形A共用一个侧边。
示例性地,如图4所示,岛区21包括四个虚拟四边形A。其中,两个虚拟四边形A沿行方向排布,两个虚拟四边形A沿列方向排布,行方向上相邻的两个虚拟四边形A共用一个侧边,列方向上相邻的两个虚拟四边形A共用一个侧边。
如图2至图4以及图7所示,岛区21的形状为四边形,靠近四边形顶点设置的子像素中、靠近四边形顶点的顶角为倒角。
可选地,四边形的顶角为倒角。
其中,倒角可以为圆倒角或直倒角。
通过将岛区21的四个顶角以及对应位置处子像素的顶角设置为倒角,可以降低直角发光区对孔区透过的环境光线产生干涉影响。
在图2、图3和图7中,岛区21包括一个虚拟四边形A,靠近岛区21的四边形顶点设置的子像素即位于虚拟四边形A顶点位置处的四个第一子像素31,这四个第一子像素31中的每一个第一子像素31中、靠近岛区21四边形顶点的一个顶角为倒角。该倒角可以为直倒角,如图2和图3所示出的;还可以为圆倒角,如图7所示出的。
在图4中,岛区21包括四个虚拟四边形A,靠近四边形顶点设置的子像素为四个第一子像素31,这四个第一子像素31中的每一个第一子像素31中、靠近岛区21四边形顶点的一个顶角为倒角。在图4中,该倒角为直倒角。
可选地,如图1所示,显示基板还包括连接相邻岛区21的桥区23。
在具体实现中,子像素内设置有发光器件和驱动电路。驱动电路分别与发光器件和信号线24电连接,用于根据信号线24提供的信号,驱动发光器件发光。
可选地,信号线24设置在桥区23范围内。
其中,子像素中设置有驱动电路,即该子像素采用内置驱动电路的结构。
在具体实现中,不同颜色的子像素中设置可以不同颜色的发光器件,例如,红色子像素中设置有红色发光器件,绿色子像素中设置有绿色发光器件, 蓝色子像素中设置有蓝色发光器件。
可选地,驱动电路和发光器件可以层叠设置在子像素中,驱动电路背离发光器件的出光侧设置。驱动电路可以包括薄膜晶体管和电容等。发光器件主要包括层叠设置的阳极、有机发光层和阴极。
驱动电路可以与发光器件的阳极连接,用于向阳极提供驱动发光器件发光的电流。
当多个岛区21沿第一方向和第二方向排布时,如图1所示,桥区23可以包括第一桥区231和第二桥区232,第一桥区231连接第一方向上相邻的两个岛区21,第二桥区232连接第二方向上相邻的两个岛区21。
在具体实现中,如图1所示,信号线24可以包括第一信号线241和第二信号线242。第一信号线241可以沿第一方向延伸,第二信号线242可以沿第二方向延伸。
可选地,与同一个岛区21内的各驱动电路连接的多条第一信号线241,分别位于不同层且相互交叠设置在第一桥区231范围内。
通过将连接同一岛区21内各驱动电路的多条第一信号线241设置在不同的膜层,使得这些第一信号线241可以交叠设置在第一桥区231范围内,从而可以减少第一信号线241的空间占用,压缩第一桥区231的面积,提高孔区22即透明区域的面积,提高环境光透过率。
为了进一步减少第一信号线241的面积占用,压缩第一桥区231的面积,最大化透明孔区22的面积,可选地,与同一个岛区21内的各驱动电路连接的多条第一信号线241在第二方向上完全交叠。
可选地,与同一个岛区21内的各驱动电路连接的多条第二信号线242,分别位于不同层且相互交叠设置在第二桥区232范围内。
通过将连接同一岛区21内各驱动电路的多条第二信号线242设置在不同的膜层,使得这些第二信号线242可以交叠设置在第二桥区232范围内,从而可以减少第二信号线242的空间占用,压缩第二桥区232的面积,以提高孔区22即透明区域的面积,提高环境光透过率。
为了进一步减少第二信号线242的面积占用,压缩第二桥区232的面积,最大化透明孔区22的面积,可选地,与同一个岛区21内的各驱动电路连接的多条第二信号线242在第一方向上完全交叠。
其中,第一方向与第二方向可以相互垂直。
其中,第一信号线241例如可以包括数据信号线等。第二信号线242例如可以包括栅极信号线等。
可选地,信号线24的材质包括透明金属氧化物或金属。
具体地,第一信号线241的材质可以包括钛、铝、钼、铜、银、镁、锂、钕、金以及铂等金属材料中的至少一种,还可以包括氧化铟锡(Indium Tin Oxide,ITO)、氧化铟锌(Indium Zinc Oxide,IZO)以及氧化石墨烯等透明金属氧化物中的至少一种,本实施例对此不作限定。例如,第一信号线241的材质为钛/铝/钛。
当第一信号线241的材质为金属时,可以降低第一信号线241的电阻。由于金属材质的第一信号线241不透光,为了提高显示基板的环境光透过率,可以将与同一个岛区21内的各驱动电路连接的多条第一信号线241,分别设置于不同膜层且相互交叠或完全交叠设置在第一桥区231范围内,从而可以压缩第一桥区231的面积,提高显示基板的环境光透过率。
