WO2023210368A1 - 反射防止フィルムおよび画像表示装置 - Google Patents

反射防止フィルムおよび画像表示装置 Download PDF

Info

Publication number
WO2023210368A1
WO2023210368A1 PCT/JP2023/014852 JP2023014852W WO2023210368A1 WO 2023210368 A1 WO2023210368 A1 WO 2023210368A1 JP 2023014852 W JP2023014852 W JP 2023014852W WO 2023210368 A1 WO2023210368 A1 WO 2023210368A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
antireflection
film
refractive index
hard coat
Prior art date
Application number
PCT/JP2023/014852
Other languages
English (en)
French (fr)
Inventor
聖彦 渡邊
幸大 宮本
豊 角田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023210368A1 publication Critical patent/WO2023210368A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an antireflection film comprising an antireflection layer on a hard coat layer of a hard coat film. Furthermore, the present invention relates to an image display device including the antireflection film.
  • An antireflection film is used on the viewing side surface of image display devices such as liquid crystal displays and organic EL displays for the purpose of preventing image quality from deteriorating due to reflection of external light and improving contrast.
  • An antireflection film includes an antireflection layer made of a laminate of a plurality of thin films having different refractive indexes on a transparent film.
  • an SiO primer layer is provided on a hard coat film, and a niobium oxide (Nb 2 O 5 ) layer as a high refractive index layer and a silicon oxide (SiO 2 ) layer as a low refractive index layer are provided on the hard coat film.
  • An antireflection film is disclosed having an antireflection layer consisting of an alternating laminate of layers.
  • foldable image display device equipped with an organic EL panel using a foldable substrate (flexible substrate) such as a resin film
  • a foldable substrate flexible substrate
  • an antireflection film is used, which is an antireflection layer provided on a flexible film substrate.
  • Foldable displays are generally stored in a folded state. In the folded state, compressive stress is applied to the inside of the folded portion (bending portion), and tensile stress is applied to the outside.
  • the antireflection film When the display is folded with the display surface facing inside, the antireflection film is in a folded state with the antireflection layer forming surface facing inside. If the antireflection layer is heated to a high temperature in this state, fine cracks may occur in the antireflection layer, causing a decrease in the visibility of the display.
  • an object of the present invention is to provide an antireflection film that is difficult to crack in the antireflection layer and has excellent bending resistance even when heated to a high temperature in a folded state (bent state).
  • the anti-reflection film includes a hard coat film having a hard coat layer on one main surface of a transparent film base, an anti-reflection layer provided on the hard coat layer, and an antifouling layer provided on the anti-reflection layer. Equipped with The arithmetic mean height Sa 2 of the antifouling layer is greater than 3.0 nm.
  • the antireflection layer includes at least one high refractive index layer and at least one low refractive index layer, and the low refractive index layer is in contact with the antifouling layer.
  • the antireflection layer may include two or more high refractive index layers, and may include two or more low refractive index layers.
  • the antireflection layer is preferably an alternating laminate of a plurality of high refractive index layers and a plurality of low refractive index layers.
  • the low refractive index layer of the antireflection layer is a thin film containing silicon oxide as a main component, and the film thickness of the low refractive index layer in contact with the antifouling layer is greater than 85 nm.
  • the low refractive index layer in contact with the antifouling layer may have sparse portions along the film thickness direction in a cross-sectional observation image.
  • the high refractive index layer of the antireflection layer is preferably a thin film containing niobium oxide as a main component.
  • the thickness of the niobium oxide thin film may be 40 nm or less.
  • the hard coat layer may contain fine particles having an average primary particle diameter of 10 to 100 nm.
  • the arithmetic mean height of the hard coat layer is preferably 4.5 nm or more.
  • a primer layer made of an inorganic oxide may be provided between the hard coat layer and the antireflection layer.
  • the antireflection film of the present invention has an antifouling layer that has excellent abrasion resistance, and the antireflection layer is difficult to crack even when heated in a bent state with the antireflection layer forming surface on the inside, making it suitable for foldable displays. It can be used suitably.
  • FIG. 2 is a cross-sectional view showing a laminated form of an antireflection film. It is a cross-sectional observation image of an antireflection film of an example. It is a cross-sectional observation image of an antireflection film of a comparative example.
  • FIG. 2 is a cross-sectional view showing the structure of a sample used in a bending resistance test.
  • FIG. 1 is a cross-sectional view showing an example of a laminated structure of an antireflection film according to an embodiment of the present invention.
  • the antireflection film 101 includes an antireflection layer 5 on the hard coat layer 11 of the hard coat film 1 .
  • the hard coat film 1 includes a hard coat layer 11 on one main surface of a transparent film base material 10.
  • the antireflection layer 5 is a laminate of two or more thin films having different refractive indexes, and includes at least one high refractive index layer and at least one low refractive index layer.
  • a primer layer 3 may be provided between the hard coat layer 11 and the antireflection layer 5.
  • An antifouling layer 7 is provided on the antireflection layer 5.
  • the hard coat film 1 includes a hard coat layer 11 on one main surface of a transparent film base material 10. By providing the hard coat layer 11 on the side on which the antireflection layer 5 is formed, mechanical properties such as surface hardness and scratch resistance of the antireflection film can be improved.
  • the visible light transmittance of the transparent film base material 10 is preferably 80% or more, more preferably 90% or more.
  • the resin material constituting the transparent film base material 10 for example, a resin material having excellent transparency, mechanical strength, and thermal stability is preferable.
  • resin materials include cellulose resins such as triacetylcellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) Examples include acrylic resins, cyclic polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • the thickness of the transparent film base material is not particularly limited, but from the viewpoint of workability such as strength and handleability, thin layer property, etc., it is preferably about 5 to 300 ⁇ m, more preferably 10 to 250 ⁇ m, and even more preferably 20 to 200 ⁇ m.
  • Hard coat film 1 is formed by providing hard coat layer 11 on the main surface of transparent film base material 10 .
  • the hard coat layer is a cured resin layer, and is formed by applying a composition containing a curable resin onto a transparent film base material and curing the resin component.
  • the hard coat layer may contain fine particles in addition to the cured resin.
  • curable resin As the curable resin (binder resin) for the hard coat layer 11, curable resins such as thermosetting resins, photocurable resins, and electron beam curable resins are preferably used.
  • the curable resin include polyester, acrylic, urethane, acrylic urethane, amide, silicone, silicate, epoxy, melamine, oxetane, and acrylic urethane.
  • acrylic resins, acrylic urethane resins, and epoxy resins are preferred because they have high hardness and can be photocured, and acrylic urethane resins are particularly preferred.
  • the photocurable resin composition contains a polyfunctional compound having two or more photopolymerizable (preferably ultraviolet polymerizable) functional groups.
  • the polyfunctional compound may be a monomer or an oligomer.
  • As the photopolymerizable polyfunctional compound a compound containing two or more (meth)acryloyl groups in one molecule is preferably used.
  • polyfunctional compounds having two or more (meth)acryloyl groups in one molecule include tricyclodecane dimethanol diacrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, and trimethylol.
  • (meth)acrylic means acrylic and/or methacryl.
  • a polyfunctional compound having two or more (meth)acryloyl groups in one molecule may have a hydroxyl group.
  • a polyfunctional compound containing a hydroxyl group By using a polyfunctional compound containing a hydroxyl group, the adhesion between the transparent film base material and the hard coat layer tends to improve.
  • Examples of compounds having a hydroxyl group and two or more (meth)acryloyl groups in one molecule include pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and the like.
  • the acrylic urethane resin contains a urethane (meth)acrylate monomer or oligomer as a polyfunctional compound.
  • the number of (meth)acryloyl groups that the urethane (meth)acrylate has is preferably 3 or more, more preferably 4 to 15, and even more preferably 6 to 12.
  • the molecular weight of the urethane (meth)acrylate oligomer is, for example, 3000 or less, preferably 500 to 2500, more preferably 800 to 2000.
  • Urethane (meth)acrylate is obtained, for example, by reacting hydroxy (meth)acrylate obtained from (meth)acrylic acid or (meth)acrylic acid ester and polyol with diisocyanate.
  • the content of the polyfunctional compound in the composition for forming a hard coat layer is preferably 50 parts by weight or more based on a total of 100 parts by weight of the resin components (monomers, oligomers, and prepolymers that form a binder resin by curing). More preferably 60 parts by weight or more, and even more preferably 70 parts by weight or more.
  • the content of the polyfunctional monomer is within the above range, the hardness of the hard coat layer tends to be increased.
  • fine particles When the hard coat layer 11 contains fine particles, fine irregularities are formed on the surface, which tends to improve the adhesion and bending resistance of the antireflection layer.
  • fine particles examples include inorganic oxide fine particles such as silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide, glass fine particles, polymethyl methacrylate, polystyrene, polyurethane, and acrylic-styrene copolymers.
  • Crosslinked or uncrosslinked organic fine particles made of transparent polymers such as , benzoguanamine, melamine, and polycarbonate can be used without particular limitation.
  • the average particle diameter (average primary particle diameter) of the fine particles is preferably about 10 nm to 10 ⁇ m.
  • the average primary particle size is a weight average particle size measured by Coulter counting method.
  • the fine particles have a submicron or ⁇ m-order particle size of about 0.5 ⁇ m to 10 ⁇ m (hereinafter sometimes referred to as "microparticles”), and have a particle size of about 10 nm to 100 nm. They can be broadly classified into fine particles (hereinafter sometimes referred to as "nanoparticles”) and fine particles having a particle size intermediate between microparticles and nanoparticles.
  • the hard coat layer 11 contains nanoparticles, fine irregularities are formed on the surface, which tends to improve the adhesion between the hard coat layer 11, the primer layer 3, and the antireflection layer 5.
  • nanoparticles inorganic fine particles are preferred, and inorganic oxide fine particles are particularly preferred.
  • silica particles are preferred because they have a low refractive index and can reduce the difference in refractive index with the binder resin.
  • the average primary particle diameter of the nanoparticles is preferably 20 to 80 nm, more preferably 25 to 70 nm, and 30 to 60 nm. is even more preferable.
  • the amount of nanoparticles in the hard coat layer 11 may be about 1 to 150 parts by weight based on 100 parts by weight of the binder resin. From the viewpoint of forming a surface shape with excellent adhesion to the antireflection layer on the surface of the hard coat layer 11, the content of nanoparticles in the hard coat layer 11 is 20 to 100 parts by weight based on 100 parts by weight of the binder resin. Parts by weight are preferred, 25 to 90 parts by weight are more preferred, and even more preferably 30 to 80 parts by weight.
  • the composition for forming a hard coat layer contains the above binder resin component and, if necessary, a solvent capable of dissolving the binder resin component.
  • the composition for forming a hard coat layer may contain fine particles.
  • the binder resin component is a photocurable resin, it is preferable that a photopolymerization initiator is included in the composition.
  • the composition for forming a hard coat layer also contains a leveling agent, a thixotropic agent, an antistatic agent, an antiblocking agent, a dispersant, a dispersion stabilizer, an antioxidant, an ultraviolet absorber, an antifoaming agent, and a thickening agent. , a surfactant, a lubricant, and other additives.
  • a hard coat layer is formed by applying a composition for forming a hard coat layer onto a transparent film base material, and removing the solvent and curing the resin as necessary.
  • the hard coat layer forming composition can be applied by any suitable method such as bar coating, roll coating, gravure coating, rod coating, slot orifice coating, curtain coating, fountain coating, comma coating, etc. method can be adopted.
  • the heating temperature after coating may be set to an appropriate temperature depending on the composition of the composition for forming a hard coat layer, and is, for example, about 50°C to 150°C.
  • the binder resin component is a photocurable resin
  • photocuring is performed by irradiation with active energy rays such as ultraviolet rays.
  • the cumulative amount of irradiation light is preferably about 100 to 500 mJ/cm 2 .
  • the thickness of the hard coat layer 11 is not particularly limited, but from the viewpoint of achieving high hardness and appropriately controlling the surface shape, it is preferably about 1 to 10 ⁇ m, more preferably 2 to 9 ⁇ m, and even more preferably 3 to 8 ⁇ m.
