WO2023210338A1 - 硬化性重合体、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板 - Google Patents

硬化性重合体、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板 Download PDF

Info

Publication number
WO2023210338A1
WO2023210338A1 PCT/JP2023/014633 JP2023014633W WO2023210338A1 WO 2023210338 A1 WO2023210338 A1 WO 2023210338A1 JP 2023014633 W JP2023014633 W JP 2023014633W WO 2023210338 A1 WO2023210338 A1 WO 2023210338A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable
curable composition
metal
cured product
present disclosure
Prior art date
Application number
PCT/JP2023/014633
Other languages
English (en)
French (fr)
Inventor
和美 橋本
司 臼田
祐輔 安
嵩史 五十嵐
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023210338A1 publication Critical patent/WO2023210338A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present disclosure relates to a curable polymer, a curable composition, a prepreg, a laminate, a metal-clad laminate, and a wiring board.
  • Wiring boards are used for applications such as electrical equipment and electronic equipment.
  • the wiring board can be manufactured as follows.
  • a fiber base material is impregnated with a curable composition containing a curable polymer and, if necessary, additives such as flame retardants and inorganic fillers (also referred to as fillers), and the curable composition is (semi-)cured. to produce a prepreg.
  • One or more prepregs are sandwiched between a pair of metal foils, and the obtained first temporary laminate is heated and pressurized to produce a metal-clad laminate.
  • a conductor pattern also referred to as a circuit pattern
  • such as wiring is formed using the metal foil on the outermost surface of this metal-clad laminate. The outermost metal foil may be placed only on one side of the first temporary laminate.
  • one or more prepregs are stacked on the obtained wiring board, which is sandwiched between a pair of metal foils, and the obtained second temporary laminate is heated and pressurized, using the metal foil on the outermost surface.
  • a multilayer wiring board also referred to as a multilayer printed wiring board
  • the outermost metal foil may be placed only on one side of the second temporary laminate.
  • the heated and pressed prepreg material includes a fiber base material, a resin, an inorganic filler, etc., and is also called a composite base material.
  • the composite base material functions as an insulating layer.
  • the resin contained in the prepreg is a (semi) cured product of the curable composition, and the resin contained in the composite base material is the cured product of the curable composition.
  • polyphenylene ether (modified PPE) oligomers (see formula (PPE-o) below) having polymerizable functional groups at both ends have been used. Widely used.
  • Transmission loss mainly includes conductor loss caused by the surface resistance of the metal foil and dielectric loss caused by the dielectric loss tangent (D f ) of the composite base material. Therefore, the resin contained in the composite base material of the wiring board used for the above applications is required to reduce dielectric loss in the high frequency range.
  • the dielectric loss tangent (D f ) depends on the frequency, and for the same material, the higher the frequency, the larger the dielectric loss tangent (D f ) tends to be. It is preferable that the resin contained in the composite base material has a low dielectric loss tangent (D f ) under high frequency conditions.
  • the dielectric loss tangent (D f ) of the polyphenylene ether (PPE) resin, which is a cured product of the modified polyphenylene ether (modified PPE) oligomer, at 10 GHz is about 0.002 to 0.003. It is thought that communication speeds and capacities will continue to increase in the future, and it is thought that there will be a need for materials that can further reduce the dielectric loss tangent (D f ) of the resin contained in the composite base material under high frequency conditions.
  • Wiring boards are sometimes used in relatively high-temperature environments. Even in this case, in order to ensure the reliability of the wiring board, it is preferable that the resin contained in the prepreg and composite base material has a sufficiently high glass transition temperature (Tg).
  • Tg glass transition temperature
  • Non-patent documents 1 to 4 can be cited as related technologies to the present disclosure.
  • Non-Patent Documents 1 to 4 report the synthesis of a part of the curable polymer of the present disclosure. However, there is no description of the uses of prepregs, metal-clad laminates, and wiring boards, and there is no description of dielectric properties.
  • the present disclosure has been made in view of the above circumstances, and provides a curable polymer and a resin capable of obtaining a resin having a sufficiently low dielectric loss tangent (D f ) and a sufficiently high glass transition temperature (Tg) under high frequency conditions.
  • the object of the present invention is to provide a curable composition containing the same.
  • a curable polymer that is a homopolymer or copolymer containing one or more structural units (UX) represented by the following formula, and is used for producing prepregs, metal-clad laminates, or wiring boards.
  • UX structural units
  • X is a single bond or an oxygen atom.
  • the benzene ring may have a substituent other than the above.
  • n is an integer of 0 or more.
  • the curable polymer of [1] which is a copolymer containing one or more structural units (UX) and one or more structural units (UY) derived from one or more monovinyl aromatic compounds.
  • UX structural units
  • UY structural units
  • n is 1 to 18.
  • the curable composition of [6] further comprising another curable compound having one or more polymerizable functional groups.
  • a prepreg comprising a fiber base material and a semi-cured or cured product of the curable composition of [6].
  • a laminate comprising a base material and a curable composition layer made of the curable composition of [6].
  • a laminate comprising a base material and a (semi)cured product-containing layer containing a semi-cured product or a cured product of the curable composition of [6].
  • a metal-clad laminate comprising an insulating layer containing a cured product of the curable composition of [6] and metal foil.
  • a wiring board comprising an insulating layer containing a cured product of the curable composition of [6] and wiring.
  • a curable polymer and a curable composition containing the same are provided that can obtain a resin having a sufficiently low dielectric loss tangent (D f ) and a sufficiently high glass transition temperature (Tg) under high frequency conditions. Can be provided.
  • FIG. 1 is a schematic cross-sectional view of a metal-clad laminate according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a metal-clad laminate according to a second embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a wiring board according to an embodiment of the present invention.
  • (semi) hardening is a general term for semi-hardening and hardening.
  • the term “wiring board” includes a multilayer wiring board.
  • polymer includes homopolymers and copolymers.
  • an alkyl group having 3 or more carbon atoms may be linear or branched.
  • compounds in which isomers exist include all isomers.
  • weight average molecular weight (Mw) is the weight average molecular weight calculated by gel permeation chromatography (GPC) in terms of standard polystyrene
  • number average molecular weight (Mn) is the gel permeation molecular weight (Mn). It is the number average molecular weight in terms of polystyrene determined by chromatography (GPC) method.
  • Me represents a methyl group
  • Et represents an ethyl group
  • tBu represents a t-butyl group
  • Ph represents a phenyl group.
  • a “high frequency region” is defined as a region with a frequency of 1 GHz or higher.
  • indicating a numerical range is used to include the numerical values described before and after it as the lower limit and upper limit. Embodiments of the present invention will be described below.
  • the curable polymer of the present disclosure is a homopolymer or copolymer containing a structural unit (UX) represented by the following formula, and is used for manufacturing prepregs, metal-clad laminates, or wiring boards.
  • UX structural unit
  • X is a single bond or an oxygen atom, and is preferably a single bond.
  • n is an integer greater than or equal to 0.
  • the benzene ring may have a substituent other than the substituent (SX) represented by the following formula.
  • the curable polymer of the present disclosure may be a copolymer containing multiple types of structural units (UX), or one or more types of structural units (UX). and one or more other structural units.
  • the other structural unit is preferably a structural unit (UY) derived from a monovinyl aromatic compound.
  • the monovinyl aromatic compound is a compound containing a structure in which one polymerizable vinyl group is connected to an aromatic ring.
  • the polymerizable vinyl group may be a substituent of an aromatic ring, or may be a vinyl group contained in a cyclopentadiene ring condensed to the aromatic ring.
  • styrene and vinylnaphthalene nuclear alkyl-substituted styrenes such as methylstyrene, ethylstyrene, and t-butylstyrene; nuclear alkyl-substituted vinylnaphthalenes; other nuclear alkyl-substituted aromatic vinyl compounds; nuclear dialkyl-substituted styrenes such as dimethylstyrene; Other nuclear dialkyl-substituted aromatic vinyl compounds; ⁇ -alkyl-substituted styrenes such as ⁇ -methylstyrene; Other ⁇ -alkyl-substituted aromatic vinyl compounds; ⁇ -alkyl-substituted styrenes such as ⁇ -methylstyrene; Other ⁇ -alkyl Substituted aromatic vinyl compounds; indene, acenaphthylene; derivatives such as substituted and
  • Examples of the structural unit (UY) include structural units represented by the following formulas (UY-1) to (UY-5).
  • the inventors of the present disclosure have investigated and found that by using the curable polymer of the present disclosure, the dielectric loss tangent (D f ) of a (semi) cured product of the curable composition can be sufficiently lowered under high frequency conditions.
  • the content of one or more structural units (UX) with respect to the total amount of all structural units (100 mol%) is not particularly limited.
  • the present inventors investigated and found that when compared with common conditions other than the content of the structural unit (UX), the higher the content of the structural unit (UX), the higher the high frequency of the (semi) cured product of the curable composition. It was found that the dielectric loss tangent (D f ) tends to be relatively high under these conditions.
  • one or more structural units (UX) and one or more other structural units preferably monovinyl aromatic A copolymer containing a structural unit (UY) derived from a group compound tends to be able to more effectively reduce the dielectric loss tangent (D f ) of a (semi-)cured product of a curable composition under high frequency conditions.
  • the curable polymer of the present disclosure can effectively reduce the dielectric loss tangent (D f ) of a (semi-)cured product of the curable composition under high frequency conditions.
  • a copolymer containing a structural unit (UY) derived from the above monovinyl aromatic compound is preferable. Since the dielectric loss tangent (D f ) of the (semi-)cured product of the curable composition can be effectively reduced under high frequency conditions, in the curable polymer of the present disclosure, one or more types based on 100 mol% of the total amount of all structural units are used.
  • the content of the structural unit (UX) is preferably 1 to 90 mol%, more preferably 1 to 50 mol%, particularly preferably 5 to 50 mol%, and most preferably 5 to 25 mol%.
  • the substituent (SX) on the benzene ring may be substituted at any of the ortho, meta and para positions. From the viewpoint of ease of synthesis of the monomer and ease of synthesis of the curable polymer of the present disclosure, the above substitution position is preferably the para position.
  • the benzene ring in the structural unit (UX) may have a substituent other than the above substituent (SX).
  • Other substituents that the benzene ring may have include, for example, alkyl groups and aryl groups having 1 to 18 carbon atoms, and from the viewpoint of raw material availability, methyl, ethyl, propyl, and butyl groups.
  • n is an integer of 0 or more, preferably 1 to 18, more preferably 1 to 12, particularly preferably 1 to 8.
  • the curable polymer of the present disclosure may be thermosetting or active energy ray curable.
  • Active energy ray-curable polymers are polymers that are cured by irradiation with active energy rays such as ultraviolet rays and electron beams. Thermosetting is preferred for applications such as metal-clad laminates and wiring boards.
  • the curable polymer of the present disclosure containing one or more structural units (UX) can be obtained by homopolymerizing or copolymerizing one or more monomers (MX) represented by the following formula, or by homopolymerizing or copolymerizing one or more monomers (MX) represented by the following formula. (MX) and one or more other monomers copolymerizable therewith (preferably one or more other monomers including one or more monovinyl aromatic compounds). It can be produced by copolymerizing with In other words, the curable polymers of the present disclosure are homopolymers or copolymers of one or more monomers (MX), or copolymers with and copolymerized with one or more monomers (MX). Possibly a copolymer with one or more other monomers (preferably one or more other monomers containing one or more monovinyl aromatic compounds).
  • n is an integer greater than or equal to 0. Preferable n is the same as in formula (UX).
  • chain polymerization etc. are preferred.
  • chain polymerization include cationic polymerization, anionic polymerization, and radical polymerization, with cationic polymerization being preferred.
  • the monomer (MX) can be synthesized by a known method using a chloroalkylstyrene such as chloromethylstyrene (CMS) as a starting material.
  • CMS chloromethylstyrene
  • the monomer (MX) is preferably a CMS modified product obtained using chloromethylstyrene (CMS) as a starting material.
  • the curable polymer of the present disclosure includes homopolymers represented by the following formulas (MC-11) and (MC-12).
  • m in formulas (MC-11) and (MC-12) indicates the number of moles of the structural unit, and m>0. m is preferably 5 to 250, more preferably 10 to 200. Note that m in these formulas is unrelated to m in formulas (MX) and (SX).