当第一信号线241的材质为透明金属氧化物时,由于第一信号线241本身的透光特性,可以避免对环境光线造成遮挡,因此可以提高环境光透过率。
具体地,第二信号线242的材质可以包括钛、铝、钼、铜、银、镁、锂、钕、金以及铂等金属材料中的至少一种,还可以包括氧化铟锡(Indium Tin Oxide,ITO)、氧化铟锌(Indium Zinc Oxide,IZO)以及氧化石墨烯等透明金属氧化物中的至少一种,本实施例对此不作限定。例如,第二信号线242的材质为钛/铝/钛。
当第二信号线242的材质为金属时,可以降低第二信号线242的电阻。由于金属材质的第二信号线242不透光,为了提高显示基板的环境光透过率,可以将与同一个岛区21内的各驱动电路连接的多条第二信号线242,分别设置于不同膜层且相互交叠或完全交叠设置在第二桥区232范围内,从而可以压缩第二桥区232的面积,提高显示基板的环境光透过率。
当第二信号线242的材质为透明金属氧化物时,由于第二信号线242本身的透光特性,可以避免对环境光线造成遮挡,因此可以提高环境光透过率。
本公开提供了一种显示装置,包括任一项提供的显示基板。
由于该显示装置包括上述的显示基板,本领域技术人员可以理解,该显示装置具有本公开提供的显示基板的优点,这里不再赘述。
需要说明的是,本实施例中的显示装置可以为:显示面板、电子纸、手机、平板电脑、电视机、笔记本电脑、数码相框、虚拟现实设备、增强现实设备、屏下摄像头设备以及导航仪等任何具有2D或3D显示功能的产品或部件。
本公开提供了一种显示基板的驱动方法,应用于任一项提供的显示基板。参照图5或图6,该驱动方法包括:分别驱动各第一子像素31独立发光,以在虚拟四边形A内形成四个白色像素W,各白色像素W包括一个第一子像素31、一个第二子像素32和一个第三子像素33,相邻的两个白色像素W之间共用第二子像素32和/或第三子像素33。
在具体实现中,对于每一个第一子像素31,可以独立进行驱动,该第一子像素31与周围的一个第二子像素32和一个第三子像素33构成一个白色像素W。这样,可以在虚拟四边形A内形成四个白色像素W。
如图5所示,在虚拟四边形A内,每个第一子像素31对应一个白色像素W。虚拟四边形A中的各白色像素W可以独立地包括一个第一子像素31。虚拟四边形A中相邻的两个白色像素W之间可以共用第二子像素32和/或第三子像素33。
具体地,相邻的两个第一子像素31对应的两个白色像素W,可以共用位于这相邻的两个第一子像素31之间的第二子像素32或第三子像素33。
例如,在虚拟四边形A中,右下角的白色像素W(如图5中的a图所示)与左下角的白色像素W(如图5中的b图所示)共用位于右下角的第一子像素31与左下角的第一子像素31之间的第二子像素32。
在虚拟四边形A中,右上角的白色像素W(如图5中的c图所示)与左上角的白色像素W(如图5中的d图所示)共用位于右上角的第一子像素31与左上角的第一子像素31之间的第二子像素32。
在虚拟四边形A中,右下角的白色像素W(如图5中的a图所示)与右上角的白色像素W(如图5中的c图所示)共用位于右下角的第一子像素31与右上角的第一子像素31之间的第三子像素33。
在虚拟四边形A中,左下角的白色像素W(如图5中的b图所示)与左上角的白色像素W(如图5中的d图所示)共用位于左下角的第一子像素31与左上角的第一子像素31之间的第三子像素33。
在显示的过程中,每个白色像素W的亮度中心形成一个白色亮度中心C(如图5所示)。
由于第一子像素31之间的间隔较大,在虚拟四边形A中的分布较为分散,因此可以将第一子像素31设置为人眼感知较为强烈或人眼敏感度较高的颜色子像素(如绿色子像素等),由于第一子像素31的分散度较高,因此第一子像素31与岛区21内的第二子像素32和第三子像素33混色形成的白色亮度中心C的分散度也相应提高,提高了白色亮度中心C在岛区21内的分布均匀性,避免白色亮度中心C在岛区21内局部聚集,相当于增大岛区21内白色亮度中心C的数量,从而可以提升显示画面的精细度。
另外,由于岛区21内白色亮度中心C的分布更加均匀,在岛区21的边缘也分布有白色亮度中心C,因此可以缩小分别位于相邻岛区21上的两个白色亮度中心C的间距(如图6),从而可以缩小相邻岛区21之间的暗区间隔,减少显示画面颗粒感。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本公开所提供的一种显示基板及其驱动方法、显示装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以 上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (20)

