WO2023207925A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023207925A1
WO2023207925A1 PCT/CN2023/090409 CN2023090409W WO2023207925A1 WO 2023207925 A1 WO2023207925 A1 WO 2023207925A1 CN 2023090409 W CN2023090409 W CN 2023090409W WO 2023207925 A1 WO2023207925 A1 WO 2023207925A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna port
random number
occupied
offset
comb teeth
Prior art date
Application number
PCT/CN2023/090409
Other languages
English (en)
French (fr)
Other versions
WO2023207925A9 (zh
Inventor
刘显达
高翔
张哲宁
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023207925A1 publication Critical patent/WO2023207925A1/zh
Publication of WO2023207925A9 publication Critical patent/WO2023207925A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and device.
  • the network device can obtain the uplink channel information of the terminal device through the channel sounding reference signal (SRS) sent by the terminal device, or obtain the downlink channel information of the terminal device based on channel reciprocity. Further, the network device can obtain the downlink channel information of the terminal device based on the channel reciprocity.
  • SRS channel sounding reference signal
  • the uplink channel information or downlink channel information schedules the terminal equipment. However, the physical resources used by terminal equipment to send SRS follow fixed rules, which is not conducive to interference randomization and channel estimation.
  • Embodiments of the present application provide a communication method and device that can enhance interference randomization, thereby improving channel estimation performance.
  • the first aspect is to provide a communication method.
  • the communication method includes: sending configuration information; and receiving reference signals on M antenna ports according to the configuration information.
  • the configuration information indicates the configuration of the reference signal, M is an integer greater than 0, the M antenna ports include at least one first antenna port, the comb teeth occupied by the first antenna port are at least determined based on the first offset, and the first
  • the offset is an integer greater than 0, and the first offset is at least determined based on the cell identity and the time domain resource occupied by the first antenna port; or, the first offset is determined based on the cyclic shift occupied by the first antenna port. The value is determined.
  • the method provided in the first aspect by using the first offset to determine the comb teeth occupied by the first antenna port of the terminal device, can cause the frequency domain resources (comb teeth) occupied by the terminal device to change randomly at different transmission times, thereby making the The terminal equipment causing interference changes randomly, realizing frequency domain interference randomization and achieving better interference randomization effect.
  • the method provided in the first aspect introduces a cyclic shift value, and obtains the comb teeth occupied by the first antenna port according to the first offset.
  • the value of the first offset is related to the cyclic shift value, so that the first antenna
  • the comb teeth occupied by the port are affected by the cyclic shift value and the first offset.
  • the comb teeth and cyclic shift values occupied by each antenna port will change randomly at different transmission times, and the antenna ports that cause interference to the antenna ports of the terminal equipment will also change randomly at different transmission times.
  • the antenna ports causing interference to different antenna ports of the terminal equipment are different. In this way, two-dimensional interference randomization in the code domain and frequency domain can be achieved, the interference randomization effect can be further enhanced, and the interference randomization convergence speed can be accelerated.
  • the first offset is determined based on at least the cell identity and the time domain resource occupied by the first antenna port.
  • the first offset can also be determined based on one or more of the following parameters: The number of time slots contained in each system frame, the number of orthogonal frequency division multiplexing (orthogonal frequency division multiplexing) contained in each time slot, OFDM) symbol number, comb tooth number and comb tooth offset.
  • the number of comb teeth is the transmission bandwidth of the reference signal.
  • the number of comb teeth included in , and the comb tooth offset is the reference amount of the comb teeth occupied by the reference signal. In this way, the frequency domain resources (comb teeth) occupied by the terminal equipment at different transmission times can be changed randomly, so that the terminal equipment causing interference to the terminal equipment can be changed randomly.
  • the time domain resource occupied by the first antenna port includes one or more OFDM symbols.
  • the one or more OFDM symbols included in the time domain resource occupied by the first antenna port may be according to the following parameters: One or more determined: the system frame number corresponding to the first antenna port, the time slot number corresponding to the first antenna port, and the OFDM symbol number corresponding to the first antenna port.
  • this application does not limit the number of OFDM symbols included in the time domain resource occupied by the first antenna port.
  • the time domain resources occupied by the M antenna ports may be the same or different.
  • the first offset may be a first random number. That is to say, the first offset may be a random number, for example, the first offset may be a random number greater than 0.
  • the first offset or the first random number can satisfy or, or, or,
  • Q 1 represents the first offset or the first random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity
  • n f represents the system frame corresponding to the first antenna port Number
  • Indicates the number of time slots contained in each system frame Indicates the number of OFDM symbols contained in each time slot, represents the time slot number corresponding to the first antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the first antenna port
  • l 0 represents the beginning of one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • the index of the OFDM symbol, l' represents the relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • the mathematical symbol mod represents the modulus.
  • Using the first offset to determine the comb teeth occupied by the first antenna port of the terminal device can randomly change the frequency domain resources (comb teeth) occupied by the terminal device at different transmission times, thereby causing interference to the terminal device. Random changes can achieve better interference randomization effects.
  • the M antenna ports may also include at least one second antenna port, and the comb teeth occupied by the second antenna port may be determined based on at least a second offset, and the second offset is greater than An integer of 0, the second offset may be determined at least based on the cell identifier and the time domain resource occupied by the second antenna port, and the second offset is different from the first offset.
  • the terminal devices at different transmission times can be The comb teeth occupied by the antenna port will change randomly, and the intervals between the multiple comb teeth occupied by the antenna port of the same terminal device can also change randomly.
  • the antenna ports that cause interference to the antenna ports of the terminal equipment at different transmission times are random.
  • the antenna ports that cause interference to the antenna ports of the terminal equipment occupying different comb teeth at the same transmission time may not be the antenna ports of the same terminal equipment. , realizes frequency domain interference randomization, which can further improve the freedom of frequency domain resources occupied by the antenna port of the terminal device, thereby further improving the interference randomization effect.
  • the second offset may be determined based on at least the cell identity and the time domain resource occupied by the second antenna port, and the second offset may also be determined based on one or more of the following parameters. : The number of time slots contained in each system frame, the number of OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset; where the number of comb teeth is the transmission bandwidth of the reference signal The number of comb teeth included in , and the comb tooth offset is the reference amount of the comb teeth occupied by the reference signal.
  • the degree of freedom of frequency domain resources occupied by the antenna port of the terminal device can be further improved, thereby further improving the interference randomization effect.
  • the time domain resources occupied by the second antenna port may include one or more OFDM symbols
  • the time domain resources occupied by the second antenna port may include one or more OFDM symbols according to the following parameters: One or more determined: the system frame number corresponding to the second antenna port, the timeslot number corresponding to the second antenna port, and the OFDM symbol number corresponding to the second antenna port.
  • this application does not limit the number of OFDM symbols included in the time domain resources occupied by the second antenna port.
  • the second offset may be a second random number. That is to say, the second offset can be a random number.
  • the second random number can satisfy or, or, or,
  • Q 2 represents the second random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence, which is related to the cell identity
  • n f represents the system frame number corresponding to the second antenna port
  • Indicates the number of OFDM symbols contained in each time slot represents the timeslot number corresponding to the second antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the second antenna port
  • l 0 represents the beginning of one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the index of the OFDM symbol, l′ represents the relative index of one OFDM symbol among the one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the mathematical symbol mod represents the modulus.
  • the degree of freedom of frequency domain resources occupied by the antenna port of the terminal device can be further improved, thereby further improving the interference randomization effect.
  • the second offset may be the sum of the first offset and the third offset
  • the third offset may be an integer greater than 0.
  • the antenna ports that cause interference to the antenna ports of the terminal equipment occupying different comb teeth at the same transmission time may not be the antenna ports of the same terminal equipment. , realizes frequency domain interference randomization, which can further improve the freedom of frequency domain resources occupied by the antenna port of the terminal device, thereby further improving the interference randomization effect.
  • the third offset may be determined based on at least the cell identity and the time domain resource occupied by the second antenna port.
  • the third offset may also be determined based on one or more of the following parameters. Determine: the number of time slots contained in each system frame, the number of OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset.
  • the degree of freedom of frequency domain resources occupied by the antenna port of the terminal device can be further improved, thereby further improving the interference randomization effect.
  • the third offset may be a third random number. That is to say, the third offset can be a random number.
  • the third random number can satisfy or, or, or,
  • represents the third random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity
  • n f represents the system frame number corresponding to the second antenna port
  • n f represents the system frame number corresponding to the second antenna port
  • n f represents the system frame number corresponding to the second antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the second antenna port
  • l 0 represents the index of the starting OFDM symbol in one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • l′ represents the The relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resources occupied by the two antenna ports.
  • the mathematical symbol mod represents the modulus.
  • the degree of freedom of frequency domain resources occupied by the antenna port of the terminal device can be further improved, thereby further improving the interference randomization effect.
  • the first offset is determined based on the cyclic shift value occupied by the first antenna port, which may include: the first offset is determined based on the range of the cyclic shift value.
  • the comb teeth occupied by the antenna port are obtained according to the first offset.
  • the value of the first offset is related to the cyclic shift value. Therefore, the comb teeth occupied by the antenna port are affected by the cyclic shift value and the first offset. , so that at different transmission times, the comb teeth and cyclic shift values occupied by each antenna port will change randomly, and the antenna ports that cause interference to the antenna ports of the terminal equipment at different transmission times will also change randomly. At the same transmission time, the antenna ports causing interference to different antenna ports of the terminal equipment are different. Two-dimensional interference randomization in the code domain and frequency domain can be realized, which can further enhance the interference randomization effect and accelerate the convergence speed of interference randomization.
  • the interference level may still be very different at different transmission moments. In this way, an excellent interference randomization effect can be guaranteed.
  • the starting position of the frequency domain resource occupied by each of the M antenna ports can be determined based on at least a fourth offset, and the fourth offset is an integer greater than 0.
  • the fourth offset may be determined at least according to the index of the frequency hopping cycle corresponding to the cell identifier and the reference signal.
  • the fourth offset can be introduced to randomly change the starting position of the frequency domain resource occupied by each antenna port in different frequency hopping cycles, and for a certain
  • the antenna port of the terminal device that causes interference will also change randomly, realizing randomization of frequency domain interference. This will bring better interference randomization effect, further accelerate the convergence speed of interference randomization, and further improve the channel estimation performance. .
  • the fourth offset may be a fourth random number. That is to say, the fourth offset may be a random number.
  • the fourth random number can satisfy or,
  • k rand represents the fourth random number
  • the mathematical symbol ⁇ represents the sum
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity.
  • mathematical symbol It means rounding down
  • n SRS means the count value of the reference signal
  • the mathematical symbol ⁇ means cumulative multiplication
  • the mathematical symbol mod means modulus. It can further accelerate the convergence speed of interference randomization and further improve the channel estimation performance.
  • the second aspect is to provide a communication method.
  • the communication method includes: receiving configuration information; and sending reference signals on M antenna ports according to the configuration information.
  • the configuration information indicates the configuration of the reference signal; M is an integer greater than 0, the M antenna ports include at least one first antenna port, and the comb teeth occupied by the first antenna port are at least determined based on the first offset.
  • the offset is an integer greater than 0, and the first offset is at least determined based on the cell identity and the time domain resource occupied by the first antenna port; or, the first offset is determined based on the cyclic shift occupied by the first antenna port. The value is determined.
  • the first offset may be determined based on at least the cell identity and the time domain resource occupied by the first antenna port, and the first offset may also be determined based on one or more of the following parameters : The number of time slots contained in each system frame, the number of orthogonal frequency division multiplexing OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset Shift amount; among them, the number of comb teeth is the transmission bandwidth m SRS of the reference signal, the number of comb teeth included in bhop , and the comb tooth offset is the reference amount of the comb teeth occupied by the reference signal.
  • the time domain resources occupied by the first antenna port may include one or more OFDM symbols
  • the one or more OFDM symbols included in the time domain resources occupied by the first antenna port may be according to the following parameters: One or more determined: the system frame number corresponding to the first antenna port, the time slot number corresponding to the first antenna port, and the OFDM symbol number corresponding to the first antenna port.
  • the first offset may be a first random number.
  • the first random number can satisfy or, or, or,
  • Q 1 represents the first random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence, which is related to the cell identity
  • n f represents the system frame number corresponding to the first antenna port
  • Indicates the number of OFDM symbols contained in each time slot represents the time slot number corresponding to the first antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the first antenna port
  • l 0 represents the beginning of one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • the index of the OFDM symbol, l' represents the relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • the mathematical symbol mod represents the modulus.
  • the M antenna ports may also include at least one second antenna port, and the comb teeth occupied by the second antenna port may be determined based on at least a second offset, and the second offset is greater than An integer of 0, the second offset is determined at least based on the cell identity and the time domain resource occupied by the second antenna port, and the second offset is different from the first offset.
  • the second offset may be determined based on at least the cell identity and the time domain resource occupied by the second antenna port, and the second offset may also be determined based on one or more of the following parameters. : The number of time slots contained in each system frame, the number of OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset; where the number of comb teeth is the transmission bandwidth of the reference signal The number of comb teeth included in , and the comb tooth offset is the reference amount of the comb teeth occupied by the reference signal.
  • the time domain resource occupied by the second antenna port may include one or more OFDM symbols
  • the time domain resource occupied by the second antenna port may include one or more OFDM symbols according to the following parameters: One or more determined: the system frame number corresponding to the second antenna port, the timeslot number corresponding to the second antenna port, and the OFDM symbol number corresponding to the second antenna port.
  • the second offset may be a second random number.
  • the second random number can satisfy or, or, or,
  • Q 2 represents the second random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence, which is related to the cell identity
  • n f represents the system frame number corresponding to the second antenna port
  • Indicates the number of OFDM symbols contained in each time slot represents the timeslot number corresponding to the second antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the second antenna port
  • l 0 represents the beginning of one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the index of the OFDM symbol, l′ represents the relative index of one OFDM symbol among the one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the mathematical symbol mod represents the modulus.
  • the second offset may be the sum of the first offset and the third offset
  • the third offset may be an integer greater than 0.
  • the third offset may be determined based on at least the cell identity and the time domain resource occupied by the second antenna port.
  • the third offset may also be determined based on one or more of the following parameters. Determine: the number of time slots contained in each system frame, the number of OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset.
  • the third offset may be a third random number.
  • the third random number can satisfy or, or, or,
  • represents the third random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity
  • n f represents the system frame number corresponding to the second antenna port
  • Indicates the number of OFDM symbols contained in each time slot represents the timeslot number corresponding to the second antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the second antenna port
  • l 0 represents the beginning of one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the index of the OFDM symbol, l′ represents the relative index of one OFDM symbol among the one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the mathematical symbol mod represents the modulus.
  • the first offset is determined based on the cyclic shift value occupied by the first antenna port, which may include: the first offset is determined based on the range of the cyclic shift value.
  • the starting position of the frequency domain resource occupied by each of the M antenna ports is determined based on at least a fourth offset, and the fourth offset is an integer greater than 0,
  • the fourth offset is determined at least according to the cell identifier and the index of the frequency hopping cycle corresponding to the reference signal.
  • the fourth offset may be a fourth random number.
  • the fourth random number can satisfy or,
  • k rand represents the fourth random number
  • the mathematical symbol ⁇ represents the sum
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity.
  • mathematical symbol It means rounding down
  • n SRS means the count value of the reference signal
  • the mathematical symbol ⁇ means cumulative multiplication
  • the mathematical symbol mod means modulus.
  • the third aspect is to provide a communication method.
  • the communication method includes: sending configuration information; and receiving reference signals on M antenna ports according to the configuration information.
  • the configuration information indicates the configuration of the reference signal; the starting position of the frequency domain resource occupied by each of the M antenna ports is determined based on at least a fourth offset, and the fourth offset is an integer greater than 0. , the fourth offset is at least determined based on the index of the frequency hopping cycle corresponding to the cell identifier and the reference signal.
  • the fourth offset may be a fourth random number.
  • the fourth random number can satisfy or,
  • k rand represents the fourth random number
  • the mathematical symbol ⁇ represents the sum
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity.
  • mathematical symbol It means rounding down
  • n SRS means the count value of the reference signal
  • the mathematical symbol ⁇ means cumulative multiplication
  • the mathematical symbol mod means modulus.
  • the fourth aspect is to provide a communication method.
  • the communication method includes: receiving configuration information; and sending reference signals on M antenna ports according to the configuration information.
  • the configuration information indicates the configuration of the reference signal; the starting position of the frequency domain resource occupied by each of the M antenna ports is determined based on at least a fourth offset, and the fourth offset is an integer greater than 0. , the fourth offset is at least determined based on the index of the frequency hopping cycle corresponding to the cell identifier and the reference signal.
  • the fourth offset may be a fourth random number.
  • the fourth random number can satisfy or,
  • k rand represents the fourth random number
  • the mathematical symbol ⁇ represents the sum
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity.
  • mathematical symbol It means rounding down
  • n SRS means the count value of the reference signal
  • the mathematical symbol ⁇ means cumulative multiplication
  • the mathematical symbol mod means modulus.
  • a communication device in a fifth aspect, includes: a sending module and a receiving module.
  • the sending module is used to send configuration information.
  • the configuration information indicates the configuration of the reference signal.
  • the receiving module is used to receive reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port.
  • the comb teeth occupied by the first antenna port are at least determined based on the first offset, and the first offset is an integer greater than 0.
  • the first offset is determined based on at least the cell identifier and the time domain resource occupied by the first antenna port; or, the first offset is determined based on the cyclic shift value occupied by the first antenna port.
  • the first offset may be determined based on at least the cell identity and the time domain resource occupied by the first antenna port, and the first offset may also be determined based on one or more of the following parameters : The number of time slots contained in each system frame, the number of orthogonal frequency division multiplexing OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset; where the number of comb teeth is the transmission bandwidth of the reference signal The number of comb teeth included in , and the comb tooth offset is the reference amount of the comb teeth occupied by the reference signal.
  • the time domain resources occupied by the first antenna port may include one or more OFDM symbols
  • the one or more OFDM symbols included in the time domain resources occupied by the first antenna port may be according to the following parameters: One or more determined: the system frame number corresponding to the first antenna port, the time slot number corresponding to the first antenna port, and the OFDM symbol number corresponding to the first antenna port.
  • the first offset may be a first random number.
  • the first random number can satisfy or, or, or,
  • Q 1 represents the first random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence, which is related to the cell identity
  • n f represents the system frame number corresponding to the first antenna port
  • Indicates the number of OFDM symbols contained in each time slot represents the time slot number corresponding to the first antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the first antenna port
  • l 0 represents the beginning of one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • the index of the OFDM symbol, l' represents the relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • the mathematical symbol mod represents the modulus.
  • the M antenna ports may also include at least one second antenna port, and the comb teeth occupied by the second antenna port may be determined based on at least a second offset, and the second offset is greater than An integer of 0, the second offset is determined at least based on the cell identity and the time domain resource occupied by the second antenna port, and the second offset is different from the first offset.
  • the second offset may be determined based on at least the cell identity and the time domain resource occupied by the second antenna port, and the second offset may also be determined based on one or more of the following parameters. : The number of time slots contained in each system frame, the number of OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset; where the number of comb teeth is the transmission bandwidth of the reference signal The number of comb teeth included in , and the comb tooth offset is the reference amount of the comb teeth occupied by the reference signal.
  • the time domain resource occupied by the second antenna port may include one or more OFDM symbols
  • the time domain resource occupied by the second antenna port may include one or more OFDM symbols according to the following parameters: One or more determined: the system frame number corresponding to the second antenna port, the timeslot number corresponding to the second antenna port, and the OFDM symbol number corresponding to the second antenna port.
  • the second offset may be a second random number.
  • the second random number can satisfy or, or, or,
  • Q 2 represents the second random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence, which is related to the cell identity
  • n f represents the system frame number corresponding to the second antenna port
  • Indicates the number of OFDM symbols contained in each time slot represents the timeslot number corresponding to the second antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the second antenna port
  • l 0 represents the beginning of one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the index of the OFDM symbol, l′ represents the relative index of one OFDM symbol among the one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the mathematical symbol mod represents the modulus.
  • the second offset may be the sum of the first offset and the third offset
  • the third offset may be an integer greater than 0.
  • the third offset may be determined based on at least the cell identity and the time domain resource occupied by the second antenna port.
  • the third offset may also be determined based on one or more of the following parameters. Determine: the number of time slots contained in each system frame, the number of OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset.
  • the third offset may be a third random number.
  • the third random number can satisfy or, or, or,
  • represents the third random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity
  • n f represents the system frame number corresponding to the second antenna port
  • Indicates the number of OFDM symbols contained in each time slot represents the timeslot number corresponding to the second antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the second antenna port
  • l 0 represents the beginning of one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the index of the OFDM symbol, l′ represents the relative index of one OFDM symbol among the one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the mathematical symbol mod represents the modulus.
  • the first offset is determined based on the cyclic shift value occupied by the first antenna port, which may include: the first offset is determined based on the range of the cyclic shift value.
  • the starting position of the frequency domain resource occupied by each of the M antenna ports can be determined based on at least a fourth offset, and the fourth offset is an integer greater than 0. , the fourth offset is at least determined based on the index of the frequency hopping cycle corresponding to the cell identifier and the reference signal.
  • the fourth offset may be a fourth random number.
  • the fourth random number can satisfy or,
  • k rand represents the fourth random number
  • the mathematical symbol ⁇ represents the sum
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity.
  • mathematical symbol It means rounding down
  • n SRS means the count value of the reference signal
  • the mathematical symbol ⁇ means cumulative multiplication
  • the mathematical symbol mod means modulus.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device described in the fifth aspect may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the fifth aspect can perform the method described in the first aspect.
  • the communication device described in the fifth aspect may be a network device, or may be a chip (system) or other components or components that can be installed on the network device, which is not limited in this application.
  • a sixth aspect provides a communication device.
  • the communication device includes: a sending module and a receiving module.
  • the receiving module is used to receive configuration information.
  • the configuration information indicates the configuration of the reference signal.
  • the sending module is used to send reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port.
  • the comb teeth occupied by the first antenna port are at least determined based on the first offset, and the first offset is an integer greater than 0.
  • the first offset is determined based on at least the cell identifier and the time domain resource occupied by the first antenna port; or, the first offset is determined based on the cyclic shift value occupied by the first antenna port.
  • the first offset may be determined based on at least the cell identity and the time domain resource occupied by the first antenna port, and the first offset may also be determined based on one or more of the following parameters : per system The number of time slots contained in the frame, the number of orthogonal frequency division multiplexing OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset; where the number of comb teeth is the transmission bandwidth of the reference signal The number of comb teeth included in , and the comb tooth offset is the reference amount of the comb teeth occupied by the reference signal.
  • the time domain resources occupied by the first antenna port may include one or more OFDM symbols
  • the one or more OFDM symbols included in the time domain resources occupied by the first antenna port may be according to the following parameters: One or more determined: the system frame number corresponding to the first antenna port, the time slot number corresponding to the first antenna port, and the OFDM symbol number corresponding to the first antenna port.
  • the first offset may be a first random number.