  • a surface treatment of the hard coat layer 11 Before forming the antireflection layer 5 on the hard coat layer 11, a surface treatment of the hard coat layer 11 may be performed.
  • the surface treatment include surface modification treatments such as corona treatment, plasma treatment, flame treatment, ozone treatment, glow treatment, alkali treatment, acid treatment, and treatment with a coupling agent.
  • Vacuum plasma treatment may be performed as surface treatment.
  • the surface roughness of the hard coat layer can also be adjusted by vacuum plasma treatment. For example, when the hard coat layer 11 contains inorganic fine particles in addition to the binder resin component (cured resin material), the resin component on the surface of the hard coat layer is likely to be selectively etched by vacuum plasma treatment, and most of the inorganic particles are etched. As a result, the abundance ratio of inorganic oxide particles on the surface of the hard coat layer and its vicinity increases, and the arithmetic mean height Sa 1 of the surface of the hard coat layer tends to increase.
  • the effective power density in vacuum plasma processing is preferably 0.01 W ⁇ min/m ⁇ cm 2 or more, more preferably 0.03 W ⁇ min/m ⁇ cm 2 or more, and 0.05 W ⁇ min/m ⁇ cm 2 or more. More preferably, it may be 0.07 W ⁇ min/m ⁇ cm 2 or more or 0.1 W ⁇ min/m ⁇ cm 2 or more.
  • the effective power density is the value obtained by dividing the power density (W/cm 2 ) of plasma output by the conveyance speed (m/min). The larger the effective power density, the larger the arithmetic mean height Sa1 of the hard coat layer surface, which tends to improve the adhesion and bending resistance of the antireflection layer formed on the hard coat layer. be.
  • the effective power density is preferably 0.6 W ⁇ min/m ⁇ cm 2 or less, and may be 0.43 W ⁇ min/m ⁇ cm 2 or less or 0.22 W ⁇ min/m ⁇ cm 2 or less.
  • the arithmetic mean height Sa is calculated according to ISO 25178 from an observed image of 1 ⁇ m square using an atomic force microscope (AFM).
  • the arithmetic mean height Sa 1 of the surface of the hard coat layer 11 is preferably 3.5 nm or more, more preferably 4.0 nm or more, even more preferably 4.5 nm or more, 5.0 nm or more, 5.3 nm or more, or 5.0 nm or more. It may be 5 nm or more.
  • the arithmetic mean height Sa 1 of the hard coat layer surface is preferably 10 nm or less, more preferably 8.0 nm or less, even more preferably 7.5 nm or less, and may be 7.0 nm or less or 6.5 nm or less.
  • Anti-reflection film By forming the antireflection layer 5 on the hard coat layer 11 of the hard coat film 1 via the primer layer 3 if necessary, and providing the antifouling layer 7 on the antireflection layer 5, the antireflection film is formed. It is formed.
  • a primer layer 3 is provided between the hard coat layer 11 and the antireflection layer 5 of the hard coat film 1.
  • Materials for the primer layer 3 include metals such as silicon, nickel, chromium, tin, gold, silver, platinum, zinc, titanium, indium, tungsten, aluminum, zirconium, and palladium; alloys of these metals; oxidation of these metals. compounds, fluorides, sulfides or nitrides; and the like.
  • the material for the primer layer is preferably an inorganic oxide, and particularly preferably silicon oxide or indium oxide.
  • the inorganic oxide constituting the primer layer 3 may be a composite oxide such as indium tin oxide (ITO).
  • the thickness of the primer layer 3 is, for example, about 1 to 20 nm, preferably 3 to 15 nm. If the thickness of the primer layer is within the above range, both adhesion with the hard coat layer 11 and high light transmittance can be achieved.
  • the antireflection layer 5 is a laminate of a plurality of thin films having different refractive indexes, and includes at least one high refractive index layer and at least one low refractive index layer.
  • the optical thickness (product of refractive index and film thickness) of the thin film of the antireflection layer is adjusted so that the reversed phases of incident light and reflected light cancel each other out.
  • the antireflection layer 5 includes four layers: a high refractive index layer 51, a low refractive index layer 52, a high refractive index layer 53, and a low refractive index layer 54 from the hard coat film 1 side.
  • the low refractive index layer 54 which is the outermost layer (the layer farthest from the hard coat film 1) of the antireflection layer 5, is in contact with the antifouling layer 7.
  • the antireflection layer is not limited to a four-layer structure, and may have a two-layer structure, a three-layer structure, a five-layer structure, or a laminated structure of six or more layers, but the outermost layer 54 in contact with the antifouling layer 7 has a low refractive index. It is a rate layer. Since the outermost layer is a low refractive index layer, reflection at the interface with the antifouling layer 7 is reduced.
  • the antireflection layer 5 is preferably an alternate laminate of two or more high refractive index layers and two or more low refractive index layers.
  • the low refractive index layers 52 and 54 are thin films containing silicon oxide as a main component. Since silicon oxide has a low refractive index and high hardness, when the outermost layer 54 of the antireflection layer 5 is made of silicon oxide, an antireflection film with excellent antireflection properties and high scratch resistance can be obtained. Although the low refractive index layer may contain oxides other than silicon oxide, the content of silicon oxide is 90% by weight or more, preferably 99% by weight or more. The refractive index of the low refractive index layer is 1.6 or less, preferably 1.5 or less.
  • the film thickness of the low refractive index layer 54 in contact with the antifouling layer 7 is greater than 85 nm. Since the low refractive index layer 54 as the outermost layer of the antireflection layer 5 is a silicon oxide layer having a thickness greater than 85 nm, the surface hardness of the antireflection layer 5 is increased, and the antireflection layer formed thereon is The wear resistance of the dirt layer 7 tends to improve.
  • the film thickness of the low refractive index layer 54 is preferably 87 nm or more, more preferably 90 nm or more, and may be 92 nm or more, 94 nm or more, or 95 nm or more.
  • the film thickness of the low refractive index layer 54 is excessively large, it may cause cracks to occur or it may become difficult to design a low reflectance optical design with excellent antireflection properties.
  • the film thickness of the low refractive index layer 54 is preferably 200 nm or less, more preferably 150 nm or less, and may be 130 nm or less, 120 nm or less, 115 nm or less, 110 nm or less, or 105 nm or less.
  • the refractive index of the high refractive index layers 51 and 53 is 2.0 or more, preferably 2.2 or more.
  • the material for the high refractive index layer include titanium oxide, niobium oxide, and zirconium oxide. Among them, niobium oxide is preferable because it has a high refractive index and can efficiently reduce the reflectance by laminating it with a silicon oxide low refractive index layer.
  • the high refractive index layers 51 and 53 preferably have a niobium oxide content of 90% by weight or more, more preferably 99% by weight or more.
  • the film thickness is preferably 40 nm or less.
  • the antireflection layer includes a plurality of niobium oxide thin films 51 and 53, at least the thickness of the niobium oxide thin film as the high refractive index layer 53 disposed farthest from the hard coat layer is 40 nm or less.
  • the thickness of all niobium oxide thin films is particularly preferably 40 nm or less.
  • the thickness of the niobium oxide thin film is more preferably 35 nm or less, and may be 32 nm or less or 30 nm or less.
  • the film density of the niobium oxide thin film is preferably 4.47 g/cm 3 or less, more preferably 4.40 g/cm 3 or less, and may be 4.35 g/cm 3 or less or 4.33 g/cm 3 or less.
  • a low film density of the niobium oxide thin film tends to improve the bending resistance of the antireflection film.
  • the antireflection layer includes a plurality of niobium oxide thin films, at least the niobium oxide thin film disposed farthest from the hard coat layer 11, that is, the high refractive index layer 53 in contact with the low refractive index layer 54 as the outermost layer.
  • the film density of the niobium oxide thin film is preferably within the above range. It is particularly preferable that the film density of all the plurality of niobium oxide thin films 51, 53 is within the above range.
  • the film density of the niobium oxide thin film is generally 4.0 g/cm 3 or more, and may be 4.1 g/cm 3 or more or 4.2 g/cm 3 or more.
  • the film density is a value measured by the Rutherford backscattering (RBS) method, and the density is calculated using the film thickness determined from cross-sectional observation.
  • the antireflection layer 5 includes, from the hard coat film 1 side, a first layer: a niobium oxide thin film as a high refractive index layer 51, a second layer: a silicon oxide thin film as a low refractive index layer 52, and a third layer: a silicon oxide thin film as a low refractive index layer 52.
  • the antireflection layer is an alternating stack of six layers each including three niobium oxide thin films as high refractive index layers and three silicon oxide thin films as low refractive index layers.
  • the film thickness is 10 from the hard coat film 1 side.
  • An example of a configuration includes a niobium oxide thin film 51 with a thickness of ⁇ 20 nm, a silicon oxide thin film 52 with a thickness of 35 to 45 nm, a niobium oxide thin film 53 with a thickness of 25 to 35 nm, and a silicon oxide thin film 54 with a thickness of 90 to 105 nm in this order.
  • the method for forming the thin films constituting the primer layer 3 and the antireflection layer 5 is not particularly limited, and may be either a wet coating method or a dry coating method. Dry coating methods such as vacuum evaporation, CVD, sputtering, and electron beam evaporation are preferred because they can form a thin film with uniform thickness. Among these, sputtering is preferred because it has excellent uniformity in film thickness and can easily form a dense film.
  • the sputtering method uses a roll-to-roll method to continuously form thin films while conveying a long hard coat film in one direction (longitudinal direction), which can improve the productivity of antireflection films.
  • the sputtering method film formation is performed while introducing an inert gas such as argon and, if necessary, a reactive gas such as oxygen into the chamber.
  • the oxide layer can be formed by sputtering using either an oxide target or reactive sputtering using a metal target. In order to form a metal oxide film at a high rate, reactive sputtering using a metal target is preferable.
  • the shape of the film formation base influences the growth mode of the film.
  • the hard coat layer 11 has surface irregularities and Sa 1 is large, the columnar growth of the film is promoted, so that "sparse" regions with low film density are likely to be formed along the film thickness direction, and the film Density tends to decrease.
  • the low refractive index layer (silicon oxide thin film) 54 which is the outermost layer of the antireflection layer 5, has "sparse” portions with low film density along the film thickness direction ( In some cases, a downward triangle (the part indicated by ⁇ ) in FIG. 2 is observed. When such "sparse” portions are observed, the antireflection film tends to have excellent bending resistance.
  • the low refractive index layer 54 has more sparse portions.
  • the number of sparse portions of the low refractive index layer 54 is preferably two or more, three or more, or four or more. Good too.
  • the presence or absence of a sparse portion is determined based on a transmission electron microscope (TEM) image at a magnification of 100,000 times. The TEM image is binarized in a region of 200 nm x 200 nm, and if a streak-like region is confirmed along the film thickness direction, that region is determined to be a sparse portion.
  • TEM transmission electron microscope
  • the sparse portions often extend along the film thickness direction from the valleys of the unevenness, and when the surface unevenness of the hard coat layer 11 and the antireflection layer 5 is large, the sparse portions are formed in the low refractive index layer 54.
  • the arithmetic mean height Sa of the surface of the antireflection layer 5 is preferably larger than 3.0 nm, more preferably 3.3 nm or more, even more preferably 3.5 nm or more, 3.7 nm or more, 3.9 nm or more, or 4 nm or more. It may be .0 nm or more.
  • the arithmetic mean height Sa of the antireflection layer 5 may be 10 nm or less, 8 nm or less, 6 nm or less, 5.5 nm or less, or 5 nm or less.
  • sputter film-forming conditions also affect the film growth pattern of the antireflection layer. For example, when the discharge voltage during sputter film formation is low, the kinetic energy of sputtered particles is low and diffusion on the substrate surface is suppressed, so columnar growth is promoted and sparse portions are likely to be formed. Furthermore, if the pressure during film formation is high, the mean free path of the sputtered particles becomes small, the directivity of the sputtered particles decreases, and the sputtered particles become more easily diffused, which tends to reduce the film density.
  • the pressure during sputtering film formation is preferably 0.4 Pa or higher, and may be 0.45 Pa or higher or 0.5 Pa or higher.
  • the pressure during sputtering film formation is preferably 0.5 Pa or more, and may be 0.55 Pa or more or 0.6 Pa or more.
  • the film-forming pressure is preferably 1.5 Pa or less, and may be 1 Pa or less or 0.9 Pa or less.
  • the antireflection film includes an antifouling layer 7 on the antireflection layer 5 as the outermost surface layer (top coat layer).
  • the antifouling layer 7 has a small refractive index difference with the low refractive index layer 54, which is the outermost layer of the antireflection layer 5.
  • the refractive index of the antifouling layer 7 is preferably 1.6 or less, more preferably 1.55 or less.
  • the material for the antifouling layer 7 is preferably a fluorine-containing compound.
  • the fluorine-containing compound provides antifouling properties and can also contribute to lowering the refractive index.