  • Examples of the curable polymer of the present disclosure include copolymers represented by the following formulas (MC-21) to (MC-30).
  • the arrangement of the structural units in the copolymer may be any of an alternating arrangement, a block arrangement, and a random arrangement.
  • m and n in formulas (MC-21) to (MC-30) indicate the number of moles of each structural unit, and m>0 and n>0.
  • n in these formulas is unrelated to m and n in formulas (MX) and (SX).
  • the mole fraction of m is preferably 1 to 90 mol%, more preferably 5 to 50 mol%, and the mole fraction of n is preferably 99 to 10 mol%. %, more preferably 95 to 50 mol%.
  • the molecular weight of the curable polymer of the present disclosure is not particularly limited.
  • the number average molecular weight (Mn) is preferably 1,000 to 20,000, more preferably 1,000 to 5,000.
  • the weight average molecular weight (Mw) is preferably 2,000 to 100,000, more preferably 3,000 to 40,000.
  • the curable polymer of the present disclosure can have a structure in which the main chain does not contain polar atoms, unlike modified polyphenylene ether (modified PPE) oligomers having polymerizable functional groups at both ends.
  • the curable polymer of the present disclosure can have a structure that does not contain polar atoms or has few polar atoms.
  • the curable polymer of the present disclosure may be thermosetting or active energy ray curable.
  • Active energy ray-curable polymers are polymers that are cured by irradiation with active energy rays such as ultraviolet rays and electron beams. Thermosetting is preferred for applications such as metal-clad laminates and wiring boards.
  • the curable compositions of the present disclosure include one or more curable polymers of the present disclosure.
  • the curable composition of the present disclosure can contain one or more other curable compounds having one or more polymerizable functional groups, if necessary.
  • the resin obtained when cured alone is hard and brittle, and may not be practical for use in prepregs, metal-clad laminates, or wiring boards. In this case, the brittleness of the resulting resin can be improved to a practical level for use in prepregs, metal-clad laminates, or wiring boards by using other appropriate curable compounds.
  • the glass transition temperature (Tg) of the (semi-)cured product of the curable composition may be improved.
  • the curable composition of the present disclosure can further contain one or more optional components, if necessary.
  • the curable composition of the present disclosure may be thermosetting or active energy ray curable. Thermosetting is preferred for applications such as metal-clad laminates and wiring boards.
  • the other curable compound may be a monofunctional compound having one or more polymerizable functional groups, or a polyfunctional compound having two or more polymerizable functional groups.
  • the polymerizable functional group include a group having a polymerizable carbon-carbon unsaturated bond, an epoxy group, an isocyanate group, a hydroxy group, a mercapto group, an amino group, a ureido group, a carboxy group, a sulfonic acid group, an acid chloride group, and chlorine atoms.
  • Examples of the group having a polymerizable carbon-carbon unsaturated bond include a vinyl group, an allyl group, a dienyl group, a (meth)acryloyloxy group, and a (meth)acrylamino group.
  • curable compounds examples include polyphenylene ether resins (PPE), bismaleimide resins, epoxy resins, fluororesins, polyimide resins, olefin resins, polyester resins, polystyrene resins, hydrocarbon elastomers, etc. , benzoxazine resins, active ester resins, cyanate ester resins, butadiene resins, hydrogenated or non-hydrogenated styrene butadiene resins, vinyl resins, cycloolefin polymers, aromatic polymers, and divinyl aromatic polymers.
  • PPE polyphenylene ether resins
  • bismaleimide resins epoxy resins, fluororesins, polyimide resins, olefin resins, polyester resins, polystyrene resins, hydrocarbon elastomers, etc.
  • benzoxazine resins active ester resins, cyanate ester resins, butadiene resins, hydrogenated or non-hydr
  • curable compounds examples include modified polyphenylene ether (modified PPE) oligomers represented by the following formula (PPE-o) and having polymerizable functional groups at both ends.
  • modified PPE modified polyphenylene ether
  • m and n in formula (PPE-o) are m and n in formula (MX), (SX), (MC-11), (MC-12), (MC-21) to (MC-30) is unrelated.
  • X at both ends of the formula (PPE-o) is each independently a group represented by the following formula (x1) or the following formula (x2). In these formulas, "*" indicates a bond with an oxygen atom.
  • m is preferably 1 to 20, more preferably 3 to 15, and n is preferably 1 to 20, more preferably 3 to 15.
  • the number average molecular weight (Mn) of the modified polyphenylene ether (modified PPE) oligomer is not particularly limited, and is preferably 1000 to 5000, more preferably 1000 to 4000.
  • the curable polymer of the present disclosure is used together with another curable compound whose main chain contains a polar atom, such as a modified polyphenylene ether (modified PPE) oligomer
  • the curable compound may be modified PPE.
  • the amount of polar atoms contained in the (semi-)cured product of the curable composition can be reduced.
  • the dielectric loss tangent (D f ) of the (semi-)cured product of the curable composition can be effectively reduced.
  • the curable composition of the present disclosure can be combined with one or more curable polymers of the present disclosure.
  • the content of one or more curable polymers of the present disclosure is preferably as large as possible, preferably from 20 to 100 parts by mass, and more preferably from 20 to 100 parts by mass, relative to 100 parts by mass of the total amount of one or more other curable compounds. is 30 to 100 parts by weight, particularly preferably 50 to 100 parts by weight, and most preferably 70 to 100 parts by weight.
  • the curable composition preferably contains one or more polymerization initiators.
  • the polymerization initiator organic peroxides, azo compounds, other known polymerization initiators, and combinations thereof can be used. Specific examples include dicumyl peroxide, benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di(t-butyl) peroxy)hexyne-3, di-t-butyl peroxide, t-butylcumyl peroxide, ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5-di( t-butylperoxy)hexane, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, 2,2-bis(t-butylperoxy)butane, 2,2-bis(t-
  • the curable composition can contain one or more additives, if necessary.
  • additives include inorganic fillers (also referred to as fillers), compatibilizers, flame retardants, and the like.
  • Inorganic fillers include, for example, silica such as spherical silica, alumina, metal oxides such as titanium oxide and mica; metal hydroxides such as aluminum hydroxide and magnesium hydroxide; talc; aluminum borate; barium sulfate; carbonate. Examples include calcium.
  • silica such as spherical silica, alumina, metal oxides such as titanium oxide and mica; metal hydroxides such as aluminum hydroxide and magnesium hydroxide; talc; aluminum borate; barium sulfate; carbonate.
  • talc metal hydroxides
  • aluminum borate aluminum borate
  • barium sulfate carbonate.
  • calcium One or more types of these can be used. Among them, from the viewpoint of low thermal expansion, silica, mica, talc
  • the inorganic filler may be surface-treated with an epoxysilane-type, vinylsilane-type, methacrylsilane-type, or aminosilane-type silane coupling agent.
  • the timing of surface treatment with a silane coupling agent is not particularly limited.
  • An inorganic filler surface-treated with a silane coupling agent may be prepared in advance, or the silane coupling agent may be added by an integral blending method during the preparation of the curable composition.
  • flame retardants include halogen-based flame retardants and phosphorus-based flame retardants. One or more types of these can be used.
  • halogenated flame retardants include brominated flame retardants such as pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromobisphenol A, and hexabromocyclododecane; chlorinated flame retardants such as chlorinated paraffin, etc. .
  • Examples of phosphorus-based flame retardants include phosphoric acid esters such as condensed phosphoric acid esters and cyclic phosphoric acid esters; phosphazene compounds such as cyclic phosphazene compounds; phosphinate-based flame retardants such as dialkyl phosphinate aluminum salts; melamine phosphate and Examples include melamine flame retardants such as melamine polyphosphate; phosphine oxide compounds having a diphenylphosphine oxide group, and the like.
  • the curable composition can contain one or more organic solvents, if necessary.
  • Organic solvents are not particularly limited and include ketones such as methyl ethyl ketone; ethers such as dibutyl ether; esters such as ethyl acetate; amides such as dimethylformamide; aromatic hydrocarbons such as benzene, toluene and xylene; trichloroethylene Examples include chlorinated hydrocarbons such as.
  • the composition and solid content concentration can be designed as appropriate.
  • the composition of the curable composition is such that the obtained (semi) cured product does not become brittle and the properties such as dielectric loss tangent (Df) and glass transition temperature (Tg) of the obtained (semi) cured product are suitable. , can be designed.
  • the solid content concentration of the curable composition can be designed to facilitate impregnation into the fiber base material, and is preferably 50 to 90% by mass.
  • the prepreg of the present disclosure includes a fiber base material and a (semi-)cured product of the curable composition of the present disclosure.
  • Prepreg can be manufactured by impregnating a fiber base material with a curable composition and (semi) curing it by heat curing or the like.
  • the (semi)cured product is a single cured product of one type of curable polymer of the present disclosure, a reaction product of multiple types of curable polymers of the present disclosure, or one or more types of curable polymer of the present disclosure. and one or more other curable compounds.
  • the (semi-)cured product may contain additives such as inorganic fillers, if necessary.
  • the material for the fiber base material is not particularly limited, and examples include inorganic fibers such as glass fiber, silica fiber, and carbon fiber; organic fibers such as aramid fiber and polyester fiber; and combinations thereof. For applications such as metal-clad laminates and wiring boards, glass fibers and the like are preferred. Examples of the form of the glass fiber base material include glass cloth, glass paper, and glass mat.
  • Curing conditions for the curable composition can be set depending on the composition of the curable composition, and semi-curing conditions (conditions that do not completely cure) are preferable. For example, heat curing by heating at 80 to 180° C. for 1 to 10 minutes is preferred. For applications such as metal-clad laminates and wiring boards, it is preferable to adjust the composition and curing conditions of the curable composition so that the resin content in the resulting prepreg is within the range of 40 to 80% by mass.
  • the first laminate of the present disclosure includes a base material and a curable composition layer made of the above-described curable composition of the present disclosure.
  • the second laminate of the present disclosure includes a base material and a (semi-)cured product-containing layer containing a (semi-)cured product of the above-mentioned curable composition of the present disclosure.
  • the base material is not particularly limited, and examples include resin films, metal foils, and combinations thereof.
  • the (semi-)cured product-containing layer may be a layer containing a fiber base material and a (semi-)cured product of the curable composition of the present disclosure.
  • the resin film is not particularly limited, and any known resin film can be used.
  • the constituent resin of the resin film examples include polyimide, polyethylene terephthalate (PET), polyethylene naphthalate, cycloolefin polymer, and polyether sulfide. Since the electrical resistance is low, the metal foil is preferably copper foil, silver foil, gold foil, aluminum foil, a combination thereof, and more preferably copper foil.
  • the metal-clad laminate of the present disclosure includes an insulating layer containing a cured product of the curable composition of the present disclosure, and a metal foil.
  • the insulating layer may be a layer containing a fiber base material and a cured product of the curable composition of the present disclosure. Since the electrical resistance is low, the metal foil is preferably copper foil, silver foil, gold foil, aluminum foil, a combination thereof, and more preferably copper foil.
  • the metal foil may have a metal plating layer on its surface.
  • the metal foil may be a carrier-attached metal foil that includes an ultra-thin metal foil and a carrier metal foil that supports the ultra-thin metal foil.
  • the metal foil may be subjected to surface treatments such as rust prevention treatment, silane treatment, surface roughening treatment, and barrier formation treatment on at least one surface.
  • the thickness of the metal foil is not particularly limited, and is preferably 0.1 to 100 ⁇ m, more preferably 0.2 to 50 ⁇ m, particularly preferably is 1.0 to 40 ⁇ m.
  • the metal-clad laminate may be a single-sided metal-clad laminate with metal foil on one side, or a double-sided metal-clad laminate with metal foil on both sides, and may be a double-sided metal-clad laminate.
  • a single-sided metal-clad laminate can be manufactured by stacking one or more of the above prepregs and metal foil and heating and pressing the resulting first temporary laminate.
  • a double-sided metal-clad laminate can be manufactured by sandwiching one or more of the above prepregs between a pair of metal foils and heating and pressing the obtained first temporary laminate.
  • a metal clad laminate using copper foil as the metal foil is called a copper clad laminate (CCL).
  • the insulating layer is preferably made of a heated and pressed prepreg.
  • the heated and pressed prepreg material contains a fiber base material and a resin, and can contain one or more additives such as an inorganic filler and a flame retardant, if necessary.
  • the heated and pressed prepreg material is also called a composite base material.
  • the heating and pressing conditions for the first temporary laminate are not particularly limited, and are preferably, for example, a temperature of 170 to 250°C, a pressure of 0.3 to 30 MPa, and a time of 3 to 240 minutes.