  1. 一种显示基板,包括彼此隔开的多个岛区,以及位于相邻岛区之间的孔区;
    其中,所述岛区包括多个子像素,所述多个子像素包括第一子像素、第二子像素和第三子像素;所述第一子像素位于虚拟四边形的四个顶点位置处;所述第二子像素和所述第三子像素位于所述虚拟四边形的两条中线位置处,以将相邻的所述第一子像素分隔开;所述中线为所述虚拟四边形中一对相对设置的侧边中点之间的连线。
  2. 根据权利要求1所述的显示基板,其中,所述两条中线包括第一中线和第二中线;在所述虚拟四边形中,至少一个所述第二子像素沿所述第一中线依次排布,多个所述第三子像素位于所述第二中线上且对称设置在所述第二子像素的两侧。
  3. 根据权利要求2所述的显示基板,其中,在所述虚拟四边形中,多个所述第三子像素互不相邻。
  4. 根据权利要求3所述的显示基板,其中,所述第二子像素至少具有第一长边和第一短边,所述第一长边与所述第一中线平行,所述第一短边与所述第二中线平行;和/或,
    所述第三子像素至少具有第二长边和第二短边,所述第二长边与所述第一中线平行,所述第二短边与所述第二中线平行。
  5. 根据权利要求4所述的显示基板,其中,所述第一子像素的形状为正方形,所述第二子像素和所述第三子像素的形状为矩形;
    其中,所述正方形中一对相对设置的侧边与所述第一中线平行,另一对相对设置的侧边与所述第二中线平行。
  6. 根据权利要求5所述的显示基板,其中,在所述虚拟四边形中设置有两个所述第二子像素和两个所述第三子像素。
  7. 根据权利要求3所述的显示基板,其中,相邻设置的所述第一子像素与所述第二子像素中,所述第一子像素靠近所述第二子像素的侧边与所述第二子像素靠近所述第一子像素的侧边相互平行;和/或,
    相邻设置的所述第一子像素与所述第三子像素中,所述第一子像素靠近 所述第三子像素的侧边与所述第三子像素靠近所述第一子像素的侧边相互平行;和/或,
    相邻设置的所述第二子像素与所述第三子像素中,所述第二子像素靠近所述第三子像素的侧边与所述第三子像素靠近所述第二子像素的侧边相互平行。
  8. 根据权利要求1所述的显示基板,其中,所述子像素的形状包括以下至少之一:多边形、椭圆形、扇形、腰圆形和跑道形。
  9. 根据权利要求1所述的显示基板,其中,相邻设置的两个所述子像素之间的最小距离大于或等于10微米,且小于或等于30μm。
  10. 根据权利要求1至9任一项所述的显示基板,其中,所述第一子像素为绿色子像素,所述第二子像素为蓝色子像素,所述第三子像素为红色子像素;或者,
    所述第一子像素为绿色子像素,所述第二子像素为红色子像素,所述第三子像素为蓝色子像素。
  11. 根据权利要求10所述的显示基板,其中,所述红色子像素的面积大于或等于所述绿色子像素的面积,且小于或等于所述蓝色子像素的面积。
  12. 根据权利要求11所述的显示基板,其中,所述红色子像素的面积、所述绿色子像素的面积以及所述蓝色子像素的面积之间的比值为2:1.5:5。
  13. 根据权利要求1至9任一项所述的显示基板,其中,所述岛区包括一个所述虚拟四边形;或者,所述岛区包括多个所述虚拟四边形,多个所述虚拟四边形沿行方向和/或列方向排布,相邻的两个所述虚拟四边形共用一个侧边。
