WO2023210609A1 - 細胞シート作製方法 - Google Patents

細胞シート作製方法 Download PDF

Info

Publication number
WO2023210609A1
WO2023210609A1 PCT/JP2023/016201 JP2023016201W WO2023210609A1 WO 2023210609 A1 WO2023210609 A1 WO 2023210609A1 JP 2023016201 W JP2023016201 W JP 2023016201W WO 2023210609 A1 WO2023210609 A1 WO 2023210609A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
cell sheet
culture container
mammalian
Prior art date
Application number
PCT/JP2023/016201
Other languages
English (en)
French (fr)
Inventor
仁 草野
英征 宮内
秀人 酒井
聡秀 柳川
道貴子 岡崎
喜之 田面
Original Assignee
ファーマバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファーマバイオ株式会社 filed Critical ファーマバイオ株式会社
Publication of WO2023210609A1 publication Critical patent/WO2023210609A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to methods for producing cell sheets from various types of cells.
  • the present invention relates to a method for producing cell sheets from various cells including retinal pigment epithelial cells, mesenchymal stem cells, fibroblasts, iPS cells and iPS-derived differentiated cells, ES cells and ES cell-derived final cells.
  • Cultured cell sheet transplantation therapy has been reported for the treatment of various diseases.
  • Cultured cell sheet transplantation therapy involves culturing stem cells collected from the human body or artificially produced in a plate (culture dish), and placing the resulting sheet-shaped cultured cells into tissue defects caused by trauma or disease. This is a technique to repair the defective part.
  • an effective treatment method for age-related macular degeneration is to transplant retinal pigment epithelial cells or retinal pigment epithelium to the subretinal defect site (Patent Document 1: Japanese Patent Publication No. 9-501303, Patent Document 2: Japanese Patent Application Publication No. 2008-173333).
  • Autologous tissue transplantation is being carried out in which a cell sheet of retinal pigment epithelial cells (as a layer with the choroid) is cut out from the retinal tissue of a patient with age-related macular degeneration and transplanted into the damaged macular area.
  • cell sheets involve the risk of invasiveness due to surgery to remove the patient's retina, resulting in a high rate of complications and a low rate of improvement in macular function and maintenance of stability after transplantation. was there.
  • a cell sheet made by culturing pigment epithelial cells on artificial membranes or amniotic membranes is a method that uses pigment epithelial cells such as retinal pigment epithelial cells and iris pigment epithelial cells cultured in vitro, without collecting the patient's retina.
  • pigment epithelial cells such as retinal pigment epithelial cells and iris pigment epithelial cells cultured in vitro, without collecting the patient's retina.
  • pigment epithelial cells such as retinal pigment epithelial cells and iris pigment epithelial cells cultured in vitro, without collecting the patient's retina.
  • artificial membranes differ in composition, properties, and stiffness from the basement membranes produced by pigment epithelial cells themselves in vivo, and are susceptible to inflammation and associated rejection reactions, making them unsuitable for transplant applications.
  • Patent Document 3 WO2011/142364
  • the cell sheet obtained by this method requires the use of special culture equipment such as temperature-responsive culture equipment and enzyme treatment because a basement membrane is formed on the side opposite to the side where the cell sheet contacts the flat substrate for culture.
  • the cell sheet can be peeled off from the flat base material without having to be removed, and the basement membrane can be brought into contact with the transplant target tissue without turning the sheet over, simplifying the transplant operation. Because it is accompanied by a basement membrane, it is easy to engraft, has good rigidity, and is easy to handle, making it suitable for transplant treatment.
  • the prepared cell sheet is detached from the culture dish and used for transplantation, but since the cell sheet after detachment is separated from the support (flat base material), its shape does not change before transplantation in the medical field. The problem is that it is easy to change and difficult to handle.
  • Patent Document 4 WO2014/030749.
  • MSCs Mesenchymal stem cells
  • mesoderm-derived cells such as osteoblasts, chondrocytes, adipocytes, and muscle cells.
  • MSCs Mesenchymal stem cells
  • MSCs are also known to have homing effects, paracrine effects and cell adhesion interactions. Based on these actions, MSCs exhibit the ability to repair and regenerate target tissues and cells, as well as immunoregulatory abilities such as anti-inflammation, and as a result, are thought to exhibit therapeutic effects on various diseases.
  • Patent Document 5 JP 2017-132744A
  • the present inventors have intensively investigated a method for producing a cell sheet that is simple and easy to handle, and as a result, the present inventors have found that the method for producing a cell sheet is simple and easy to handle.
  • the present invention was completed by discovering that cells can be cultured in a cell culture container having a membrane on the bottom.
  • the present invention includes the following.
  • a method for producing a cell sheet including the following steps, (1) Preparing one or more types of mammalian-derived cells; (2) seeding the prepared cells onto the porous membrane of a first cell culture container having a porous membrane on the bottom; and (3) seeding the first cell culture container with a second cell culture container.
  • At least one of the culture solution in the first cell culture container or the culture solution in the second cell culture container is a culture solution containing serum and/or a Rho kinase (ROCK) inhibitor [ 1].
  • ROCK Rho kinase
  • step (1) the mammalian-derived cells are epithelial cells, endothelial cells, parenchymal cells, or stem cells.
  • the mammalian-derived cells are cells selected from the group consisting of pigment epithelial cells (e.g., iris pigment epithelial cells, retinal pigment epithelial cells), fibroblasts, and mesenchymal stem cells, The method described in [3] above.
  • step (2) cells are seeded on the bottom surface at a density of 5,000 cells/mm 2 (preferably 10,000 cells/mm 2 ) or more, [1] to [4] above. ] The method described in any one of the following.
  • step (5) A step of confirming the presence or absence of expression of differentiation markers in the cultured cells obtained in step (3).
  • the mammalian-derived cells are pigment epithelial cells such as retinal pigment epithelial cells or iris pigment epithelial cells
  • the molecular markers include bestrophin-1, RPE-65, pan-Cytokeratin, any subtype of Cytokeratin, and occludin.
  • EpCAM preferably at least one selected from the group consisting of any subtype, pan-Cytokeratin, and any subtype of Cytokeratin, and when the mammalian-derived cell is an endothelial cell, CD31, CD34, CD45, ICAM.
  • the mammalian-derived cell is a fibroblast
  • it is preferably at least one selected from the group consisting of HSP47, SerpinH1, fibroblast specific protein 1, CD248 (Endosialin), DDR-2, CD280 (Endo180), and Vimentin
  • the mammal-derived cell is a fat cell
  • it is preferably PLN1 and/or Fatty Acid Binding Protein 4
  • the mammal-derived cell is a skeletal muscle cell
  • it is preferably Troponin type 1 and/or myosin heavy chain.
  • the mammal-derived cell when it is a smooth muscle cell, it is preferably at least one selected from the group consisting of Transgelin, ⁇ -smooth muscle actin and Calponin, and when the mammal-derived cell is a cardiomyocyte. , Fatty Acid Binding Protein 3, Cardiac Troponin T, and Nkx2.5, and when the mammalian-derived cells are liver stem cells, EpCAM, E-cadherin, CD133, and CD29.
  • the mammal-derived cell is a nerve cell, it is preferably at least one selected from the group consisting of glial fibrillary acidic protein, Myelin Basic Protein and/or Peripherin;
  • the cells are preferably at least one selected from the group consisting of CD73, CD90, CD105, CD11b, CD14, CD19, CD79 ⁇ , CD34, CD45, and HLA-DR, and the mammalian-derived cells are T cells.
  • the mammalian-derived cell is preferably at least one selected from the group consisting of CD3, CD4 and CD8, and when the mammalian-derived cell is a B cell, it is preferably at least one selected from the group consisting of CD19, CD20, CD10, CD34, CD38, CD40 and CD45R.
  • the mammalian-derived cell is a natural killer cell, it is preferably at least one selected from the group consisting of CD16, CD56 and CD57, and the mammalian-derived cell is a natural killer cell.
  • the cells are at least one selected from the group consisting of CD11c, HLA-DR, CD141, CD1c, CD11b, CD303, CD123 and CD1a, and when the mammalian-derived cells are hematopoietic stem cells, CD34 and/or CD45, and when the mammal-derived cell is a macrophage, it is preferably at least one selected from the group consisting of CD16, CD32, CD64, CD68, CD80 and CD86.
  • mammal-derived cells are mesenchymal stem cells, they are particularly positive for CD73 and/or CD90, and negative for CD11b or CD14, CD19 or CD79 ⁇ , CD34, CD45, and HLA-DR. More preferred.
  • the mammalian-derived cells are pigment epithelial cells such as retinal pigment epithelial cells or iris pigment epithelial cells, mesenchymal stem cells, or fibroblasts, and the cells have 5 cells on the bottom surface. ,000 cells/mm 2 (preferably 10,000 cells/mm 2 ) to 40,000 cells/mm 2
  • [12] A cell sheet produced by the method described in any one of [1] to [11] above.
  • a transplant material for disease treatment comprising a cell sheet produced by the method described in any one of [1] to [11] above.
  • An extracellular matrix-containing membrane (for example, when epithelial cells are used, it is a basement membrane, and in particular, when retinal pigment epithelial cells are used, a method for producing Bruch's membrane).
  • a cell sheet in which a membrane containing an extracellular matrix for example, a basement membrane when epithelial cells are used; in particular, Bruch's membrane when retinal pigment epithelial cells are used) is formed on the side.
  • a membrane containing an extracellular matrix for example, a basement membrane when epithelial cells are used; in particular, Bruch's membrane when retinal pigment epithelial cells are used
  • the cell sheet is prepared by seeding one or more types of mammalian-derived cells onto a porous membrane of a first cell culture container equipped with the porous membrane on the bottom surface, and The cell sheet according to [15] or [16] above, which is obtained by culturing a cell culture container in a second cell culture container.
  • At least one of the culture solution in the first cell culture container or the culture solution in the second cell culture container is a culture solution containing serum and/or a Rho kinase (ROCK) inhibitor [ 17].
  • ROCK Rho kinase
  • the mammalian-derived cells are cells selected from the group consisting of pigment epithelial cells (e.g., retinal pigment epithelial cells, iris pigment epithelial cells), fibroblasts, and mesenchymal stem cells. Described cell sheet.
  • the cells contained in the cell sheet contain bestrophin-1, RPE-65, pan-Cytokeratin, any subtype of Cytokeratin, occludin, ZO-1, elastin, actin, type 1 collagen, type 2 collagen.
  • the cell sheet according to any one of [15] to [21] above, which expresses at least one kind of molecular marker selected from the group consisting of , and type 4 collagen.
  • the cells contained in the cell sheet secrete Solble-Flt-1 (VEGF receptor 1) and/or TIMP-3, according to any one of [15] to [22] above. cell sheet.
  • Method for producing a multilayered cell sheet including the following steps (1) to (4): (1) Preparing one or more types of mammalian-derived cells; (2) seeding the prepared cells onto the porous membrane of a first cell culture container having a porous membrane on the bottom; (3) further placing the first cell culture container into a second cell culture container, culturing cells, and producing a cell sheet on the porous membrane; and (4) the following step (a). ) and (b) one or more times: (a) Seeding one or more types of mammalian-derived cells onto a cell sheet formed in a first cell culture container; (b) A step of placing the first cell culture container in a second cell culture container, culturing cells, and producing a new cell sheet on the cell sheet.
  • a multilayer cell sheet arranged on a porous membrane, in which in each cell sheet included in the multilayer cell sheet, an extracellular matrix exists between the cells, and the side in contact with the porous membrane A layered cell sheet with a membrane containing extracellular matrix formed on the opposite side.
  • the present invention provides a method for producing a cell sheet that is simple and easy to handle, and the cell sheet produced by the method is easy to handle.
  • the cell sheet obtained by the method of the present invention can be easily separated from the cell container by applying physical force, such as water flow by pipetting, and has rigidity. By suctioning or discharging the cell sheet using a thin tube or the like, it is possible to deliver the cell sheet to the target transplantation site without making a large incision during transplantation.
  • the figure shows the results of producing a cell sheet using adipose tissue-derived mesenchymal stem cells by the method of the present invention.
  • 1 and 2 in the figure are photographs of the results of cell sheet production by seeding and culturing cells at 2x10 5 cells and 10x10 5 cells per container, respectively.
  • the figure is a photograph showing how a membrane-shaped cell sheet is separated from a cell container using a water stream generated by pipetting.
  • the figure is a photograph taken of a cell sheet placed in physiological saline in a Petri dish, which was aspirated and then discharged using a pipette.
  • the numbers indicate the order of operations.
  • the figure is a photograph showing a cross section of a cell sheet formed from human adipose tissue-derived mesenchymal stem cells.
  • the bar indicating the thickness is 39.0 ⁇ m.
  • the figure shows the results of immunohistological staining to confirm the expression of each molecular marker in a cell sheet prepared using adipose tissue-derived mesenchymal stem cells.
  • the figure shows the results of testing the protective effect of a cell sheet formed from human adipose tissue-derived mesenchymal stem cells.
  • the photo on the left of the figure shows that the thickness of the outer nuclear layer (layer of photoreceptor cell nuclei) was maintained in rats transplanted with mesenchymal stem cell sheets prepared by the method of the present invention three weeks after transplantation.
  • FIG. 1 shows.
  • FIG. 1 shows.
  • FIG. 1 shows.
  • FIG. 1 shows.
  • Figures A, B, C, D, E, and F show cells per container at 0.08x10 5 cells, 0.4x10 5 cells, 2x10 5 cells, 10x10 5 cells, 13x10 5 cells, and 20x10 5 cells, respectively. This is a photograph of the result of seeding to produce a cell sheet.
  • the figure shows the results of testing the phagocytosis of a cell sheet formed from iris pigmented epithelial cells by the method of the present invention.
  • the upper row shows photographs of the results using the negative control, and the lower row shows photographs of the results using the cell sheet produced by the method of the present invention.
  • the figure shows the results of immunohistological staining to confirm that the cell sheet formed from iris pigmented epithelial cells expresses elastin, type IV collagen, and type I collagen according to the method of the present invention.
  • the figure shows the results of testing the retinal protective effect of a cell sheet formed from iris pigment epithelial cells.
  • the upper photo in the figure shows that the thickness of the outer nuclear layer (layer of photoreceptor cell nuclei) was maintained in rats transplanted with the iris pigment epithelial cell sheet produced by the method of the present invention 4 weeks after transplantation. shows.
  • the lower graph in the figure shows that photoreceptors were protected in rats transplanted with iris pigment epithelial cell sheets.
  • the figure shows the results of testing the phagocytosis of cell sheets formed from fibroblasts.
  • the figure shows that cell sheets formed from fibroblasts expressed type I collagen, type IV collagen, elastin, and ZO-1.
  • the figure shows the results of testing the retinal protective effect of a cell sheet formed from fibroblasts.
  • the left side shows the results of the fibroblast sheet transplantation group, and the right side shows the results of the sham surgery group (Control). It is shown that the thickness of the outer nuclear layer (layer of photoreceptor cell nuclei) was maintained in rats transplanted with the fibroblast sheet produced by the method of the present invention 4 weeks after transplantation.
  • the figure shows the results of measuring the secretion of Soluble-Flt-1 (VEGF receptor 1) 1 and TIMP-3 by a cell sheet formed from human adipose tissue-derived mesenchymal stem cells.
  • the figure shows the results of producing a laminated sheet formed from human adipose tissue-derived mesenchymal stem cells by the method of the present invention.
  • the figure shows the results of evaluating cell migration using a cell sheet produced using mesenchymal stem cells by the method of the present invention.
  • the left column shows the results using a cell suspension
  • the right column shows the results using a cell sheet.
  • the method for producing a cell sheet of the present invention includes the following steps (1) to (3). (1) Preparing one or more types of mammalian-derived cells; (2) seeding the prepared cells onto the porous membrane of a first cell culture container having a porous membrane on the bottom; and (3) further seeding the first cell culture container into a second cell culture container. A step of culturing cells in a cell culture container and producing a cell sheet on the porous membrane.
  • one or more mammalian-derived cells are typically prepared as a cell suspension.
  • the mammalian-derived cells prepared in step (1) are not particularly limited as long as they are mammalian-derived cells, and include, for example, humans, monkeys, mice, rats, dogs, cows, horses, pigs, sheep, goats, and cats. , rabbit, hamster, and guinea pig-derived cells.
  • cells are derived from humans.
  • the cell type of the cells to be prepared is not particularly limited, and examples thereof include epithelial cells, endothelial cells, parenchymal cells, and stem cells. Further, the cell type may be an adherent cell or a non-adhesive cell, but preferably an adherent cell. Specifically, examples include, but are not limited to, hepatocytes, which are parenchymal cells of the liver, Kupffer cells, endothelial cells such as vascular endothelial cells and corneal endothelial cells, fibroblasts, osteoblasts, osteoclasts, and tooth roots.
  • Membrane-derived cells epidermal cells such as epidermal basal cells, epithelial cells such as tracheal epithelial cells, gastrointestinal epithelial cells, cervical epithelial cells, conjunctival epithelial cells, corneal epithelial cells, iris pigment epithelial cells, retinal pigment epithelial cells, mammary gland Cells, pericytes, muscle cells such as smooth muscle cells and cardiomyocytes, renal cells, pancreatic islet cells, nerve cells such as peripheral nerve cells and optic nerve cells, chondrocytes, bone cells, pluripotent stem cells, embryonic stem cells ( ES cells), induced pluripotent stem cells (iPS cells), mesenchymal stem cells, hematopoietic stem cells, neural stem cells, cardiac stem cells, hepatic stem cells, skeletal muscle stem cells, epithelial stem cells, epidermal stem cells, retinal stem cells, undifferentiated adipose stem cells, etc.
  • epidermal cells such as epi
  • stem cells and cells derived from these stem cells Preferable examples include corneal endothelial cells, tracheal epithelial cells, gastrointestinal epithelial cells, cervical epithelial cells, corneal epithelial cells, retinal pigment epithelial cells, fibroblasts, and mesenchymal stem cells, and more preferably corneal epithelial cells, Examples include corneal endothelial cells, retinal pigment epithelial cells, fibroblasts, mesenchymal stem cells, iPS cells and iPS cell-derived differentiated cells, ES cells and ES cell-derived differentiated cells, most preferably retinal pigment epithelial cells and fibroblasts. , mesenchymal stem cells. Using these cells, a cell sheet can be produced by the method of the present invention.
  • the cells to be prepared may be primary cells directly collected from tissues or organs, or may be those that have been passaged several times. Furthermore, cells can be undifferentiated embryonic stem cells (ES cells), pluripotent stem cells such as mesenchymal stem cells with multipotency, induced pluripotent stem cells (iPS cells) made from somatic cells, or single cells.
  • the cells may be stem cells including unipotent stem cells such as vascular endothelial progenitor cells having differentiation potential, or cells obtained by inducing differentiation of these stem cells.
  • the ES cells may be generated by nuclear reprogramming from somatic cells.
  • iPS cells are artificial stem cells derived from somatic cells that can be created by introducing certain reprogramming substances (nucleic acids, proteins, low-molecular compounds, etc.) into somatic cells, and have characteristics equivalent to ES cells. be.
  • the desired cells may be prepared by inducing differentiation of stem cells such as induced pluripotent stem cells (iPS cells) and ES cells.
  • the conditions and culture medium for differentiating the stem cells into the desired differentiated cells may be in accordance with conventionally known conditions and culture media, or may be appropriately set by those skilled in the art.
  • iPS cells whose histocompatibility antigens have been deleted or modified using techniques such as genome editing, or somatic cells of the subject to be transplanted, are used as the source of the iPS cells. Can be used.