  • FIGS. 1 and 2 show schematic cross-sectional views of metal-clad laminates according to embodiments of the present invention.
  • the metal-clad laminate 1 shown in FIG. 1 is made of a heated and pressed prepreg, and has a metal foil (metallic This is a single-sided metal-clad laminate (laminate) in which layers) 12 are laminated.
  • the metal-clad laminate 2 shown in FIG. 2 is made of a heated and pressed prepreg, and has metal foil (metal This is a double-sided metal-clad laminate in which layers) 12 are laminated.
  • the metal-clad laminates 1 and 2 may have layers other than those described above.
  • the metal-clad laminates 1 and 2 can have an adhesive layer between the composite base material (cured material-containing layer) 11 and the metal foil (metal layer) 12 in order to improve their adhesion.
  • Known materials can be used for the adhesive layer, including epoxy resins, cyanate ester resins, acrylic resins, polyimide resins, maleimide resins, adhesive fluororesins, and combinations thereof.
  • Examples of commercially available adhesive fluororesins include "Fluon LM-ETFE LH-8000,”"AH-5000,”"AH-2000,” and "EA-2000" manufactured by AGC.
  • the thickness of the composite base material can be designed as appropriate depending on the application. From the viewpoint of preventing disconnection of the wiring board, the thickness is preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more, and particularly preferably 100 ⁇ m or more. From the viewpoint of flexibility, size reduction, and weight reduction of the wiring board, the thickness is preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less, particularly preferably 200 ⁇ m or less.
  • the wiring board of the present disclosure includes an insulating layer containing a cured product of the curable composition of the present disclosure, and wiring.
  • the wiring board can be manufactured by forming a conductor pattern (circuit pattern) such as wiring using the metal foil on the outermost surface of the metal-clad laminate of the present disclosure.
  • Methods for forming conductor patterns such as wiring include the subtractive method, in which wiring is formed by etching metal foil, and the MSAP (Modified Semi Additive Process) method, in which wiring is formed by plating on metal foil. Can be mentioned.
  • FIG. 3 shows a schematic cross-sectional view of a wiring board according to an embodiment of the present invention.
  • the wiring board 3 shown in FIG. 3 uses the metal foil 12 on the outermost surface of at least one side of the metal-clad laminate 2 of the second embodiment shown in FIG. was formed.
  • the wiring board 3 is made of a heated and pressed prepreg, and has a conductive pattern such as a wiring 22W on at least one side of a composite base material (cured product-containing layer, insulating layer) 11 containing a cured product of the curable composition of the present disclosure. (Circuit pattern) 22 is formed.
  • One or more prepregs are further stacked on the obtained wiring board, sandwiched between a pair of metal foils, the obtained second temporary laminate is heated and pressurized, and wiring is performed using the outermost metal foil.
  • a multilayer wiring board (also referred to as a multilayer printed wiring board) may be manufactured by forming conductor patterns such as the above.
  • the outermost metal foil may be placed only on one side of the second temporary laminate.
  • the wiring board of the present disclosure is suitable for use in a high frequency region (frequency region of 1 GHz or higher).
  • the resin contained in the composite base material of the wiring board used for the above applications is required to reduce dielectric loss in the high frequency range.
  • the dielectric loss tangent (D f ) depends on the frequency, and for the same material, the higher the frequency, the larger the dielectric loss tangent (D f ) tends to be. It is preferable that the resin contained in the composite base material has a low dielectric loss tangent (D f ) under high frequency conditions.
  • Wiring boards are sometimes used in relatively high-temperature environments. Even in this case, in order to ensure the reliability of the wiring board, it is preferable that the resin contained in the prepreg and composite base material has a sufficiently high glass transition temperature (Tg).
  • Tg glass transition temperature
  • the first temporary laminate includes the prepreg and the metal foil, or the second temporary laminate includes the composite base material, the prepreg, and the metal foil.
  • the first temporary laminate includes the prepreg and the metal foil
  • the second temporary laminate includes the composite base material, the prepreg, and the metal foil.
  • Tg glass transition temperature
  • CTE coefficient of thermal expansion
  • a resin having a sufficiently low dielectric loss tangent (D f ) and a sufficiently high glass transition temperature (Tg) under high frequency conditions can be obtained.
  • This (semi-)cured product is suitable for composite base materials, insulating layers, etc. suitable for wiring boards used in high frequency regions.
  • the dielectric loss tangent (D f ) of the (semi-)cured product of the curable composition of the present disclosure and the composite base material containing the same under high frequency conditions is preferably within the following range, for example.
  • the dielectric loss tangent (D f ) at a frequency of 10 GHz is preferably smaller, preferably 0.010 or less, more preferably 0.005 or less, even more preferably 0.003 or less, particularly preferably 0.002 or less, and most preferably 0. Less than .002.
  • the dielectric loss tangent (D f ) at a frequency of 10 GHz is 0.0019 or less, 0.0017 or less, 0. or 0014 or less.
  • the lower limit of the dielectric loss tangent (D f ) at a frequency of 10 GHz is not particularly limited, and is, for example, 0.0001.
  • the glass transition temperature (Tg) of the (semi-)cured product of the curable composition of the present disclosure is preferably 150°C or higher, more preferably 180°C or higher, and particularly preferably 200°C or higher.
  • the upper limit is not particularly limited, and is, for example, 300°C.
  • the coefficient of thermal expansion (CTE) of the (semi-)cured product of the curable composition of the present disclosure and the composite base material containing the same is preferably within the following range, for example.
  • the coefficient of thermal expansion (CTE) is preferably smaller, preferably 70 ppm/°C or less, more preferably 60 ppm/°C or less, particularly preferably 50 ppm/°C or less, and most preferably 40 ppm/°C or less.
  • the lower limit is not particularly limited, and is, for example, 1 ppm/°C.
  • the dielectric loss tangent (D f ) and the glass transition temperature (Tg) can be measured by the method described in the "Examples” section below.
  • the coefficient of thermal expansion (CTE) can be measured by a known method using a commercially available thermomechanical analyzer.
  • a curable polymer and a curable polymer capable of obtaining a resin having a sufficiently low dielectric loss tangent (D f ) and a sufficiently high glass transition temperature (Tg) under high frequency conditions are provided.
  • a curable composition comprising: The curable polymer of the present disclosure and the curable composition containing the same are suitable for use in prepregs, metal-clad laminates, wiring boards, and the like, but can be used for any purpose.
  • the curable polymer of the present disclosure and the curable composition containing the same are suitable for use in prepregs, metal-clad laminates, wiring boards, and the like.
  • a curable composition containing the curable polymer of the present disclosure is suitable as a curable composition used for prepregs, metal-clad laminates, wiring boards, and the like.
  • the metal-clad laminate of the present disclosure is suitable for wiring boards used in various electric devices, various electronic devices, and the like.
  • the wiring board of the present disclosure is applicable to portable electronic devices such as mobile phones, smartphones, personal digital assistants, and notebook computers; antennas for mobile phone base stations and automobiles; electronic devices such as servers, routers, and backplanes; wireless infrastructure; It is suitable for radars for prevention, etc.; various sensors (for example, automobile sensors such as engine management sensors), etc.
  • the wiring board of the present disclosure is particularly suitable for communication using high-frequency signals, and is suitable for various uses that require reduction in transmission loss in a high-frequency region.
  • Example 11 to 13, 21, 31, 41, 51, 101 to 107, and 301 are examples, and example 201 is a comparative example. Unless otherwise specified, room temperature is approximately 25°C.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the synthesized curable polymer were determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • HPC-8320GPC manufactured by Tosoh Corporation and equipped with a differential refractive index detector (RI detector) was used. Tetrahydrofuran was used as the eluent.
  • the columns used were four columns connected in series: “TSKgel SuperHZ2000,””TSKgelSuperHZ2500,””TSKgelSuperHZ3000,” and “TSKgel SuperHZ4000” (all manufactured by Tosoh Corporation).
  • a sample solution was prepared by dissolving 20 mg of resin in 2 mL of tetrahydrofuran. 10 ⁇ l of the sample solution was injected and the chromatogram was measured. GPC measurements were performed using 10 standard polystyrene samples with molecular weights ranging from 400 to 5,000,000, and a calibration curve showing the relationship between retention time and molecular weight was created. Based on this calibration curve, Mn and Mw of the curable polymer were determined.
  • Glass transition temperature Tg Dynamic viscoelasticity measurement (DMA) of the evaluation sample (film-like cured product) was performed using a dynamic viscoelasticity measuring device (“DVA-200” manufactured by IT Keizai Control Co., Ltd.), and the glass transition temperature (Tg ) (°C) was measured. The measurements were carried out under the conditions of a frequency of 10 Hz, a temperature increase rate of 2° C./min, and a temperature range of 25 to 300° C.
  • Example 12 Synthesis of copolymer (P12) Same as Example 11 except that the amount of p-(3-butenyl)styrene was changed to 6.0 g, 38.0 mmol, and the amount of styrene was changed to 14.0 g, 134.6 mmol. In the same manner, 18.9 g of copolymer (P12) was obtained (yield: 94.4%).
  • Example 13 Synthesis of copolymer (P13) Same as Example 11 except that the amount of p-(3-butenyl)styrene was changed to 3.0 g, 19.0 mmol, and the amount of styrene was changed to 17.0 g, 163.5 mmol. In the same manner, 18.2 g of copolymer (P13) was obtained (yield: 90.8%).
  • the reaction scheme is as follows.
  • the reaction scheme is as follows.
  • the reaction scheme is as follows.
  • the reaction scheme is as follows.
  • Table 1 shows the monomer compositions and physical properties of the copolymers obtained in Examples 11 to 13, 21, 31, 41, and 51.
  • a curable polymer (P11), the following modified polyphenylene ether (PPE) oligomer (SA9000), dicumyl peroxide (DCP) as a radical polymerization initiator, and toluene were mixed in a mass ratio of 50:50:1:
  • a curable composition was prepared by mixing at 100 °C and stirring at room temperature.
  • SA9000 A bifunctional methacrylic-modified PPE oligomer represented by the following formula (“SA9000” manufactured by SABIC).
  • the above curable composition was applied onto a polyimide film with a thickness of 125 ⁇ m to form a coating film with a thickness of 250 ⁇ m.
  • the coating film was thermally cured by heating at 200°C for 2 hours in a nitrogen atmosphere to form a film-like cured product with a thickness of about 100 ⁇ m. Obtained.
  • Table 2 shows the composition of the curable composition excluding the solvent and the evaluation results of the obtained film-like cured product.
  • the unit of blending amount in the table is "parts by mass.”
  • Examples 102-107, 201 A curable composition and a cured film were prepared in the same manner as in Example 101, except that the type and amount of one or more curable polymers were changed.
  • Table 2 shows the composition of the curable composition excluding the solvent and the evaluation results of the obtained film-like cured product.
  • Example 101 a curable polymer, which is a copolymer containing a structural unit containing no polar atoms (UX) and a structural unit derived from a monovinyl aromatic compound (UY), was used to produce a film-like cured product. Obtained.
  • Example 107 a film-like cured product was obtained using a curable polymer that is a copolymer containing a structural unit containing a polar atom (UX) and a structural unit derived from a monovinyl aromatic compound (UY).
  • Example 201 a film-like cured product was obtained using only a modified PPE oligomer containing no structural unit (UX).
  • Example 101 to 106 the dielectric loss tangent (D f ) under high frequency conditions was effectively reduced compared to Example 201. In these examples, the dielectric loss tangent (D f ) under high frequency conditions was effectively reduced, and a film-like cured product with a sufficiently high glass transition temperature (Tg) could be obtained.
  • the dielectric loss tangent (D f ) under high frequency conditions was at the same level as in Example 201, and was at a practical level. In this example, it was possible to obtain a cured film having a sufficiently low dielectric loss tangent (D f ) and a sufficiently high glass transition temperature (Tg) under high frequency conditions.
  • Example 301 The curable polymer (P11) synthesized in Example 1, the above modified polyphenylene ether (PPE) oligomer (SA9000), dicumyl peroxide (DCP) as a radical polymerization initiator, and spherical silica as an inorganic filler. and toluene were mixed at a mass ratio of 50:50:1:100:100 and stirred at room temperature to prepare a curable polymer composition (varnish).
  • the obtained curable polymer composition (varnish) was impregnated into glass cloth (E glass, #2116) as a fiber base material, and then heated at 130°C for 5 minutes to half the curable polymer composition. It was cured to obtain a prepreg. Two sheets of the obtained prepreg were stacked and sandwiched between a pair of copper foils, and the obtained temporary laminate was heated and pressurized at 200° C. and 3 MPa for 1.5 hours to produce a metal-clad laminate. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