  • fluoropolymer containing a perfluoropolyether skeleton is preferred because it has excellent water repellency and can exhibit high stain resistance.
  • perfluoropolyethers having a main chain structure that can be rigidly arranged in parallel are particularly preferred.
  • the structural unit of the main chain skeleton of perfluoropolyether is preferably a perfluoroalkylene oxide which may have a branch having 1 to 4 carbon atoms, such as perfluoromethylene oxide, (-CF 2 O-) , perfluoroethylene oxide (-CF 2 CF 2 O-), perfluoropropylene oxide (-CF 2 CF 2 CF 2 O-), perfluoroisopropylene oxide (-CF (CF 3 ) CF 2 O-), etc. It will be done.
  • the antifouling layer 7 can be formed by a wet method such as a reverse coating method, a die coating method, or a gravure coating method, or a dry method such as a CVD method.
  • the thickness of the antifouling layer is usually about 2 to 50 nm. The greater the thickness of the antifouling layer 7, the more the antifouling property tends to improve. In addition, the greater the thickness of the antifouling layer 7, the more the antifouling properties tend to be suppressed from decreasing due to wear.
  • the thickness of the antifouling layer is preferably 5 nm or more, more preferably 7 nm or more, and even more preferably 8 nm or more.
  • the thickness of the antifouling layer is preferably 30 nm or less, more preferably 20 nm or less, from the viewpoint of forming a surface shape that reflects the uneven shape of the surface of the hard coat layer on the surface of the antifouling layer and imparting slipperiness. .
  • the arithmetic mean height Sa 2 of the surface of the antifouling layer 7 is greater than 3.0 nm.
  • the arithmetic mean height Sa 2 of the antifouling layer 7 is preferably 3.3 nm or more, more preferably 3.5 nm or more, and may be 3.7 nm or more, 3.9 nm or more, or 4.0 nm or more.
  • the bending resistance of the antireflection film tends to improve.
  • the arithmetic mean height Sa 2 of the antifouling layer 7 may be 10 nm or less, 8 nm or less, 7.5 nm or less, 7 nm or less, 6.5 nm or less, 6 nm or less, 5.5 nm or less, or 5 nm or less.
  • the surface shapes of the antireflection layer 5 and the antifouling layer 7 also depend on the growth mode of the antireflection layer. Generally, by forming the antireflection layer 5 and the antifouling layer 7 on the hard coat layer 11, the surface unevenness of the hard coat layer 11 is alleviated, so the arithmetic mean height Sa2 of the antifouling layer 7 is , tends to be smaller than the arithmetic mean height Sa 1 of the hard coat layer 11, and if the film growth is uniform, the relationship Sa 2 ⁇ Sa 1 is satisfied.
  • the unevenness increases, so the arithmetic mean height Sa2 of the antifouling layer 7 increases, and the arithmetic mean height Sa1 of the hard coat layer 11 and the antifouling layer increase.
  • the difference Sa 1 ⁇ Sa 2 from the arithmetic mean height Sa 2 of 7 tends to become smaller.
  • Sa 1 -Sa 2 is preferably 2.2 nm or less, more preferably 2.0 nm or less, and may be 1.8 nm or less or 1.6 nm or less.
  • the smaller Sa 1 -Sa 2 tends to be, the better the antireflection film will be in bending resistance. This is considered to be related to the fact that the low refractive index layer 54, which is the outermost layer of the antireflection layer 5, grows in a columnar manner and tends to form sparse portions.
  • the lower limit of Sa 1 -Sa 2 is not particularly limited, and Sa 1 -Sa 2 may be a negative value. However, if Sa 1 - Sa 2 is too small (Sa 2 is too large), the wear resistance of the antifouling layer may decrease, so Sa 1 - Sa 2 should be -0.4 nm or more. It is preferably 0 nm or more, more preferably 0.3 nm or more, 0.5 nm or more, 0.7 nm or more, 0.9 nm or more, or 1.0 nm or more.
  • the film thickness of the low refractive index layer 54 which is the outermost layer of the antireflection layer 5 is larger than 85 nm, and the arithmetic mean height Sa 2 of the antifouling layer 7 is larger than 3 nm, so that scratch resistance is achieved.
  • the antireflection layer also has excellent bending resistance and suppresses the occurrence of cracks.
  • the arithmetic mean height Sa 1 of the hard coat layer 11 is large, when the antireflection layer 5 is formed thereon, columnar growth of the film is promoted and sparse portions are likely to be formed. Even if a large compressive strain occurs when the film is bent with the surface on which the antireflection layer is formed on the inside, it is thought that the occurrence of cracks is suppressed because the sparse portions of the film have the effect of relaxing the strain.
  • the antireflection layer 5 has large surface irregularities and sparse portions, but because the outermost layer, the low refractive index layer 54, has a large thickness, the antireflection layer 5 has high surface hardness and excellent scratch resistance. Therefore, the antifouling layer 7 provided in contact with the low refractive index layer 54 of the antireflection layer 5 has excellent abrasion resistance, has little wear due to sliding friction, and maintains high antifouling properties over a long period of time.
  • the film thickness of the low refractive index layer (silicon oxide thin film) 54 which is the outermost layer of the antireflection layer 5
  • the film thickness of the high refractive index layer (niobium oxide thin film) directly below it is small, resulting in low optical design. Being able to achieve a high reflectance can also contribute to improving the bending resistance of the antireflection layer.
  • the optical design to reduce the reflectance is generally carried out directly below the outermost layer of the antireflection layer.
  • a configuration in which the thickness of the niobium oxide thin film provided is large is adopted.
  • a thick niobium oxide thin film has a high density and is prone to cracking due to strain during bending.
  • the film thickness of the low refractive index layer 54 which is the outermost layer of the antireflection layer, is greater than 85 nm, even if the film thickness of the high refractive index layer 53 immediately below it is 40 nm or less, the rate can be achieved.
  • the thickness of the niobium oxide thin film as the high refractive index layer 53 is small, the occurrence of cracks during bending due to the niobium oxide thin film is suppressed.
  • the antireflection film is used, for example, by being placed on the surface of an image display device such as a liquid crystal display or an organic EL display.
  • an image display device such as a liquid crystal display or an organic EL display.
  • an antireflection film by disposing an antireflection film on the viewing side surface of a panel containing an image display medium such as a liquid crystal cell or an organic EL cell, reflection of external light can be reduced and visibility of the image display device can be improved.
  • the antireflection film of the present invention includes an antifouling layer, it can reduce the influence of contamination due to contact from the outside, and the antifouling layer has excellent abrasion resistance, so it is used for mobile applications that are subject to a lot of contact from the outside and sliding. It can also be suitably used in image display devices.
  • the anti-reflection film of the present invention has excellent bending resistance, and even if it is held in a bent state with the anti-reflection layer forming side facing inside, the anti-reflection layer is unlikely to crack at the bent portions, making it difficult to hold folders. It can also be suitably used for a blue display.
  • Organosilica sol manufactured by Nissan Chemical Co., Ltd., "GRANDIC PC-1070” was added to an ultraviolet curable acrylic resin composition (manufactured by DIC, trade name “GRANDIC PC-1070”) so that the amount of silica particles was 40 parts by weight per 100 parts by weight of the resin component.
  • MEK-ST-L average primary particle size of silica particles: 50 nm, particle size distribution of silica particles: 30 nm to 130 nm, solid content 30% by weight
  • the above composition was applied to one side of an 80 ⁇ m thick triacetyl cellulose film (“FujiTac” manufactured by Fujifilm) so that the thickness after drying would be 4 ⁇ m, and dried at 80° C. for 3 minutes. Thereafter, using a high-pressure mercury lamp, ultraviolet rays were irradiated with an integrated light amount of 200 mJ/cm 2 to cure the coating layer and form a hard coat layer.
  • FujiTac triacetyl cellulose film manufactured by Fujifilm
  • Example 1 Surface treatment of hard coat layer
  • the surface of the hard coat layer was subjected to argon plasma treatment at an effective power density of 0.14 W ⁇ min/m ⁇ cm 2 .
  • the arithmetic mean height Sa 1 of the hard coat layer after the argon plasma treatment was 5.7 nm.
  • the hard coat film after plasma treatment was introduced into a roll-to-roll type sputtering film forming apparatus, and the pressure inside the tank was reduced to 1 ⁇ 10 -4 Pa, and then the pressure was reduced to 0.5 Pa while running the film.
  • An ITO primer layer with a thickness of 2 nm was formed by sputtering under conditions of introducing argon gas and oxygen gas at a volume ratio of 98:2, power source: MFAC, and input power: 6 kW.
  • a sintered target containing indium oxide and tin oxide at a weight ratio of 90:10 was used as a target material.
  • the first layer 5 layers of 16 nm Nb 2 O (refractive index: 2.32) and the second layer: 2 layers of 40 nm SiO (refractive index: 1.46) were formed by reactive sputtering.
  • a third layer 5 Nb 2 O layers of 31 nm
  • a fourth layer 2 SiO 2 layers of 100 nm were sequentially formed to form an antireflection layer.
  • an Nb target was used, and argon gas and oxygen gas were introduced at a volume ratio of 90:10 so that the pressure was 0.6 Pa.
  • Sputtering was performed with input power: 30 kW.
  • a Si target was used, and argon gas and oxygen gas were introduced at a volume ratio of 70:30 so that the pressure was 0.5 Pa.
  • Sputtering was performed with power: 20 kW.
  • a sample for cross-sectional observation was prepared by processing an antireflection film using a focused ion beam processing device (Hitachi High-Tech's "FB2200”), and the sample was examined using a field emission transmission electron microscope (JEOL's "JEM-2800") at a magnification of 100,000 times.
  • a 200 nm x 200 nm area centered on the valley of the unevenness of the antireflection layer was binarized using the image processing software "Image-J", and the obtained binary In the value image, when a streak-like area was confirmed along the film thickness direction, it was determined that it was a sparse area.
  • FIG. 2 shows a cross-sectional image of the anti-reflection film of Example 1
  • FIG. 3 shows a cross-sectional image of the anti-reflection film of Comparative Example 1.
  • FIG. 2 three sparse portions were confirmed in an area with a width of 1 ⁇ m (portions indicated by downward triangles ( ⁇ ) in the figure).
  • downward triangles
  • ⁇ Bending resistance test> Cut the anti-reflection film into a size of 10 mm width x 100 mm length, and bend it 180 degrees so that the surface on the anti-reflection layer side faces inside, so that the bending radius is constant at D/2 as shown in Figure 4. Both ends in the length direction were attached to a spacer having a thickness of D. This sample was heated in an oven at 100° C. for 30 minutes, then taken out, and the presence or absence of cracks in the curved portion (white turbidity of the antireflection layer) was visually confirmed.
  • DMo-701 manufactured by Kyowa Kaimen Kagaku Co., Ltd.
  • the effective power density of the plasma treatment of the hard coat layer of Examples and Comparative Examples, the arithmetic mean height Sa 1 after plasma treatment, the film thickness of each layer constituting the antireflection layer, and the evaluation results of the antireflection film (antifouling Table 1 shows the arithmetic mean height Sa 2 of the layer surface, presence or absence of a sparse portion of the SiO 2 layer in cross-sectional observation, scratch resistance (retention rate of water contact angle), and bending resistance radius.
  • Example 1 in which the thickness of the silicon oxide thin film as the outermost layer of the antireflection layer is 101 nm, and the arithmetic mean height Sa 2 of the antifouling layer is 4.3 nm, the bending radius is as small as 2.6 mm, and The antifouling layer had high wear resistance.
  • Comparative Example 1 where Sa 2 was small no sparse portion was observed in the outermost silicon oxide thin film, and the bending resistance was inferior to that in Example 1.
  • Example 1 the difference Sa 1 - Sa 2 between the arithmetic mean height Sa 1 of the hard coat layer and the arithmetic mean height Sa 2 of the antifouling layer was 2.3 nm, whereas in Example 1 , Sa 1 -Sa 2 was 1.4 nm.
  • the effective power density during the plasma treatment of the hard coat layer was high, the Sa 1 was large because large surface irregularities were formed by the hard coat layer, and the antireflection layer formed by sputtering on the hard coat layer had a columnar shape. It is thought that growth was promoted, sparse portions were easily formed in the film, and bending resistance was improved.
  • Example 2 the wear resistance was inferior to that in Example 1. This is thought to be due to the fact that the outermost silicon oxide thin film of the antireflection layer has a small thickness and low hardness.
  • Comparative Example 2 similar to Example 1, sparse portions are formed in the silicon oxide thin film, and although the arithmetic mean height Sa2 of the antifouling layer is large, the bending radius is smaller than in Example 1. It was large and had poor bending resistance. In addition to the film quality of the silicon oxide thin film, it is presumed that the large thickness of the niobium oxide thin film formed directly below the silicon oxide thin film affects the bending resistance.
  • the antireflection film of Example 1 has a smaller bending radius and is superior in bending resistance than the antireflection films of Comparative Examples 1 and 2. Furthermore, it can be seen that the antireflection film of Example 1 has excellent abrasion resistance and can be suitably used as an antireflection film disposed on the outermost surface of a foldable device.
  • Hard coat film 10 Transparent film base material 11 Hard coat layer 3 Primer layer 5 Antireflection layer 51, 53 High refractive index layer (niobium oxide layer) 52, 54 Low refractive index layer (silicon oxide layer) 7 Antifouling layer 101 Antireflection film

