WO2023210541A1 - 制御装置及びプログラム - Google Patents

制御装置及びプログラム Download PDF

Info

Publication number
WO2023210541A1
WO2023210541A1 PCT/JP2023/015977 JP2023015977W WO2023210541A1 WO 2023210541 A1 WO2023210541 A1 WO 2023210541A1 JP 2023015977 W JP2023015977 W JP 2023015977W WO 2023210541 A1 WO2023210541 A1 WO 2023210541A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control device
driving force
angle
determination unit
Prior art date
Application number
PCT/JP2023/015977
Other languages
English (en)
French (fr)
Inventor
海博 劉
茂 神尾
恵介 河合
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023210541A1 publication Critical patent/WO2023210541A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a vehicle control device and program.
  • Patent Document 1 listed below describes a device that can estimate the height of a step when the wheels of a vehicle come into contact with the step. According to this device, when the step is a wheel stop, it is possible to generate an appropriate braking force and stop the vehicle before the wheels get over the step. In addition, when the step is not a wheel stop, it is possible to generate a necessary and appropriate driving force to get over the step, thereby making it possible to get over the step while suppressing the vehicle from jumping out.
  • the height of the step is estimated based on the torque value at the timing when the wheel starts moving while gradually increasing the driving force. There is.
  • the "timing at which the wheels start moving" in the above is determined based on the measured value of the vehicle speed sensor.
  • An object of the present disclosure is to provide a control device that can appropriately perform control when a wheel contacts a step, and a program for the control device.
  • the control device is a vehicle control device, and includes a driving force acquisition unit that acquires the driving force that the vehicle is applying to the road surface, and an acceleration acquisition unit that acquires the acceleration along the traveling direction of the vehicle. and an angle calculation unit that calculates a trajectory angle, which is an angle formed by a trajectory of a rotation center axis of a wheel of the vehicle with respect to a road surface, based on driving force and acceleration.
  • the control device having such a configuration, it is possible to calculate the trajectory angle, which is the angle that the trajectory of the rotation center axis of the wheel makes with respect to the road surface.
  • the trajectory angle changes depending on the shape of the step that the wheel abuts. Therefore, for example, it is possible to estimate the height of the step based on the calculated trajectory angle and appropriately control the braking/driving force, etc., based on the calculated trajectory angle.
  • FIG. 1 is a diagram schematically showing the configuration of a vehicle equipped with a control device according to a first embodiment.
  • FIG. 2 is a diagram schematically showing the configuration of the control device according to the first embodiment.
  • FIG. 3 is a diagram showing a state in which the wheels are in contact with a step.
  • FIG. 4 is a diagram for explaining the trajectory and trajectory angle of the rotation center axis.
  • FIG. 5 is a flowchart showing the flow of processing executed by the control device according to the first embodiment.
  • FIG. 6 is a time chart showing changes in vehicle speed, etc. when control is performed by the control device according to the first embodiment.
  • FIG. 7 is a time chart showing changes in vehicle speed, etc. when control is performed by the control device according to the first embodiment.
  • FIG. 6 is a time chart showing changes in vehicle speed, etc. when control is performed by the control device according to the first embodiment.
  • FIG. 8 is a diagram schematically showing the configuration of a control device according to the second embodiment.
  • FIG. 9 is a flowchart showing the flow of processing executed by the control device according to the second embodiment.
  • FIG. 10 is a flowchart showing the flow of processing executed by the control device according to the second embodiment.
  • FIG. 11 is a diagram schematically showing the configuration of a control device according to the third embodiment.
  • FIG. 12 is a diagram showing the correspondence between the height of the step that the wheel contacts and the calculated running distance.
  • FIG. 13 is a flowchart showing the flow of processing executed by the control device according to the third embodiment.
  • the control device 10 is mounted on a vehicle 100 and is configured as a device for controlling the vehicle 100 and the like. Prior to explaining the control device 10, the configuration of the vehicle 100 will first be explained with reference to FIG.
  • the vehicle 100 is a vehicle that travels based on a driver's driving operation. However, if the wheels come into contact with a step, a part of the driving operation (for example, braking) may be automatically performed by the control device 10.
  • Vehicle 100 includes a vehicle body 101, wheels 111, 112, 121, 122, a rotating electric machine 150, and a battery 160.
  • the vehicle body 101 is the main body part of the vehicle 100, and is a part called the "body".
  • the wheels 111 are wheels provided on the front left portion of the vehicle body 101, and the wheels 112 are wheels provided on the front right portion of the vehicle body 101.
  • the wheels 111 and 112, which are the front wheels, are provided as driven wheels in this embodiment.
  • the wheels 121 are wheels provided on the rear left portion of the vehicle body 101, and the wheels 122 are wheels provided on the rear right portion of the vehicle body 101.
  • Wheels 121 and 122 which are rear wheels, are provided as driving wheels in this embodiment. In other words, the wheels 121 and 122 are rotated by the driving force of a rotating electric machine 150, which will be described later, to cause the vehicle 100 to travel.
  • the vehicle 100 of this embodiment is configured as a so-called "rear wheel drive” vehicle.
  • the vehicle 100 may be configured as a front-wheel drive vehicle or may be configured as a four-wheel drive vehicle.
  • a rotating electrical machine for driving the front wheels may be provided separately.
  • a brake device 131 is provided on the wheel 121, and a brake device 132 is provided on the wheel 122. Both brake devices 131 and 132 are brake devices that apply braking force to the wheels using hydraulic pressure. Such a braking device may be provided not only on the driving wheels but also on the wheels 111 and 112 that are driven wheels. The operation of the brake devices 131 and 132 is controlled by a brake ECU 20, which will be described later.
  • the rotating electric machine 150 is a device that receives power from a battery 160 (described later) and generates the driving force for rotating the wheels 121 and 122, that is, the driving force necessary for the vehicle 100 to travel.
  • Rotating electric machine 150 is a so-called "motor generator.”
  • the driving force generated by the rotating electric machine 150 is transmitted to each of the wheels 121 and 122 via the power train section 140, causing the wheels 121 and 122 to rotate.
  • power is transferred between the battery 160 and the rotating electric machine 150 via an inverter that is a power converter, but the inverter is not shown in FIG. 1.
  • the rotating electrical machine 150 can generate not only a driving force to accelerate the vehicle 100 but also a braking force to decelerate the vehicle 100 through regeneration.
  • Braking of the vehicle 100 can be performed by the rotating electric machine 150 or by the brake devices 131 and 132 described above.
  • the battery 160 is a storage battery for supplying driving power to the rotating electric machine 150.
  • a lithium ion battery is used as the battery 160.
  • Regenerative power generated by the rotating electrical machine 150 during braking is supplied to the battery 160 via an inverter (not shown), and the battery 160 is charged.
  • the vehicle 100 is provided with a brake ECU 20 separately from the control device 10.
  • Both the control device 10 and the brake ECU 20 are configured as a computer system including a CPU, ROM, RAM, and the like. These can perform two-way communication with each other via a network provided in the vehicle 100.
  • the brake ECU 20 performs processing to control the operation of the brake devices 131 and 132 in response to instructions from the control device 10.
  • control device 10 and the brake ECU 20 do not need to be separated into two devices as in this embodiment.
  • the control device 10 may have an integrated function of the brake ECU 20.
  • the specific device configuration is not particularly limited.
  • the vehicle 100 is equipped with a large number of sensors for measuring various physical quantities, their illustration is omitted in FIG.
  • the sensors include a wheel speed sensor 201, an acceleration sensor 202, a current sensor 203, and an external camera 204.
  • the wheel speed sensor 201 is a sensor for measuring the number of rotations of the wheels 111 and the like per unit time.
  • the wheel speed sensor 201 is provided individually for each of the four wheels 111, 112, 121, and 122, but in FIG. 2, the wheel speed sensor 201 is schematically depicted as a single block. It is.
  • a signal indicating the rotation speed measured by the wheel speed sensor 201 is transmitted to the control device 10.
  • Control device 10 can grasp the traveling speed of vehicle 100 based on the signal.
  • the acceleration sensor 202 is a sensor for detecting the acceleration of the vehicle 100. Acceleration sensor 202 is attached to vehicle body 101.
  • the acceleration sensor 202 is configured as a 6-axis acceleration sensor that can detect pitching, rolling, and yawing rotational accelerations in addition to longitudinal, lateral, and vertical accelerations of the vehicle body 101. There is. Signals indicating each acceleration detected by the acceleration sensor 202 are transmitted to the control device 10.
  • the current sensor 203 is a sensor for detecting the value of the drive current flowing through the rotating electrical machine 150.
  • a signal indicating the value of the drive current detected by the current sensor 203 is input to the control device 10.
  • the control device 10 can determine the magnitude of the driving force generated in the rotating electrical machine 150 based on the value of the input driving current.
  • the vehicle exterior camera 204 is a camera that photographs the surroundings of the vehicle 100, and is, for example, a CMOS camera. Image data taken by the vehicle exterior camera 204 is input to the control device 10 . By processing the image, the control device 10 can understand the presence or absence of an obstacle (for example, a step such as a wheel stopper) around the vehicle 100 and the shape thereof. Note that as a sensor for detecting the surrounding situation of the vehicle 100, other sensors may be provided in addition to or in place of the vehicle exterior camera 204. Examples of such sensors include LIDAR sensors and radar.
  • the control device 10 includes a driving force acquisition section 11, an acceleration acquisition section 12, an angle calculation section 13, a crossing determination section 14, and a braking/driving force control section 15 as block elements representing its functions. .
  • the driving force acquisition unit 11 is a part that performs processing to acquire the driving force that the vehicle 100 (specifically, the drive wheels of the vehicle 100) is applying to the road surface.
