WO2023212932A1 - 电化学装置及电子设备 - Google Patents
电化学装置及电子设备 Download PDFInfo
- Publication number
- WO2023212932A1 WO2023212932A1 PCT/CN2022/091223 CN2022091223W WO2023212932A1 WO 2023212932 A1 WO2023212932 A1 WO 2023212932A1 CN 2022091223 W CN2022091223 W CN 2022091223W WO 2023212932 A1 WO2023212932 A1 WO 2023212932A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- material layer
- electrochemical device
- housing
- packaging material
- base material
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 156
- 239000005022 packaging material Substances 0.000 claims abstract description 89
- 238000002955 isolation Methods 0.000 claims abstract description 71
- 238000007789 sealing Methods 0.000 claims description 67
- 238000005538 encapsulation Methods 0.000 claims description 48
- 230000002093 peripheral effect Effects 0.000 claims description 35
- 229920000642 polymer Polymers 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 8
- 238000012360 testing method Methods 0.000 description 21
- -1 mobile phones Substances 0.000 description 18
- 238000004806 packaging method and process Methods 0.000 description 18
- 239000004743 Polypropylene Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 239000011810 insulating material Substances 0.000 description 14
- 230000004927 fusion Effects 0.000 description 13
- 239000002985 plastic film Substances 0.000 description 13
- 229920006255 plastic film Polymers 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 239000003292 glue Substances 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229920001155 polypropylene Polymers 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000000306 component Substances 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 239000012943 hotmelt Substances 0.000 description 6
- 230000000712 assembly Effects 0.000 description 5
- 238000000429 assembly Methods 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000003139 buffering effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/105—Pouches or flexible bags
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/471—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/471—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
- H01M50/48—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
Definitions
- the present application relates to the field of battery technology, and in particular to an electrochemical device and electronic equipment.
- the series/parallel battery in the same bag includes a casing and multiple electrode assemblies arranged in the same casing.
- the series-connected electrode assemblies need to be separated by separators to avoid high voltage.
- the electrolyte decomposes under voltage, and parallel electrode assemblies are separated by separators to avoid mutual interference.
- This application aims to provide an electrochemical device and electronic equipment to improve the safety and reliability of series/parallel batteries in the same bag during impacts such as falling.
- a first aspect of the present application provides an electrochemical device, which includes a first housing, a second housing, a first separator, a first electrode assembly, and a second electrode assembly.
- the first isolation member is provided between the first housing and the second housing, and the electrochemical device is provided with a first cavity and a second cavity on both sides of the first isolation member.
- the first isolator includes a first base material layer and a first encapsulation material layer located on the surface of the first base material layer.
- the first electrode assembly is disposed in the first cavity.
- the second electrode assembly is disposed in the second cavity.
- the electrochemical device satisfies: F s11 /F 11 ⁇ 1.2, where F 11 is the peeling force between the first packaging material layer and the first base material layer, and F s11 is the first shell Peeling force from the first packaging material layer.
- the inventor of this application found through research that the series/parallel batteries in the same bag have a sealing interface due to the presence of a separator between the first case and the second case, and there are multiple electrode assemblies in the case.
- the impact kinetic energy during the process will increase significantly, increasing the risk of the seal interface being breached.
- the sealing interface between the shell and the separator has a stronger bonding force relative to the bonding interface between the packaging material layer and the base material layer in the separator.
- the bonding interface between the packaging material layer and the base material layer in the isolator can provide a buffering effect, reducing the impact on the sealing interface between the shell and the isolator, thereby reducing the sealing interface Reduce the risk of breakage and improve the safety and reliability of electrochemical devices.
- the electrochemical device satisfies at least one of the following conditions: (i) F 11 ⁇ 0.4 N/mm; (ii) F s11 ⁇ 1 N/mm; (iii) F s11 /F 11 ⁇ 2.5; (iv) F s11 /F 11 ⁇ 15.
- F 11 ⁇ 0.4N when F 11 ⁇ 0.4N, it can inhibit water vapor from penetrating into the interior of the electrochemical device through the interface between the packaging material layer and the base material layer in high temperature and high humidity environments, thereby improving the high temperature and high humidity resistance of the electrochemical device.
- the bonding strength of the seal interface between the housing and the separator can be improved, thereby reducing the risk of the seal interface being broken and improving the safety and reliability of the electrochemical device.
- F s11 /F 11 ⁇ 2.5 the relative bonding strength of the sealing interface between the housing and the isolator can be further improved, reducing the risk of breakage there, and improving the safety and reliability of the electrochemical device.
- the first isolator further includes a second encapsulation material layer, and the first base material layer is located between the first encapsulation material layer and the second encapsulation material layer.
- the electrochemical device satisfies: 0.8 ⁇ F 11 /F 12 ⁇ 1.2, where F 12 is the peeling force between the second encapsulation material layer and the first base material layer.
- F 12 is the peeling force between the second encapsulation material layer and the first base material layer.
- the first isolator further includes a second encapsulation material layer, and the first base material layer is located between the first encapsulation material layer and the second encapsulation material layer.
- the electrochemical device satisfies: F s21 /F 12 ⁇ 1.2, where F 12 is the peeling force between the second packaging material layer and the first base material layer, and F s21 is the second shell Peeling force from the second packaging material layer.
- this arrangement is conducive to the bonding interface between the packaging material layer and the base material layer in the isolator to provide a buffering effect and reduce the impact on the sealing interface between the shell and the isolator. impact, thereby reducing the risk of the seal interface being broken and improving the safety and reliability of the electrochemical device.
- the electrochemical device satisfies at least one of the following conditions: (i) F 12 ⁇ 0.4 N/mm; (ii) F s21 ⁇ 1 N/mm; (iii) F s21 /F 12 ⁇ 2.5; (iv) F s21 /F 12 ⁇ 15.
- the first isolator further includes a second encapsulation material layer, and the first base material layer is located between the first encapsulation material layer and the second encapsulation material layer.
- the electrochemical device further includes at least a second isolation member, the second isolation member includes a third packaging material layer, a fourth packaging material layer and is located between the three packaging material layers and the fourth packaging material layer. the second substrate layer.
- the electrochemical device satisfies at least one of the following conditions: (a) Fss/F 12 ⁇ 1.2; (b) Fss/F 21 ⁇ 1.2; (c) Fs 22 /F 22 ⁇ 1.2; (d) Fpp/ F 21 ⁇ 1.2; (e) Fpp/F 22 ⁇ 1.2 (f) 0.8 ⁇ F 21 /F 22 ⁇ 1.2.
- F 12 is the peeling force between the second packaging material layer and the first base material layer
- F 21 is the peeling force between the third packaging material layer and the second base material layer
- F ss is the peeling force between the third packaging material layer and the second packaging material layer
- F 22 is the peeling force between the fourth packaging material layer and the second base material layer
- F s22 is the peeling force between the fourth packaging material layer and the second housing
- F pp is the peeling force between two adjacent second isolators.
- the electrochemical device satisfies at least one of the following conditions: (i) F 12 ⁇ 0.4 N/mm; (ii) Fss ⁇ 1 N/mm; (iii) Fss/F 12 ⁇ 2.5. In some embodiments, the electrochemical device satisfies at least one of the following conditions: (i) F 21 ⁇ 0.4 N/mm; (ii) Fss ⁇ 1 N/mm; (iii) Fss/F 21 ⁇ 2.5.
- the electrochemical device satisfies at least one of the following conditions: (i) F 22 ⁇ 0.4 N/mm; (ii) Fs 22 ⁇ 1 N/mm; (iii) Fs 22 /F 22 ⁇ 2.5. In some embodiments, the electrochemical device satisfies at least one of the following conditions: (i) F 21 ⁇ 0.4 N/mm; (ii) Fpp ⁇ 1 N/mm; (iii) Fpp/F 21 ⁇ 2.5. In some embodiments, the electrochemical device satisfies at least one of the following conditions: (i) F 22 ⁇ 0.4 N/mm; (ii) Fpp ⁇ 1 N/mm; (iii) Fpp/F 22 ⁇ 2.5.
- the electrochemical device satisfies at least one of the following conditions: (1) F ss /F 12 ⁇ 15; (2) F ss /F 21 ⁇ 15; (3) F s22 /F 22 ⁇ 15; (4)F pp /F 21 ⁇ 15; (5)F pp /F 22 ⁇ 15.
- the first encapsulating material layer includes a first sealing area
- the second encapsulating material layer includes a second sealing area, satisfying: 0.9 ⁇ W 1 /W 2 ⁇ 1.1, where W 1 is the The width of the first sealing area, W2 , is the width of the second sealing area.
- W 1 is the The width of the first sealing area, W2 , is the width of the second sealing area.
- the width of the first sealing area and the second sealing area are equal, which can reduce the excessive concentration of impact kinetic energy on one side, disperse the impact kinetic energy on both sides of the isolator, and reduce the sealing interface between the isolator and one side of the housing from being broken. risks of.
- the material of the first substrate layer includes metal, and the material of the first encapsulation material layer and/or the second encapsulation material layer includes a first polymer. In some embodiments, the material of the second substrate layer includes metal, and the material of the third encapsulation material layer and/or the fourth encapsulation material layer includes the first polymer.
- the metals include Ni, Ti, Cu, Ag, Au, Pt, Fe, Co, Cr, W, Mo, Al, Mg, K, Na, Ca, Sr, Ba, Si, Ge, At least one of Sb, Pb, In, Zn, stainless steel and their combinations or alloys.
- the first polymer includes polypropylene, anhydride-modified polypropylene, polyethylene, ethylene-propylene copolymer, polyvinyl chloride, polystyrene, polyethernitrile, polyurethane, polyamide, polyester , amorphous ⁇ -olefin copolymer or at least one of the derivatives of the above substances.
- the first housing includes a first cavity part and a first peripheral part, and the first cavity part is recessed toward a side away from the second housing to form a cavity, and the The first peripheral portion surrounds the first cavity portion.
- the second housing includes a second cavity portion opposite to the first cavity portion and a second peripheral portion opposite to the first peripheral portion. The first sealing area and the second sealing area are located between the first peripheral portion and the second peripheral portion.
- the first electrode assembly and the second electrode assembly are connected in series.
- this application also provides an electronic device, which includes the above-mentioned electrochemical device.
- Figure 1 is a schematic diagram of an electrochemical device provided by one embodiment of the present application.
- Figure 2 is an exploded schematic diagram of the electrochemical device in Figure 1;
- Figure 3 is a schematic cross-sectional view of the electrochemical device 1 in Figure 1 along line A-A;
- Figure 4 is a partially enlarged schematic diagram of position B in Figure 3;
- Figure 5 is a schematic structural diagram of the first isolation member in Figure 2;
- Figure 6 is a schematic diagram of an electrochemical device provided by another embodiment of the present application.
- Figure 7 is a partial enlarged schematic diagram of C in Figure 6;
- Figure 8 is a schematic structural diagram of the second isolation member in Figure 7;
- FIG. 9 is a schematic diagram of an electronic device provided by one embodiment of the present application.
- First shell 110. First cavity part; 120. First peripheral part; 101. First cavity; 102. Second cavity;
- Second shell 210. Second cavity part; 220. Second peripheral part;
- First isolation member 310. First isolation part; 320. First encapsulation part; 330. First base material layer; 340. First encapsulation material layer; 350. Second encapsulation material layer;
- pole module 600, pole module; 610, first pole; 620, second pole;
- FIGS. 1 to 4 respectively show a schematic diagram of an electrochemical device 1 provided by one embodiment of the present application, and an exploded schematic diagram of the electrochemical device 1 .