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

反射防止フィルム(101)は、透明フィルム基材(10)の一主面上にハードコート層(11)を備えるハードコートフィルム(1)と、ハードコート層上に順に設けられた反射防止層(5)および防汚層(7)とを備える。反射防止層は、高屈折率層および低屈折率層を、少なくとも1層ずつ含み、低屈折率層(54)が防汚層に接している。低屈折率層は、酸化シリコンを主成分とする薄膜であり、防汚層に接する低屈折率層の膜厚は85nmよりも大きい。防汚層の算術平均高さSa2は3.0nmよりも大きい。

Description

反射防止フィルムおよび画像表示装置
 本発明は、ハードコートフィルムのハードコート層上に反射防止層を備える反射防止フィルムに関する。さらに、本発明は当該反射防止フィルムを備える画像表示装置に関する。
 液晶ディスプレイや有機ELディスプレイ等の画像表示装置の視認側表面には、外光の反射による画質低下の防止、コントラスト向上等を目的として、反射防止フィルムが使用されている。反射防止フィルムは、透明フィルム上に、屈折率の異なる複数の薄膜の積層体からなる反射防止層を備える。
 例えば、特許文献1では、ハードコートフィルム上にSiOプライマー層を備え、その上に、高屈折率層としての酸化ニオブ(Nb)層と低屈折率層としての酸化シリコン(SiO)層との交互積層体からなる反射防止層を備える反射防止フィルムが開示されている。
特開2009-47876号公報
 近年では、樹脂フィルム等の折り曲げ可能な基板(フレキシブル基板)を用いた有機ELパネルを備える折り曲げ可能な画像表示装置(フォルダブルディスプレイ)が実用化されている。フォルダブルディスプレイのカバーウインドウとしては、可撓性のフィルム基板上に反射防止層を設けた反射防止フィルムが用いられる。
 フォルダブルディスプレイは、一般に折り畳んだ状態で保管される。折り畳み状態では、折り畳み箇所(屈曲箇所)の内側には圧縮応力、外側には引張応力が付与されている。表示面を内側としてディスプレイを折り畳むと、反射防止フィルムは、反射防止層形成面を内側として折り畳んだ状態となる。この状態で高温に加熱すると、反射防止層に微細なクラックが発生する場合があり、ディスプレイの視認性低下の原因となっている。
 上記に鑑み、本発明は、折り畳み状態(屈曲状態)で高温に加熱した場合でも、反射防止層にクラックが生じ難く、耐屈曲性に優れる反射防止フィルムの提供を目的とする。
 反射防止フィルムは、透明フィルム基材の一主面上にハードコート層を備えるハードコートフィルムと、ハードコート層上に設けられた反射防止層と、反射防止層上に設けられた防汚層とを備える。防汚層の算術平均高さSaは、3.0nmよりも大きい。
 反射防止層は、少なくとも1層の高屈折率層および少なくとも1層の低屈折率層を含み、低屈折率層が前記防汚層に接している。反射防止層は、高屈折率層を2層以上含んでいてもよく、低屈折率層を2層以上含んでいてもよい。反射防止層は、好ましくは、複数の高屈折率層と複数の低屈折率層の交互積層体である。
 反射防止層の低屈折率層は、酸化シリコンを主成分とする薄膜であり、防汚層に接する前記低屈折率層の膜厚は85nmよりも大きい。防汚層に接する前記低屈折率層は、断面観察像において、膜厚方向に沿った疎な部分を有していてもよい。
 反射防止層の高屈折率層は、好ましくは、酸化ニオブを主成分とする薄膜である。酸化ニオブ薄膜の膜厚は40nm以下であってもよい。
 ハードコート層は、バインダー樹脂に加えて、平均一次粒子径が10~100nmの微粒子を含んでいてもよい。ハードコート層の算術平均高さは4.5nm以上が好ましい。ハードコート層と反射防止層との間には、無機酸化物からなるプライマー層が設けられていてもよい。
 本発明の反射防止フィルムは、防汚層が耐摩耗性に優れるとともに、反射防止層形成面を内側として屈曲した状態で加熱しても反射防止層にクラックが発生し難く、フォルダブルディスプレイにも好適に使用できる。
反射防止フィルムの積層形態を示す断面図である。 実施例の反射防止フィルムの断面観察像である。 比較例の反射防止フィルムの断面観察像である。 耐屈曲性試験に用いた試料の構成を示す断面図である。
 図1は、本発明の一実施形態の反射防止フィルムの積層構成例を示す断面図である。反射防止フィルム101は、ハードコートフィルム1のハードコート層11上に、反射防止層5を備える。ハードコートフィルム1は、透明フィルム基材10の一主面上にハードコート層11を備える。反射防止層5は、屈折率の異なる2層以上の薄膜の積層体であり、少なくとも1層の高屈折率層および少なくとも1層の低屈折率層を含む。ハードコート層11と反射防止層5との間には、プライマー層3が設けられていてもよい。反射防止層5上には、防汚層7が設けられていている。
[ハードコートフィルム]
 ハードコートフィルム1は、透明フィルム基材10の一主面上に、ハードコート層11を備える。反射防止層5形成面側にハードコート層11が設けられることにより、反射防止フィルムの表面硬度や耐擦傷性等の機械特性を向上できる。
<透明フィルム基材>
 透明フィルム基材10の可視光透過率は、好ましくは80%以上、より好ましくは90%以上である。透明フィルム基材10を構成する樹脂材料としては、例えば、透明性、機械強度、および熱安定性に優れる樹脂材料が好ましい。樹脂材料の具体例としては、トリアセチルセルロース等のセルロース系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂)、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、およびこれらの混合物が挙げられる。
 透明フィルム基材の厚みは特に限定されないが、強度や取扱性等の作業性、薄層性等の観点から、5~300μm程度が好ましく、10~250μmがより好ましく、20~200μmがさらに好ましい。
<ハードコート層>
 透明フィルム基材10の主面上にハードコート層11を設けることによりハードコートフィルム1が形成される。ハードコート層は硬化樹脂層であり、硬化性樹脂を含む組成物を透明フィルム基材上に塗布し、樹脂成分を硬化することにより形成される。ハードコート層は、硬化樹脂に加えて微粒子を含んでいてもよい。
(硬化性樹脂)
 ハードコート層11の硬化性樹脂(バインダー樹脂)としては、熱硬化性樹脂、光硬化性樹脂、電子線硬化性樹脂等の硬化性樹脂が好ましく用いられる。硬化性樹脂の種類としてはポリエステル系、アクリル系、ウレタン系、アクリルウレタン系、アミド系、シリコーン系、シリケート系、エポキシ系、メラミン系、オキセタン系、アクリルウレタン系等が挙げられる。これらの中でも、硬度が高く、光硬化が可能であることから、アクリル系樹脂、アクリルウレタン系樹脂、およびエポキシ系樹脂が好ましく、中でもアクリルウレタン系樹脂が好ましい。
 光硬化性樹脂組成物は、2個以上の光重合性(好ましくは紫外線重合性)の官能基を有する多官能化合物を含む。多官能化合物はモノマーでもオリゴマーでもよい。光重合性の多官能化合物としては、1分子中に2個以上の(メタ)アクリロイル基を含む化合物が好ましく用いられる。
 1分子中に2個以上の(メタ)アクリロイル基を有する多官能化合物の具体例としては、トリシクロデカンジメタノールジアクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジメチロールプロパントテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、1,9-ノナンジオールジアクリレート、1,10-デカンジオール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジアクリレート、イソシアヌル酸トリ(メタ)アクリレート、エトキシ化グリセリントリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレートおよびこれらのオリゴマーまたはプレポリマー等が挙げられる。なお、本明細書において、「(メタ)アクリル」とはアクリルおよび/またはメタクリルを意味する。
 1分子中に2個以上の(メタ)アクリロイル基を有する多官能化合物は、水酸基を有していてもよい。水酸基を含む多官能化合物を用いることにより、透明フィルム基材とハードコート層との密着性が向上する傾向がある。1分子中に水酸基および2個以上の(メタ)アクリロイル基を有する化合物としては、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 アクリルウレタン樹脂は、多官能化合物として、ウレタン(メタ)アクリレートのモノマーまたはオリゴマーを含む。ウレタン(メタ)アクリレートが有する(メタ)アクリロイル基の数は、3以上が好ましく、4~15がより好ましく、6~12がさらに好ましい。ウレタン(メタ)アクリレートオリゴマーの分子量は、例えば3000以下であり、500~2500が好ましく、800~2000がより好ましい。ウレタン(メタ)アクリレートは、例えば、(メタ)アクリル酸または(メタ)アクリル酸エステルとポリオールとから得られるヒドロキシ(メタ)アクリレートを、ジイソシアネートと反応させることにより得られる。
 ハードコート層形成用組成物中の多官能化合物の含有量は、樹脂成分(硬化によりバインダー樹脂を形成するモノマー、オリゴマーおよびプレポリマー)の合計100重量部に対して、50重量部以上が好ましく、60重量部以上がより好ましく、70重量部以上がさらに好ましい。多官能モノマーの含有量が上記範囲であれば、ハードコート層の硬度が高められる傾向がある。
(微粒子)
 ハードコート層11が微粒子を含むことにより、表面に微細な凹凸が形成され、反射防止層の密着性や耐屈曲性が向上する傾向がある。
 微粒子としては、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化スズ、酸化インジウム、酸化カドミウム、酸化アンチモン等の無機酸化物微粒子、ガラス微粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル-スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の透明ポリマーからなる架橋又は未架橋の有機系微粒子を特に制限なく使用できる。
 微粒子の平均粒子径(平均一次粒子径)は、10nm~10μm程度が好ましい。平均一次粒子径は、コールターカウント法により測定される重量平均粒子径である。微粒子は、粒径に応じて、0.5μm~10μm程度のサブミクロンまたはμmオーダーの粒子径を有する微粒子(以下「マイクロ粒子」と記載する場合がある)、10nm~100nm程度の粒子径を有する微粒子(以下「ナノ粒子」と記載する場合がある)、およびマイクロ粒子とナノ粒子の中間の粒子径を有する微粒子に大別できる。