  • the first random number can satisfy or, or, or,
  • Q 1 represents the first random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence, which is related to the cell identity
  • n f represents the system frame number corresponding to the first antenna port
  • Indicates the number of OFDM symbols contained in each time slot represents the time slot number corresponding to the first antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the first antenna port
  • l 0 represents the beginning of one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • the index of the OFDM symbol, l' represents the relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • the mathematical symbol mod represents the modulus.
  • the M antenna ports may also include at least one second antenna port, and the comb teeth occupied by the second antenna port may be determined based on at least a second offset, and the second offset is greater than An integer of 0, the second offset is determined at least based on the cell identity and the time domain resource occupied by the second antenna port, and the second offset is different from the first offset.
  • the second offset may be determined based on at least the cell identity and the time domain resource occupied by the second antenna port, and the second offset may also be determined based on one or more of the following parameters. : The number of time slots contained in each system frame, the number of OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset; where the number of comb teeth is the transmission bandwidth of the reference signal m SRS, the comb included in bhop The number of teeth, and the offset of the comb teeth is the reference amount of the comb teeth occupied by the reference signal.
  • the time domain resource occupied by the second antenna port may include one or more OFDM symbols
  • the time domain resource occupied by the second antenna port may include one or more OFDM symbols according to the following parameters: One or more determined: the system frame number corresponding to the second antenna port, the timeslot number corresponding to the second antenna port, and the OFDM symbol number corresponding to the second antenna port.
  • the second offset may be a second random number.
  • the second random number can satisfy or, or, or,
  • Q 2 represents the second random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence, which is related to the cell identity
  • n f represents the system frame number corresponding to the second antenna port
  • Indicates the number of OFDM symbols contained in each time slot represents the timeslot number corresponding to the second antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the second antenna port
  • l 0 represents the beginning of one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • Index of OFDM symbol
  • l′ represents the relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • mathematical symbol mod means modulus.
  • the second offset may be the sum of the first offset and the third offset
  • the third offset may be an integer greater than 0.
  • the third offset may be determined based on at least the cell identity and the time domain resource occupied by the second antenna port.
  • the third offset may also be determined based on one or more of the following parameters. Determine: the number of time slots contained in each system frame, the number of OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset.
  • the third offset may be a third random number.
  • the third random number can satisfy or, or, or,
  • represents the third random number
  • the mathematical symbol ⁇ represents the summation
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity
  • n f represents the system frame number corresponding to the second antenna port
  • Indicates the number of OFDM symbols contained in each time slot represents the timeslot number corresponding to the second antenna port
  • l 0 + l′ represents the OFDM symbol number corresponding to the second antenna port
  • l 0 represents the beginning of one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the index of the OFDM symbol, l′ represents the relative index of one OFDM symbol among the one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • the mathematical symbol mod represents the modulus.
  • the first offset is determined based on the cyclic shift value occupied by the first antenna port, which may include: the first offset is determined based on the range of the cyclic shift value.
  • the starting position of the frequency domain resource occupied by each of the M antenna ports can be determined based on at least a fourth offset, and the fourth offset is an integer greater than 0. , the fourth offset is at least determined based on the index of the frequency hopping cycle corresponding to the cell identifier and the reference signal.
  • the fourth offset may be a fourth random number.
  • the fourth random number can satisfy or,
  • k rand represents the fourth random number
  • the mathematical symbol ⁇ represents the sum
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity.
  • mathematical symbol It means rounding down
  • n SRS means the count value of the reference signal
  • the mathematical symbol ⁇ means cumulative multiplication
  • the mathematical symbol mod means modulus.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device described in the sixth aspect may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the sixth aspect can perform the method described in the second aspect.
  • the communication device described in the sixth aspect may be a terminal device, or may be a chip (system) or other components or components that can be installed on the terminal device, which is not limited in this application.
  • a communication device in a seventh aspect, includes: a sending module and a receiving module.
  • the sending module is used to send configuration information.
  • the configuration information indicates the configuration of the reference signal.
  • the receiving module is used to receive reference signals on M antenna ports according to the configuration information.
  • the starting position of the frequency domain resource occupied by each of the M antenna ports is determined based on at least a fourth offset, the fourth offset is an integer greater than 0, and the fourth offset is at least It is determined based on the index of the frequency hopping cycle corresponding to the cell identifier and the reference signal.
  • the fourth offset may be a fourth random number.
  • the fourth random number can satisfy or,
  • k rand represents the fourth random number
  • the mathematical symbol ⁇ represents the sum
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity.
  • mathematical symbol It means rounding down
  • n SRS means the count value of the reference signal
  • the mathematical symbol ⁇ means cumulative multiplication
  • the mathematical symbol mod means modulus.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device described in the seventh aspect may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the seventh aspect can perform the method described in the third aspect.
  • the communication device described in the seventh aspect may be a network device, or may be a chip (system) or other components or components that can be installed on the network device, which is not limited in this application.
  • a communication device in an eighth aspect, includes: a sending module and a receiving module.
  • the receiving module is used to receive configuration information.
  • the configuration information indicates the configuration of the reference signal.
  • the sending module is used to send reference signals on M antenna ports according to the configuration information.
  • the starting position of the frequency domain resource occupied by each of the M antenna ports is determined based on at least a fourth offset, the fourth offset is an integer greater than 0, and the fourth offset is at least It is determined based on the index of the frequency hopping cycle corresponding to the cell identifier and the reference signal.
  • the fourth offset may be a fourth random number.
  • the fourth random number can satisfy or,
  • k rand represents the fourth random number
  • the mathematical symbol ⁇ represents the sum
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity.
  • mathematical symbol It means rounding down
  • n SRS means the count value of the reference signal
  • the mathematical symbol ⁇ means cumulative multiplication
  • the mathematical symbol mod means modulus.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device may further include a processing module and a storage module, and the storage module stores Stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the eighth aspect can perform the method described in the fourth aspect.
  • the communication device described in the eighth aspect may be a terminal device, or may be a chip (system) or other components or components that can be installed on the terminal device, which is not limited in this application.
  • a ninth aspect provides a communication method.
  • the method includes: sending configuration information of a reference signal, and receiving reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port
  • the comb teeth occupied by the first antenna port are at least determined based on the first offset
  • the first offset is at least based on the first offset. Determined by the time domain resources occupied by the antenna port and/or the frequency domain resources occupied by the first antenna port.
  • a tenth aspect provides a communication method.
  • the method includes: receiving configuration information of a reference signal, and sending the reference signal on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port
  • the comb teeth occupied by the first antenna port are at least determined based on the first offset
  • the first offset is at least based on the first offset. Determined by the time domain resources occupied by the antenna port and/or the frequency domain resources occupied by the first antenna port.
  • the method provided in the ninth aspect or the tenth aspect by using the first offset to determine the comb teeth occupied by the first antenna port of the terminal device, can make the antenna ports occupied by the terminal device occupy different transmission times and/or frequency domain resources.
  • the comb teeth change randomly, thereby causing the antenna port of the terminal device that interferes with the antenna port of the terminal device to change randomly, thereby achieving interference randomization and achieving better interference randomization effect.
  • the comb teeth occupied by the first antenna port are determined based on at least the first offset, which may include: the comb teeth occupied by the first antenna port may be determined based on the initial value and the first value of the comb teeth occupied by the first antenna port. An offset is determined.
  • the first offset is an integer greater than 0.
  • the initial value of the comb teeth occupied by the first antenna port is configured by high-layer signaling RRC.
  • the first offset includes a first random number and/or a fifth random number.
  • the first random number is at least determined based on the time domain resource occupied by the first antenna port.
  • the fifth random number It is determined at least based on the frequency domain resources occupied by the first antenna port.
  • the first random number is determined based on at least the time domain resource occupied by the first antenna port, including: the first random number is determined based on a first correspondence among multiple first correspondences, Determined by the time domain resource occupied by the first antenna port, a first correspondence relationship includes a correspondence relationship between at least one first random number and at least one time domain resource.
  • the first random number can be replaced by the first variable.
  • each of the plurality of first correspondences includes a plurality of first variables, the values of the plurality of first variables are different from each other, and the plurality of first correspondences include The first variables have the same value, but the corresponding relationships between multiple first variables and multiple time domain resources are different.
  • one frequency hopping cycle includes at least one reference signal transmission, and the corresponding relationship between at least one first random number and at least one time domain resource includes: at least one first random number and at least one reference signal. Correspondence between relative numbers within a frequency hopping cycle where the transmission occurs.
  • the correspondence between at least one first random number and at least one time domain resource includes: the correspondence between at least one first random number and the index of at least one frequency hopping cycle.
  • the first random number is determined based on at least the time domain resources occupied by the first antenna port, including: the first random number is determined based on the time domain resources occupied by the first antenna port and a pseudo-random sequence. of.
  • the first random number is also determined based on one or more of the following parameters: the number of time slots included in each system frame, the number of OFDM symbols included in each time slot, the number of comb teeth, and the number of comb teeth. Tooth offset.
  • the number of comb teeth is the number of comb teeth included in the transmission bandwidth of the reference signal, and the comb tooth offset is the reference amount of comb teeth occupied by the reference signal.
  • the first random number satisfies: or, or, or,
  • Q 1 represents the first random number
  • the mathematical symbol ⁇ represents the summation
  • the mathematical symbol mod represents the modulus
  • c() is a pseudo-random sequence
  • n f represents the system frame number corresponding to the first antenna port
  • n f represents the system frame number corresponding to the first antenna port
  • l 0 represents the index of the starting OFDM symbol in one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • l′ represents the time domain occupied by the first antenna port
  • K TC represents the number of comb teeth.
  • the fifth random number is determined based on at least the frequency domain resources occupied by the first antenna port, including: the fifth random number is determined based on a second correspondence among a plurality of second correspondences, Determined by the frequency domain resource occupied by the first antenna port, a second correspondence relationship includes a correspondence relationship between at least a fifth random number and at least one frequency domain resource.
  • the fifth random number may be replaced by a fifth variable.
  • each of the plurality of second correspondences includes a plurality of fifth variables
  • the values of the plurality of fifth variables are different from each other
  • the plurality of first correspondences include The fifth variables have the same value, but the corresponding relationships between multiple fifth variables and multiple time domain resources are different.
  • the fifth random number is determined based on at least the frequency domain resources occupied by the first antenna port, including: the fifth random number is determined based on the frequency domain resources occupied by the first antenna port and a pseudo-random sequence. of.
  • the fifth random number satisfies: or,
  • Q 3 represents the fifth random number
  • the mathematical symbol ⁇ represents summation
  • the mathematical symbol mod represents modulus
  • c() is a pseudo-random sequence
  • k represents the index of the frequency hopping bandwidth corresponding to the frequency domain resource occupied by the first antenna port And/or the index of the transmission bandwidth
  • K TC represents the number of comb teeth.
  • the time domain resources occupied by the first antenna port include one or more orthogonal frequency division multiplexing OFDM symbols
  • the time domain resources occupied by the first antenna port include one or more OFDM symbols. Determined based on one or more of the following parameters: the system frame number corresponding to the first antenna port, the timeslot number corresponding to the first antenna port, and the OFDM symbol number corresponding to the first antenna port.
  • the index of the frequency hopping period in which the time domain resource is located is determined based on the time domain resource occupied by the first antenna port, or the time domain resource corresponding to a frequency hopping cycle is determined based on the time domain resource occupied by the first antenna port.
  • the relative index can be defined as: the relative index of the k-th transmission within a frequency hopping cycle is k-1.
  • the frequency domain resources occupied by the first antenna port include one or more sub-bandwidths
  • the one or more sub-bandwidths included in the frequency domain resources occupied by the first antenna port are based on one or more of the following parameters. Two certain ones: the index of the frequency hopping bandwidth corresponding to the first antenna port, and the index of the transmission bandwidth corresponding to the first antenna port.
  • the index of the frequency hopping bandwidth where the frequency domain resource is located is determined based on the frequency domain resource occupied by the first antenna port, or the frequency domain resource corresponding to a subband is determined based on the frequency domain resource occupied by the first antenna port.
  • the index of the subband can be defined as: the scanning bandwidth of the first antenna port corresponds to a*b RBs, which can be divided into granular The a sub-band with degree b, each sub-band is numbered from low to high frequency, including: ⁇ 0,...,a-1 ⁇ .
  • the M antenna ports also include at least one second antenna port, and the comb teeth occupied by the second antenna port are determined based on at least the second offset, and the second offset is determined based on at least the second offset.
  • the second offset is determined by the time domain resources occupied by the second antenna port and/or the frequency domain resources occupied by the second antenna port, and the second offset is different from the first offset.
  • the second offset is an integer greater than 0.
  • the initial values of the comb teeth of the first antenna port and the second antenna port are different.
  • the comb teeth occupied by the second antenna port are determined based on at least the second offset, which may include: the comb teeth occupied by the second antenna port may be determined based on the initial value and the first value of the comb teeth occupied by the second antenna port. Two offsets are determined.
  • the initial value of the comb teeth occupied by the second antenna port is configured by high-layer signaling RRC.
  • the second offset includes a second random number and/or a sixth random number.
  • the second random number is at least determined based on the time domain resource occupied by the second antenna port.
  • the sixth random number At least it is determined based on the frequency domain resources occupied by the second antenna port.
  • the second random number is determined based on at least the time domain resources occupied by the second antenna port, including: the second random number is determined based on a third correspondence among multiple third correspondences, Determined by the time domain resource occupied by the second antenna port, a third correspondence relationship includes a correspondence relationship between at least one second random number and at least one time domain resource.
  • one frequency hopping cycle includes at least one reference signal transmission, and the corresponding relationship between at least one second random number and at least one time domain resource includes: at least one second random number and at least one reference signal. Correspondence between relative numbers within a frequency hopping cycle where the transmission occurs.
  • the correspondence between at least one second random number and at least one time domain resource includes: the correspondence between at least one second random number and the index of at least one frequency hopping cycle.
  • the second random number is determined based on at least the time domain resources occupied by the second antenna port, including: the second random number is determined based on the time domain resources occupied by the second antenna port and a pseudo-random sequence. of.
  • the second random number is also determined based on one or more of the following parameters: the number of time slots included in each system frame, the number of OFDM symbols included in each time slot, the number of comb teeth, and the number of comb teeth. Tooth offset.
  • the number of comb teeth is the number of comb teeth included in the transmission bandwidth of the reference signal, and the comb tooth offset is the reference amount of comb teeth occupied by the reference signal.
  • the second random number satisfies: or, or, or,
  • Q 2 represents the second random number
  • the mathematical symbol ⁇ represents the sum
  • the mathematical symbol mod represents the modulus
  • c() is a pseudo-random sequence
  • n f represents the system frame number corresponding to the second antenna port
  • n f represents the system frame number corresponding to the second antenna port
  • n f represents the number of time slots in each system frame
  • l 0 represents the index of the starting OFDM symbol in one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • l′ represents the time domain occupied by the second antenna port
  • K TC represents the number of comb teeth.
  • the sixth random number is determined based on at least the frequency domain resources occupied by the second antenna port, including: the sixth random number is determined based on a fourth correspondence among a plurality of fourth correspondences, Determined by the frequency domain resource occupied by the second antenna port, a fourth correspondence relationship includes a correspondence relationship between at least a sixth random number and at least one frequency domain resource.
  • the sixth random number is determined based on at least the frequency domain resources occupied by the second antenna port, including: the sixth random number is determined based on the frequency domain resources occupied by the second antenna port and a pseudo-random sequence. of.
  • the sixth random number satisfies: or, Among them, Q 4 represents the sixth random number, the mathematical symbol ⁇ represents summation, the mathematical symbol mod represents modulus, c() is a pseudo-random sequence, and k represents the index of the frequency hopping bandwidth corresponding to the frequency domain resource occupied by the second antenna port And/or the index of the transmission bandwidth, K TC represents the number of comb teeth.
  • the second offset is determined based on the first offset and the third offset.
  • the second offset is the sum of the first offset and the third offset
  • the third offset is an integer greater than 0.
  • the third offset is a preconfigured constant.
  • the third offset is determined based on at least the time domain resources occupied by the second antenna port and/or the frequency domain resources occupied by the second antenna port.
  • the third offset includes a third random number and/or a seventh random number
  • the third random number is at least determined based on the time domain resources occupied by the second antenna port
  • the seventh random number At least it is determined based on the frequency domain resources occupied by the second antenna port.
  • the third random number is determined based on at least the time domain resources occupied by the second antenna port, including: the third random number is determined based on a fifth correspondence among multiple fifth correspondences, Determined by the time domain resource occupied by the second antenna port, a fifth correspondence relationship includes a correspondence relationship between at least a third random number and at least one time domain resource.
  • each of the plurality of fifth correspondences includes a plurality of third variables, the values of the plurality of third variables are different from each other, and the plurality of fifth correspondences include The third variables have the same value, but the corresponding relationships between multiple third variables and multiple time domain resources are different.
  • one frequency hopping cycle includes at least one reference signal transmission, and the corresponding relationship between at least one third random number and at least one time domain resource includes: at least one third random number and at least one reference signal. Correspondence between relative numbers within a frequency hopping cycle where the transmission occurs.
  • the correspondence between at least one third random number and at least one time domain resource includes: the correspondence between at least one third random number and the index of at least one frequency hopping cycle.
  • the third random number is determined based on at least the time domain resources occupied by the second antenna port, including: the third random number is determined based on the time domain resources occupied by the second antenna port and a pseudo-random sequence. of.
  • the third random number is also determined based on one or more of the following parameters: the number of time slots included in each system frame, the number of OFDM symbols included in each time slot, the number of comb teeth, and the number of comb teeth. Tooth offset.
  • the number of comb teeth is the number of comb teeth included in the transmission bandwidth of the reference signal, and the comb tooth offset is the reference amount of comb teeth occupied by the reference signal.
  • the third random number satisfies: or, or, or,
  • represents the third random number
  • the mathematical symbol ⁇ represents the sum
  • the mathematical symbol mod represents the modulus
  • c() is a pseudo-random sequence
  • n f represents the system frame number corresponding to the second antenna port
  • l 0 indicates the starting OFDM symbol in one or more OFDM symbols included in the time domain resource occupied by the second antenna port.
  • the index of the number, l′ represents the relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • K TC represents the number of comb teeth.
  • the seventh random number is determined based on at least the frequency domain resources occupied by the second antenna port, including: the seventh random number is determined based on a sixth correspondence among multiple sixth correspondences, Determined by the frequency domain resource occupied by the second antenna port, a sixth correspondence includes a correspondence between at least a seventh random number and at least one frequency domain resource.
  • the seventh random number is determined based on at least the frequency domain resources occupied by the second antenna port, including: the seventh random number is determined based on the frequency domain resources occupied by the second antenna port and a pseudo-random sequence. of.
  • the seventh random number satisfies: or, Among them, ⁇ 1 represents the seventh random number, the mathematical symbol ⁇ represents the summation, c() is a pseudo-random sequence, the mathematical symbol mod represents the modulus, and k represents the index of the frequency hopping bandwidth corresponding to the frequency domain resource occupied by the second antenna port. And/or the index of the transmission bandwidth, K TC represents the number of comb teeth.
  • the time domain resource occupied by the second antenna port includes one or more OFDM symbols
  • the time domain resource occupied by the second antenna port includes one or more OFDM symbols according to one of the following parameters or Multiple determinations: the system frame number corresponding to the second antenna port, the timeslot number corresponding to the second antenna port, and the OFDM symbol number corresponding to the second antenna port.
  • the frequency domain resources occupied by the second antenna port include one or more sub-bandwidths
  • the one or more sub-bandwidths included in the frequency domain resources occupied by the second antenna port are determined according to one or more of the following parameters. Two certain ones: the index of the frequency hopping bandwidth corresponding to the second antenna port, and the index of the transmission bandwidth corresponding to the second antenna port.
  • An eleventh aspect provides a communication method.
  • the method includes: sending configuration information of a reference signal, and receiving reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port, and the starting position of the frequency domain resource occupied by the first antenna port is determined based on at least a fourth offset, and the fourth offset
  • the fourth offset is determined based on at least the time domain resource occupied by the first antenna port and the pseudo-random sequence, or the fourth offset is determined based on a ninth correspondence among a plurality of ninth correspondences and the time occupied by the first antenna port. Determined by domain resources, one ninth correspondence includes a correspondence between at least one fourth offset and at least one time domain resource, and multiple ninth correspondences correspond to the same frequency scaling factor.
  • a communication method includes: receiving configuration information of a reference signal, and sending the reference signal on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port
  • the starting position of the frequency domain resource occupied by the first antenna port is determined based on at least a fourth offset
  • the fourth offset is determined based on at least the time domain resource occupied by the first antenna port and the pseudo-random sequence, or the fourth offset is determined based on a ninth correspondence among a plurality of ninth correspondences and the time occupied by the first antenna port.
  • one ninth correspondence includes a correspondence between at least one fourth offset and at least one time domain resource, and multiple ninth correspondences correspond to the same frequency scaling factor.
  • a fourth offset is introduced, so that the starting position of the frequency domain resource occupied by each antenna port in different time domain resources can be
  • the starting position of the frequency domain resource changes randomly, and the antenna port that causes interference to the antenna port of a certain terminal device will also change randomly, realizing frequency domain interference randomization, which will bring better interference randomization effect, and can Accelerate the convergence speed of interference randomization and improve channel estimation performance.
  • the starting position of the frequency domain resource occupied by the first antenna port is determined based on at least a fourth offset, which may include: the starting position of the frequency domain resource occupied by the first antenna port is determined based on the first antenna port The initial value of the starting position of the occupied frequency domain resource is determined by the fourth offset.
  • the initial value of the starting position of the frequency domain resource occupied by the first antenna port is configured by high-layer signaling RRC.
  • the fourth offset is a fourth random number.
  • the fourth random number satisfies: or, Among them, k rand represents the fourth random number, the mathematical symbol ⁇ represents summation, c() is a pseudo-random sequence, Indicates the index of the frequency hopping period corresponding to the reference signal, mathematical symbol It means rounding down, n SRS means the count value of the reference signal, the mathematical symbol ⁇ means cumulative multiplication, and the mathematical symbol mod means modulus.
  • a communication method includes: sending configuration information of a reference signal, and receiving reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port
  • the cyclic shift value of the first antenna port is at least determined based on the first code domain offset
  • the first code domain offset It is determined at least based on the time domain resources occupied by the first antenna port and/or the frequency domain resources occupied by the first antenna port.
  • a fourteenth aspect provides a communication method.
  • the method includes: receiving configuration information of a reference signal, and sending the reference signal on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port
  • the cyclic shift value of the first antenna port is at least determined based on the first code domain offset
  • the first code domain offset It is determined at least based on the time domain resources occupied by the first antenna port and/or the frequency domain resources occupied by the first antenna port.
  • the first code domain offset to determine the cyclic shift value of the first antenna port of the terminal device.
  • different transmission times and/or frequency domain resources can be used.
  • the cyclic shift value of the antenna port of the terminal device changes randomly, thereby causing the antenna port of the terminal device that interferes with the antenna port of the terminal device to change randomly, thereby achieving interference randomization and achieving better interference randomization effect.
  • the cyclic shift value of the first antenna port is determined based on at least the first code domain offset, which may include: the cyclic shift value of the first antenna port is determined based on the cyclic shift value of the first antenna port.
  • the initial value and the offset of the first code domain are determined.