本開示は、高周波条件における誘電正接(Df)が効果的に低減され、ガラス転移温度(Tg)が充分に高い樹脂を得ることが可能な硬化性重合体を提供する。1種以上の下式で表される構造単位(UX)を含む単独重合体または共重合体であり、プリプレグ、金属張積層板または配線基板の製造用である、硬化性重合体。(上式中、Xは単結合または酸素原子である。ベンゼン環は上記以外の置換基を有していてもよい。nは0以上の整数である。)

Description

硬化性重合体、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板
 本開示は、硬化性重合体、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板に関する。
 電気機器および電子機器等の用途に、配線基板(プリント配線板とも言う。)が使用される。配線基板は例えば、以下のようにして、製造できる。硬化性重合体、および必要に応じて、難燃剤および無機充填材(フィラーとも言う。)等の添加剤を含む硬化性組成物を繊維基材に含浸させ、硬化性組成物を(半)硬化させて、プリプレグを作製する。1つ以上のプリプレグを一対の金属箔で挟み、得られた第1の仮積層体を加熱加圧して、金属張積層板を作製する。この金属張積層板の最表面にある金属箔を用いて、配線等の導体パターン(回路パターンとも言う。)を形成する。最表面の金属箔は、第1の仮積層体の片面側にのみ配置してもよい。
 得られた配線基板に対してさらに、1つ以上のプリプレグを重ね、これを一対の金属箔で挟み、得られた第2の仮積層体を加熱加圧し、最表面にある金属箔を用いて配線等の導体パターンを形成することで、多層配線基板(多層プリント配線板とも言う。)を製造できる。最表面の金属箔は、第2の仮積層体の片面側にのみ配置してもよい。
 プリプレグの加熱加圧物は、繊維基材、樹脂および無機充填材等を含み、コンポジット基材とも呼ばれる。配線基板において、コンポジット基材は、絶縁層として機能する。
 プリプレグに含まれる樹脂は硬化性組成物の(半)硬化物であり、コンポジット基材に含まれる樹脂は硬化性組成物の硬化物である。
有機合成化学, 第27巻, 第9号, 1969, 858-862. Macromolecules, Vol. 32, No. 17, 1999, 5495-5500. Polymer, 59, 2015, 252-259. Macromolecules, Vol.32, No. 19, 1999, 6082-6087.
 従来、配線基板の製造に用いられるプリプレグ用の硬化性重合体としては、両末端に重合性官能基を有するポリフェニレンエーテル(変性PPE)オリゴマー(後記式(PPE-o)を参照されたい。)が広く用いられている。
 近年、携帯用電子機器等の用途では、通信の高速化と大容量化が進み、信号の高周波化が進んでいる。この用途に用いられる配線基板には、高周波領域での伝送損失の低減が求められる。伝送損失には、主に金属箔の表面抵抗に起因する導体損失と、コンポジット基材の誘電正接(D)に起因する誘電損失とがある。このため、上記用途に用いられる配線基板のコンポジット基材に含まれる樹脂には、高周波領域での誘電損失の低減が求められる。一般的に、誘電正接(D)は周波数に依存し、同じ材料であれば、周波数が高くなる程、誘電正接(D)が大きくなる傾向がある。コンポジット基材に含まれる樹脂は、高周波条件における誘電正接(D)が低いことが好ましい。
 上記変性ポリフェニレンエーテル(変性PPE)オリゴマーの硬化物であるポリフェニレンエーテル(PPE)樹脂の10GHzにおける誘電正接(D)は、0.002~0.003程度である。
 今後、通信の高速化と大容量化は益々進むと考えられ、コンポジット基材に含まれる樹脂の高周波条件における誘電正接(D)をより低減できる材料が必要になると考えられる。
 配線基板は、比較的高温の環境下で使用される場合がある。この場合でも、配線基板の信頼性を確保するために、プリプレグおよびコンポジット基材に含まれる樹脂は、充分な高さのガラス転移温度(Tg)を有することが好ましい。
 本開示の関連技術として、非特許文献1~4が挙げられる。
 非特許文献1~4には、本開示の硬化性重合体の一部の合成が報告されている。しかしながら、プリプレグ、金属張積層板、および配線基板の用途について記載がなく、誘電特性についても記載がない。
 本開示は上記事情に鑑みてなされたものであり、高周波条件における誘電正接(D)が充分に低く、ガラス転移温度(Tg)が充分に高い樹脂を得ることが可能な硬化性重合体およびこれを含む硬化性組成物の提供を目的とする。
 本開示は、以下の硬化性重合体、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板を提供する。
[1] 1種以上の下式で表される構造単位(UX)を含む単独重合体または共重合体であり、プリプレグ、金属張積層板または配線基板の製造用である、硬化性重合体。
Figure JPOXMLDOC01-appb-C000002
(上式中、Xは単結合または酸素原子である。ベンゼン環は上記以外の置換基を有していてもよい。nは0以上の整数である。)
[2]1種以上の構造単位(UX)と1種以上のモノビニル芳香族化合物に由来する構造単位(UY)とを含む共重合体である、[1]の硬化性重合体。
[3] 全構造単位の総量100mol%に対する、1種以上の構造単位(UX)の含有量が1~90mol%である、[1]または[2]の硬化性重合体。
[4]Xは単結合である、[1]または[2]の硬化性重合体。
[5]nは、1~18である、[1]または[2]の硬化性重合体。
[6][1]または[2]の硬化性重合体を含む、硬化性組成物。
[7]さらに、1つ以上の重合性官能基を有する他の硬化性化合物を含む、[6]の硬化性組成物。
[8]繊維基材と、[6]の硬化性組成物の半硬化物または硬化物とを含む、プリプレグ。
[9]基材と、[6]の硬化性組成物からなる硬化性組成物層とを含む、積層体。
[10]基材と、[6]の硬化性組成物の半硬化物または硬化物を含む(半)硬化物含有層とを含む、積層体。
[11][6]の硬化性組成物の硬化物を含む絶縁層と、金属箔とを含む、金属張積層板。
[12][6]の硬化性組成物の硬化物を含む絶縁層と、配線とを含む、配線基板。
 本開示によれば、高周波条件における誘電正接(D)が充分に低く、ガラス転移温度(Tg)が充分に高い樹脂を得ることが可能な硬化性重合体およびこれを含む硬化性組成物を提供できる。
本発明に係る第1の実施形態の金属張積層板の模式断面図である。 本発明に係る第2の実施形態の金属張積層板の模式断面図である。 本発明に係る一実施形態の配線基板の模式断面図である。
 本明細書において、(半)硬化は、半硬化および硬化の総称である。
 本明細書において、特に分けて記載しない限り、「配線基板」は、多層配線基板を含むものとする。
 本明細書において、特に明記しない限り、「重合体」は、単独重合体および共重合体を包含する。
 本明細書において、特に明記しない限り、「炭素数が3以上のアルキル基」は、直鎖状でも分岐鎖状でもよい。
 本明細書において、特に明記しない限り、異性体が存在する化合物は、すべての異性体を包含する。
 本明細書において、特に明記しない限り、「重量平均分子量(Mw)」はゲル浸透クロマトグラフィ(GPC)法により求められる標準ポリスチレン換算の重量平均分子量であり、「数平均分子量(Mn)」はゲル浸透クロマトグラフィ(GPC)法により求められるポリスチレン換算の数平均分子量である。
 本明細書において、化学式中、Meはメチル基、Etはエチル基、Buはt-ブチル基、Phはフェニル基を示す。
 本明細書において、「高周波領域」は、周波数1GHz以上の領域と定義する。
 本明細書において、特に明記しない限り、数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含む意味で使用される。
 以下、本発明の実施の形態を説明する。
[硬化性重合体]
 本開示の硬化性重合体は、下式で表される構造単位(UX)を含む単独重合体または共重合体であり、プリプレグ、金属張積層板または配線基板の製造用である。
Figure JPOXMLDOC01-appb-C000003
(UX)
 上式は、式(UX)とも言う。
 式(UX)中、Xは単結合または酸素原子であり、単結合であることが好ましい。
 nは0以上の整数である。ベンゼン環は、下式で表される置換基(SX)以外の置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000004
(SX)
 本開示の硬化性重合体が共重合体である場合、本開示の硬化性重合体は、複数種の構造単位(UX)を含む共重合体でもよいし、1種以上の構造単位(UX)と1種以上の他の構造単位とを含む共重合体でもよい。
 本開示の硬化性重合体の硬化物のガラス転移温度(Tg)の向上の観点から、他の構造単位としては、モノビニル芳香族化合物に由来する構造単位(UY)が好ましい。
 モノビニル芳香族化合物としては、芳香環に1つの重合性ビニル基が連結した構造を含む化合物である。重合性ビニル基は、芳香環の置換基であってもよいし、芳香環に縮環したシクロペンタジエン環に含まれるビニル基であってもよい。
 例えば、スチレンおよびビニルナフタレン;メチルスチレン、エチルスチレン、およびt-ブチルスチレン等の核アルキル置換スチレン;核アルキル置換ビニルナフタレン;その他の核アルキル置換芳香族ビニル化合物;ジメチルスチレン等の核ジアルキル置換スチレン;その他の核ジアルキル置換芳香族ビニル化合物;α-メチルスチレン等のα-アルキル置換スチレン;その他のα-アルキル置換芳香族ビニル化合物;β-メチルスチレン等のβ-アルキル置換スチレン;その他のβ-アルキル置換芳香族ビニル化合物;インデン、アセナフチレン;これらの置換体および変性体等の誘導体;等が挙げられる。
 モノビニル芳香族化合物が構造異性体を有する場合、オルト体、メタ体、パラ体のいずれを用いてもよい。
 構造単位(UY)としては、下式(UY-1)~(UY-5)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(UY-1)
Figure JPOXMLDOC01-appb-C000006
(UY-2)
Figure JPOXMLDOC01-appb-C000007
(UY-3)
Figure JPOXMLDOC01-appb-C000008
(UY-4)
Figure JPOXMLDOC01-appb-C000009
(UY-5)
 本開示者らが検討したところ、本開示の硬化性重合体を用いることで、硬化性組成物の(半)硬化物の高周波条件における誘電正接(D)を充分に低くできることが分かった。
 本開示の硬化性重合体において、全構造単位の合計量100mol%に対する1種以上の構造単位(UX)の含有量は特に制限されない。本発明者らが検討したところ、構造単位(UX)の含有量以外を共通条件として比較した場合、構造単位(UX)の含有量が多くなると、硬化性組成物の(半)硬化物の高周波条件での誘電正接(D)が相対的に高くなる傾向があることが分かった。
 構造単位として、1種以上の構造単位(UX)のみを含む単独重合体または共重合体よりも、1種以上の構造単位(UX)と1種以上の他の構造単位(好ましくは、モノビニル芳香族化合物に由来する構造単位(UY))とを含む共重合体の方が、硬化性組成物の(半)硬化物の高周波条件での誘電正接(D)を効果的に低減できる傾向がある。
 硬化性組成物の(半)硬化物の高周波条件での誘電正接(D)を効果的に低減できることから、本開示の硬化性重合体は、1種以上の構造単位(UX)と1種以上のモノビニル芳香族化合物に由来する構造単位(UY)とを含む共重合体であることが好ましい。
 硬化性組成物の(半)硬化物の高周波条件での誘電正接(D)を効果的に低減できることから、本開示の硬化性重合体において、全構造単位の合計量100mol%に対する1種以上の構造単位(UX)の含有量は、好ましくは1~90mol%、より好ましくは1~50mol%、特に好ましくは5~50mol%、最も好ましくは5~25mol%である。
 構造単位(UX)において、ベンゼン環上の置換基(SX)の置換位置としては、オルト位、メタ位およびパラ位があり、いずれでもよい。単量体の合成容易性および本開示の硬化性重合体の合成容易性等の観点から、上記置換位置はパラ位であることが好ましい。
 構造単位(UX)中のベンゼン環は、上記置換基(SX)以外の他の置換基を有していてもよい。ベンゼン環が有していてもよい他の置換基としては例えば、炭素数1~18のアルキル基およびアリール基が挙げられ、原料入手性の観点から、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、フェニル基およびトリル基が好ましい。構造単位(UX)中のベンゼン環は、上記置換基(SX)以外の置換基を有さないことが好ましい。
 構造単位(UX)において、nは0以上の整数であり、好ましくは1~18、より好ましくは1~12、特に好ましくは1~8である。
 本開示の硬化性重合体は、熱硬化性でも活性エネルギー線硬化性でもよい。活性エネルギー線硬化性重合体は、紫外線および電子線等の活性エネルギー線の照射によって硬化する重合体である。金属張積層板および配線基板等の用途では、熱硬化性が好ましい。