 ハードコート層11がナノ粒子を含むことにより、表面に微細な凹凸が形成され、ハードコート層11とプライマー層3および反射防止層5との密着性が向上する傾向がある。ナノ粒子としては、無機微粒子が好ましく、中でも無機酸化物微粒子が好ましい。中でも、屈折率が低く、バインダー樹脂との屈折率差を小さくできることから、シリカ粒子が好ましい。
 ハードコート層11の表面に、反射防止層との密着性に優れる凹凸形状を形成する観点から、ナノ粒子の平均一次粒子径は、20~80nmが好ましく、25~70nmがより好ましく、30~60nmがさらに好ましい。
 ハードコート層11におけるナノ粒子の量は、バインダー樹脂100重量部に対して、1~150重量部程度であってもよい。ハードコート層11の表面に、反射防止層との密着性に優れた表面形状を形成する観点から、ハードコート層11におけるナノ粒子の含有量は、バインダー樹脂100重量部に対して、20~100重量部が好ましく、25~90重量部がより好ましく、30~80重量部がさらに好ましい。
(ハードコート層の形成)
 ハードコート層形成用組成物は、上記のバインダー樹脂成分を含み、必要に応じてバインダー樹脂成分を溶解可能な溶媒を含む。上記の通り、ハードコート層形成用組成物は微粒子を含んでいてもよい。バインダー樹脂成分が光硬化型樹脂である場合には、組成物中に光重合開始剤が含まれることが好ましい。ハードコート層形成用組成物は、上記の他に、レベリング剤、チクソトロピー剤、帯電防止剤、ブロッキング防止剤、分散剤、分散安定剤、酸化防止剤、紫外線吸収剤、消泡剤、増粘剤、界面活性剤、滑剤等の添加剤を含んでいてもよい。
 透明フィルム基材上にハードコート層形成用組成物を塗布し、必要に応じて溶媒の除去および樹脂の硬化を行うことにより、ハードコート層が形成される。ハードコート層形成用組成物の塗布方法としては、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法、コンマコート法等の任意の適切な方法を採用し得る。塗布後の加熱温度は、ハードコート層形成用組成物の組成等に応じて、適切な温度に設定すればよく、例えば、50℃~150℃程度である。バインダー樹脂成分が光硬化性樹脂である場合は、紫外線等の活性エネルギー線を照射することにより光硬化が行われる。照射光の積算光量は、好ましくは100~500mJ/cm程度である。
 ハードコート層11の厚みは特に限定されないが、高い硬度を実現するとともに、表面形状を適切に制御する観点から、1~10μm程度が好ましく、2~9μmがより好ましく、3~8μmがさらに好ましい。
(ハードコート層の表面処理)
 ハードコート層11上に反射防止層5を形成する前に、ハードコート層11の表面処理が行われてもよい。表面処理としては、コロナ処理、プラズマ処理、フレーム処理、オゾン処理、グロー処理、アルカリ処理、酸処理、カップリング剤による処理等の表面改質処理が挙げられる。表面処理として真空プラズマ処理を行ってもよい。真空プラズマ処理により、ハードコート層の表面粗さを調整することもできる。例えば、ハードコート層11が、バインダー樹脂成分(樹脂硬化物)に加えて無機微粒子を含む場合は、真空プラズマ処理によってハードコート層表面の樹脂成分が選択的にエッチングされやすく、無機粒子はほとんどエッチングされずに残存するため、ハードコート層表面およびその近傍における無機酸化物粒子の存在比率が高くなり、ハードコート層表面の算術平均高さSaが大きくなる傾向がある。
 真空プラズマ処理における雰囲気ガスとしては、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等の不活性ガスが好ましく、中でもアルゴンが好ましい。真空プラズマ処理における実効パワー密度は、0.01W・min/m・cm以上が好ましく、0.03W・min/m・cm以上がより好ましく、0.05W・min/m・cm以上がさらに好ましく、0.07W・min/m・cm以上または0.1W・min/m・cm以上であってもよい。実効パワー密度とは、プラズマ出力のパワー密度(W/cm)を搬送速度(m/min)で割った値である。実効パワー密度が大きいほど、ハードコート層表面の算術平均高さSaが大きくなり、これに伴って、ハードコート層上に形成される反射防止層の密着性および耐屈曲性が向上する傾向がある。
 一方、実効パワー密度が過度に高いと、バインダー樹脂のエッチングが過度に進行して、ハードコート層表面の凹凸の粗大化や、微粒子の脱落による密着性の低下を招く場合がある。そのため、実効パワー密度は、0.6W・min/m・cm以下が好ましく、0.43W・min/m・cm以下または0.22W・min/m・cm以下であってもよい。
(ハードコート層の表面形状)
 上記の様に、ハードコート層11が微粒子(ナノ粒子)を含むことにより、表面に微細な凹凸が形成される。また、微粒子を含むハードコート層に、プラズマ処理等の表面処理を実施することにより、凹凸が大きくなり、算術平均高さSaが大きくなる傾向がある。算術平均高さSaは、原子間力顕微鏡(AFM)を用いた1μm四方の観察像から、ISO 25178に準じて算出される。
 ハードコート層11の表面の算術平均高さSaは、3.5nm以上が好ましく、4.0nm以上がより好ましく、4.5nm以上がさらに好ましく、5.0nm以上、5.3nm以上または5.5nm以上であってもよい。ハードコート層11の算術平均高さSaが大きいほど、反射防止層の密着性が向上する傾向がある。また、反射防止層5の成膜下地となるハードコート層の算術平均高さSaが大きい場合、反射防止層5のスパッタ成膜時に柱状成長しやすく、耐屈曲性が向上する傾向がある。
 一方、ハードコート層の表面凹凸が粗大になると、十分な密着性を実現できない場合がある。そのため、ハードコート層表面の算術平均高さSaは、10nm以下が好ましく、8.0nm以下がより好ましく、7.5nm以下がさらに好ましく、7.0nm以下または6.5nm以下であってもよい。
[反射防止フィルム]
 ハードコートフィルム1のハードコート層11上に、必要に応じてプライマー層3を介して、反射防止層5を形成し、反射防止層5上に防汚層7を設けることにより、反射防止フィルムが形成される。
<プライマー層>
 ハードコートフィルム1のハードコート層11と反射防止層5との間には、プライマー層3が設けられることが好ましい。プライマー層3の材料としては、シリコン、ニッケル、クロム、スズ、金、銀、白金、亜鉛、チタン、インジウム、タングステン、アルミニウム、ジルコニウム、パラジウム等の金属;これらの金属の合金;これらの金属の酸化物、フッ化物、硫化物または窒化物;等が挙げられる。中でも、プライマー層の材料は無機酸化物が好ましく、酸化シリコンまたは酸化インジウムが特に好ましい。プライマー層3を構成する無機酸化物は、酸化インジウム錫(ITO)等の複合酸化物でもよい。
 プライマー層3の膜厚は、例えば、1~20nm程度であり、好ましくは3~15nmである。プライマー層の膜厚が上記範囲であれば、ハードコート層11との密着性と高い光透過性とを両立できる。
<反射防止層>
 反射防止層5は、屈折率の異なる複数の薄膜の積層体であり、少なくとも1層の高屈折率層と少なくとも1層の低屈折率層を含む。一般に、反射防止層は、入射光と反射光の逆転した位相が互いに打ち消し合うように、薄膜の光学膜厚(屈折率と膜厚の積)が調整される。屈折率の異なる複数の薄膜の多層積層体により、可視光の広帯域の波長範囲において、反射率を小さくできる。
 図1に示す反射防止フィルム101において、反射防止層5は、ハードコートフィルム1側から、高屈折率層51,低屈折率層52,高屈折率層53および低屈折率層54の4層を順に備え、反射防止層5の最外層(ハードコートフィルム1から最も離れた層)である低屈折率層54が、防汚層7に接している。
 反射防止層は4層構成に限定されず、2層構成、3層構成、5層構成、または6層以上の積層構成であってもよいが、防汚層7に接する最外層54は低屈折率層である。最外層が低屈折率層であることにより、防汚層7との界面での反射が低減される。反射防止層5は、好ましくは、2層以上の高屈折率層と2層以上の低屈折率層の交互積層体である。
 低屈折率層52,54は、酸化シリコンを主成分とする薄膜である。酸化シリコンは屈折率が低く、かつ硬度が高いため、反射防止層5の最外層54が酸化シリコンであることにより、反射防止性に優れるとともに、耐擦傷性の高い反射防止フィルムが得られる。低屈折率層は、酸化シリコン以外の酸化物を含んでいてもよいが、酸化シリコンの含有量が90重量%以上であり、好ましくは99重量%以上である。低屈折率層の屈折率は、1.6以下であり、好ましくは1.5以下である。
 防汚層7に接する低屈折率層54の膜厚は、85nmよりも大きい。反射防止層5の最外層としての低屈折率層54が、85nmよりも大きい膜厚を有する酸化シリコン層であることにより、反射防止層5の表面硬度が高められ、その上に形成される防汚層7の耐摩耗性が向上する傾向がある。
 低屈折率層54の膜厚は、87nm以上が好ましく、90nm以上がより好ましく、92nm以上、94nm以上または95nm以上であってもよい。反射防止層5の最外層としての低屈折率層54の膜厚が大きいほど、防汚層7の耐摩耗性に優れる傾向がある。一方、低屈折率層54の膜厚が過度に大きいと、クラック発生の原因となったり、反射防止性特性に優れる低反射率の光学設計が困難となる場合がある。そのため、低屈折率層54の膜厚は、200nm以下が好ましく、150nm以下がより好ましく、130nm以下、120nm以下、115nm以下、110nm以下または105nm以下であってもよい。
 高屈折率層51,53の屈折率は2.0以上であり、好ましくは、2.2以上である。高屈折率層の材料としては、酸化チタン、酸化ニオブ、酸化ジルコニウム等が挙げられる。中でも、屈折率が高く、酸化シリコン低屈折率層との積層によって、効率的に反射率を低減可能であることから、酸化ニオブが好ましい。高屈折率層51,53は、好ましくは、酸化ニオブの含有量が90重量%以上であり、より好ましくは99重量%以上である。
 高屈折率層が酸化ニオブ薄膜である場合、その膜厚は40nm以下が好ましい。反射防止層が複数の酸化ニオブ薄膜51,53を含む場合は、少なくとも、ハードコート層から最も離れて配置されている高屈折率層53としての酸化ニオブ薄膜の膜厚が40nm以下であることが好ましく、全ての酸化ニオブ薄膜の膜厚が40nm以下であることが特に好ましい。酸化ニオブ薄膜の膜厚が小さいことにより、反射防止フィルムの耐屈曲性が向上する傾向がある。酸化ニオブ薄膜の膜厚は、35nm以下がより好ましく、32nm以下または30nm以下であってもよい。