  • the use of iPS cells is preferable because the cell sheet obtained from these iPS cells is a cell sheet that does not have antigenicity to the subject.
  • the mammal-derived cells used in step (1) of the present invention are pigment epithelial cells such as retinal pigment epithelial cells or iris pigment epithelial cells
  • the mammal is the same as above, but is preferably a human.
  • the retinal pigment epithelial cells are differentiated cells derived from stem cells or cells derived from the eyeball.
  • stem cells or cells derived from the eyeball For retinal pigment epithelial cells derived from the eyeball, after enucleating the cadaver eyeball, immediately divide the eyeball at the equator, remove the vitreous body and retina, and then release the cells from Bruch's membrane by scraping with a cell scraper or using a trypsin or EDTA solution.
  • the cells After collecting the cells, the cells are allowed to stand still in a culture medium to induce adhesion to the culture dish and proliferation, thereby proliferating the necessary amount of cells, and then passaging the cells as appropriate using trypsin treatment to ensure the number of cells.
  • Dkk-1 Wnt antagonist
  • Lefty A Nodal antagonist
  • the mammal is the same as above, but is preferably a human.
  • the method for preparing the fibroblasts is not particularly limited, and any known method can be used. For example, it can be prepared by separating various biological tissues by digesting them with enzymes, but is not limited thereto. Non-limiting examples of such biological tissue include mammalian dermal tissue.
  • the mammal is the same as above, but is preferably a human.
  • the mesenchymal stem cells can be obtained from various tissues. Examples include, but are not limited to, bone marrow origin, umbilical cord origin, umbilical cord blood origin, endometrial origin, placenta origin, amniotic membrane origin, chorion origin, decidua origin, dermis origin, dental follicle origin, periodontal ligament origin, and dental pulp.
  • the method for preparing mesenchymal stem cells is not particularly limited, and known methods can be used. For example, it can be prepared by separating various biological tissues by digesting them with enzymes, but is not limited thereto.
  • biologically derived tissues include mammalian bone marrow, umbilical cord, and fat.
  • one or more types of cells can be used.
  • the combination is not particularly limited and can be appropriately selected within the scope of the objective of the present invention.
  • cells derived from the same or different tissues and cells derived from the same or different animal species can be used in combination.
  • the number of cell types to be combined is not particularly limited. For example, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more cell types can be used in combination.
  • the suspension liquid is not particularly limited as long as it contains components commonly used when suspending living cells.
  • Cell suspension solutions can be prepared using known methods used in the art.
  • the cell suspension solution may be a cell culture solution containing components for culturing cells.
  • a cell culture medium containing components for culturing cells may be added into the first cell culture vessel after seeding the cells.
  • cell culture medium may be pre-added into the first cell culture vessel prior to seeding the cells.
  • step (2) the prepared cells are seeded onto a porous membrane of a first cell culture container having a porous membrane on the bottom surface, and a culture solution is added.
  • the prepared cells are a cell suspension in which cells are suspended in a medium at a concentration suitable for culture, it is not necessary to add a culture medium.
  • the shape of the first cell culture container is not particularly limited as long as it can hold the prepared cells and a porous membrane can be installed on the bottom surface.
  • the material of the porous membrane is not particularly limited and may be made of resin, metal, or glass.
  • Resins that form porous membranes include various polyethylenes such as low-density polyethylene, high-density polyethylene, and ultra-high molecular weight polyethylene, polyethylene naphthalate, polypropylene, polymethyl methacrylate, methyl methacrylate-styrene copolymer, polystyrene, and polytetra.
  • polyethylenes such as low-density polyethylene, high-density polyethylene, and ultra-high molecular weight polyethylene, polyethylene naphthalate, polypropylene, polymethyl methacrylate, methyl methacrylate-styrene copolymer, polystyrene, and polytetra.
  • fluororesins such as fluoroethylene and polyvinyl difluoride, ethylene-vinyl acetate copolymers, polyamides, styrene-acrylonitrile copolymers, styrene-butadiene-acrylonitrile terpoly
  • a porous resin membrane formed from a fluororesin such as polytetrafluoroethylene or polyvinylidene difluoride is preferable because it has excellent absorption of a preservation solution and excellent visibility of cells under microscopic observation.
  • porous membranes examples include copper, copper alloy, aluminum, aluminum alloy, gold, gold alloy, silver, silver alloy, tin, zinc, lead, titanium, nickel, stainless steel, and the like.
  • porous membranes made of oxides of metals such as silica, alumina, and zirconium can also be used.
  • the porous metal and porous metal oxide membranes may be porous membranes containing two or more types of each of the above-mentioned metals and metal oxides.
  • the pore diameter of the porous body in the porous membrane of porous resin, porous metal, porous metal oxide, and porous glass is not particularly limited as long as it is large enough that the cells used do not pass through it.
  • porous membranes with pore sizes less than 10 ⁇ m, 9 ⁇ m, 8 ⁇ m, 7 ⁇ m, 6 ⁇ m, 5 ⁇ m, 4 ⁇ m, 3 ⁇ m, 2 ⁇ m, 1 ⁇ m can be used. In one embodiment, it is preferred to have a pore size of less than 3 ⁇ m.
  • the porous membrane may be subjected to surface treatment for the purpose of improving adhesion with adhesive cells, but in order to facilitate the process of peeling off the cell sheet of the present invention from the flat substrate, treatment may be applied. It doesn't have to be done. If treated, the surface may be treated with, for example, collagen, gelatin, Matrigel, poly-L-lysine, poly-D-lysine, laminin, fibronectin, or the like.
  • high density refers to a cell density higher than that observed in the normal tissue from which the prepared cells are derived.
  • the upper limit can be appropriately determined by a person skilled in the art, and is, for example, a cell density that allows cells to adhere to each other and that does not cause defects in sheet formation or cell death due to excessive seeding. More specifically, "high density” is preferably 2.5 times or more the recommended seeding density during normal culture, for example, 1 to 1 times higher than the cell density observed in normal tissue. It refers to a cell density of about 100 times, preferably 1.2 to 50 times, more preferably 2.5 to 30 times.
  • the cell density observed in normal tissue varies depending on the type of tissue, but for example, 1,000 cells/mm 2 or more, 2,000 cells/mm 2 or more, 3,000 cells/mm 2 or more, It can be 4,000 cells/mm 2 or more, or 5,000 cells/mm 2 or more. More specifically, for corneal endothelium, approximately 3,000 cells/ mm2 or more, for retinal pigment epithelial cells, approximately 4,000 cells/ mm2 or more, and for mesenchymal stem cells, approximately 200 cells/mm2. 2 or more, and for fibroblasts, it is preferably about 5,000 cells/mm 2 or more.
  • high density refers to "a density higher than the cell density observed in a normal eyeball.” Specifically, such density is at least 4,000 cells/mm 2 or more.
  • a contractile force acts on the formed cell sheet itself, maintaining the area at the time of seeding. There are times when this is not possible. This is due to the fact that a certain number of cells are recruited to cover the serum contact surface of the retinal pigment epithelium, the unevenness of cell density, and the survival rate of the cells themselves, making it impossible to maintain the area at the time of seeding.
  • a cell density higher than that observed in a normal eyeball means preferably about 5,000 cells/mm 2 if the formed cell sheet is allowed to shrink from the area at the time of seeding. or more, preferably about 10,000 cells/mm 2 or more, and if the formed cell sheet maintains the area at the time of seeding, preferably about 20,000 cells/mm 2 or more It is.
  • the upper limit is a density that does not induce defective sheet formation or death of some cells due to excessive cell seeding.
  • cell density higher than that observed in a normal eyeball preferably ranges from about 5,000 cells/mm 2 to about 200,000 cells/mm 2 , or more. Preferably, the range may be from about 10,000 cells/mm 2 to about 120,000 cells/mm 2 , particularly preferably from about 20,000 cells/mm 2 to about 40,000 cells/mm 2 .
  • high density refers to "a density higher than the density at which cells are seeded during normal cell culture.”
  • the lower limit of such density is, for example, about 200 cells/mm 2 , preferably about 1,000 cells/mm 2 , and more preferably about 1,000 cells/mm 2 .
  • About 1200 cells/mm 2 more preferably about 5,000 cells/mm 2
  • an upper limit of, for example, about 200,000 cells/mm 2 preferably about 120,000 cells/mm 2 , or more
  • it may be about 60,000 cells/mm 2 , more preferably about 40,000 cells/mm 2 .
  • a preferred range is about 1,000 cells/mm 2 to about 200,000 cells/mm 2 , more preferably about 3,000 cells/mm 2 to about 120,000 cells/mm 2 , even more preferably may be from about 5,000 cells/mm 2 to about 60,000 cells/mm 2 , particularly preferably from about 10,000 cells/mm 2 to about 40,000 cells/mm 2 .
  • the mammalian-derived cells are other stem cells such as iPS cells or ES cells, "high density” is the same as “high density” for mesenchymal stem cells.
  • high density refers to "a density higher than the density at which cells are seeded during normal cell culture.” Specifically, such density is about 5,000 cells/mm 2 to about 200,000 cells/mm 2 , more preferably about 10,000 cells/mm 2 to about 120,000 cells/mm 2 Number of cells/mm 2 , more preferably about 10,000 cells/mm 2 to about 60,000 cells/mm 2 , particularly preferably about 20,000 cells/mm 2 to about 40,000 cells / mm2 .
  • the first cell culture container is placed in the second cell culture container.
  • the cell culture medium can be added to the first cell culture vessel and the second cell culture vessel at various times. For example, after adding a culture solution to a first cell culture container seeded with cells, the first cell culture container may be placed in a second cell culture container to which the culture solution has been added in advance. In another embodiment, the culture medium may be added to the first cell culture vessel after the first cell culture vessel in which cells are seeded is placed in a second cell culture vessel to which a culture medium has been added in advance. good. Thereafter, by culturing the cells, a monolayer or multilayer cell population can be formed, and a cell sheet can be produced.
  • any cell culture medium commonly used in this technical field can be used without particular limitation.
  • F-10 medium, F12 medium, MEM, BME medium, DMEM, ⁇ MEM, IMD medium, ES medium, DM-160 medium, Fisher medium, WE medium, and RPMI1640 medium etc.
  • a basal medium such as that described in "Techniques of Tissue Culture, Third Edition, edited by the Japanese Society of Tissue Culture," published on page 581 can be used.
  • serum fetal bovine serum, etc.
  • various growth factors, antibiotics, amino acids, etc. may be added to the above basal medium, but preferably a medium to which serum and/or a Rho kinase (ROCK) inhibitor is added.
  • ROCK Rho kinase
  • Rho kinase (ROCK) inhibitor By adding a Rho kinase (ROCK) inhibitor, apoptosis can be prevented even in high-density culture, and high-quality cell sheets can be obtained.
  • the pH of the medium is preferably about 6 to about 8. Cultivation is usually carried out at about 30 to about 40°C for about 6 to about 168 hours. If necessary, the medium may be replaced and/or replenished, aerated, or stirred.
  • Rho kinase is a serine-threonine protein kinase that has been identified as a target protein of the low molecular weight GTP-binding protein Rho.
  • Rock inhibitors which are the inhibitors thereof, are commercially available and can be used without limitation in the present invention.
  • Rock inhibitors used in the present invention include, but are not limited to, Y27632 and HA1077, with HA1077 being preferred.
  • the concentration of the Rho kinase inhibitor used in the present invention can be, for example, 1 to 50 ⁇ M, preferably 2 to 30 ⁇ M, and more preferably 5 to 20 ⁇ M.
  • the second cell culture container is not particularly limited as long as it is a normal cell culture culture container that can contain a culture solution, but examples include a dish, a Petri dish, a tissue culture dish, a multi-dish, a microplate, Examples include microwell plates, multiplates, multiwell plates, chamber slides, petri dishes, and trays.
  • Materials for the culture container include, for example, metals, glass, ceramics, inorganic materials such as silicone, elastomers, plastics (for example, polyester resins, polyethylene resins, polypropylene resins, ABS resins, nylon, acrylic resins, fluorine resins, polycarbonate resins,
  • organic materials include, but are not limited to, polyurethane resins, methylpentene resins, phenol resins, melamine resins, epoxy resins, and vinyl chloride resins.
  • first and second cell culture containers cell culture inserts (the bottom surface of the cell culture insert is made of a porous membrane) provided by Corning International, Thermo Scientific, Greiner Bio-One International, etc. insert Examples include culture containers.
  • the first cell culture vessel include Transwell® permeable supports, SnapwellTM inserts, NetwellTM inserts, and Falcon cell culture containers from Corning. There are inserts and the like, which can be suitably used in the present invention.
  • the second cell culture container examples include Falcon cell culture plate and Falcon multicell culture plate (Corning) manufactured by Corning, which can be suitably used in the present invention.
  • the surface to which cells can adhere has a porous membrane structure, which is advantageous for culturing in that, although not limited to this, nutrients and oxygen can be supplied to the cell sheet from above and below. It is believed that there is.
  • the cell sheet produced by culturing is held on the porous membrane on the bottom of the first cell culture container, it can be moved and transported together with the cell culture insert, and the cells are stably held. It becomes possible to move and transport. Therefore, when used for transplantation, the cell sheet can be peeled off from the bottom of the cell culture insert at the medical site where the transplantation is performed, and handling becomes easy.
  • the cell sheet obtained by the method of the present invention has an extracellular matrix, which makes the sheet strong and easy to maintain its shape. Therefore, suction and evacuation can be performed using, for example, but not limited to, a thin tube such as a pipette, and the sheet can be transplanted from the body surface to a site that is difficult to access.
  • a thin tube such as a pipette
  • Step (4) A step of confirming the formation of a membrane containing an extracellular matrix on the side of the cell opposite to the side that contacts the porous membrane.
  • step (4) is a step of confirming the formation of Bruch's membrane. Formation of a membrane containing an extracellular matrix can be confirmed by observing the expression of elastin, type 1 collagen, type 4 collagen, etc. on the cell surface by immunostaining, or by observing protein expression by Western blotting.
  • Tight junctions may also be formed in the cell sheet obtained by the method of the present invention. Tight junction formation can be confirmed by observing the hexagonal cell morphology and the expression of unique proteins between cells by immunostaining. The unique proteins to be expressed vary depending on the type of cells used, and can be appropriately selected with reference to known information. For example, when epithelial cells are used, the formation of tight junctions can be confirmed by observing the expression of occludin, ZO-1, etc.
  • the method of the present invention may further include the following step (5).
  • Step (5) A step of confirming the presence or absence of expression of differentiation markers in the cultured cells obtained in step (3).
  • step (5) it can be determined that the cell sheet has been completed by confirming the presence or absence of expression of differentiation markers in the cultured cells obtained in step (3).
  • the differentiation marker may be expressed anywhere in the cell (eg, cytoplasm, cell membrane, nuclear membrane, etc.).
  • differentiation marker refers to a transcript of a gene that is specifically expressed in differentiated cells or whose expression is amplified or attenuated compared to other differentiated cells, undifferentiated cells, or progenitor cells. , translation products or their degradation products. Examples of differentiation markers include the following.
  • mammalian-derived cells are pigment epithelial cells such as retinal pigment epithelial cells or iris pigment epithelial cells, bestrophin-1, RPE-65, pan-Cytokeratin and any subtype of Cytokeratin, occludin, ZO-1 , elastin, actin, type 1 collagen, type 2 collagen, and type 4 collagen.
  • the mammalian-derived cell is an epithelial cell, it is preferably at least one type selected from the group consisting of EpCAM and any subtype thereof, pan-Cytokeratin, and any subtype of Cytokeratin.
  • CD31, CD34, CD45, ICAM-1/CD54, LYVE-1, Tie2/Tek, vWF (von Willebrand factor), CD144, VCAM-1/CD106, VE cadherin and VEGF -R2 is preferred, and CD31 and/or CD34 are more preferred.
  • the mammalian-derived cell is a fibroblast
  • it is at least one selected from the group consisting of HSP47, SerpinH1, fibroblast specific protein 1, CD248 (Endosialin), DDR-2, CD280 (Endo180), and Vimentin.
  • HSP47 HSP47
  • SerpinH1 fibroblast specific protein 1
  • CD248 Endosialin
  • DDR-2 DDR-2
  • CD280 Endo180
  • Vimentin Vimentin.
  • the mammalian-derived cell is an adipocyte, it is preferably PLN1 and/or Fatty Acid Binding Protein 4.
  • the mammalian-derived cell is a skeletal muscle cell, it is preferably Troponin type 1 and/or myosin heavy chain.
  • the mammalian-derived cell is a smooth muscle cell, it is preferably at least one selected from the group consisting of Transgelin, ⁇ -smooth muscle actin, and Calponin.
  • the mammalian-derived cell is a cardiomyocyte, it is preferably at least one selected from the group consisting of Fatty Acid Binding Protein 3, Cardiac Troponin T, and Nkx2.5.
  • the mammalian-derived cell is a liver hepatocyte, it is preferably at least one selected from the group consisting of EpCAM, E-cadherin, CD133, and CD29.
  • the mammalian-derived cell is a nerve cell, it is preferably glial fibrillary acidic protein, Myelin Basic protein and/or Peripherin.
  • the mammalian-derived cell is a T cell, it is preferably at least one type selected from the group consisting of CD3, CD4, and CD8.
  • the mammalian-derived cell is a B cell, it is preferably at least one selected from the group consisting of CD19, CD20, CD10, CD34, CD38, CD40, and CD45R.
  • the mammalian-derived cell is a natural killer cell, it is preferably at least one selected from the group consisting of CD16, CD56, and CD57.
  • the mammalian-derived cell is a dendritic cell
  • it is preferably at least one selected from the group consisting of CD11c, HLA-DR, CD141, CD1c, CD11b, CD303, CD123, and CD1a.
  • mammalian-derived cells are hematopoietic stem cells, they are preferably CD34 and/or CD45.
  • the mammalian-derived cell is a macrophage, it is preferably at least one selected from the group consisting of CD16, CD32, CD64, CD68, CD80, and CD86.
  • the mammalian-derived cell is a mesenchymal stem cell
  • it is preferably at least one selected from the group consisting of CD73, CD90, CD105, CD11b, CD14, CD19, CD79 ⁇ , CD34, CD45, and HLA-DR.
  • it is more preferable to be positive for CD73 and/or CD90 and negative for CD11b or CD14, CD19 or CD79 ⁇ , CD34, CD45, and HLA-DR.
  • the differentiation marker can be appropriately selected depending on the type of differentiated cells to be produced or the intended use of the cell sheet.
  • neuronal differentiation markers include tubulin (especially ⁇ -tubulin), MAP2, neurofilament, neuron-specific enolase, and adipocyte differentiation markers include aP2, glycerophosphate dehydrogenase, adipsin, leptin, and osteoblasts.
  • Differentiation markers include procollagen 1 ⁇ 1, RUNX2, alkaline phosphatase, osteopontin, osteocalcin, and the like.
  • the sample used for "confirming the presence or absence of differentiation marker expression” is a sample derived from the cells cultured in step (3) and containing differentiation markers (e.g., RNA, protein, degradation products thereof, etc.) There are no particular restrictions as long as it is.
  • differentiation markers e.g., RNA, protein, degradation products thereof, etc.
  • the cells cultured in step (3) can be subjected to immunostaining, and the expression level of the differentiation marker can be measured, for example, by flow cytometry.
  • RNA e.g. total RNA, mRNA
  • expression of differentiation marker genes can be investigated by directly detecting marker gene products in cells without extracting RNA from the cells.
  • RNA (eg, total RNA, mRNA) fractions from cells can be prepared according to conventional methods, for example, using a commercially available RNA extraction kit.
  • Means for detecting the transcription products of differentiation marker genes in RNA fractions include, for example, methods using hybridization (Northern blot, dot blot, DNA chip analysis, etc.), or PCR (RT-PCR, competitive PCR, real-time PCR).