 1種以上の構造単位(UX)を含む本開示の硬化性重合体は、下式で表される1種以上の単量体(MX)を単独重合または共重合する、または、下式で表される1種以上の単量体(MX)と、これと共重合可能な1種以上の他の単量体(好ましくは1種以上のモノビニル芳香族化合物を含む1種以上の他の単量体)とを共重合することで、製造できる。
 換言すれば、本開示の硬化性重合体は、1種以上の単量体(MX)の単独重合体または共重合体、または、1種以上の単量体(MX)と、これと共重合可能な1種以上の他の単量体(好ましくは1種以上のモノビニル芳香族化合物を含む1種以上の他の単量体)との共重合体である。
Figure JPOXMLDOC01-appb-C000010
(MX)
 上式は、式(MX)とも言う。
 式(MX)中、Xは単結合または酸素原子であり、単結合であることが好ましい。ベンゼン環は上記以外の置換基を有していてもよい。nは0以上の整数である。好ましいnは、式(UX)と同様である。
 重合方法としては、連鎖重合等が好ましい。連鎖重合としては、カチオン重合、アニオン重合およびラジカル重合等が挙げられ、カチオン重合等が好ましい。
 単量体(MX)は、クロロメチルスチレン(CMS)等のクロロアルキルスチレンを出発原料とし、公知方法により合成できる。単量体(MX)は、好ましくは、クロロメチルスチレン(CMS)を出発原料として得られるCMS変性体である。
 以下に、クロロメチルスチレン(CMS)を出発原料とした、単量体(MX)の合成の反応スキームと得られた単量体(MX)を用いた重合の反応スキームの第1の例を示す。この例では、単量体(MX)において、Xが単結合であり、ベンゼン環上の置換基(SX)の置換位置がパラ位であり、n=1である。この例では、得られた単量体(MX)とモノビニル芳香族化合物であるスチレンとの共重合を示してある。
Figure JPOXMLDOC01-appb-C000011
 以下に、クロロメチルスチレン(CMS)を出発原料とした、単量体(MX)の合成の反応スキームと得られた単量体(MX)を用いた重合の反応スキームの第2の例を示す。この例では、単量体(MX)において、Xが酸素原子であり、ベンゼン環上の置換基(SX)の置換位置がパラ位であり、n=1である。この例では、得られた単量体(MX)とモノビニル芳香族化合物であるスチレンとの共重合を示してある。
Figure JPOXMLDOC01-appb-C000012
 本開示の硬化性重合体としては、下式(MC-11)および(MC-12)で表される単独重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000013
(MC-11)
Figure JPOXMLDOC01-appb-C000014
(MC-12)
 式(MC-11)および(MC-12)中のmは、構造単位のモル数を示し、m>0である。mは、好ましくは5~250、より好ましくは10~200である。なお、これら式中のmは、式(MX)、(SX)中のmとは、無関係である。
 本開示の硬化性重合体としては、下式(MC-21)~(MC-30)で表される共重合体が挙げられる。共重合体中の構造単位の配列は、交互配列、ブロック配列、およびランダム配列のいずれでもよい。
Figure JPOXMLDOC01-appb-C000015
(MC-21)
Figure JPOXMLDOC01-appb-C000016
(MC-22)
Figure JPOXMLDOC01-appb-C000017
(MC-23)
Figure JPOXMLDOC01-appb-C000018
(MC-24)
Figure JPOXMLDOC01-appb-C000019
(MC-25)
Figure JPOXMLDOC01-appb-C000020
(MC-26)
Figure JPOXMLDOC01-appb-C000021
(MC-27)
Figure JPOXMLDOC01-appb-C000022
(MC-28)
Figure JPOXMLDOC01-appb-C000023
(MC-29)
Figure JPOXMLDOC01-appb-C000024
(MC-30)
 式(MC-21)~(MC-30)中のm、nは、各構造単位のモル数を示し、m>0、n>0である。なお、これら式中のnは、式(MX)、(SX)中のm、nとは、無関係である。
 mとnの合計mol数を100mol%としたとき、mのモル分率は、好ましくは1~90mol%、より好ましくは5~50mol%であり、nのモル分率は、好ましくは99~10mol%、より好ましくは95~50mol%である。
 本開示の硬化性重合体の分子量は、特に制限されない。数平均分子量(Mn)は、好ましくは1000~20000、より好ましくは1000~5000である。重量平均分子量(Mw)は、好ましくは2000~100000、より好ましくは3000~40000である。
 本開示の硬化性重合体は、両末端に重合性官能基を有する変性ポリフェニレンエーテル(変性PPE)オリゴマー等と異なり、主鎖が極性原子を含まない構造であることができる。
 本開示の硬化性重合体は、極性原子を含まない、または、極性原子の少ない構造であることができる。本開示の硬化性重合体は、Xが単結合であり、極性原子を含まないことが好ましい。
 極性原子を含まない、または、極性原子の少ない本開示の硬化性重合体を用いることで、高周波条件における誘電正接(D)が効果的に低減された樹脂を得ることができる。
 本開示の硬化性重合体は、熱硬化性でも活性エネルギー線硬化性でもよい。活性エネルギー線硬化性重合体は、紫外線および電子線等の活性エネルギー線の照射によって硬化する重合体である。金属張積層板および配線基板等の用途では、熱硬化性が好ましい。
[硬化性組成物]
 本開示の硬化性組成物は、本開示の硬化性重合体を1種以上含む。
 本開示の硬化性組成物は、必要に応じて、1つ以上の重合性官能基を有する他の硬化性化合物を1種以上含むことができる。
 本開示の硬化性重合体は、分子構造によっては、単独で硬化した場合に得られる樹脂が硬く脆く、プリプレグ、金属張積層板または配線基板用として実用的でない場合がある。この場合、適切な他の硬化性化合物を併用することで、得られる樹脂の脆さを、プリプレグ、金属張積層板または配線基板用として実用的なレベルに改善できる。
 本開示の硬化性重合体と適切な他の硬化性化合物とを併用することで、硬化性組成物の(半)硬化物のガラス転移温度(Tg)を向上できる場合がある。
 本開示の硬化性組成物は、さらに必要に応じて、1種以上の任意成分を含むことができる。
 本開示の硬化性組成物は、熱硬化性でも活性エネルギー線硬化性でもよい。金属張積層板および配線基板等の用途では、熱硬化性が好ましい。
 他の硬化性化合物は、1つ以上の重合性官能基を有する単官能化合物でもよいし、2つ以上の重合性官能基を有する多官能化合物でもよい。
 重合性官能基としては、例えば、重合性炭素-炭素不飽和結合を有する基、エポキシ基、イソシアネート基、ヒドロキシ基、メルカプト基、アミノ基、ウレイド基、カルボキシ基、スルホン酸基、酸クロライド基、および塩素原子等が挙げられる。重合性炭素-炭素不飽和結合を有する基としては、例えば、ビニル基、アリル基、ジエニル基、(メタ)アクリロイルオキシ基、および(メタ)アクリルアミノ基等が挙げられる。
 他の硬化性化合物としては、例えば、単独で硬化した場合に、ポリフェニレンエーテル樹脂(PPE)、ビスマレイミド樹脂、エポキシ樹脂、フッ素樹脂、ポリイミド樹脂、オレフィン系樹脂、ポリエステル樹脂、ポリスチレン樹脂、炭化水素エラストマー、ベンゾオキサジン樹脂、活性エステル樹脂、シアネートエステル樹脂、ブタジエン樹脂、水添または非水添スチレンブタジエン樹脂、ビニル系樹脂、シクロオレフィンポリマー、芳香族重合体、およびジビニル芳香族重合体等の樹脂となる硬化性化合物が挙げられる。
 他の硬化性化合物の形態としては、モノマー、オリゴマーおよびプレポリマー等が挙げられる。
 他の硬化性化合物としては、例えば、下式(PPE-o)で表され、両末端に重合性官能基を有する変性ポリフェニレンエーテル(変性PPE)オリゴマー等が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 式(PPE-o)中のm、nは、式(MX)、(SX)、(MC-11)、(MC-12)、(MC-21)~(MC-30)中のm、nとは、無関係である。
 式(PPE-o)の両端のXはそれぞれ独立に、下式(x1)または下式(x2)で表される基である。これら式中、「*」は酸素原子との結合手を示す。
Figure JPOXMLDOC01-appb-C000026
 式(PPE-o)中、mは、好ましくは1~20、より好ましくは3~15であり、nは、好ましくは1~20、より好ましくは3~15である。
 変性ポリフェニレンエーテル(変性PPE)オリゴマーの数平均分子量(Mn)は特に制限されず、好ましくは1000~5000、より好ましくは1000~4000である。
 硬化性化合物として、本開示の硬化性重合体と、変性ポリフェニレンエーテル(変性PPE)オリゴマー等の主鎖が極性原子を含む他の硬化性化合物とを併用する場合も、硬化性化合物として、変性PPEオリゴマー等の極性原子を多く含む硬化性化合物のみを用いる場合に比較して、硬化性組成物の(半)硬化物に含まれる極性原子の量を低減できる。その結果、硬化性組成物の(半)硬化物の誘電正接(D)を効果的に低減できる。
 硬化性組成物の(半)硬化物の高周波条件での誘電正接(D)を効果的に低減できることから、本開示の硬化性組成物において、1種以上の本開示の硬化性重合体と1種以上の他の硬化性化合物との総量100質量部に対して、1種以上の本開示の硬化性重合体の含有量は、多い方が好ましく、好ましくは20~100質量部、より好ましくは30~100質量部、特に好ましくは50~100質量部、最も好ましくは70~100質量部である。
 硬化性組成物は、1種以上の重合開始剤を含むことが好ましい。重合開始剤としては、有機過酸化物、アゾ系化合物、その他の公知の重合開始剤、およびこれらの組合せを用いることができる。具体例としては、ジクミルパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーオキシベンゾエート、2,2-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)オクタン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、ジ(トリメチルシリル)パーオキサイド、トリメチルシリルトリフェニルシリルパーオキサイドおよびアゾビスイソブチロニトリル等が挙げられる。
 硬化性組成物は必要に応じて、1種以上の添加剤を含むことができる。添加剤としては、無機充填材(フィラーとも言う。)、相溶化剤および難燃剤等が挙げられる。
 無機充填材としては、例えば、球状シリカ等のシリカ、アルミナ、酸化チタンおよびマイカ等の金属酸化物;水酸化アルミニウムおよび水酸化マグネシウム等の金属水酸化物;タルク;ホウ酸アルミニウム;硫酸バリウム;炭酸カルシウム等が挙げられる。これらは、1種以上用いることができる。中でも、低熱膨張性の観点から、シリカ、マイカおよびタルク等が好ましく、球状シリカがより好ましい。
 無機充填材は、エポキシシランタイプ、ビニルシランタイプ、メタクリルシランタイプ、またはアミノシランタイプのシランカップリング剤で表面処理されたものでもよい。シランカップリング剤による表面処理のタイミングは、特に制限されない。予め、シランカップリング剤で表面処理された無機充填材を用意してもよいし、硬化性組成物の調製時にインテグラルブレンド法でシランカップリング剤を添加してもよい。
 難燃剤としては、例えば、ハロゲン系難燃剤およびリン系難燃剤等が挙げられる。これらは、1種以上用いることができる。ハロゲン系難燃剤としては、例えば、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテル、テトラブロモビスフェノールAおよびヘキサブロモシクロドデカン等の臭素系難燃剤;塩素化パラフィン等の塩素系難燃剤等が挙げられる。リン系難燃剤としては、例えば、縮合リン酸エステルおよび環状リン酸エステル等のリン酸エステル;環状ホスファゼン化合物等のホスファゼン化合物;ジアルキルホスフィン酸アルミニウム塩等のホスフィン酸塩系難燃剤;リン酸メラミンおよびポリリン酸メラミン等のメラミン系難燃剤;ジフェニルホスフィンオキサイド基を有するホスフィンオキサイド化合物等が挙げられる。
 硬化性組成物は必要に応じて、1種以上の有機溶媒を含むことができる。有機溶媒としては特に制限されず、メチルエチルケトン等のケトン類;ジブチルエーテル等のエーテル類;酢酸エチル等のエステル類;ジメチルホルムアミド等のアミド類;ベンゼン、トルエンおよびキシレン等の芳香族炭化水素類;トリクロロエチレン等の塩素化炭化水素等が挙げられる。
 硬化性組成物において、配合組成および固形分濃度は、適宜設計できる。
 硬化性組成物の配合組成は、得られる(半)硬化物が脆くならず、得られる(半)硬化物の誘電正接(Df)およびガラス転移温度(Tg)等の特性が好適となるように、設計できる。
 プリプレグ等の用途では、硬化性組成物の固形分濃度は、繊維基材への含浸がしやすいように設計でき、好ましくは50~90質量%である。
[プリプレグ]
 本開示のプリプレグは、繊維基材と、本開示の硬化性組成物の(半)硬化物とを含む。