- the electrochemical device 1 includes a first shell. body 100, second housing 200, first isolation member 300, first electrode assembly 400 and second electrode assembly 500.
- the first housing 100, the first isolator 300 and the second housing 200 are arranged sequentially along the first direction X (the thickness direction of the electrochemical device 1), and the first housing 100 and the second housing 200 are enclosed together It forms an integral housing part of the electrochemical device 1 .
- the first isolator 300 is disposed between the first housing 100 and the second housing 200 .
- the electrochemical device 1 is provided with a first cavity 101 and a second cavity 102 on both sides of the first separator 300 .
- the first isolator 300 includes a first base material layer and a first encapsulation material layer located on the surface of the first base material layer.
- the first isolator 300 is fixed to the first housing 100 through the first encapsulation material layer.
- the first electrode assembly 400 is disposed in the first cavity, and the second electrode assembly 500 is disposed in the second cavity.
- the details of the first housing 100, the second housing 200, the first separator 300, the first electrode assembly 400 and the second electrode assembly 500 are described in sequence below. The structure is explained.
- first housing 100 and second housing 200 are relatively arranged along the first direction X in the figure, and A receiving space is jointly defined between the two; in other words, the electrochemical device 1 has two housing parts arranged oppositely along the first direction X, and the first housing 100 is one of the two housing parts. , the second housing 200 is the other of the above two housing parts.
- the first housing 100 has an overall box-like structure, which includes a first cavity portion 110 and a first peripheral portion 120 .
- the first cavity portion 110 is recessed toward a side away from the second housing 200 to form a cavity.
- the first cavity portion 110 includes a first bottom wall and a first side wall extending from an edge of the first bottom wall along the first direction X.
- the first bottom wall and the first side wall together form a The above-mentioned cavity; the cavity of the first cavity portion 110 is disposed toward the second housing 200 .
- the first peripheral portion 120 is a sheet-like structure that extends outward from an open end of the first cavity portion 110 and is arranged around the first cavity portion 110 .
- the second housing 200 is also generally a box-shaped structure, and includes a second cavity portion 210 opposite to the first cavity portion 110 and a second peripheral portion 220 opposite to the first peripheral portion 120 .
- the second cavity portion 210 is recessed toward a side away from the first housing 100 to form a cavity.
- the second cavity portion 210 includes a second bottom wall and a second side wall extending from an edge of the second bottom wall along the first direction X.
- the second bottom wall and the second side wall are common. Enclosing a cavity of the second cavity part 210 ; the cavity of the second cavity part 210 is arranged toward the first housing 100 .
- the second peripheral portion 220 is in the form of a sheet-like structure, which extends outward from an open end of the second cavity portion 210 and is arranged around the second cavity portion 210.
- the first housing 100 and the second housing 200 are two independent structures, and the respective cavities of the first cavity part 110 and the second cavity part 210 are formed by stamping respectively.
- first housing 100 and the second housing 200 can also be integrally formed; specifically, the same sheet-like structure is folded after punching out two cavities, so as to The above-mentioned first housing 100 and the second housing 200 which are oppositely arranged are formed.
- the first housing 100 includes a stacked first insulating material layer, a first metal base material layer, and a second insulating material layer.
- the first metal base material layer is provided between the first insulating material layer and the second insulating material layer, and the first insulating material layer is provided facing the first isolator 300, The second insulating material layer is disposed facing away from the first isolation member 300 .
- the material of the metal substrate layer includes aluminum
- the material of the first insulating material layer and/or the second insulating material layer includes polypropylene; of course, other embodiments of the present application can also be adapted on this basis.
- the metal base material layer includes aluminum alloy, copper alloy and other materials
- the first insulating material layer and/or the second insulating material layer includes modified polypropylene, polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer Or at least one of ethylene-ethyl acrylate copolymers.
- the structure and material selection of the second housing 200 are basically the same as those of the first housing 100.
- It includes a third insulating material layer, a second metal base material layer and a fourth insulating material layer.
- a third insulating material layer For the specific material selection of the three, please refer to the above-mentioned second housing 200. The selection of materials for the housing 100 will not be described in detail here.
- first isolator 300 please refer to Figures 3 and 4, which respectively show a schematic cross-sectional view of the electrochemical device 1 along line A-A and a partial enlarged schematic view of the electrochemical device 1 at B, combined with other
- the first isolator 300 is disposed between the first housing 100 and the second housing 200, so that the first isolator 300 can accommodate the space surrounded by the first housing 100 and the second housing 200.
- the space is divided to form a first cavity 101 and a second cavity 102 respectively located on both sides of the first isolation member 300 along the first direction X; that is, the electrochemical device 1 is located on both sides of the first isolation member 300.
- the above-mentioned first cavity 101 and the second cavity 102 are respectively provided on the two sides.
- the first isolator 300 and the first housing 100 together form the first cavity 101
- the first isolator 300 and the second housing 200 together form the second cavity 102 .
- the first isolation member 300 has a sheet-like structure and includes a first isolation part 310 and a first packaging part 320 .
- the first isolation part 310 is flat and is received inside the above-mentioned receiving space and is located between the first electrode assembly 400 and the second electrode assembly 500 to separate the first electrode assembly 400 and the second electrode assembly 500.
- the first encapsulation part 320 is formed by extending outward from the edge of the first isolation part 310, and is arranged around the first isolation part 310.
- the first packaging part 320 is provided between the first peripheral part 120 and the second peripheral part 220 and is fixedly connected to the first peripheral part 120 and the second peripheral part 220 respectively.
- the shape of the first isolation part 310 can also be adaptively deformed based on the above. As long as it is ensured that it is still contained in the above-mentioned receiving space and is between the first electrode assembly 400 and the second electrode assembly 500 to separate the two.
- the first isolation part 310 has a flat box-like structure, which is recessed on a side facing the first housing 100 (or the second housing 200) to form a cavity, and the first packaging part 320 It is formed by extending outward from the edge of the opening of the cavity; at least part of the first electrode assembly 400 is located in the cavity.
- the first isolation member 300 includes a first base material layer 330 and a first encapsulation material layer 340 .
- the first base material layer 330 has a sheet-like structure as a whole, which is the basic material layer used to support the first packaging material layer 340 .
- the first base material layer 330 includes a main body region (not labeled) located in the first isolation portion 310 and a packaging region (not labeled) located in the first packaging portion 320 .
- the material of the first base material layer 330 includes aluminum; specifically, the first base material layer 330 is aluminum foil with a thickness ranging from 8 ⁇ m to 40 ⁇ m. It can be understood that in other embodiments of the present application, the first base material layer 330 may also include other metal materials; or a film including polymer materials, such as polyethylene terephthalate materials. thin film; this application does not limit the specific material of the first base material layer 330.
- the first encapsulating material layer 340 also has a sheet-like structure as a whole, which is provided on the surface of the first base material layer 330 and is located on the side of the first base material layer 330 facing the first housing 100; the first isolator 300 passes through The first packaging material layer 340 is fixed to the first housing 100 .
- the first packaging material layer 340 includes a first isolation area (not labeled) located in the first isolation portion 310 and a first packaging area (not labeled) located in the first packaging portion 320; that is, the first packaging area is located in the above-mentioned Between the first peripheral portion 120 and the second peripheral portion 220 , the first packaging area is fixed to the first peripheral portion 120 .
- the first packaging area includes a first sealing area; specifically, the first packaging area includes a first part and a second part that are oppositely arranged along the second direction, and a third part and a fourth part that are opposite along the third direction.
- the first sealing area The area is one of the first part, the second part, the third part and the fourth part above.
- the second direction is the direction in which one end of the electrochemical device 1 extending from the tab points away from the end, and the second direction, the third direction and the first direction X are perpendicular to each other.
- the material of the first encapsulation material layer 340 includes a polymer material, which can be bonded to the surface of the first base material layer 330 through an adhesive.
- the first packaging material layer 340 and the first peripheral portion 120 can be fixed by heat fusion, thereby ensuring a better fixing effect between the first isolator 300 and the first housing 100 on the one hand, and on the other hand, It can also ensure better sealing performance between the two.
- the material of the first encapsulation material layer 340 includes the first polymer, and the first insulating material layer in the first housing 100 facing the first isolator 300 also includes the first polymer.
- the first polymer is polypropylene; it can be understood that in other embodiments of the present application, the first polymer can also be other polymer materials such as polyethylene.
- the above-mentioned first isolation member 300 further includes a second packaging material layer 350.
- the second encapsulation material layer 350 also has a sheet-like structure as a whole, and is disposed on the surface of the first base material layer 330 away from the first encapsulation material layer 340 , that is, on the surface of the first base material layer 330 facing the second housing 200 On one side; the first isolator 300 is fixed to the second housing 200 through the second packaging material layer 350 .
- the second packaging material layer 350 includes a second isolation area (not labeled) located in the first isolation portion 310 and a second packaging area (not labeled) located in the first packaging portion 320; that is, the second packaging area is located in the above-mentioned Between the second peripheral portion 220 and the first peripheral portion 120 , the second packaging area is fixed to the second peripheral portion 220 .
- the second sealing area includes a second sealing area opposite to the first sealing area.
- the second encapsulation area includes a fifth part and a sixth part which are oppositely arranged along the second direction, and a seventh part and an eighth part which are opposite along the third direction; the second sealing area is the fifth part and the sixth part.
- the material of the second packaging material layer 350 includes a polymer material, and it is fixed with the second peripheral portion 220 by heat fusion, thereby ensuring that the space between the first isolator 300 and the second housing 200 is ensured. It has better fixation effect, and on the other hand, it can also ensure better sealing performance between the two.
- the material of the second encapsulating material layer 350 includes the first polymer, and the insulating material layer in the second housing 200 facing the first isolator 300 also includes the first polymer.
- the first polymer is polypropylene; it can be understood that in other embodiments of the present application, the first polymer can also be other polymer materials such as polyethylene.
- the peeling force F 11 between the first base material layer 330 and the first packaging material layer 340 (first bonding area) and the peeling force F 11 between the first packaging material layer 340 and the first housing 100 (the second bonding area) will affect the anti-drop performance of the above-mentioned second bonding region when the electrochemical device 1 is impacted (such as accidentally dropped).
- the effects of the peeling force F 11 of the first bonding region and the peeling force F s11 of the second bonding region on the performance of the electrochemical device will be explained based on the experimental data in Table 1. Before that, in order to facilitate better understanding To understand the experimental data in Table 1, the concepts involved in Table 1 are first explained as follows.
- the "peeling force” mentioned in this application document means the maximum force required to peel off the unit width of two components fixed to each other from the contact interface or contact area (such as the above-mentioned bonding area).
- 2N/mm means that when the width of the bonding area of two elements is 1mm, the maximum force that needs to be applied to separate the two elements in a direction perpendicular to the width direction of the bonding area is 2N.
- the method of "high temperature and high humidity test" described in this application document includes the following steps S101 to S105.
- S101 First charge the electrochemical device 1 with a constant current of 1C to a voltage of 4.2V, and then charge with a constant voltage of 4.2V to a cut-off current of 10mA.
- S102 Place the electrochemical device 1 into a constant temperature and humidity box at 65°C ⁇ 2°C and a relative humidity of 90%-95% and let it stand for 48 hours.
- S103 Take out the electrochemical device 1 and place it in an environment of 25 ⁇ 2°C for 2 hours, and observe whether the electrochemical device 1 is deformed or leaking.