  • the driving force acquisition unit 11 acquires the value of the driving current flowing through the rotating electrical machine 150 using the above-mentioned current sensor 203, and calculates and acquires the driving force based on the magnitude of the driving current.
  • the driving force acquisition unit 11 may calculate the torque of the driving wheels based on the magnitude of the driving current, and convert the obtained torque into the driving force along the traveling direction of the vehicle 100.
  • the acceleration acquisition unit 12 is a part that performs processing to acquire various types of acceleration based on signals from the acceleration sensor 202.
  • the acceleration acquired by the acceleration acquisition unit 12 includes an acceleration G x along the traveling direction (that is, a longitudinal direction) of the vehicle 100 and an acceleration G y along the left-right direction of the vehicle 100 .
  • Acceleration G x is also referred to as “longitudinal acceleration,” and acceleration G y is also referred to as "lateral acceleration.” All of these are obtained as numerical values in units of "G", which is gravitational acceleration, such as "0.5G".
  • the angle calculation unit 13 is a part that performs processing to calculate the trajectory angle.
  • the "trajectory angle” is the angle that the trajectory of the rotation center axis of the wheel 111 etc. makes with respect to the road surface.
  • FIG. 3 schematically depicts a state in which the wheels 111 are on the road surface RD.
  • a step ST which is a wheel stop, is provided on the road surface RD, and a portion of the wheel 111 is in contact with the step ST. If the vehicle 100 attempts to move further toward the right side (that is, toward the step ST side) from the state shown in FIG. 3, the wheels 111 will run onto the step ST.
  • the graph shown by the solid line in FIG. 4(A) shows the distance traveled by the vehicle 100 (horizontal axis) and the center axis of rotation AX of the wheels 111 when the vehicle 100 moves toward the right side as described above. It represents the relationship between height (vertical axis) and The graph can be said to represent the locus of the rotation center axis AX while the vehicle 100 is traveling.
  • ⁇ shown in FIG. 4(A) represents the above-mentioned trajectory angle when the vehicle 100 is at the position x11. Such a trajectory angle ⁇ can be defined corresponding to each position of the vehicle 100.
  • the "trajectory angle” is the angle that the trajectory of the rotation center axis AX of the wheel 111 etc. makes with respect to the road surface. ” refers to the locus of the rotation center axis AX when the vehicle 100 is viewed along the left-right direction.
  • the angle calculation unit 13 calculates the trajectory angle ⁇ at the current position based on both the driving force acquired by the driving force acquisition unit 11 and the acceleration G x acquired by the acceleration acquisition unit 12. The specific calculation method will be explained later.
  • the locus of the rotation center axis AX as shown in the graph of FIG. 4(A) reflects to some extent the shape of the step ST shown by the dashed line in the same figure.
  • the reason why the two shapes are different from each other is because the wheel 111 is not a rigid body, and the wheel 111 is deformed by hitting the step ST.
  • the climbing determination unit 14 is a part that performs a process of determining whether the vehicle 100 should climb over a step based on the trajectory angle ⁇ . The specific determination method will be explained later.
  • the braking/driving force control unit 15 is a part that performs processing to adjust the braking/driving force of the vehicle 100 by controlling the operations of the rotating electrical machine 150 and the brake devices 131 and 132.
  • the braking/driving force control unit 15 controls the braking/driving force so that the wheels 111 and the like of the vehicle 100 get over the level difference when the climbing determination unit 14 determines that the vehicle 100 should climb over the level difference. Furthermore, if the vehicle 100 should not climb over the step, if the crossover determining section 14 determines that the vehicle 100 should not climb over the step, the braking/driving force is controlled so that the vehicle 100 stops.
  • Such braking/driving force control is performed by the control device 10 temporarily overriding the driver's driving operation. Therefore, even if, for example, the driver erroneously depresses the accelerator pedal while the wheel 111 is in contact with the wheel chock, the vehicle 100 is prevented from running over the wheel chock. It becomes possible to do things like this.
  • the flow of processing executed by the control device 10 will be explained with reference mainly to the flowchart in FIG. 5.
  • the series of processes shown in FIG. 5 is started, for example, at the time when the wheels 111, etc. of the vehicle 100 come into contact with a step, or immediately before that, and is repeatedly executed every time a predetermined control cycle elapses. .
  • the angle calculation unit 13 calculates the current trajectory angle ⁇ .
  • the angle calculation unit 13 first calculates the vertical load Fz using the following equation (1).
  • the vertical load Fz is a force applied downward to the wheels 111 and 112, which are driven wheels.
  • the vertical load Fz is calculated as the total value of the forces that each of the wheels 111 and 112 receives.
  • “m” in the first term on the right side of equation (1) is the weight of the vehicle 100.
  • “g” is gravitational acceleration.
  • “l” is the wheelbase length of vehicle 100.
  • “l r ” is the length along the front-rear direction from the center of gravity of the vehicle 100 to the rotation center axis of the rear wheels (wheels 121, 122).
  • G x refers to the acceleration G x mentioned above.
  • “h” is the height from the road surface to the center of gravity of the vehicle 100.
  • the first term on the right side of equation (1) represents the downward component of the force applied to each of the wheels 111 and 112 as a dynamic load when the vehicle 100 travels.
  • “d s ” in the second term on the right side of equation (1) is the damping coefficient of the damper (not shown) of vehicle 100.
  • “V s ” is the running speed of the vehicle 100 in the longitudinal direction. Vs can be calculated based on the signal from the wheel speed sensor 201, for example.
  • “ ⁇ old ” is the value of the trajectory angle ⁇ calculated in the previous control cycle. When the process of FIG. 5 is executed for the first time, 0 is used as the value of ⁇ old , for example.
  • the second term on the right side of equation (1) represents the force applied to each of the wheels 111 and 112 as the damper expands and contracts.
  • the angle calculation unit 13 calculates the trajectory angle ⁇ using the following equation (2).
  • “F mg ” on the right side of equation (2) is the driving force acquired by the driving force acquisition unit 11, that is, the driving force that the drive wheels of the vehicle 100 are applying to the road surface.
  • the angle calculation unit 13 of the present embodiment calculates the trajectory angle ⁇ at the current position by calculating the trajectory angle ⁇ at the current position based on the driving force acquired by the driving force acquisition unit 11 and the acceleration G x acquired by the acceleration acquisition unit 12. Calculate based on both.
  • step S02 a process of calculating the amount of change in angle is performed.
  • the "angle change amount” refers to the amount of change in the trajectory angle when the vehicle 100 travels a predetermined distance. If the above-mentioned "predetermined distance” is “ds” and the “amount of change in locus angle” is "d ⁇ ”, the amount of angle change is expressed as "d ⁇ /ds”.
  • the angle change amount can be calculated using the following equation (3).
  • the denominator on the right side of equation (3) is the traveling speed of the vehicle 100 in the longitudinal direction.
  • the numerator on the right side is the time differential of the trajectory angle ⁇ .
  • step S03 it is determined whether the angle change amount d ⁇ /ds calculated as described above exceeds a threshold value TH1. If the angle change amount d ⁇ /ds exceeds the threshold TH1, the process moves to step S04.
  • step S04 If the process moves to step S04, the value of the angle change amount d ⁇ /ds is relatively large, so it is assumed that the level difference is high and that the level difference is a wheel stop. Therefore, the climbing determination unit 14 determines that the vehicle 100 should not climb over the step.
  • step S05 the braking/driving force control unit 15 performs a process of immediately stopping the vehicle 100.
  • the vehicle 100 comes to a stop with the wheels 111 and 112 remaining approximately in the state immediately after contacting the step.
  • step S03 if the angle change amount d ⁇ /ds is less than or equal to the threshold TH1, the process moves to step S06.
  • step S06 the climbing determination unit 14 determines that the vehicle 100 should climb over the step. In this case, the braking/driving force control unit 15 continues to generate the driving force of the vehicle 100. Thereafter, the vehicle 100 will continue to drive over the step.
  • the climbing determination unit 14 of this embodiment determines whether the vehicle 100 should climb over a step based on the angle change amount d ⁇ /ds. Specifically, when the angle change amount d ⁇ /ds exceeds the threshold value TH1, it is determined that the vehicle 100 should not go over the step.
  • the trajectory angle ⁇ is calculated based on both the driving force acquired by the driving force acquisition unit 11 and the acceleration G x acquired by the acceleration acquisition unit 12. Based on the angle change amount d ⁇ /ds, which is the slope of the trajectory angle ⁇ , it is determined whether the step should be climbed over. Since the driving force and acceleration G x can be obtained relatively accurately while the vehicle speed is low, the above determination can be made quickly and accurately.
  • FIG. 6 shows an example of changes in vehicle speed, etc. when the wheels 111 and 112 contact a step while the vehicle 100 is running.
  • G1 in FIG. 6(A) represents a change in vehicle speed calculated from the rotational speeds of wheels 121 and 122, which are rear wheels.
  • G2 represents a change in vehicle speed calculated from the rotational speeds of the wheels 111 and 112, which are the front wheels.
  • G3 in FIG. 6(B) represents a change in acceleration Gx
  • G4 represents a change in acceleration Gy
  • the graph in FIG. 6(C) represents changes in the trajectory angle ⁇ .
  • the graph in FIG. 6(D) represents changes in the driving force acquired by the driving force acquisition unit 11.
  • Time t1 shown in FIG. 6 is the time when the wheels 111 and 112 come into contact with a step that is a wheel stop.
  • the angle change amount d ⁇ /ds exceeds the threshold value TH1 immediately after time t1, and the braking force is automatically applied immediately after that (FIG. 6(D)). Therefore, even if the driver continues to press the accelerator pedal, the vehicle 100 does not go over the step and stops immediately after contacting the step.
  • FIG. 7 shows an example in which the accelerator pedal is depressed while the vehicle 100 is stopped near a step that is a wheel stop.
  • G1 in FIG. 7(A) represents a change in vehicle speed calculated from the rotational speeds of wheels 121 and 122, which are rear wheels.
  • G2 represents a change in vehicle speed calculated from the rotational speeds of the wheels 111 and 112, which are the front wheels.