  14. 根据权利要求13所述的显示基板,其中,所述岛区的形状为四边形,靠近所述四边形顶点设置的子像素中、靠近所述四边形顶点的顶角为倒角,所述四边形的顶角为倒角。
  15. 根据权利要求1至9任一项所述的显示基板,其中,所述显示基板还包括连接相邻岛区的桥区,所述子像素内设置有发光器件和驱动电路;所述驱动电路分别与所述发光器件和信号线电连接,用于根据所述信号线提供的信号,驱动所述发光器件发光;
    其中,所述信号线设置在所述桥区范围内。
  16. 根据权利要求15所述的显示基板,其中,所述桥区包括第一桥区和第二桥区,所述第一桥区连接第一方向上相邻的两个岛区,所述第二桥区连接第二方向上相邻的两个岛区;
    所述信号线包括第一信号线和第二信号线,所述第一信号线沿所述第一方向延伸,所述第二信号线沿所述第二方向延伸;
    与同一个岛区内的各所述驱动电路连接的多条所述第一信号线,分别位于不同层且相互交叠设置在所述第一桥区范围内;与同一个岛区内的各所述驱动电路连接的多条所述第二信号线,分别位于不同层且相互交叠设置在所述第二桥区范围内。
  17. 根据权利要求16所述的显示基板,其中,与同一个岛区内的各所述驱动电路连接的多条所述第一信号线在所述第二方向上完全交叠;与同一个岛区内的各所述驱动电路连接的多条所述第二信号线在所述第一方向上完全交叠;其中,所述第一方向与所述第二方向相互垂直。
  18. 根据权利要求15所述的显示基板,其中,所述信号线的材质包括透明金属氧化物或金属。
  19. 一种显示装置,包括权利要求1至18任一项所述的显示基板。
  20. 一种显示基板的驱动方法,应用于权利要求1至18任一项所述的显示基板,所述驱动方法包括:
    分别驱动各所述第一子像素独立发光,以在所述虚拟四边形内形成四个白色像素,各所述白色像素包括一个所述第一子像素、一个所述第二子像素和一个所述第三子像素,相邻的两个所述白色像素之间共用所述第二子像素和/或所述第三子像素。
PCT/CN2022/091553 2022-05-07 2022-05-07 显示基板及其驱动方法、显示装置 WO2023216040A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/091553 WO2023216040A1 (zh) 2022-05-07 2022-05-07 显示基板及其驱动方法、显示装置
CN202280001126.3A CN117501353A (zh) 2022-05-07 2022-05-07 显示基板及其驱动方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091553 WO2023216040A1 (zh) 2022-05-07 2022-05-07 显示基板及其驱动方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023216040A1 true WO2023216040A1 (zh) 2023-11-16