- S105 Determine whether the electrochemical device 1 passes the test; if the electrochemical device 1 is not deformed or leaking, and the capacity retention rate is ⁇ 85%, then the electrochemical device passes the test; otherwise, the electrochemical device fails the test.
- the specific test steps of the "drop test” mentioned in this application document include the following steps S201 to S203.
- S201 At an ambient temperature of 25 ⁇ 2°C, lift the electrochemical device 1 to a height of 1.2m away from the work surface or the ground, and then release the electrochemical device 1 so that the electrochemical device 1 can fall freely to the above work surface or the ground.
- S202 Repeat the above step S201 the preset number of times 20 times.
- S203 Check whether there are cracks between the first casing 100 and the first encapsulating material layer 340 of the electrochemical device 1 (second bonding area), and check whether there are cracks between the first encapsulating material layer 340 and the first base material layer 330 ( First bonding area) whether there are cracks.
- each electrode assembly contains a positive electrode tab and a negative electrode tab.
- the positive electrode tab is aluminum (Al) and the negative electrode tab is nickel (Ni).
- the two tabs are arranged side by side; the separator is made of polyethylene (PE) with a thickness of 15 ⁇ m. )membrane.
- Preparation of the isolator Use a glue applicator to apply maleic anhydride graft-modified polypropylene glue on one side of the aluminum layer with a thickness of 30 ⁇ m, and composite it with a 25 ⁇ m thick polypropylene film, where , the thickness of the glue layer is 1 ⁇ m, and the glue layer and the polypropylene film together form the packaging material layer; repeat the above process on the other side of the aluminum layer to complete the preparation of the isolator.
- Electrode assembly assembly Place the punched aluminum-plastic film (thickness 150 ⁇ m) in the assembly fixture, with the pit facing upward, place the first electrode assembly in the pit, and place the first electrode assembly at the edge of the aluminum-plastic film A tab glue is provided in the area corresponding to the tab of the electrode assembly, and then the separator is placed on the first electrode assembly so that the edges are aligned, and an external force is applied to compress to obtain an assembled semi-finished product. Place the assembled semi-finished product in the assembly fixture with the separator side facing up.
- the second electrode component is covered with a lower surface, and tab glue is provided at the edge of the aluminum-plastic film in the area corresponding to the tab of the second electrode component.
- the positive and negative electrode tabs of the first electrode assembly and the second electrode assembly are led out of the aluminum plastic film, and are top-sealed and side-sealed by heat sealing to obtain an assembled electrode assembly.
- the fusion rate between the packaging material layer of the isolator and the PP layer inside the aluminum-plastic film is 50%.
- Fusion rate distance between the aluminum layer in the aluminum-plastic film and the base material layer in the separator after heat sealing/(thickness of the one-sided packaging material layer in the separator before heat sealing + thickness of the PP layer inside the aluminum-plastic film before heat sealing ).
- the ratio W 1 /W 2 of the width of the sealing areas on both sides of the isolator is 1.
- Liquid injection packaging Inject electrolyte into each cavity separately, and seal after hot pressing, forming, and degassing.
- Example 2 The difference between Example 2 and Example 1 is that in the preparation step of the separator, the thickness of the glue layer is 2 ⁇ m; in the electrode assembly assembly step, during heat sealing, the fusion rate between the packaging material layer of the separator and the PP layer inside the aluminum-plastic film is 56%.
- Example 3 The difference between Example 3 and Example 2 is that in the electrode assembly assembly step, during heat sealing, the fusion rate between the packaging material layer of the separator and the PP layer inside the aluminum-plastic film is 70%.
- Example 4 The difference between Example 4 and Example 2 is that in the preparation step of the separator, the thickness of the glue layer is 5 ⁇ m; in the electrode assembly assembly step, during heat sealing, the fusion rate between the packaging material layer of the separator and the PP layer inside the aluminum-plastic film is 82%.
- Example 4 The difference between Examples 5-11 and Example 4 is that in the electrode assembly assembly step, during heat sealing, the fusion rates of the packaging material layer of the separator and the PP layer on the inner side of the aluminum-plastic film are 78%, 60%, 75%, respectively. 63%, 73%, 65%, 68%.
- Comparative Example 1-2 The difference between Comparative Example 1-2 and Example 4 is that in the electrode assembly assembly step, during heat sealing, the fusion rates of the packaging material layer of the separator and the PP layer inside the aluminum-plastic film were 50% and 54% respectively.
- Table 1 shows the F 11 and F s11 of the lithium-ion batteries obtained in Example 1-11 and Comparative Example 1-2 and the corresponding high temperature and high humidity test and drop test results.
- the bonding interface between the packaging material layer and the base material layer in the isolator can provide a buffering effect, reducing the impact on the sealing interface between the shell and the isolator, thereby reducing the seal
- the risk of interface breakdown improves the safety and reliability of electrochemical devices.
- Example 1 Comparative Example 1 and Example 2-11, it can be seen that when F 11 ⁇ 0.4N/mm, the high temperature and high humidity test pass rate of the electrochemical device 1 is lower than 5/10, and the sealing performance of the first bonding area is relatively low. Poor, the electrochemical device 1 has a high risk of electrolyte leakage and moisture in the air infiltrating under high temperature and high humidity conditions, and the reliability of the electrochemical device 1 is low.
- F 11 ⁇ 0.4N the pass rate of the high temperature and high humidity test of the electrochemical device 1 is significantly improved, and the sealing performance of the first bonding area is better. Therefore, the setting of F 11 ⁇ 0.4N/mm is beneficial to improving the high temperature and high humidity resistance performance of the electrochemical device 1 .
- the peeling force F 12 between the first base material layer 330 and the second packaging material layer 350 (the third bonding area) and between the second packaging material layer 350 and the second shell 200 (the fourth bonding area) will affect the anti-drop performance of the fourth bonding region when the electrochemical device 1 is impacted (such as accidentally dropped).
- the electrochemical device also satisfies at least one of the following conditions: (i) F s21 /F 12 ⁇ 1.2; (ii) F 12 ⁇ 0.4N/mm; (iii) F s21 ⁇ 1N/mm; (iv )F s21 /F 12 ⁇ 15.
- the inventor further discovered that when the difference between the peeling force F 11 of the first bonding region and the peeling force F 12 of the third bonding region is too large, the electrochemical When the device 1 falls, the impact force is concentrated on the side of the first base material layer 330 with smaller peeling force, which makes it easier for cracks to occur between the first base material layer 330 and the packaging material layer on that side.
- Example 12 The difference between Example 12 and Example 9 is that the thickness of the glue layer on the other side is 7 ⁇ m.
- Example 13 The difference between Example 13 and Example 9 is that the thickness of the glue layer on the other side is 6 ⁇ m. .
- Example 14 The difference between Example 14 and Example 9 is that the thickness of the glue layer on the other side is 5.4 ⁇ m. .
- Table 2 shows the impact of the relative relationship between the peeling force F 11 of the first bonding region and the peeling force F 12 of the third bonding region on the performance of the electrochemical device 1 .
- Examples 12 to 14 for details of each embodiment.
- the only difference lies in the difference in the third binding area F 12 , that is, the difference in F 11 /F 12 .
- the sealing head of the heat sealing machine is clamped on the surfaces of the first peripheral portion 120 and the second peripheral portion 220. of.
- the widths of the first sealing area and the second sealing area can be made different.
- the "width of the first sealing area” mentioned in this application document means the distance between the inner edge and the outer edge of the first sealing area, that is, the edge of the first sealing area close to the inner cavity of the housing 100 and the edge of the first sealing area. A distance between the sealing area and the edge of the inner cavity of the housing 100 .
- the "width of the second sealing area” mentioned in this application document means the distance between the inner edge and the outer edge of the second sealing area, that is, the edge of the second sealing area close to the inner cavity of the housing 100 and The distance between the second sealing area and the edge of the inner cavity of the housing 100 .
- Embodiments 15-17 and Embodiment 9 The difference between Embodiments 15-17 and Embodiment 9 is that the ratio W 1 /W 2 of the width of the sealing areas on both sides of the separator is adjusted to 0.8, 0.9, and 0.95 respectively.
- the first electrode assembly 400 is accommodated in the above-mentioned first cavity 101, and the second electrode assembly 500 is accommodated in the above-mentioned second cavity.
- the cavity 102 is the core component in the electrochemical device 1 .
- the first electrode assembly 400 includes a stacked first pole piece, a second pole piece, and an isolation film disposed between them.
- One of the first pole piece and the second pole piece is a positive pole piece, and the other is a negative pole piece; the isolation film is disposed between the first pole piece and the second pole piece to avoid electric shock between the first pole piece and the second pole piece. touch.
- the first electrode assembly 400 has a rolled structure, and is rolled into a flat shape as a whole, so as to be easily accommodated in the first cavity 101. It can be understood that in other embodiments of the present application, the second electrode assembly 400 has a rolled structure.
- An electrode assembly 400 may also have a laminated structure, that is, stacked along a predetermined direction, such as stacked along the thickness direction, and an isolation film is provided between adjacent first pole pieces and second pole pieces.
- the structures of the second electrode assembly 500 and the first electrode assembly 400 are basically the same and will not be described again here.
- the electrochemical device further includes a plurality of tab modules 600, and the first electrode assembly 400 and the second electrode assembly 500 are respectively connected to at least one tab module 600.
- the tab module 600 includes a first tab 610 and a second tab 620 .
- one end of the first tab 610 is connected to the first pole piece of the first electrode assembly 400, and the other end is connected to the first isolator 300 through the first housing 100.
- the hot melt area between them extends out of the above-mentioned shell part; one end of the second tab 620 is connected to the second pole piece of the first electrode assembly 400, and the other end passes between the first housing 100 and the first isolation member 300.
- the hot melt area between them extends outside the above-mentioned shell part.
- the connection relationship between the second electrode assembly 500 and the tab module 600 is generally the same as that of the first electrode assembly 400; specifically, in the tab module 600 connected to the second electrode assembly 500, one end of the first tab 610 The other end of the first pole piece connected to the second electrode assembly 500 extends out of the above-mentioned shell part through the hot melt area between the second housing 200 and the first isolation member 300; one end of the second pole tab 620 is connected The other end of the second pole piece of the second electrode assembly 500 extends out of the above-mentioned housing part through the hot melt area between the second housing and the first separator 300 .
- the second tab connected to the first electrode assembly 400 is electrically connected to the first tab connected to the second electrode assembly, so that the first electrode assembly 400 and the second electrode assembly 500 are connected in series. It can be understood that in other embodiments of the present application, the first electrode assembly 400 and the second electrode assembly 500 can also be connected in parallel; in this case, the first tab and the second electrode connected to the first electrode assembly 400 The first tab connected to the component 500 is electrically connected, and the second tab connected to the first electrode component 400 is electrically connected to the second tab connected to the second electrode component 500 .
- the electrochemical device 1 in the above embodiment includes the first separator 300, the first electrode assembly 400 and the second electrode assembly 500 is taken as an example, the electrochemical device provided in the present application is Chemical device 1 is illustrated, but the application is not limited thereto.
- the electrochemical device 1b still includes a first housing 100b, a second
- the main difference between the housing 200b, the first isolation member 300b, the first electrode assembly 400b and the second electrode assembly 500b and the electrochemical device 1 in the above embodiment is that the electrochemical device 1b also includes at least two second isolation members. 700b and at least two third electrode assemblies 800b.
- the first isolation member 300b is located between the first housing 100b and the second housing 200b
- the second isolation member 700b is located between the first isolation member 300b and the second housing 200b.
- the first housing 100b, the first isolation member 300b, each second isolation member 700b and the second housing 200b are arranged in sequence, so that the electrochemical device 1 is located between the first housing 100b and the first isolation member 300b.