  • the expression of the differentiation marker gene can be confirmed by preparing a protein fraction from the cells and detecting the translation product of the marker gene (i.e., marker protein) contained in the fraction, or by preparing the protein fraction from the cells.
  • This can be investigated by directly detecting the translation products of marker genes in cells without extracting them.
  • Detection of marker proteins can be performed by immunoassays (e.g. ELISA, FIA, RIA, Western blotting, etc.) using antibodies against each protein, or by using proteins that exhibit measurable physiological activity such as enzymes. In this case, the physiological activity can also be determined by measuring each marker protein using a known method.
  • detection of marker proteins can also be performed using mass spectrometry such as MALDI-TOFMS.
  • the cells contained in the cell sheet produced by the method of the present invention can secrete factors that suppress the development of new blood vessels.
  • the cell sheet prepared from iris pigment epithelial cells by the method of the present invention contains Soluble-Flt-1 (VEGF receptor 1) 1 and TIMP-3, which are factors that suppress the development of choroidal neovascularization. can be secreted.
  • the cells contained in the cell sheet produced by the method of the present invention are unlikely to undergo cell migration, and almost no detachment of cells from the cell sheet due to cell migration is observed.
  • the cell sheet produced by the method of the present invention has rigidity, and migration of cells from the cell sheet is difficult to occur.
  • the cell sheet of the present invention can be applied locally in the body, where administration methods using cell suspensions have been used up to now, and cell migration, which is a problem with suspensions, is less likely to occur. Therefore, the cell sheet of the present invention can be used for target diseases for which local administration is preferable.
  • the membrane containing the extracellular matrix in step (4) above is Bruch's membrane in one embodiment.
  • “Bruch's membrane” is a thin membrane that lies between the retinal pigment epithelium and the choroid, and is a layer that lines the retinal pigment epithelium.
  • a membrane containing an extracellular matrix produced by the cells themselves such as a basement membrane and Bruch's membrane containing elastic fibers, is formed, thereby providing strength capable of withstanding transplantation operations. Furthermore, in the method of the present invention, since the membrane containing the extracellular matrix can be formed on the side of the cell opposite to the side that contacts the porous membrane, the cell sheet can be formed together with the membrane containing the extracellular matrix. It is easy to separate from the first cell culture vessel.
  • the present invention also provides a method for producing an extracellular matrix-containing membrane in vitro, which comprises separating the formed extracellular matrix-containing membrane from the cell sheet in the cell sheet production method.
  • the membrane containing the extracellular matrix formed on the retinal pigment epithelium can be peeled off and collected from the sheet by EDTA treatment or by pipetting and suctioning on the sheet surface in a magnesium- and calcium-free medium. It is possible.
  • the membrane can also be peeled off and recovered by suctioning the culture solution and bringing it into contact with air, or by dehydrating the sheet surface by treatment with diluted alcohol.
  • the present invention also relates to a cell sheet obtained according to the method for producing a cell sheet, preferably a pigment epithelial cell sheet such as a retinal pigment epithelial cell sheet or an iris pigment epithelial cell sheet.
  • a pigment epithelial cell sheet such as a retinal pigment epithelial cell sheet or an iris pigment epithelial cell sheet.
  • the cell sheet of the present invention can be used in various biological applications, such as screening applications and toxicity testing applications.
  • the cell sheet of the present invention can be suitably transplanted into a subject requiring tissue transplantation as a transplant material for disease treatment.
  • the retinal pigment epithelial cell sheet of the present invention is suitable as a transplant material for retinal treatment to patients with eye diseases. Examples of eye diseases include age-related macular degeneration disease, retinitis pigmentosa, and retinal pigment streaks.
  • the retinal pigment epithelial cell sheet of the present invention can be used for various screening purposes such as drug efficacy screening and toxicity evaluation for the above-mentioned eye diseases.
  • the cell sheet of the present invention can be applied to screening for toxic substances according to the method described in Japanese Patent Publication No. 2007-517210.
  • the retinal pigment epithelial cell sheet of the present invention has functions related to the maintenance of photoreceptor cells such as phagocytosis and neuroprotection of photoreceptor outer segments, retinal vascular barrier function due to pumping action and tight junctions, etc. It can also be used as an in vitro model for evaluating various functions provided by pigment epithelial cells.
  • the present invention also provides a cell sheet held on a porous membrane, preferably a retinal pigment epithelial cell sheet, obtained according to the method for producing a cell sheet. Since the produced cell sheet is held (fixed) on the membrane, changes in shape such as atrophy, inversion, and curling can be prevented. Furthermore, since it is held on a membrane, it can be prevented from changing its shape even if subjected to physical stimulation such as movement or transportation, and can be transplanted while maintaining a good condition.
  • the transplant material for disease treatment of the present invention can treat diseases in humans and non-human mammals (e.g. monkeys, mice, rats, dogs, cows, horses, pigs, sheep, goats, cats, rabbits, hamsters, guinea pigs, etc.). It can be used for treatment.
  • non-human mammals e.g. monkeys, mice, rats, dogs, cows, horses, pigs, sheep, goats, cats, rabbits, hamsters, guinea pigs, etc.
  • the range of disease sites to which the transplant material for disease treatment of the present invention can be applied may vary depending on the target disease, the animal species to be administered, age, sex, body weight, symptoms, etc., but for example, age-related macular degeneration
  • the area of the diseased area to be transplanted is usually in the range of 0.07 cm 2 to 0.28 cm 2 .
  • the transplant material for disease treatment of the present invention may be transplanted at once or in several parts.
  • the number of transplants to be applied is determined by medical professionals and according to guidelines depending on the disease. For example, if the disease is age-related macular degeneration, the retinal pigment epithelial cell sheet of the present invention may be used depending on the severity of the disease. It may be transplanted more than once. Furthermore, when transplanting is performed multiple times, the interval is not particularly limited, but may be several days to several weeks.
  • the transplant material for disease treatment of the present invention is transplanted according to an appropriate transplant method according to medical professionals and guidelines. For example, for treatment sites in the chest or abdominal cavity, thoracotomy or laparotomy can be applied, as well as endoscopic techniques.
  • thoracotomy or laparotomy can be applied, as well as endoscopic techniques.
  • endoscopic techniques for example, for treatment sites in the chest or abdominal cavity, thoracotomy or laparotomy can be applied, as well as endoscopic techniques.
  • transplanting the retinal pigment epithelial cell sheet under the retina in addition to the transplant method in which it is placed on a stream of water from an injection needle inserted to the transplant site under the retina of the eyeball, it is also possible to use a dedicated transportation method. It can also be done with therapeutic instruments.
  • the present invention further provides a membrane containing an extracellular matrix obtained by the method for producing a membrane containing an extracellular matrix.
  • a membrane can be produced by a method in which a cell sheet is produced using the method of the present invention, and then the membrane is peeled from the sheet, or by a method in which the cells are removed. Cells can be removed, for example, using methods such as freeze-drying and freeze-thawing. Therefore, the method for producing a membrane containing an extracellular matrix of the present invention may include, in addition to the above-described method for producing a cell sheet of the present invention, a step of removing cells by a freeze-drying step to obtain a membrane. Since the extracellular matrix-containing membrane of the present invention is a cell-free basement membrane, membrane transplantation has fewer regulatory restrictions than cell transplantation, and the hurdles for practical application are lower. It is also useful for research purposes such as functional analysis.
  • a cell sheet is produced by the method of the present invention using retinal pigment epithelial cells.
  • the administration target may vary depending on the cells used. It is clear to those skilled in the art that the target disease, transplantation method, etc. can be changed as appropriate with reference to guidelines and the like.
  • target diseases include, but are not limited to, skin-related diseases.
  • target diseases include, but are not limited to, retinal pigment epithelial degeneration diseases and nerve damage diseases.
  • the present invention provides a multilayer cell sheet including a plurality of cell sheets and a method for producing the same.
  • a multilayer cell sheet can be manufactured by repeating the step of again seeding cells to form a cell sheet on top of the cells that have already been formed into a sheet using the method for manufacturing a cell sheet described above.
  • Each cell sheet included in the multilayer cell sheet may be a cell sheet containing a single cell type, or may be a cell sheet containing a plurality of cell types.
  • Each cell sheet included in the multilayer cell sheet may contain different cell types, or may contain the same cell type.
  • tissue sheets made of cells with different functions or by layering cell sheets containing cells with different functions it is possible to form artificial tissues (Allergy, 2013, Vol. 62, No. 25-32) page).
  • a cell sheet or multilayer cell sheet using a cell suspension containing a mixture of stromal cells or mesenchymal stem cells, hematopoietic cells such as antigen-presenting cells and lymphocytes, or hematopoietic stem cells, artificial It is possible to produce lymphoid tissue or artificial bone marrow.
  • Such a multilayered cell sheet can be applied, for example, to the treatment of immunodeficiency, severe infectious disease, malignant tumor, and hematopoietic deficiency.
  • mesenchymal stem cells By forming mesenchymal stem cells into sheets, the expression of the marker CD105 is reduced or eliminated, and a CD105-negative mesenchymal subset with strong immunosuppressive properties can be induced.
  • a multilayered cell sheet made by layering such mesenchymal stem cell sheets can be used, for example, to prevent or suppress rejection after organ transplantation, to prevent or suppress rejection during mesenchymal stem cell allogeneic transplantation, and to treat autoimmune diseases. It can be applied to etc.
  • the present invention provides a method for producing a stratified cell sheet, which includes the following steps (1) to (4).
  • the present invention provides a multilayered cell sheet produced by the above method, and a transplant material for disease treatment containing the multilayered cell sheet.
  • the present invention provides a multilayer cell sheet disposed on a porous membrane, wherein in each cell sheet included in the multilayer cell sheet, an extracellular matrix exists between cells, and the porous membrane
  • a multilayer cell sheet is provided, in which a membrane containing an extracellular matrix is formed on the side opposite to the side in contact with the cell sheet.
  • a membrane containing an extracellular matrix may be formed not only on the side of the cell sheet opposite to the side in contact with the porous membrane but also between each layer.
  • Example 1 Formation of human adipose tissue-derived mesenchymal stem cell sheet
  • Human adipose tissue-derived mesenchymal stem cells obtained from human tissue were suspended in a culture medium for mesenchymal stem cells.
  • Cell culture inserts were filled with culture medium in advance and cultured while immersed in the wells, and the formation of cell sheets was confirmed (Figure 1).
  • FIG. 2 shows how a membrane-shaped cell sheet is separated from a cell container using a water stream generated by pipetting.
  • the cell sheet separated from the cell container by pipetting was transferred to a Petri dish containing physiological saline.
  • the cell sheet was aspirated into the Petri dish using a pipette and then drained. It was confirmed that the cell sheet retained its shape and had rigidity, and it was also confirmed that the cell sheet could be easily moved during transplantation.
  • Figure 3 shows the pipetting process.
  • the cell sheet separated from the cell container was fixed with 10% paraformaldehyde, frozen sections with a thickness of 14 micrometers were prepared, and nuclear staining was performed with DAPI. As a result, it was confirmed that the obtained cell sheet had a thickness of 20-40 micrometers (FIG. 4).
  • PEDF which is involved in the protection of photoreceptor cells
  • VEGF which is essential for the maintenance of choriocapillaries
  • each molecular marker was confirmed by immunohistological staining according to a conventional method. It was confirmed that the mesenchymal stem cell sheet produced by the method of the present invention expressed elastin, type IV collagen, type I collagen, and Zo-1 (FIG. 5).
  • GLP test general toxicity test
  • Example 2 Examination of the number of cells to be seeded
  • a cell sheet was produced using human adipose tissue-derived mesenchymal stem cells.
  • a cell suspension was added to a container having a porous membrane with a diameter of 6.5 mm on the bottom so that the following cell numbers were obtained.
  • the cells were seeded at the following numbers: 0.08x10 5 cells, 0.4x10 5 cells, 2.0x10 5 cells, 10x10 5 cells, 13x10 5 cells, and 20x10 5 cells per container.
  • the cell concentration per container bottom area is approximately 240 cells/mm 2 bottom area, approximately 1200 cells/mm 2 bottom area, approximately 6,000 cells/mm 2 bottom area, 30,000 cells/mm 2 bottom area , corresponding to approximately 40,000 cells/mm 2 base area and approximately 60,000 cells/mm 2 base area. Formation of cell sheets was confirmed at all cell concentrations. The results are shown in FIG.
  • Example 3 Formation of Iris Pigment Epithelial Cell Sheet
  • iris pigment epithelial cells obtained from human iris tissue.
  • In vitro tests showed that the obtained iris pigment epithelial cell sheet exhibited (1) phagocytosis and (2) secretion of PEDF and VEGF, which normal retinal pigment epithelial cells possess, and (3) cell regeneration similar to Bruch's membrane. It had an extracellular matrix-containing membrane structure that functioned as a scaffold.
  • Figure 8 shows data showing the phagocytosis of cell sheets cultured in the same manner.
  • a Phagocytosis assay kit from Cayman Chemical (US) was used. The test was carried out by mixing a cell sheet and fluorescently labeled latex beads, washing with trypan blue after incubation, and confirming the phagocytosed latex beads by fluorescence microscopy. A sheet in which beads were reacted with an unconjugated secondary antibody for fluorescent labeling was used as a negative control.
  • the two photographs in the upper row show the data of the negative control
  • the two photographs in the lower row show the data of the cell sheet produced by the method of the present invention.
  • each molecular marker was confirmed according to standard methods. It was confirmed that the retinal pigment epithelial cell sheet produced by the method of the present invention expressed elastin, type IV collagen, and type I collagen (FIG. 9).
  • FIG. 10 When the iris pigment epithelial cell sheet produced by the method of the present invention was transplanted into retinal degeneration rats (RCS rats), it was confirmed that a retinal protective effect was obtained (FIG. 10).
  • the thickness of the outer nuclear layer layer of photoreceptor cell nuclei
  • FIG. 10 the thickness of the outer nuclear layer (layer of photoreceptor cell nuclei) was maintained in rats transplanted with retinal pigment epithelial cell sheets produced by the method of the present invention.
  • photoreceptors were protected (lower graph in FIG. 10).
  • a general toxicity test (GLP test) using immunodeficient rats was conducted, and no engraftment failure or early shedding was observed, and no adverse events were observed. I could't. Furthermore, the transplantation method, which is considered to be the biggest problem with sheet-form products, has already been established through repeated trials using primates.
  • Example 4 Formation of Fibroblast Sheet A cell sheet was produced in the same manner as in Example 1 using fibroblasts obtained from human tissues. In vitro tests showed that the obtained fibroblast sheets exhibited (1) phagocytosis and (2) secretion of PEDF and VEGF, which normal retinal pigment epithelial cells possess, and (3) similar to Bruch's membrane, cell regeneration. It had an extracellular matrix-containing membrane structure that functioned as a scaffold. After storing the cell sheet at 2-8°C for 96 hours, PEDF and VEGF secreted from the cell sheet were measured by ELISA when cultured for 48 hours. The results are shown in Table 4 below. FIG. 11 shows data showing that the phagocytosis has phagocytic ability.
  • the expression of each molecular marker was confirmed by immunohistological staining according to standard methods.
  • the fibroblast sheet produced by the method of the present invention expressed type I collagen, type IV collagen, elastin, and ZO-1 (FIG. 12).
  • the target cell purity of the cell sheet was determined by checking the expression status of CD90, Vimentin, and CK18. As a result, as shown in Table 6 below, it was confirmed that the target cell purity was maintained at a high level in the cell sheets subjected to the toxicity test and drug efficacy test. It was also confirmed that relatively high purity was maintained in the sample after transportation.
  • GLP test general toxicity test
  • Example 5 Confirmation of secretion of angiogenesis inhibitory factor from mesenchymal stem cell sheet
  • a cell sheet was produced in the same manner as in Example 1 using human adipose tissue-derived mesenchymal stem cells obtained from human tissue.
  • flat culture was performed using human adipose tissue-derived mesenchymal stem cells obtained from human tissue.
  • planar culture cells were seeded in a resinous cell culture container at an optimal density depending on the culture area, and cultured by adhering to the culture surface.
  • Soluble-Flt-1 (soluble VEGF receptor 1) 1 and TIMP-3 secreted into the medium were measured by ELISA. The results are shown in FIG. The amount of soluble-Flt-1 secreted from the cell sheet was significantly increased when cultured by the method of the present invention compared to flat culture. Further, although secretion of TIMP-3 was not detected in planar culture, secretion of TIMP-3 was detected from cell sheets cultured and produced by the method of the present invention. This indicates that the cell sheet produced by the method of the present invention has the potential to suppress the occurrence of choroidal neovascularization.
  • Example 6 Preparation of Laminated Sheet of Mesenchymal Stem Cells
  • a cell sheet (single layer) of mesenchymal stem cells was prepared on a membrane. Furthermore, new mesenchymal stem cells were seeded at the same concentration onto the prepared cell sheet, cultured, and a laminated sheet was prepared. The results are shown in FIG. It was confirmed from the color tone that the laminated cell sheet was thicker than the single layer cell sheet on the left.
  • Example 7 Evaluation of cell migration from mesenchymal stem cell sheets
  • Cell migration was evaluated for a cell suspension prepared by suspending cells using human adipose tissue-derived mesenchymal stem cells and a cell sheet prepared from cells according to the present invention. was evaluated.
  • Cell migration was measured using Cell Counting Kit-8 (Dojindo, Cat. CK04) and Crystal Violet Solution, 1% ( SIGMA, Cat. V5265-250ML). The pore size of the membrane is 8 ⁇ m.
  • Bovine serum albumin was added at 20% or 40% as a cell attractant.
  • Cell suspension Cell attractant (or control) and basal medium were added to the cell culture plate (wells and cell culture inserts), and then the cell suspension was seeded into the inserts.
  • the present invention provides a method for producing a cell sheet that is simple and easy to handle the cell sheet produced by the method.
  • the present invention is useful for producing cell sheets that can be applied to various cells including MSCs and fibroblasts, which are cells of skin tissue, and the cell sheets produced by the method of the present invention can be used as therapeutic transplant materials. It can also be used for various purposes such as screening and toxicity testing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明は、簡便な細胞シートの作製方法であって、かつ、該方法により作製された細胞シートの取扱いが容易である、細胞シートの作製方法を提供すること目的とする。本発明により、(1)1種または複数種の哺乳動物由来細胞を調製する工程;(2)調製した細胞を、多孔性のメンブレンを底面に有する第1の細胞培養容器の前記多孔性のメンブレン上に播種する工程、および(3)前記第1の細胞培養容器を第2の細胞培養容器の中に入れ、細胞を培養する工程、を含む、細胞シートの作製方法であって、かつ該方法により作製された細胞シートの取扱いが容易である細胞シートの作製方法および該方法で作製された細胞シートが提供される。