  • the initial value of the cyclic shift value of the first antenna port is configured by higher layer signaling RRC.
  • the first code domain offset includes a first code domain random number and/or a second code domain random number
  • the first code domain random number is at least based on the time domain occupied by the first antenna port.
  • the second code domain random number is determined based on at least the frequency domain resources occupied by the first antenna port.
  • the first code domain random number is determined based on at least the time domain resource occupied by the first antenna port, including: the first code domain random number is determined based on one of the plurality of seventh correspondences.
  • the seven correspondences are determined by the time domain resources occupied by the first antenna port, and a seventh correspondence includes a correspondence between at least one first code domain random number and at least one time domain resource.
  • each of the plurality of seventh correspondences includes a plurality of first code domain random numbers, the values of the plurality of first code domain random numbers are different from each other, and the plurality of first code domain random numbers have different values.
  • the first code domain random numbers included in the first corresponding relationships have the same value, and the corresponding relationships between the multiple first code domain random numbers and the multiple time domain resources are different.
  • one frequency hopping cycle includes at least one reference signal transmission, and the corresponding relationship between at least one first code domain random number and at least one time domain resource includes: at least one first code domain random number and to Correspondence between relative numbers within a frequency hopping cycle where one less reference signal is sent.
  • the correspondence between at least one first code domain random number and at least one time domain resource includes: the correspondence between at least one first code domain random number and the index of at least one frequency hopping cycle. relation.
  • the first code domain random number is determined based on at least the time domain resources occupied by the first antenna port, including: the first code domain random number is determined based on the time domain resources occupied by the first antenna port and Pseudo-random sequence determined.
  • the first code domain random number is also determined based on one or more of the following parameters: the number of time slots included in each system frame, the number of OFDM symbols included in each time slot, and the number of comb teeth. and comb tooth offset.
  • the number of comb teeth is the number of comb teeth included in the transmission bandwidth of the reference signal, and the comb tooth offset is the reference amount of comb teeth occupied by the reference signal.
  • a 1 represents the random number in the first code domain
  • the mathematical symbol ⁇ represents the sum
  • the mathematical symbol mod represents the modulus
  • c() is a pseudo-random sequence
  • n f represents the system frame number corresponding to the first antenna port
  • n f represents the system frame number corresponding to the first antenna port
  • l 0 represents the index of the starting OFDM symbol in one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • l′ represents the time domain occupied by the first antenna port
  • Y is the number of maximum antenna ports supported by cyclic shift multiplexing in a comb, or the number of Fourier transform points, or the first antenna port.
  • the second code domain random number is determined based on at least the frequency domain resource occupied by the first antenna port, including: the second code domain random number is determined based on one of the plurality of eighth correspondences.
  • the eight corresponding relationships are determined by the frequency domain resources occupied by the first antenna port, and an eighth corresponding relationship includes a corresponding relationship between at least one second code domain random number and at least one frequency domain resource.
  • the second code domain random number is determined based on at least the frequency domain resources occupied by the first antenna port, including: the second code domain random number is determined based on the frequency domain resources occupied by the first antenna port and Pseudo-random sequence determined.
  • the second code domain random number satisfies:
  • a 2 represents the second code domain random number
  • the mathematical symbol ⁇ represents the sum
  • the mathematical symbol mod represents the modulus
  • c() is the pseudo-random sequence
  • k represents the frequency hopping bandwidth corresponding to the frequency domain resource occupied by the first antenna port
  • Y is the maximum number of antenna ports supported by cyclic shift multiplexing in a comb, or the number of Fourier transform points, or the first antenna port occupied on an OFDM symbol Number of subcarriers.
  • the M reference signal ports include a plurality of first reference signals ports, on time domain resources and/or frequency domain resources, the first code domain offsets corresponding to multiple first reference signal ports are the same.
  • the value of the cyclic shift value satisfies ⁇ 0,1,...,K ⁇ Y-1 ⁇ , and Y is the largest antenna port multiplexed by cyclic shift in a comb tooth. quantity Or it is the number of cyclic shift values in a comb that can be configured through high-level parameters.
  • the value of Y is determined based on the number of configured reference signal comb teeth. K is an integer greater than 1.
  • the value of the cyclic shift value satisfies ⁇ 0,1,...,Y-1 ⁇
  • the value of the cyclic shift value satisfies ⁇ 0,1,...,Y-1 ⁇ , where Y is the number of subcarriers occupied by the first antenna port on one OFDM symbol.
  • the time domain resources occupied by the first antenna port include one or more orthogonal frequency division multiplexing OFDM symbols
  • the time domain resources occupied by the first antenna port include one or more OFDM symbols. Determined based on one or more of the following parameters: the system frame number corresponding to the first antenna port, the timeslot number corresponding to the first antenna port, and the OFDM symbol number corresponding to the first antenna port.
  • the frequency domain resources occupied by the first antenna port include one or more sub-bandwidths
  • the one or more sub-bandwidths included in the frequency domain resources occupied by the first antenna port are based on one or more of the following parameters. Two certain ones: the index of the frequency hopping bandwidth corresponding to the first antenna port, and the index of the transmission bandwidth corresponding to the first antenna port.
  • the M antenna ports also include at least one second antenna port, and the cyclic shift value of the second antenna port is at least determined based on the second code domain offset.
  • the second code domain offset The amount is at least determined based on the time domain resources occupied by the second antenna port and/or the frequency domain resources occupied by the second antenna port, and the second code domain offset is different from the first code domain offset.
  • the configuration of the initial value of the cyclic shift of the first antenna port and the second antenna port is the same.
  • the first code domain offset of the first antenna port and the second antenna port The offset of the second code domain is different.
  • the interval between the cyclic shift values of the first antenna port and the second antenna port is different on the first time domain resource and on the second time domain resource.
  • the interval between the cyclic shift values of the first antenna port and the second antenna port is different on the first frequency domain resource and on the second frequency domain resource.
  • the second code domain offset includes a third code domain random number and/or a fourth code domain random number
  • the third code domain random number is at least based on the time domain occupied by the second antenna port.
  • the fourth code domain random number is determined based on at least the frequency domain resources occupied by the second antenna port.
  • the third code domain random number is determined based on at least the time domain resources occupied by the second antenna port, including: the third code domain random number is determined based on one of multiple seventeenth correspondences
  • the seventeenth corresponding relationship is determined by the time domain resource occupied by the second antenna port.
  • a seventeenth corresponding relationship includes a corresponding relationship between at least one third code domain random number and at least one time domain resource.
  • one frequency hopping cycle includes at least one reference signal transmission, and the corresponding relationship between at least one third code domain random number and at least one time domain resource includes: at least one third code domain random number and Correspondence between relative numbers within a frequency hopping cycle in which at least one reference signal is transmitted.
  • the correspondence between at least one third code domain random number and at least one time domain resource includes: the correspondence between at least one third code domain random number and the index of at least one frequency hopping cycle. relation.
  • the third code domain random number is determined based on at least the time domain resources occupied by the second antenna port, including: the third code domain random number is determined based on the time domain resources occupied by the second antenna port and Pseudo-random sequence determined.
  • the third code domain random number is also determined based on one or more of the following parameters: the number of time slots included in each system frame, the number of OFDM symbols included in each time slot, and the number of comb teeth. and comb tooth offset;
  • the number of comb teeth is the number of comb teeth included in the transmission bandwidth of the reference signal, and the comb tooth offset is the reference amount of comb teeth occupied by the reference signal.
  • the fourth code domain random number is determined based on at least the frequency domain resources occupied by the second antenna port, including: the fourth code domain random number is determined based on one of multiple eighteenth correspondences
  • the eighteenth correspondence is determined by the frequency domain resource occupied by the second antenna port, and an eighteenth correspondence includes a correspondence between at least a sixth random number and at least one frequency domain resource.
  • the fourth code domain random number is determined based on at least the frequency domain resources occupied by the second antenna port, including: the fourth code domain random number is determined based on the frequency domain resources occupied by the second antenna port and Pseudo-random sequence determined.
  • a communication device in a fifteenth aspect, includes: a sending module and a receiving module.
  • the sending module is used to send the configuration information of the reference signal.
  • the receiving module is used to receive reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port, the comb teeth occupied by the first antenna port are at least determined based on the first offset, and the first offset is at least based on the first offset. Determined by the time domain resources occupied by the antenna port and/or the frequency domain resources occupied by the first antenna port.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device described in the fifteenth aspect may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the fifteenth aspect can perform the method described in any possible implementation manner of the ninth aspect.
  • the communication device described in the fifteenth aspect may be a network device, or may be a chip (system) or other components or components that can be installed on the network device, which is not limited in this application.
  • a communication device in a sixteenth aspect, includes: a sending module and a receiving module.
  • the receiving module is used to receive the configuration information of the reference signal.
  • the sending module is used to send reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port, the comb teeth occupied by the first antenna port are at least determined based on the first offset, and the first offset is at least based on the first offset. Determined by the time domain resources occupied by the antenna port and/or the frequency domain resources occupied by the first antenna port.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device described in the sixteenth aspect may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the sixteenth aspect can perform the method described in any possible implementation manner of the tenth aspect.
  • the communication device described in the sixteenth aspect may be a terminal device, or may be a chip (system) or other components or components that can be installed on the terminal device, which is not limited in this application.
  • a communication device in a seventeenth aspect, includes: a sending module and a receiving module.
  • the sending module is used to send the configuration information of the reference signal.
  • the receiving module is used to receive reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port, and the starting position of the frequency domain resource occupied by the first antenna port is determined based on at least a fourth offset, and the fourth offset
  • the fourth offset is determined based on at least the time domain resource occupied by the first antenna port and the pseudo-random sequence, or the fourth offset is determined based on a ninth correspondence among a plurality of ninth correspondences and the time occupied by the first antenna port. Determined by domain resources, one ninth correspondence includes a correspondence between at least one fourth offset and at least one time domain resource, and multiple ninth correspondences correspond to the same frequency scaling factor.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device described in the seventeenth aspect may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the seventeenth aspect can execute the method described in any possible implementation manner of the eleventh aspect.
  • the communication device described in the seventeenth aspect may be a network device, or may be a chip (system) or other components or components that can be installed on the network device, which is not limited in this application.
  • a communication device in an eighteenth aspect, includes: a sending module and a receiving module.
  • the receiving module is used to receive the configuration information of the reference signal.
  • the sending module is used to send reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port, and the starting position of the frequency domain resource occupied by the first antenna port is determined based on at least a fourth offset, and the fourth offset
  • the fourth offset is determined based on at least the time domain resource occupied by the first antenna port and the pseudo-random sequence, or the fourth offset is determined based on a ninth correspondence among a plurality of ninth correspondences and the time occupied by the first antenna port. Determined by domain resources, one ninth correspondence includes a correspondence between at least one fourth offset and at least one time domain resource, and multiple ninth correspondences correspond to the same frequency scaling factor.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device described in the eighteenth aspect may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the eighteenth aspect can perform the method described in any possible implementation manner of the twelfth aspect.
  • the communication device described in the eighteenth aspect may be a terminal device, or may be a chip (system) or other components or components that can be installed on the terminal device, which is not limited in this application.
  • a communication device in a nineteenth aspect, includes: a sending module and a receiving module.
  • the sending module is used to send the configuration information of the reference signal.
  • the receiving module is used to receive reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0, and the M antenna ports include at least one The first antenna port, the cyclic shift value of the first antenna port is determined based on at least a first code domain offset, and the first code domain offset is at least based on the time domain resource occupied by the first antenna port and/or the first antenna port. Determined by the frequency domain resources occupied by an antenna port.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the nineteenth aspect can perform the method described in any possible implementation manner of the thirteenth aspect.
  • the communication device described in the nineteenth aspect may be a network device, or may be a chip (system) or other components or components that can be installed on the network device, which is not limited in this application.
  • a twentieth aspect provides a communication device.
  • the communication device includes: a sending module and a receiving module.
  • the receiving module is used to receive the configuration information of the reference signal.
  • the sending module is used to send reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0
  • the M antenna ports include at least one first antenna port, and the cyclic shift value of the first antenna port is at least determined based on the first code domain offset, and the first code domain offset It is determined at least based on the time domain resources occupied by the first antenna port and/or the frequency domain resources occupied by the first antenna port.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the twentieth aspect can perform the method described in any possible implementation manner of the fourteenth aspect.
  • the communication device described in the twentieth aspect may be a terminal device, or may be a chip (system) or other components or components that can be installed on the terminal device, which is not limited in this application.
  • a communication device in a twenty-first aspect, includes a processor coupled to a memory for storing a computer program.
  • the processor is configured to execute the computer program stored in the memory, so that the communication method described in any one of the possible implementations of the first to fourth aspects, and the ninth to fourteenth aspects is executed.
  • the communication device may further include a transceiver.
  • the transceiver can be a transceiver circuit or an input/output port.
  • the transceiver may be used for the communication device to communicate with other devices.
  • the input port can be used to implement the receiving function involved in any of the possible implementations of the first to fourth aspects and the ninth to fourteenth aspects
  • the output port can be used to implement the first to fourth aspects.
  • the communication device described in the twentieth aspect may be a terminal device or a network device, or a chip or a chip system provided inside the terminal device or the network device.
  • the technical effects of the communication device described in the twentieth aspect can be referred to the technical effects of the communication method described in any one of the implementations of the first to fourth aspects and the ninth to fourteenth aspects, which are not included here. Again.
  • a communication system in a twenty-first aspect, includes the communication device as described in the fifth aspect and the communication device as described in the sixth aspect, and may further include the communication device as described in the seventh aspect and the communication device as described in the eighth aspect. Alternatively, the communication system includes the communication device as described in the seventh aspect and the communication device as described in the eighth aspect.
  • the communication system includes the communication device described in the fifth aspect for implementing the method described in the first aspect, and the communication device described in the sixth aspect used to implement the method described in the second aspect.
  • the communication system includes the communication device described in the seventh aspect for implementing the method described in the third aspect, and the communication device described in the eighth aspect for implementing the method described in the fourth aspect.
  • the communication system includes the communication device as described in the fifteenth aspect and the communication device as described in the sixteenth aspect, and may also include the communication device as described in the seventeenth aspect and the communication device as described in the eighteenth aspect.
  • the communication device, and/or, may further include the communication device as described in the nineteenth aspect and the communication device as described in the twentieth aspect.
  • the communication system includes the communication device as described in the seventeenth aspect and the communication device as described in the eighteenth aspect, and may also include the communication device as described in the nineteenth aspect and the communication device as described in the twentieth aspect. Communication device.
  • a twenty-second aspect provides a chip system including a logic circuit and an input/output port.
  • the logic circuit is used to implement the processing functions involved in any one of the possible implementation methods of the first to fourth aspects and the ninth to fourteenth aspects
  • the input/output port is used to implement the first to fourth aspects.
  • the input port can be used to implement the receiving function involved in any of the possible implementations of the first to fourth aspects and the ninth to fourteenth aspects
  • the output port can be used to implement the first to fourth aspects.
  • the chip system further includes a memory, which is used to store a program that implements the functions involved in any one of the possible implementations of the first to fourth aspects, and the ninth to fourteenth aspects. instructions and data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium stores a computer program or instructions; when the computer program or instructions are run on a computer, the first to fourth aspects, The communication method described in any one of the possible implementations of the ninth aspect to the fourteenth aspect is executed.
  • a twenty-fourth aspect provides a computer program product, including a computer program or instructions.
  • the computer program or instructions are run on a computer, any of the first to fourth aspects, the ninth to the fourteenth aspects are caused.
  • the communication method described in any one of the possible implementations is executed.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a transmission bandwidth provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a comb tooth provided by an embodiment of the present application.
  • Figure 4 is an application schematic diagram provided by the embodiment of the present application.
  • Figure 5 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Figure 6 is another application schematic diagram provided by the embodiment of the present application.
  • Figure 7 is another application schematic diagram provided by the embodiment of the present application.
  • Figure 8 is another application schematic diagram provided by the embodiment of the present application.
  • Figure 9 is another application schematic diagram provided by the embodiment of the present application.
  • Figure 10 is another application schematic diagram provided by the embodiment of the present application.
  • FIG 11 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • Figure 12 is another application schematic diagram provided by the embodiment of the present application.
  • Figure 13 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • Figure 14 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • Figure 15 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Wi-Fi wireless fidelity
  • TDD time division duplexing
  • V2X vehicle to everything
  • D2D device-to-device
  • MIMO multiple in multiple out
  • 4th generation (4G) mobile communication systems such as long term evolution (LTE) systems, global interoperability for microwave access (WiMAX) communication systems
  • 5th generation (5th generation) 5th generation mobile communication systems, such as new radio (NR) systems
  • future communication systems such as the sixth generation (6th generation, 6G) mobile communication systems.
  • the communication method provided by this application is suitable for scenarios involving reference signal transmission.
  • the communication method provided by this application is suitable for low-frequency scenarios (such as frequency bands below 6 GHz), and is also suitable for high-frequency scenarios (such as frequency bands above 6 GHz); applicable It is applicable to single transmission point (transmission and reception point, TRP) scenarios, as well as multi-transmission point (Multi-TRP) scenarios, and any of their derivative scenarios; it is suitable for homogeneous network scenarios and heterogeneous network scenarios. Constructed network scenarios; suitable for multi-point collaborative transmission scenarios, etc.
  • FIG. 1 is an architectural schematic diagram of a communication system to which the communication method provided by the embodiment of the present application is applicable.
  • the communication system includes network equipment and terminal equipment.
  • the above-mentioned terminal device is a terminal that is connected to the above-mentioned communication system and has a wireless transceiver function, or a chip or chip system that can be installed on the terminal.
  • the terminal equipment may also be called user equipment (UE), user device, access terminal, user unit, user station, mobile station, mobile station (MS), remote station, remote terminal, mobile device, User terminal, terminal, terminal unit, terminal station, terminal device, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a wireless data card, a personal digital assistant (personal digital assistant, PDA) computer, a laptop computer (laptop computer), a tablet computer (Pad), Computers with wireless transceiver functions, machine type communication (MTC) terminals, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, Internet of things (IoT) Terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home (such as game consoles, smart TVs, smart speakers, smart refrigerators and fitness equipment, etc.), vehicle-mounted Terminal, RSU with terminal function.
  • MTC machine type communication
  • VR virtual reality
  • AR augmented reality
  • IoT Internet of things
  • wireless terminals in industrial control wireless terminals in self-driving
  • wireless terminals in remote medical wireless terminals in smart grid
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , handheld devices (handsets) with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, wearable devices, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device in the embodiment of the present application may be an express terminal in smart logistics (such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of cargo, etc.), a wireless terminal in smart agriculture (such as a device that can collect poultry, etc.) wearable devices with animal-related data), wireless terminals in smart buildings (such as smart elevators, fire monitoring equipment, and smart meters, etc.), wireless terminals in smart medical care (such as wireless terminals that can monitor the physiological status of people or animals) Wearable devices), wireless terminals in smart transportation (such as smart buses, smart vehicles, shared bicycles, charging pile monitoring equipment, smart traffic lights, smart monitoring and smart parking equipment, etc.), wireless terminals in smart retail (such as automatic vending machines) Cargo aircraft, self-service checkout machines, and unmanned convenience stores, etc.).
  • smart logistics such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of cargo, etc.
  • a wireless terminal in smart agriculture such as a device that can collect poultry,
  • the terminal device of this application may be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle uses the built-in vehicle-mounted module, vehicle-mounted module
  • the group, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit can implement the method provided by this application.
  • the above-mentioned network device is a device located on the network side of the above-mentioned communication system and having a wireless transceiver function, or a chip or chip system that can be installed on the device.
  • the network equipment includes but is not limited to: access points (APs) in wireless fidelity (Wi-Fi) systems, such as home gateways, routers, servers, switches, bridges, etc., evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (BTS) , home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), remote radio head (RRH), etc., can also be 5G, such as gNB in the new radio (NR) system
  • FIG. 1 is only a simplified schematic diagram to facilitate understanding of the example.
  • the communication system may also include other network devices and/or other terminal devices, which are not shown in FIG. 1 .
  • the configuration information may be called SRS resource configuration information.
  • Reference signals applicable to the method provided by the embodiments of this application include but are not limited to: SRS and demodulation reference signal (DMRS). This application takes SRS as an example for explanation.
  • the SRS resource configuration information may indicate the resource configuration of the SRS, which may be semi-statically configured by the network device to the terminal device through high-level parameters.
  • the SRS resource configuration information may include: time-frequency code resources corresponding to each antenna port (antenna port) in at least one antenna port (for example, the antenna port that transmits SRS may be called an SRS port).
  • SRS resource configuration information may include but is not limited to one or more of the following: antenna ports consecutive OFDM symbols, the number of symbols included in each slot, the time domain starting position l 0 ⁇ ⁇ 0,1,...,13 ⁇ , and the frequency domain starting position k 0 .
  • the antenna port p i 1000+i
  • each antenna port can correspond to a physical antenna or a virtual antenna of the terminal device.
  • SRS may be transmitted on corresponding resources between the antenna port of the terminal device and the antenna port of the network device based on the SRS resource configuration indicated by the SRS resource configuration information.
  • the antenna port may also be called a reference signal port.
  • the repetition factor R ⁇ 1,2,4 ⁇ is semi-statically configured by the network device through high-level parameters (such as repetitionFactor).
  • One reference signal transmission corresponds to R consecutive OFDM symbols in one reference signal resource.
  • the number of the first OFDM symbol among the R consecutive OFDM symbols corresponding to one reference signal transmission in the reference signal resource can be evenly divisible by R.
  • the scanning bandwidth may be the bandwidth range corresponding to the channel acquired by the network device based on the reference signal.
  • the frequency hopping bandwidth may be the bandwidth range corresponding to the channel obtained by the network device after a single transmission of the reference signal.
  • the frequency hopping bandwidth may be less than or equal to the scanning bandwidth.
  • the frequency hopping period may be the number of reference signal transmissions required for the network device to obtain the channel corresponding to the scanning bandwidth.
  • the scanning bandwidth, frequency hopping bandwidth, and frequency hopping period may be determined based on high-layer parameters and protocol predefined tables.
  • the sending bandwidth is equal to the frequency hopping bandwidth.
  • the transmission bandwidth is one-half of the frequency hopping bandwidth P F .
  • Figure 2 is a schematic diagram of a transmission bandwidth provided by an embodiment of the present application.
  • each grid represents a resource block (resource block, RB), one RB includes 12 subcarriers in the frequency domain.
  • the scanning bandwidth is 16RB
  • the frequency hopping bandwidth is 4RB
  • the frequency hopping period is 4, as shown in (a) of Figure 2.
  • the transmission bandwidth is 4RB (in (a) of Figure 2 shaded grid).
  • the frequency scaling factor P F 2 is configured, the transmission bandwidth is 2RB (the shaded grid in (b) of Figure 2).
  • the SRS can be transmitted between the terminal device and the network device on corresponding resources based on the repetition factor, scanning bandwidth, frequency hopping bandwidth, transmission bandwidth, frequency hopping period and frequency scaling factor.
  • sequences can be Generate reference signals, sequences is the base sequence cyclic shift (CS).
  • CS base sequence cyclic shift
  • is the cyclic shift value, and ⁇ is a real number.
  • log 2 (K TC )
  • is an integer
  • K TC is the number of comb teeth.