 プリプレグは、硬化性組成物を繊維基材に含浸させ、熱硬化等により(半)硬化させることで、製造できる。
 (半)硬化物は、1種の本開示の硬化性重合体の単独硬化物、複数種の本開示の硬化性重合体の反応生成物、または、1種以上の本開示の硬化性重合体と1種以上の他の硬化性化合物との反応生成物を含むことができる。
 (半)硬化物は必要に応じて、無機充填材(フィラー)等の添加剤を含むことができる。
 繊維基材の材料としては特に制限されず、ガラス繊維、シリカ繊維および炭素繊維等の無機繊維;アラミド繊維およびポリエステル繊維等の有機繊維;これらの組合せ等が挙げられる。金属張積層板および配線基板等の用途では、ガラス繊維等が好ましい。ガラス繊維基材の形態としては、ガラスクロス、ガラスペーパーおよびガラスマット等が挙げられる。
 硬化性組成物の硬化条件は、硬化性組成物の組成に応じて設定でき、半硬化条件(完全硬化しない条件)が好ましい。
 例えば、80~180℃で1~10分間加熱する熱硬化が好ましい。
 金属張積層板および配線基板等の用途では、得られるプリプレグ中の樹脂含有量が40~80質量%の範囲内となるように、硬化性組成物の組成および硬化条件を調整することが好ましい。
[積層体]
 本開示の第1の積層体は、基材と、上記の本開示の硬化性組成物からなる硬化性組成物層とを含む。
 本開示の第2の積層体は、基材と、上記の本開示の硬化性組成物の(半)硬化物を含む(半)硬化物含有層とを含む。
 本開示の積層体において、基材としては特に制限されず、樹脂フィルム、金属箔およびこれらの組合せ等が挙げられる。
 (半)硬化物含有層は、繊維基材と本開示の硬化性組成物の(半)硬化物とを含む層であってもよい。
 樹脂フィルムとしては特に制限されず、公知のものを用いることができる。樹脂フィルムの構成樹脂としては、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、シクロオレフィンポリマーおよびポリエーテルサルファイド等が挙げられる。
 電気抵抗が低いことから、金属箔としては、銅箔、銀箔、金箔、アルミニウム箔およびこれらの組合せ等が好ましく、銅箔等がより好ましい。
[金属張積層板]
 本開示の金属張積層板は、本開示の硬化性組成物の硬化物を含む絶縁層と、金属箔とを含む。
 絶縁層は、繊維基材と本開示の硬化性組成物の硬化物とを含む層であってもよい。
 電気抵抗が低いことから、金属箔としては、銅箔、銀箔、金箔、アルミニウム箔およびこれらの組合せ等が好ましく、銅箔等がより好ましい。金属箔は、表面に金属メッキ層を有するものでもよい。金属箔は、極薄金属箔とそれを支持するキャリア金属箔とを含むキャリア付き金属箔であってもよい。金属箔は、少なくとも一方の表面に、防錆処理、シラン処理、粗面化処理およびバリア形成処理等の表面処理が施されたものでもよい。
 金属箔の厚みは特に制限されず、配線等の導体パターン(回路パターンとも言う。)の形成に好適であることから、好ましくは0.1~100μm、より好ましくは0.2~50μm、特に好ましくは1.0~40μmである。
 金属張積層板は、片面に金属箔を有する片面金属張積層板であってもよいし、両面に金属箔を有する両面金属張積層板であってもよく、両面金属張積層板であることが好ましい。
 片面金属張積層板は、1つ以上の上記のプリプレグと金属箔とを重ね、得られた第1の仮積層体を加熱加圧することで、製造できる。
 両面金属張積層板は、1つ以上の上記のプリプレグを一対の金属箔で挟み、得られた第1の仮積層体を加熱加圧することで、製造できる。
 金属箔として銅箔を使用した金属張積層板は、銅張積層板(Copper Clad Laminate:CCL)と呼ばれる。
 絶縁層は好ましくは、プリプレグの加熱加圧物からなる。プリプレグの加熱加圧物は、繊維基材と樹脂とを含み、必要に応じて無機充填材および難燃剤等の1種以上の添加剤を含むことができる。プリプレグの加熱加圧物は、コンポジット基材とも呼ばれる。
 第1の仮積層体の加熱加圧条件は特に制限されず、例えば、温度170~250℃、圧力0.3~30MPa、時間3~240分間が好ましい。
 図1および図2に、本発明に係る実施形態の金属張積層板の模式断面図を示す。
 図1に示す金属張積層板1は、プリプレグの加熱加圧物からなり、本開示の硬化性組成物の硬化物を含むコンポジット基材(硬化物含有層)11の片面に、金属箔(金属層)12が積層された片面金属張積層板(積層体)である。
 図2に示す金属張積層板2は、プリプレグの加熱加圧物からなり、本開示の硬化性組成物の硬化物を含むコンポジット基材(硬化物含有層)11の両面に、金属箔(金属層)12が積層された両面金属張積層板である。
 金属張積層板1、2は、上記以外の層を有していてもよい。
 金属張積層板1、2は、コンポジット基材(硬化物含有層)11と金属箔(金属層)12との間に、これらの接着性を高めるために、接着層を有することができる。接着層の材料としては公知のものを用いることができ、エポキシ樹脂、シアネートエステル樹脂、アクリル樹脂、ポリイミド樹脂、マレイミド樹脂、接着性フッ素樹脂およびこれらの組合せ等が挙げられる。市販の接着性フッ素樹脂としては、AGC社製の「Fluon LM‐ETFE LH-8000」、「AH-5000」、「AH-2000」および「EA-2000」等が挙げられる。
 コンポジット基材の厚みは、用途に応じて適宜設計できる。配線基板の断線予防の観点から、好ましくは50μm以上、より好ましくは70μm以上、特に好ましくは100μm以上である。配線基板の柔軟性、小型化および軽量化の観点から、好ましくは、300μm以下、より好ましくは250μm以下、特に好ましくは200μm以下である。
[配線基板]
 本開示の配線基板は、本開示の硬化性組成物の硬化物を含む絶縁層と、配線とを含む。
 配線基板は、上記の本開示の金属張積層板の最表面にある金属箔を用いて配線等の導体パターン(回路パターン)を形成することで、製造できる。配線等の導体パターンを形成する方法としては、金属箔をエッチングして配線等を形成するサブトラクティブ法、および、金属箔の上にメッキで配線を形成するMSAP(Modified Semi Additive Process)法等が挙げられる。
 図3に、本発明に係る一実施形態の配線基板の模式断面図を示す。図3に示す配線基板3は、図2に示した第2の実施形態の金属張積層板2の少なくとも一方の最表面にある金属箔12を用いて配線22W等の導体パターン(回路パターン)22を形成したものである。
 配線基板3は、プリプレグの加熱加圧物からなり、本開示の硬化性組成物の硬化物を含むコンポジット基材(硬化物含有層、絶縁層)11の少なくとも片面に、配線22W等の導体パターン(回路パターン)22が形成されたものである。
 得られた配線基板に対してさらに、1つ以上のプリプレグを重ね、これを一対の金属箔で挟み、得られた第2の仮積層体を加熱加圧し、最表面の金属箔を用いて配線等の導体パターンを形成することで、多層配線基板(多層プリント配線板とも言う。)を製造してもよい。最表面の金属箔は、第2の仮積層体の片面側にのみ配置してもよい。
 本開示の配線基板は、高周波領域(周波数1GHz以上の領域)で用いて好適である。
 近年、携帯用電子機器等の用途では、通信の高速化と大容量化が進み、信号の高周波化が進んでいる。この用途に用いられる配線基板には、高周波領域での伝送損失の低減が求められる。このため、上記用途に用いられる配線基板のコンポジット基材に含まれる樹脂には、高周波領域での誘電損失の低減が求められる。一般的に、誘電正接(D)は周波数に依存し、同じ材料であれば、周波数が高くなる程、誘電正接(D)が大きくなる傾向がある。コンポジット基材に含まれる樹脂は、高周波条件における誘電正接(D)が低いことが好ましい。
 配線基板は、比較的高温の環境下で使用される場合がある。この場合でも、配線基板の信頼性を確保するために、プリプレグおよびコンポジット基材に含まれる樹脂は、充分な高さのガラス転移温度(Tg)を有することが好ましい。
 プリプレグまたはコンポジット基材と金属箔との熱膨張係数(CTE)の差が大きいと、プリプレグと金属箔とを含む第1の仮積層体、またはコンポジット基材とプリプレグと金属箔とを含む第2の仮積層体を加熱加圧する際に、金属箔のずれまたは剥離が生じる恐れがある。プリプレグまたはコンポジット基材と金属箔との熱膨張係数(CTE)の差は、小さい方が好ましい。一般的に、樹脂は金属箔より熱膨張係数(CTE)が大きいので、プリプレグおよびコンポジット基材の熱膨張係数(CTE)は小さい方が好ましい。
 本発明者らが検討したところ、極性原子を含まない、または、極性原子の少ない本開示の硬化性重合体を用いることで、硬化性組成物の(半)硬化物の高周波条件における誘電正接(D)を充分に低くできることが分かった。
 また、本開示の硬化性重合体を含む硬化性組成物の(半)硬化物は、ガラス転移温度(Tg)が充分に高いことが分かった。
 また、本開示の硬化性重合体を含む硬化性組成物の(半)硬化物は、熱膨張係数(CTE)が充分に低いことが分かった。
 また、本開示の硬化性重合体を含む硬化性組成物の(半)硬化物は、銅箔等の金属との密着性も実用的に良好であることが分かった。
 本開示の硬化性重合体を用いることで、高周波条件における誘電正接(D)が充分に低く、ガラス転移温度(Tg)が充分に高い樹脂を得ることができる。この(半)硬化物は、高周波領域で用いられる配線基板用として好適なコンポジット基材および絶縁層等に好適である。
 本開示の硬化性組成物の(半)硬化物およびこれを含むコンポジット基材の高周波条件における誘電正接(D)は、例えば、以下のような範囲内であることが好ましい。
 周波数10GHzにおける誘電正接(D)は小さい方が好ましく、好ましくは0.010以下、より好ましくは0.005以下、さらに好ましくは0.003以下、特に好ましくは0.002以下、最も好ましくは0.002未満である。
 周波数10GHzにおける誘電正接(D)は、0.0019以下、0.0017以下、0.または0014以下であることができる。
 周波数10GHzにおける誘電正接(D)の下限値は特に制限されず、例えば0.0001である。
 本開示の硬化性組成物の(半)硬化物のガラス転移温度(Tg)は、好ましくは150℃以上、より好ましくは180℃以上、特に好ましくは200℃以上である。上限値は特に制限されず、例えば300℃である。
 本開示の硬化性組成物の(半)硬化物およびこれを含むコンポジット基材の熱膨張係数(CTE)は、例えば、以下のような範囲内であることが好ましい。
 熱膨張係数(CTE)は小さい方が好ましく、好ましくは70ppm/℃以下、より好ましくは60ppm/℃以下、特に好ましくは50ppm/℃以下、最も好ましくは40ppm/℃以下である。下限値は特に制限されず、例えば1ppm/℃である。
 誘電正接(D)およびガラス転移温度(Tg)は、後記[実施例]の項に記載の方法にて測定することができる。
 熱膨張係数(CTE)は、市販の熱機械分析装置を用いて、公知方法にて、測定できる。
 以上説明したように、本開示によれば、高周波条件における誘電正接(D)が充分に低く、ガラス転移温度(Tg)が充分に高い樹脂を得ることが可能な硬化性重合体およびこれを含む硬化性組成物を提供できる。
 本開示の硬化性重合体およびこれを含む硬化性組成物は、プリプレグ、金属張積層板および配線基板等の用途に好適なものであるが、任意の用途に使用可能なものである。
[用途]
 本開示の硬化性重合体およびこれを含む硬化性組成物は、プリプレグ、金属張積層板および配線基板等の用途に好適である。
 本開示の硬化性重合体を含む硬化性組成物は、プリプレグ、金属張積層板および配線基板等の用途に用いられる硬化性組成物に好適である。
 本開示の金属張積層板は、各種電気機器および各種電子機器等に使用される配線基板等に好適である。
 本開示の配線基板は、携帯電話、スマートフォン、携帯情報端末およびノートパソコン等の携帯用電子機器;携帯電話基地局および自動車等のアンテナ;サーバー、ルーターおよびバックプレーン等の電子機器;無線インフラ;衝突防止用等のレーダー;各種センサ(例えば、エンジンマネージメントセンサ等の自動車用センサ)等に好適である。
 本開示の配線基板は特に、高周波信号を用いて通信を行う用途に好適であり、高周波領域において伝送損失の低減が求められる様々な用途に好適である。
 以下に例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。例11~13、21、31、41、51、101~107、301が実施例であり、例201が比較例である。特に明記しない限り、室温は25℃程度である。
[市販試薬]
 [実施例]の項において、触媒および試薬は、特に明記しない限り、市販品をそのまま反応に用いた。溶媒は、脱水および脱酸素された市販品を用いた。
[硬化性重合体の評価項目と評価方法]
(単量体の構造)
 合成した単量体の構造は、核磁気共鳴装置(Bruker社製「AVANCE NEO400」)を用い、H-NMR測定を行うことで同定した。
(数平均分子量(Mn)および重量平均分子量(Mw))