- the electrochemical device 1 is provided with a second cavity 102b between the first isolator 300b and the second isolator 700b.
- the electrochemical device 1 is between two adjacent second isolators 700b.
- the above-mentioned first electrode assembly 400b is disposed in the first cavity 101b
- the second electrode assembly 500b is disposed in the second cavity 102b
- the third electrode assembly 800b is disposed in the third cavity 103b.
- the first casing 100b, the second casing 200b, the first isolator 300b, the first electrode assembly 400b and the second electrode assembly 500b all have the same structure as the corresponding components in the above-mentioned electrochemical device 1, and will not be described again here.
- the shape and structure of the second spacer 700b will be described.
- the second isolation member 700b includes a second isolation part 710b and a second packaging part 720b.
- the second isolation part 710b has a flat box-shaped structure, and is recessed on a side facing the first housing 100b to form a cavity.
- the second encapsulation part 720b extends outward from the edge of the cavity opening and is located between the first peripheral part and the second peripheral part; in this way, the electrochemical device 1b faces each second isolator 700b.
- One side of the second housing 200b has a third cavity 103b for accommodating the above-mentioned third electrode assembly 800b.
- FIG. 8 shows a schematic structural diagram of the second isolator 700b.
- the structure of the second isolator 700b is similar to that of the first isolator 300b. It includes a third encapsulating material layer 740b, a fourth The encapsulation material layer 750b and the second base material layer 730b located between the third encapsulation material layer 740b and the fourth encapsulation material layer 750b.
- the second base material layer 730b is a base material layer that carries the third encapsulation material layer 740b and the fourth encapsulation material 750b.
- the selection of its material may refer to the above-mentioned selection of the first base material layer 330, which will not be described again here.
- the third encapsulation material layer 740b is provided on the side of the second base material layer 730b facing the first isolator 300b.
- the material selection of the third encapsulation material layer 740b can refer to the above-mentioned material selection of the first encapsulation material layer, which will not be described again here.
- the third packaging material layer 740b and the second packaging material layer are fixed by heat fusion.
- the fourth packaging material layer 750b is provided on the side of the second base material layer 730b facing the second housing 200b.
- the material selection of the fourth packaging material layer 750b can refer to the material selection of the second packaging material layer mentioned above, which will not be described again here.
- the fourth packaging material layer and the second housing 200b are thermally fixed.
- the electrochemical device 1 satisfies: 1.2 ⁇ F ss /F 12 ⁇ 15; where F ss is the peeling force between the third encapsulation material layer and the second encapsulation material layer. Since the third packaging material layer 740b and the second packaging material layer are fixed by heat fusion; therefore, the connection method between the second isolation member 700b and the first isolation member 300b is equivalent to the connection between the second housing 200 and the first isolation member 300b in the above embodiment. The connection method of the first isolation member 300. Therefore, the setting of 1.2 ⁇ F ss /F 12 ⁇ 15 is conducive to ensuring better anti-drop performance between the second isolator 700b and the first isolator 300b.
- the electrochemical device 1 satisfies: 1.2 ⁇ F ss /F 21 ⁇ 15; where, F ss is the peeling force between the third encapsulation material layer and the second encapsulation material layer, and F 21 is the third encapsulation material layer. Peeling force between the encapsulating material layer and the second substrate layer. Since the third packaging material layer 740b and the second packaging material layer are hot-melt fixed, the third packaging material layer 740b and the second base material layer 730b are bonded and fixed; that is to say, the second isolation member 700b and the first The connection method of the isolation member 300 is equivalent to the connection method between the first isolation member 300 and the first housing 100 in the above embodiment. Therefore, the setting of 1.2 ⁇ F ss /F 21 ⁇ 15 is conducive to ensuring better anti-drop performance between the second isolator 700b and the first isolator 300b.
- the electrochemical device 1 satisfies: 1.2 ⁇ F s22 /F 22 ⁇ 15; where, F s22 is the peeling force between the fourth packaging material layer and the second shell 200b, and F 22 is the fourth Peeling force between the encapsulating material layer and the second substrate layer. Since the fourth packaging material layer 750b and the second housing 200b are fixed by hot melt, the fourth packaging material layer 750b and the second base material layer 730b are bonded and fixed; therefore, the second isolation member 700b and the second housing The connection method of 200b is equivalent to the connection method between the first isolator 300 and the second housing 200 in the above embodiment. Therefore, the setting of 1.2 ⁇ F ss /F 22 ⁇ 15 is conducive to ensuring better anti-drop performance between the second isolation member 700b and the second housing 200b.