  • G3 in FIG. 7(B) represents a change in acceleration Gx
  • G4 represents a change in acceleration Gy
  • the graph in FIG. 7(D) represents changes in the driving force acquired by the driving force acquisition unit 11.
  • the graph in FIG. 7(E) represents changes in the amount of operation (depression amount) of the accelerator pedal.
  • Time t2 shown in FIG. 7 is the time when the wheels 111 and 112 contact a step that is a wheel stop immediately after the accelerator pedal is depressed.
  • the angle change amount d ⁇ /ds exceeds the threshold value TH1 at time t3 immediately after time t2, and the driving force is automatically set to 0 immediately after that (FIG. 7(D)). Since the period from time t2 to time t3 is approximately 0.3 seconds, vehicle 100 stops almost at the same time that wheels 111 and 112 contact the wheel chocks. In this way, in the present embodiment, immediately after the wheels 111 and 112 come into contact with a step, the determination and response as to whether or not to get over the step are quickly and appropriately performed.
  • the vehicle 100 is a rear wheel drive vehicle and the front wheels are brought into contact with a step. Processing similar to the above can also be performed when vehicle 100 is a front-wheel drive vehicle.
  • the value of the trajectory angle ⁇ may be calculated by setting the value of “cos ⁇ old ” in equation (2) to 1.
  • control device 10 according to the present embodiment further includes a contact determination section 16 and a step determination section 17.
  • the contact determination unit 16 performs a process of determining whether the vehicle is in a two-wheel contact state in which both the left and right wheels are in contact with the step, or in a single-wheel contact state in which only the left and right wheels are in contact with the step. This is the part to do. The determination method will be explained later.
  • the level difference determination unit 17 is a part that performs processing to determine the presence or absence of a level difference in the vicinity of the vehicle 100.
  • the level difference determining unit 17 determines whether there is a level difference in the traveling direction of the vehicle 100 at a time before the wheels 111 and the like of the vehicle 100 actually come into contact with the level difference. Such a determination can be made based on an image captured by the camera 204 outside the vehicle.
  • the series of processes shown in FIG. 9 is executed by the control device 10 according to this embodiment instead of the series of processes shown in FIG. 3.
  • the steps that are the same as those shown in FIG. 3 are given the same reference numerals (S01, etc.) as in FIG. 3.
  • the value of the current trajectory angle ⁇ is calculated, for example, using a method similar to that described above.
  • step S12 following step S11 it is determined whether the value of the calculated trajectory angle ⁇ is less than or equal to a predetermined lower limit value.
  • the lower limit value is set in advance as a value of the trajectory angle ⁇ corresponding to a small step difference of about 1 cm. If the value of the trajectory angle ⁇ is less than or equal to the lower limit value, the series of processing shown in FIG. 9 is ended without performing any special processing. That is, the climbing determination unit 14 of the present embodiment does not determine whether the vehicle 100 should climb over a step when the trajectory angle ⁇ is less than or equal to a predetermined lower limit value. Thereby, the calculation load on the control device 10 can be reduced.
  • step S12 if the value of the trajectory angle ⁇ exceeds the lower limit value, the process moves to step S13.
  • the contact determination unit 16 determines whether or not the two wheels are in contact. The contact determination unit 16 makes this determination by, for example, performing the processing shown in FIG. 10 .
  • step S21 in FIG. 10 it is determined whether the traveling speed Vx of the vehicle 100 is less than 1 km/h. The determination is made based on the measured value of the wheel speed sensor 201. Note that the speed of 1 km/h is a value near the lower limit of the vehicle speed that can be measured by the wheel speed sensor 201. Therefore, the determination made in step S21 can be said to be a determination as to whether a value larger than 0 has been detected as the traveling speed Vx .
  • step S22 it is determined whether the absolute value of the acceleration Gy measured by the acceleration acquisition unit 12 is greater than 0.05G. If the absolute value of the acceleration G y is greater than 0.05G, the process moves to step S23. In step S23, it is determined that one wheel is in contact. In other words, it is determined that only one of the wheels 111 and 112 is in contact with the step, and the other is not in contact with the step.
  • step S22 if the absolute value of the acceleration Gy is 0.05G or less, the process moves to step S24.
  • step S24 it is determined that both wheels are in contact. In other words, it is determined that both wheels 111 and 112 are in contact with the step.
  • step S21 if the traveling speed Vx is 1 km/h or more, the process moves to step S25.
  • step S25 after calculating the difference between the differential value of the vehicle speed calculated based on the rotation speed of the left wheel 111 and the differential value of the vehicle speed calculated based on the rotation speed of the right wheel 112, It is determined whether the absolute value of the difference is greater than 0.2G. If the absolute value of the difference is larger than 0.2G, the process moves to step S23, and it is determined that one wheel is in contact. If the absolute value of the difference is 0.2G or less, the process moves to step S24, and it is determined that the two wheels are in contact.
  • step S13 If it is determined in step S13 that both wheels are in contact, the process moves to step S01.
  • the processing performed after step S01 is the same as the processing performed in the first embodiment (FIG. 5), except when the determination is No in the subsequent step S03.
  • step S13 If it is determined in step S13 that one wheel is in contact, the process moves to step S14.
  • step S14 the angle calculation unit 13 performs a process of calculating the current trajectory angle ⁇ .
  • Fz is first calculated by using the following equation (4) in place of equation (1).
  • trajectory angle ⁇ is calculated by using the following equation (5) in place of equation (2).
  • step S15 a process of calculating the angle change amount d ⁇ /ds is performed.
  • the angle change amount d ⁇ /ds can be calculated by the above-mentioned equation (3) using the time differential of the trajectory angle ⁇ calculated in step S14. After step S15, the process moves to step S03.
  • step S03 if the angle change amount d ⁇ /ds is less than or equal to the threshold value TH1, the process moves to step S16 in this embodiment.
  • step S16 it is determined whether the value of the trajectory angle ⁇ calculated in step S14 is larger than a threshold value TH2. If the value of the trajectory angle ⁇ is larger than the threshold value TH2, the process moves to step S04. In other cases, the process moves to step S06.
  • the processing executed after each migration is the same as in the first embodiment.
  • the angle calculation unit 13 of this embodiment changes the method of calculating the trajectory angle ⁇ according to the determination result of the contact determination unit 16 (step S13).
  • the trajectory angle ⁇ can be accurately calculated by using different formulas for both wheels in contact and for one wheel in contact.
  • the contact determination unit 16 determines whether the vehicle is in a two-wheel contact state or a one-wheel contact state based on the acceleration Gy , which is the lateral acceleration of the vehicle 100 (step S22 ). Further, the contact determination unit 16 determines whether the contact state is a two-wheel contact state or a one-wheel contact state based on the rotational speeds of the left and right wheels (step S25). The latter determination is made only when the traveling speed Vx of the vehicle 100 is equal to or higher than a predetermined speed (step S21). Thereby, it is possible to accurately determine whether the vehicle is in a two-wheel contact state or a one-wheel contact state.
  • the series of processes shown in FIG. 9 may be started from the time when the level difference determination unit 17 determines that there is a level difference on the traveling direction side of the vehicle 100.
  • the process of step S11 may be a process of estimating the height of the step by some method (for example, image processing).
  • the process of step S12 may be a process of determining whether the height of the step is less than or equal to the lower limit value (while allowing for low accuracy).
  • the climbing determination unit 14 determines whether or not the vehicle 100 should climb over the level difference only when the level difference determination unit 17 has previously determined that there is a level difference in the vicinity of the vehicle 100. The process necessary to make this determination will be performed. Thereby, the calculation load on the control device 10 can be reduced.
  • the control device 10 does not include a crossing determination section 14 or a braking/driving force control section 15, but instead includes an air pressure determination section 18 and a notification section 19. There is. Further, the vehicle 100 is provided with a notification device 210.
  • the air pressure determination unit 18 is a part that performs a process of determining whether the air pressure of the wheels 111 etc. is sufficient based on the trajectory angle ⁇ . The specific determination method will be described later.
  • the notification unit 19 is a part that performs a process of notifying the occupants of the vehicle 100 when the air pressure determination unit 18 determines that the air pressure is insufficient.
  • the notification unit 19 makes the notification by operating the notification device 210.
  • the notification device 210 is, for example, a warning lamp installed on an instrument panel.
  • the graph in FIG. 4(B) shows an example of a change in the trajectory angle ⁇ when the vehicle 100 crosses the step ST as shown in FIG. 4(A).
  • "x1" shown in FIG. 4 is the position of the vehicle 100 at the time when the wheel 111 etc. contact the step ST.
  • "x2" shown in FIG. 4 is the position of the vehicle 100 at the time when the wheels 111 and the like are separated from the road surface. This position is a position corresponding to an inflection point in the graph of FIG. 4(A), and a position corresponding to a peak value in the graph of FIG. 4(B).
  • the "run-over distance” is the distance from x1 to x2, that is, the distance that the vehicle 100 travels from when the wheels 111 etc. come into contact with the step ST until the wheels 111 etc. leave the road surface.
  • the "run-over distance” can also be said to be the distance traveled by the vehicle 100 during the period from when the trajectory angle ⁇ begins to increase until it begins to decrease.
  • the running distance defined in this way is the length along the longitudinal direction of the portion of the wheels 111 etc. that is in contact with the road surface RD when the vehicle 100 is stopped on the flat road surface RD (Fig. There is a correlation with L) in 3. Therefore, as the air pressure of the wheels 111 and the like becomes lower, L shown in FIG. 3 becomes longer, and the running distance shown in FIG. 4 tends to become longer. Therefore, the air pressure determination unit 18 of the control device 10 according to the present embodiment determines whether the air pressure is sufficient based on the run-over distance.