Description

細胞シート作製方法
 本発明は、様々な種類の細胞からの細胞シートの作製方法に関する。特には、網膜色素上皮細胞、間葉系幹細胞、線維芽細胞、iPS細胞及びiPS由来分化細胞、ES細胞及びES細胞由来最終細胞を含む様々な細胞からの細胞シートの作製方法に関する。
 様々な疾患の治療のために、細胞培養シートの移植療法が報告されている。培養細胞シートの移植療法とは、人体から採取したあるいは人工的に作製した幹細胞をプレート(培養皿)において培養し、得られたシート状の培養細胞を外傷や疾患等による組織の欠損部に配置して、欠損部を修復する技術である。
 網膜色素上皮細胞を、生体内における形態に近い細胞シートの状態で移植して網膜変性疾患を治療する方法が試みられている。例えば、加齢黄斑変性の治療は、網膜色素上皮細胞または網膜色素上皮を網膜下の欠損部位に移植することが有効な治療方法となる(特許文献1:特表平9-501303号公報、特許文献2:特開2008-173333号公報)。加齢黄斑変性患者の網膜組織から網膜色素上皮細胞を(脈絡膜を伴う層として)切り出した細胞シートを、障害を受けた黄斑部分に移植する自家組織移植が行われているが、この患者組織由来の細胞シートは、移植手術のほかに患者網膜の切除手術による侵襲リスクが加わり、合併症の発症率が高く、移植後の黄斑機能の改善や安定維持の効果が認められる割合が低いなどの問題があった。
 患者網膜の採取によらず、生体外で培養した網膜色素上皮細胞や虹彩色素上皮細胞等の色素上皮細胞を利用する方法として、人工膜や羊膜上で色素上皮細胞を培養して作製した細胞シートを移植に用いる方法が知られている。しかし、人工膜は、生体内で色素上皮細胞自身が作る基底膜とは組成や性質、剛性などが異なり、炎症やそれに伴う拒絶反応を誘起しやすいため、移植用途には不向きであった。これに対し、生体外で培養した色素上皮細胞と、当該細胞自身が作る基底膜とで構成された細胞シートを簡易に作製する方法が報告されている(例えば、特許文献3:WO2011/142364)。この方法で得られる細胞シートは、培養のための平面基材と細胞シートが接触する側と反対側に基底膜が形成されるため温度応答性培養器材等の特殊な培養器材の使用や酵素処理をすることなく、平面基材から細胞シートを剥離でき、また、シートを裏返すことなく基底膜を移植対象組織に接触させることができるため、移植操作を簡略化でき、しかも、生体と同様の成分の基底膜を伴うため、生着しやすく、剛性があり取扱性に優れ、移植治療用途に適している。
 しかしながら、より簡便で効率の良い細胞シートの作製方法が望まれている。また、作製された細胞シートは、培養皿から剥離され移植に用いるが、剥離後の細胞シートは支持体(平面基材)から分離されているため、医療現場にて移植を行うまでに形状が変化しやすく扱いにくいという問題がある。
 また、移植後の色素上皮への栄養や酸素の供給を目的として、色素上皮細胞層および血管形成細胞層を含む細胞シートの製造方法が報告されている(特許文献4:WO2014/030749)。
 間葉系幹細胞(MSC:Mesenchymal stem cell)は、多分化能および自己複製能を有する幹細胞であり、骨芽細胞、軟骨細胞、脂肪細胞、筋細胞といった中胚葉由来の細胞に分化する能力を有するほか、外胚葉由来の神経細胞やグリア細胞、内胚葉由来の肝細胞にも分化する能力も有することが報告されている。MSCはまた、ホーミング効果、パラクライン効果および細胞接着相互作用も有することが知られている。MSCは、これらの作用に基づいて、標的組織や細胞の修復・再生能、および抗炎症等の免疫制御能を発揮し、その結果、様々な疾患への治療効果を示すと考えられている。
 MSCを用いた細胞移植療法が報告されており、例えば、MSCを含む細胞シート組成物を腎臓に適用することで腎臓病を治療する試みが報告されている(特許文献5:特開2017-132744)。
 様々な細胞を用いた細胞シートの作製方法が報告されているが、MSCや皮膚組織の細胞である線維芽細胞を含む種々の細胞に適用できる細胞シートの作製方法は報告がなく、広範囲の細胞種に適用できる細胞シートの作製方法の確立が望まれている。
特表平9-501303号公報 特開2008-173333号公報 WO2011/142364 WO2014/030749 特開2017-132744号公報
 本発明の目的は、簡便な細胞シートの作製方法であって、また、該方法により作製された細胞シートの取扱いが容易である、細胞シートの作製方法を提供することである。本発明の目的はまた、様々な細胞に適用できる簡便な細胞シートの作製方法を提供することである。
 本発明者らは、簡便な細胞シートの作製方法であって、かつ、該方法により作製された細胞シートの取扱いが容易である、細胞シートの作製方法を鋭意検討した結果、細胞を多孔性のメンブレンを底面に有する細胞培養容器で培養することを見出し、本発明を完成した。
 本発明は以下のものを含む。
[1] 以下の工程を含む、細胞シートの作製方法、
 (1)1種または複数種の哺乳動物由来細胞を調製する工程;
 (2)調製した細胞を、多孔性のメンブレンを底面に有する第1の細胞培養容器の前記多孔性のメンブレン上に播種する工程、および
 (3)前記第1の細胞培養容器を第2の細胞培養容器の中に入れ、細胞を培養し、前記多孔性のメンブレン上に細胞シートを作製する工程。
[2] 前記第1の細胞培養容器中の培養液または前記第2の細胞培養容器中の培養液の少なくとも一方は、血清および/またはRhoキナーゼ(ROCK)阻害剤を含む培養液である上記[1]に記載の方法。
[3] 工程(1)において、哺乳動物由来細胞が、上皮細胞、内皮細胞、実質細胞または幹細胞である、上記[1]または[2]に記載の方法。
[4] 工程(1)において、哺乳動物由来細胞が、色素上皮細胞(例えば、虹彩色素上皮細胞、網膜色素上皮細胞)、線維芽細胞および間葉系幹細胞からなる群より選ばれる細胞である、上記[3]に記載の方法。
[5] 工程(2)において、細胞が、底面上に、5,000細胞数/mm(好ましくは10,000細胞数/mm)以上にて播種される、上記[1]~[4]のいずれか一つに記載の方法。
[6] 培養して得られる細胞シートにおいて、細胞の、前記多孔性のメンブレンと接触する側と反対側に細胞外マトリックスを含む膜が形成されている、上記[1]~[5]のいずれか一つに記載の方法。
[7] さらに、培養して得られる細胞シートが、細胞間にタイトジャンクションを形成している上記[6]に記載の方法。
[8] 以下の工程(4)をさらに含む、上記[6]または[7]に記載の方法、
 (4)細胞の、前記多孔性のメンブレンと接触する側と反対側に細胞外マトリックスを含む膜の形成を確認する工程。
[9] 以下の工程(5)をさらに含む、上記[1]~[8]のいずれか一つに記載の方法、
 (5)工程(3)で得られた培養細胞における分化マーカーの発現の有無を確認する工程。
 前記分子マーカーは、前記哺乳動物由来細胞が網膜色素上皮細胞あるいは虹彩色素上皮細胞等の色素上皮細胞の場合、ベストロフィン-1、RPE-65、pan-CytokeratinおよびCytokeratinのいずれかのサブタイプ、オクルディン、ZO-1、エラスチン、アクチン、1型コラーゲン、2型コラーゲン、および4型コラーゲンからなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞が上皮細胞の場合、EpCAMおよびそのいずれかのサブタイプ、pan-CytokeratinおよびCytokeratinのいずれかのサブタイプからなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞が内皮細胞の場合、CD31、CD34、CD45、ICAM-1/CD54、LYVE-1、Tie2/Tek、vWF(フォンヴィルブランド因子)、CD144、VCAM-1/CD106、VE cadherinおよびVEGF-R2からなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞が線維芽細胞の場合、HSP47、SerpinH1、fibroblast specific protein1、CD248(Endosialin)、DDR-2、CD280(Endo180)およびVimentinからなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞が脂肪細胞の場合、PLN1および/またはFatty Acid Binding Protein 4であることが好ましく、前記哺乳動物由来細胞が骨格筋細胞の場合、Troponin t type 1および/またはmyosin heavy chainであることが好ましく、前記哺乳動物由来細胞が平滑筋細胞の場合、Transgelin、α-smooth muscle actinおよびCalponinからなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞が心筋細胞の場合、Fatty Acid Binding Protein 3、Cardiac Troponin TおよびNkx2.5からなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞が肝臓幹細胞の場合、EpCAM、E-cadherin、CD133およびCD29からなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞が神経細胞の場合、glial fibrillary acidic protein、Myelin Basic Proteinおよび/またはPeripherinであることが好ましく、前記哺乳動物由来細胞が間葉系幹細胞の場合、CD73、CD90、CD105、CD11b、CD14、CD19、CD79α、CD34、CD45およびHLA-DRからなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞がT細胞の場合、CD3、CD4およびCD8からなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞がB細胞の場合、CD19、CD20、CD10、CD34、CD38、CD40およびCD45Rからなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞がナチュラルキラー細胞の場合、CD16、CD56およびCD57からなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞が樹状細胞の場合、CD11c、HLA-DR、CD141、CD1c、CD11b、CD303、CD123およびCD1aからなる群より選ばれる少なくとも1種であることが好ましく、前記哺乳動物由来細胞が造血幹細胞の場合、CD34および/またはCD45であることが好ましく、前記哺乳動物由来細胞がマクロファージの場合、CD16、CD32、CD64、CD68、CD80およびCD86からなる群より選ばれる少なくとも1種であることが好ましい。前記哺乳動物由来細胞が間葉系幹細胞の場合は、特には、CD73および/またはCD90が陽性であり、かつ、CD11bまたはCD14、CD19またはCD79α、CD34、CD45およびHLA-DRが陰性であることがより好ましい。
[10] 以下の工程(5’)をさらに含む、上記[1]~[9]のいずれか一つに記載の方法、
 (5’)工程(3)で得られた培養細胞が、Solble-Flt-1(VEGFレセプター1)および/またはTIMP-3を分泌しているか否かを確認する工程。
[11] 工程(1)において、哺乳動物由来細胞が、網膜色素上皮細胞あるいは虹彩色素上皮細胞等の色素上皮細胞、間葉系幹細胞または線維芽細胞であって、細胞が、底面上に、5,000細胞数/mm(好ましくは10,000細胞数/mm)~40,000細胞数/mmで播種される、上記[1]~[10]のいずれか一つに記載の方法。
[12] 上記[1]~[11]のいずれか一つに記載の方法で作製された細胞シート。
[13] 上記[1]~[11]のいずれか一つに記載の方法で作製された細胞シートを含む疾患治療用移植材料。
[14] 上記[1]~[11]のいずれか一つに記載の方法で作製された細胞シートに形成された細胞外マトリックスを含む膜を分離する工程を含む、細胞外マトリックスを含む膜(例えば、上皮細胞を用いた場合は基底膜であり、特には、網膜色素上皮細胞を用いた場合はブルッフ膜)の作製方法。
[15] 多孔性のメンブレン上に配置された哺乳動物由来細胞の細胞シートであって、該細胞シートにおいて、細胞間に細胞外マトリックスが存在し、かつ前記多孔性のメンブレンと接触する側と反対側に、細胞外マトリックスを含む膜(例えば、上皮細胞を用いた場合は基底膜であり、特には、網膜色素上皮細胞を用いた場合はブルッフ膜)が形成されている、細胞シート。
[16] 前記細胞シートは、さらに、細胞間にタイトジャンクションが形成されている上記[15]に記載の細胞シート。
[17] 前記細胞シートは、1種または複数種の哺乳動物由来細胞を、前記多孔性のメンブレンを底面に備えた第1の細胞培養容器の多孔性のメンブレン上に播種し、該第1の細胞培養容器を第2の細胞培養容器に入れて培養することにより得られたものである、上記[15]または[16]に記載の細胞シート。
[18] 前記第1の細胞培養容器中の培養液または前記第2の細胞培養容器中の培養液の少なくとも一方は、血清および/またはRhoキナーゼ(ROCK)阻害剤を含む培養液である上記[17]に記載の細胞シート。
[19] 前記哺乳動物由来細胞が、上皮細胞、内皮細胞、実質細胞または幹細胞である、上記[15]~[18]のいずれか一つに記載の細胞シート。
[20] 前記哺乳動物由来細胞が、色素上皮細胞(例えば、網膜色素上皮細胞、虹彩色素上皮細胞)、線維芽細胞および間葉系幹細胞からなる群より選ばれる細胞である、上記[19]に記載の細胞シート。
[21] 前記哺乳動物由来細胞が、網膜色素上皮細胞あるいは虹彩色素上皮細胞である上記[20]に記載の細胞シート。
[22] 前記細胞シートに含まれる細胞は、ベストロフィン-1、RPE-65、pan-CytokeratinおよびCytokeratinのいずれかのサブタイプ、オクルディン、ZO-1、エラスチン、アクチン、1型コラーゲン、2型コラーゲン、および4型コラーゲンからなる群より選ばれる少なくとも1種の分子マーカーを発現している、上記[15]~[21]のいずれか一つに記載の細胞シート。
[23] 前記細胞シートに含まれる細胞は、Solble-Flt-1(VEGFレセプター1)および/またはTIMP-3を分泌している、上記[15]~[22]のいずれか一つに記載の細胞シート。
[24]下記工程(1)~(4)を含む、重層化細胞シートの製造方法:
(1)1種または複数種の哺乳動物由来細胞を調製する工程;
(2)調製した細胞を、多孔性のメンブレンを底面に有する第1の細胞培養容器の前記多孔性のメンブレン上に播種する工程、
(3)前記第1の細胞培養容器をさらに第2の細胞培養容器の中に入れ、細胞を培養し、前記多孔性のメンブレン上に細胞シートを作製する工程、および
(4)下記工程(a)および(b)を1回以上繰り返す工程:
 (a)第1の細胞培養容器内に形成された細胞シート上に、1種または複数種の哺乳動物由来細胞を播種する工程、
 (b)前記第1の細胞培養容器を第2の細胞培養容器の中に入れ、細胞を培養して、前記細胞シート上に新たな細胞シートを作製する工程。
[25] 上記[24]の方法で製造された重層細胞シート。
[26] 多孔性のメンブレン上に配置された重層細胞シートであって、重層細胞シートに含まれる各細胞シートにおいて、細胞間に細胞外マトリックスが存在し、かつ前記多孔性のメンブレンと接触する側と反対側に、細胞外マトリックスを含む膜が形成されている、重層細胞シート。
 本発明により、簡便な細胞シートの作製方法であって、かつ、該方法により作製された細胞シートの取扱いが容易である、細胞シートの作製方法が提供される。本発明の方法で得られた細胞シートは、物理的な力、例えば、ピペッティングによる水流等を与えることで、容易に細胞容器から分離することが可能であり、剛性も備えていることから、細いチューブ等を用いて吸引または排出することで、移植の際に、大きな切開を行うことなく、細胞シートを目的の移植部位へ到達させることが可能である。
図は、本発明の方法により、脂肪組織由来間葉系幹細胞を用いて細胞シートを作製した結果である。図中の1、2は、それぞれ、細胞を、一容器当たり、2x10細胞、10x10細胞にて播種して培養し、細胞シートを作製した結果の写真である。 図は、ピペッティングによる水流で、メンブレン状に形成された細胞シートを細胞容器から分離する様子を撮影した写真である。 図は、ペトリ皿の生理食塩水中に入れた細胞シートを、ピペットを用いて、吸引し次いで排出した様子を撮影した写真である。番号は操作の順番を示している。 図は、ヒト脂肪組織由来間葉系幹細胞から形成された細胞シートの断面を示す写真である。厚みを示すバーは、39.0μmである。 図は、脂肪組織由来間葉系幹細胞を用いて作製した細胞シートにおける各分子マーカーの発現を免疫組織染色により確認した結果である。 図は、ヒト脂肪組織由来間葉系幹細胞から形成された細胞シートの保護効果を試験した結果を示す。図の左写真は、移植後3週間の時点で、本発明の方法で作製した間葉系幹細胞シートを移植したラットでは外顆粒層(視細胞の核の層)の厚みが維持されていたことを示している。図の右写真は、間葉系幹細胞シートを移植していない対象群(シャム手術群)では、外顆粒層が菲薄化していることを示している。 本発明の方法により、脂肪組織由来間葉系幹細胞を用いて細胞シートを作製した結果である。図A、B、C、D、E、Fは、それぞれ細胞を、一容器当たり、0.08x10細胞、0.4x10細胞、2x10細胞、10x10細胞、13x10細胞、20x10細胞にて播種して、細胞シートを作製した結果の写真である。 図は、本発明の方法により、虹彩色素上皮細胞から形成された細胞シートの貪食能を試験した結果を示す。上段は陰性対照を用いた結果の写真を示し、下段は、本発明の方法で製造した細胞シートを用いた結果の写真を示す。 図は、本発明の方法により、虹彩色素上皮細胞から形成された細胞シートがエラスチン、IV型コラーゲン、I型コラーゲンを発現していることを免疫組織染色により確認した結果を示す。 図は、虹彩色素上皮細胞から形成された細胞シートの網膜保護効果を試験した結果を示す。図の上段写真は、移植後4週間の時点で、本発明の方法で製造した虹彩色素上皮細胞シートを移植したラットでは外顆粒層(視細胞の核の層)の厚みが維持されていたことを示す。図の下段グラフは、虹彩色素上皮細胞シートを移植したラットでは、光受容体が保護されていたことを示す。 図は、線維芽細胞から形成された細胞シートの貪食能を試験した結果を示す図である。 図は、線維芽細胞から形成された細胞シートがI型コラーゲン、IV型コラーゲン、エラスチン、ZO-1を発現していたことを示す図である。 図は、線維芽細胞から形成された細胞シートの網膜保護効果を試験した結果を示す。左が、線維芽細胞シート移植群、右が、シャム手術群(Control)の結果である。移植後4週間の時点で、本発明の方法で製造した線維芽細胞シートを移植したラットでは外顆粒層(視細胞の核の層)の厚みが維持されていたことを示す。 図は、ヒト脂肪組織由来間葉系幹細胞から形成された細胞シートによる、Soluble-Flt-1(VEGFレセプター1)1ならびにTIMP-3の分泌を測定した結果である。 図は、本発明の方法により、ヒト脂肪組織由来間葉系幹細胞から形成された積層シートを作製した結果を示す。 図は、本発明の方法により間葉系幹細胞を用いて作製した細胞シートを用いて、細胞の遊走を評価した結果を示す。それぞれの図において、左カラムが細胞懸濁液、右が細胞シートを用いた結果である。