- the electrochemical device 1 satisfies: 1.2 ⁇ F pp /F 21 ⁇ 15; where, F pp is the peeling force between two adjacent second isolation members 700b, and F 21 is the third package. Peeling force between the material layer 740b and the second base material layer 730b. Since between two adjacent second isolators 700b, the fourth packaging material layer 750b of one second isolator 700b and the third packaging material layer 740b of the other second isolator 700b are thermally fixed, the third The packaging material layer 740 and the second base material layer 740 are bonded and fixed, that is to say, the connection method between two adjacent second isolation members 700b is equivalent to the first housing 100 and the first isolation member 300 in the above embodiment. connection between them. Therefore, the setting of 1.2 ⁇ F pp /F 21 ⁇ 15 is conducive to ensuring better anti-drop performance between two adjacent second spacers 700b.
- the electrochemical device 1 satisfies: 1.2 ⁇ F pp /F 22 ⁇ 15.
- F pp is the peeling force between two adjacent second spacers
- F 22 is the peeling force between the fourth packaging material layer 750b and the second base material layer 730b. Since between two adjacent second isolators 700b, the fourth packaging material layer 750b of one second isolator 700b and the third packaging material layer 740b of the other second isolator 700b are thermally fixed, the fourth The packaging material layer 750b and the second base material layer 730b are bonded and fixed, that is to say, the connection method between two adjacent second isolation members 700b is equivalent to the first isolation member 300 and the second housing 200 in the above embodiment. connection between them. Therefore, the setting of 1.2 ⁇ F pp /F 22 ⁇ 15 is conducive to ensuring better anti-drop performance between two adjacent second spacers 700b.
- the electrochemical device 1 b in this embodiment includes more than two second isolators 700 b, in other embodiments of the present application, the electrochemical device 1 b may also include only one second isolator. 700b, this application does not limit the specific number of second isolation members 700b included.
- another embodiment of the present application also provides an electronic device 2.
- the electronic device 2 It includes the electrochemical device 1 (or 1b) described in any of the above embodiments.
- the electronic device is a mobile phone; it can be understood that in other embodiments of the application, the electronic device can also be any other electronic device such as a tablet, computer, drone, remote control, electric vehicle, etc. .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
本申请公开了一种电化学装置及电子设备。该电化学装置包括第一壳体、第二壳体、第一隔离件、第一电极组件及第二电极组件。第一隔离件设于第一壳体和第二壳体之间,电化学装置于第一隔离件两侧分设有第一腔体和第二腔体。第一隔离件包括第一基材层以及位于第一基材层表面的第一封装材料层。电化学装置满足:1.2≤Fs 11/F 11≤15,F 11为第一封装材料层与第一基材层之间的剥离力,Fs 11为第一壳体与第一封装材料层之间的剥离力。通过该设置可降低电化学装置在受到跌落等冲击过程中,封印界面被冲破的风险,从而提高电化学装置的安全可靠性。
Description
本申请涉及电池技术领域,尤其涉及一种电化学装置及电子设备。
目前,电池广泛地运用于手机、平板、笔记本电脑等电子产品中。由于在某些应用场景下,单个电池单体并不能够实现期望功率的输出;因此,通常将多个电池单体相互串联、并联或混联,以使得该多个电池单体共同配合而实现期望功率的输出。然而,将多个电池单体串联、并联或混联虽然能够提高输出的功率,但是整个电池组的能量密度却较低。因此,同袋串联/并联电池的设计被提出,同袋串联/并联电池包括壳体以及设置于同一壳体内的多个电极组件,串联的电极组件之间需通过隔离件分隔开以避免高电压下电解液的分解,并联的电极组件之间通过隔离件分隔开可以避免相互之间的干扰。
发明内容
本申请旨在提供一种电化学装置及电子设备,以改善同袋串联/并联电池在跌落等冲击过程中的安全可靠性。
本申请的第一方面,提供一种电化学装置,所述电化学装置包括第一壳体、第二壳体、第一隔离件、第一电极组件以及第二电极组件。所述第一隔离件设于所述第一壳体和所述第二壳体之间,所述电化学装置于所述第一隔离件两侧分别设有第一腔体和第二腔体,所述第一隔离件包括第一基材层以及位于所述第一基材层表面的第一封装材料层。第一电极组件设于所述第一腔体。第二电极组件设于所述第二腔体。所述电化学装置满足:F
s11/F
11≥1.2,其中,F
11为所述第一封装材料层与所述第一基材层之间的剥离力,F
s11为所述第一壳体与所述第一封装材料层之间的剥离力。
本申请的发明人通过研究发现,同袋串联/并联电池由于第一壳体和第二壳体之间存在隔离件,增加了封印界面,且壳体中存在多个电极组件,在跌落等冲击过程中的冲击动能将显著增加,增加了封印界面被冲破的风险。通过使电化学装置满足F
s11/F
11≥1.2,壳体与隔离件之间的封印界面相对于隔离件中封装材料层与基材层之间的粘结界面具有更强的结合力,在受到跌落等冲击过程中, 隔离件中的封装材料层与基材层之间的粘结界面能够提供缓冲作用,减小壳体与隔离件之间的封印界面所受到的冲击,进而降低封印界面被冲破的风险,提高电化学装置的安全可靠性。
在一些实施例中,所述电化学装置满足下列条件中的至少一者:(i)F
11≥0.4N/mm;(ii)F
s11≥1N/mm;(iii)F
s11/F
11≥2.5;(iv)F
s11/F
11≤15。其中,当F
11≥0.4N时,能够抑制高温高湿环境下,水汽通过封装材料层和基材层之间的界面渗透入电化学装置内部,从而提高电化学装置的耐高温高湿性能。其中,当F
s11≥1N/mm时,能够提高壳体与隔离件之间封印界面的结合强度,从而降低封印界面被冲破的风险,提高电化学装置的安全可靠性。其中,当F
s11/F
11≥2.5时,能够进一步提高壳体与隔离件之间封印界面的相对结合强度,降低该处被冲破的风险,提高电化学装置的安全可靠性。
在一些实施例中,所述第一隔离件还包括第二封装材料层,所述第一基材层位于所述第一封装材料层和所述第二封装材料层之间。所述电化学装置满足:0.8≤F
11/F
12≤1.2,其中,F
12为所述第二封装材料层与所述第一基材层之间的剥离力。当0.8≤F
11/F
12≤1.2时,基材层分别与两侧的封装材料层的结合强度相当,能够降低冲击动能在一侧的过度集中,分散隔离件两侧受到的冲击动能,降低基材层和封装材料层之间脱落的风险。
在一些实施例中,所述第一隔离件还包括第二封装材料层,所述第一基材层位于所述第一封装材料层和所述第二封装材料层之间。所述电化学装置满足:F
s21/F
12≥1.2,其中,F
12为所述第二封装材料层与所述第一基材层之间的剥离力,F
s21为所述第二壳体与所述第二封装材料层之间的剥离力。同样,在受到跌落等冲击过程中,该设置有利于隔离件中的封装材料层与基材层之间的粘结界面能够提供缓冲作用,减小壳体与隔离件之间的封印界面所受到的冲击,进而降低封印界面被冲破的风险,提高电化学装置的安全可靠性。
在一些实施例中,所述电化学装置满足下列条件中的至少一者:(i)F
12≥0.4N/mm;(ii)F
s21≥1N/mm;(iii)F
s21/F
12≥2.5;(iv)F
s21/F
12≤15。
在一些实施例中,所述第一隔离件还包括第二封装材料层,所述第一基材层位于所述第一封装材料层和所述第二封装材料层之间。所述电化学装置还包括至少一第二隔离件,所述第二隔离件包括第三封装材料层、第四封装材料层以及位于所述三封装材料层和所述第四封装材料层之间的第二基材层。所述电 化学装置满足下列条件中的至少一者:(a)Fss/F
12≥1.2;(b)Fss/F
21≥1.2;(c)Fs
22/F
22≥1.2;(d)Fpp/F
21≥1.2;(e)Fpp/F
22≥1.2(f)0.8≤F
21/F
22≤1.2。其中,F
12为所述第二封装材料层与所述第一基材层之间的剥离力,F
21为所述第三封装材料层与所述第二基材层之间的剥离力,F
ss为所述第三封装材料层与所述第二封装材料层之间的剥离力,F
22为所述第四封装材料层与所述第二基材层之间的剥离力,F
s22为所述第四封装材料层与所述第二壳体之间的剥离力,F
pp为相邻两所述第二隔离件之间的剥离力。
在一些实施例中,所述电化学装置满足下列条件中的至少一者:(i)F
12≥0.4N/mm;(ii)Fss≥1N/mm;(iii)Fss/F
12≥2.5。在一些实施例中,所述电化学装置满足下列条件中的至少一者:(i)F
21≥0.4N/mm;(ii)Fss≥1N/mm;(iii)Fss/F
21≥2.5。在一些实施例中,所述电化学装置满足下列条件中的至少一者:(i)F
22≥0.4N/mm;(ii)Fs
22≥1N/mm;(iii)Fs
22/F
22≥2.5。在一些实施例中,所述电化学装置满足下列条件中的至少一者:(i)F
21≥0.4N/mm;(ii)Fpp≥1N/mm;(iii)Fpp/F
21≥2.5。在一些实施例中,所述电化学装置满足下列条件中的至少一者:(i)F
22≥0.4N/mm;(ii)Fpp≥1N/mm;(iii)Fpp/F
22≥2.5。
在一些实施例中,所述电化学装置满足下列条件中的至少一者:(1)F
ss/F
12≤15;(2)F
ss/F
21≤15;(3)F
s22/F
22≤15;(4)F
pp/F
21≤15;(5)F
pp/F
22≤15。
在一些实施例中,所述第一封装材料层包括第一封印区,所述第二封装材料层包括第二封印区,满足:0.9≤W
1/W
2≤1.1,其中,W
1为所述第一封印区的宽度,W
2为所述第二封印区的宽度。此时,第一封印区和第二封印区的宽度相当,能够降低冲击动能在一侧的过度集中,分散隔离件两侧受到的冲击动能,降低隔离件与一侧壳体的封印界面被冲破的风险。
在一些实施例中,所述第一基材层的材料包括金属,所述第一封装材料层的材料和/或所述第二封装材料层包括第一聚合物。在一些实施例中,所述第二基材层的材料包括金属,所述第三封装材料层的材料和/或所述第四封装材料层包括第一聚合物。
在一些实施例中,所述金属包括Ni、Ti、Cu、Ag、Au、Pt、Fe、Co、Cr、W、Mo、Al、Mg、K、Na、Ca、Sr、Ba、Si、Ge、Sb、Pb、In、Zn、不锈钢及其组合物或合金中的至少一种。
在一些实施例中,所述第一聚合物包括聚丙烯、酸酐改性聚丙烯、聚乙烯、乙烯-丙烯共聚物、聚氯乙烯、聚苯乙烯、聚醚腈、聚氨酯、聚酰胺、聚酯、非晶态α-烯烃共聚物或上述物质衍生物中的至少一种。
在一些实施例中,所述第一壳体包括第一腔体部与第一周缘部,所述第一腔体部朝向背离所述第二壳体的一侧凹陷形成凹腔,所述第一周缘部环绕所述第一腔体部。所述第二壳体包括与所述第一腔体部相对的第二腔体部以及与所述第一周缘部相对的第二周缘部。所述第一封印区和所述第二封印区位于所述第一周缘部和所述第二周缘部之间。
在一些实施例中,所述第一电极组件与所述第二电极组件串联。
第二方面,本申请还提供了一种电子设备,该电子设备包括上述的电化学装置。
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请其中一实施例提供的电化学装置的示意图;
图2为图1中电化学装置的分解示意图;
图3为图1中电化学装置1沿A-A线的剖切示意图;
图4为图3中B处的局部放大示意图;
图5为图2中第一隔离件的构造示意图;