  • FIG. 12 What is shown in FIG. 12 is a graph showing the correlation between the height of the step that contacted the wheel 111 etc. (horizontal axis) and the running distance (vertical axis).
  • G11 is a graph when the air pressure of the wheels 111 etc. is the standard pressure
  • G12 is the graph when the air pressure of the wheels 111 etc. is the lower limit pressure (that is, the lower limit of the air pressure range at which the vehicle 100 can run normally)
  • G13 is a graph when the air pressure of the wheels 111 and the like is too low.
  • the present inventors established a method for determining air pressure by the air pressure determining section 18. The determination method will be explained below.
  • the series of processes shown in FIG. 13 is executed by the control device 10 according to this embodiment instead of the series of processes shown in FIG. Among the steps shown in FIG. 13, the same steps as those shown in FIG. 9 are given the same reference numerals (S11, etc.) as in FIG.
  • step S10 a process of integrating the traveling speed of the vehicle 100 is started.
  • the control device 10 calculates the distance that the vehicle 100 travels after the wheels 111 etc. contact the step.
  • the process in step S10 is performed only when the process in FIG. 13 is executed for the first time after the wheel 111 or the like comes into contact with a step.
  • the process of step S10 is not performed, but the process of integrating the traveling speed of the vehicle 100 is continuously performed.
  • step S10 the processes after step S11 are executed. After that, when the process of step S01 or step S14 is performed, the process moves to step S31 in this embodiment.
  • step S31 it is determined whether the value of the trajectory angle ⁇ calculated each time through steps S01 and S04 has reached a peak value, that is, whether the value has changed from increasing to decreasing.
  • the process moves to step S32. In other cases, the series of processing shown in FIG. 13 is ended.
  • step S32 it is determined whether the peak value of the trajectory angle ⁇ is larger than a predetermined threshold value. If the peak value is larger than the threshold value, the process moves to step S33. In other cases, the process moves to step S36, which will be described later.
  • step S33 a process is performed to stop the running speed integration started in step S10.
  • the distance obtained by the integration up to that point is acquired as the "run-over distance" mentioned above.
  • step S34 it is determined whether the calculated run-over distance is greater than a predetermined threshold.
  • the threshold value is set in advance as a value of the running distance calculated when the air pressure of the wheels 111 etc. is the lower limit pressure. If the run-up distance is greater than the threshold value, the process moves to step S35.
  • step S35 the notification unit 19 executes a process of notifying the occupant that the air pressure has decreased. The notification unit 19 performs the above notification by operating the notification device 210 (specifically, by turning on a warning light).
  • step S36 following step S35, a process is performed to return the cumulative value of the traveling speed to zero. Thereafter, the land connection process shown in FIG. 13 is completed.
  • step S34 if the run-over distance is less than or equal to the threshold value, the process moves to step S36 without passing through step S35. In this case, since the air pressure of the wheels 111 and the like is presumed to be normal, the notification unit 19 does not issue a notification.
  • the air pressure determination unit 18 of this embodiment determines that the air pressure of the wheels 111, etc. is insufficient when the calculated run-over distance exceeds a predetermined threshold. Thereby, it is possible to appropriately determine whether or not the air pressure is sufficient.
  • the air pressure determination unit 18 calculates the running distance by integrating the traveling speed of the vehicle 100. Since an existing sensor for measuring vehicle speed is used, there is no need to provide a separate sensor for calculating the running distance.
  • the air pressure determination unit 18 does not determine whether the air pressure is sufficient. In other words, if the height of the step is estimated to be lower than the predetermined value, it is not determined whether the air pressure is sufficient. As a result, the process is performed even when the height of the step is lower than H1 in FIG. 12, and it is possible to prevent a situation where an erroneous determination regarding the air pressure is made.
  • vehicle 100 is an electric vehicle that runs using the driving force of the rotating electric machine 150.
  • vehicle 100 may be a vehicle that travels using the driving force of an internal combustion engine, or may be a hybrid vehicle that travels using driving power from both rotating electric machine 150 and the internal combustion engine.
  • the driving force acquisition unit 11 may acquire the driving force that the vehicle 100 is applying to the road surface, for example, based on a signal from a torque sensor provided on the wheel 111 or the like.
  • the operations of the control device 10 as described above are realized, for example, by a program installed in the control device 10.
  • the program calculates the trajectory angle ⁇ , which is the angle that the trajectory of the rotation center axis AX of the wheels 111 etc. of the vehicle 100 makes with respect to the road surface, based on the driving force that the vehicle 100 is applying to the road surface and the traveling direction of the vehicle 100.
  • the control device 10 is caused to calculate the acceleration along the .
  • the control apparatus and control method described in the present disclosure may include one or more specialized It may be realized by a computer.
  • the control apparatus and control method described in this disclosure may be implemented by a dedicated computer provided by configuring a processor that includes one or more dedicated hardware logic circuits.
  • a control device and a control method according to the present disclosure are configured by a combination of a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. It may be implemented by one or more dedicated computers.
  • a computer program may be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium.
  • Dedicated hardware logic circuits and hardware logic circuits may be implemented by digital circuits that include multiple logic circuits, or by analog circuits.
  • a vehicle control device a driving force acquisition unit that acquires the driving force that the vehicle is applying to the road surface; an acceleration acquisition unit that acquires acceleration along the traveling direction of the vehicle;
  • a control device comprising: an angle calculation unit that calculates a trajectory angle, which is an angle that a trajectory of a rotation center axis of a wheel of the vehicle makes with respect to a road surface, based on the driving force and the acceleration.
  • a crossing determination unit that determines whether the vehicle should climb over a step based on the trajectory angle.
  • the braking/driving force control section includes: If the crossing determination section determines that the vehicle should climb over the step, controlling the braking/driving force so that the vehicle gets over the step; The control device according to supplementary note 2, wherein when the crossing determination section determines that the vehicle should not climb over the step, the control device controls the braking/driving force so that the vehicle stops.
  • the crossing determination section is The control device according to appendix 2 or 3, wherein the control device determines whether or not the vehicle should go over a step based on the amount of change in angle, which is the amount of change in the trajectory angle when the vehicle has traveled a predetermined distance.
  • the crossing determination section is The control device according to supplementary note 4, which determines that the vehicle should not go over a step when the amount of change in angle exceeds a predetermined threshold value.
  • the vehicle has a rotating electric machine for generating the driving force, The control device according to any one of Supplementary Notes 1 to 5, wherein the driving force acquisition unit acquires the driving force based on the magnitude of the current flowing through the rotating electric machine.
  • the crossing determination section is The control device according to supplementary note 2, wherein if the trajectory angle is less than or equal to a predetermined lower limit value, it is not determined whether the vehicle should go over a step.
  • [Additional note 8] further comprising a contact determination unit that determines whether the vehicle is in a two-wheel contact state in which the left and right wheels are in contact with the step, or a one-wheel contact state in which only the left and right wheels are in contact with the step; 8.
  • the control device according to any one of Supplementary Notes 1 to 7, wherein the angle calculation unit changes the calculation method of the trajectory angle according to the determination result of the contact determination unit.
  • [Additional note 12] further comprising a level difference determination unit that determines the presence or absence of a level difference in the vicinity of the vehicle, The crossing determination section is Only when the step determining section determines in advance that there is a step near the vehicle, The control device according to supplementary note 2, which performs processing necessary for determining whether or not the vehicle should go over the step.
  • the control device according to supplementary note 1 further comprising an air pressure determination unit that determines whether or not the air pressure of the wheel is sufficient based on the trajectory angle.
  • the control device according to [Appendix 13] further comprising a notification unit that notifies an occupant of the vehicle when the air pressure is insufficient.
  • the air pressure determination unit is According to supplementary note 13 or 14, it is determined whether or not the air pressure is sufficient based on a run-over distance, which is a distance traveled by the vehicle during a period from when the trajectory angle starts to increase to when it starts to decrease. Control device as described.
  • the air pressure determination unit is The control device according to appendix 15, wherein the control device determines that the air pressure is insufficient when the run-up distance exceeds a predetermined threshold value.
  • the air pressure determination unit is The control device according to supplementary note 15 or 16, wherein the running distance is calculated by integrating the running speed of the vehicle.
  • the air pressure determination unit is 18.
  • the control device according to any one of appendices 13 to 17, wherein if the peak value of the trajectory angle is less than or equal to a predetermined lower limit value, it is not determined whether the air pressure is sufficient.
  • the trajectory angle which is the angle that the trajectory of the rotation center axis of the wheel of the vehicle makes with respect to the road surface, is based on the driving force that the vehicle is applying to the road surface and the acceleration along the traveling direction of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