  • u and v are the indexes of a certain base sequence in the base sequence group, which are integers.
  • j is the imaginary unit
  • n is the index of the element in the sequence
  • n is an integer, 0 ⁇ n ⁇ M ZC .
  • M ZC is the sequence
  • the length of is a positive integer.
  • e is a natural constant.
  • the sequence elements are sequentially mapped to the subcarriers corresponding to the SRS resources in order from small to large indexes.
  • the number of comb teeth may be the number of comb teeth included in the transmission bandwidth of the reference signal.
  • the base sequence It can be a sequence generated by ZC (Zadoff-Chu) sequence.
  • the base sequence It is the ZC sequence itself, or the sequence generated by the ZC sequence expansion or interception through cyclic shift.
  • the cyclic shift ⁇ i corresponding to the antenna port p i satisfies the following formula (1).
  • the maximum cyclic shift value It can be expressed that the delay domain is divided into equal parts parts, or means dividing the phase value 2 ⁇ into equal parts parts, each circular shift value corresponds to the starting point of each part.
  • frequency domain resources can be divided into multiple comb-shaped frequency domain resource groups, and one comb-shaped frequency domain resource group can be a comb tooth.
  • the number of comb teeth may be the number of comb teeth included in the transmission bandwidth of the reference signal.
  • the number of comb teeth may also be referred to as the degree of comb teeth, which is not limited in this application.
  • the number of subcarriers spaced between any two adjacent subcarriers on a comb tooth can be obtained based on the number of comb teeth.
  • the number of comb teeth KTC may be equal to 2, 4, or 8, etc.
  • the number of comb teeth can be semi-statically configured by the network device through high-level parameters.
  • Figure 3 shows the corresponding division of frequency domain resources when the number of comb teeth K TC is 2, 4, or 8.
  • even-numbered subcarriers for example, subcarriers numbered 0, 2, 4
  • odd-numbered subcarriers for example, numbered 1, 3, 5
  • subcarriers form a comb-shaped frequency domain resource group.
  • Each grid represents a resource element (RE), and an OFDM symbol and a subcarrier constitute an RE.
  • the comb offset It is the reference amount of comb teeth occupied by the reference signal.
  • the occupied comb teeth of antenna port p i The index satisfies the following formula (2).
  • comb offset It can be configured by the network device through high-level parameters (such as transmission comb (transmissionComb)).
  • the frequency domain starting position of antenna port p i The following formula (3) can be satisfied.
  • the number of subcarriers contained in each resource block. Represents the frequency hopping bandwidth, It is the frequency hopping bandwidth determined based on the high-layer parameters B SRS and C SRS and the protocol predefined table.
  • k F is the partial detection starting position index, k F ⁇ 0,1,...,P F -1 ⁇ .
  • k hop represents the starting resource block hopping offset.
  • P F represents the frequency scaling factor.
  • the partial detection starting position index may be determined by the network device through high-level parameters (such as
  • startRBIndexFScaling-r17 is semi-statically configured.
  • the starting resource block hopping offset k hop is defined by the following formula (5) and Table 2. For example, determine according to the following formula (5) The value of The value of and Table 2 determine k hop .
  • n SRS represents the reference signal (such as SRS) count value, for example, n SRS represents the index of the number of times of transmission corresponding to the current reference signal transmission.
  • the mathematical symbol ⁇ represents cumulative multiplication
  • b′ represents the frequency hopping layer index.
  • b hop represents the starting frequency hopping layer index, b hop ⁇ 0,1,2,3 ⁇ .
  • B SRS represents the termination frequency hopping layer index, B SRS ⁇ ⁇ 0,1,2,3 ⁇ .
  • N b ′ represents the number of parallel branches in the b′th layer.
  • b hop and B SRS can determine the layer index range of frequency hopping.
  • Both b hop and B SRS are configured semi-statically by the network device through high-level parameters (such as freqHopping).
  • N b ′ may be determined by the high-level parameters B SRS and C SRS and the protocol predefined table.
  • C SRS C SRS , B SRS , b hop and N b ′ in combination with the protocol predefined table.
  • the above formula for calculating the number of reference signal transmissions included in a reference signal frequency hopping cycle also takes into account the number of parallel branches in the layer corresponding to the starting frequency hopping layer index b hop . But since the formula limit, the number of reference signal transmissions included in a reference signal frequency hopping cycle will not be determined by the table changes due to the value. Regulation The reason is that when calculating the number of reference signal transmissions included in a reference signal frequency hopping cycle, only the number of parallel branches in the layer after the starting frequency hopping layer needs to be calculated.
  • Different sequences can be obtained by performing different cyclic shifts on the same base sequence, such as ⁇ 1 and ⁇ 2 .
  • ⁇ 1 and ⁇ 2 satisfy ⁇ 1 mod 2 ⁇ 2 mod 2 ⁇
  • the basis sequence The sequence obtained by the cyclic shift ⁇ 1 and the sequence obtained by the base sequence r u, v (n) and the cyclic shift ⁇ 2 are mutually orthogonal, that is, the mutual correlation coefficient is zero.
  • the network device can allocate sequences based on the same base sequence and different cyclic shift values to different terminal devices, and these different terminal devices can send these sequences (based on the same base sequence and different values) on the same time-frequency resources.
  • the reference signal generated by the sequence obtained by the cyclic shift value) is orthogonal to each other.
  • Sequences obtained based on different base sequences are not orthogonal.
  • the terminal device can send these sequences (sequences obtained based on different base sequences) on the same time-frequency resource.
  • a reference signal is generated that can cause interference when the channel between the end device and the network device is flat over the sequence length.
  • cell 1 includes UE1 and UE2
  • cell 2 includes UE3 and UE4, UE1 uses the base sequence r 1 and the cyclic shift value ⁇ 1 to generate and send a reference signal, and UE2 uses the base sequence r 1 and the cyclic shift value ⁇ 2 generates a reference signal and sends it, UE3 uses the base sequence r 2 and the cyclic shift value ⁇ 3 to generate the reference signal and sends it, UE4 uses the base sequence r 2 and the cyclic shift value ⁇ 4 to generate the reference signal and sends it, as shown in Table 4 .
  • UE1 to UE4 may send reference signals on the same time-frequency resource. It is assumed that the channels between UE1 to UE4 and the network equipment are flat on the M subcarriers occupied by the reference signal, and are h 1 , h 2 , h 3 and h 4 respectively. On the m-th subcarrier among the M subcarriers occupied by the reference signal, the received signal y(m) of the network device is
  • the network device may compare the received signal y(m) with the sequence used by UE1 Perform the following operations to obtain the channel h 1 of UE1:
  • the index of the occupied comb tooth of antenna port p i Satisfies the above formula (2). Obtain the index of the occupied comb teeth of antenna port p i according to formula (2) After that, it can be concluded that if the high-level parameters (such as comb tooth offset If the number of comb teeth K TC ) does not change, then the comb teeth occupied by each antenna port are constant at different transmission times, and a certain antenna port will always be interfered by the same antenna port, which is not conducive to interference randomization.
  • the high-level parameters such as comb tooth offset If the number of comb teeth K TC .
  • Cell 1 includes UE1, UE2, UE3 and UE4, each UE includes 4 antenna ports (for example, antenna port p 0 , antenna port p 1 , antenna port respectively) p 2 and antenna port p 3 ), each antenna port of UE1, UE2, UE3 and UE4 uses the base sequence r 1 and the cyclic shift value corresponding to each antenna port to generate a reference signal, each antenna port of UE1, UE2, UE3 and UE4 There is at least one difference between the occupied comb teeth and the used cyclic shift value, for example, the occupied comb teeth are different and/or the used cyclic shift value is different.
  • Cell 2 includes UE5, UE6, UE7 and UE8.
  • Each UE includes 4 antenna ports (for example, antenna port p 0 , antenna port p 1 , antenna port p 2 and antenna port p 3 respectively).
  • UE5, UE6 and UE7 and UE8 use the base sequence r2 and the cyclic shift value corresponding to each antenna port to generate a reference signal.
  • the comb teeth occupied by each antenna port of UE5, UE6, UE7 and UE8 have at least one difference in the cyclic shift value used, such as have different comb teeth, and/or use different cyclic shift values.
  • frequency domain resources are divided into four comb teeth (comb tooth 1, comb tooth 2, comb tooth 3 and comb tooth 4).
  • this application only takes Scenario 1 as an example to illustrate the method provided by this application.
  • This application does not limit the application scenarios, the number of cells, the number of UEs included in the cell, the number of antenna ports included in each UE, And the number of comb teeth is limited.
  • the comb teeth occupied by each antenna port of UE1 to UE8 can be obtained.
  • each UE's 4 antenna ports use 2 comb teeth, and every two antenna ports use 1 comb tooth.
  • the reference signal is sent on the comb teeth.
  • the two antenna ports of each UE occupy one comb tooth.
  • the antenna ports of UE1, UE2, UE5 and UE6 jointly occupy comb tooth 1 and comb tooth 3.
  • the antenna ports of UE3, UE4, UE7 and UE8 jointly occupy comb teeth 2 and 4.
  • the specific two antenna ports of each UE occupy which comb teeth to send reference signals are fixed.
  • each UE's antenna port p 0 and antenna port p 2 occupy a comb tooth
  • the antenna port p 1 and antenna port p 3 Taking one comb tooth as an example, for example, the comb tooth occupied by antenna port p 0 and antenna port p 2 is the comb tooth with the smallest comb tooth index among the two comb teeth occupied by the UE, and the antenna port p 1 and antenna port p 3 occupy
  • the comb tooth of is the comb tooth with the larger comb tooth index among the two comb teeth occupied by the UE.
  • Antenna port p 0 and antenna port p 2 of UE1 occupy comb tooth 1
  • antenna port p 1 and antenna port p 3 of UE1 occupy comb tooth 3
  • antenna port p 0 and antenna port p 2 of UE3 occupy comb tooth 2
  • UE3's antenna port p 0 and antenna port p 2 occupy comb tooth 3.
  • Antenna port p 1 and antenna port p 3 occupy comb tooth 4 and will not be explained one by one.
  • Table 5 and Figure 4 show the UE and the corresponding base sequence and the corresponding comb teeth, and the antenna port is not shown.
  • comb tooth index may also be called a comb tooth number, which is not limited in this application.
  • each UE will send the reference signal in the manner shown in Table 5 and Figure 4.
  • the antenna ports of UE1, UE2, UE5 and UE6 use the same comb teeth to send the reference signal.
  • UE1, UE5 and Different base sequences are used to generate reference signals between the antenna ports of UE6, and there is interference between UE1, UE5 and UE6.
  • the sending time refers to the time when the reference signal is sent.
  • the comb teeth occupied by each antenna port of each UE are constant, as shown in Table 5 and Figure 4. This means that at any transmission moment, the antenna port of a UE will be affected by the same antenna of the same UE.
  • Port interference combined with Table 5 and Figure 4, the antenna port of UE1 will be interfered by the antenna ports of UE5 and UE6 at any transmission time. Specifically, the antenna port p 0 and antenna port p 2 of UE1 will be interfered by the antenna port of UE5 at any transmission time.
  • the antenna port p 1 and antenna port p 2 of UE1 will be affected by the antenna port p 1 and antenna port p 2 of UE5 at any transmission time.
  • the interference of antenna port p 2 , as well as antenna port p 1 and antenna port p 2 of UE6 is similar to other UEs and will not be described one by one. In this way, during multiple reference signal transmissions, interference will show a certain regularity, which is not conducive to interference randomization and channel estimation.
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the communication method includes the following steps:
  • the network device sends configuration information. Accordingly, the terminal device receives the configuration information.
  • the configuration information indicates the configuration of the reference signal.
  • the reference signal may include but is not limited to SRS.
  • the specific implementation method of the configuration information may refer to the description in "First, Configuration Information" above, which will not be described again here.
  • S502 The terminal device sends reference signals on M antenna ports according to the configuration information.
  • the network device receives reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0.
  • the terminal device may include M antenna ports.
  • the M antenna ports may include at least one first antenna port.
  • the first antenna port may be any antenna port of the terminal device.
  • the terminal device is UE1
  • the first antenna port may be any one of the antenna ports p 0 to p 3 of UE1.
  • the comb teeth occupied by the first antenna port may be determined based on at least the first offset.
  • the comb teeth occupied by one or more antenna ports from antenna port p 0 to antenna port p 3 of UE1 may be determined based on at least the first offset.
  • the first offset may be an integer greater than or equal to 0.
  • the comb teeth occupied by the first antenna port may be determined based on the number of comb teeth, the offset of the comb teeth and the first The offset is determined.
  • the number of comb teeth may be the number of comb teeth included in the transmission bandwidth m SRS, bhop of the reference signal.
  • the offset of the comb teeth may be a reference amount of the comb teeth occupied by the reference signal.
  • the first offset may be determined based on at least the cell identity and the time domain resource occupied by the first antenna port, or the first offset may be determined based on the cyclic shift value occupied by the first antenna port. .
  • the cell identity may be configured.
  • the cell identity can be used to determine the pseudo-random sequence.
  • the pseudorandom sequence can be c().
  • N C 1600
  • the cell identifier may be a configured configuration parameter, for example, the cell identifier may be the first configuration parameter.
  • the first configuration parameter may be a configuration parameter issued by the network device to the terminal device in the serving cell, and the first configuration parameter may be 0-65536.
  • the first configuration parameters of terminal devices in the same serving cell are the same, and the first configuration parameters of terminal devices in different serving cells are different.
  • the first offset is determined based on at least the cell identity and the time domain resource occupied by the first antenna port.
  • the first offset can also be determined based on one or more of the following parameters: The number of time slots contained in each system frame, the number of orthogonal frequency division multiplexing OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset.
  • the time domain resource occupied by the first antenna port may include one or more OFDM symbols.
  • One or more OFDM symbols are determined based on one or more of the following parameters: the system frame number corresponding to the first antenna port, the time slot number corresponding to the first antenna port, and the OFDM symbol number corresponding to the first antenna port.
  • this application does not limit the number of OFDM symbols included in the time domain resource occupied by the first antenna port.
  • the time domain resources occupied by the M antenna ports may be the same or different.
  • all the first antenna ports included in the terminal device belong to the same reference signal resource
  • all the second antenna ports included in the terminal device belong to the same reference signal resource
  • the reference signal resources to which all the first antenna ports belong are the same as those of all the second antenna ports.
  • the reference signal resources to which the antenna ports belong may be the same or different.
  • the first offset may be a first random number.
  • the first offset may be a random number, for example, the first offset may be a random number greater than 0.
  • the first offset or the first random number may satisfy formula (6), formula (7), formula (8), or formula (9).
  • Q 1 represents the first offset or the first random number (Q 1 can represent the first offset; when the first When the offset is the first random number, Q 1 can represent the first random number), the mathematical symbol ⁇ represents the sum, c() is a pseudo-random sequence, and the pseudo-random sequence is related to the cell identity.
  • n f represents the system frame number corresponding to the first antenna port, Indicates the number of time slots contained in each system frame, represents each time slot The number of OFDM symbols included. Indicates the timeslot number corresponding to the first antenna port.
  • l 0 + l′ represents the OFDM symbol number corresponding to the first antenna port
  • l 0 represents the index of the starting OFDM symbol in one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • l′ represents the first antenna The relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the port.
  • the mathematical symbol mod represents the modulus.
  • m in the above formula (6), formula (7), formula (8), or formula (9) has nothing to do with the sequence length M.
  • the above formula (6), formula (7), formula (8) , or in formula (9), m is taken as an integer between 0 and 7 as an example.
  • This application describes the above formula (6), formula (7), formula (8), or formula (9).
  • the value range of m is not limited.
  • this application can randomly change the frequency domain resources (comb teeth) occupied by the terminal device at different transmission times, thereby causing interference to the terminal device.
  • the terminal equipment changes randomly to achieve frequency domain interference randomization, which can achieve better interference randomization effect.
  • the index of the occupied comb teeth of the antenna port p i is determined according to the number of comb teeth, the comb tooth offset and the first offset.
  • the following formula can be satisfied: or, in, Represents the comb tooth offset, K TC represents the number of comb teeth, and Q 1 represents the first offset.
  • the index of the occupied comb teeth of the antenna port p i of the terminal device determined according to the number of comb teeth, the comb tooth offset and the first offset.
  • the following formula (10) can be satisfied.
  • Equation (10) Represents the comb tooth offset, K TC represents the number of comb teeth, and Q 1 represents the first offset.
  • the index of the occupied comb teeth of the antenna port p i is determined according to the number of comb teeth, the comb tooth offset and the first offset. can be expressed as
  • the index of the occupied comb teeth of the antenna port p i determined according to the number of comb teeth, the comb tooth offset and the first offset can be expressed as
  • the following describes the comb teeth occupied by the antenna port of each terminal device after determining the comb teeth occupied by the first antenna port based on at least the first offset amount in combination with Table 6 and FIG. 6 .
  • the comb teeth occupied by each antenna port (antenna port p 0 to antenna port p 3 ) of UE1 to UE8 are determined based on at least the first offset.
  • the comb teeth occupied by the antenna port of each UE can be As shown in Table 6 and Figure 6.
  • the antenna ports of UE1, UE2, UE5 and UE6 occupy comb teeth 1 and 3, and the antenna ports of UE3, UE4, UE7 and UE8 occupy the same comb teeth 2 and 4.
  • the antenna port of UE1 on comb teeth 1 and 3 will be interfered by the antenna ports of UE5 and UE6.
  • the antenna port p 0 and the antenna port p 2 of each UE occupy one comb tooth
  • the antenna port p 1 and the antenna port p 3 occupy one comb tooth
  • the comb teeth occupied by antenna port p 0 and antenna port p 2 are the comb teeth with the smallest comb tooth index among the two comb teeth occupied by the UE.
  • the comb teeth occupied by antenna port p 1 and antenna port p 3 are the comb teeth occupied by the UE. Index the comb teeth into the larger comb teeth.
  • Table 6 and Figure 6 show the UE and the corresponding base sequence and the corresponding comb teeth, and the antenna port is not shown.
  • the antenna ports of UE1, UE2, UE7 and UE8 occupy comb teeth 1 and 3
  • the antenna ports of UE3, UE4, UE5 and UE6 occupy comb teeth 2 and 4.
  • the antenna port of UE1 will be interfered by the antenna ports of UE7 and UE8 on comb teeth 1 and 3.
  • the antenna ports of UE1, UE2, UE7 and UE8 occupy comb teeth 2 and 4, and UE3,
  • the antenna ports of UE4, UE5 and UE6 occupy comb teeth 7 and 8.
  • the antenna ports of UE1 on comb teeth 2 and 4 will be interfered by the antenna ports of UE7 and UE8.
  • the frequency domain resources (comb teeth) occupied by UE1's antenna port change randomly, so that the UEs that cause interference to UE1 change randomly.
  • Some transmission times are UE5 and UE6, and some are UE5 and UE6.
  • the transmission time is UE7 and UE8, and the antenna port causing interference to the antenna port of UE1 changes randomly, thus achieving better interference randomization effect.
  • the M antenna ports may also include at least one second antenna port.
  • the second antenna port may be any antenna port of the terminal device.
  • the terminal device is UE1
  • the antenna port p 0 and the antenna port p 2 of the UE1 can be the first antenna port
  • the antenna port p 1 and the antenna port p 3 of the UE1 can be the second antenna port.
  • the comb teeth occupied by the second antenna port may be determined at least according to the second offset Q 2 .
  • the second offset Q2 is different from the first offset.
  • the comb teeth occupied by the antenna port p 0 and the antenna port p 2 of UE1 can be determined at least based on the first offset, and the comb teeth occupied by the antenna port p 1 and antenna port p 3 of UE1 can be At least based on the second offset.
  • the second offset Q 2 may be an integer greater than or equal to 0.
  • the comb teeth occupied by the second antenna port may be determined based on the number of comb teeth, the comb tooth offset, and the second offset.
  • the number of comb teeth may be the number of comb teeth included in the transmission bandwidth of the reference signal.
  • the offset of the comb teeth may be a reference amount of the comb teeth occupied by the reference signal.
  • the second offset Q 2 may be determined at least according to the cell identity and the time domain resource occupied by the second antenna port.
  • the second offset Q 2 is at least based on the cell identity and the time domain resource occupied by the second antenna port. If determined, the second offset may also be determined based on one or more of the following parameters: the number of time slots contained in each system frame, the number of OFDM symbols contained in each time slot, the number of comb teeth, and the comb tooth offset. .
  • the time domain resource occupied by the second antenna port includes one or more OFDM symbols.
  • one or more OFDM symbols are determined based on one or more of the following parameters: the system frame number corresponding to the second antenna port, the timeslot number corresponding to the second antenna port, and the OFDM corresponding to the second antenna port. Symbol number.
  • this application does not limit the number of OFDM symbols included in the time domain resources occupied by the second antenna port.
  • the second offset Q 2 may be a second random number.
  • the second offset may be a random number, for example, the second offset may be a random number greater than 0.
  • the second offset or the second random number satisfies formula (11), formula (12), formula (13), or formula (14).
  • Q 2 represents the second offset or the second random number (Q 2 can represent the second offset; when the second When the offset is the second random number, Q 2 can represent the second random number),
  • n f represents the system frame number corresponding to the second antenna port, Indicates the timeslot number corresponding to the second antenna port.
  • l 0 + l′ represents the OFDM symbol number corresponding to the second antenna port
  • l 0 represents the index of the starting OFDM symbol in one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • l′ represents the second antenna The relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the port.
  • the meanings expressed by other symbols are similar to those in the above formula (6), formula (7), formula (8), or formula (9).
  • the mathematical symbol ⁇ represents summation
  • c() is a pseudo-random sequence
  • the pseudo-random sequence and the cell logo related Indicates the number of time slots contained in each system frame
  • the mathematical symbol mod represents the modulus.
  • the second offset Q 2 may be the ⁇ sum of the first offset Q 1 and the third offset.
  • the third offset ⁇ may be an integer greater than or equal to 0.
  • the third offset may be determined based on at least the cell identifier and the time domain resource occupied by the second antenna port.
  • the third offset can also be determined based on one or more of the following parameters: the number of time slots included in each system frame, the number of OFDM symbols included in each time slot, the number of comb teeth, and the comb tooth offset. quantity.
  • the third offset may be a third random number.
  • the third random number may satisfy formula (15), formula (16), formula (17), or formula (18).
  • This application uses the first offset to determine the comb teeth occupied by the first antenna port of the terminal device, and uses the second offset to determine the comb teeth occupied by the second antenna port of the terminal device, so that the terminal devices at different transmission times can
  • the comb teeth occupied by the antenna port will change randomly, and the intervals between the multiple comb teeth occupied by the antenna port of the same terminal device can also change randomly.
  • the antenna ports that cause interference to the antenna ports of the terminal equipment at different transmission times are random.
  • the antenna ports that cause interference to the antenna ports of the terminal equipment occupying different comb teeth at the same transmission time may not be the antenna ports of the same terminal equipment.
  • frequency domain interference randomization can be achieved, and the freedom of frequency domain resources occupied by the antenna port of the terminal device can be further improved, thereby further improving the interference randomization effect.
  • the index of the occupied comb teeth of the antenna port p i is determined according to the number of comb teeth, the comb tooth offset and the second offset.