 酸化ニオブ薄膜の膜密度は、4.47g/cm以下が好ましく、4.40g/cm以下がより好ましく、4.35g/cm以下または4.33g/cm以下であってもよい。酸化ニオブ薄膜の膜密度が小さいことにより、反射防止フィルムの耐屈曲性が向上する傾向がある。反射防止層が複数の酸化ニオブ薄膜を含む場合は、少なくとも、ハードコート層11から最も離れて配置されている酸化ニオブ薄膜、すなわち最外層としての低屈折率層54に接する高屈折率層53としての酸化ニオブ薄膜の膜密度が、上記範囲であることが好ましい。複数の酸化ニオブ薄膜51,53の全ての膜密度が上記範囲であることが特に好ましい。
 酸化ニオブ薄膜の膜密度は、一般に、4.0g/cm以上であり、4.1g/cm以上または4.2g/cm以上であってもよい。膜密度は、ラザフォード後方散乱(RBS)法による測定値であり、断面観察から求めた膜厚を用いて、密度を算出する。
 一実施形態において、反射防止層5は、ハードコートフィルム1側から、第1層:高屈折率層51としての酸化ニオブ薄膜、第2層:低屈折率層52としての酸化シリコン薄膜、第3層:高屈折率層53としての酸化ニオブ薄膜、および第4層:低屈折率層54としての酸化シリコン薄膜の計4層の交互積層体である。他の実施形態において、反射防止層は、高屈折率層としての酸化ニオブ薄膜と低屈折率層としての酸化シリコン薄膜を3層ずつ含む計6層の交互積層体である。
  反射防止層5が、2層の高屈折率層51,53および2層の低屈折率層52,54からなる合計4層の交互積層体である場合、ハードコートフィルム1側から、膜厚10~20nmの酸化ニオブ薄膜51,膜厚35~45nmの酸化シリコン薄膜52,膜厚25~35nmの酸化ニオブ薄膜53、および膜厚90~105nmの酸化シリコン薄膜54を順に備える構成が挙げられる。
(プライマー層および反射防止層の成膜)
 プライマー層3および反射防止層5を構成する薄膜の成膜方法は特に限定されず、ウェットコーティング法、ドライコーティング法のいずれでもよい。膜厚が均一な薄膜を形成できることから、真空蒸着、CVD,スパッタ、電子線蒸等のドライコーティング法が好ましい。中でも、膜厚の均一性に優れ、かつ緻密な膜を形成しやすいことから、スパッタ法が好ましい。
 スパッタ法では、ロールトゥーロール方式により、長尺のハードコートフィルムを一方向(長手方向)に搬送しながら、薄膜を連続成膜できるため、反射防止フィルムの生産性を向上できる。反射防止フィルムの生産性を向上するためには、反射防止層5を構成する全ての薄膜をスパッタ法により成膜することが好ましい。
 スパッタ法では、アルゴン等の不活性ガス、および必要に応じて酸素等の反応性ガスをチャンバー内に導入しながら成膜が行われる。スパッタ法による酸化物層の成膜は、酸化物ターゲットを用いる方法、および金属ターゲットを用いた反応性スパッタのいずれでも実施できる。高レートで金属酸化物を成膜するためには、金属ターゲットを用いた反応性スパッタが好ましい。
 スパッタ法等のドライプロセスにより薄膜を形成する場合、成膜下地の形状が膜の成長様式に影響を及ぼす。ハードコート層11が表面凹凸を有し、Saが大きい場合は、膜の柱状成長が促進されるため、膜厚方向に沿って、膜密度が低い「疎」な領域が形成されやすく、膜密度が小さくなる傾向がある。
 図2に示すように、断面観察像において、反射防止層5の最外層である低屈折率層(酸化シリコン薄膜)54には、膜厚方向に沿って膜密度が低い「疎」の部分(図2の下向き三角(▼)で示した部分)が観察される場合がある。このような「疎」部分が観察される場合に、反射防止フィルムが耐屈曲性に優れる傾向がある。
 耐屈曲性の観点からは、低屈折率層54がより多くの疎部分を有していることが好ましい。断面観察象の幅方向(膜厚方向と直交する方向)の1μmの領域内において、低屈折率層54の疎部分の数は、2本以上が好ましく、3本以上または4本以上であってもよい。疎部分の有無は、倍率10万倍の透過型電子顕微鏡(TEM)像に基づいて判定する。TEM像を200nm×200nmの領域で二値化して、膜厚方向に沿ってスジ状の領域が確認される場合に、その領域を疎部分と判定する。
 疎部分は、凹凸の谷の部分から膜厚方向に沿って延びている場合が多く、ハードコート層11および反射防止層5の表面凹凸が大きい場合に、低屈折率層54に疎部分が形成されやすい。反射防止層5の表面の算術平均高さSaは、3.0nmより大きいことが好ましく、3.3nm以上がより好ましく、3.5nm以上がさらに好ましく、3.7nm以上、3.9nm以上または4.0nm以上であってもよい。反射防止層5の算術平均高さSaは、10nm以下、8nm以下、6nm以下、5.5nm以下または5nm以下であってもよい。
 スパッタ法等のドライプロセスにより薄膜を形成する場合、成膜下地としてのハードコート層11の表面形状に加えて、スパッタ成膜条件も反射防止層の膜成長様式に影響を及ぼす。例えば、スパッタ成膜時の放電電圧が小さい場合は、スパッタ粒子の運動エネルギーが小さく、基板表面での拡散が抑制されるため、柱状成長が促進され、疎部分が形成されやすい。また、成膜時の圧力が高いと、スパッタ粒子の平均自由行程が小さくなり、スパッタ粒子の指向性が低下して拡散されやすくなるため、膜密度が小さくなる傾向がある。
 疎部分を有する酸化シリコン薄膜を形成するためには、スパッタ成膜時の圧力は、0.4Pa以上が好ましく、0.45Pa以上または0.5Pa以上であってもよい。膜密度の小さい酸化ニオブ薄膜を形成するためには、スパッタ成膜時の圧力は、0.5Pa以上が好ましく、0.55Pa以上または0.6Pa以上であってもよい。一方、成膜圧力が過度に高い場合は、成膜レートが低く生産性に劣るため、成膜圧力は1.5Pa以下が好ましく、1Pa以下または0.9Pa以下であってもよい。
<防汚層>
 反射防止フィルムは、反射防止層5上に、最表面層(トップコート層)として防汚層7を備える。最表面に防汚層が設けられることにより、外部環境からの汚染(指紋、手垢、埃等)の影響を低減できるとともに、表面に付着した汚染物質の除去が容易となる。
 反射防止層5の反射防止特性を維持するために、防汚層7は、反射防止層5の最外層である低屈折率層54との屈折率差が小さいことが好ましい。防汚層7の屈折率は、1.6以下が好ましく、1.55以下がより好ましい。
 防汚層7の材料としては、フッ素含有化合物が好ましい。フッ素含有化合物は、防汚性を付与するとともに、低屈折率化にも寄与し得る。中でも、撥水性に優れ、高い防汚性を発揮できることから、パーフルオロポリエーテル骨格を含有するフッ素系ポリマーが好ましい。防汚性を高める観点から、剛直に並列可能な主鎖構造を有するパーフルオロポリエーテルが特に好ましい。パーフルオロポリエーテルの主鎖骨格の構造単位としては、炭素数1~4の分枝を有していてもよいパーフルオロアルキレンオキシドが好ましく、例えば、パーフルオロメチレンオキシド、(-CFO-)、パーフルオロエチレンオキシド(-CFCFO-)、パーフルオロプロピレンオキシド(-CFCFCFO-)、パーフルオロイソプロピレンオキシド(-CF(CF)CFO-)等が挙げられる。
 防汚層7は、リバースコート法、ダイコート法、グラビアコート法等のウエット法や、CVD法等のドライ法等により形成できる。防汚層の膜厚は、通常、2~50nm程度である。防汚層7の膜厚が大きいほど、防汚性が向上する傾向がある。また、防汚層7の膜厚が大きいほど摩耗による防汚特定の低下が抑制される傾向がある。防汚層の膜厚は、5nm以上が好ましく、7nm以上がより好ましく、8nm以上がさらに好ましい。一方、防汚層の表面に、ハードコート層表面の凹凸形状を反映した表面形状を形成し、滑り性を付与する観点から、防汚層の膜厚は30nm以下が好ましく、20nm以下がより好ましい。
 前述の通り、防汚層7の表面の算術平均高さSaは、3.0nmより大きい。防汚層7の算術平均高さSaは、3.3nm以上が好ましく、3.5nm以上がより好ましく、3.7nm以上、3.9nm以上または4.0nm以上であってもよい。防汚層7の算術平均高さSaが大きいほど、反射防止フィルムの耐屈曲性が向上する傾向がある。
 防汚層7の表面形状は、ハードコート層11およびその上に設けられた反射防止層5の表面形状を反映するため、ハードコート層11の算術平均高さSaが大きいほど、防汚層7の算術平均高さSaが大きくなる傾向がある。防汚層7の算術平均高さSaは、10nm以下、8nm以下、7.5nm以下、7nm以下、6.5nm以下、6nm以下、5.5nm以下または5nm以下であってもよい。
 反射防止層5および防汚層7の表面形状は、反射防止層の膜成長様式にも左右される。一般には、ハードコート層11上に反射防止層5および防汚層7が形成されることにより、ハードコート層11の表面凹凸が緩和されるため、防汚層7の算術平均高さSaは、ハードコート層11の算術平均高さSaよりも小さくなる傾向があり、膜成長が一様である場合は、Sa<Saの関係を満たす。反射防止層5の成膜時に膜が柱状成長すると、凹凸が大きくなるため、防汚層7の算術平均高さSaが大きくなり、ハードコート層11の算術平均高さSaと防汚層7の算術平均高さSaとの差Sa-Saが小さくなる傾向がある。
 Sa-Saは、2.2nm以下が好ましく、2.0nm以下がより好ましく、1.8nm以下または1.6nm以下であってもよい。Sa-Saが小さいほど、反射防止フィルムが耐屈曲性に優れる傾向がある。これは、反射防止層5の最外層である低屈折率層54が柱状成長して、疎部分が形成されやすいことに関連していると考えられる。
 反射防止フィルムの耐屈曲性の観点において、Sa-Saの下限は特に限定されず、Sa-Saは負の値であってもよい。ただし、Sa-Saが過度に小さい(Saが過度に大きい)場合は、防汚層の耐摩耗性が低下する場合があるため、Sa-Saは、-0.4nm以上が好ましく、0nm以上がより好ましく、0.3nm以上、0.5nm以上、0.7nm以上、0.9nm以上または1.0nm以上であってもよい。
[反射防止フィルムの耐屈曲性]
 反射防止フィルムを、反射防止層形成面側を内側として屈曲させた状態で加熱すると、反射防止層にクラックが生じる場合がある。本発明においては、反射防止層5の最外層である低屈折率層54の膜厚が85nmよりも大きく、かつ防汚層7の算術平均高さSaが3nmよりも大きいことにより、耐擦傷性に優れるとともに、反射防止層が優れた耐屈曲性を有し、クラックの発生が抑制される。
 反射防止層形成面側を内側として反射防止フィルムを屈曲させると、反射防止層には圧縮方向の歪が生じる。この状態で加熱すると、フィルム基材が熱膨張し、反射防止層のハードコート層側の面には引張方向の歪(膜を伸ばそうとする力)が生じ、防汚層側の面にはより大きな圧縮方向の歪が生じるために、クラックが発生すると考えられる。