制御装置(10)は、車両(100)が路面に加えている駆動力、を取得する駆動力取得部(11)と、車両(100)の進行方向に沿った加速度、を取得する加速度取得部(12)と、車両(100)が有する車輪(111,112)の回転中心軸(AX)の軌跡が路面に対してなす角度、である軌跡角度θを、駆動力及び加速度に基づいて算出する角度算出部(13)と、を備える。

Description

制御装置及びプログラム 関連出願の相互参照
 本出願は、2022年4月25日に出願された日本国特許出願2022-071270号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は、車両の制御装置及びプログラムに関する。
 下記特許文献1には、車両の車輪が段差に接触した場合において、当該段差の高さを推定することのできる装置、について記載されている。この装置によれば、段差が車輪止めである場合には、車輪が当該段差を乗り越えるよりも前の時点で適切な制動力を発生させ、車両を停止させることが可能となる。また、段差が車輪止めではない場合には、当該段差を乗り越えるために必要且つ適切な駆動力を発生させ、車両の飛び出しを抑制しながら段差を乗り越えさせることが可能となる。
特開2019-93761号公報
 上記特許文献1に記載の装置では、車輪が段差に接触した後、駆動力を次第に増加させて行きながら、車輪が動き出したタイミングにおけるトルクの値に基づいて、段差の高さを推定することとしている。上記における「車輪が動き出したタイミング」は、車速センサの測定値に基づいて判定している。
 しかしながら、一般的な車速センサでは、例えば1km/h以下のような極めて遅い車速を検知することが難しい。このため、上記特許文献1に記載の装置では、車輪が動き出したと判定されるタイミングが、実際に動き出すタイミングよりも遅れてしまう可能性が有る。その結果、制動力を発生させるタイミングが遅れてしまい、車輪が車輪止めを乗り越えてしまうような事態等が生じ得る。
 本開示は、車輪が段差に接触した際の制御を適切に行うことのできる制御装置、及び当該制御装置用のプログラムを提供することを目的とする。
 本開示に係る制御装置は、車両の制御装置であって、車両が路面に加えている駆動力、を取得する駆動力取得部と、車両の進行方向に沿った加速度、を取得する加速度取得部と、車両が有する車輪の回転中心軸の軌跡が路面に対してなす角度、である軌跡角度を、駆動力及び加速度に基づいて算出する角度算出部と、を備える。
 このような構成の制御装置によれば、車輪の回転中心軸の軌跡が路面に対してなす角度、である軌跡角度を算出することができる。軌跡角度は、車輪が当接した段差の形状に応じて変化するものである。このため、例えば、算出された軌跡角度に基づいて段差の高さを推定し、これに応じて制駆動力の制御等を適切に行うようなことが可能となる。
図1は、第1実施形態に係る制御装置が搭載される車両、の構成を模式的に示す図である。 図2は、第1実施形態に係る制御装置の構成を模式的に示す図である。 図3は、車輪が段差に接触した状態を示す図である。 図4は、回転中心軸の軌跡や軌跡角度について説明するための図である。 図5は、第1実施形態に係る制御装置により実行される処理の流れを示すフローチャートである。 図6は、第1実施形態に係る制御装置により制御が行われているときの、車速の変化等を示すタイムチャートである。 図7は、第1実施形態に係る制御装置により制御が行われているときの、車速の変化等を示すタイムチャートである。 図8は、第2実施形態に係る制御装置の構成を模式的に示す図である。 図9は、第2実施形態に係る制御装置により実行される処理の流れを示すフローチャートである。 図10は、第2実施形態に係る制御装置により実行される処理の流れを示すフローチャートである。 図11は、第3実施形態に係る制御装置の構成を模式的に示す図である。 図12は、車輪が接触した段差の高さと、算出される乗り上げ距離と、の対応関係を示す図である。 図13は、第3実施形態に係る制御装置により実行される処理の流れを示すフローチャートである。
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 第1実施形態について説明する。本実施形態に係る制御装置10は、車両100に搭載されるものであり、車両100の制御等を行うための装置として構成されている。制御装置10の説明に先立ち、図1を参照しながら車両100の構成について先ず説明する。
 車両100は、運転者の運転操作に基づいて走行する車両である。ただし、車輪が段差に接触した場合等においては、運転操作の一部(例えば制動)が、制御装置10によって自動的に行われることもある。車両100は、車体101と、車輪111、112、121、122と、回転電機150と、電池160と、を備えている。
 車体101は、車両100の本体部分であり、「ボディ」と称される部分である。車輪111は、車体101の前方左側部分に設けられた車輪であり、車輪112は、車体101の前方右側部分に設けられた車輪である。前輪である車輪111、112は、本実施形態では従動輪として設けられている。
 車輪121は、車体101の後方左側部分に設けられた車輪であり、車輪122は、車体101の後右側部分に設けられた車輪である。後輪である車輪121、122は、本実施形態では駆動輪として設けられている。つまり、車輪121、122は、後述の回転電機150の駆動力によって回転し、車両100を走行させる。
 このように、本実施形態の車両100は、所謂「後輪駆動」の車両として構成されている。このような態様に換えて、車両100は、前輪駆動の車両として構成されていてもよく、四輪駆動の車両として構成されていてもよい。後者の場合、後輪を駆動するための回転電機150に加えて、前輪を駆動するための回転電機が別途設けられていてもよい。
 車輪121にはブレーキ装置131が設けられており、車輪122にはブレーキ装置132が設けられている。ブレーキ装置131、132はいずれも、油圧により車輪に制動力を加える制動装置である。このような制動装置は、駆動輪のみならず、従動輪である車輪111、112にも設けられていてもよい。ブレーキ装置131、132の動作は、後述のブレーキECU20によって制御される。
 回転電機150は、後述の電池160から電力の供給を受けて、車輪121、122を回転させるための駆動力、すなわち、車両100が走行するのに必要な駆動力を発生させる装置である。回転電機150は、所謂「モータージェネレータ」である。回転電機150で生じた駆動力は、パワートレイン部140を介して車輪121、122のそれぞれに伝達され、車輪121、122を回転させる。尚、電池160と回転電機150との間における電力の授受は、電力変換器であるインバータを介して行われるのであるが、図1においては当該インバータの図示が省略されている。
 回転電機150は、車両100を加速するための駆動力を生じさせるほか、回生により車両100を減速させる制動力をも生じさせることができる。
 車両100の制動は、回転電機150によって行うこともできるし、先に述べたブレーキ装置131、132によって行うこともできる。
 電池160は、回転電機150に駆動用の電力を供給するための蓄電池である。本実施形態では、電池160としてリチウムイオンバッテリーが用いられている。制動時において回転電機150で生じた回生電力は、不図示のインバータを介して電池160に供給され、電池160に充電される。
 車両100には、制御装置10とは別にブレーキECU20が設けられている。制御装置10及びブレーキECU20はいずれも、CPU、ROM、RAM等を有するコンピュータシステムとして構成されている。これらは、車両100に設けられたネットワークを介して、互いに双方向の通信を行うことができる。
 ブレーキECU20は、制御装置10からの指示に応じて、ブレーキ装置131、132の動作を制御する処理を行う。
 尚、制御装置10及びブレーキECU20は、本実施形態のように2つの装置に分かれていなくてもよい。例えば、制御装置10に、ブレーキECU20の機能が統合されている態様としてもよい。後に説明する制御装置10の機能を実現するにあたっては、その具体的な装置構成は特に限定されない。
 車両100には、各種の物理量を測定するためのセンサが多数設けられているのであるが、図1においてはその図示が省略されている。図2においてその一部が示されるように、上記センサには、車輪速センサ201と、加速度センサ202と、電流センサ203と、車外カメラ204と、が含まれる。
 車輪速センサ201は、車輪111等の単位時間あたりにおける回転数を測定するためのセンサである。車輪速センサ201は、4つの車輪111、112、121、122のそれぞれに対して個別に設けられているのであるが、図2においては、車輪速センサ201が単一のブロックとして模式的に描かれている。車輪速センサ201で測定された回転数を示す信号は、制御装置10へと送信される。制御装置10は、当該信号に基づいて、車両100の走行速度を把握することができる。
 加速度センサ202は、車両100の加速度を検出するためのセンサである。加速度センサ202は車体101に取り付けられている。加速度センサ202は、車体101の前後方向、左右方向、及び上下方向の各加速度に加えて、ピッチング、ローリング、及びヨーイングの各回転加速度をも検出することのできる、6軸加速度センサとして構成されている。加速度センサ202により検出された各加速度を示す信号は、制御装置10へと送信される。
 電流センサ203は、回転電機150を流れる駆動用電流の値を検出するためのセンサである。電流センサ203により検出された駆動用電流の値を示す信号は、制御装置10へと入力される。制御装置10は、入力された駆動用電流の値に基づいて、回転電機150で生じている駆動力の大きさを判定することができる。
 車外カメラ204は、車両100の周囲を撮影するカメラであり、例えばCMOSカメラである。車外カメラ204により撮影された画像のデータは、制御装置10へと入力される。制御装置10は、当該画像を処理することにより、車両100の周囲における障害物(例えば車輪止めのような段差)の有無やその形状を把握することができる。尚、車両100の周囲の状況を検知するためのセンサとしては、車外カメラ204に加えて、もしくは車外カメラ204に換えて、他のセンサが設けられていてもよい。このようなセンサとしては、例えば、LIDARセンサやレーダー等が挙げられる。
 引き続き図2を参照しながら、制御装置10の構成について説明する。制御装置10は、その機能を表すブロック要素として、駆動力取得部11と、加速度取得部12と、角度算出部13と、乗り越え判定部14と、制駆動力制御部15と、を備えている。
 駆動力取得部11は、車両100(具体的には車両100の駆動輪)が路面に加えている駆動力、を取得する処理を行う部分である。駆動力取得部11は、回転電機150を流れる駆動用電流の値を、先に述べた電流センサ203によって取得し、駆動用電流の大きさに基づいて駆動力を算出し取得する。駆動力取得部11は、駆動用電流の大きさに基づいて駆動輪のトルクを算出し、得られたトルクを、車両100の進行方向に沿った上記駆動力に変換することとしてもよい。
 加速度取得部12は、加速度センサ202からの信号に基づいて、各種の加速度を取得する処理を行う部分である。加速度取得部12によって取得される加速度には、車両100の進行方向(つまり前後方向)に沿った加速度Gと、車両100の左右方向に沿った加速度Gとが含まれる。加速度Gは「縦加速度」とも称されるものであり、加速度Gは「横加速度」とも称されるものである。これらはいずれも、例えば「0.5G」のように、重力加速度である「G」を単位とする数値として取得される。
 角度算出部13は、軌跡角度を算出する処理を行う部分である。「軌跡角度」とは、車輪111等の回転中心軸の軌跡が路面に対してなす角度、のことである。
 図3には、車輪111が路面RDの上にある状態が模式的に描かれている。路面RDには、車輪止めである段差STが設けられており、車輪111の一部が段差STに接触した状態となっている。図3の状態から、車両100が右側(つまり段差ST側)に向かって更に進行しようとした場合には、車輪111は段差STに乗り上げることとなる。
 図4(A)において実線で示されているグラフは、車両100が上記のように右側に向かって進行した場合における、車両100の走行距離(横軸)と、車輪111の回転中心軸AXの高さ(縦軸)と、の関係を表している。当該グラフは、車両100の走行中における回転中心軸AXの軌跡を表すもの、ということができる。図4(A)に示されるθは、車両100がx11の位置にあるときにおける、上記の軌跡角度を表している。このような軌跡角度θは、車両100の各位置に対応して定義することができる。
 尚、「軌跡角度」とは、先に述べたように、車輪111等の回転中心軸AXの軌跡が路面に対してなす角度、のことであるが、ここでいう「回転中心軸AXの軌跡」とは、車両100をその左右方向に沿って見た場合における、回転中心軸AXの軌跡のことである。
 角度算出部13は、現在位置における軌跡角度θを、駆動力取得部11によって取得された駆動力と、加速度取得部12によって取得された加速度Gと、の両方に基づいて算出する。その具体的な算出方法については後に説明する。
 ところで、図4(A)のグラフに示されるような回転中心軸AXの軌跡は、同図において一点鎖線で示される段差STの形状、をある程度反映させたものとなる。両者の形状が互いに異なるのは、車輪111が剛体ではなく、段差STに当たることで車輪111が変形するからである。
 図2に戻って説明を続ける。乗り越え判定部14は、車両100が段差を乗り越えるべきか否かを、軌跡角度θに基づいて判定する処理を行う部分である。その具体的な判定方法については後に説明する。
 制駆動力制御部15は、回転電機150やブレーキ装置131、132の動作を制御することで、車両100の制駆動力を調整する処理を行う部分である。制駆動力制御部15は、車両100が段差を乗り越えるべき、と乗り越え判定部14によって判定された場合には、車両100の車輪111等が当該段差を乗り越えるように制駆動力を制御する。また、車両100が段差を乗り越えるべきではない、と乗り越え判定部14によって判定された場合には、車両100が停止するように制駆動力を制御する。
 このような制駆動力の制御は、運転者の運転操作を、制御装置10が一時的にオーバーライドする形で行われる。このため、例えば、車輪111が車輪止めに接触した状態で、運転者によるアクセルペダルの踏み込みが誤って行われた場合でも、車両100が車輪止めを乗り越えて走行してしまうような事態を防止すること等が可能となる。
 制御装置10により実行される処理の流れについて、図5のフローチャートを主に参照しながら説明する。図5に示される一連の処理は、例えば、車両100の車輪111等が段差に接触した時点、もしくはその直前の時点から開始され、所定の制御周期が経過する毎に繰り返し実行されるものである。
 当該処理の最初のステップS01では、現時点の軌跡角度θを算出する処理が、角度算出部13によって行われる。角度算出部13は、下記の式(1)を用いて、垂直荷重Fを先ず算出する。垂直荷重Fは、従動輪である車輪111、112に対し、下方側に向かって加えられる力のことである。垂直荷重Fは、車輪111、112のそれぞれが受ける力の合計値として算出される。
Figure JPOXMLDOC01-appb-M000001
 
 式(1)の右辺第1項にある「m」は車両100の重量である。「g」は重力加速度である。「l」は車両100のホイールベース長さである。「l」は、車両100の重心から後輪(車輪121、122)の回転中心軸までの、前後方向に沿った長さである。「G」は先に述べた加速度Gのことである。「h」は、路面から車両100の重心までの高さである。式(1)の右辺第1項は、車両100が走行する際の動荷重として車輪111、112のそれぞれに加えられる力の、下方側に向かう方向の成分を表している。
 式(1)の右辺第2項にある「d」は、車両100のダンパー(不図示)の減衰係数である。「V」は、車両100の前後方向に沿った走行速度である。Vは、例えば車輪速センサ201からの信号に基づいて算出することができる。「θold」は、前回の制御周期において算出された軌跡角度θの値である。図5の処理が最初に実行される際には、θoldの値として例えば0が用いられる。式(1)の右辺第2項は、ダンパーの伸縮に伴って車輪111、112のそれぞれに加えられる力、を表している。
 角度算出部13は、上記のような垂直荷重Fを算出した後、以下の式(2)を用いて軌跡角度θを算出する。
Figure JPOXMLDOC01-appb-M000002
 
 式(2)の右辺にある「Fmg」は、駆動力取得部11によって取得された駆動力、すなわち、車両100の駆動輪が路面に加えている駆動力である。
 以上のように、本実施形態の角度算出部13は、現在位置における軌跡角度θを、駆動力取得部11によって取得された駆動力と、加速度取得部12によって取得された加速度Gと、の両方に基づいて算出する。
 ステップS01に続くステップS02では、角度変化量を算出する処理が行われる。「角度変化量」とは、車両100が所定距離だけ進んだ際における軌跡角度の変化量、のことである。上記の「所定距離」を「ds」とし、「軌跡角度の変化量」を「dθ」とすれば、角度変化量は「dθ/ds」と表記される。角度変化量は、以下の式(3)を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000003
 