图6为本申请其中另一实施例提供的电化学装置的示意图;
图7为图6中C处的局部放大示意图;
图8为图7中第二隔离件的构造示意图;
图9为本申请其中一实施例提供的电子设备的示意图。
图中:
1、电化学装置;
100、第一壳体;110、第一腔体部;120、第一周缘部;101、第一腔体;102、第二腔体;
200、第二壳体;210、第二腔体部;220、第二周缘部;
300、第一隔离件;310、第一隔离部;320、第一封装部;330、第一基材层;340、第一封装材料层;350、第二封装材料层;
400、第一电极组件;
500、第二电极组件;
600、极耳模组;610、第一极耳;620、第二极耳;
1b、电化学装置;
100b、第一壳体;
200b、第二壳体;
300b、第一隔离件;
400b、第一电极组件;
500b、第二电极组件;
700b、第二隔离件;710b、第二隔离部;720b、第二封装部;730b、第二基材层;740b、第三封装材料层;750b、第四封装材料层;
800b、第三电极组件;
2、电子设备。
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”/“固接于”/“安装于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请先一并参阅图1至图4,其分别示出了本申请其中一实施例提供的电化学装置1的示意图,以及该电化学装置1的分解示意图,该电化学装置1包括第一壳体100、第二壳体200、第一隔离件300、第一电极组件400以及第二电极组件500。其中,第一壳体100、第一隔离件300与第二壳体200沿第一方向X(电化学装置1的厚度方向)依次设置,第一壳体100与第二壳体200共同围合形成该电化学装置1整体的外壳部分。第一隔离件300设于上述第一壳体100与第二壳体200之间,电化学装置1在该第一隔离件300的两侧分别设有第一腔体101与第二腔体102。该第一隔离件300包括第一基材层以及位于第一基材层表面的第一封装材料层,该第一隔离件300通过第一封装材料层而与第一壳体100固定。第一电极组件400设于上述第一腔体,第二电极组件500则设于上述第二腔体。为便于较好地理解该电化学装置1的具体结构,以下依次对上述第一壳体100、第二壳体200、第一隔离件300、第一电极组件400以及第二电极组件500的具体结构作出说明。
对于上述第一壳体100与第二壳体200,请具体参阅图2,同时结合其他附图,第一壳体100与第二壳体200之间沿图示第一方向X相对设置,并在两者之间共同限定出一收容空间;换而言之,电化学装置1具有沿上述第一方向X相对设置的两壳体部分,第一壳体100为上述两壳体部分中的一个,第二壳体200为上述两壳体部分中的另一个。第一壳体100整体近似盒状结构,其包括第一腔体部110与第一周缘部120。其中,第一腔体部110朝向背离第二壳体200的一侧凹陷而形成一凹腔。具体地,该第一腔体部110包括第一底壁以及自第一底壁的边缘沿上述第一方向X延伸形成的第一侧壁,该第一底壁与第一侧壁共同围成上述凹腔;该第一腔体部110的凹腔朝向第二壳体200设置。第一周缘部120呈薄片状结构,其自第一腔体部110敞开的一端向外延伸形成,并环绕第一腔体部110设置。第二壳体200亦是整体近似盒状结构,其包括与上述第一腔体部110相对设置的第二腔体部210以及与上述第一周缘部120相对设置的第二周缘部220。其中,第二腔体部210朝向背离第一壳体100的一侧凹陷而形成一凹腔。本实施例中,该第二腔体部210包括第二底壁以及自第二底壁的边缘沿上述第一方向X延伸形成的第二侧壁,该第二底壁与第二侧壁共同围成第二腔体部210的凹腔;该第二腔体部210的凹腔朝向第一壳体100设置。第二周缘部220呈薄片状结构,其自第二腔体部210敞开的一端向外延 伸形成,并环绕第二腔体部210设置。在本实施例中,第一壳体100与第二壳体200为各自独立的两个结构,第一腔体部110与第二腔体部210各自的凹腔分别通过冲压形成。可以理解的是,在本申请的其他实施例中,第一壳体100与第二壳体200亦可以是一体成型;具体地,同一薄片状结构在冲压出两凹腔之后进行翻折,以形成上述相对设置的第一壳体100与第二壳体200。
至于第一壳体100与第二壳体200的材料,其实则是多样的。以第一壳体100为例,本实施例中,第一壳体100包括层叠设置的第一绝缘物质层、第一金属基材层以及第二绝缘物质层。沿第一壳体100的片材的厚度方向,第一金属基材层设于上述第一绝缘物质层与第二绝缘物质层之间,第一绝缘物质层面向上述第一隔离件300设置,第二绝缘物质层背向上述第一隔离件300设置。可选地,金属基材层的材料包括铝,第一绝缘物质层和/或第二绝缘物质层的材料包括聚丙烯;当然,本申请的其他实施例亦可以在此基础上作出适应性变形,例如,金属基材层包括铝合金、铜合金等材料,第一绝缘物质层和/或第二绝缘物质层包括改性聚丙烯、聚乙烯、乙烯-丙烯共聚物、乙烯-醋酸乙烯共聚物或乙烯-丙烯酸乙酯共聚物中的至少一种。第二壳体200的构造及选材均与第一壳体100基本相同,其包括第三绝缘物质层、第二金属基材层以及第四绝缘物质层,该三者的具体选材可参照上述第一壳体100的选材,在此则不赘述。
对于上述第一隔离件300,请参阅图3与图4,其分别示出了该电化学装置1沿A-A线的剖切示意图以及该电化学装置1于B处的局部放大示意图,同时结合其他附图,该第一隔离件300设置于上述第一壳体100与第二壳体200之间,以使该第一隔离件300对第一壳体100及第二壳体200围成的收容空间进行分隔,进而形成沿上述第一方向X分别位于第一隔离件300两侧的第一腔体101以及第二腔体102;即是,该电化学装置1于第一隔离件300的两侧分别设有上述第一腔体101与第二腔体102。其中,第一隔离件300与第一壳体100共同围成上述第一腔体101,第一隔离件300与第二壳体200共同围成上述第二腔体102。
具体地,第一隔离件300呈薄片状结构,其包括第一隔离部310与第一封装部320。其中,第一隔离部310呈扁平状,其收容于上述收容空间内部,并位于第一电极组件400与第二电极组件500之间,进而对第一电极组件400和第二电极组件500进行分隔。第一封装部320则是自第一隔离部310的边缘向 外延伸形成,其环绕第一隔离部310设置。该第一封装部320设于上述第一周缘部120与第二周缘部220之间,并分别与第一周缘部120及第二周缘部220之间固定连接。可以理解的是,即使本实施例中第一隔离部310整体呈扁平状设置,但在本申请的其他实施例中,第一隔离部310的形状亦可以在上述基础上作适应性变形,之只要保证其仍包括其收容于上述收容空间,并介于第一电极组件400与第二电极组件500,以对两者进行分隔即可。例如,在一些实施例中,第一隔离部310呈扁盒状结构,其于朝向第一壳体100(或第二壳体200)的一侧凹陷而形成一凹腔,第一封装部320则自该凹腔敞口的边缘向外延伸形成;上述第一电极组件400的至少部分位于该凹腔内。
接下来再对第一隔离件300的构造作出说明。请参阅图5,其示出了第一隔离件300的构造示意图,该第一隔离件300包括第一基材层330与第一封装材料层340。其中,第一基材层330整体呈片状结构,其是用于承托第一封装材料层340的基础材料层。第一基材层330包括位于上述第一隔离部310的主体区(未标示)以及位于第一封装部320的封装区(未标示)。本实施例中,第一基材层330的材料包括铝;具体地说,第一基材层330为铝箔,其厚度介于8μm~40μm之间。可以理解的是,在本申请的其他实施例中,第一基材层330还可以为包括其他金属材料;亦或是包括聚合物材料的薄膜,例如包括聚对苯二甲酸乙二醇酯材料的薄膜;本申请不对第一基材层330的具体材料作出限定。
第一封装材料层340亦整体呈片状结构,其设于第一基材层330的表面,并位于第一基材层330面向第一壳体100的一侧;上述第一隔离件300通过该第一封装材料层340而与第一壳体100实现固定。第一封装材料层340包括位于上述第一隔离部310的第一隔离区(未标示)以及位于第一封装部320的第一封装区(未标示);即是,该第一封装区位于上述第一周缘部120与第二周缘部220之间,该第一封装区与上述第一周缘部120固定。第一封装区包括第一封印区;具体地,第一封装区包括沿第二方向相对设置的第一部分与第二部分,以及沿第三方向相对的第三部分与第四部分,第一封印区为上述第一部分、第二部分、第三部分与第四部分中的一个。其中,第二方向为电化学装置1由极耳伸出的一端指向背离该端的方向,第二方向、第三方向与上述第一方向X之间两两垂直。本实施例中,第一封装材料层340的材料包括聚合物材料,其 可通过胶粘剂粘接于第一基材层330的表面。该第一封装材料层340与上述第一周缘部120之间则可通过热熔固定,从而一方面保证第一隔离件300与第一壳体100之间具有较佳的固定效果,另一方面还可保证两者之间的密封性能较佳。
可选地,第一封装材料层340的材料包括第一聚合物,上述第一壳体100中面向第一隔离件300设置的第一绝缘物质层亦包括第一聚合物。如此,当第一隔离件300与第一壳体100热熔固定时,两者可通过相似相融的特性相互渗透,进而使两者之间的密封性能较佳。本实施例中,上述第一聚合物为聚丙烯;可以理解的是,在本申请的其他实施例中,该第一聚合物亦可以为聚乙烯等其他的聚合物材料。
本实施例中,上述第一隔离件300还包括第二封装材料层350。第二封装材料层350亦整体呈片状结构,其设于第一基材层330背离所述第一封装材料层340的表面,即是位于第一基材层330面向第二壳体200的一侧;第一隔离件300通过该第二封装材料层350而与第二壳体200实现固定。第二封装材料层350包括位于上述第一隔离部310的第二隔离区(未标示)以及位于第一封装部320的第二封装区(未标示);即是,该第二封装区位于上述第二周缘部220与第一周缘部120之间,该第二封装区与上述第二周缘部220固定。第二封装区包括与上述第一封印区相对设置的第二封印区。具体地,第二封装区包括沿上述第二方向相对设置的第五部分与第六部分,以及沿第三方向相对的第七部分与第八部分;第二封印区为上述第五部分、第六部分、第七部分与第八部分中的一个,并且该第二封印区与上述第一封印区对应设置。本实施例中,第二封装材料层350的材料包括聚合物材料,其与上述第二周缘部220之间通过热熔固定,从而一方面保证第一隔离件300与第二壳体200之间具有较佳的固定效果,另一方面还可保证两者之间的密封性能较佳。可选地,第二封装材料层350的材料包括第一聚合物,上述第二壳体200中面向第一隔离件300设置的绝缘物质层亦包括第一聚合物。如此,当第一隔离件300与第二壳体200热熔固定时,两者可通过相似相融的特性相互渗透,进而使两者之间的密封性能较佳。本实施例中,上述第一聚合物为聚丙烯;可以理解的是,在本申请的其他实施例中,该第一聚合物亦可以为聚乙烯等其他的聚合物材料。
值得一提的是,第一基材层330与第一封装材料层340之间(第一结合区 域)的剥离力F
11和第一封装材料层340与第一壳体100之间(第二结合区域)的剥离力F
s11之间的相对大小会影响上述第二结合区域在电化学装置1受到冲击(如意外跌落)时的抗跌落性能。接下来,结合表一中的实验数据对上述第一结合区域的剥离力F
11、第二结合区域的剥离力F
s11对电化学装置性能影响作出说明;而在此之前,为便于更好地理解表一中的实验数据,以下首先对表一中涉及的概念进行说明,具体如下。
本申请文件中提及的“剥离力”意为,相互固定的两元件之间从接触界面或接触区域(如上述结合区域)进行单位宽度剥离时所需要的最大力。例如,2N/mm意为当两元件结合区域的宽度为1mm时,沿垂直于该结合区域的宽度方向的方向分离两元件时所需要施加的最大力为2N。具体测量方法如下:取宽度W
1的结合区域样品(示例性地,W
1可以取15mm),采用多功能拉力测试仪,夹具夹持结合区域两侧的材料,拉伸速度取50mm/min,进行测试,得到最大拉力P
1,则剥离力F=P
1/W
1。
本申请文件中所述的“高温高湿测试”的方法包括如下的步骤S101~S105。S101:先将电化学装置1以1C恒流充电到电压4.2V,再以4.2V恒压充电到截止电流10mA。S102:将电化学装置1放入65℃±2℃、相对湿度为90%-95%的恒温恒湿箱中静置48h后。S103:将电化学装置1取出,并放置在25±2℃的环境中静置2h,观测电化学装置1是否变形和漏液。S104:若未变形和漏液,再以1C恒流放电到2.75V,记录此时的放电容量为初始容量,然后在25℃±2℃的条件下,重复上述充放电循环3次,记录第3次的放电容量,则容量保持率=第3次放电容量/初始容量×100%。S105:判断电化学装置1是否通过测试;若电化学装置1未变形和漏液,且容量保持率≥85%,则该电化学装置通过测试,反之,则未通过测试。
本申请文件中提及的“跌落测试”的具体测试步骤包括如下的步骤S201~S203。S201:在25±2℃环境温度下,将电化学装置1抬升至离工作台面或地面1.2m的高度,然后释放电化学装置1,以使电化学装置1自由跌落于上述工作台面或地面。S202:重复上述步骤S201预设次数20次。S203:检查电化学装置1的第一壳体100与第一封装材料层340之间(第二结合区域)是否有裂纹,以及检查第一封装材料层340与第一基材层330之间(第一结合区域)是否有裂纹。若未有裂纹,则该电化学装置1通过测试;反之,则该电化学装 置1未通过测试。取用10个电化学装置1并对其执行上述测试步骤,记录通过测试的数量,则跌落测试的通过率=通过数/10。
实施例1
锂离子电池的制备
(1)负极极片的制备:将负极活性材料人造石墨、导电炭黑(Super P)、丁苯橡胶(SBR)按照重量比96:1.5:2.5进行混合,加入去离子水,调配成固含量为70wt%的浆料,并搅拌均匀。将浆料均匀涂覆在负极集流体铜箔的一个表面上,烘干,得到单面涂覆有负极活性材料层的负极极片。在负极集流体铜箔的另一个表面上重复以上步骤,得到双面涂覆有负极活性材料层的负极极片。冷压后,将负极极片裁切成41mm×61mm的规格待用。
(2)正极极片的制备:将正极活性材料钴酸锂(LiCoO