  • the following formula can be satisfied: or, or, or, in, Represents the comb tooth offset, K TC represents the number of comb teeth, Q 1 represents the first offset, Q 2 represents the second offset, and ⁇ represents the third random number.
  • the comb teeth occupied by part of the antenna ports of the terminal device can be determined according to the first offset
  • the comb teeth occupied by another part of the antenna ports of the terminal device can be determined according to the second offset
  • the comb teeth occupied by the antenna port p i of the terminal device can be determined.
  • Index of comb teeth The following formula (19), formula (20), formula (21), or formula (22) can be satisfied.
  • the comb teeth occupied by the antenna ports of each terminal device after the comb teeth occupied by different antenna ports are determined based on at least the first offset or the second offset are described below in conjunction with Table 7 and Figure 7 .
  • the comb teeth occupied by the two antenna ports of UE1 to UE8 are determined based on at least the first offset, and the comb teeth occupied by the other two antenna ports of UE1 to UE8 are determined based on at least the second offset.
  • the comb teeth occupied by the antenna port of each UE can be as shown in Table 7 and Figure 7.
  • the antenna ports of UE1, UE2, UE5 and UE6 occupy comb teeth 1 and 3, and the antenna ports of UE3, UE4, UE7 and UE8 occupy the same comb teeth 2 and 4.
  • the antenna port of UE1 will be interfered by the antenna ports of UE5 and UE6 on comb teeth 1 and 3.
  • the antenna port p 0 and the antenna port p 2 of each UE occupy one comb tooth
  • the antenna port p 1 and the antenna port p 3 occupy one comb tooth
  • the comb teeth occupied by antenna port p 0 and antenna port p 2 are the comb teeth with the smallest comb tooth index among the two comb teeth occupied by the UE.
  • the comb teeth occupied by antenna port p 1 and antenna port p 3 are the comb teeth occupied by the UE. Index the comb teeth into the larger comb teeth.
  • Table 7 and Figure 7 show the UE and the corresponding base sequence and the corresponding comb teeth, and the antenna port is not shown.
  • the antenna ports of UE1, UE2, UE7 and UE8 occupy comb tooth 1
  • the antenna ports of UE1, UE2, UE5 and UE6 occupy comb tooth 2
  • the antenna ports of UE3, UE4, UE7 and UE8 occupy comb tooth 3.
  • the antenna ports of UE3, UE4, UE5 and UE6 occupy comb tooth 4.
  • the antenna ports of UE1 (such as antenna port p 0 and antenna port p 2 ) will be affected by the antenna ports of UE7 and UE8 (such as antenna port p 0 and antenna port p 2 ) on comb tooth 1 ), the antenna ports of UE1 (such as antenna port p 1 and antenna port p 3 ) will be interfered by the antenna ports of UE5 and UE6 (such as antenna port p 0 and antenna port p 2 ) on comb 2.
  • the antenna ports of UE1, UE2, UE7 and UE8 occupy comb 1
  • the antenna ports of UE1, UE2, UE5 and UE6 occupy comb 4
  • the antenna ports of UE3, UE4, UE5 and UE6 jointly occupy comb 2.
  • the antenna ports of UE3, UE4, UE7 and UE8 occupy comb tooth 4.
  • the antenna port of UE1 (such as antenna port p 0 and antenna port p 2 ) will be affected by the antenna ports of UE7 and UE8 (such as antenna port p 0 and antenna port p 2 ) on comb 1 ), the antenna ports of UE1 (such as antenna port p 1 and antenna port p 3 ) will be interfered by the antenna ports of UE5 and UE6 (such as antenna port p 0 and antenna port p 2 ) on comb 4.
  • the comb teeth occupied by UE1's antenna port will change randomly. For example, at transmission time 1, UE1 uses comb teeth 1 and comb teeth 3 to send the reference signal; at transmission time 2, UE1 uses comb teeth 1 and comb teeth 4 to send the reference signal.
  • the antenna port causing interference to the antenna port of UE1 changes randomly.
  • the antenna ports that cause interference to the terminal equipment's antenna ports occupying different comb teeth may not be the same.
  • the antenna port of a terminal device for example, at transmission time 2, the antenna port p 0 and antenna port p 2 of UE1 will be interfered by the antenna port p 0 and antenna port p 2 of UE7 and UE8 on comb 1, and the antenna port p 2 of UE1 Antenna port p 1 and antenna port p 3 will be interfered by antenna port p 0 and antenna port p 2 of UE5 and UE6 on comb 2.
  • the degree of freedom of frequency domain resources occupied by the antenna port of the terminal device can be further improved, and the randomness of interference caused to the terminal device can be further improved, thereby further improving the interference randomization effect.
  • antenna port p 0 , antenna port p 1 , antenna port p 2 and antenna port p 3 of UE1 occupy comb tooth 1.
  • Antenna port p 0 , antenna port p 1 , antenna port p 2 and antenna port p 3 of UE5 occupy comb tooth 1.
  • Other UEs are not listed one by one, please refer to Table 8 for details. Taking UE1 as an example, the antenna port p 0 to antenna port p 3 of UE1 will be interfered by the antenna port p 0 to antenna port p 3 of UE5 on comb tooth 1.
  • the antenna port p 0 , antenna port p 1 , antenna port p 2 and antenna port p 3 of UE1 occupy comb tooth 1.
  • Antenna port p 0 , antenna port p 1 , antenna port p 2 and antenna port p 3 of UE5 occupy comb tooth 1.
  • Other UEs are not listed one by one, please refer to Table 8 for details. Taking UE1 as an example, the antenna port p 0 to antenna port p 3 of UE1 will be interfered by the antenna port p 0 to antenna port p 3 of UE5 on comb tooth 1.
  • antenna port p 0 , antenna port p 1 , antenna port p 2 and antenna port p 3 of UE1 occupy comb tooth 1.
  • Antenna port p 0 , antenna port p 1 , antenna port p 2 and antenna port p 3 of UE5 occupy comb tooth 1.
  • Other UEs are not listed one by one, please refer to Table 8 for details. Taking UE1 as an example, the antenna port p 0 to antenna port p 3 of UE1 will be interfered by the antenna port p 0 to antenna port p 3 of UE5 on comb tooth 1.
  • each antenna port will be interfered by the same antenna port.
  • UE1 at any transmission time, UE1's antenna port p 0 to antenna port p 3 will be affected by UE5's antenna port p 0 to antenna port p. 3 interference, which is not conducive to interference randomization.
  • the first offset is determined based on a cyclic shift value occupied by the first antenna port.
  • the comb teeth occupied by the antenna port are obtained according to the first offset.
  • the value of the first offset is related to the cyclic shift value. Therefore, the comb teeth occupied by the antenna port are affected by the cyclic shift value and the first offset. , so that at different transmission times, the comb teeth occupied by each antenna port and the cyclic shift value used will change randomly, and the antenna ports that cause interference to the antenna port of the terminal device at different transmission times will also change randomly. At the same transmission time, the antenna ports causing interference to different antenna ports of the terminal equipment are different. Two-dimensional interference randomization in the code domain and frequency domain can be realized, which can further enhance the interference randomization effect and accelerate the convergence speed of interference randomization.
  • the interference level may still be very different at different transmission moments. In this way, an excellent interference randomization effect can be guaranteed.
  • the first offset is determined based on the cyclic shift value occupied by the first antenna port, which may include: the first offset is determined based on the range of the cyclic shift value.
  • the range to which the cyclic shift value belongs can be divided into at least two intervals.
  • the range of cyclic shift values is divided into a first range and a second range, and the cyclic shift value is ⁇ 1 . If ⁇ 1 belongs to the first range, the value of the first offset is If ⁇ 1 belongs to the second range, the value of the first offset is
  • the value of the first offset is If ⁇ i mod 2 ⁇ R 1 , then the value of the first offset is Similarly, if ⁇ i mod 2 ⁇ R y-1 , the value of the first offset is
  • R 0 represents the first range
  • R 1 represents the second range
  • R y-1 represents the y-th range
  • the mathematical symbol ⁇ represents belonging.
  • the cyclic shift value may satisfy the formula:
  • M ZC represents the length of the sequence
  • c() is a pseudo-random sequence
  • the pseudo-random sequence is related to the cell identity.
  • n f represents the system frame number corresponding to the first antenna port, Indicates the number of time slots included in each system frame; Indicates the number of OFDM symbols contained in each slot. Indicates the timeslot number corresponding to the first antenna port under subcarrier configuration ⁇ .
  • l 0 + l′ represents the OFDM symbol number corresponding to the first antenna port
  • l 0 represents the index of the starting OFDM symbol in one or more OFDM symbols included in the time domain resource occupied by the first antenna port
  • l′ represents the first antenna The relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the port.
  • the cyclic shift value may satisfy the formula: . in,
  • the meaning of the representation can be referred to the corresponding value in "Third, cyclic shift value" above. The explanation will not be repeated here.
  • the cyclic shift value may satisfy the formula:
  • the first offset is determined based on the cyclic shift value occupied by the first antenna port, and the occupancy of the antenna port p i is determined based on the number of comb teeth, the comb tooth offset and the first offset.
  • Index of comb teeth The following formula can be satisfied: or, in, Represents the comb tooth offset, K TC represents the number of comb teeth, and k offset represents the first offset.
  • the first offset is determined according to the range of the cyclic shift value, and the index of the occupied comb teeth of the antenna port p i is determined according to the number of comb teeth, the comb tooth offset and the first offset.
  • the following formula (23) can be satisfied.
  • the index of the occupied comb tooth is Relevant to the circular shift value. For example, when the cyclic shift value ⁇ i mod 2 ⁇ R 0 , the index of the occupied comb tooth of the antenna port p i satisfy For example, when the cyclic shift value ⁇ i mod 2 ⁇ R 1 , the index of the occupied comb tooth of the antenna port p i satisfy For example, when the cyclic shift value ⁇ i mod 2 ⁇ R y-1 , the index of the occupied comb tooth of the antenna port p i satisfy
  • the index of the occupied comb tooth is It is related to the cyclic shift value. For details, refer to the above formula and will not be described in detail.
  • Or p i ⁇ ⁇ 1000,1002 ⁇ or and Index of the occupied comb tooth of antenna port p i It is related to the cyclic shift value, for example, when the cyclic shift value ⁇ i mod 2 ⁇ R 0 , the index of the occupied comb teeth of the antenna port p i satisfy For example, when the cyclic shift value ⁇ i mod 2 ⁇ R 1 , the index of the occupied comb tooth of the antenna port p i satisfy For example, when the cyclic shift value ⁇ i mod 2 ⁇ R y-1 , the index of the occupied comb tooth of the antenna port p i satisfy
  • the first offset is determined based on the cyclic shift value occupied by the first antenna port in conjunction with Table 9 and Figure 9. At least the comb occupied by each terminal device is determined based on the first offset. Tooth is explained.
  • antenna port p 0 to antenna port p 3 of UE1 occupy comb teeth 1, comb teeth 2, comb teeth 3, and comb teeth 4 respectively.
  • Antenna port p 0 to antenna port p 3 of UE2 occupy comb tooth 2, comb tooth 3, comb tooth 4 and comb tooth 1 respectively. Without enumerating them one by one, please refer to Table 9 and Figure 9 for details.
  • the antenna port p 0 of UE1 will be affected by the antenna port p 3 of UE2, the antenna port p 2 of UE3, the antenna port p 1 of UE4, and the antenna port p 0 of UE5 on comb 1 , interference from the antenna port p 3 of UE6, the antenna port p 3 of UE7, and the antenna port p 1 of UE8.
  • the antenna port p 1 of UE1 will be affected by the antenna port p 0 of UE2, the antenna port p 3 of UE3, the antenna port p 2 of UE4, the antenna port p 1 of UE5, the antenna port p 0 of UE6, and the antenna port p 1 of UE7 on the comb 2.
  • the interference between the antenna port p 2 and the antenna port p 2 of UE8 is not listed one by one. Please refer to Table 9 and Figure 9 for details.
  • antenna port p 0 to antenna port p 3 of UE1 occupy comb teeth 2, comb teeth 3, comb teeth 4 and comb teeth 1 respectively.
  • Antenna port p 0 to antenna port p 3 of UE2 occupy comb teeth 3, comb teeth 4, comb teeth 1 and comb teeth 2 respectively. Without enumerating them one by one, please refer to Table 9 and Figure 9 for details.
  • the antenna port p 0 of UE1 will be affected by the antenna port p 3 of UE2, the antenna port p 2 of UE3, the antenna port p 1 of UE4, and the antenna port p 3 of UE5 on comb 1 , the interference of the antenna port p 2 of UE6, the antenna port p 1 of UE7, and the antenna port p 0 of UE8 are not listed one by one. Please refer to Table 9 and Figure 9 for details.
  • the comb teeth occupied by each antenna port of each UE will change, and the antenna ports that interfere with the same antenna port will change randomly.
  • the antenna port p 0 of UE1 causes interference with different antenna ports.
  • the antenna ports that cause interference to different antenna ports of the UE are different.
  • the antenna port that causes interference to the antenna port p 0 of UE1 is different from the antenna port that causes interference to the antenna port p 1 of UE1. , which can further enhance the interference randomization effect.
  • the interference level may still be very different at different transmission moments. In this way, an excellent interference randomization effect can be guaranteed.
  • the communication method shown in Figure 5 uses the first offset to determine the comb teeth occupied by the first antenna port of the terminal device, so that the frequency domain resources (comb teeth) occupied by the antenna port of the terminal device at different transmission times can be randomly changed.
  • the antenna port of the terminal device that causes interference to the antenna port of the terminal device is randomly changed, achieving frequency domain interference randomization and achieving better interference randomization effect.
  • the comb teeth occupied by the first antenna port are affected by the cyclic shift value. Shift value and first offset are affected.
  • the comb teeth occupied by each antenna port and the cyclic shift value used will change randomly, and the antenna ports that cause interference to the antenna port of the terminal device at different transmission times will also change randomly.
  • the antenna ports causing interference to different antenna ports of the terminal equipment are different. In this way, two-dimensional interference randomization in the code domain and frequency domain can be achieved, the interference randomization effect can be further enhanced, and the interference randomization convergence speed can be accelerated.
  • part of the detection offset Satisfies the above formula (4):
  • the relative position of the partial detection bandwidth in the frequency hopping bandwidth is only determined by the starting resource block hopping offset k hop .
  • the k hop is determined by the index of the frequency hopping cycle corresponding to the reference signal and the protocol predefined table (such as Table 3). This makes the part of the detection bandwidth occupied by each antenna port highly regular, which is not conducive to interference randomization.
  • Cell 1 includes UE1 and UE2. Each UE includes 2 antenna ports (for example, antenna port p 0 and antenna port p 1 respectively). Each antenna port of UE1 and UE2 uses a base sequence r 1 The cyclic shift value corresponding to each antenna port generates a reference signal. The comb teeth occupied by each antenna port of UE1 and UE2 and the cyclic shift value used are at least one different.
  • Cell 2 includes UE3 and UE4. Each UE includes 2 antenna ports (for example, antenna port p 0 and antenna port p 1 respectively). Each antenna port of UE3 and UE4 uses the base sequence r 2 and the cycle corresponding to each antenna port. The shift value generates a reference signal.
  • each antenna port of UE3 and UE4 and the cyclic shift value used are at least one different.
  • Each grid in Figure 10 represents an RB, the scanning bandwidth is 16RB, the frequency hopping bandwidth is 4RB, and the frequency hopping period is 4. It should be noted that the antenna port is not shown in Table 10 and Figure 10 .
  • the partial detection starting position index k F and the frequency scaling factor P F corresponding to each antenna port of each terminal device are the same, as shown in Table 10. Two UEs can send reference signals on the same time-frequency resource.
  • the antenna port of a UE will be subject to fixed interference at any transmission time, such as UE1
  • the antenna ports will be interfered by the antenna ports of UE3.
  • FIG. 11 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the method shown in Figure 11 can be used in combination with the method shown in Figure 5.
  • the combined use can achieve better interference randomization effect.
  • the method shown in Figure 11 can be used together with the method shown in Figure 5 or separately.
  • the communication method includes the following steps:
  • the network device sends configuration information. Accordingly, the terminal device receives the configuration information.
  • the terminal device sends reference signals on M antenna ports according to the configuration information. Accordingly, reference signals are received on M antenna ports according to the configuration information.
  • M is an integer greater than 0.
  • the terminal device may include M antenna ports.
  • the starting position of the frequency domain resource occupied by each of the M antenna ports is determined based on at least a fourth offset.
  • the starting position of the frequency domain resource occupied by each antenna port from antenna port p 0 to antenna port p 1 of UE1 may be determined based on at least the fourth offset.
  • the fourth offset may be an integer greater than or equal to 0.
  • the fourth offset may be determined at least according to the index of the frequency hopping cycle corresponding to the cell identity and the reference signal.
  • the index of the frequency hopping period corresponding to the reference signal may be: frequency hopping period 1 and so on.
  • the fourth offset may be a fourth random number.
  • the fourth offset may be a random number, for example, the fourth offset may be a random number greater than 0.
  • the fourth offset or the fourth random number may satisfy formula (24) or formula (25).
  • k rand represents the fourth offset or the fourth random number (k rand can represent the fourth offset; when the fourth offset is the fourth random number, k rand can represent the fourth random number), the mathematical symbol ⁇ Represents summation, c() is a pseudo-random sequence, and the pseudo-random sequence is related to the cell identity. Indicates the index of the frequency hopping period corresponding to the reference signal, mathematical symbol It means rounding down, n SRS means the count value of the reference signal, the mathematical symbol ⁇ means cumulative multiplication, and the mathematical symbol mod means modulus.
  • m in the above formula (24) or formula (25) has nothing to do with the sequence length M.
  • m is an integer between 0 and 7.
  • this application does not limit the value range of m in the above formula (24) or formula (25).
  • the starting position of the frequency domain resource occupied by each of the M antenna ports is determined based on at least a fourth offset, which may include: The starting position of the frequency domain resource can be based on the partial detection offset definite.
  • partial detection offset It may be determined based on the number of subcarriers included in each resource block, the frequency hopping bandwidth, the partial detection starting position index, the starting resource block hopping offset, the frequency scaling factor and the fourth offset.
  • the partial detection offset The following formula (26) can be satisfied.
  • k rand represents the fourth offset.
  • the meanings of other parameters in formula (26) are similar to the above formula (4).
  • Indicates the frequency hopping bandwidth, m SRS, BSRS is the frequency hopping bandwidth determined based on the high-layer parameters B SRS and C SRS and the protocol predefined table (for example, Table 3).
  • k F is the partial detection starting position index, k F ⁇ 0,1,...,P F -1 ⁇ .
  • k hop represents the starting resource block hopping offset.
  • P F represents the frequency scaling factor.
  • the frequency domain starting position of antenna port p i The following formula (27) can be satisfied.
  • frequency hopping offset can satisfy in, The number of subcarriers contained in each resource block.
  • the starting position of the frequency domain resource occupied by each antenna port (antenna port p 0 to antenna port p 1 ) of UE1 to UE4 is determined based on at least the fourth offset.
  • the starting position of the frequency domain resources occupied by the UE can be shown in Figure 12.
  • frequency hopping period 1 the antenna port of UE1 and the antenna port of UE3 occupy the same starting position of frequency domain resources, and the antenna port of UE2 and the antenna port of UE4 occupy the same starting position of frequency domain resources.
  • frequency hopping period 2 the antenna port of UE1 and the antenna port of UE4 occupy the same starting position of frequency domain resources, and the antenna port of UE2 and the antenna port of UE3 occupy the same starting position of frequency domain resources.
  • frequency hopping period n the antenna port of UE1 and the antenna port of UE3 occupy the same starting position of frequency domain resources, and the antenna port of UE2 and the antenna port of UE4 occupy the same starting position of frequency domain resources.
  • frequency hopping period 1 the interference to the antenna port of UE1 is caused by the antenna port of UE3.
  • frequency hopping period 2 the interference to the antenna port of UE1 is caused by the antenna port of UE4. It can be seen that in different frequency hopping The antenna ports that periodically cause interference to the antenna port of UE1 are different, which will bring better interference randomization effect, speed up the convergence of interference randomization, and improve channel estimation performance.
  • a fourth offset can be introduced to make the starting position of the frequency domain resources occupied by each antenna port in different frequency hopping cycles
  • the position changes randomly, and the antenna port that causes interference to the antenna port of a certain terminal device will also change randomly, realizing randomization of frequency domain interference. This will bring better interference randomization effect and speed up the convergence of interference randomization. , improve channel estimation performance.
  • FIG. 13 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method shown in Figure 13 and the method shown in Figure 5 can be parallel solutions or can be used in combination.
  • the communication method includes the following steps:
  • the network device sends configuration information of the reference signal.
  • the terminal device receives the configuration information of the reference signal.
  • the terminal device sends reference signals on M antenna ports according to the configuration information.
  • the network device receives reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0, and the M antenna ports include at least one first antenna port.
  • M antenna ports include at least one first antenna port.
  • the comb teeth occupied by the first antenna port are determined based on at least the first offset.
  • the comb teeth occupied by one or more antenna ports from antenna port p 0 to antenna port p 3 of UE1 may be determined based on at least the first offset.
  • the first offset may be an integer greater than or equal to 0.
  • the comb teeth occupied by the first antenna port are determined based on at least the first offset, which may include: the comb teeth occupied by the first antenna port may be determined based on the initial value and the first value of the comb teeth occupied by the first antenna port. An offset is determined.
  • the initial value of the comb teeth occupied by the first antenna port may be determined based on the comb tooth offset, or the initial value of the comb teeth occupied by the first antenna port may be determined based on the number of comb teeth and the comb tooth offset. Quantity determined.
  • the number of comb teeth may be the number of comb teeth included in the transmission bandwidth of the reference signal.
  • the offset of the comb teeth may be a reference amount of the comb teeth occupied by the reference signal.
  • the initial value of the comb teeth occupied by the first antenna port can satisfy the above formula (2).
  • the comb teeth occupied by the first antenna port may be determined based on the comb tooth offset and the first offset, or the comb teeth occupied by the first antenna port may be determined based on the number of comb teeth and the comb tooth offset. amount and the first offset.
  • the first offset may be determined based on at least time domain resources occupied by the first antenna port and/or frequency domain resources occupied by the first antenna port.
  • the time domain resource occupied by the first antenna port may include one or more OFDM symbols.
  • One or more OFDM symbols included in the time domain resource occupied by the first antenna port may be determined based on one or more of the following parameters: the system frame number corresponding to the first antenna port, the time slot number corresponding to the first antenna port OFDM symbol number corresponding to the first antenna port.
  • This application does not limit the number of OFDM symbols included in the time domain resources occupied by the first antenna port.
  • the time domain resources are located based on the time domain resources occupied by the first antenna port.
  • the index of the frequency hopping cycle, or the relative index of the time domain resource corresponding to one frequency hopping cycle determined based on the time domain resource occupied by the first antenna port.
  • the relative index can be defined as: the relative index of the k-th transmission within a frequency hopping cycle is k-1.
  • the time domain resources occupied by the M antenna ports may be the same or different.
  • the frequency domain resources occupied by the first antenna port may include one or more sub-bandwidths.