 以下、本発明を、例示的な実施態様を例として、本発明の実施において使用することができる好ましい方法および材料とともに説明するが、本発明は以下に記載の態様に限定されるものではない。なお、文中で特に断らない限り、本明細書で用いるすべての技術用語および科学用語は、本発明が属する技術分野の当業者に一般に理解されるのと同じ意味をもつ。また、本明細書に記載されたものと同等または同様の任意の材料および方法は、本発明の実施において同様に使用することができる。また、本発明に関連して本明細書中で引用されるすべての刊行物および特許は、例えば、本発明で使用できる方法や材料その他を示すものとして、本明細書中に引用されそして本明細書の一部を構成するものである。
 本明細書において、数値範囲を示す「A~B」の記載は、端点であるAおよびBを含む数値範囲を意味する。また、「AないしB」についても同様である。また本明細書において、「約」とは、±10%を許容する意味で用いる。
 本発明の細胞シートの作製方法は、以下の工程(1)~(3)を含む。
(1)1種または複数種の哺乳動物由来細胞を調製する工程;
(2)調製した細胞を、多孔性のメンブレンを底面に有する第1の細胞培養容器の前記多孔性のメンブレン上に播種する工程、および
(3)前記第1の細胞培養容器をさらに第2の細胞培養容器の中に入れ、細胞を培養し、前記多孔性のメンブレン上に細胞シートを作製する工程。
 本発明の方法においては、工程(1)で1種または複数種の哺乳動物由来細胞を、典型的には細胞懸濁液として調製する。
 工程(1)において調製される哺乳動物由来細胞は、哺乳動物由来の細胞であれば特に限定されないが、例えば、ヒト、サル、マウス、ラット、イヌ、ウシ、ウマ、ブタ、ヒツジ、ヤギ、ネコ、ウサギ、ハムスター、モルモット由来の細胞を挙げることができる。好ましくは、ヒト由来の細胞である。
 調製する細胞の細胞種としては、特に限定させず、例えば、上皮細胞、内皮細胞、実質細胞または幹細胞を挙げることができる。また、細胞種は、接着性の細胞であっても非接着性の細胞であってもよいが、好ましくは接着性の細胞である。具体的には、これに限定されないが、例えば、肝臓の実質細胞である肝細胞、クッパー細胞、血管内皮細胞や角膜内皮細胞などの内皮細胞、線維芽細胞、骨芽細胞、砕骨細胞、歯根膜由来細胞、表皮基底細胞などの表皮細胞、気管上皮細胞、消化管上皮細胞、子宮頸部上皮細胞、結膜上皮細胞、角膜上皮細胞、虹彩色素上皮細胞、網膜色素上皮細胞などの上皮細胞、乳腺細胞、ペリサイト、平滑筋細胞や心筋細胞などの筋細胞、腎細胞、膵ランゲルハンス島細胞、末梢神経細胞や視神経細胞などの神経細胞、軟骨細胞、骨細胞、多能性幹細胞、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)、間葉系幹細胞、造血幹細胞、神経幹細胞、心筋幹細胞、肝幹細胞、骨格筋幹細胞、上皮幹細胞、表皮幹細胞、網膜幹細胞、脂肪幹細胞等の未分化の幹細胞及びこれらの幹細胞由来の細胞などが挙げられる。好ましくは、角膜内皮細胞、気管上皮細胞、消化管上皮細胞、子宮頸部上皮細胞、角膜上皮細胞、網膜色素上皮細胞、線維芽細胞、間葉系幹細胞が挙げられ、さらに好ましくは角膜上皮細胞、角膜内皮細胞、網膜色素上皮細胞、線維芽細胞、間葉系幹細胞、iPS細胞及びiPS細胞由来分化細胞、ES細胞及びES細胞由来分化細胞が挙げられ、最も好ましくは網膜色素上皮細胞、線維芽細胞、間葉系幹細胞が挙げられる。これらの細胞を用い、本発明の方法により細胞シートを作製できる。
 調製する細胞は、組織や器官から直接採取した初代細胞でもよく、あるいは、それらを何代か継代させたものでもよい。さらに細胞は、未分化細胞である胚性幹細胞(ES細胞)、多分化能を有する間葉系幹細胞などの多能性幹細胞、体細胞から作製した人工多能性幹細胞(iPS細胞)、あるいは単分化能を有する血管内皮前駆細胞などの単能性幹細胞を含む幹細胞であっても、またはそれらの幹細胞を分化誘導することによって得られる細胞であっても良い。ES細胞は体細胞から核初期化されて生じたES細胞であってもよい。iPS細胞は、ある特定の初期化物質(核酸、タンパク質、低分子化合物等)を体細胞に導入することにより作製することができる、ES細胞と同等の特性を有する体細胞由来の人工の幹細胞である。また、人工多能性幹細胞(iPS細胞)やES細胞などの幹細胞を分化誘導することにより、目的の細胞を調製してもよい。前記幹細胞を目的の分化した細胞に分化させる条件・培地は従来公知の条件・培地に従ってもよいし、当業者が適宜設定してもよい。本発明によって作製される細胞シートを移植用とする場合、ゲノム編集などの手法を用いることにより組織適合性抗原を欠失または改変させたiPS細胞あるいは移植する対象の体細胞をiPS細胞のソースとして用いることができる。これらのiPS細胞から得られる細胞シートは対象に対して抗原性を持たない細胞シートとなる点でiPS細胞の使用は好ましい。
 本発明の工程(1)で用いる哺乳動物由来細胞が、網膜色素上皮細胞あるいは虹彩色素上皮細胞等の色素上皮細胞である場合には、哺乳動物は前記と同様であるが、好ましくはヒトである。また、該網膜色素上皮細胞は、幹細胞由来の分化細胞または眼球由来の細胞である。眼球由来の網膜色素上皮細胞は、死体眼球摘出後、速やかに赤道部で眼球を分割し、硝子体と網膜を除去した後、セルスクレーパーによる擦過またはトリプシンやEDTA溶液にて細胞をブルッフ膜より遊離させて回収した後、培養液の中で静置することで培養皿への接着、増殖を誘導することにより必要量の細胞を増殖させ、トリプシン処理などで適宜継代し細胞数を確保することで得ることができる。幹細胞を分化誘導させる場合は、ヒトES細胞またはiPS細胞を、Dkk-1(Wntアンタゴニスト)およびLefty A(Nodalアンタゴニスト)を添加したES細胞分化培地で培養を行う。一定期間培養することで網膜前駆細胞マーカーであるRx、Pax6、Mitfが発現し、光学顕微鏡観察による形態観察から多角性形態を確認することで、ヒト網膜色素上皮細胞を得ることができる。
 本発明の工程(1)で用いる哺乳動物由来細胞が線維芽細胞である場合には、哺乳動物は前記と同様であるが、好ましくはヒトである。また、該線維芽細胞を調製する方法は特に限定されず、公知の方法を用いることができる。例えば、各種生体由来組織を酵素で消化することなどにより分離することで調製することができるがこれに限定されない。当該生体由来組織の非限定的な例は哺乳動物の真皮組織を含む。
 本発明の工程(1)で用いる哺乳動物由来細胞が間葉系幹細胞である場合には、哺乳動物は前記と同様であるが、好ましくはヒトである。また、該間葉系幹細胞は、種々の組織から得ることができる。これに限定されないが、例えば、骨髄由来、臍帯由来、臍帯血由来、子宮内膜由来、胎盤由来、羊膜由来、絨毛膜由来、脱落膜由来、真皮由来、歯小嚢由来、歯根膜由来、歯髄由来、歯胚由来、脂肪組織由来、血管(周囲)由来、骨格筋由来、または滑膜由来等の間葉系幹細胞を挙げることができる。間葉系幹細胞の調製方法は特に限定されず、公知の方法を用いることができる。例えば、各種生体由来組織を酵素で消化することなどにより分離することで調製することができるがこれに限定されない。当該生体由来組織の非限定的な例は哺乳動物の骨髄、臍帯、脂肪を含む。
 本発明の工程(1)で用いる哺乳動物由来細胞として、1種または複数種の細胞を使用することができる。複数種の細胞を使用する場合、その組み合わせは特に限定されず、本願発明の目的の範囲内で適宜選択することができる。例えば、同一または異なる組織由来の細胞、同一または異なる動物種由来の細胞を組み合わせて使用することができる。組み合わせる細胞種の数は特に限定されない。例えば、2種以上、3種以上、4種以上、5種以上、6種以上、7種以上、8種以上、9種以上、10種以上の細胞種を組み合わせて使用することができる。
 細胞を細胞懸濁液として調製する場合、懸濁用液は生細胞を懸濁する際に一般に用いられる成分を有する液体であれば特に限定されない。細胞懸濁用液は、当該技術分野で用いられている公知の方法を用いて調製できる。一態様において当該細胞懸濁用液は細胞を培養するための成分を含む細胞培養液であってもよい。一態様において細胞を培養するための成分を含む細胞培養液を、細胞を播種した後に第1の細胞培養容器内に加えてもよい。別の態様において、細胞を播種する前に、第1の細胞培養容器内にあらかじめ細胞培養液を加えてもよい。
 工程(2)において、前記調製した細胞を、多孔性のメンブレンを底面に有する第1の細胞培養容器の多孔性のメンブレン上に播種し、培養液を添加する。前記調製した細胞が、培養に適した濃度にて細胞が培地中に懸濁された細胞懸濁液である場合は、培養液の添加をしなくともよい。第1の細胞培養容器の形状は調製した細胞を保持することができ、多孔性のメンブレンを底面に設置することができれば特段限定されない。多孔性のメンブレンは、材料は特に制限がなく、樹脂製、金属製、ガラス製の何れであってもよい。
 多孔性のメンブレンを形成する樹脂としては、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどの各種ポリエチレンやポリエチレンナフタレート、ポリプロピレン、ポリメチルメタクリレート、メチルメタクリレート-スチレン共重合体、ポリスチレン、ポリテトラフルオロエチレンやポリビニルジフロライドなどのフッ素樹脂、エチレン-酢酸ビニル共重合体、ポリアミド、スチレン-アクリロニトリル共重合体、スチレン-ブタジエン-アクリロニトリル三元共重合体、ポリカーボネート、ポリ塩化ビニルなどが挙げられる。中でもポリテトラフルオロエチレンやポリビニリデンジフロライドなどのフッ素樹脂により形成された多孔性の樹脂メンブレンは、保存液の吸収性に優れるとともに、顕微鏡観察下において、細胞の視認性に優れることから好ましい。
 多孔性のメンブレンを形成する金属としては、銅、銅合金、アルミニウム、アルミニウム合金、金、金合金、銀、銀合金、錫、亜鉛、鉛、チタン、ニッケル、ステンレスなどが挙げられる。さらに、シリカ、アルミナ、ジルコニウムなどの金属の酸化物からなる多孔性メンブレンを利用することもできる。また、多孔性金属および多孔性金属酸化物メンブレンは、上記した金属および金属酸化物をそれぞれ2種類以上含有する多孔性メンブレンであってもよい。
 多孔性樹脂、多孔性金属、多孔性金属酸化物、および多孔性ガラスの多孔性メンブレンにおける多孔体の孔径は、使用する細胞が通過しない程度の大きさであれば特に限定さない。例えば、10μm、9μm、8μm、7μm、6μm、5μm、4μm、3μm、2μm、1μm未満の孔径を有する多孔性メンブレンを用いることができる。一態様において、3μm未満の孔径を有することが好ましい。
 多孔性のメンブレンは、接着性細胞との接着性を向上させる目的で、表面処理が施されていてもよいが、本発明の細胞シートを平面基材から剥がす工程を容易にするために、処理されていなくてもよい。処理されている場合は、例えば、コラーゲン、ゼラチン、マトリゲル、ポリ-L-リジン、ポリ-D-リジン、ラミニン、フィブロネクチンなどによって表面処理されていてもよい。
 細胞を多孔性のメンブレン上に播種する際には、細胞を高密度で播種することにより、シートの萎縮を抑制することができる。本明細書における「高密度」とは、調製した細胞が由来する正常組織において観察される細胞密度以上の密度をいう。またその上限は、当業者であれば適宜決定することができるが、例えば、細胞同士が密着し合える密度でかつ過剰な播種によるシート形成不備、細胞死滅しない程度の細胞密度である。より具体的には、「高密度」とは、通常の培養時の推奨播種密度の2.5倍以上とするのが好ましく、例えば、正常組織において観察される細胞密度に対して、例えば1~100倍、好ましくは1.2~50倍、より好ましくは2.5~30倍程度の細胞密度をいう。正常組織において観察される細胞密度としては、組織の種類によって異なるが、例えば、1,000細胞数/mm以上、2,000細胞数/mm以上、3,000細胞数/mm以上、4,000細胞数/mm以上、5,000細胞数/mm以上とすることができる。より具体的には、角膜内皮では、約3,000細胞数/mm以上、網膜色素上皮細胞では、約4,000細胞数/mm以上、間葉系幹細胞では、約200細胞数/mm以上、線維芽細胞では、約5,000細胞数/mm以上とするのが好ましい。
 哺乳動物由来細胞が、網膜色素上皮細胞である場合は、「高密度」とは、「正常な眼球において観察される細胞密度以上の密度」をいう。そのような密度としては、具体的には、少なくとも4,000細胞数/mm以上である。しかし、正常眼球において観察される細胞密度以上の密度であっても、一定密度以下で平面基材上に播種した場合、形成された細胞シート自身に収縮力が働き、播種時の面積を維持することが出来ない場合がある。これは、網膜色素上皮の血清接触面を被覆するために一定数の細胞が動員されていること、細胞密度にムラが存在すること、および細胞自身の生存率から、播種時の面積を維持できないためと推察される。但し、この収縮したシートであっても、特段の不都合なく後述する用途に利用することが可能である。従って、「正常な眼球において観察される細胞密度以上の密度」とは、形成された細胞シートが播種時の面積から収縮することを許容する場合、好ましくは、約5,000細胞数/mm程度以上、より好ましくは、約10,000細胞数/mm程度以上であり、形成された細胞シートに播種時の面積を維持させる場合、好ましくは、約20,000細胞数/mm程度以上である。また、その上限としては、過剰に細胞播種することによるシート形成不全、一部細胞の死滅を誘発しない密度である。そのような上限も考慮した場合、「正常な眼球において観察される細胞密度以上の密度」とは、好ましくは、約5,000細胞数/mm~約200,000細胞数/mm、より好ましくは、約10,000細胞数/mm~約120,000細胞数/mm、特に好ましくは、約20,000細胞数/mm~約40,000細胞数/mmでありうる。
 哺乳動物由来細胞が、間葉系幹細胞である場合は、「高密度」とは、「通常の細胞培養時に播種する密度以上の密度」をいう。例えば、間葉系幹細胞の場合は、そのような密度としては、具体的には、下限として、例えば、約200細胞数/mm、好ましくは約1,000細胞数/mm、より好ましくは約1200細胞数/mm、さらに好ましくは5,000約胞数/mm、一方上限として、例えば、約200,000細胞数/mm、好ましくは約120,000細胞数/mm、より好ましくは約60,000細胞数/mm、さらに好ましくは約40,000細胞数/mmであり得る。好ましい範囲は、約1,000細胞数/mm~約200,000細胞数/mm、より好ましくは、約3,000細胞数/mm~約120,000細胞数/mm、さらに好ましくは約5,000細胞数/mm~約60,000細胞数/mm、特に好ましくは、約10,000細胞数/mm~約40,000細胞数/mmでありうる。哺乳動物由来細胞が、iPS細胞やES細胞などの他の幹細胞である場合、「高密度」とは、間葉系幹細胞における「高密度」と同様である。
 哺乳動物由来細胞が、繊維芽細胞である場合は、「高密度」とは、「通常の細胞培養時に播種する密度以上の密度」をいう。そのような密度としては、具体的には、約5,000細胞数/mm~約200,000細胞数/mm、より好ましくは、約10,000細胞数/mm~約120,000細胞数/mm、さらに好ましくは、約10,000細胞数/mm~約60,000細胞数/mm、特に好ましくは、約20,000細胞数/mm~約40,000細胞数/mmでありうる。
 工程(3)において、第1の細胞培養容器を第2の細胞培養容器に入れる。この工程において、細胞培養液の、第1の細胞培養容器への添加と第2の細胞培養容器への添加は様々な時点で行うことができる。例えば、細胞が播種された第1の細胞培養容器に培養液を添加した後に、第1の細胞培養容器を、あらかじめ培養液の添加された第2の細胞培養容器にいれてもよい。別の態様において、細胞が播種された第1の細胞培養容器を、あらかじめ培養液の添加された第2の細胞培養容器に入れた後に、第1の細胞培養容器に培養液を添加してもよい。その後、細胞を培養することにより、単層あるいは重層状の細胞集団を形成することができ、細胞シートを作製することができる。