 合成した硬化性重合体の数平均分子量(Mn)および重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法により求めた。GPC装置として、示差屈折率検出器(RI検出器)を備えた東ソー社製「HLCー8320GPC」を使用した。溶離液としてテトラヒドロフランを用いた。カラムとして、「TSKgel SuperHZ2000」、「TSKgel SuperHZ2500」、「TSKgel SuperHZ3000」および「TSKgel SuperHZ4000」(いずれも東ソー社製)の4本を直列に接続したものを用いた。樹脂20mgをテトラヒドロフラン2mLに溶解させて試料溶液を調製した。試料溶液10μlを注入して、クロマトグラムを測定した。分子量が400~5000000の範囲の標準ポリスチレン10点を用いてGPC測定し、保持時間と分子量との関係を示す検量線を作成した。この検量線に基づいて、硬化性重合体のMnとMwを決定した。
[フィルム状硬化物の評価項目と評価方法]
(比誘電率(D)および誘電正接(D))
 評価用サンプル(フィルム状硬化物)の10GHzにおける比誘電率(D)および誘電正接(D)を、室温で、ベクトルネットワークアナライザ(アジレントテクノロジー社製「E8361C」)を用い、SPDR法により測定した。
(ガラス転移温度Tg)
 動的粘弾性測定装置(アイティー計測制御株式会社製「DVA-200」)を用いて、評価用サンプル(フィルム状硬化物)の動的粘弾性測定(DMA)を行い、ガラス転移温度(Tg)(℃)を測定した。測定は、周波数10Hz、昇温速度2℃/min、温度範囲25~300℃の条件で行った。
[合成例1]p-(3-ブテニル)スチレンの合成
 窒素雰囲気下、500mLの四ツ口フラスコに、アリルマグネシウムブロミドのジエチルエーテル溶液(約0.7mol/L、202mL、141mmol)を仕込んだ。フラスコを0℃に冷却し、この溶液に4-(クロロメチル)スチレン(15.5mL、98.7mmol)のジエチルエーテル(35.1mL)溶液を16分間かけて滴下し、フラスコを室温まで加温し、2.5時間攪拌した。フラスコを0℃に冷却し、反応混合物に飽和塩化アンモニウム水溶液(140mL)を加えて攪拌して、有機相を分離する抽出を行った。さらに、水相にジエチルエーテル(100mL)を加え、有機相を分離する抽出を2回行った。これら抽出で得られた有機相を合わせて、硫酸ナトリウムを用いて乾燥し、ろ過し、ろ液を真空下で濃縮して、粗物を得た。粗物をシリカゲルカラムクロマトグラフィー(移動相:n-ヘキサン)を用いて精製し、無色液体のp-(3-ブテニル)スチレンを15.9g得た(収率:100%)。得られた化合物は、単量体(MX)の1つである(X=単結合、n=1)。
 反応スキームおよびNMR分析結果は、以下の通りである。
Figure JPOXMLDOC01-appb-C000027
H-NMR(CDCl):δ(ppm)7.33(d,2H,J=8.11Hz,Ar-H),7.14(d,2H,J=8.11Hz,Ar-H),6.69(dd,2H,J=10.85,17.52Hz),5.90-5.80(dm,1H,J=10.13Hz),5.70(dd,1H,J=0.95,17.52Hz),5.19(dd,1H,J=0.95,10.85Hz),5.04(ddt,1H,J=1.67,3.58,17.17Hz),4.99(dm,1H,J=10.25Hz),2.70(t,2H,J=8.11Hz),2.36(m,2H).
[合成例2]アリル(4-ビニルベンジル)エーテルの合成
 窒素雰囲気下、300mLの四ツ口フラスコに、カリウムtert-ブトキシド(11.7g、103mmol)、テトラヒドロフラン(167mL)、およびアリルアルコール(7.00mL、103mmol)を仕込んだ。室温下、この懸濁液に4-(クロロメチル)スチレン(18.1mL、115mmol)を8分間かけて滴下し、フラスコを50℃まで加温し、1時間攪拌した。反応混合物にイオン交換水(140mL)を加えて攪拌して、有機相を分離する抽出を行った。さらに、水相に酢酸エチル(140mL)を加え、有機相を分離する抽出を行った。これら抽出で得られた有機相を合わせて、硫酸ナトリウムを用いて乾燥し、ろ過し、ろ液を真空下で濃縮して、粗物を得た。粗物をシリカゲルカラムクロマトグラフィー(移動相:n-ヘキサン)を用いて精製し、淡黄色液体のアリル(4-ビニルベンジル)エーテルを17.1g得た(収率:96%)。得られた化合物は、単量体(MX)の1つである(X=酸素原子、n=1)。
 反応スキームおよびNMR分析結果は、以下の通りである。
Figure JPOXMLDOC01-appb-C000028
H-NMR(CDCl):δ(ppm)7.39(d,2H,J=8.11Hz,Ar-H),7.30(d,2H,J=8.11Hz,Ar-H),6.71(dd,1H,J=6.68,10.85Hz),5.95(ddt,1H,J=4.11,9.50,18.68Hz),5.74(dd,1H,J=0.83,17.64Hz),5.30(dq,1H,J=1.67,17.29Hz),5.23(dd,1H,J=0.83,10.97Hz),5.22-5.19(m,1H),4.51(s,2H),4.02(dt,2H,J=1.43,5.60Hz).
[例11]共重合体(P11)の合成
 窒素雰囲気下、100mLの耐圧反応容器に、合成例1で得られたp-(3-ブテニル)スチレン(8.0g、50.6mmol)、スチレン(12.0g、115.4mmol)、トルエン(20g、21.7mmol)、および三フッ化ホウ素ジエチルエーテル錯体(0.36g、2.6mmol)を投入し、50℃で5時間反応させた。反応終了後、重合溶液に飽和炭酸水素ナトリウム水溶液を投入して、反応を停止させた。この重合溶液を大量のメタノール中に滴下して、重合物を沈殿させた。沈殿物を回収し、洗浄および乾燥して、共重合体(P11)を18.9g得た(収率:94.7%)。
[例12]共重合体(P12)の合成
 p-(3-ブテニル)スチレンの量を6.0g、38.0mmol、スチレンの量を14.0g、134.6mmolに変更した以外は例11と同様にして、共重合体(P12)を18.9g得た(収率:94.4%)。
[例13]共重合体(P13)の合成
 p-(3-ブテニル)スチレンの量を3.0g、19.0mmol、スチレンの量を17.0g、163.5mmolに変更した以外は例11と同様にして、共重合体(P13)を18.2g得た(収率:90.8%)。
 例11~13の反応スキームは、以下の通りである。
Figure JPOXMLDOC01-appb-C000029
[例21]共重合体(P21)の合成
 窒素雰囲気下、100mLの耐圧反応容器に、p-(3-ブテニル)スチレン(4.0g、25.3mmol)、4-tert-ブチルスチレン(16.0g、99.8mmol)、トルエン(20g、21.7mmol)、および三フッ化ホウ素ジエチルエーテル錯体(0.36g、2.6mmol)を投入し、50℃で5時間反応させた。反応終了後、重合溶液に飽和炭酸水素ナトリウム水溶液を投入して、反応を停止させた。この重合溶液を大量のメタノール中に滴下して、重合物を沈殿させた。沈殿物を回収し、洗浄および乾燥して、共重合体(P21)を18.9g得た(収率:94.7%)。
 反応スキームは、以下の通りである。
Figure JPOXMLDOC01-appb-C000030
[例31]共重合体(P31)の合成
 窒素雰囲気下、100mLの耐圧反応容器に、p-(3-ブテニル)スチレン(3.0g、19.0mmol)、インデン(8.4g、53.2mmol)、トルエン(20g、21.7mmol)、および三フッ化ホウ素ジエチルエーテル錯体(0.36g、2.6mmol)を投入し、50℃で5時間反応させた。反応終了後、重合溶液に飽和炭酸水素ナトリウム水溶液を投入して、反応を停止させた。この重合溶液を大量のメタノール中に滴下して、重合物を沈殿させた。沈殿物を回収し、洗浄および乾燥して、共重合体(P31)を19.1g得た(収率:95.3%)。
 反応スキームは、以下の通りである。
Figure JPOXMLDOC01-appb-C000031
[例41]共重合体(P41)の合成
 窒素雰囲気下、100mLの耐圧反応容器に、p-(3-ブテニル)スチレン(4.2g、26.6mmol)、2ービニルナフタレン(15.8g、102.5mmol)、トルエン(20g、21.7mmol)、および三フッ化ホウ素ジエチルエーテル錯体(0.36g、2.6mmol)を投入し、50℃で5時間反応させた。反応終了後、重合溶液に飽和炭酸水素ナトリウム水溶液を投入して、反応を停止させた。この重合溶液を大量のメタノール中に滴下して、重合物を沈殿させた。沈殿物を回収し、洗浄および乾燥して、共重合体(P41)を18.8g得た(収率:93.9%)。
 反応スキームは、以下の通りである。
Figure JPOXMLDOC01-appb-C000032
[例51]共重合体(P51)の合成
 窒素雰囲気下、100mLの耐圧反応容器に、合成例2で得られたアリル(4-ビニルベンジル)エーテル(3.2g、18.4mmol)、スチレン(16.8g、161.5mmol)、トルエン(20g、21.7mmol)、および三フッ化ホウ素ジエチルエーテル錯体(0.36g、2.6mmol)を投入し、50℃で5時間反応させた。反応終了後、重合溶液に飽和炭酸水素ナトリウム水溶液を投入して、反応を停止させた。この重合溶液を大量のメタノール中に滴下して、重合物を沈殿させた。沈殿物を回収し、洗浄および乾燥して、共重合体(P41)を19.9g得た(収率:99.5%)。
 反応スキームは、以下の通りである。
Figure JPOXMLDOC01-appb-C000033
 例11~13、21、31、41、および51において、単量体組成と得られた共重合体の物性を、表1に示す。
Figure JPOXMLDOC01-appb-T000034
[例101]
 硬化性重合体(P11)と、以下の変性ポリフェニレンエーテル(PPE)オリゴマー(SA9000)と、ラジカル重合開始剤としてのジクミルパーオキサイド(DCP)と、トルエンとを、質量比50:50:1:100で混合し、室温で攪拌して、硬化性組成物を調製した。
(SA9000)下式で表される2官能メタクリル変性PPEオリゴマー(SABIC社製「SA9000」)。
Figure JPOXMLDOC01-appb-C000035
 次に、アプリケータ(ヨシミツ精機社製)を用いて、厚み125μmのポリイミドフィルム上に、上記硬化性組成物を塗布して、厚さ250μmの塗布膜を形成した。
 オーブンにて、空気雰囲気下、80℃で30分間加熱乾燥させた後、窒素雰囲気下、200℃で2時間加熱することで、塗布膜を熱硬化させて、厚み約100μmのフィルム状硬化物を得た。
 硬化性組成物の溶媒を除く配合組成と、得られたフィルム状硬化物の評価結果を表2に示す。表中の配合量の単位は、「質量部」である。
[例102~107、201]
 1種以上の硬化性重合体の種類と配合量を変更した以外は例101と同様にして、硬化性組成物の調製およびフィルム状硬化物の作製を実施した。硬化性組成物の溶媒を除く配合組成と、得られたフィルム状硬化物の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000036
[結果のまとめ]
 例101~106では、極性原子を含まない構造単位(UX)とモノビニル芳香族化合物に由来する構造単位(UY)とを含む共重合体である硬化性重合体を用いて、フィルム状硬化物を得た。
 例107では、極性原子を含む構造単位(UX)とモノビニル芳香族化合物に由来する構造単位(UY)とを含む共重合体である硬化性重合体を用いて、フィルム状硬化物を得た。
 例201では、構造単位(UX)を含まない変性PPEオリゴマーのみを用いて、フィルム状硬化物を得た。
 例101~106では、例201に対して、高周波条件における誘電正接(D)を効果的に低減できた。これらの例では、高周波条件における誘電正接(D)が効果的に低減され、ガラス転移温度(Tg)が充分に高いフィルム状硬化物を得ることができた。
 例107では、高周波条件における誘電正接(D)は例201と同等レベルであり、実用的なレベルであった。この例では、高周波条件における誘電正接(D)が充分に低く、ガラス転移温度(Tg)が充分に高いフィルム状硬化物を得ることができた。
[例301]
 例1で合成した硬化性重合体(P11)と、上記の変性ポリフェニレンエーテル(PPE)オリゴマー(SA9000)と、ラジカル重合開始剤としてのジクミルパーオキサイド(DCP)と、無機充填材としての球状シリカと、トルエンとを、質量比50:50:1:100:100で混合し、室温で攪拌して、硬化性重合体組成物(ワニス)を調製した。
 得られた硬化性重合体組成物(ワニス)を繊維基材としてのガラスクロス(Eガラス、#2116)に含浸させた後、130℃で5分間加熱して、硬化性重合体組成物を半硬化させて、プリプレグを得た。
 得られたプリプレグを2枚重ね、これらを一対の銅箔で挟み、得られた仮積層体を、200℃、1.5時間、3MPaの条件で加熱加圧して、金属張積層板を作製した。
 本発明は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更できる。
 この出願は、2022年4月28日に出願された日本出願特願2022-074083号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、2:金属張積層板、3:配線基板、11:コンポジット基材、12:金属箔、22:導体パターン(回路パターン)、22W:配線。