2)、导电炭黑(Super P)、聚偏二氟乙烯(PVDF)按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮(NMP),调配成固含量为75wt%的浆料,并搅拌均匀。将浆料均匀涂覆在正极集流体铝箔的一个表面上,烘干,得到单面涂覆有正极活性材料层的正极极片。在正极集流体铝箔的另一个表面上,重复以上步骤,得到双面涂覆有正极活性材料层的正极极片。冷压后,将正极极片裁切成38mm×58mm的规格待用。
(3)电解液的制备:在干燥氩气气氛中,首先将有机溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)以质量比EC:EMC:DEC=30:50:20混合,然后向有机溶剂中加入锂盐六氟磷酸锂(LiPF
6)溶解并混合均匀,得到基于电解液的质量,LiPF
6浓度为12.5%的电解液。
(4)第一电极组件和第二电极组件的制备:将隔膜、负极极片、隔膜、正极极片依次层叠设置组成叠片结构,然后将整个叠片结构的四个角固定好得到极片组件。每个电极组件包含一个正极极耳和一个负极极耳,正极极耳为铝(Al),负极极耳为镍(Ni),两个极耳并排设置;隔膜选用厚度为15μm的聚乙烯(PE)膜。
(5)隔离件的制备:利用涂胶机,在厚度为30μm铝层的一侧表面涂覆马来酸酐接枝改性的聚丙烯胶水,并将其与25μm厚的聚丙烯薄膜复合,其中,胶层厚度为1μm,胶层与聚丙烯薄膜共同组成封装材料层;在铝层的另一侧表面重复上述过程,即完成隔离件的制备。
(6)电极组件组装:将冲坑成型的铝塑膜(厚度为150μm)置于组装夹具内,坑面朝上,将第一电极组件置于坑内,并在铝塑膜的边缘处第一电极组件的极耳对应的区域设置极耳胶,然后将隔离件放置于第一电极组件上,使得边沿对齐,施加外力压紧得到组装半成品。将组装半成品置于组装夹具内,隔离件一面朝上,将第二电极组件放置于隔离件上,使得边沿对齐,施加外力压紧,然后将另一个冲坑成型的铝塑膜坑面朝下覆盖于第二电极组件上,并在铝塑膜的边缘处第二电极组件的极耳对应的区域设置极耳胶。将第一电极组件和第二电极组件的正负极极耳均引出铝塑膜外,采用热封的方式进行顶封和侧封,得到组装电极组件。其中,热封时,隔离件的封装材料层与铝塑膜内侧PP层的融合率为50%。融合率=热封后铝塑膜中铝层与隔离件中基材层之间的距离/(热封前隔离件中单侧封装材料层的厚度+热封前铝塑膜内侧PP层的厚度)。隔离件两侧封印区宽度之比W
1/W
2为1。
(7)注液封装:分别给每个腔体注入电解液,经热压、化成、脱气后密封。
(8)串联连接:将第一电极组件的负极极耳和第二电极组件的正极极耳通过激光焊的方式焊接连接在一起,实现串联连接,锂离子电池组装完成。
实施例2与实施例1的区别在于,隔离件的制备步骤中,胶层厚度为2μm;电极组件组装步骤中,热封时,隔离件的封装材料层与铝塑膜内侧PP层的融合率为56%。
实施例3与实施例2的区别在于,电极组件组装步骤中,热封时,隔离件的封装材料层与铝塑膜内侧PP层的融合率为70%。
实施例4与实施例2的区别在于,隔离件的制备步骤中,胶层厚度为5μm;电极组件组装步骤中,热封时,隔离件的封装材料层与铝塑膜内侧PP层的融合率为82%。
实施例5-11与实施例4的区别在于,电极组件组装步骤中,热封时,隔离件的封装材料层与铝塑膜内侧PP层的融合率分别为78%、60%、75%、63%、73%、65%、68%。
对比例1-2与实施例4的区别在于,电极组件组装步骤中,热封时,隔离件的封装材料层与铝塑膜内侧PP层的融合率分别为50%、54%。
表一示出了实施例1-11与对比例1-2所获得的锂离子电池的F
11、F
s11及相应的高温高湿测试、跌落测试的结果。
具体地,结合对比例1-2与实施例1-11可知,当F
s11/F
11<1.2时,电化学装置1第二结合区域的跌落测试通过率低于5/10,安全性较差,而当F
s11/F
11≥1.2,特别是F
s11/F
11≥2.5时,电化学装置1第二结合区域的跌落测试通过率显著提高。可能的原因在于,通过满足F
s11/F
11≥1.2,壳体与隔离件之间的封印界面相对于隔离件中封装材料层与基材层之间的粘结界面具有更强的结合力,在受到跌落等冲击过程中,隔离件中的封装材料层与基材层之间的粘结界面能够提供缓冲作用,减小壳体与隔离件之间的封印界面所受到的冲击,进而降低封印界面被冲破的风险,提高电化学装置的安全可靠性。
进一步地,结合实施例1与实施例2-11可知,当F
11<0.4N/mm时,电化学装置1的高温高湿测试通过率低于5/10,第一结合区域的密封性能较差,电化学装置1在高温高湿工况下发生电解液漏液、渗入空气中水分的风险较高,电化学装置1的可靠性较低。当F
11≥0.4N时,电化学装置1的高温高湿测试通过率显著提升,第一结合区域的密封性能较好。因此,F
11≥0.4N/mm的设置有利于提升电化学装置1的耐高温高湿性能。
同理,第一基材层330与第二封装材料层350之间(第三结合区域)的剥离力F
12和第二封装材料层350与第二壳体200之间(第四结合区域)的剥离力F
s21之间的相对大小会影响上述第四结合区域在电化学装置1受到冲击(如意外跌落)时的抗跌落性能。
以上实验是对第一结合区域的剥离力F
11与第二结合区域的剥离力F
s11之间的关系为例进行的;应当理解,由于第三结合区域及第四结合区域之间的关系,与上述第一结合区域及第二结合区域之间关系类似对称,因此第三结合区域及第四结合区域也是遵循上述规律的。由此,该电化学装置还满足以下条件的至少一者:(i)F
s21/F
12≥1.2;(ii)F
12≥0.4N/mm;(iii)F
s21≥1N/mm;(iv)F
s21/F
12≤15。
表一、第一结合区域剥离力F
11、第二结合区域剥离力F
12与电化学装置性能的关系
发明人在实施本申请提供的电化学装置1的过程中进一步发现,当第一结合区域的剥离力F
11与第三结合区域的剥离力F
12之间的差异过大时,会使得电化学装置1跌落时冲击力集中于第一基材层330剥离力较小的一侧,进而使第一基材层330与该侧的封装材料层之间更容易产生裂纹。
实施例12与实施例9的区别在于,另一侧胶层厚度为7μm。
实施例13与实施例9的区别在于,另一侧胶层厚度为6μm。。
实施例14与实施例9的区别在于,另一侧胶层厚度为5.4μm。。
表二示出了第一结合区域的剥离力F
11与第三结合区域F
12的剥离力的相对关系对电化学装置1性能的影响,请结合实施例12-实施例14,各实施例的区别仅在于第三结合区域F
12的不同,也即是F
11/F
12的不同。
结合实施例9、12-14可知,当F
11/F
12<0.8时,电化学装置1第一结合区域的跌落测试通过率低于5/10,即是隔离件该侧的抗跌落性能较差。而当0.8≤F
11/F
12≤1时,电化学装置1第一结合区域的跌落测试通过率显著提升,即是电化学装置1具有较佳地抗跌落性能。考虑对称性,也即是,0.8≤F
11/F
12≤1.2 的设置有利于保证第一隔离件300具有较好的抗跌落性能。
表二、第一结合区域剥离力F
11与第三结合区域的剥离力F
12的相对关系对电化学装置1性能的影响
在对第一壳体100、第一隔离件300以及第二壳体200进行封装的过程中,热封机的封头是夹持在上述第一周缘部120与第二周缘部220的表面的。通过调整热封头两侧的相对宽度,可以使得上述第一封印区与第二封印区的宽度不一。其中,本申请文件中所述的“第一封印区的宽度”意为,第一封印区的内边缘与外边缘之间的间距,即第一封印区靠近壳体100内腔的边缘与第一封印区背离壳体100内腔的边缘的间距。同理,本申请文件中所述的“第二封印区的宽度”意为,第二封印区的内边缘与外边缘之间的间距,即第二封印区靠近壳体100内腔的边缘与第二封印区背离壳体100内腔的边缘的间距。
接下来结合实验数据进一步针对,第一封印区的宽度W
1及第二封印区的宽度W
2之间的相对关系对于电化学装置1的抗跌落性能的影响作出说明。
实施例15-17与实施例9的区别在于,调整隔离件两侧封印区宽度之比W
1/W
2分别为0.8、0.9、0.95。
请参阅表三,结合实施例9、15-17可知,当0.9≤W
1/W
2≤1时,第二结合区域跌落测试中不发生开裂的通过率显著提升,此时,电化学装置1的抗跌落性能较优。考虑对称性,也即是,0.9≤W
1/W
2≤1.1的设置有利于保证电化学装置1具有较好的抗跌落性能。
表三、第一封印区的宽度W
1及第二封印区的宽度W
2之间的相对关系对电化学装置1性能的影响
对于上述第一电极组件400及第二电极组件500,请继续参阅图2,同时结合其他附图,第一电极组件400收容于上述第一腔体101,第二电极组件500收容于上述第二腔体102,两者是该电化学装置1中的核心元件。第一电极组件400包括层叠设置的第一极片、第二极片以及设于两者之间的隔离膜。第一极片与第二极片中的一个为正极片,另一个为负极片;隔离膜设置于第一极片与第二极片之间,以避免第一极片与第二极片电接触。本实施例中,第一电极组件400为卷绕式结构,并整体卷绕呈扁平状,从而便于收容于上述第一腔体101;可以理解的是,在本申请的其他实施例中,第一电极组件400亦可以为叠片式结构,即沿预设方向堆叠设置,例如沿上述厚度方向堆叠设置,相邻的第一极片与第二极片之间设有隔离膜。第二电极组件500与第一电极组件400的结构基本相同,在此则不赘述。
此外,该电化学装置还包括若干极耳模组600,上述第一电极组件400与第二电极组件500分别对应连接至少一极耳模组600。极耳模组600包括第一极耳610与第二极耳620。与第一电极组件400所连接的极耳模组600中,第一极耳610的一端连接于第一电极组件400的第一极片,另一端经由第一壳体100与第一隔离件300之间的热熔区域伸出至上述外壳部分之外;第二极耳620的一端连接于第一电极组件400的第二极片,另一端经由第一壳体100与第一隔离件300之间的热熔区域伸出至上述外壳部分之外。第二电极组件500与极耳模组600的连接关系大体上与第一电极组件400相同;具体地,与第二电极组件500所连接的极耳模组600中,第一极耳610的一端连接于第二电极组件500的第一极片,另一端经由第二壳体200与第一隔离件300之间的热熔区域伸出至上述外壳部分之外;第二极耳620的一端连接于第二电极组件500的第二极片,另一端经由第二壳体与第一隔离件300之间的热熔区域伸出至上述外壳部分之外。第一电极组件400所连接的第二极耳与第二电极组件所连接的第一极耳电连接,以使该第一电极组件400与第二电极组件500之间串联。可以 理解的是,在本申请的其他实施例中,第一电极组件400与第二电极组件500之间亦可以并联;此时,第一电极组件400所连接的第一极耳与第二电极组件500所连接的第一极耳电连接,第一电极组件400所连接的第二极耳与第二电极组件500所连接的第二极耳电连接。
对于上述电化学装置,值得补充说明的是,即使上述实施例中是以该电化学装置1包括第一隔离件300、第一电极组件400与第二电极组件500为例,对本申请提供的电化学装置1进行说明的,但本申请并不局限于此。
图6与图7分别示出了在本申请的另一实施例提供的电化学装置1b的剖切示意图,以及C处的局部放大示意图,电化学装置1b仍包括第一壳体100b、第二壳体200b、第一隔离件300b、第一电极组件400b与第二电极组件500b,其与上述实施例中电化学装置1的主要区别在于:该电化学装置1b还包括至少两第二隔离件700b以及至少两第三电极组件800b。第一隔离件300b位于第一壳体100b与第二壳体200b之间,第二隔离件700b位于第一隔离件300b与第二壳体200b之间。该第一壳体100b、第一隔离件300b、各第二隔离件700b以及第二壳体200b依次设置,以使该电化学装置1于第一壳体100b与第一隔离件300b之间设有第一腔体101b,该电化学装置1于第一隔离件300b与第二隔离件700b之间设有第二腔体102b,该电化学装置1于相邻的两第二隔离件700b之间,以及于第二隔离件700b与第二壳体200b之间设有第三腔体103b。上述第一电极组件400b设于第一腔体101b,第二电极组件500b设于第二腔体102b,第三电极组件800b设于第三腔体103b。
其中,第一壳体100b、第二壳体200b、第一隔离件300b、第一电极组件400b及第二电极组件500b均上述电化学装置1中相应的部件结构相同,在此不进行赘述。接下来对第二隔离件700b的形状与构造作出说明。
请参阅图7,第二隔离件700b包括第二隔离部710b与第二封装部720b。其中,第二隔离部710b呈扁盒状结构,其于朝向第一壳体100b的一侧凹陷而形成一凹腔。第二封装部720b则自该凹腔敞口的边缘向外延伸形成,其位于上述第一周缘部与第二周缘部之间;如此,电化学装置1b在每一第二隔离件700b朝向第二壳体200b的一侧均具有一第三腔体103b,以用于收容上述的第三电极组件800b。
请参阅图8,其示出了第二隔离件700b的构造示意图,同时结合其他附图, 第二隔离件700b的构造与第一隔离件300b类似,其包括第三封装材料层740b、第四封装材料层750b以及位于第三封装材料层740b和第四封装材料层750b之间的第二基材层730b。其中,第二基材层730b是承载第三封装材料层740b与第四封装材料750b的基础材料层,其选材可参照上述第一基材层330的选材,在此不赘述。第三封装材料层740b设于第二基材层730b面向第一隔离件300b的一侧,其选材可参照上述第一封装材料层的选材,在此不赘述。该第三封装材料层740b与上述第二封装材料层之间通过热熔固定。第四封装材料层750b设于第二基材层730b面向第二壳体200b的一侧,其选材可参照上述第二封装材料层的选材,在此不赘述。该第四封装材料层与第二壳体200b之间热熔固定。
在一些实施例中,该电化学装置1满足:1.2≤F
ss/F
12≤15;其中,F
ss为第三封装材料层与第二封装材料层之间的剥离力。由于第三封装材料层740b与第二封装材料层之间是热熔固定;因此第二隔离件700b与第一隔离件300b之间的连接方式等效于上述实施例中第二壳体200与第一隔离件300的连接方式。故1.2≤F
ss/F