 培養液としては、当技術分野で通常用いられる細胞培養用培地であれば特に制限なく用いることができる。例えば、用いる細胞の種類に応じて、F-10培地、F12培地、MEM、BME培地、DMEM、αMEM、IMD培地、ES培地、DM-160培地、Fisher培地、WE培地およびRPMI1640培地等、朝倉書店発行「日本組織培養学会編 組織培養の技術第三版」581頁に記載されているような基礎培地を用いることができる。さらに、上記の基礎培地に血清(ウシ胎児血清等)、各種増殖因子、抗生物質、アミノ酸などを加えてもよいが、好ましくは、血清および/またはRhoキナーゼ(ROCK)阻害剤を添加した培地が用いられる。Rhoキナーゼ(ROCK)阻害剤を添加することにより、高密度の培養でもアポトーシスを防止し、良質の細胞シートを得ることができる。培地のpHは、好ましくは約6~約8である。培養は、通常約30~約40℃で、約6~約168時間行なわれる。必要に応じて、培地の交換および/または補充、通気や撹拌を行ってもよい。
 Rhoキナーゼ(ROCK)は、低分子量GTP結合タンパク質Rhoの標的タンパク質として同定されたセリン・スレオニンタンパク質リン酸化酵素である。その阻害剤であるRock阻害剤は、市販されており、それらのものが本発明において制限なく用いることができる。本発明で用いるRock阻害剤としては、これに制限されないが、例えば、Y27632、HA1077をあげることができ、好ましくはHA1077である。本発明で用いるRhoキナーゼ阻害剤の濃度は、例えば、1~50μM、好ましくは2~30μM、より好ましくは5~20μMをあげることができる。
 第2の細胞培養容器は、培養液を入れることができる、通常の細胞培養用の培養容器であれば特に限定されないが、例えば、ディッシュ、ペトリディッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、チャンバースライド、シャーレ、トレイなどが挙げられる。培養容器の材質としては、例えば、金属、ガラス、セラミック、シリコン等の無機材料、エラストマー、プラスチック(例えば、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、塩化ビニル樹脂)で代表される有機材料を挙げることができるが、それらに限定されない。
 本発明の方法で用いることができる底面に多孔性のメンブレンを有する第1の細胞培養容器および第2の細胞培養容器の組合せとして、例えば、市販品を用いることも可能である。例えば、第1および第2の細胞培養容器として、Corning International社、Thermo Scientific社、Greiner Bio-One International社などが提供する細胞培養インサート(細胞培養インサートの底面が多孔性メンブレンからなる)とインサートを入れる培養容器を挙げることができる。第1の細胞培養容器として、例えば、Corning社の、Transwell(登録商標)(トランズウェル)パーミアブルサポート、Snapwell(商標)(スナップウェル)インサート、Netwell(商標)(ネットウェル)インサート、Falconセルカルチャーインサートなどがあり、本発明において、好適に使用することができる。また、第2の細胞培養容器として、例えば、Corning社の、Falconセルカルチャープレート、Falconマルチセルカルチャープレート、(Corning)などがあり、本発明において、好適に使用することができる。本発明の方法では、細胞接着可能な面が多孔性のメンブレンの構造をとっているので、これに限定されないが、細胞シートを上下から栄養供給可能な点や酸素供給の点で培養に有利であると考えられる。また、培養により作製した細胞シートは、第1の細胞培養容器の底面の多孔性のメンブレン上に保持されているので、細胞培養インサートとともに移動や輸送が可能であり、細胞を安定に保持した状態での移動や輸送が可能となる。そのため、移植に用いる場合、移植を行う医療現場において細胞シートを細胞培養インサートの底面から剥離して使用することが可能であり、取扱いが容易となる。
 本発明の方法で得られる細胞シートは、細胞外マトリックスを有し、それにより、シートは頑強となり、形状を維持することが容易となる。そのため、これに限定されないが、例えば、ピペットなどの細管を用いて吸引・排出が可能となり、体表面からアクセスが難しい部位へのシートの移植が可能となる。
 本発明の方法で得られる細胞シートはまた、細胞の、多孔性のメンブレンと接触する側と反対側に細胞外マトリックスを含む膜が形成される。多孔性のメンブレンと接触する側と反対側とは、細胞と培養液との接触面側である。よって、本発明の方法は、さらに以下の工程(4)を含んでもよい。
工程(4):細胞の、多孔性のメンブレンと接触する側と反対側に、細胞外マトリックスを含む膜の形成を確認する工程。
 網膜色素上皮細胞あるいは虹彩色素上皮細胞等の色素上皮細胞を用いた場合は、工程(4)は、ブルッフ膜の形成を確認する工程となる。細胞外マトリックスを含む膜の形成は、免疫染色によりエラスチン、1型コラーゲンまたは4型コラーゲン等の細胞表面での発現を観察することや、ウェスタンブロッティングによる蛋白発現の観察により確認することができる。
 本発明の方法で得られる細胞シートにおいてはまた、タイトジャンクションが形成されうる。タイトジャンクション形成は、6角形状の密着しあう細胞形態と、免疫染色により細胞間の特有のタンパク質等の発現を観察することで確認できる。発現する特有のタンパク質等は、用いる細胞の種類に応じて異なり、公知の情報を参照して適宜選択することができる。たとえば、上皮細胞を用いた場合は、オクルディンやZO-1等の発現を観察することによりタイトジャンクションの形成を確認できる。
 本発明の方法は、以下の工程(5)をさらに含んでもよい。
工程(5):工程(3)で得られた培養細胞における分化マーカーの発現の有無を確認する工程。
工程(5)において、工程(3)で得られた培養細胞における分化マーカーの発現の有無を確認することによって、細胞シートが完成したことを判定することができる。本明細書において、分化マーカーは細胞の任意の箇所(例えば、細胞質、細胞膜、核膜など)で発現していればよい。
 本明細書における「分化マーカー」としては、分化した細胞において特異的に発現しているか、他の分化細胞または未分化細胞、前駆細胞と比較して発現が増幅あるいは減衰している遺伝子の転写産物、翻訳産物またはその分解産物が含まれる。分化マーカーは、以下が例示される。
 哺乳動物由来細胞が網膜色素上皮細胞あるいは虹彩色素上皮細胞等の色素上皮細胞を用いた場合、ベストロフィン-1、RPE-65、pan-CytokeratinおよびCytokeratinのいずれかのサブタイプ、オクルディン、ZO-1、エラスチン、アクチン、1型コラーゲン、2型コラーゲン、および4型コラーゲンからなる群より選ばれる少なくとも1種であることが好ましい。
 哺乳動物由来細胞が上皮細胞の場合、EpCAMおよびそのいずれかのサブタイプ、pan-CytokeratinおよびCytokeratinのいずれかのサブタイプからなる群より選ばれる少なくとも1種であることが好ましい。
 哺乳動物由来細胞が内皮細胞の場合、CD31、CD34、CD45、ICAM-1/CD54、LYVE-1、Tie2/Tek、vWF(フォンヴィルブランド因子)、CD144、VCAM-1/CD106、VE cadherinおよびVEGF-R2からなる群より選ばれる少なくとも1種であることが好ましく、CD31および/またはCD34がより好ましい。
 哺乳動物由来細胞が線維芽細胞の場合、HSP47、SerpinH1、fibroblast specific protein1、CD248(Endosialin)、DDR-2、CD280(Endo180)およびVimentinなる群より選ばれる少なくとも1種であることが好ましい。
 哺乳動物由来細胞が脂肪細胞の場合、PLN1および/または、Fatty Acid Binding Protein 4であることが好ましい。
 哺乳動物由来細胞が骨格筋細胞の場合、Troponin t type 1および/またはmyosin heavy chainであることが好ましい。
哺乳動物由来細胞が平滑筋細胞の場合、Transgelin、α-smooth muscle actinおよびCalponinからなる群より選ばれる少なくとも1種であることが好ましい。
 哺乳動物由来細胞が心筋細胞の場合、Fatty Acid Binding Protein 3、Cardiac Troponin TおよびNkx2.5からなる群より選ばれる少なくとも1種であることが好ましい。
 哺乳動物由来細胞が肝臓肝細胞の場合、EpCAM、E-cadherin、CD133およびCD29からなる群より選ばれる少なくとも1種であることが好ましい。
 哺乳動物由来細胞が神経細胞の場合、glial fibrillary acidic protein、Myelin Basic Proteinおよび/またはPeripherinであることが好ましい。
 哺乳動物由来細胞がT細胞の場合、CD3、CD4およびCD8からなる群より選ばれる少なくとも1種であることが好ましい。
 哺乳動物由来細胞がB細胞の場合、CD19、CD20、CD10、CD34、CD38、CD40およびCD45Rからなる群より選ばれる少なくとも1種であることが好ましい。
 哺乳動物由来細胞がナチュラルキラー細胞の場合、CD16、CD56およびCD57からなる群より選ばれる少なくとも1種であることが好ましい。
 哺乳動物由来細胞が樹状細胞の場合、CD11c、HLA-DR、CD141、CD1c、CD11b、CD303、CD123およびCD1aからなる群より選ばれる少なくとも1種であることが好ましい。
 哺乳動物由来細胞が造血幹細胞の場合、CD34および/またはCD45であることが好ましい。
 哺乳動物由来細胞がマクロファージの場合、CD16、CD32、CD64、CD68、CD80およびCD86からなる群より選ばれる少なくとも1種であることが好ましい。 
 哺乳動物由来細胞が間葉系幹細胞の場合、CD73、CD90、CD105、CD11b、CD14、CD19、CD79α、CD34、CD45およびHLA-DRからなる群より選ばれる少なくとも1種であることが好ましい。特には、CD73および/またはCD90が陽性であり、かつ、CD11bまたはCD14、CD19またはCD79α、CD34、CD45、HLA-DRが陰性であることがより好ましい。
 哺乳動物由来細胞がiPS細胞由来分化細胞またはES細胞由来分化細胞の場合、作製される分化細胞の種類または細胞シートの利用目的に応じて、分化マーカーを適宜選択することができる。
 また、神経細胞分化マーカーとしては、チューブリン(特にβチューブリン)、MAP2、ニューロフィラメント、ニューロン特異的エノラーゼ、脂肪細胞分化マーカーとしては、aP2、グリセロリン酸脱水素酵素、アディプシン、レプチン、骨芽細胞分化マーカーとしては、プロコラーゲン1α1、RUNX2、アルカリホスファターゼ、オステオポンチン、オステオカルシン、などが挙げられる。
 「分化マーカーの発現の有無の確認」に用いられる試料としては、工程(3)で培養された細胞由来の試料であって、分化マーカー(例、RNA、蛋白質、その分解産物など)を含有するものであれば特に制限されない。
 上記試料が細胞の場合、工程(3)で培養された細胞に免疫染色を行い、該分化マーカーの発現レベルを、例えば、フローサイトメトリーで測定することができる。
 上記試料がRNAの場合、工程(3)で培養された細胞からRNA(例:全RNA、mRNA)画分を調製し、該画分中に含まれる該マーカー遺伝子の転写産物を検出するか、あるいは該細胞からRNAを抽出せずに直接細胞中のマーカー遺伝子産物を検出することにより、分化マーカー遺伝子の発現を調べることができる。細胞からのRNA(例:全RNA、mRNA)画分の調製は、常法に従って行うことができ、例えば、市販のRNA抽出用キットを用いて行うことができる。RNA画分中の分化マーカー遺伝子の転写産物を検出する手段としては、例えば、ハイブリダイゼーション(ノーザンブロット、ドットブロット、DNAチップ解析等)を用いる方法、あるいはPCR(RT-PCR、競合PCR、リアルタイムPCR等)を用いる方法などが挙げられるが、定量的PCR法またはDNAチップ解析が好ましい。細胞からRNAを抽出せずにマーカー遺伝子を検出する場合、検出手段として、in situ ハイブリダイゼーションを用いることができ、細胞の血清接触面に分化マーカーの発現を直接確認することができる点で、本発明において好適に用いられる。
 あるいは、分化マーカー遺伝子の発現の確認は、該細胞からタンパク質画分を調製し、該画分中に含まれる該マーカー遺伝子の翻訳産物(即ち、マーカータンパク質)を検出するか、あるいは該細胞からタンパク質を抽出することなく直接細胞中のマーカー遺伝子の翻訳産物を検出することにより調べることができる。マーカータンパク質の検出は、各タンパク質に対する抗体を用いて、免疫学的測定法(例:ELISA、FIA、RIA、ウェスタンブロット等)によって行うこともできるし、酵素などの測定可能な生理活性を示すタンパク質においては、該生理活性を、各マーカータンパク質について公知の手法を用いて測定することによっても行い得る。あるいはまた、マーカータンパク質の検出は、MALDI-TOFMS等の質量分析法を用いても行うことができる。
 好ましい一態様において、本発明の方法により作製した細胞シートに含まれる細胞は、新生血管の発生を抑制する因子を分泌できる。例えば、これに限定されないが、本発明の方法により虹彩色素上皮細胞から作製した細胞シートは、脈絡膜新生血管の発生を抑制する因子であるSoluble-Flt-1(VEGFレセプター1)1やTIMP-3を分泌することができる。
 他の好ましい一態様において、本発明の方法により作製した細胞シートに含まれる細胞は、細胞の遊走が起こりにくく、細胞の遊走による細胞シートからの細胞の離脱がほとんど認められない。
 本発明の方法により作製された細胞シートは、剛性を備えており、また、細胞シートからの細胞の遊走が起こり難い。本発明の細胞シートは、いままで細胞の懸濁液による投与方法が用いられていた生体内の局所にも適用が可能であり、また、懸濁液で問題となる細胞の遊走が起こりにくい。それ故、本発明の細胞シートは、局所投与が好ましい対象疾患への使用が可能である。
 以下、網膜色素上皮細胞あるいは虹彩色素上皮細胞等の色素上皮細胞を用いて本発明の方法により細胞シートを作製する態様について説明するが本発明はそれに限定されるものではない。
 網膜色素上皮細胞を用いて本発明の方法により細胞シートを作製する場合、上記の工程(4)における細胞外マトリックスを含む膜は、一態様においてブルッフ膜である。「ブルッフ膜」とは、網膜色素上皮と脈絡膜の間にある薄い膜で、網膜色素上皮を裏打ちする層である。それは、膠原線維を主体とする無細胞性の構造で、脈絡膜と色素上皮細胞が接着し、脈絡膜から血管のない網膜外層へ物質を送る通路の役割を果たしている。本発明の方法では、細胞自身が作る細胞外マトリックスを含む膜、例えば基底膜や弾性線維を含むブルッフ膜が形成されることにより移植操作に耐えうる強度が得られる。また、本発明の方法においては、細胞外マトリックスを含む膜は、細胞の、多孔性のメンブレンと接触する側と反対側に形成させることができるため、細胞シートを、細胞外マトリックスを含む膜ごと第1の細胞培養容器から分離することが容易である。
 本発明はまた、前記細胞シートの作製方法において、形成された細胞外マトリックスを含む膜を細胞シートから分離することを特徴とする、細胞外マトリックスを含む膜をin vitro作製方法をも提供する。網膜色素上皮上に形成された細胞外マトリックスを含む膜は、EDTA処理することにより、またはマグネシウム、カルシウム無添加培地にて、シート表面でピペッティング、吸引操作により、シートから剥離、回収することが可能である。また、培養液を吸引して空気に接触させることや、希釈アルコール処理によってシート表面に脱水作用を加えることによっても膜を剥離、回収が可能である。
 本発明はまた、前記細胞シート作製方法に従って得られる細胞シート、好ましくは、網膜色素上皮細胞シートあるいは虹彩色素上皮細胞シート等の色素上皮細胞シートに関する。本発明の細胞シートは、生体の用途としては、例えば、スクリーニング用途、毒性試験用途と様々な用途に用いることができる。また、本発明の細胞シートは疾患治療用移植材料として組織移植が必要な対象に好適に移植することができる。特に本発明の網膜色素上皮細胞シートは、眼疾患患者への網膜治療用移植材料として好適である。眼疾患としては、例えば、加齢黄斑変性疾患、網膜色素変性症、網膜色素線条等が挙げられる。また、本発明の網膜色素上皮細胞シートは、前記眼疾患に対する薬効スクリーニングや毒性評価などの各種スクリーニング用途としても利用できる。例えば、特表2007-517210に記載の方法に従って、毒性物質のスクリーニングに本発明の細胞シートを適用することができる。さらに、本発明の網膜色素上皮細胞シートは、視細胞外節の貪食能や神経保護作用などの視細胞の維持に関わる機能、ポンプ作用、タイトジャンクションによる網膜血管バリア機能などの、生体内における網膜色素上皮細胞が備える種々の様々な機能を評価するためのin vitroモデルとして利用することも可能である。
 本発明はまた、前記細胞シート作製方法に従って得られる、多孔性のメンブレン上に保持された状態の細胞シート、好ましくは、網膜色素上皮細胞シートでもある。作製された細胞シートは、メンブレン上に保持(固定)された状態にあるので、萎縮したり、反転したり、丸まったり等の形状変化を防ぐことができる。また、メンブレン上に保持されているので、移動や輸送などの物理的刺激を与えても、前記の形状変化を防ぐことができ、良好な状態を保って移植を行える。
 本発明の疾患治療用移植材料は、ヒト、ヒト以外の哺乳動物(例:サル、マウス、ラット、イヌ、ウシ、ウマ、ブタ、ヒツジ、ヤギ、ネコ、ウサギ、ハムスター、モルモット等)における疾患を治療するために用いることができる。
 本発明の疾患治療用移植材料の適用可能な疾患部位の範囲は、対象疾患、投与対象の動物種、年齢、性別、体重、症状などに依存して変化し得るが、例えば、加齢黄斑変性疾患に適用する場合は、移植すべき疾患部位の範囲が通常、0.07cm~0.28cmの範囲である。
 本発明の疾患治療用移植材料は、一度にもしくは数回に分けて移植してもよい。移植の適用回数は疾患に応じて医療従事者、ガイドラインに従って決定されるが、例えば疾患が加齢黄斑変性疾患であった場合には、本発明の網膜色素上皮細胞シートを、その重篤度によって2回以上移植してもよい。また複数回移植を行う場合、インターバルは特に限定されないが、数日~数週間の期間を置いても良い。