  • One or more sub-bandwidths included in the frequency domain resources occupied by the first antenna port may be determined based on one or more of the following parameters: the index of the frequency hopping bandwidth corresponding to the first antenna port, and the transmission frequency corresponding to the first antenna port. Bandwidth index.
  • the index of the frequency hopping bandwidth where the frequency domain resource is located is determined based on the frequency domain resource occupied by the first antenna port, or the frequency domain resource corresponding to a subband is determined based on the frequency domain resource occupied by the first antenna port.
  • the index of the subband can be defined as: the scanning bandwidth of the first antenna port corresponds to a*b RBs, which can be divided into a subband with a granularity of b.
  • Each subband is numbered from low to high frequency, including: ⁇ 0 ,...,a-1 ⁇ .
  • the frequency domain resources occupied by the M antenna ports may be the same or different.
  • the first offset may include a first random number and/or a fifth random number.
  • the first random number may be determined based on at least the time domain resource occupied by the first antenna port.
  • the first random number can be represented by Q 1 .
  • the first random number may be a random number greater than 0.
  • the fifth random number may be determined based on at least the frequency domain resource occupied by the first antenna port.
  • the fifth random number can be represented by Q 3 .
  • the fifth random number may be a random number greater than 0.
  • the comb teeth occupied by the first antenna port may be determined based on the first random number and/or the fifth random number.
  • the comb teeth occupied by the first antenna port may be determined based on the number of comb teeth, the comb tooth offset, and the first random number, or the comb teeth occupied by the first antenna port may be determined based on the number of comb teeth, the comb tooth offset, and the first random number.
  • the tooth offset and the fifth random number are determined, or the comb teeth occupied by the first antenna port may be determined based on the number of comb teeth, the comb tooth offset, the first random number and the fifth random number.
  • the first random number is determined based on at least the time domain resources occupied by the first antenna port, which may include: the first random number is determined based on the time domain resources occupied by the first antenna port and a pseudo-random sequence.
  • the pseudo-random sequence can be c().
  • the specific implementation of the pseudo-random sequence please refer to the corresponding explanation in S502 above, and will not be described again here.
  • the first random number is determined based on the time domain resources occupied by the first antenna port and the pseudo-random sequence.
  • the first random number can also be determined based on one or more of the following parameters: the time domain contained in each system frame.
  • the value range of the first random number can also be determined based on the number of comb teeth and the offset of the comb teeth.
  • the number of time slots included in each system frame may refer to the number of time slots included in one system frame.
  • the number of OFDM symbols included in each time slot may refer to the number of OFDM symbols included in one time slot.
  • the first random number may satisfy formula (6), formula (7), formula (8), or formula (9) in the above S502, which will not be described again here.
  • n f represents the system frame number corresponding to the first antenna port (or, n f represents the system frame number of the time domain resource occupied by the first antenna port), represents the number of time slots in each system frame, represents the number of OFDM symbols in each slot, Indicates the first antenna terminal
  • the timeslot number corresponding to the port (or, represents the time slot number of the time domain resource occupied by the first antenna port)
  • l 0 represents the index of the starting OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the first antenna port (or, l 0 represents the starting OFDM symbol index).
  • the index of the first OFDM symbol), l' represents the relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the first antenna port (or, l' represents the relative index of the time domain resource occupied by the first antenna port Relative index of OFDM symbol), K TC represents the number of comb teeth.
  • this application can randomly change the frequency domain resources (comb teeth) occupied by the terminal device at different transmission times, thereby causing interference to the terminal device.
  • the equipment changes randomly to achieve frequency domain interference randomization, which can achieve better interference randomization effects.
  • the first random number is determined based on at least the time domain resource occupied by the first antenna port, which may include: the first random number is determined based on a first correspondence among a plurality of first correspondences, and the first correspondence. Determined by the time domain resources occupied by an antenna port.
  • the first random number can be replaced by the first variable.
  • one first correspondence among the plurality of first correspondences may be indicated by the network device to the terminal device.
  • the configuration information of the reference signal may include indication information indicating a first correspondence among a plurality of first correspondences, and/or a first correspondence among a plurality of first correspondences.
  • the network device may select a first correspondence relationship from a plurality of first correspondence relationships and indicate the selected first correspondence relationship to the terminal device.
  • a first correspondence may include: a correspondence between at least one first random number and at least one time domain resource.
  • At least one first random number corresponds one-to-one to at least one time domain resource.
  • the time domain resource may be an OFDM symbol, a system frame number, a time slot number, etc.
  • the terminal device may obtain the time domain resource occupied by the first antenna port corresponding to the time domain resource occupied by the first antenna port in the corresponding relationship between at least one first random number and at least one time domain resource.
  • the first random number may be obtained from the terminal device.
  • the first correspondence 1 includes: the first random number 1 corresponds to the time domain resource 1, and the first random number 2 corresponds to the time domain resource 2.
  • the first antenna port of the terminal device occupies the time domain resource 1, and the terminal device obtains the first random number as the first random number 1 according to the first correspondence 1 and the first antenna port of the terminal device 1 occupies the time domain resource 1.
  • each first correspondence (which can be called a pattern) includes a correspondence between n time domain resources and n first random numbers
  • the first random numbers corresponding to n time domain resources ⁇ y 1 , y 2 ,...y n ⁇ in sequence are ⁇ x 1 , x 2 ,...x n ⁇
  • the first random numbers corresponding to the time domain resources in sequence are ⁇ x (1+a)modn , x (2+a)modn ,...x (M+a)modn ⁇ .
  • the values of ⁇ x 1 , x 2 ,...x n ⁇ belong to ⁇ 0,1,...,K TC -1 ⁇
  • K TC is the comb tooth degree.
  • a 1.
  • the first random number obtained by the terminal device changes randomly, and then by using the first random number to determine the comb teeth occupied by the first antenna port of the terminal device, the terminal device can occupy the first antenna port at different transmission times.
  • the comb teeth change randomly.
  • one frequency hopping cycle may include at least one reference signal transmission, and the corresponding relationship between at least one first random number and at least one time domain resource may include: at least one first random number and at least one reference signal transmission location. Correspondence between relative numbers within a frequency hopping cycle.
  • At least one first random number corresponds one-to-one to a number of at least one reference signal transmission.
  • the terminal device may obtain, based on the number of the current reference signal transmission of the first antenna port, the corresponding relationship between at least one first random number and the relative number within a frequency hopping cycle in which the at least one reference signal is transmitted.
  • the first random number may be obtained, based on the number of the current reference signal transmission of the first antenna port, the corresponding relationship between at least one first random number and the relative number within a frequency hopping cycle in which the at least one reference signal is transmitted. The first random number.
  • the correspondence between at least one first random number and at least one time domain resource may include: a correspondence between at least one first random number and the index of at least one frequency hopping cycle.
  • At least one first random number corresponds one-to-one to an index of at least one frequency hopping cycle.
  • the terminal device may obtain the first random number from the corresponding relationship between at least one first random number and the index of at least one frequency hopping cycle according to the index of the frequency hopping cycle in which the time domain resource occupied by the first antenna port is located. .
  • the network device may indicate different first corresponding relationships to terminal devices in different cells.
  • the network equipment indicates different first correspondence relationships to the terminal equipment in different cells, thereby causing the terminal equipment causing interference to the terminal equipment to change randomly, realizing frequency domain interference randomization and achieving better interference randomization effect.
  • the occupation of the antenna port p i determined based on the first offset Index of comb teeth can be satisfied: or, in, Represents the comb tooth offset, K TC represents the number of comb teeth, and Q 1 represents the first random number or the first offset.
  • the index of the occupied comb teeth of the antenna port p i of the terminal device determined according to the first random number Formula (10) in the above S502 can be satisfied, and Q 1 represents the first random number or the first offset.
  • Q 1 represents the first random number or the first offset.
  • the comb teeth occupied by the first antenna port are determined according to the first offset (the first offset is determined based on the time domain resources occupied by the first antenna port, and the first offset is a first random number).
  • the first offset is determined based on the time domain resources occupied by the first antenna port, and the first offset is a first random number.
  • the fifth random number is determined based on at least the frequency domain resources occupied by the first antenna port, which may include: the fifth random number is determined based on the frequency domain resources occupied by the first antenna port and a pseudo-random sequence.
  • the pseudo-random sequence can be c().
  • the fifth random number may satisfy formula (28) or formula (29).
  • Q 3 represents the fifth random number
  • the mathematical symbol ⁇ represents the summation
  • the mathematical symbol mod represents the modulus
  • c() is a pseudo-random sequence
  • k represents the number occupied by the first antenna port.
  • K TC represents the number of comb teeth.
  • m in the above formula (28) or formula (29) has nothing to do with the sequence length M.
  • m is an integer between 0 and 7 as an example. It should be noted that this application does not limit the value range of m in the above formula (28) or formula (29).
  • the fifth random number is determined based on at least the frequency domain resource occupied by the first antenna port, which may include: the fifth random number is determined based on a second correspondence among a plurality of second correspondences, and the third Determined by the frequency domain resources occupied by an antenna port.
  • one second correspondence among the plurality of second correspondences may be indicated by the network device to the terminal device.
  • the configuration information of the reference signal may include indication information indicating a second correspondence among a plurality of second correspondences, and/or a second correspondence among a plurality of second correspondences.
  • the network device may select a second correspondence relationship from a plurality of second correspondence relationships and indicate the selected second correspondence relationship to the terminal device.
  • a second correspondence relationship may include a relationship between at least a fifth random number and at least one frequency domain resource. corresponding relationship.
  • At least one fifth random number corresponds one-to-one to at least one frequency domain resource.
  • the terminal device may obtain the frequency domain resource occupied by the first antenna port corresponding to the corresponding relationship between the at least one fifth random number and the at least one frequency domain resource according to the frequency domain resource occupied by the first antenna port.
  • the fifth random number may be obtained.
  • the specific implementation of the second correspondence relationship is similar to the first correspondence relationship, and can be explained with reference to the first correspondence relationship, which will not be described again here.
  • the fifth random number obtained by the terminal device changes randomly, and then by using the fifth random number to determine the comb teeth occupied by the first antenna port of the terminal device, the terminal device can occupy different frequencies at different transmission times.
  • the frequency domain resources (comb teeth) change randomly.
  • the network device may indicate different second corresponding relationships to terminal devices in different cells.
  • the network equipment indicates different second correspondence relationships to the terminal equipment in different cells, thereby causing the terminal equipment causing interference to the terminal equipment to change randomly, realizing interference randomization and achieving better interference randomization effect.
  • the occupation of the antenna port p i is determined based on the fifth random number.
  • Index of comb teeth The following formula can be satisfied: or, in, Represents the comb tooth offset, K TC represents the number of comb teeth, and Q 3 represents the fifth random number or the first offset.
  • the index of the occupied comb teeth of the antenna port p i of the terminal device determined according to the fifth random number
  • the following formula (30) can be satisfied.
  • Equation (30) Represents the comb tooth offset, K TC represents the number of comb teeth, and Q 3 represents the fifth random number or the first offset.
  • the following describes the comb teeth occupied by the antenna port of each terminal device after determining the comb teeth occupied by the first antenna port based on at least the fifth random number in Table 11.
  • the comb teeth occupied by each antenna port (antenna port p 0 to antenna port p 3 ) of UE1 to UE8 are determined based on at least the fifth random number.
  • the comb teeth occupied by the antenna port of each UE can be as follows: As shown in Table 11.
  • the antenna ports of UE1, UE2, UE5 and UE6 occupy comb teeth 1 and 3, and the antenna ports of UE3, UE4, UE7 and UE8 occupy the same comb teeth 2 and 4.
  • the antenna port of UE1 on comb teeth 1 and 3 will be interfered by the antenna ports of UE5 and UE6.
  • the antenna port p 0 and the antenna port p 2 of each UE occupy one comb tooth
  • the antenna port p 1 and the antenna port p 3 occupy one comb tooth.
  • the antenna port p The comb teeth occupied by antenna port 0 and antenna port p 2 are the comb teeth with the smallest comb tooth index among the two comb teeth occupied by the UE.
  • the comb teeth occupied by antenna port p 1 and antenna port p 3 are the two comb teeth occupied by the UE.
  • Medium comb has a larger tooth index.
  • Table 11 shows the UE and the corresponding base sequence and the corresponding comb teeth, and the antenna port is not shown.
  • the antenna ports of UE1, UE2, UE7 and UE8 occupy comb teeth 1 and 3
  • the antenna ports of UE3, UE4, UE5 and UE6 occupy comb teeth 2 and 4.
  • the antenna port of UE1 will be interfered by the antenna ports of UE7 and UE8 on comb teeth 1 and 3.
  • the antenna ports of UE1, UE2, UE7 and UE8 occupy comb teeth 2 and 4
  • the antenna ports of UE3, UE4, UE5 and UE6 occupy comb teeth 7 and 8
  • the antenna port of UE1 is in the comb Teeth 2 and comb teeth 4 will be interfered by the antenna ports of UE7 and UE8.
  • frequency domain resource 1 can be replaced by frequency domain unit 1, subband 1, frequency hopping bandwidth 1, or frequency hopping bandwidth 1, etc.
  • Frequency domain resource 2 to frequency domain resource n are similar, not one by one. Elaborate.
  • the comb teeth occupied by the antenna port of UE1 change randomly, so that the UEs that cause interference to UE1 change randomly.
  • the UEs that cause interference to UE1 on some frequency domain resources are UE5 and UE1.
  • UE6, the UEs that cause interference to UE1 on certain frequency domain resources are UE7 and UE8.
  • the antenna ports that cause interference to the antenna port of UE1 change randomly, thus achieving better interference randomization effect.
  • the first offset includes a first random number and a fifth random number (the first random number is determined based on the time domain resource occupied by the first antenna port, and the fifth random number is determined based on the time domain resource occupied by the first antenna port).
  • the index of the occupied comb teeth of the antenna port p i is determined according to the number of comb teeth, the offset of the comb teeth, the first random number and the fifth random number. The following formula can be satisfied: or, in, Represents the comb tooth offset, K TC represents the number of comb teeth, Q 1 represents the first random number, and Q 3 represents the fifth random number.
  • the index of the occupied comb teeth of the antenna port p i of the terminal device determined according to the number of comb teeth, the offset of the comb teeth, the first random number and the fifth random number.
  • the following formula (31) can be satisfied.
  • Equation (31) Represents the comb tooth offset, K TC represents the number of comb teeth, Q 1 represents the first random number, and Q 3 represents the fifth random number.
  • the following describes the comb teeth occupied by the antenna port of each terminal device after determining the comb teeth occupied by the first antenna port based on the first random number and the fifth random number.
  • each antenna terminal of UE1 to UE8 is determined based on the first random number and the fifth random number.
  • the comb teeth occupied by the antenna port (antenna port p 0 to antenna port p 3 ).
  • the comb teeth occupied by the antenna port of each UE may be a combination of the above Table 6 and Table 11, for example, as shown in Table 12.
  • the antenna ports of UE1, UE2, UE5, and UE6 occupy comb teeth 1 and 3, and the antenna ports of UE3, UE4, UE7, and UE8 occupy the same comb teeth 2 and 4.
  • the antenna port of UE1 on comb teeth 1 and 3 will be interfered by the antenna ports of UE5 and UE6.
  • the antenna ports of UE1, UE2, UE7 and UE8 occupy comb teeth 1 and 3, and the antenna ports of UE3, UE4, UE5 and UE6 occupy comb teeth 2 and 4.
  • the antenna port of UE1 will be interfered by the antenna ports of UE7 and UE8 on comb teeth 1 and 3.
  • the antenna ports of UE1, UE2, UE7 and UE8 occupy comb teeth 2 and 4
  • the antenna ports of UE3, UE4, UE5 and UE6 occupy comb teeth 7 and 8
  • the antenna ports of UE1 occupy comb teeth 7 and 8.
  • the antenna ports on Comb 2 and Comb 4 will be interfered by the antenna ports of UE7 and UE8.
  • the comb teeth occupied by UE1's antenna port change randomly, so that the UEs that cause interference to UE1 change randomly, and some transmission times and frequency domain resources cause interference to UE1.
  • the interfering UEs are UE5 and UE6.
  • the UEs that interfere with UE1 at certain transmission times and frequency domain resources are UE7 and UE8.
  • the antenna ports that interfere with the antenna port of UE1 change randomly, thus achieving better interference. Randomization effect.
  • the comb teeth occupied by the first antenna port may be determined based on a tenth corresponding relationship among multiple tenth corresponding relationships and the time domain resource occupied by the first antenna port.
  • one tenth correspondence among the plurality of tenth correspondences may be indicated by the network device to the terminal device.
  • the configuration information of the reference signal may include indication information indicating a tenth correspondence among a plurality of tenth correspondences, and/or a tenth correspondence among a plurality of tenth correspondences.
  • the network device may select a tenth correspondence from multiple tenth correspondences and indicate the selected tenth correspondence to the terminal device.
  • the network device may indicate different tenth corresponding relationships to terminal devices in different cells.
  • a tenth corresponding relationship may include a pairing between at least one comb tooth value and at least one time domain resource. should be related.
  • At least one comb tooth corresponds to at least one time domain resource.
  • each tenth correspondence (which can be called a pattern) includes correspondences between n time domain resources and n comb teeth values
  • n The first random numbers corresponding to the time domain resources ⁇ y 1 , y 2 ,...y n ⁇ in sequence are ⁇ cb 1 ,cb 2 ,...cb n ⁇ , then for the n times of the k+1 first correspondence
  • the comb values corresponding to domain resources in sequence are ⁇ cb (1+a)modn , cb (2+a)modn ,...cb (M+a)modn ⁇ .
  • the values of ⁇ cb 1 ,cb 2 ,...cb n ⁇ belong to ⁇ 0,1,...,K TC -1 ⁇
  • K TC is the comb tooth degree.
  • a 1.
  • the terminal device may obtain the comb tooth occupied by the first antenna port in the corresponding relationship between at least one comb tooth and at least one time domain resource according to the time domain resource occupied by the first antenna port.
  • Table 13 Multiple tenth correspondences can be shown in Table 13.
  • the number of tenth correspondences is 4, each tenth correspondence includes 4 time domain resources, and the number of comb teeth is 4.
  • Correspondence 1 to Correspondence 4 are different from each other. See Table 13 for details.
  • transmission time 1 can be replaced by OFDM symbol 1, system frame number 1, timeslot number 1, time domain resource 1, time unit 1, etc.
  • Transmission time 2 to transmission time 4 are similar to transmission time 1, but not Explain one by one.
  • the tenth correspondence also includes sending time 1 to sending time 8.
  • the comb teeth corresponding to sending time 5 to sending time 8 are the same as the comb teeth corresponding to sending time 1 to sending time 4 respectively.
  • transmission time 1 to transmission time 4 correspond to comb teeth 1 to comb teeth 4 respectively
  • transmission time 5 to transmission time 8 correspond to comb teeth 1 to comb teeth 4 respectively.
  • the terminal device uses a tenth correspondence among multiple tenth correspondences and the time domain resource occupied by the first antenna port to obtain the comb teeth occupied by the first antenna port, so that the comb teeth occupied at different transmission times can be Teeth vary randomly.
  • the network equipment allocates different tenth correspondences (patterns) to terminal equipment in different cells, thereby causing random changes in the terminal equipment causing interference to the terminal equipment, achieving frequency domain interference randomization, and achieving better interference randomization effects. .
  • the comb teeth occupied by the first antenna port may be determined based on an eleventh correspondence among multiple eleventh correspondences and the frequency domain resource occupied by the first antenna port.
  • one eleventh correspondence among the plurality of eleventh correspondences may be indicated by the network device to the terminal device.
  • the configuration information of the reference signal may include indication information indicating an eleventh correspondence among a plurality of eleven correspondences, and/or an eleventh correspondence among a plurality of eleven correspondences.
  • the network device may select an eleventh correspondence from a plurality of eleventh correspondences and indicate the selected eleventh correspondence to the terminal device.
  • the network device may indicate different eleventh correspondence relationships to terminal devices in different cells.
  • an eleventh correspondence may include a correspondence between at least one comb tooth and at least one frequency domain resource.
  • At least one comb tooth corresponds to at least one frequency domain resource.
  • each tenth correspondence (which can be called a pattern) includes correspondences between n frequency domain resources and n comb teeth values
  • n The first random numbers corresponding to the frequency domain resources ⁇ y 1 , y 2 ,...y n ⁇ in sequence are ⁇ cb 1 ,cb 2 ,...cb n ⁇ , then for the n frequencies of the k+1th first correspondence
  • the comb values corresponding to domain resources in sequence are ⁇ cb (1+a)modn , cb (2+a)modn ,...cb (M+a)modn ⁇ .
  • the values of ⁇ cb 1 ,cb 2 ,...cb n ⁇ belong to ⁇ 0,1,...,K TC -1 ⁇
  • K TC is the comb tooth degree.
  • a 1.
  • the terminal device may obtain the comb teeth occupied by the first antenna port in the corresponding relationship between at least one comb tooth and at least one frequency domain resource according to the frequency domain resources occupied by the first antenna port.
  • Table 14 Multiple eleventh correspondences can be shown in Table 14.
  • the number of eleventh correspondences is 4, each eleventh correspondence includes 4 time domain resources, and the number of comb teeth is 4. , the eleventh correspondence 1 to the eleventh correspondence 4 are different from each other, see Table 14 for details.
  • frequency domain resource 1 can be replaced by frequency domain unit 1, subband 1, frequency hopping bandwidth 1, or frequency hopping bandwidth 1, etc.
  • Frequency domain resource 2 to frequency domain resource 4 are similar, not one by one. Elaborate.
  • the eleventh corresponding relationship also includes frequency domain resource 1 to frequency domain resource 8, frequency domain resource 5 to frequency domain resource 8 respectively corresponding comb teeth, and frequency domain resource 1 to frequency domain resource 4 respectively.
  • the corresponding comb teeth are the same.
  • the terminal device uses one of the eleventh correspondences among the eleventh correspondences and the frequency domain resource occupied by the first antenna port to obtain the comb teeth occupied by the first antenna port, so that different frequency domain resources can be used
  • the occupied comb teeth vary randomly.
  • the network equipment allocates different eleventh correspondences (patterns) to the terminal equipment in different cells, thereby causing the terminal equipment causing interference to the terminal equipment to change randomly, realizing interference randomization and achieving better interference randomization effect.
  • the comb teeth occupied by the first antenna port may be determined based on a twelfth correspondence among multiple twelfth correspondences and the time domain resources and frequency domain resources occupied by the first antenna port.
  • one of the twelfth correspondences among the plurality of twelfth correspondences may be a communication from the network device to the terminal device.
  • the configuration information of the reference signal may include indication information indicating a twelfth correspondence among a plurality of twelfth correspondences, and/or a twelfth correspondence among a plurality of twelfth correspondences.
  • the network device may select a twelfth correspondence relationship from a plurality of twelfth correspondence relationships, and indicate the selected twelfth correspondence relationship to the terminal device.
  • the network device may indicate different twelfth corresponding relationships to terminal devices in different cells.
  • a twelfth correspondence may include a correspondence between at least one comb tooth and at least one time domain resource and at least one frequency domain resource.
  • At least one comb tooth corresponds to at least one time domain resource and at least one frequency domain resource.