 前述のように、ハードコート層11の算術平均高さSaが大きいことにより、その上に反射防止層5を形成する際に、膜の柱状成長が促進され、疎な部分が形成されやすい。反射防止層形成面を内側として屈曲させた状態で大きな圧縮歪が生じても、膜の疎な部分が歪を緩和する作用を有するために、クラックの発生が抑制されると考えられる。
 反射防止層5は、表面凹凸が大きく疎な部分を有するが、最外層である低屈折率層54の膜厚が大きいため、表面硬度が高く、耐擦傷性に優れている。そのため、反射防止層5の低屈折率層54上に接して設けられる防汚層7は耐摩耗性に優れ、摺動摩擦による摩耗が少なく、長期間にわたって高い防汚性を保持している。
 また、反射防止層5の最外層である低屈折率層(酸化シリコン薄膜)54の膜厚が大きいことにより、その直下の高屈折率層(酸化ニオブ薄膜)の膜厚が小さい光学設計で低反射率を実現可能であることも、反射防止層の耐屈曲性向上に寄与し得る。
 高屈折率層としての酸化ニオブ薄膜と低屈折率層としての酸化シリコン薄膜を交互積層した反射防止フィルムでは、反射率を低下させるための光学設計として、一般に、反射防止層の最外層の直下に設けられる酸化ニオブ薄膜の膜厚が大きい構成が採用されている。しかし、膜厚の大きい酸化ニオブ薄膜は高密度であり、屈曲時の歪によるクラックが生じやすい。
 これに対して、反射防止層の最外層である低屈折率層54の膜厚が85nmよりも大きい場合は、その直下の高屈折率層53の膜厚が40nm以下であっても、低反射率を実現できる。この光学設計では、高屈折率層53としての酸化ニオブ薄膜の膜厚が小さいため、酸化ニオブ薄膜に起因する屈曲時のクラックの発生が抑制される。
[反射防止フィルムの使用形態]
 反射防止フィルムは、例えば液晶ディスプレイや有機ELディスプレイ等の画像表示装置の表面に配置して用いられる。例えば、液晶セルや有機ELセル等の画像表示媒体を含むパネルの視認側表面に反射防止フィルムを配置することにより、外光の反射を低減して、画像表示装置の視認性を向上できる。
 本発明の反射防止フィルムは、防汚層を備えるため、外部からの接触による汚染の影響を低減できるとともに、防汚層が耐摩耗性に優れるため、外部からの接触や摺動の多いモバイル用途の画像表示装置にも好適に使用できる。また、本発明の反射防止フィルムは耐屈曲性に優れ、反射防止層形成面側を内側として屈曲させた状態で保持しても、屈曲箇所での反射防止層のクラックが発生し難いため、フォルダブルディスプレイにも好適に使用できる。
 以下に実施例を挙げて本発明をより詳細に説明するが、本発明は以下の具体例に限定されるものではない。
[ハードコートフィルムの作製]
 紫外線硬化性アクリル系樹脂組成物(DIC製、商品名「GRANDIC PC-1070」)に、樹脂成分100重量部に対するシリカ粒子の量が40重量部となるように、オルガノシリカゾル(日産化学社製「MEK-ST-L」、シリカ粒子の平均一次粒子径:50nm、シリカ粒子の粒子径分布:30nm~130nm、固形分30重量%)を添加して混合し、ハードコート層形成用組成物を調製した。
 厚み80μmのトリアセチルセルロースフィルム(富士フイルム製「フジタック」)の片面に、上記の組成物を、乾燥後の厚みが4μmとなるように塗布し、80℃で3分間乾燥した。その後、高圧水銀ランプを用いて、積算光量200mJ/cmの紫外線を照射し、塗布層を硬化させハードコート層を形成した。
[実施例1]
(ハードコート層の表面処理)
 0.5Paの真空雰囲気下でハードコートフィルムを搬送しながら、実効パワー密度0.14W・min/m・cmにてハードコート層の表面にアルゴンプラズマ処理を行った。アルゴンプラズマ処理後のハードコート層の算術平均高さSaは5.7nmであった。
(プライマー層の形成)
 プラズマ処理後のハードコートフィルムをロールトゥーロール方式のスパッタ成膜装置に導入し、槽内を1×10-4Paまで減圧した後、フィルムを走行させながら、圧力が0.5Paとなるように、アルゴンガスと酸素ガスを98:2の体積比で導入し、電源:MFAC、投入電力:6kWの条件で、スパッタ法により膜厚2nmのITOプライマー層を形成した。ITOプライマー層の形成には、ターゲット材料として、酸化インジウムと酸化スズとを90:10の重量比で含有する焼結ターゲットを用いた。
(反射防止層の形成)
 ITOプライマー層の形成に続いて、反応性スパッタにより、第1層:16nmのNb層(屈折率:2.32)、第2層:40nmのSiO層(屈折率:1.46)、第3層:31nmのNb層、および第4層:100nmのSiO層を順に成膜して、反射防止層を形成した。Nb層(第1層および第3層)の成膜には、Nbターゲットを用い、圧力が0.6Paとなるように、アルゴンガスと酸素ガスを90:10の体積比で導入し、投入電力:30kWでスパッタを実施した。SiO層(第2層および第4層)の成膜には、Siターゲットを用い、圧力が0.5Paとなるように、アルゴンガスと酸素ガスを70:30の体積比で導入し、投入電力:20kWでスパッタを実施した。
(防汚層の形成)
 フッ素系防汚コーティング剤(信越化学工業製「SHIN-ETSU SUBELYN KY1903―1」)を乾燥して固化したものを蒸着源として、加熱温度260℃で、真空蒸着法により、反射防止層上に膜厚7nmの防汚層を形成した。
[比較例1]
 プラズマ処理時の放電電力を変更し、実効パワー密度を0.007W・min/m・cmとした。アルゴンプラズマ処理後のハードコート層の算術平均高さSaは5.0nmであった。それ以外は実施例1と同様にして、反射防止層の形成および防汚層の形成を行い、反射防止フィルムを作製した。
[比較例2]
 反射防止層の形成において、各層の膜厚を表1に示す様に変更した。それ以外は実施例1と同様にして、ハードコート層のプラズマ処理、反射防止層の形成および防汚層の形成を行い、反射防止フィルムを作製した。
[評価]
<表面形状>
 原子間力顕微鏡(AFM)を用い、下記の条件によりハードコート層および反射防止フィルム(防汚層)の表面形状を測定し、ISO 25178に準じて算術平均表面高さSaを測定した。
  装置:Bruker製Dimemsion3100、コントローラ:NanoscopeV
  測定モード:タッピングモード
  カンチレバー:Si単結晶
  測定視野:1μm×1μm
<断面観察>
 集束イオンビーム加工装置(日立ハイテク製「FB2200」)により反射防止フィルムを加工して断面観察用試料を作製し、電界放射型透過電子顕微鏡(日本電子製「JEM-2800)により、倍率10万倍で観察した。得られた断面像において、反射防止層の凹凸の谷の部分を中心とする200nm×200nmの領域を、画像処理ソフト「Image―J」により二値化処理し、得られた二値画像において、膜厚方向に沿ってスジ状の領域が確認された場合に、疎部分であると判定した。
 図2に実施例1の反射防止フィルムの断面像を示し、図3に比較例1の反射防止フィルムの断面像を示す。図2では、幅1μmの領域で、3つの疎部分が確認された(図中の下向き三角(▼)で示した部分)。一方、図3では、疎部分は確認されなかった。
<耐屈曲試験>
 反射防止フィルムを、幅10mm×長さ100mmのサイズに切り出し、反射防止層側の面が内側となるように180°湾曲させ、図4に示す様に、屈曲半径がD/2で一定となるように、長さ方向の両端を厚みDのスペーサに貼り合わせた。この試料を100℃のオーブン中で30分加熱した後に取り出し、目視にて湾曲部分のクラック(反射防止層の白濁)の有無を確認した。スペーサの厚みDが、10.4mm、9.2mm、7.8mm、5.2mm(屈曲半径D/2が、5.2mm、4.6mm、3.9mm、2.6mm)の場合で評価を行い、クラックが発生していなかった屈曲半径の最小値を耐屈曲半径とした。
<耐摩耗性>
 防汚層の表面に約2μLの水を滴下し、滴下から1秒後に、接触角測定装置(協和界面化学社製「DMo-701」)を用いて、防汚層の表面と液滴端部の接線との角度(水接触角の初期値)を測定した。その後、表面の水滴を拭き取った。
 擦傷試験機の直径11mmの円柱形状の金属治具に、スチールウール(日本スチールウール製「Bonstar #0000」)を取り付け、防汚層の表面を、荷重1.0kg、速度100mm/秒で1000往復摺動した後、再度水接触角を測定した(摺動後の水接触角)。初期の水接触角に対する摺動後の水接触角の比率(水接触角の保持率)を、耐摩耗性の指標とした。
 実施例および比較例のハードコート層のプラズマ処理の実効パワー密度、およびプラズマ処理後の算術平均高さSa、反射防止層を構成する各層の膜厚、ならびに反射防止フィルムの評価結果(防汚層表面の算術平均高さSa、断面観察でのSiO層の疎部分の有無、耐擦傷性(水接触角の保持率)、および耐屈曲半径)を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 反射防止層の最外層の酸化シリコン薄膜の膜厚が101nmであり、防汚層の算術平均高さSaが4.3nmである実施例1では、耐屈曲半径が2.6mmと小さく、かつ防汚層が高い耐摩耗性を有していた。一方、Saが小さい比較例1では、最外層の酸化シリコン薄膜に疎部分が確認されず、実施例1に比べて耐屈曲性が劣っていた。
 比較例1では、ハードコート層の算術平均高さSaと防汚層の算術平均高さSaとの差Sa-Saが2.3nmであったのに対して、実施例1では、Sa-Saが1.4nmであった。実施例1では、ハードコート層のプラズマ処理時の実効パワー密度が高く、ハードコート層により大きな表面凹凸が形成されたためにSaが大きく、ハードコート層上にスパッタ成膜した反射防止層の柱状成長が促進され、膜に疎な部分が形成されやすく、耐屈曲性が向上したと考えられる。
 比較例2では、実施例1に比べて耐摩耗性が劣っていた。これは、反射防止層の最外層の酸化シリコン薄膜の膜厚が小さく、硬度が低いことが影響していると考えられる。
 比較例2では、実施例1と同様、酸化シリコン薄膜に疎部分が形成されており、防汚層の算術平均高さSaが大きいにも関わらず、実施例1に比べて耐屈曲半径が大きく、耐屈曲性が劣っていた。酸化シリコン薄膜の膜質に加えて、酸化シリコン薄膜の直下に形成された酸化ニオブ薄膜の膜厚が大きいことが耐屈曲性に影響を及ぼしていると推定される。
 上記のように、実施例1の反射防止フィルムは、比較例1,2の反射防止フィルムと比較して、耐屈曲半径が小さく、耐屈曲性に優れている。また、実施例1の反射防止フィルムは耐摩耗性にも優れており、フォルダブルデバイスの最表面に配置される反射防止フィルムとして好適に使用可能であることが分かる。
  1     ハードコートフィルム
  10    透明フィルム基材
  11    ハードコート層
  3     プライマー層
  5     反射防止層
  51,53 高屈折率層(酸化ニオブ層)
  52,54 低屈折率層(酸化シリコン層)
  7     防汚層
  101   反射防止フィルム