 本発明の疾患治療用移植材料は、医療従事者、ガイドラインに沿った適切な移植方法に従って移植される。例えば、胸部または腹腔内の治療箇所に対しては、開胸、開腹手術を適用できるほか、内視鏡的手法を採用することもできる。また、網膜下に本発明の疾患治療用移植材料として網膜色素上皮細胞シートを移植する場合、眼球網膜下の移植部位まで刺入した注射針からの水流に乗せる移植方法のほか、専用の運搬用治療器具によっても行うことができる。
 本発明はさらに、前記細胞外マトリックスを含む膜の作製方法によって得られる細胞外マトリックスを含む膜を提供する。そのような膜の作製は、本発明の方法を用いて細胞シートを作製した後、シートから膜の剥離する方法に加えて、細胞を除去する方法により膜を得ることができる。細胞の除去は、例えば、フリーズドライや凍結融解等の方法を用いて行うことができる。従って、本発明の細胞外マトリックスを含む膜の作製方法は、上記した本発明の細胞シートの作製方法に、さらに、フリーズドライ工程により、細胞を除去して膜を得る工程を含み得る。本発明の細胞外マトリックスを含む膜は、細胞を含まない基底膜であるため、細胞を移植するより膜を移植するほうが規制上の制約が少なく、実用化のハードルが低い。また、機能解析などの研究用途としても有用である。
 上記は、網膜色素上皮細胞を用いて本発明の方法により細胞シートを作製する態様について説明したが、哺乳動物由来細胞として、別の細胞種を用いた場合は、用いる細胞に応じて、投与対象、対象疾患、移植方法等は、ガイドライン等を参照し、適宜変更されることは当業者に明らかである。例えば、哺乳動物由来細胞として線維芽細胞を用いた場合は、対象疾患としては、これに限定されないが、皮膚関連疾患を挙げることができる。また、哺乳動物由来細胞として間葉系幹細胞を用いた場合は、対象疾患としては、これに限定されないが、網膜色素上皮変性疾患、神経損傷疾患を挙げることができる。
 一態様において、本発明は複数の細胞シートを含む重層細胞シートおよびその製造方法を提供する。上記の細胞シートを製造する方法により既にシート化した細胞の上に、再度細胞を播種して細胞シートを形成する工程を繰り返すことにより、重層細胞シートを製造することができる。当該重層細胞シートに含まれる各細胞シートは、単一の細胞種を含む細胞シートであってもよく、複数の細胞種を含む細胞シートであってもよい。当該重層細胞シートに含まれる各細胞シートは、細胞シート毎に異なる細胞種を含むものであってもよく、同一の細胞種を含むものであってもよい。
 機能が異なる細胞からなる細胞シートを組み合わせること、または、機能が異なる細胞を含む細胞シートを重層化することで、人工組織の形成が可能となる(アレルギー、2013年、第62巻第25~32頁)。例えば、ストローマ細胞もしくは間葉系幹細胞と、抗原提示細胞、リンパ球などの造血系細胞、あるいは造血系幹細胞を混合した細胞懸濁液を使用した細胞シートまたは重層細胞シートを形成することで、人工リンパ組織あるいは人工骨髄を製造することが可能である。このような重層細胞シートは、例えば、免疫不全、重症感染症、悪性腫瘍等、造血不全の治療等に適用することができる。
 間葉系幹細胞のシート化により、そのマーカーであるCD105の発現が減少または消失し、免疫抑制性の性質が強いCD105陰性の間葉系のサブセットを誘導することができる。このような間葉系幹細胞シートを重層化した重層細胞シートは、例えば、臓器移植後の拒絶反応予防または抑制、間葉系幹細胞同種移植時の拒絶反応の予防または抑制、自己免疫性疾患の治療等に適用することができる。
 したがって、一態様において、本発明は下記工程(1)~(4)を含む、重層化細胞シートの製造方法を提供する。
(1)1種または複数種の哺乳動物由来細胞を調製する工程;
(2)調製した細胞を、多孔性のメンブレンを底面に有する第1の細胞培養容器の前記多孔性のメンブレン上に播種する工程、
(3)前記第1の細胞培養容器をさらに第2の細胞培養容器の中に入れ、細胞を培養し、前記多孔性のメンブレン上に細胞シートを作製する工程、
(4)下記工程(a)および(b)を1回以上繰り返す工程、
 (a)第1の細胞培養容器内に形成された細胞シート上に、1種または複数種の哺乳動物由来細胞を播種する工程、
 (b)前記第1の細胞培養容器を第2の細胞培養容器の中に入れ、細胞を培養して、前記細胞シート上に新たな細胞シートを作製する工程。
 一態様において、本発明は上記方法で製造された重層細胞シート、および当該重層細胞シートを含む疾患治療用移植材料を提供する。
 一態様において、本発明は多孔性のメンブレン上に配置された重層細胞シートであって、重層細胞シートに含まれる各細胞シートにおいて、細胞間に細胞外マトリックスが存在し、かつ前記多孔性のメンブレンと接触する側と反対側に、細胞外マトリックスを含む膜が形成されている、重層細胞シートを提供する。なお、重層細胞シートにおいては、細胞外マトリックスを含む膜は、細胞シートの前記多孔性のメンブレンと接触する側と反対側に加え、各層の間にも形成されうる。
 以下、実施例により、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 実施例1
 ヒト脂肪組織由来間葉系幹細胞シートの形成
 ヒト組織から得たヒト脂肪組織由来間葉系幹細胞(PromoCell GmbHSickingenstr. 63/6569126 HeidelbergGermany)を間葉系幹細胞用培養液に懸濁した。作製した細胞懸濁液を、セルカルチャーインサート底面の多孔性メンブレン(直径6.5mm Transwell with 0.4μm pore polyester Membrane)上に添加し、一容器あたり2.0x10細胞または10x10細胞にて細胞を播種した。セルカルチャーインサートをあらかじめ培養液を満たしウエルに浸しながら培養し、細胞シートの形成を確認した(図1)。何れの細胞数も、細胞シートの作製が確認できた。2.0x10細胞/一容器(底面の直径6.5mm)は、約6,000細胞/mm底面積に相当する。細胞をこのような高い密度で播種することにより、萎縮のない細胞シートを取得し得ることが観察された。よって、以下の実験においては、一容器あたり2x10細胞以上の細胞数にて細胞を播種し、細胞シートを作製した。
 得られた細胞シートを顕微鏡観察したところ、メンブレンとは反対側に細胞外マトリックスを含む膜を形成していることが観察され、物理的にピペッティングによる水流を与えることで、容易に細胞容器から細胞シートを分離することが可能であった。ピペッティングによる水流で、メンブレン状に形成された細胞シートを細胞容器から分離する様子を図2に示す。
 ピペッティングにより細胞容器から分離した細胞シートを、生理食塩水を入れたペトリ皿に移した。ピペットを用い、ペトリ皿中にて、細胞シートを吸引し、次いで、排出を行った。細胞シートは形状を保持しており、剛性を備えていることが確認されるとともに、移植の際に細胞シートの移動が容易であることが確認できた。ピペッティングの様子を図3に示す。
 細胞容器から分離した細胞シートを10%パラフォルムアルデヒドで固定し、厚さ14マイクロメートルの凍結切片を作製して、DAPIで核染色を行った。その結果、得られた細胞シートは20-40マイクロメートルの厚さを有する細胞シートであることが認められた(図4)。
 細胞容器から分離した細胞シートを96時間2-8℃で保存した後に、48時間培養した際に細胞シートから分泌される、視細胞の保護に関与するPEDFおよび脈絡膜毛細血管の維持に不可欠なVEGFをELISAにて測定した。結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、常法に従い、各分子マーカーの発現を免疫組織染色により確認した。本発明の方法で製造した間葉系幹細胞シートは、エラスチン、IV型コラーゲン、I型コラーゲン、Zo-1を発現していることが確認された(図5)。
 さらに、製造した間葉系幹細胞シートを網膜変性ラット(Royal College Surgeon[RCS]ラット)に移植したところ、網膜保護効果が得られることが確認された。移植後3週間後の観察にて、本発明の方法で製造した間葉系幹細胞シートを移植したラットでは外顆粒層(視細胞の核が配列する層)の厚みが維持されていた(図6左写真)。一方、細胞シートを移植していない疾患発症ラットでは、外顆粒層が菲薄化していた(図6右写真)。外顆粒層の厚さ(すなわち視細胞保護の程度)を処置眼(右)球と非処置眼(左)球で見比べてスコア化したところ、間葉系幹細胞シート移植群(n=10)とSham群(n=5)との間に統計学的有意差(p<0.01,Wilcoxon rank sum test)を認めた。
 また、以下の表2に示すように、本発明の方法で製造した間葉系幹細胞シートを移植したラットでは、光受容体が保護されていた。本発明の方法で製造した間葉系幹細胞シートを移植することにより、病変の進行を抑制し、視細胞を温存させる効果が確認された。
Figure JPOXMLDOC01-appb-T000002
 本発明の方法で製造した間葉系幹細胞シートの安全性試験として、免疫不全ラットを用いた一般毒性試験(GLP試験)を行ったところ、生着不全・早期脱落を認めず、有害事象も認められなかった。
 実施例2:播種する細胞数の検討
 実施例1と同様にして、ヒト脂肪組織由来間葉系幹細胞を用いて細胞シートを作製した。底面に直径6.5mmの多孔性メンブレンを有する容器に、以下の細胞数となるように細胞懸濁液を添加した。細胞数は、一容器当たり、0.08x10細胞、0.4x10細胞、2.0x10細胞、10x10細胞、13x10細胞、20x10細胞にて細胞を播種した。容器の底面積当たりの細胞濃度は、それぞれ、約240細胞/mm底面積、約1200細胞/mm底面積、約6,000細胞/mm底面積、30,000細胞/mm底面積、約40,000細胞/mm底面積、約60,000細胞/mm底面積に相当する。全ての細胞濃度にて、細胞シートの形成を確認した。結果を図7に示す。
 実施例3
 虹彩色素上皮細胞シートの形成
 ヒト虹彩組織から得た虹彩色素上皮細胞を用いて、実施例1と同様の方法で細胞シートを製造した。
 インビトロの試験により、得られた虹彩色素上皮細胞シートは正常な網膜色素上皮細胞が有する(1)貪食能および(2)PEDFおよびVEGFの分泌を示し、(3)ブルッフ膜と同様に細胞再生の足場として機能する細胞外マトリックス含有膜構造を有していた。
 細胞シートを96時間2-8℃で保存した後に、48時間培養した際に細胞シートから分泌される、視細胞の保護に関与するPEDFおよび脈絡膜毛細血管の維持に不可欠なVEGFをELISAにて測定した結果を以下の表3に示す。
 同様に培養した細胞シートの貪食能を示すデータを図8に示す。なお、貪食能の試験にはCayman chemical (US)のPhagocytosis assay kitを使用した。試験は、細胞シートと蛍光標識されたラテックスビーズを混合し、インキュベーション後に、トリパンブルーで洗浄し、貪食されたラテックスビーズを蛍光顕微鏡観察で確認することで行った。ビーズがconjugateしていない蛍光標識用二次抗体と反応させたシートを陰性対照として用いた。図8において、上段2枚の写真は陰性対照のデータを示し、下段2枚の写真は、本発明の方法で製造した細胞シートのデータを示す。
 常法に従い、各分子マーカーの発現を確認した。本発明の方法で製造した網膜色素上皮細胞シートは、エラスチン、IV型コラーゲン、I型コラーゲンを発現していることが確認された(図9)。
 本発明の方法で製造した虹彩色素上皮細胞シートを網膜変性ラット(RCSラット)に移植したところ、網膜保護効果が得られることが確認された(図10)。移植後4週間の時点で、本発明の方法で製造した網膜色素上皮細胞シートを移植したラットでは外顆粒層(視細胞の核の層)の厚みが維持されていた(図10上段写真)。また、本発明の方法で製造した網膜色素上皮細胞シートを移植したラットでは、光受容体が保護されていた(図10下段グラフ)。
 本発明の方法で製造した虹彩色素上皮細胞シートの安全性試験として、免疫不全ラットを用いた一般毒性試験(GLP試験)を行ったところ、生着不全・早期脱落を認めず、有害事象も認められなかった。なお、シート形態の製品において最大の問題とされている移植法についても、霊長類による試行を重ねて確立済である。
 実施例4
線維芽細胞シートの形成
 ヒト組織から得た線維芽細胞を用いて、実施例1と同様の方法で細胞シートを製造した。
 インビトロの試験により、得られた線維芽細胞シートは、通常の網膜色素上皮細胞が有する(1)貪食能および(2)PEDFおよびVEGFの分泌を示し、(3)ブルッフ膜と同様に細胞再生の足場として機能する細胞外マトリックス含有膜構造を有していた。
 細胞シートを96時間2-8℃で保存した後に、48時間培養した際に細胞シートから分泌されるPEDFおよびVEGFをELISAにて測定した結果を以下の表4に、同様に、培養した細胞シートが貪食能を有することを示すデータを図11に示す。
 常法に従い、各分子マーカーの発現を免疫組織染色により確認した。本発明の方法で作製した線維芽細胞シートは、I型コラーゲン、IV型コラーゲン、エラスチン、ZO-1を発現していた(図12)。
 本発明の方法で製造した線維芽網膜色素上皮細胞シートを網膜変性ラット(RCSラット)に移植したところ、網膜保護効果が得られることが確認された(表5)。移植後4週間の時点で、有意な外顆粒層(視細胞の核の層)の菲薄化からの温存(厚みの維持)が確認された(図13)。
 細胞シートの目的細胞純度をCD90、VimentinおよびCK18の発現状態を確認することで求めた。その結果、下記表6に示すように、毒性試験、薬効試験に供した細胞シートにおいて目的細胞純度が高純度に維持されていることが確認された。また、輸送後の試料においても比較的高い純度が維持されていることが確認された。
 本発明の方法で製造した線維芽細胞シートの安全性試験として、免疫不全マウスを用いた一般毒性試験(GLP試験)を行ったところ、生着不全・早期脱落を認めず、有害事象も認められなかった。
 実施例5
間葉系幹細胞シートからの血管新生抑制因子の分泌の確認
 実施例1と同様にして、ヒト組織から得たヒト脂肪組織由来間葉系幹細胞を用いて、細胞シートを製造した。比較例として、ヒト組織から得たヒト脂肪組織由来間葉系幹細胞を用いて、平面培養を行った。平面培養は、樹脂性の細胞培養容器に、細胞を、培養面積に応じた至適密度で播種して、培養面に接着させて培養した。
 培養後、培地中に分泌されたSoluble-Flt-1(可溶性VEGFレセプター1)1ならびにTIMP-3を、ELISAにより測定した。結果を図14に示す。細胞シートからのsoluble-Flt-1の分泌量は、本発明の方法で培養した場合に平面培養と比べて大きく増加していた。さらに、平面培養ではTIMP-3の分泌は検出されなかったが、本発明の方法により培養・作製された細胞シートからはTIMP-3の分泌が検出された。このことから、本発明の方法により作製された細胞シートは、脈絡膜新生血管の発生を抑制できる可能性を示している。
 実施例6
間葉系幹細胞の積層シートの作製
 実施例1と同様にして、メンブレン上に間葉系幹細胞の細胞シート(単層)を作製した。さらに、新たな間葉系幹細胞を、作製した細胞シート上に同じ濃度にて播種し、培養を行い、積層シートを作製した。結果を図15に示す。左の単層の細胞シートに比べ、積層の細胞シートの法が厚いことが色調から確認できた。
 実施例7
間葉系幹細胞シートからの細胞の遊走の評価
 ヒト脂肪組織由来間葉系幹細胞を用いて、細胞を懸濁した細胞懸濁液と、本発明により細胞から作製した細胞シートについて、細胞の遊走性を評価した。細胞の遊走性は、セルカルチャーインサートの内側の細胞がメンブレンを通過して、インサートの外側に遊走するかどうかを、Cell Counting Kit-8(Dojindo,Cat.CK04)及びCrystal Violet Solution,1%(SIGMA,Cat.V5265-250ML)を用いて測定した。メンブレンのポアサイズは8μmである。細胞誘引物質は、ウシ血清アルブミンを20%または40%添加した。
 細胞懸濁液:細胞培養プレート(ウェル及びセルカルチャーインサート)に細胞誘引物質(またはコントロール)および基礎培地を添加し、次いで、細胞懸濁液をインサートに播種した。24時間後に、インサート内の細胞を除去し、ウェル内の細胞数を評価した。コントロールは誘引物質を添加していない。
 細胞シート:本発明の方法により作製した細胞シートは、第1の培養容器(インサート)内に保持した状態で評価に用いた。細胞シートが入っているインサート内の培地及び細胞培養プレート(ウェル)内の培地を基礎培地に交換して馴化させた後、インサート内の培地を基礎培地に、細胞培養プレート(ウェル)内の培地を細胞誘引物質(またはコントロール)を含む基礎培地に交換した。24時間後に、インサート内の細胞を除去し、ウェル内の細胞数を評価した。
 評価はそれぞれの群n=3で行った。細胞数の評価は、Cell Counting Kit-8(Dojindo)とクリスタルバイオレット溶液1%(SIGMA)を用いて行った。結果を図16に示す。細胞懸濁液では、細胞の遊走が認められたのに対し、本発明の方法で作製した細胞シートにおいては細胞の遊走が認められなかった。
 上記の詳細な記載は、本発明の目的及び対象を単に説明するものであり、添付の特許請求の範囲を限定するものではない。添付の特許請求の範囲から離れることなしに、記載された実施態様に対しての、種々の変更及び置換は、本明細書に記載された教示より当業者にとって明らかである。
 本出願は、日本国で出願された特願2022-73877(出願日:2022年4月27日)および特願2023-34995(出願日:2023年3月7日)を基礎としており、その内容はすべて本明細書に包含されるものとする。
 本発明により、簡便な細胞シートの作製方法であって、かつ、該方法により作製された細胞シートの取扱いが容易である、細胞シートの作製方法が提供された。本発明は、MSCや皮膚組織の細胞である線維芽細胞を含む種々の細胞に適用できる細胞シートの作製に有用であり、かつ本発明の方法により作製された細胞シートは、治療用移植材料として、また、スクリーニング用途、毒性試験用途などの様々な用途に利用可能である。