12≤15的设置有利于保证第二隔离件700b与第一隔离件300b之间具有较佳的抗跌落性能。
在一些实施例中,该电化学装置1满足:1.2≤F
ss/F
21≤15;其中,F
ss为第三封装材料层与第二封装材料层之间的剥离力,F
21为第三封装材料层与第二基材层之间的剥离力。由于第三封装材料层740b与第二封装材料层之间是热熔固定,第三封装材料层740b与第二基材层730b之间粘接固定;即是说第二隔离件700b与第一隔离件300的连接方式等效于上述实施例中第一隔离件300与第一壳体100与的连接方式。故1.2≤F
ss/F
21≤15的设置有利于保证第二隔离件700b与第一隔离件300b之间具有较佳的抗跌落性能。
在一些实施例中,该电化学装置1满足:1.2≤F
s22/F
22≤15;其中,F
s22为第四封装材料层与第二壳体200b之间的剥离力,F
22为第四封装材料层与第二基材层之间的剥离力。由于第四封装材料层750b与第二壳体200b之间是热熔固定,第四封装材料层750b与第二基材层730b之间粘接固定;因此第二隔离件700b与第二壳体200b的连接方式等效于上述实施例中第一隔离件300与第二壳体200之间的连接方式。故1.2≤F
ss/F
22≤15的设置有利于保证第二隔离件700b与第二壳体200b之间具有较佳的抗跌落性能。
在一些实施例中,该电化学装置1满足:1.2≤F
pp/F
21≤15;其中,F
pp为相邻两所述第二隔离件700b之间的剥离力,F
21为第三封装材料层740b与第二基材层730b之间的剥离力。由于相邻的两第二隔离件700b之间,一第二隔离件700b的第四封装材料层750b与另一第二隔离件700b的第三封装材料层740b之间是热熔固定,第三封装材料层740与第二基材层740之间粘接固定,即是说相邻两第二隔离件700b之间连接方式等效于上述实施例中第一壳体100与第一隔离件300之间的连接方式。故1.2≤F
pp/F
21≤15的设置有利于保证相邻两第二隔离件700b之间具有较佳的抗跌落性能。
在一些实施例中,该电化学装置1满足:1.2≤F
pp/F
22≤15。其中,F
pp为相邻两所述第二隔离件之间的剥离力,F
22为第四封装材料层750b与第二基材层730b之间的剥离力。由于相邻的两第二隔离件700b之间,一第二隔离件700b的第四封装材料层750b与另一第二隔离件700b的第三封装材料层740b之间是热熔固定,第四封装材料层750b与第二基材层730b之间粘接固定,即是说相邻两第二隔离件700b之间连接方式等效于上述实施例中第一隔离件300与第二壳体200之间的连接方式。故1.2≤F
pp/F
22≤15的设置有利于保证相邻两第二隔离件700b之间具有较佳的抗跌落性能。
值得补充说明的是,即使本实施例中电化学装置1b是包括两个以上的第二隔离件700b,但在本申请的其他实施例中,电化学装置1b亦可以仅包括一个第二隔离件700b,本申请不对其所包括的第二隔离件700b的具体数量作出限定。
基于同一发明构思,本申请另一实施例还提供一种电子设备2,具体地,请参阅图9,其示出了该电子设备2的示意图,同时结合图1至图8,该电子设备2包括上述任意实施例中所述的电化学装置1(或1b)。本实施例中,该电子设备为手机;可以理解的是,在本申请的其他实施例中,该电子设备还可以为平板、电脑、无人机、遥控器、电动汽车等其他任意的电子设备。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本 申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
Claims (10)
- 一种电化学装置,其特征在于,包括:第一壳体;第二壳体;第一隔离件,所述第一隔离件设于所述第一壳体和所述第二壳体之间,所述电化学装置于所述第一隔离件两侧分别设有第一腔体和第二腔体,所述第一隔离件包括第一基材层以及位于所述第一基材层表面的第一封装材料层;第一电极组件,设于所述第一腔体;以及第二电极组件,设于所述第二腔体;所述电化学装置满足:F s11/F 11≥1.2,其中,F 11为所述第一封装材料层与所述第一基材层之间的剥离力,F s11为所述第一壳体与所述第一封装材料层之间的剥离力。
- 根据权利要求1所述的电化学装置,其特征在于,所述电化学装置满足下列条件中的至少一者:(i)F 11≥0.4N/mm;(ii)F s11≥1N/mm;(iii)F s11/F 11≥2.5;(iv)F s11/F 11≤15。
- 根据权利要求1所述的电化学装置,其特征在于,所述第一隔离件还包括第二封装材料层,所述第一基材层位于所述第一封装材料层和所述第二封装材料层之间;所述电化学装置满足:0.8≤F 11/F 12≤1.2,其中,F 12为所述第二封装材料层与所述第一基材层之间的剥离力。
- 根据权利要求1所述的电化学装置,其特征在于,所述第一隔离件还包括第二封装材料层,所述第一基材层位于所述第一封装材料层和所述第二封装材料层之间;所述电化学装置满足:F s21/F 12≥1.2,和/或F s21/F 12≤15,其中,F 12为所述 第二封装材料层与所述第一基材层之间的剥离力,F s21为所述第二壳体与所述第二封装材料层之间的剥离力。
- 根据权利要求1所述的电化学装置,其特征在于,所述第一隔离件还包括第二封装材料层,所述第一基材层位于所述第一封装材料层和所述第二封装材料层之间;所述电化学装置还包括至少一第二隔离件,所述第二隔离件包括第三封装材料层、第四封装材料层以及位于所述三封装材料层和所述第四封装材料层之间的第二基材层;所述电化学装置满足下列条件中的至少一者:(a)F ss/F 12≥1.2;(b)F ss/F 21≥1.2;(c)F s22/F 22≥1.2;(d)F pp/F 21≥1.2;(e)F pp/F 22≥1.2;(f)0.8≤F 21/F 22≤1.2;其中,F 12为所述第二封装材料层与所述第一基材层之间的剥离力,F 21为所述第三封装材料层与所述第二基材层之间的剥离力,F ss为所述第三封装材料层与所述第二封装材料层之间的剥离力,F 22为所述第四封装材料层与所述第二基材层之间的剥离力,F s22为所述第四封装材料层与所述第二壳体之间的剥离力,F pp为相邻两所述第二隔离件之间的剥离力。
- 根据权利要求5所述的电化学装置,其特征在于,所述电化学装置满足下列条件中的至少一者:(1)F ss/F 12≤15;(2)F ss/F 21≤15;(3)F s22/F 22≤15;(4)F pp/F 21≤15;(5)F pp/F 22≤15。
- 根据权利要求3所述的电化学装置,其特征在于,所述第一封装材料层包括第一封印区,所述第二封装材料层包括第二封印区,满足:0.9≤W 1/W 2≤1.1,其中,W 1为所述第一封印区的宽度,W 2为所述第二封印区的宽度。
- 根据权利要求1所述的电化学装置,其特征在于,所述电化学装置满足下列条件中的至少一者:(1)所述第一基材层的材料包括金属,所述第一封装材料层的材料包括第一聚合物;(2)所述第一电极组件与所述第二电极组件串联。
- 根据权利要求7所述的电化学装置,其特征在于,所述第一壳体包括第一腔体部与第一周缘部,所述第一腔体部朝向背离所述第二壳体的一侧凹陷形成凹腔,所述第一周缘部环绕所述第一腔体部;所述第二壳体包括与所述第一腔体部相对的第二腔体部以及与所述第一周缘部相对的第二周缘部;所述第一封印区和所述第二封印区位于所述第一周缘部和所述第二周缘部之间。
- 一种电子设备,其特征在于,包括如权利要求1至9中任一项所述的电化学装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280010468.1A CN116802915A (zh) | 2022-05-06 | 2022-05-06 | 电化学装置及电子设备 |
PCT/CN2022/091223 WO2023212932A1 (zh) | 2022-05-06 | 2022-05-06 | 电化学装置及电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/091223 WO2023212932A1 (zh) | 2022-05-06 | 2022-05-06 | 电化学装置及电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023212932A1 true WO2023212932A1 (zh) | 2023-11-09 |
Family
ID=88037224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/091223 WO2023212932A1 (zh) | 2022-05-06 | 2022-05-06 | 电化学装置及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116802915A (zh) |
WO (1) | WO2023212932A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017130425A (ja) * | 2016-01-22 | 2017-07-27 | 旭化成株式会社 | 蓄電デバイス用セパレータ及びその製造方法 |
CN113795968A (zh) * | 2020-12-31 | 2021-12-14 | 宁德新能源科技有限公司 | 电芯和应用所述电芯的电子装置 |
CN113921993A (zh) * | 2021-09-30 | 2022-01-11 | 宁德新能源科技有限公司 | 一种电化学装置及包含该电化学装置的电子装置 |
CN113921994A (zh) * | 2021-09-30 | 2022-01-11 | 宁德新能源科技有限公司 | 电池及用电设备 |
-
2022
- 2022-05-06 CN CN202280010468.1A patent/CN116802915A/zh active Pending
- 2022-05-06 WO PCT/CN2022/091223 patent/WO2023212932A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017130425A (ja) * | 2016-01-22 | 2017-07-27 | 旭化成株式会社 | 蓄電デバイス用セパレータ及びその製造方法 |
CN113795968A (zh) * | 2020-12-31 | 2021-12-14 | 宁德新能源科技有限公司 | 电芯和应用所述电芯的电子装置 |
CN113921993A (zh) * | 2021-09-30 | 2022-01-11 | 宁德新能源科技有限公司 | 一种电化学装置及包含该电化学装置的电子装置 |
CN113921994A (zh) * | 2021-09-30 | 2022-01-11 | 宁德新能源科技有限公司 | 电池及用电设备 |
Also Published As
Publication number | Publication date |
---|---|
CN116802915A (zh) | 2023-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102646844B (zh) | 二次电池 | |
JP4977375B2 (ja) | リチウムイオン電池およびそれを用いた組電池 | |
JP4920111B2 (ja) | パウチ型二次電池 | |
JP5520017B2 (ja) | ラミネートフィルム外装体を有する蓄電素子 | |
US20090136834A1 (en) | Method of Constructing an Electrode Assembly | |
JP2012252888A (ja) | 二次電池および組電池 | |
JP2003249259A (ja) | 集合電池 | |
WO2011002064A1 (ja) | ラミネート形電池 | |
CN102035013A (zh) | 二次电池和制造二次电池的方法 | |
JP6113972B2 (ja) | 二次電池 | |
CN114614190B (zh) | 一种电化学装置及电子设备 | |
JP5462304B2 (ja) | リチウムイオン電池を用いた組電池 | |
WO2023212932A1 (zh) | 电化学装置及电子设备 | |
WO2023184399A1 (zh) | 一种电化学装置及电子设备 | |
JP2012174452A (ja) | 二次電池 | |
JP2011233747A (ja) | 蓄電デバイス | |
WO2023197159A1 (zh) | 一种电化学装置及电子设备 | |
WO2023184142A1 (zh) | 一种电化学装置及电子装置 | |
WO2023197160A1 (zh) | 一种电化学装置及电子设备 | |
WO2018163775A1 (ja) | 二次電池の製造方法 | |
WO2018131398A1 (ja) | 二次電池 | |
WO2023159583A1 (zh) | 电化学装置及电子装置 | |
CN114709490A (zh) | 一种电化学装置及用电装置 | |
US20230137311A1 (en) | Battery current collector and preparation method thereof, secondary battery, battery module, battery pack, and electric apparatus | |
WO2023184400A1 (zh) | 一种电化学装置及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22940626 Country of ref document: EP Kind code of ref document: A1 |