Family

ID=88729515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091553 WO2023216040A1 (zh) 2022-05-07 2022-05-07 显示基板及其驱动方法、显示装置

Country Status (2)

Country Link
CN (1) CN117501353A (zh)
WO (1) WO2023216040A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280958A1 (en) * 2011-05-02 2012-11-08 Samsung Electronics Co., Ltd. Electrophoretic display aparatus and method of driving the same
CN103681754A (zh) * 2012-09-13 2014-03-26 三星显示有限公司 有机发光二极管显示器的像素排列结构
CN107968103A (zh) * 2016-10-20 2018-04-27 昆山国显光电有限公司 像素结构及其制造方法、显示装置
CN109755412A (zh) * 2019-01-15 2019-05-14 京东方科技集团股份有限公司 一种柔性基板、制作方法、柔性显示装置和电子器件
CN109920334A (zh) * 2019-03-27 2019-06-21 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN110137206A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN110323259A (zh) * 2019-06-28 2019-10-11 云谷(固安)科技有限公司 像素结构、掩膜板及显示面板
CN110518036A (zh) * 2019-08-23 2019-11-29 京东方科技集团股份有限公司 显示基板及显示装置
CN111653595A (zh) * 2020-06-15 2020-09-11 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示面板
CN113410259A (zh) * 2021-06-09 2021-09-17 深圳蓝普视讯科技有限公司 倒装芯片空间像素排布结构和显示面板装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280958A1 (en) * 2011-05-02 2012-11-08 Samsung Electronics Co., Ltd. Electrophoretic display aparatus and method of driving the same
CN103681754A (zh) * 2012-09-13 2014-03-26 三星显示有限公司 有机发光二极管显示器的像素排列结构
CN107968103A (zh) * 2016-10-20 2018-04-27 昆山国显光电有限公司 像素结构及其制造方法、显示装置
CN110137206A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 一种像素排布结构及相关装置
CN109755412A (zh) * 2019-01-15 2019-05-14 京东方科技集团股份有限公司 一种柔性基板、制作方法、柔性显示装置和电子器件
CN109920334A (zh) * 2019-03-27 2019-06-21 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN110323259A (zh) * 2019-06-28 2019-10-11 云谷(固安)科技有限公司 像素结构、掩膜板及显示面板
CN110518036A (zh) * 2019-08-23 2019-11-29 京东方科技集团股份有限公司 显示基板及显示装置
CN111653595A (zh) * 2020-06-15 2020-09-11 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示面板
CN113410259A (zh) * 2021-06-09 2021-09-17 深圳蓝普视讯科技有限公司 倒装芯片空间像素排布结构和显示面板装置

Also Published As

Publication number Publication date
CN117501353A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2021022873A1 (zh) 显示面板及显示装置
US11456346B2 (en) Display panel and display device
TWI677090B (zh) 顯示面板、顯示屏及顯示終端
WO2020133964A1 (zh) 阵列基板、显示面板及显示装置
WO2021082534A1 (zh) 显示面板及显示装置
WO2021208665A1 (zh) 显示面板及显示装置
WO2021057026A1 (zh) 显示基板及显示装置
TW202027055A (zh) 顯示基板、顯示面板及顯示裝置
WO2021027103A1 (zh) 显示面板及显示装置
WO2021057095A1 (zh) 透明显示基板、透明显示面板及显示装置
TWI763475B (zh) 顯示面板
WO2022099844A1 (zh) 显示面板及显示装置
US20200403043A1 (en) Array substrate, display panel and display device
CN110767682A (zh) 显示屏及显示终端
US20230157116A1 (en) Display panel and display device
WO2020237919A1 (zh) 有机发光二极管显示装置及其制作方法
WO2023115936A1 (zh) 显示面板及显示装置
WO2022193691A1 (zh) 显示面板及其制备方法、显示装置
WO2020224203A1 (zh) 折叠式显示面板
CN112038383A (zh) 一种显示面板、制备方法及显示装置
CN113130619B (zh) 一种显示基板、显示面板及显示装置
TWI685697B (zh) 顯示裝置
WO2023216040A1 (zh) 显示基板及其驱动方法、显示装置
WO2020228271A1 (zh) 组合式显示面板
CN218851230U (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001126.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18024606

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941009

Country of ref document: EP

Kind code of ref document: A1