 式(3)の右辺の分母は、車両100の前後方向に沿った走行速度である。当該右辺の分子は、軌跡角度θの時間微分である。
 ステップS02に続くステップS03では、上記のように算出された角度変化量dθ/dsが、閾値TH1を超えているか否かが判定される。角度変化量dθ/dsが閾値TH1を超えている場合には、ステップS04に移行する。
 ステップS04に移行した場合には、角度変化量dθ/dsの値が比較的大きいため、段差が高く、当該段差が車輪止めであることが推測される。このため、乗り越え判定部14は、車両100が段差を乗り越えるべきではない、と判定する。
 ステップS04に続くステップS05では、車両100を直ちに停車させる処理が、制駆動力制御部15によって行われる。これにより、車両100は、車輪111、112が、概ね段差に接触した直後の状態のまま停車する。
 ステップS03において、角度変化量dθ/dsが閾値TH1以下であった場合には、ステップS06に移行する。ステップS06において、乗り越え判定部14は、車両100が段差を乗り越えるべきである、と判定する。この場合、制駆動力制御部15は、車両100の駆動力を引き続き生じさせる。その後、車両100は段差を乗り越えて走行し続けることとなる。
 以上のように、本実施形態の乗り越え判定部14は、角度変化量dθ/dsに基づいて、車両100が段差を乗り越えるべきか否かを判定する。具体的には、角度変化量dθ/dsが閾値TH1を超えた場合に、車両100が段差を乗り越えるべきではないと判定する。
 尚、段差の高さに応じて乗り越えるべきか否かを判定する方法としては、例えば特開2019-93761号公報に記載されているように、車速センサで測定された車速に基づいて判定する方法を用いることもできる。しかしながら、車速センサでは、例えば1km/h以下のような極めて遅い車速を検知することが難しい。このため、上記特許文献に記載の装置では、車輪が動き出したと判定されるタイミングが、実際に動き出すタイミングよりも遅れてしまう可能性が有る。その結果、制動力を発生させるタイミングが遅れてしまい、車輪が車輪止めを乗り越えてしまうような事態等が生じ得る。
 これに対し、本実施形態の制御装置10では、駆動力取得部11によって取得された駆動力と、加速度取得部12によって取得された加速度Gと、の両方に基づいて軌跡角度θを算出し、軌跡角度θの傾きである角度変化量dθ/dsに基づいて、段差を乗り越えるべきか否かの判定を行う。駆動力や加速度Gは、車速が小さいうちから比較的正確に取得することができるので、上記判定を迅速かつ的確に行うことができる。
 尚、軌跡角度θの算出に用いられる式(1)では、車両の走行速度であるVが用いられている。しかしながら、車速が1km/h程度と小さいときには、Vの値が0と算出されても、式(1)により算出される軌跡角度θの精度に大きな影響はない。
 図6には、車両100の走行中において車輪111、112が段差に接触した場合の、車速等の変化の例が示されている。図6(A)のG1は、後輪である車輪121、122の回転速度から算出される車速の変化を表している。G2は、前輪である車輪111、112の回転速度から算出される車速の変化を表している。
 図6(B)のG3は加速度Gの変化を表しており、G4は加速度Gの変化を表している。図6(C)のグラフは、軌跡角度θの変化を表している。図6(D)のグラフは、駆動力取得部11によって取得される駆動力の変化を表している。図6に示される時刻t1は、車輪111、112が、車輪止めである段差に接触した時刻である。
 図6に示される例では、時刻t1の直後において角度変化量dθ/dsが閾値TH1を超えており、その直後において制動力が自動的に働いている(図6(D))。このため、運転者が仮にアクセルペダルを踏み続けていた場合であっても、車両100は段差を乗り越えることなく、段差に接触した直後に停止する。
 図7には、車両100が、車輪止めである段差の近くで停止している状態から、アクセルペダルが踏み込まれた場合の例が示されている。図7(A)のG1は、後輪である車輪121、122の回転速度から算出される車速の変化を表している。G2は、前輪である車輪111、112の回転速度から算出される車速の変化を表している。
 図7(B)のG3は加速度Gの変化を表しており、G4は加速度Gの変化を表している。図7(D)のグラフは、駆動力取得部11によって取得される駆動力の変化を表している。図7(E)のグラフは、アクセルペダルの操作量(踏み込み量)の変化を表している。図7に示される時刻t2は、アクセルペダルが踏み込まれた直後に、車輪111、112が、車輪止めである段差に接触した時刻である。
 この例では、時刻t2の直後の時刻t3において角度変化量dθ/dsが閾値TH1を超えており、その直後において駆動力が自動的に0とされている(図7(D))。時刻t2から時刻t3までの期間は、概ね0.3秒程度であるから、車両100は、車輪111、112が車輪止めに接触したのとほぼ同時に停止している。このように、本実施形態では、車輪111、112が段差に接触した直後に、当該段差を乗り越えるべきか否かの判定及び対応が迅速かつ適切に行われている。
 尚、以上においては、車両100が後輪駆動の車両であり、前輪を段差に接触させる場合の例について説明した。車両100が前輪駆動の車両である場合にも、以上と同様の処理を行うことができる。この場合、式(2)における「cosθold」の値を1として、軌跡角度θの値を算出すればよい。
 第2実施形態について説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図8に示されるように、本実施形態に係る制御装置10は、接触判定部16と、段差判定部17と、を更に備えている。
 接触判定部16は、左右両側の車輪が段差に接触している両輪接触状態、及び、左右片側の車輪のみが段差に接触している片輪接触状態、のいずれであるかを判定する処理を行う部分である。その判定方法については後に説明する。
 段差判定部17は、車両100の近傍における段差の有無を判定する処理を行う部分である。段差判定部17は、車両100の車輪111等が実際に段差に接触よりも前の時点で、車両100の進行方向側に段差が有るかどうかを判定する。このような判定は、車外カメラ204により撮影された画像等に基づいて行うことができる。
 図9に示される一連の処理は、図3に示される一連の処理に換えて、本実施形態に係る制御装置10により実行されるものである。図9に示される各ステップのうち、図3に示されるものと同一のステップについては、図3と同じ符号(S01等)が付してある。
 最初のステップS11では、例えばこれまでに説明したものと同様の方法で、現時点における軌跡角度θの値が算出される。ステップS11に続くステップS12では、算出された軌跡角度θの値が、所定の下限値以下であるか否かが判定される。当該下限値は、1cm程度の小さな段差に相当する軌跡角度θの値として、予め設定されたものである。軌跡角度θの値が下限値以下である場合には、特段の処理を行うことなく、図9に示される一連の処理を終了する。つまり、本実施形態の乗り越え判定部14は、軌跡角度θが所定の下限値以下である場合には、車両100が段差を乗り越えるべきか否かの判定を行わない。これにより、制御装置10の演算負荷を軽減することができる。
 ステップS12において、軌跡角度θの値が下限値を超えていた場合には、ステップS13に移行する。ステップS13では、接触判定部16により、両輪接触状態であるか否かの判定が行われる。接触判定部16は、例えば、図10に示される処理を行うことにより、当該判定を行う。
 図10の最初のステップS21では、車両100の走行速度Vが、1km/h未満であるか否かが判定される。当該判定は、車輪速センサ201の測定値に基づいて行われる。尚、1km/hという速度は、車輪速センサ201で測定し得る車速の下限値近傍の値となっている。このため、ステップS21で行われる判定は、走行速度Vとして0よりも大きな値が検知されたかどうかの判定、といってもよい。
 走行速度Vが1km/h未満である場合には、ステップS22に移行する。ステップS22では、加速度取得部12で測定された加速度Gの絶対値が、0.05Gよりも大きいか否かが判定される。加速度Gの絶対値が0.05Gよりも大きい場合には、ステップS23に移行する。ステップS23では、片輪接触状態であるとの判定がなされる。つまり、車輪111、112のうち、一方のみが段差に接触しており、他方は段差に接触していないと判定される。
 ステップS22において、加速度Gの絶対値が0.05G以下であった場合には、ステップS24に移行する。ステップS24では、両輪接触状態であるとの判定がなされる。つまり、車輪111、112の両方が段差に接触していると判定される。
 ステップS21において、走行速度Vが1km/h以上であった場合には、ステップS25に移行する。ステップS25では、左側の車輪111の回転数に基づいて算出される車速の微分値と、右側の車輪112の回転数に基づいて算出される車速の微分値と、の差分を算出した上で、当該差分の絶対値が0.2Gよりも大きいか否かが判定される。差分の絶対値が0.2Gよりも大きい場合には、ステップS23に移行し、片輪接触状態であるとの判定がなされる。差分の絶対値が0.2G以下であった場合には、ステップS24に移行し、両輪接触状態であるとの判定がなされる。
 図9に戻って説明を続ける。ステップS13において、両輪接触状態であると判定された場合には、ステップS01に移行する。ステップS01以降に行われる処理は、後のステップS03でNoと判定された場合を除き、第1実施形態(図5)で行われる処理と同じである。
 ステップS13において、片輪接触状態であると判定された場合には、ステップS14に移行する。ステップS14では、現時点の軌跡角度θを算出する処理が、角度算出部13によって行われる。ここでは、式(1)に換えて以下の式(4)を用いることにより、Fが先ず算出される。
Figure JPOXMLDOC01-appb-M000004
 