Claims (12)

  1.  1種以上の下式で表される構造単位(UX)を含む単独重合体または共重合体であり、プリプレグ、金属張積層板または配線基板の製造用である、硬化性重合体。
    Figure JPOXMLDOC01-appb-C000001
    (上式中、Xは単結合または酸素原子である。ベンゼン環は上記以外の置換基を有していてもよい。nは0以上の整数である。)
  2.  1種以上の構造単位(UX)と1種以上のモノビニル芳香族化合物に由来する構造単位(UY)とを含む共重合体である、請求項1に記載の硬化性重合体。
  3.  全構造単位の総量100mol%に対する、1種以上の構造単位(UX)の含有量が1~90mol%である、請求項1または2に記載の硬化性重合体。
  4.  Xは単結合である、請求項1または2に記載の硬化性重合体。
  5.  nは、1~18である、請求項1または2に記載の硬化性重合体。
  6.  請求項1または2に記載の硬化性重合体を含む、硬化性組成物。
  7.  さらに、1つ以上の重合性官能基を有する他の硬化性化合物を含む、請求項6に記載の硬化性組成物。
  8.  繊維基材と、請求項6に記載の硬化性組成物の半硬化物または硬化物とを含む、プリプレグ。
  9.  基材と、請求項6に記載の硬化性組成物からなる硬化性組成物層とを含む、積層体。
  10.  基材と、請求項6に記載の硬化性組成物の半硬化物または硬化物を含む(半)硬化物含有層とを含む、積層体。
  11.  請求項6に記載の硬化性組成物の硬化物を含む絶縁層と、金属箔とを含む、金属張積層板。
  12.  請求項6に記載の硬化性組成物の硬化物を含む絶縁層と、配線とを含む、配線基板。
PCT/JP2023/014633 2022-04-28 2023-04-10 硬化性重合体、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板 WO2023210338A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-074083 2022-04-28
JP2022074083 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210338A1 true WO2023210338A1 (ja) 2023-11-02

Family

ID=88518400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014633 WO2023210338A1 (ja) 2022-04-28 2023-04-10 硬化性重合体、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板

Country Status (1)

Country Link
WO (1) WO2023210338A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320250A (ja) * 1992-05-22 1993-12-03 Idemitsu Kosan Co Ltd 化学変性スチレン系重合体及びその製造方法
JP2000285751A (ja) * 1999-01-29 2000-10-13 Shin Etsu Chem Co Ltd 架橋型高分子固体電解質の製造方法
US20080056940A1 (en) * 2003-10-07 2008-03-06 Charles Harry K Authentication Of Products Using Molecularly Imprinted Polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320250A (ja) * 1992-05-22 1993-12-03 Idemitsu Kosan Co Ltd 化学変性スチレン系重合体及びその製造方法
JP2000285751A (ja) * 1999-01-29 2000-10-13 Shin Etsu Chem Co Ltd 架橋型高分子固体電解質の製造方法
US20080056940A1 (en) * 2003-10-07 2008-03-06 Charles Harry K Authentication Of Products Using Molecularly Imprinted Polymers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIN YICHAO; ZHENG JUN; YAO KUN; TAN HAIYING; ZHANG GUANGCHUN; GONG JIANG; TANG TAO; XU DONGHUA: "Synthesis and linear rheological property of comb-like styrene-based polymers with a high degree of branch chain", POLYMER, ELSEVIER, AMSTERDAM, NL, vol. 59, 1 January 1900 (1900-01-01), AMSTERDAM, NL, pages 252 - 259, XP029197843, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2015.01.020 *
TANIMOTO SHIGEO, NISHI MASAHARU, OKANO MASAYA, ODA RYOHEI: "Syntheses of p-Vinylbenzyl Ethers and pVinylbenzyl Sulfides and Their Polymerizations", JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, JAPAN, vol. 27, no. 9, 1 January 1969 (1969-01-01), pages 858 - 862, XP093104051 *
WATANABE KODAI, KATSUHARA SATOSHI, MAMIYA HIROAKI, KAWAMURA YUKIHIKO, YAMAMOTO TAKUYA, TAJIMA KENJI, ISONO TAKUYA, SATOH TOSHIFUMI: "Highly asymmetric lamellar nanostructures from nanoparticle–linear hybrid block copolymers", NANOSCALE, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 12, no. 31, 13 August 2020 (2020-08-13), United Kingdom , pages 16526 - 16534, XP093104030, ISSN: 2040-3364, DOI: 10.1039/D0NR05209D *
ZHANG H., RUCKENSTEIN E.: "SELECTIVE LIVING ANIONIC POLYMERIZATION OF A NOVEL BIFUNCTIONAL MONOMER 4-(VINYLPHENYL)-1-BUTENE AND THE PREPARATION OF UNIFORM SIZE FUNCTIONAL POLYMERS AND AMPHIPHILIC BLOCK COPOLYMERS.", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 32., no. 17., 24 August 1999 (1999-08-24), US , pages 5495 - 5500, XP000848675, ISSN: 0024-9297, DOI: 10.1021/ma9905369 *

Similar Documents

Publication Publication Date Title
JP6995534B2 (ja) 可溶性多官能ビニル芳香族共重合体、その製造方法、硬化性樹脂組成物及びその硬化物
JP7051333B2 (ja) 硬化性樹脂組成物、その硬化物、硬化性複合材料、樹脂付き金属箔、及び回路基板材料用ワニス
JP7409369B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、および、プリント配線板
CN113490596A (zh) 树脂组合物、预浸料、覆金属箔层叠板、树脂复合片及印刷电路板
CN116056885A (zh) 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板、以及布线板
CN117120536A (zh) 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板、以及布线板
CN117396527A (zh) 树脂组合物、和使用其的预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板及布线板
WO2023171553A1 (ja) 樹脂組成物、硬化物、プリプレグ、金属箔張積層板、樹脂複合シート、プリント配線板、および、半導体装置
WO2023210338A1 (ja) 硬化性重合体、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板
WO2023210562A1 (ja) 硬化性重合体、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板
WO2022244725A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2022244726A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2022244723A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2002083610A1 (fr) Compose de polyvinylbenzyle drucissable et procede de production correspondant
US20230399511A1 (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
CN115996843A (zh) 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板、以及布线板
JP3615742B2 (ja) 硬化性ビニルベンジル化合物およびその製造方法
CN116410594A (zh) 一种树脂组合物、预浸料及覆金属箔层压板
JP3681170B2 (ja) 高周波用基板
WO2022254901A1 (ja) 新規な有機ケイ素化合物、新規な架橋剤、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板
CN116056893A (zh) 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板、以及布线板
US20240117152A1 (en) Novel organosilicon compound, novel crosslinking agent, curable composition, prepreg, multilayer body, metal clad laminate and wiring board
JP2023105332A (ja) 新規な架橋剤、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板
WO2024101056A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP2022186591A (ja) 新規な架橋剤、硬化性組成物、プリプレグ、積層体、金属張積層板および配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796083

Country of ref document: EP

Kind code of ref document: A1