  • the terminal device may obtain the first antenna in the corresponding relationship between at least one comb tooth and at least one time domain resource and at least one frequency domain resource according to the time domain resource and frequency domain resource occupied by the first antenna port. Port occupied comb teeth.
  • the plurality of twelfth corresponding relationships may be a combination of the above-mentioned Table 13 and Table 14, for example, as shown in Table 15.
  • each twelfth correspondence includes 4 time domain resources and 4 frequency domain resources, and the number of comb teeth is 4.
  • the twelfth correspondences 1 to The twelfth correspondences 4 are different from each other, see Table 15 for details.
  • the terminal device uses one of the plurality of twelfth correspondences and the frequency domain resources and time domain resources occupied by the first antenna port to obtain the comb teeth occupied by the first antenna port, so that the first The comb teeth occupied by the antenna port in different frequency domain resources and time domain resources change randomly.
  • the network equipment allocates different twelfth correspondence relationships (patterns) to terminal equipment in different cells, thereby causing random changes in the terminal equipment causing interference to the terminal equipment, realizing interference randomization and achieving better interference randomization effects.
  • the M antenna ports may also include at least one second antenna port.
  • the second antenna port please refer to the corresponding description in S502 above, and will not be described again here.
  • the comb teeth occupied by the second antenna port may be determined based on at least the second offset.
  • the second offset is different from the first offset.
  • the second offset may be an integer greater than or equal to 0.
  • the comb teeth occupied by the second antenna port are determined based on at least the second offset, which may include: the comb teeth occupied by the second antenna port may be determined based on the initial value and the first value of the comb teeth occupied by the second antenna port. Two offsets are determined.
  • the initial value of the comb teeth occupied by the second antenna port may be determined based on the comb tooth offset, or the initial value of the comb teeth occupied by the second antenna port may be determined based on the number of comb teeth and the comb tooth offset. Quantity determined.
  • the initial value of the comb teeth occupied by the second antenna port can satisfy the above formula (2).
  • the comb teeth occupied by the second antenna port may be determined based on the comb tooth offset and the second offset, or the comb teeth occupied by the second antenna port may be determined based on the number of comb teeth and the comb tooth offset. amount and the second offset.
  • the second offset may be determined based on at least the time domain resources occupied by the second antenna port and/or the frequency domain resources occupied by the second antenna port.
  • the time domain resource occupied by the second antenna port may include one or more OFDM symbols.
  • the time domain resource occupied by the second antenna port may include one or more OFDM symbols determined according to one or more of the following parameters: the system frame number corresponding to the second antenna port, the time corresponding to the second antenna port The slot number and the OFDM symbol number corresponding to the second antenna port.
  • This application does not limit the number of OFDM symbols included in the time domain resources occupied by the second antenna port.
  • the frequency domain resources occupied by the second antenna port may include one or more sub-bandwidths.
  • one or more sub-bandwidths included in the frequency domain resources occupied by the second antenna port are determined based on one or more of the following parameters: the index of the frequency hopping bandwidth corresponding to the second antenna port, and the second antenna port The index of the corresponding sending bandwidth.
  • all the first antenna ports included in the terminal device belong to the same reference signal resource
  • all the second antenna ports included in the terminal device belong to the same reference signal resource
  • the reference signal resources to which all the first antenna ports belong are the same as those of all the second antenna ports.
  • the reference signal resources to which the antenna ports belong may be the same or different.
  • the second offset may include a second random number and/or a sixth random number.
  • the second random number may be determined based on at least the time domain resource occupied by the second antenna port.
  • the second random number can be represented by Q 2 .
  • the second random number may be a random number greater than or equal to 0.
  • the sixth random number may be determined based on at least the frequency domain resource occupied by the second antenna port.
  • the sixth random number can be represented by Q 4 .
  • the sixth random number may be a random number greater than or equal to 0.
  • the comb teeth occupied by the second antenna port may be determined based on the second random number and/or the sixth random number.
  • the comb teeth occupied by the second antenna port may be determined based on the number of comb teeth, the comb tooth offset, and the second random number, or the comb teeth occupied by the second antenna port may be determined based on the number of comb teeth, the comb tooth offset, and the second random number.
  • the tooth offset and the sixth random number are determined, or the comb teeth occupied by the second antenna port may be determined based on the number of comb teeth, the comb tooth offset, the second random number and the sixth random number.
  • the second random number is determined based on at least the time domain resource occupied by the second antenna port, which may include: the second random number is determined based on the time domain resource occupied by the second antenna port and a pseudo-random sequence.
  • the second random number is determined based on the time domain resources occupied by the second antenna port and the pseudo-random sequence.
  • the second random number can also be determined based on one or more of the following parameters: the time domain contained in each system frame. The number of slots, the number of OFDM symbols contained in each slot, the number of comb teeth and the offset of the comb teeth.
  • the first random number may satisfy formula (11), formula (12), formula (13), or formula (14) in the above S502, which will not be described again here.
  • Q 2 represents the second random number
  • the mathematical symbol ⁇ represents the sum
  • the mathematical symbol mod represents the modulus
  • c() is pseudo Random sequence
  • n f represents the system frame number corresponding to the second antenna port (or, n f represents the system frame number of the time domain resource occupied by the second antenna port)
  • n f represents the system frame number of the time domain resource occupied by the second antenna port
  • l 0 represents the index of the starting OFDM symbol in one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • l′ represents the second antenna
  • K TC represents the number of
  • the second random number is determined based on at least the time domain resource occupied by the second antenna port, which may include: the second random number is determined based on a third correspondence among a plurality of third correspondences, and a third correspondence.
  • the time domain resources occupied by the two antenna ports are determined.
  • one third correspondence among the plurality of third correspondences may be indicated by the network device to the terminal device.
  • the configuration information of the reference signal may include indication information indicating a third correspondence among a plurality of third correspondences, and/or a third correspondence among a plurality of third correspondences.
  • the network device may select a third correspondence relationship from a plurality of third correspondence relationships and indicate the selected third correspondence relationship to the terminal device.
  • a third correspondence may include: a correspondence between at least one second random number and at least one time domain resource.
  • the specific implementation of the third correspondence relationship is similar to the first correspondence relationship, and reference may be made to the above description of the first correspondence relationship, which will not be described again here.
  • At least one second random number corresponds one-to-one to at least one time domain resource.
  • the time domain resource may be an OFDM symbol, a system frame number, a time slot number, etc.
  • the terminal device may obtain the time domain resource occupied by the second antenna port corresponding to the corresponding relationship between the at least one second random number and the at least one time domain resource according to the time domain resource occupied by the second antenna port.
  • the second random number may be obtained from the terminal device.
  • the second random number obtained by the terminal device changes randomly, and then by using the second random number to determine the comb teeth occupied by the second antenna port of the terminal device, the third random number of the terminal device at different sending moments can be determined.
  • the frequency domain resources (comb teeth) occupied by the two antenna ports change randomly.
  • one frequency hopping cycle may include at least one reference signal transmission, and the corresponding relationship between at least one second random number and at least one time domain resource may include: at least one second random number and at least one reference signal transmission location. Correspondence between relative numbers within a frequency hopping cycle.
  • At least one second random number corresponds one-to-one to the number of at least one reference signal transmission.
  • the terminal device may obtain, based on the number of the current reference signal transmission of the second antenna port, the corresponding relationship between at least one second random number and the relative number within a frequency hopping cycle in which the at least one reference signal is transmitted.
  • the second random number may be obtained, based on the number of the current reference signal transmission of the second antenna port, the corresponding relationship between at least one second random number and the relative number within a frequency hopping cycle in which the at least one reference signal is transmitted. The second random number.
  • the correspondence between at least one second random number and at least one time domain resource may include: a correspondence between at least one second random number and the index of at least one frequency hopping cycle.
  • At least one second random number corresponds one-to-one to the index of at least one frequency hopping cycle.
  • the terminal device may obtain the second random number from the corresponding relationship between at least one second random number and the index of at least one frequency hopping cycle according to the index of the frequency hopping cycle in which the time domain resource occupied by the second antenna port is located.
  • the network device may indicate different second corresponding relationships to terminal devices in different cells.
  • the network equipment indicates different second correspondence relationships to the terminal equipment in different cells, thereby causing the terminal equipment causing interference to the terminal equipment to change randomly, realizing frequency domain interference randomization and achieving better interference randomization effect.
  • the sixth random number is determined based on at least the frequency domain resources occupied by the second antenna port, which may include: the sixth random number is determined based on the frequency domain resources occupied by the second antenna port and a pseudo-random sequence.
  • the pseudo-random sequence can be c().
  • the sixth random number may satisfy formula (32) or formula (33).
  • Q 4 represents the sixth random number
  • the mathematical symbol ⁇ represents the sum
  • the mathematical symbol mod represents the modulus
  • c() is a pseudo-random sequence
  • k represents the number occupied by the second antenna port.
  • K TC represents the number of comb teeth.
  • m in the above formula (32) or formula (33) has nothing to do with the sequence length M.
  • m is an integer between 0 and 7 as an example. It should be noted that this application does not limit the value range of m in the above formula (32) or formula (33).
  • the sixth random number is determined based on at least the frequency domain resources occupied by the second antenna port, which may include: the sixth random number is determined based on a fourth correspondence among a plurality of fourth correspondences, and a fourth correspondence.
  • the frequency domain resources occupied by the two antenna ports are determined.
  • one fourth correspondence among the plurality of fourth correspondences may be indicated by the network device to the terminal device.
  • the configuration information of the reference signal may include indication information indicating a fourth correspondence among a plurality of fourth correspondences, and/or a fourth correspondence among a plurality of fourth correspondences.
  • the network device may select a fourth correspondence relationship from a plurality of fourth correspondence relationships and indicate the selected fourth correspondence relationship to the terminal device.
  • a fourth correspondence may include a correspondence between at least one sixth random number and at least one frequency domain resource.
  • At least one sixth random number corresponds one-to-one to at least one frequency domain resource.
  • the terminal device may obtain the frequency domain resource occupied by the second antenna port corresponding to the corresponding relationship between the at least one sixth random number and the at least one frequency domain resource according to the frequency domain resource occupied by the second antenna port.
  • the sixth random number may be obtained.
  • the specific implementation of the fourth correspondence relationship is similar to the first correspondence relationship, and can be explained with reference to the first correspondence relationship, which will not be described again here.
  • the sixth random number obtained by the terminal device changes randomly, and then by using the sixth random number to determine the comb teeth occupied by the second antenna port of the terminal device, the terminal device at different transmission times can be
  • the frequency domain resources (comb teeth) occupied by the second antenna port change randomly.
  • the network device may indicate different fourth corresponding relationships to terminal devices in different cells.
  • the network equipment indicates different fourth correspondence relationships to the terminal equipment in different cells, thereby causing the terminal equipment causing interference to the terminal equipment to change randomly, realizing interference randomization and achieving better interference randomization effect.
  • the second offset may be the sum of the first offset and the third offset.
  • the third offset may be an integer greater than or equal to 0.
  • the third offset may be determined based on at least time domain resources occupied by the second antenna port and/or frequency domain resources occupied by the second antenna port.
  • time domain resources occupied by the second antenna port and the frequency domain resources occupied by the second antenna port please refer to the above description and will not be described again here.
  • the third offset may include a third random number and/or a seventh random number.
  • the third random number may be determined based on at least the time domain resource occupied by the second antenna port.
  • the third random number may be represented by ⁇ .
  • the third random number may be a random number greater than or equal to 0.
  • the seventh random number is determined based on at least the frequency domain resource occupied by the second antenna port.
  • the seventh random number can be represented by ⁇ 1 .
  • the seventh random number may be a random number greater than or equal to 0.
  • the comb teeth occupied by the second antenna port may be determined based on the third random number and/or the seventh random number.
  • the comb teeth occupied by the second antenna port may be determined based on the number of comb teeth, the comb tooth offset, and the third random number, or the comb teeth occupied by the second antenna port may be determined based on the number of comb teeth, the comb tooth offset, and the third random number.
  • the tooth offset and the seventh random number are determined, or the comb teeth occupied by the second antenna port may be determined based on the number of comb teeth, the comb tooth offset, the third random number and the seventh random number.
  • the third random number is determined based on at least the time domain resources occupied by the second antenna port, which may include: the third random number is determined based on the time domain resources occupied by the second antenna port and a pseudo-random sequence.
  • the third random number is determined based on the time domain resources occupied by the second antenna port and the pseudo-random sequence.
  • the third random number can also be determined based on one or more of the following parameters: the time domain contained in each system frame. The number of slots, the number of OFDM symbols contained in each slot, the number of comb teeth and the offset of the comb teeth.
  • the third random number can satisfy formula (15), formula (16), formula (17), formula (18), formula (34), or formula (35) in the above S502, which will not be described again here. .
  • represents the third random number
  • the mathematical symbol ⁇ represents the sum
  • the mathematical symbol mod represents modulus
  • c() is a pseudo-random sequence
  • n f represents the system frame number corresponding to the second antenna port (or, n f represents the system frame number of the time domain resource occupied by the second antenna port)
  • Indicates the number of time slots contained in each system frame Indicates the number of OFDM symbols contained in each time slot
  • l 0 represents the index of the starting OFDM symbol in one or more OFDM symbols included in the time domain resource occupied by the second antenna port
  • l′ represents the second antenna The relative index of one OFDM symbol among the one or more OFDM symbols included in the time domain resource occupied by the port (or, l′ represents the relative index of the OFDM symbol of the time domain resource
  • the third random number is determined based on at least the time domain resource occupied by the second antenna port, including: the third random number is determined based on a fifth correspondence among a plurality of fifth correspondences, and the second The time domain resources occupied by the antenna port are determined.
  • one fifth correspondence among the plurality of fifth correspondences may be indicated by the network device to the terminal device.
  • the configuration information of the reference signal may include indicating a fifth correspondence among a plurality of fifth correspondences. relationship indication information, and/or one fifth correspondence among multiple fifth correspondences.
  • the network device may select a fifth correspondence relationship from a plurality of fifth correspondence relationships and indicate the selected fifth correspondence relationship to the terminal device.
  • a fifth correspondence may include: a correspondence between at least a third random number and at least one time domain resource.
  • At least one third random number corresponds one-to-one to at least one time domain resource.
  • the time domain resource may be an OFDM symbol, a system frame number, a time slot number, etc.
  • the terminal device may obtain the time domain resource occupied by the second antenna port corresponding to the corresponding relationship between the at least one third random number and the at least one time domain resource according to the time domain resource occupied by the second antenna port.
  • the third random number may be obtained.
  • the specific implementation of the fifth correspondence relationship is similar to the first correspondence relationship, and can be explained with reference to the first correspondence relationship, which will not be described again here.
  • the third random number obtained by the terminal device changes randomly, and then by using the third random number to determine the comb teeth occupied by the second antenna port of the terminal device, the number of comb teeth occupied by the terminal device at different sending moments can be
  • the frequency domain resources (comb teeth) change randomly.
  • one frequency hopping cycle may include at least one reference signal transmission, and the corresponding relationship between at least one third random number and at least one time domain resource may include: at least one third random number and at least one reference signal transmission location. Correspondence between relative numbers within a frequency hopping cycle.
  • At least one third random number corresponds one-to-one to the number of at least one reference signal transmission.
  • the terminal device may obtain, based on the number of the current reference signal transmission of the second antenna port, the corresponding relationship between at least a third random number and the relative number within a frequency hopping cycle in which the at least one reference signal is transmitted.
  • the third random number may be obtained, based on the number of the current reference signal transmission of the second antenna port, the corresponding relationship between at least a third random number and the relative number within a frequency hopping cycle in which the at least one reference signal is transmitted. The third random number.
  • the corresponding relationship between at least one third random number and at least one time domain resource may include: the corresponding relationship between at least one third random number and the index of at least one frequency hopping cycle.
  • At least one third random number corresponds one-to-one to the index of at least one frequency hopping cycle.
  • the terminal device may obtain the third random number from the correspondence between at least one third random number and the index of at least one frequency hopping cycle according to the index of the frequency hopping cycle in which the time domain resource occupied by the second antenna port is located. .
  • the network device may indicate different fifth corresponding relationships to terminal devices in different cells.
  • the network equipment indicates different fifth correspondence relationships to the terminal equipment in different cells, thereby causing the terminal equipment causing interference to the terminal equipment to change randomly, realizing frequency domain interference randomization and achieving better interference randomization effect.
  • the seventh random number is determined based on at least the frequency domain resources occupied by the second antenna port, which may include: the seventh random number is determined based on the frequency domain resources occupied by the second antenna port and a pseudo-random sequence.
  • the pseudo-random sequence can be c().
  • the seventh random number may satisfy formula (36), formula (37), or formula (38).
  • ⁇ 1 represents the seventh random number
  • the mathematical symbol ⁇ represents the summation
  • c () is a pseudo-random sequence
  • the mathematical symbol mod represents the modulus
  • k represents the third Frequency domain occupied by the two antenna ports
  • the index of the frequency hopping bandwidth and/or the index of the transmission bandwidth corresponding to the resource, K TC represents the number of comb teeth.
  • m in the above formula (36), formula (37) or formula (38) has nothing to do with the sequence length M.
  • the value of m in the above formula (36), formula (37) or formula (38) is An integer between 0 and 7 is used as an example for explanation. This application does not limit the value range of m in the above formula (36), formula (37) or formula (38).
  • the seventh random number is determined based on at least the frequency domain resource occupied by the second antenna port, which may include: the seventh random number is determined based on a sixth correspondence among a plurality of sixth correspondences, and a sixth correspondence.
  • the frequency domain resources occupied by the two antenna ports are determined.
  • one sixth correspondence among the plurality of sixth correspondences may be indicated by the network device to the terminal device.
  • the configuration information of the reference signal may include indication information indicating a sixth correspondence among a plurality of sixth correspondences, and/or a sixth correspondence among a plurality of sixth correspondences.
  • the network device may select a sixth correspondence relationship from a plurality of sixth correspondence relationships and indicate the selected sixth correspondence relationship to the terminal device.
  • a sixth correspondence includes a correspondence between at least one seventh random number and at least one frequency domain resource.
  • At least one seventh random number corresponds one-to-one to at least one frequency domain resource.
  • the terminal device may obtain the frequency domain resource occupied by the second antenna port corresponding to the corresponding relationship between the at least one seventh random number and the at least one frequency domain resource according to the frequency domain resource occupied by the second antenna port.
  • the seventh random number may be obtained.
  • the specific implementation of the sixth correspondence relationship is similar to the first correspondence relationship, and can be explained with reference to the first correspondence relationship, which will not be described again here.
  • the seventh random number obtained by the terminal device changes randomly, and then by using the seventh random number to determine the comb teeth occupied by the second antenna port of the terminal device, the terminal device at different transmission times can be
  • the frequency domain resources (comb teeth) occupied by the second antenna port change randomly.
  • the network device may indicate different sixth corresponding relationships to terminal devices in different cells.
  • the network equipment indicates different sixth corresponding relationships to the terminal equipment in different cells, thereby causing the terminal equipment causing interference to the terminal equipment to change randomly, realizing interference randomization and achieving a better interference randomization effect.
  • This application uses the first offset to determine the comb teeth occupied by the first antenna port of the terminal device, and uses the second offset to determine the comb teeth occupied by the second antenna port of the terminal device, so that the terminal devices at different transmission times can
  • the comb teeth occupied by the antenna port will change randomly, and the intervals between the multiple comb teeth occupied by the antenna port of the same terminal device can also change randomly.
  • the antenna ports that cause interference to the antenna ports of the terminal equipment at different transmission times are random.
  • the antenna ports that cause interference to the antenna ports of the terminal equipment occupying different comb teeth at the same transmission time may not be the antenna ports of the same terminal equipment.
  • interference randomization can be achieved, and the degree of freedom of resources occupied by the antenna port of the terminal device can be further improved, thereby further improving the interference randomization effect.
  • the antenna port p i determined based on the second offset
  • the index of the occupied comb teeth The following formula can be satisfied: or, in, Represents the comb tooth offset, K TC represents the number of comb teeth, and Q 2 represents the second random number or second offset.
  • the antenna port p i determined based on the second offset
  • the index of the occupied comb teeth Can Satisfy the following formula: or, in, Represents the comb tooth offset, K TC represents the number of comb teeth, and Q 4 represents the sixth random number or second offset.
  • the second offset is the sum of the first offset and the third offset
  • the first offset is the first random number Q 1
  • the third offset is the third random number ⁇
  • the second offset is the sum of the first offset and the third offset
  • the first offset is the fifth random number Q 3
  • the third offset is the seventh random number ⁇ 1
  • the second offset is the sum of the first offset and the third offset.
  • the first offset includes the first random number Q 1 and the fifth random number Q 3
  • the third offset is When the third random number ⁇ and the seventh random number ⁇ 1 are included, the index of the occupied comb teeth of the antenna port p i determined according to the second offset
  • the following formula can be satisfied: Or, K TC /2+Q 1 + ⁇ +Q 3 + ⁇ 1 )mod K TC , or,
  • the comb teeth occupied by part of the antenna ports of the terminal device can be determined according to the first offset
  • the comb teeth occupied by another part of the antenna ports of the terminal device can be determined according to the second offset
  • the comb teeth occupied by the antenna port p i of the terminal device can be determined.
  • Index of comb teeth It can satisfy the above formula (19), the above formula (20), the above formula (21), the above formula (22), the following formula (39), the following formula (40), the following formula (41), the following formula (42), the following formula (43), or the following formula (44).
  • the comb teeth occupied by the antenna ports of each terminal device after the comb teeth occupied by different antenna ports are determined based on at least the first offset or the second offset are described below in conjunction with Table 7 and Figure 7 .
  • the first offset is determined based on the time domain resources occupied by the first antenna port
  • the second offset is determined based on the time domain resources occupied by the second antenna port
  • time domain resource determined the comb teeth occupied by the antenna port of each terminal device
  • the first offset is determined based on the frequency domain resources occupied by the first antenna port
  • the second offset is determined based on the frequency domain resources occupied by the second antenna port
  • the comb teeth occupied by the antenna ports of each terminal device can be referred to Table 16.
  • the comb teeth occupied by the two antenna ports of UE1 to UE8 are determined based on at least the first offset, and the comb teeth occupied by the other two antenna ports of UE1 to UE8 are determined based on at least the second offset.
  • the comb teeth occupied by the antenna port of each UE can be as shown in Table 16.
  • the antenna ports of UE1, UE2, UE5 and UE6 occupy comb teeth 1 and 3, and the antenna ports of UE3, UE4, UE7 and UE8 occupy the same comb teeth 2 and 4.
  • the antenna port of UE1 will be interfered by the antenna ports of UE5 and UE6 on comb teeth 1 and 3.
  • the antenna port p 0 and the antenna port p 2 of each UE occupy one comb tooth
  • the antenna port p 1 and the antenna port p 3 occupy one comb tooth.
  • the antenna port p The comb teeth occupied by antenna port 0 and antenna port p 2 are the comb teeth with the smallest comb tooth index among the two comb teeth occupied by the UE.
  • the comb teeth occupied by antenna port p 1 and antenna port p 3 are the two comb teeth occupied by the UE.
  • Medium comb has a larger tooth index.