 続いて、式(2)に換えて以下の式(5)を用いることにより、軌跡角度θが算出される。
Figure JPOXMLDOC01-appb-M000005
 
 ステップS14に続くステップS15では、角度変化量dθ/dsを算出する処理が行われる。角度変化量dθ/dsは、ステップS14で算出された軌跡角度θの時間微分を用いて、先に述べた式(3)により算出することができる。ステップS15の後は、ステップS03に移行する。
 ステップS03において、角度変化量dθ/dsが閾値TH1以下であった場合には、本実施形態ではステップS16に移行する。ステップS16では、ステップS14で算出された軌跡角度θの値が、閾値TH2よりも大きいか否かが判定される。軌跡角度θの値が閾値TH2よりも大きい場合には、ステップS04に移行する。それ以外の場合にはステップS06に移行する。それぞれの移行後に実行される処理は、第1実施形態の場合と同じである。
 本実施形態では、角度変化量dθ/dsが閾値T1以下である場合であっても、軌跡角度θの値が閾値T2よりも大きい場合には、段差を乗り越えるべきではないとの判定がなされる。これにより、段差を乗り越えるべきか否かの判定を、より高い精度で行うことができる。
 本実施形態の角度算出部13は、接触判定部16の判定結果(ステップS13)に応じて、軌跡角度θの算出方法を変更する。両輪接触状態のときと、片輪接触状態ときと、のそれぞれにおいて、互いに異なる式を用いることにより、軌跡角度θを正確に算出することができる。
 図10を参照しながら説明したように、接触判定部16は、車両100の横加速度である加速度Gに基づいて、両輪接触状態及び片輪接触状態のいずれであるかを判定する(ステップS22)。また、接触判定部16は、左右それぞれの車輪の回転速度に基づいて、両輪接触状態及び片輪接触状態のいずれであるかを判定する(ステップS25)。後者による判定は、車両100の走行速度Vが所定速度以上のときにのみ行われる(ステップS21)。これにより、両輪接触状態及び片輪接触状態のいずれであるかを正確に判定することができる。
 図9に示される一連の処理は、段差判定部17によって、車両100の進行方向側に段差が有ると判定された時点から開始してもよい。この場合、ステップS11の処理は、当該段差の高さを何らかの方法(例えば画像処理)によって推定する処理としてもよい。また、ステップS12の処理は、当該段差の高さが下限値以下であるか否かを、(精度の低さを許容しながらも)判定する処理としてもよい。このような処理が行われる場合には、乗り越え判定部14は、車両100の近傍に段差があると、段差判定部17によって予め判定された場合にのみ、車両100が当該段差を乗り越えるべきか否かの判定に必要な処理を行うこととなる。これにより、制御装置10の演算負荷を低減することができる。
 第3実施形態について説明する。以下では、上記の第2実施形態と異なる点について主に説明し、第2実施形態と共通する点については適宜説明を省略する。図11に示されるように、本実施形態に係る制御装置10は、乗り越え判定部14や制駆動力制御部15を備えておらず、代わりに、空気圧判定部18と報知部19とを備えている。また、車両100には報知装置210が設けられている。
 空気圧判定部18は、車輪111等の空気圧が十分であるか否かを、軌跡角度θに基づいて判定する処理を行う部分である。その具体的な判定方法については後述する。
 報知部19は、空気圧判定部18によって空気圧が十分ではないと判定された場合に、車両100の乗員にその旨を報知する処理を行う部分である。報知部19は報知装置210を動作させることによって当該報知を行う。報知装置210は、例えばインストルメントパネルに設置された警告ランプである。
 空気圧判定部18による空気圧の判定方法を説明するに先立ち、「乗り上げ距離」について先ず説明する。
 図4(B)のグラフには、図4(A)のように車両100が段差STを乗り越える際における、軌跡角度θの変化の例が示されている。図4に示される「x1」は、車輪111等が段差STに接触した時点の車両100の位置である。また、図4に示される「x2」は、車輪111等が路面から離れた時点の車両100の位置である。当該位置は、図4(A)のグラフにおける変曲点に対応する位置であり、図4(B)のグラフにおけるピーク値に対応する位置である。
 「乗り上げ距離」とは、x1からx2までの距離、すなわち、車輪111等が段差STに接触してから、車輪111等が路面から離れるまで、の間に車両100が走行する距離である。換言すれば、「乗り上げ距離」とは、軌跡角度θが増加し始めてから減少し始めるまでの期間において、車両100が走行した距離、ということもできる。
 このように定義される乗り上げ距離は、平坦な路面RDの上に車両100が停車しているときにおいて、車輪111等のうち路面RDに接触している部分の前後方向に沿った長さ(図3におけるL)と相関がある。このため、車輪111等の空気圧が低くなる程、図3に示されるLは長くなり、図4に示される乗り上げ距離も長くなる傾向がある。そこで、本実施形態に係る制御装置10の空気圧判定部18は、乗り上げ距離に基づいて、前記空気圧が十分であるか否かの判定を行うこととしている。
 図12に示されるのは、車輪111等に接触した段差の高さ(横軸)と、乗り上げ距離(縦軸)と、の相関関係を示すグラフである。このうち、G11は、車輪111等の空気圧が標準圧である場合のグラフであり、G12は、車輪111等の空気圧が下限圧(つまり、車両100が正常に走行し得る空気圧の範囲の下限)である場合のグラフであり、G13は、車輪111等の空気圧が低下し過ぎている場合のグラフである。
 図12に示されるように、段差の高さがある程度以上(H1以上)であるときには、乗り上げ距離は、段差の高さによっては殆ど変化せず、車輪111等の空気圧のみに応じて変化する。具体的には、車輪111等の空気圧が低くなる程、乗り上げ距離は長くなる傾向がある。尚、このような空気圧と乗り上げ距離との相関関係は、段差の高さがH1より低い場合には成立しない。
 本発明者らは、実験によって得られた上記の知見に基づいて、空気圧判定部18による空気圧の判定方法を確立させた。以下では、当該判定方法について説明する。
 図13に示される一連の処理は、図9に示される一連の処理に換えて、本実施形態に係る制御装置10により実行されるものである。図13に示される各ステップのうち、図9に示されるものと同一のステップについては、図9と同じ符号(S11等)が付してある。
 最初のステップS10では、車両100の走行速度を積算する処理が開始される。制御装置10は、当該処理を開始することで、車輪111等が段差に接触した以降において車両100が走行する距離を算出する。尚、ステップS10の処理が行われるのは、車輪111等が段差に接触した後、図13の処理が最初に実行されるときのみである。次の制御周期において図13の処理が再度実行される際には、ステップS10の処理は行われないが、車両100の走行速度を積算する処理が継続的に行われる。
 ステップS10の後は、ステップS11以降の処理が実行される。その後、ステップS01もしくはステップS14の処理が行われると、本実施形態ではステップS31に移行する。
 ステップS31では、ステップS01、S04を経る度に算出される軌跡角度θの値が、ピーク値となったか否か、すなわち、増加から減少に転じたか否かが判定される。軌跡角度θの値がピーク値となった場合には、ステップS32に移行する。それ以外の場合には、図13に示される一連の処理を一端終了する。
 ステップS32では、軌跡角度θの上記ピーク値が、所定の閾値よりも大きいか否かが判定される。ピーク値が閾値よりも大きい場合には、ステップS33に移行する。それ以外の場合には、後述のステップS36に移行する。
 ステップS33では、ステップS10で開始された走行速度の積算を停止する処理が行われる。それまでの積算によって得られた距離が、先に述べた「乗り上げ距離」として取得される。
 ステップS33に続くステップS34では、算出された乗り上げ距離が、所定の閾値よりも大きいか否かが判定される。当該閾値は、車輪111等の空気圧が下限圧である場合に算出される乗り上げ距離の値として、予め設定されたものである。乗り上げ距離が閾値よりも大きい場合には、ステップS35に移行する。ステップS35では、空気圧が低下した旨を乗員に報知する処理が、報知部19によって実行される。報知部19は、報知装置210を動作させること(具体的には、警告灯を点灯させること)により上記報知を行う。
 ステップS35に続くステップS36では、走行速度の積算値を0に戻す処理が行われる。その後、図13に示される地連の処理を終了する。
 ステップS34において、乗り上げ距離が閾値以下である場合には、ステップS35を経ることなくステップS36に移行する。この場合、車輪111等の空気圧は正常であると推測されるので、報知部19による報知は行われない。
 以上のように、本実施形態の空気圧判定部18は、算出された乗り上げ距離が所定の閾値を超えている場合に、車輪111等の空気圧が十分ではないと判定する。これにより、空気圧が十分であるか否かの判定を適切に行うことができる。
 空気圧判定部18は、車両100の走行速度を積算することにより乗り上げ距離を算出する。車速を測定するための既存のセンサを用いるので、乗り上げ距離の算出のために別途センサを設ける必要が無い。
 空気圧判定部18は、軌跡角度θのピーク値が所定の下限値以下である場合(ステップS32の判定がNoの場合)には、空気圧が十分であるか否かの判定を行わない。換言すれば、段差の高さが所定値よりも低いと推定されるような場合には、空気圧が十分であるか否かの判定を行わない。これにより、段差の高さが図12のH1より低いような場合にも処理が行われ、空気圧について誤判定が行われてしまうような事態を防止することができる。
 以上においては、車両100が、回転電機150の駆動力によって走行する電動車両である場合の例について説明した。しかしながら、車両100は、内燃機関の駆動力によって走行する車両であってもよく、回転電機150及び内燃機関の両方の駆動力によって走行するハイブリッド車両であってもよい。その場合、駆動力取得部11は、例えば車輪111等に設けられたトルクセンサからの信号に基づいて、車両100が路面に加えている駆動力を取得することとすればよい。
 以上に述べたような制御装置10の動作は、例えば、制御装置10に組み込まれたプログラムによって実現される。当該プログラムは、車両100が有する車輪111等の回転中心軸AXの軌跡が路面に対してなす角度、である軌跡角度θを、車両100が路面に加えている駆動力と、車両100の進行方向に沿った加速度と、に基づいて制御装置10に算出させることとなる。
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
 本開示に記載の制御装置及び制御方法は、コンピュータプログラムにより具体化された1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された1つ又は複数の専用コンピュータにより、実現されてもよい。本開示に記載の制御装置及び制御方法は、1つ又は複数の専用ハードウェア論理回路を含むプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。本開示に記載の制御装置及び制御方法は、1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと1つ又は複数のハードウェア論理回路を含むプロセッサとの組み合わせにより構成された1つ又は複数の専用コンピュータにより、実現されてもよい。コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。専用ハードウェア論理回路及びハードウェア論理回路は、複数の論理回路を含むデジタル回路、又はアナログ回路により実現されてもよい。
 [付記]下記付記1から19は、技術的に矛盾しない限り任意に組合せ可能である。
[付記1]
車両の制御装置であって、
前記車両が路面に加えている駆動力、を取得する駆動力取得部と、
前記車両の進行方向に沿った加速度、を取得する加速度取得部と、
前記車両が有する車輪の回転中心軸の軌跡が路面に対してなす角度、である軌跡角度を、前記駆動力及び前記加速度に基づいて算出する角度算出部と、を備える制御装置。
[付記2]
前記車両が段差を乗り越えるべきか否かを、前記軌跡角度に基づいて判定する乗り越え判定部、を更に備える、付記1に記載の制御装置。
[付記3]
前記車両の制駆動力を制御する制駆動力制御部、を更に備え、
前記制駆動力制御部は、
前記車両が段差を乗り越えるべき、と前記乗り越え判定部によって判定された場合には、前記車両が当該段差を乗り越えるように制駆動力を制御し、
前記車両が段差を乗り越えるべきではない、と前記乗り越え判定部によって判定された場合には、前記車両が停止するように制駆動力を制御する、付記2に記載の制御装置。
[付記4]
前記乗り越え判定部は、
前記車両が所定距離だけ進んだ際における前記軌跡角度の変化量、である角度変化量に基づいて、前記車両が段差を乗り越えるべきか否かを判定する、付記2または3に記載の制御装置。
[付記5]
前記乗り越え判定部は、
前記角度変化量が所定の閾値を超えた場合に、前記車両が段差を乗り越えるべきではないと判定する、付記4に記載の制御装置。
[付記6]
前記車両は、前記駆動力を発生させるための回転電機を有するものであり、
駆動力取得部は、前記回転電機を流れる電流の大きさに基づいて、前記駆動力を取得する、付記1から5のいずれか1つに記載の制御装置。
[付記7]
前記乗り越え判定部は、
前記軌跡角度が所定の下限値以下である場合には、前記車両が段差を乗り越えるべきか否かの判定を行わない、付記2に記載の制御装置。
[付記8]
左右両側の車輪が段差に接触している両輪接触状態、及び、左右片側の車輪のみが段差に接触している片輪接触状態、のいずれであるかを判定する接触判定部、を更に備え、
前記角度算出部は、前記接触判定部の判定結果に応じて、前記軌跡角度の算出方法を変更する、付記1から7のいずれか1つに記載の制御装置。
[付記9]
前記接触判定部は、前記車両の横加速度に基づいて、前記両輪接触状態及び前記片輪接触状態のいずれであるかを判定する、付記8に記載の制御装置。
[付記10]
前記接触判定部は、左右それぞれの車輪の回転速度に基づいて、前記両輪接触状態及び前記片輪接触状態のいずれであるかを判定する、付記8に記載の制御装置。
[付記11]
前記接触判定部は、前記車両の走行速度が所定速度以上のときにのみ、前記回転速度に基づいた判定を行う、付記10に記載の制御装置。
[付記12]
前記車両の近傍における段差の有無を判定する段差判定部、を更に備え、
前記乗り越え判定部は、
前記車両の近傍に段差があると、前記段差判定部によって予め判定された場合にのみ、
前記車両が当該段差を乗り越えるべきか否かの判定に必要な処理を行う、付記2に記載の制御装置。
[付記13]
前記車輪の空気圧が十分であるか否かを、前記軌跡角度に基づいて判定する空気圧判定部、を更に備える、付記1に記載の制御装置。
[付記14]
前記空気圧が十分ではない場合に、前記車両の乗員に報知する報知部、を更に備える、[付記13]に記載の制御装置。
[付記15]
前記空気圧判定部は、
前記軌跡角度が増加し始めてから減少し始めるまでの期間において、前記車両が走行した距離、である乗り上げ距離に基づいて、前記空気圧が十分であるか否かの判定を行う、付記13または14に記載の制御装置。
[付記16]
前記空気圧判定部は、
前記乗り上げ距離が所定の閾値を超えている場合に、前記空気圧が十分ではないと判定する、付記15に記載の制御装置。
[付記17]
前記空気圧判定部は、
前記車両の走行速度を積算することにより前記乗り上げ距離を算出する、付記15または16に記載の制御装置。
[付記18]
前記空気圧判定部は、
前記軌跡角度のピーク値が所定の下限値以下である場合には、前記空気圧が十分であるか否かの判定を行わない、付記13から17のいずれか1つに記載の制御装置。
[付記19]
車両の制御装置用のプログラムであって、
前記車両が有する車輪の回転中心軸の軌跡が路面に対してなす角度、である軌跡角度を、前記車両が路面に加えている駆動力と、前記車両の進行方向に沿った加速度と、に基づいて前記制御装置に算出させる、プログラム。
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。