 

Claims (10)

  1.  透明フィルム基材の一主面上にハードコート層を備えるハードコートフィルム;
     前記ハードコートフィルムのハードコート層上に設けられた反射防止層;および
     前記反射防止層上に設けられた防汚層
     を備える反射防止フィルムであって、
     前記反射防止層は、高屈折率層および低屈折率層を少なくとも1層ずつ含み、低屈折率層が前記防汚層に接しており、
     前記低屈折率層は、酸化シリコンを主成分とする薄膜であり、
     前記防汚層に接する前記低屈折率層の膜厚が85nmよりも大きく、
     前記防汚層の算術平均高さSaが3.0nmよりも大きい、
     反射防止フィルム。
  2.  前記防汚層に接する前記低屈折率層は、断面観察像において、膜厚方向に沿った疎な部分を有する、請求項1に記載の反射防止フィルム。
  3.  前記反射防止層は、前記低屈折率層および前記高屈折率層を、それぞれ2層以上含む、請求項1または2に記載の反射防止フィルム。
  4.  前記高屈折率層は、酸化ニオブを主成分とする薄膜である、請求項1または2に記載の反射防止フィルム。
  5.  前記高屈折率層は、いずれも膜厚が40nm以下である、請求項4に記載の反射防止フィルム。
  6.  前記ハードコート層と前記反射防止層との間に、無機酸化物からなるプライマー層を備える、請求項1または2に記載の反射防止フィルム。
  7.  前記ハードコート層は、バインダー樹脂および平均一次粒子径が10~100nmの微粒子を含む、請求項1または2に記載の反射防止フィルム。
  8.  前記ハードコート層の算術平均高さSaが4.5nm以上である、請求項1または2に記載の反射防止フィルム。
  9.  前記ハードコート層の算術平均高さSaと前記防汚層の算術平均高さSaとの差Sa-Saが、2.2nm以下である、請求項1または2に記載の反射防止フィルム。
  10.  画像表示媒体の視認側表面に、請求項1または2に記載の反射防止フィルムが配置されている、画像表示装置。

     
PCT/JP2023/014852 2022-04-28 2023-04-12 反射防止フィルムおよび画像表示装置 WO2023210368A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-074698 2022-04-28
JP2022074698A JP2023163654A (ja) 2022-04-28 2022-04-28 反射防止フィルムおよび画像表示装置

Publications (1)

Publication Number Publication Date
WO2023210368A1 true WO2023210368A1 (ja) 2023-11-02

Family

ID=88518494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014852 WO2023210368A1 (ja) 2022-04-28 2023-04-12 反射防止フィルムおよび画像表示装置

Country Status (3)

Country Link
JP (1) JP2023163654A (ja)
TW (1) TW202346904A (ja)
WO (1) WO2023210368A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014568A1 (ja) * 2020-07-13 2022-01-20 日東電工株式会社 防汚層付き光学フィルム
WO2022014569A1 (ja) * 2020-07-13 2022-01-20 日東電工株式会社 防汚層付き光学フィルム
JP7041769B1 (ja) * 2021-03-25 2022-03-24 デクセリアルズ株式会社 光学積層体、物品および画像表示装置
WO2022260152A1 (ja) * 2021-06-11 2022-12-15 日東電工株式会社 ハードコートフィルム、光学部材、及び画像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014568A1 (ja) * 2020-07-13 2022-01-20 日東電工株式会社 防汚層付き光学フィルム
WO2022014569A1 (ja) * 2020-07-13 2022-01-20 日東電工株式会社 防汚層付き光学フィルム
JP7041769B1 (ja) * 2021-03-25 2022-03-24 デクセリアルズ株式会社 光学積層体、物品および画像表示装置
WO2022260152A1 (ja) * 2021-06-11 2022-12-15 日東電工株式会社 ハードコートフィルム、光学部材、及び画像表示装置

Also Published As

Publication number Publication date
JP2023163654A (ja) 2023-11-10
TW202346904A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
KR102413738B1 (ko) 반사 방지 필름 및 화상 표시 장치
JP5933353B2 (ja) 反射防止フィルム、その製造方法、偏光板、及び画像表示装置
CN111183374B (zh) 硬涂薄膜、光学层叠体及图像显示装置
TW201346675A (zh) 透明導電性薄膜、觸控面板及顯示裝置
JP2010191144A (ja) 反射防止フィルム
JP2024113046A (ja) 反射防止フィルムおよびその製造方法、ならびに画像表示装置
JP7455777B2 (ja) 光学積層体および画像表示装置
WO2023210368A1 (ja) 反射防止フィルムおよび画像表示装置
JP5463680B2 (ja) 透明導電性フィルム
JP7515646B1 (ja) 反射防止フィルムおよび画像表示装置
WO2023210436A1 (ja) 反射防止フィルム及びその製造方法、並びに画像表示装置
WO2024225472A1 (ja) 光学積層体及びこれを備えた物品
JP7538299B1 (ja) 反射防止フィルム及び画像表示装置
WO2023171567A1 (ja) 光学積層体、物品および画像表示装置
WO2024070686A1 (ja) 反射防止フィルム及び画像表示装置
CN118050833A (zh) 光学薄膜
KR20240044314A (ko) 반사 방지 필름 및 그 제조 방법, 및 화상 표시 장치
JP2023133067A (ja) 光学積層体、物品および画像表示装置
KR20240011660A (ko) 적층체 및 그 제조 방법, 및 화상 표시 장치
CN117784294A (zh) 防反射薄膜及其制造方法、以及图像显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796112

Country of ref document: EP

Kind code of ref document: A1