Claims (26)

  1.  以下の工程を含む、細胞シートの作製方法、
     (1)1種または複数種の哺乳動物由来細胞を調製する工程;
     (2)調製した細胞を、多孔性のメンブレンを底面に有する第1の細胞培養容器の前記多孔性のメンブレン上に播種する工程、および
     (3)前記第1の細胞培養容器を第2の細胞培養容器の中に入れ、細胞を培養し、前記多孔性のメンブレン上に細胞シートを作製する工程。
  2.  前記第1の細胞培養容器中の培養液または前記第2の細胞培養容器中の培養液の少なくとも一方は血清および/またはRhoキナーゼ(ROCK)阻害剤を含む培養液である請求項1に記載の方法。
  3.  工程(1)において、哺乳動物由来細胞が、上皮細胞、内皮細胞、実質細胞または幹細胞である、請求項1に記載の方法。
  4.  前記哺乳動物由来細胞が、色素上皮細胞、線維芽細胞および間葉系幹細胞からなる群より選ばれる細胞である、請求項3に記載の方法。
  5.  工程(2)において、細胞が、底面上に、5,000細胞数/mm以上にて播種される、請求項1に記載の方法。
  6.  培養して得られる細胞シートが、細胞の、前記多孔性のメンブレンと接触する側と反対側に、細胞外マトリックスを含む膜が形成されている、請求項1~5のいずれか一つに記載の方法。
  7.  さらに、培養して得られる細胞シートが、細胞間にタイトジャンクションを形成している請求項6に記載の方法。
  8.  以下の工程(4)をさらに含む、請求項6に記載の方法。
     (4)細胞の、前記多孔性のメンブレンと接触する側と反対側に細胞外マトリックスを含む膜が形成されていることを確認する工程
  9.  以下の工程(5)をさらに含む、請求項1~5のいずれか一つに記載の方法、
     (5)工程(3)で得られた培養細胞における分化マーカーの発現の有無を確認する工程。
  10.  以下の工程(5’)をさらに含む、請求項1~5のいずれか一つに記載の方法、
     (5’)工程(3)で得られた培養細胞が、Solble-Flt-1(VEGFレセプター1)および/またはTIMP-3を分泌しているか否かを確認する工程。
  11.  工程(1)において、哺乳動物由来細胞が、網膜色素上皮細胞、虹彩色素上皮細胞、間葉系幹細胞または線維芽細胞であって、工程(2)において、細胞が、底面上に、5,000細胞数/mm~40,000細胞数/mmで播種される、請求項1~4のいずれか一つに記載の方法。
  12.  請求項1~5のいずれか一つに記載の方法で作製された細胞シート。
  13.  請求項1~5のいずれか一つに記載の方法で作製された細胞シートを含む疾患治療用移植材料。
  14.  請求項1~5のいずれか一つに記載の方法で作製された細胞シートに形成された細胞外マトリックスを含む膜を分離する工程を含む、細胞外マトリックスを含む膜の作製方法。
  15.  多孔性のメンブレン上に配置された哺乳動物由来細胞の細胞シートであって、該細胞シートにおいて、細胞間に細胞外マトリックスが存在し、かつ前記多孔性のメンブレンと接触する側と反対側に細胞外マトリックスを含む膜が形成されている、細胞シート。
  16.  前記細胞シートにおいて、さらに、細胞間にタイトジャンクションが形成されている請求項15に記載の細胞シート。
  17.  前記細胞シートは、1種または複数種の哺乳動物由来細胞を第1の細胞培養容器の底面の多孔性のメンブレン上に播種し、該第1の細胞培養容器を第2の細胞培養容器に入れて培養することにより得られたものである、請求項15に記載の細胞シート。
  18.  前記第1の細胞培養容器中の培養液と前記第2の細胞培養容器中の培養液の少なくとも一方は、血清および/またはRhoキナーゼ(ROCK)阻害剤を含む培養液である請求項17に記載の細胞シート。
  19.  前記哺乳動物由来細胞が、上皮細胞、内皮細胞、実質細胞または幹細胞である、請求項17または18に記載の細胞シート。
  20.  前記哺乳動物由来細胞が、色素上皮細胞、線維芽細胞および間葉系幹細胞からなる群より選ばれる細胞である、請求項19に記載の細胞シート。
  21.  前記哺乳動物由来細胞が、網膜色素上皮細胞あるいは虹彩色素上皮細胞である請求項19に記載の細胞シート。
  22.  前記細胞シートに含まれる細胞は、ベストロフィン-1、RPE-65、pan-CytokeratinおよびCytokeratinのいずれかのサブタイプ、オクルディン、ZO-1、エラスチン、アクチン、1型コラーゲン、2型コラーゲン、および4型コラーゲンからなる群より選ばれる少なくとも1種の分子マーカーを発現している、請求項19に記載の細胞シート。
  23.  前記細胞シートに含まれる細胞は、Solble-Flt-1(VEGFレセプター1)および/またはTIMP-3を分泌している、請求項19に記載の細胞シート。
  24.  下記工程(1)~(4)を含む、重層化細胞シートの製造方法:
    (1)1種または複数種の哺乳動物由来細胞を調製する工程;
    (2)調製した細胞を、多孔性のメンブレンを底面に有する第1の細胞培養容器の前記多孔性のメンブレン上に播種する工程、
    (3)前記第1の細胞培養容器をさらに第2の細胞培養容器の中に入れ、細胞を培養し、前記多孔性のメンブレン上に細胞シートを作製する工程、および
    (4)下記工程(a)および(b)を1回以上繰り返す工程:
     (a)第1の細胞培養容器内に形成された細胞シート上に、1種または複数種の哺乳動物由来細胞を播種する工程、
     (b)前記第1の細胞培養容器を第2の細胞培養容器の中に入れ、細胞を培養して、前記細胞シート上に新たな細胞シートを作製する工程。
  25.  請求項24の方法で製造された重層細胞シート。
  26.  多孔性のメンブレン上に配置された重層細胞シートであって、重層細胞シートに含まれる各細胞シートにおいて、細胞間に細胞外マトリックスが存在し、かつ前記多孔性のメンブレンと接触する側と反対側に、細胞外マトリックスを含む膜が形成されている、重層細胞シート。
PCT/JP2023/016201 2022-04-27 2023-04-25 細胞シート作製方法 WO2023210609A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-073877 2022-04-27
JP2022073877 2022-04-27
JP2023-034995 2023-03-07
JP2023034995 2023-03-07

Publications (1)

Publication Number Publication Date
WO2023210609A1 true WO2023210609A1 (ja) 2023-11-02

Family

ID=88519008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016201 WO2023210609A1 (ja) 2022-04-27 2023-04-25 細胞シート作製方法

Country Status (2)

Country Link
TW (1) TW202400773A (ja)
WO (1) WO2023210609A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032224A1 (ja) * 2005-09-13 2007-03-22 Arblast Co., Ltd. 培養細胞シート及びその作製方法
WO2014030749A1 (ja) * 2012-08-24 2014-02-27 独立行政法人理化学研究所 網膜色素上皮細胞シートの製造方法
JP2014042517A (ja) * 2012-07-31 2014-03-13 Toyota Central R&D Labs Inc エタノールアミンリン酸を有効成分とする細胞機能増強剤
WO2016114285A1 (ja) * 2015-01-15 2016-07-21 国立大学法人大阪大学 多能性幹細胞からの角膜上皮細胞の分化誘導
WO2021075502A1 (ja) * 2019-10-16 2021-04-22 国立研究開発法人理化学研究所 細胞シート製造装置、および細胞シート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032224A1 (ja) * 2005-09-13 2007-03-22 Arblast Co., Ltd. 培養細胞シート及びその作製方法
JP2014042517A (ja) * 2012-07-31 2014-03-13 Toyota Central R&D Labs Inc エタノールアミンリン酸を有効成分とする細胞機能増強剤
WO2014030749A1 (ja) * 2012-08-24 2014-02-27 独立行政法人理化学研究所 網膜色素上皮細胞シートの製造方法
WO2016114285A1 (ja) * 2015-01-15 2016-07-21 国立大学法人大阪大学 多能性幹細胞からの角膜上皮細胞の分化誘導
WO2021075502A1 (ja) * 2019-10-16 2021-04-22 国立研究開発法人理化学研究所 細胞シート製造装置、および細胞シート

Also Published As

Publication number Publication date
TW202400773A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
Chen et al. A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells
JP4336821B2 (ja) 哺乳動物の骨髄細胞または臍帯血由来細胞と脂肪組織を利用した心筋細胞の誘導
US9206391B2 (en) Method for preparing biological tissue
JP2007524411A (ja) 角膜輪部由来の未分化幹細胞を有する組織系
CN101668848A (zh) 来自口腔粘膜的多能自体干细胞和使用方法
WO2013176131A1 (ja) 移植用人工組織体製造のための鋳型基材
CN113088481A (zh) 用于生产视网膜色素上皮细胞片层的方法
JP7256818B2 (ja) 心筋細胞のシート化方法
JP2023175787A (ja) 多能性幹細胞由来細胞のシート化方法
KR101760239B1 (ko) 세포배양 삽입체를 이용한 인간 배아줄기세포 유래 중간엽 세포의 분리방법
WO2023210609A1 (ja) 細胞シート作製方法
KR102071302B1 (ko) 엑소좀 기반의 심근세포 교차분화 유도방법
Koh et al. Therapeutic cloning and tissue engineering
Vemuganti et al. Limbal stem cells: application in ocular biomedicine
WO2021065984A1 (ja) 心筋細胞のシート化方法
JP7355577B2 (ja) 多能性幹細胞由来の分化誘導細胞を含有するシート状物の作製方法
WO2020067436A1 (ja) 多能性幹細胞由来細胞の移植片形成方法
US20200109368A1 (en) Method for preparing differentiation-induced cells
WO2020067443A1 (ja) 体細胞のシート化方法
JPWO2017078007A1 (ja) 培養容器
JP2007014273A (ja) 肝組織・臓器及びその製造方法
US20220175846A1 (en) Method for increasing proportion of cd56 positive cells
JP2019154363A (ja) 医療用細胞培養物
WO2024053684A1 (ja) フィーダー細胞、細胞シートおよびそれらの製造方法、ならびにフィーダー細胞を用いた細胞の維持または増殖方法
US20200392466A1 (en) Sheet-forming method for pluripotent stem cell-derived cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796349

Country of ref document: EP

Kind code of ref document: A1