Claims (19)

  1.  車両(100)の制御装置(10)であって、
     前記車両が路面に加えている駆動力、を取得する駆動力取得部(11)と、
     前記車両の進行方向に沿った加速度、を取得する加速度取得部(12)と、
     前記車両が有する車輪(111,112)の回転中心軸(AX)の軌跡が路面に対してなす角度、である軌跡角度(θ)を、前記駆動力及び前記加速度に基づいて算出する角度算出部(13)と、を備える制御装置。
  2.  前記車両が段差を乗り越えるべきか否かを、前記軌跡角度に基づいて判定する乗り越え判定部(14)、を更に備える、請求項1に記載の制御装置。
  3.  前記車両の制駆動力を制御する制駆動力制御部(15)、を更に備え、
     前記制駆動力制御部は、
     前記車両が段差を乗り越えるべき、と前記乗り越え判定部によって判定された場合には、前記車両が当該段差を乗り越えるように制駆動力を制御し、
     前記車両が段差を乗り越えるべきではない、と前記乗り越え判定部によって判定された場合には、前記車両が停止するように制駆動力を制御する、請求項2に記載の制御装置。
  4.  前記乗り越え判定部は、
     前記車両が所定距離だけ進んだ際における前記軌跡角度の変化量、である角度変化量に基づいて、前記車両が段差を乗り越えるべきか否かを判定する、請求項2に記載の制御装置。
  5.  前記乗り越え判定部は、
     前記角度変化量が所定の閾値を超えた場合に、前記車両が段差を乗り越えるべきではないと判定する、請求項4に記載の制御装置。
  6.  前記車両は、前記駆動力を発生させるための回転電機(150)を有するものであり、
     駆動力取得部は、前記回転電機を流れる電流の大きさに基づいて、前記駆動力を取得する、請求項1に記載の制御装置。
  7.  前記乗り越え判定部は、
     前記軌跡角度が所定の下限値以下である場合には、前記車両が段差を乗り越えるべきか否かの判定を行わない、請求項2に記載の制御装置。
  8.  左右両側の車輪が段差に接触している両輪接触状態、及び、左右片側の車輪のみが段差に接触している片輪接触状態、のいずれであるかを判定する接触判定部(16)、を更に備え、
     前記角度算出部は、前記接触判定部の判定結果に応じて、前記軌跡角度の算出方法を変更する、請求項1に記載の制御装置。
  9.  前記接触判定部は、前記車両の横加速度に基づいて、前記両輪接触状態及び前記片輪接触状態のいずれであるかを判定する、請求項8に記載の制御装置。
  10.  前記接触判定部は、左右それぞれの車輪の回転速度に基づいて、前記両輪接触状態及び前記片輪接触状態のいずれであるかを判定する、請求項8に記載の制御装置。
  11.  前記接触判定部は、前記車両の走行速度が所定速度以上のときにのみ、前記回転速度に基づいた判定を行う、請求項10に記載の制御装置。
  12.  前記車両の近傍における段差の有無を判定する段差判定部(17)、を更に備え、
     前記乗り越え判定部は、
     前記車両の近傍に段差があると、前記段差判定部によって予め判定された場合にのみ、
     前記車両が当該段差を乗り越えるべきか否かの判定に必要な処理を行う、請求項2に記載の制御装置。
  13.  前記車輪の空気圧が十分であるか否かを、前記軌跡角度に基づいて判定する空気圧判定部(18)、を更に備える、請求項1に記載の制御装置。
  14.  前記空気圧が十分ではない場合に、前記車両の乗員に報知する報知部(19)、を更に備える、請求項13に記載の制御装置。
  15.  前記空気圧判定部は、
     前記軌跡角度が増加し始めてから減少し始めるまでの期間において、前記車両が走行した距離、である乗り上げ距離に基づいて、前記空気圧が十分であるか否かの判定を行う、請求項13に記載の制御装置。
  16.  前記空気圧判定部は、
     前記乗り上げ距離が所定の閾値を超えている場合に、前記空気圧が十分ではないと判定する、請求項15に記載の制御装置。
  17.  前記空気圧判定部は、
     前記車両の走行速度を積算することにより前記乗り上げ距離を算出する、請求項15に記載の制御装置。
  18.  前記空気圧判定部は、
     前記軌跡角度のピーク値が所定の下限値以下である場合には、前記空気圧が十分であるか否かの判定を行わない、請求項13に記載の制御装置。
  19.  車両(100)の制御装置(10)用のプログラムであって、
     前記車両が有する車輪(111,112)の回転中心軸(AX)の軌跡が路面に対してなす角度、である軌跡角度(θ)を、前記車両が路面に加えている駆動力と、前記車両の進行方向に沿った加速度と、に基づいて前記制御装置に算出させる、プログラム。
PCT/JP2023/015977 2022-04-25 2023-04-21 制御装置及びプログラム WO2023210541A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022071270A JP2023161109A (ja) 2022-04-25 2022-04-25 制御装置及びプログラム
JP2022-071270 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023210541A1 true WO2023210541A1 (ja) 2023-11-02

Family

ID=88518904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015977 WO2023210541A1 (ja) 2022-04-25 2023-04-21 制御装置及びプログラム

Country Status (2)

Country Link
JP (1) JP2023161109A (ja)
WO (1) WO2023210541A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142918A (ja) * 1997-07-25 1999-02-16 Nissan Motor Co Ltd サスペンション装置
JP2012210916A (ja) * 2011-03-23 2012-11-01 Nissan Motor Co Ltd 車両の制駆動力制御装置及び制駆動力制御方法
JP2019093761A (ja) * 2017-11-17 2019-06-20 株式会社アドヴィックス 車両の走行支援装置
JP2020184825A (ja) * 2019-05-07 2020-11-12 株式会社Soken 車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142918A (ja) * 1997-07-25 1999-02-16 Nissan Motor Co Ltd サスペンション装置
JP2012210916A (ja) * 2011-03-23 2012-11-01 Nissan Motor Co Ltd 車両の制駆動力制御装置及び制駆動力制御方法
JP2019093761A (ja) * 2017-11-17 2019-06-20 株式会社アドヴィックス 車両の走行支援装置
JP2020184825A (ja) * 2019-05-07 2020-11-12 株式会社Soken 車両

Also Published As

Publication number Publication date
JP2023161109A (ja) 2023-11-07

Similar Documents

Publication Publication Date Title
US8655563B2 (en) Braking/driving force controller of vehicle
US7974761B2 (en) Braking-driving force control device of vehicle
US6567748B2 (en) Motion control system for vehicle
US7909416B2 (en) Vehicle braking/driving force control apparatus
US10850726B2 (en) Vehicle behavior control device
US10793136B2 (en) Vehicle behavior control device
US10625731B2 (en) Vehicle behavior control device
US20090012686A1 (en) Braking-Driving Force Control Device of Vehicle
JP2007282406A (ja) 自動車の制動力制御システム
US10836378B2 (en) Vehicle behavior control device
JP6630386B2 (ja) 車両の制御装置及び車両の制御方法
JP6779379B2 (ja) 車両制御装置
JP2006264628A (ja) 車輌の制駆動力制御装置
JP6577850B2 (ja) 車両の制御装置及び車両の制御方法
US20170166175A1 (en) Method for controlling braking of vehicle to prevent jerk when parking or stopping vehicle
CN112677952B (zh) 一种智能驾驶控制方法及系统
JP2569591B2 (ja) 車両運転補助装置
WO2023210541A1 (ja) 制御装置及びプログラム
JP3271956B2 (ja) 車両の路面摩擦係数推定装置
JP4928221B2 (ja) 車両挙動制御装置
JP5521943B2 (ja) 車両の総重量推定装置
JP7480696B2 (ja) 制御装置
US20240351448A1 (en) Control system for mobile object and storage medium
US20240123834A1 (en) Control device for vehicle
US20230365002A1 (en) Control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796283

Country of ref document: EP

Kind code of ref document: A1