  • Table 16 shows the UE and the corresponding base sequence and the corresponding comb teeth, and the antenna port is not shown.
  • the antenna ports of UE1, UE2, UE7 and UE8 occupy comb tooth 1
  • the antenna ports of UE1, UE2, UE5 and UE6 occupy comb tooth 2
  • the antenna ports of UE3, UE4, UE7 and UE8 occupy comb tooth 3.
  • the antenna ports of UE3, UE4, UE5 and UE6 occupy comb tooth 4.
  • the antenna ports of UE1 (such as antenna port p 0 and antenna port p 2 ) will be affected by the antenna ports of UE7 and UE8 (such as antenna port p 0 and antenna port p 2 ), the antenna ports of UE1 (such as antenna port p 1 and antenna port p 3 ) will be interfered by the antenna ports of UE5 and UE6 (such as antenna port p 0 and antenna port p 2 ) on comb tooth 2.
  • the antenna ports of UE1, UE2, UE7 and UE8 occupy comb tooth 1
  • the antenna ports of UE1, UE2, UE5 and UE6 occupy comb tooth 4
  • the antenna ports of UE3, UE4, UE5 and UE6 occupy comb tooth together.
  • the antenna ports of UE3, UE4, UE7 and UE8 occupy comb tooth 4.
  • the antenna ports of UE1 (such as antenna port p 0 and antenna port p 2 ) will be affected by the antenna ports of UE7 and UE8 (such as antenna port p 0 and antenna port p 2 ), the antenna ports of UE1 (such as antenna port p 1 and antenna port p 3 ) will be interfered by the antenna ports of UE5 and UE6 (such as antenna port p 0 and antenna port p 2 ) on comb tooth 4.
  • frequency domain resource 1 can be replaced by frequency domain unit 1, subband 1, frequency hopping bandwidth 1, or frequency hopping bandwidth 1, etc.
  • Frequency domain resource 2 to frequency domain resource n are similar, not one by one. Elaborate.
  • the comb teeth occupied by the antenna port of UE1 will change randomly. For example, in frequency domain resource 1, UE1 uses comb teeth 1 and comb teeth 3 to send reference signals; in frequency domain resource 2, UE1 uses comb teeth 1 and comb teeth 4 to send reference signals. The reference signal causes the antenna port causing interference to the antenna port of UE1 to change randomly.
  • the antenna ports that cause interference may not be The antenna ports of the same terminal device, for example, in frequency domain resource 2, the antenna port p 0 and antenna port p 2 of UE1 on comb 1 will be interfered by the antenna ports p 0 and antenna port p 2 of UE7 and UE8, Antenna port p 1 and antenna port p 3 of UE1 will be interfered by antenna port p 0 and antenna port p 2 of UE5 and UE6 on comb 2.
  • the degree of freedom of resources occupied by the antenna port of the terminal device can be further improved, and the randomness of interference caused to the terminal device can be further improved, thereby further improving the interference randomization effect.
  • the first offset is determined based on the time domain resources occupied by the first antenna port and the frequency domain resources occupied by the first antenna port
  • the second offset the second offset
  • the shift amount is determined based on the time domain resources occupied by the second antenna port and the frequency domain resources occupied by the second antenna port.
  • the comb teeth occupied by the two antenna ports of UE1 to UE8 are determined based on at least the first offset, and the comb teeth occupied by the other two antenna ports of UE1 to UE8 are determined based on at least the second offset.
  • the comb teeth occupied by the antenna port of each UE can be as shown in Table 17.
  • the comb teeth occupied by the antenna port of UE1 will change randomly. For example, when sending time 1 and frequency domain resource 1, UE1 uses comb tooth 1 and comb tooth 3 to send the reference signal; when sending time 2 and frequency domain resource 2 , UE1 uses comb tooth 1 and comb tooth 4 to send the reference signal, so that the antenna port that causes interference to the antenna port of UE1 changes randomly.
  • the antenna port p 0 and the antenna port p 2 of UE1 will be affected by the antenna ports p 0 of UE7 and UE8 on comb 1.
  • antenna port p 2 the antenna port p 1 and antenna port p 3 of UE1 will be interfered by the antenna port p 0 and antenna port p 2 of UE5 and UE6 on comb 2.
  • the degree of freedom of resources occupied by the antenna port of the terminal device can be further improved, and the randomness of interference caused to the terminal device can be further improved, thereby further improving the interference randomization effect.
  • the comb teeth occupied by the second antenna port may be determined based on a thirteenth correspondence among multiple thirteenth correspondences and the time domain resource occupied by the second antenna port.
  • one of the thirteenth correspondences among the plurality of thirteenth correspondences may be indicated by the network device to the terminal device.
  • the network device may indicate different thirteenth corresponding relationships to terminal devices in different cells.
  • a thirteenth correspondence may include a correspondence between at least one comb tooth and at least one time domain resource.
  • At least one comb tooth corresponds to at least one time domain resource.
  • the thirteenth corresponding relationship is different from the tenth corresponding relationship.
  • the terminal device may obtain the comb teeth occupied by the second antenna port in the corresponding relationship between at least one comb tooth and at least one time domain resource according to the time domain resources occupied by the second antenna port.
  • the specific implementation manner of the thirteenth corresponding relationship is similar to the above-mentioned tenth corresponding relationship, and reference may be made to the above explanation of the tenth corresponding relationship, which will not be described again here.
  • the comb teeth occupied by the second antenna port may be determined based on a fourteenth correspondence among multiple fourteenth correspondences and the frequency domain resource occupied by the second antenna port.
  • one fourteenth correspondence among the fourteenth correspondences may be indicated by the network device to the terminal device.
  • the network device may indicate different fourteenth corresponding relationships to terminal devices in different cells.
  • a fourteenth correspondence may include a correspondence between at least one comb tooth and at least one frequency domain resource.
  • At least one comb tooth corresponds to at least one frequency domain resource.
  • the fourteenth corresponding relationship is different from the eleventh corresponding relationship.
  • the terminal device may obtain the comb teeth occupied by the second antenna port in the corresponding relationship between at least one comb tooth and at least one frequency domain resource according to the frequency domain resources occupied by the second antenna port.
  • the specific implementation manner of the fourteenth corresponding relationship is similar to the above-mentioned eleventh corresponding relationship, and reference may be made to the above description of the eleventh corresponding relationship, which will not be described again here.
  • the comb teeth occupied by the second antenna port may be determined based on a fifteenth correspondence among multiple fifteenth correspondences and the time domain resources and frequency domain resources occupied by the second antenna port.
  • one of the fifteenth correspondences among the plurality of fifteenth correspondences may be indicated by the network device to the terminal device.
  • the network device may indicate different fifteenth corresponding relationships to terminal devices in different cells.
  • a fifteenth correspondence may include a correspondence between at least one comb tooth and at least one time domain resource and at least one frequency domain resource.
  • At least one comb tooth corresponds to at least one time domain resource and at least one frequency domain resource.
  • the fifteenth corresponding relationship is different from the twelfth corresponding relationship.
  • the terminal device can obtain the second antenna in the corresponding relationship between at least one comb tooth and at least one time domain resource and at least one frequency domain resource according to the frequency domain resource and the frequency domain resource occupied by the second antenna port. Port occupied comb teeth.
  • the specific implementation manner of the fifteenth corresponding relationship is similar to the above-mentioned twelfth corresponding relationship, and reference may be made to the above description of the twelfth corresponding relationship, which will not be described again here.
  • the comb teeth occupied by the two antenna ports of UE1 to UE8 are determined according to the tenth correspondence, the eleventh correspondence, the twelfth correspondence, or the first offset.
  • the fourteenth correspondence After the corresponding relationship or the fifteenth corresponding relationship determines the comb teeth occupied by the other two antenna ports of UE1 to UE8, at different transmission times and/or frequency domain resources, the comb teeth occupied by the antenna port of UE1 will change randomly. And at the same transmission time and frequency domain resources, it causes interference to the terminal equipment's antenna ports that occupy different comb teeth (the antenna port p 0 and the antenna port p 2 of UE1, and the antenna port p 1 and the antenna port p 3 of UE1).
  • the antenna port does not need to be the antenna port of the same terminal device, which can further increase the degree of freedom of resources occupied by the antenna port of the terminal device, further improve the randomness of interference caused to the terminal device, thereby further improving the interference randomization effect.
  • the communication method shown in Figure 13 uses the first offset to determine the comb teeth occupied by the first antenna port of the terminal device, so that the comb teeth occupied by the antenna port of the terminal device can be randomized at different transmission times and/or frequency domain resources. changes, thereby causing the antenna port of the terminal device that causes interference to the antenna port of the terminal device to change randomly, realizing interference randomization and achieving better interference randomization effect.
  • FIG. 14 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method shown in Figure 14 can be used in combination with the method shown in Figure 5 or Figure 13. The combined use can achieve better interference randomization effect.
  • the method shown in Figure 14 can also be used with the method shown in Figure 5 or Figure 13. Can be used individually.
  • the communication method includes the following steps:
  • the network device sends configuration information of the reference signal.
  • the terminal device receives the configuration information of the reference signal.
  • S1402 The terminal device sends reference signals on M antenna ports according to the configuration information.
  • the network device receives reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0, and the M antenna ports include at least one first antenna port.
  • M antenna ports include at least one first antenna port.
  • the starting position of the frequency domain resource occupied by each of the M antenna ports is determined based on at least a fourth offset.
  • the starting position of the frequency domain resource occupied by the first antenna port is determined based on at least a fourth offset.
  • the starting position of the frequency domain resource occupied by each antenna port from antenna port p 0 to antenna port p 1 of UE1 may be determined based on at least the fourth offset.
  • the fourth offset may be an integer greater than or equal to 0.
  • the starting position of the frequency domain resource occupied by the first antenna port is determined based on at least a fourth offset, which may include: the starting position of the frequency domain resource occupied by the first antenna port is determined based on the first antenna port The initial value of the starting position of the occupied frequency domain resource is determined by the fourth offset.
  • the initial value of the starting position of the frequency domain resource occupied by the first antenna port may be based on the frequency hopping offset. and the frequency hopping bandwidth are determined.
  • the initial value of the starting position of the frequency domain resource occupied by the first antenna port may satisfy the above formula (3).
  • the starting position of the frequency domain resource occupied by the first antenna port is determined based on the frequency hopping offset, the partial detection offset and the fourth offset.
  • the fourth offset may be determined based on at least the time domain resource occupied by the first antenna port and the pseudo-random sequence.
  • the time domain resources occupied by the first antenna port may include: the index of the frequency hopping period corresponding to the reference signal.
  • the index of the frequency hopping period corresponding to the reference signal may be: frequency hopping period 1 and so on.
  • the time domain resource occupied by the first antenna port may include one or more OFDM symbols.
  • One or more OFDM symbols included in the time domain resource occupied by the first antenna port may be determined based on one or more of the following parameters: the system frame number corresponding to the first antenna port, the time slot number corresponding to the first antenna port OFDM symbol number corresponding to the first antenna port.
  • This application does not limit the number of OFDM symbols included in the time domain resources occupied by the first antenna port.
  • the index of the frequency hopping period in which the time domain resource is located is determined based on the time domain resource occupied by the first antenna port, or the time domain resource corresponding to a frequency hopping cycle is determined based on the time domain resource occupied by the first antenna port.
  • the relative index can be defined as: the relative index of the k-th transmission within a frequency hopping cycle is k-1.
  • the pseudo-random sequence can be c().
  • the specific implementation of the pseudo-random sequence please refer to the corresponding explanation in S502 above, and will not be described again here.
  • the fourth offset may be a fourth random number.
  • the fourth offset may be a random number, for example, the fourth offset may be a random number greater than 0.
  • the fourth random number may satisfy the above formula (24) or formula (25).
  • k rand represents the fourth random number
  • the mathematical symbol ⁇ represents the sum
  • c() is a pseudo-random sequence. Indicates the index of the frequency hopping period corresponding to the reference signal
  • mathematical symbol It means rounding down
  • n SRS means the count value of the reference signal
  • the mathematical symbol ⁇ means cumulative multiplication
  • the mathematical symbol mod means modulus.
  • m in the above formula (24) or formula (25) has nothing to do with the sequence length M.
  • m is an integer between 0 and 7.
  • this application does not limit the value range of m in the above formula (24) or formula (25).
  • the fourth offset is determined based on a ninth correspondence among a plurality of ninth correspondences and the time domain resource occupied by the first antenna port.
  • one ninth correspondence among the plurality of ninth correspondences may be indicated by the network device to the terminal device.
  • the configuration information of the reference signal may include indication information indicating a ninth correspondence among a plurality of ninth correspondences, and/or a ninth correspondence among a plurality of ninth correspondences.
  • the network device may select a ninth correspondence relationship from a plurality of ninth correspondence relationships, and indicate the selected ninth correspondence relationship to the terminal device.
  • a ninth correspondence relationship may include: at least one fourth offset and at least one time domain resource. correspondence between.
  • At least one fourth offset corresponds one-to-one to at least one time domain resource.
  • the time domain resource may be an OFDM symbol, a system frame number, a time slot number, etc.
  • multiple ninth correspondences correspond to the same frequency scaling factor.
  • one frequency hopping cycle may include at least one reference signal transmission
  • the corresponding relationship between at least one fourth offset and at least one time domain resource may include: at least one fourth offset and at least one reference signal transmission. Correspondence between relative numbers within a frequency hopping cycle.
  • At least one fourth offset corresponds one-to-one to a number of at least one reference signal transmission.
  • the terminal device may, based on the number of the current reference signal transmission of the first antenna port, in the corresponding relationship between at least one fourth offset and the relative number within a frequency hopping cycle in which at least one reference signal is transmitted, Get the fourth offset.
  • the corresponding relationship between the at least one fourth offset and the at least one time domain resource may include: the corresponding relationship between the at least one fourth offset and the index of at least one frequency hopping cycle.
  • At least one fourth offset corresponds one-to-one to an index of at least one frequency hopping cycle.
  • the terminal device may obtain the fourth offset in the corresponding relationship between at least one fourth offset and the index of at least one frequency hopping cycle according to the index of the frequency hopping cycle in which the time domain resource occupied by the first antenna port is located. Shift amount.
  • the starting position of the frequency domain resource occupied by each of the M antenna ports is determined based on at least a fourth offset, which may include:
  • the starting position of the frequency domain resource can be based on the partial detection offset definite.
  • the frequency domain starting position of antenna port p i can satisfy the above formula (27).
  • the starting position of the frequency domain resource occupied by each antenna port of UE1 to UE4 is determined according to the fourth offset.
  • the frequency domain resource occupied by each UE is The starting position of the resource can be as shown in Figure 12.
  • the starting position of the frequency domain resource occupied by each antenna port of UE1 to UE8 is determined according to the fourth offset.
  • the frequency domain resource occupied by each UE is The starting position of the resource can be as shown in Table 18.
  • sending time 1 can be replaced by frequency hopping period 1, OFDM symbol 1, system frame number 1, time slot number 1, time domain resource 1, time unit 1, etc., sending time 2 to sending time n are the same as sending time 1 Similar, not elaborated one by one.
  • UE1 at transmission time 1, it is the antenna port of UE5 that causes interference to the antenna port of UE1.
  • transmission time 2 it is the antenna port of UE7 that causes interference to the antenna port of UE1.
  • the interference to the antenna port of UE1 is Different antenna ports cause interference, which will bring better interference randomization effect, speed up the interference randomization convergence speed, and improve channel estimation performance.
  • the starting position of the frequency domain resource occupied by the first antenna port may be determined based on a sixteenth corresponding relationship among multiple sixteenth corresponding relationships and the time domain resource occupied by the first antenna port. .
  • one sixteenth correspondence among the plurality of sixteenth correspondences may be indicated by the network device to the terminal device.
  • the network device may indicate different sixteenth corresponding relationships to terminal devices in different cells.
  • a sixteenth correspondence may include a correspondence between a starting position of at least one frequency domain resource and at least one time domain resource.
  • the starting position of at least one frequency domain resource corresponds one-to-one to at least one time domain resource.
  • each sixteenth correspondence (which can be called a pattern) has n time domain resources
  • the starting position of the frequency domain resource corresponding to the n time domain resources is The offset between them is ⁇ x 1 , ⁇ x (1+a)modn ,x (2+a)modn ,...x (M+a)modn ⁇ .
  • the values of ⁇ x 1 ,x 2 ,...x n ⁇ belong to ⁇ 0,N/S,...,(S-1)*N/S ⁇
  • S is the number of partial bandwidths included in a sub-band
  • N is the number of RBs included in a subband.
  • the terminal device may obtain the frequency domain occupied by the first antenna port from the corresponding relationship between the starting position of the at least one frequency domain resource and the at least one time domain resource according to the time domain resource occupied by the first antenna port. The starting position of the resource.
  • Table 19 Multiple tenth correspondences can be shown in Table 19.
  • the number of sixteenth correspondences is 4 and each sixteenth correspondence includes four time domain resources as an example.
  • the sixteenth correspondence is 1
  • Correspondences 4 to 16 are different from each other, see Table 19 for details.
  • transmission time 1 can be replaced by OFDM symbol 1, system frame number 1, timeslot number 1, time domain resource 1, or time unit 1, etc.
  • Transmission time 2 to transmission time 14 are similar to transmission time 1. Not elaborate one by one.
  • the sixteenth correspondence also includes sending time 1 to sending time 8.
  • the starting positions of the frequency domain resources corresponding to sending time 5 to sending time 8 respectively correspond to sending time 1 to sending time 4 respectively.
  • the starting positions of the frequency domain resources are the same.
  • the terminal device uses one of the sixteenth correspondences among the sixteenth correspondences and the time domain resource occupied by the first antenna port to obtain the starting position of the frequency domain resource occupied by the first antenna port, so that Different antenna ports that cause interference to the antenna port of the terminal device are different at different transmission times. This will bring better interference randomization effect, speed up the convergence of interference randomization, and improve channel estimation performance.
  • introducing a fourth offset can make the starting position of the frequency domain resource occupied by each antenna port in different time domain resources
  • the position changes randomly, and the antenna port that causes interference to the antenna port of a certain terminal device will also change randomly, realizing randomization of frequency domain interference. This will bring better interference randomization effect and speed up the convergence of interference randomization. , improve channel estimation performance.
  • FIG. 15 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method shown in Figure 15 can be used in combination with the method shown in Figure 13 and/or Figure 14, or the method shown in Figure 15 can be used in combination with the method shown in Figure 5 and/or Figure 11, and the combination can achieve For better interference randomization effect, the method shown in Figure 15 can also be used alone.
  • the communication method includes the following steps:
  • the network device sends configuration information of the reference signal.
  • the terminal device receives the configuration information of the reference signal.
  • the terminal device sends reference signals on M antenna ports according to the configuration information.
  • the network device receives reference signals on M antenna ports according to the configuration information.
  • M is an integer greater than 0, and the M antenna ports include at least one first antenna port.
  • M is an integer greater than 0, and the M antenna ports include at least one first antenna port.
  • the cyclic shift value of the first antenna port is determined based on at least the first code domain offset.
  • the first offset may be an integer greater than or equal to 0.
  • the cyclic shift value of the first antenna port is determined based on at least the first code domain offset, which may include: the cyclic shift value of the first antenna port is determined based on the cyclic shift value of the first antenna port.
  • the initial value and the offset of the first code domain are determined.
  • the cyclic shift value of the first antenna port may be determined based on the initial value of the cyclic shift value and the first code domain offset.
  • the first code domain offset may be determined based on at least the time domain resources occupied by the first antenna port and/or the frequency domain resources occupied by the first antenna port.
  • the time domain resource occupied by the first antenna port may include one or more OFDM symbols.
  • the one or more OFDM symbols included in the time domain resource occupied by the first antenna port may be based on one or more of the following parameters: Determined: the system frame number corresponding to the first antenna port, the timeslot number corresponding to the first antenna port, and the OFDM symbol number corresponding to the first antenna port.
  • This application does not limit the number of OFDM symbols included in the time domain resources occupied by the first antenna port.
  • the frequency domain resources occupied by the first antenna port may include one or more sub-bandwidths.
  • One or more sub-bandwidths included in the frequency domain resources occupied by the first antenna port may be determined based on one or more of the following parameters: the index of the frequency hopping bandwidth corresponding to the first antenna port, and the transmission frequency corresponding to the first antenna port. Bandwidth index.
  • the M reference signal ports include multiple first reference signal ports, and on time domain resources and/or frequency domain resources, the first code domain offsets corresponding to the multiple first reference signal ports are the same.
  • the first code domain offset includes a first code domain random number and/or a second code domain random number.
  • the first code domain random number is determined based on at least the time domain resource occupied by the first antenna port.
  • the first code domain random number can be represented by A 1 .
  • the second code domain random number is determined based on at least the frequency domain resources occupied by the first antenna port.
  • the first code domain random number can be represented by A 2 .
  • the cyclic shift value occupied by the first antenna port may be determined based on the first random number and/or the fifth random number.
  • the first code domain random number is determined based on at least the time domain resources occupied by the first antenna port, including: the first code domain random number is determined based on the time domain resources occupied by the first antenna port and a pseudo-random sequence. of.
  • the pseudo-random sequence can be c().
  • the specific implementation of the pseudo-random sequence please refer to the corresponding explanation in S502 above, and will not be described again here.
  • the first code domain random number is determined based on the time domain resources occupied by the first antenna port and the pseudo-random sequence.
  • the first code domain random number can also be determined based on one or more of the following parameters: each system The number of time slots contained in the frame, the number of OFDM symbols contained in each time slot, the number of comb teeth and the comb tooth offset.
  • the number of time slots included in each system frame may refer to the number of time slots included in one system frame.
  • the number of OFDM symbols included in each time slot may refer to the number of OFDM symbols included in one time slot.
  • the number of comb teeth may be the number of comb teeth included in the transmission bandwidth of the reference signal.
  • the offset of the comb teeth may be a reference amount of the comb teeth occupied by the reference signal.
  • the first code domain random number can satisfy formula (45), formula (46), formula (47), formula (48), formula (49), formula (50), formula (51), or formula ( 52).
  • a 1 represents the first code domain Random number
  • the mathematical symbol ⁇ represents summation
  • the mathematical symbol mod represents modulus
  • c() is a pseudo-random sequence
  • n f represents the system frame number corresponding to the first antenna port (or, n f represents the time occupied by the first antenna port
  • the system frame number of the domain resource represents the number of time slots in each system frame, represents the number of OFDM symbols in each slot, Indicates the timeslot number corresponding to the first antenna port (or, represents the time slot number of the time domain resource occupied by the first antenna port)
  • l 0 represents the index of the starting OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the first antenna port (or, l 0 represents the starting OFDM symbol index).
  • the index of the first OFDM symbol), l' represents the relative index of one OFDM symbol among one or more OFDM symbols included in the time domain resource occupied by the first antenna port (or, l' represents the relative index of the time domain resource occupied by the first antenna port OFDM symbol relative index), Y is the maximum number of antenna ports supported by cyclic shift multiplexing in a comb, or the number of Fourier transform points, or the number of subcarriers occupied by the first antenna port on an OFDM symbol .
  • this application can make the cyclic shift value of the terminal device change randomly at different transmission times, thereby causing interference to the terminal device. Random changes realize randomization of frequency domain interference and can achieve better interference randomization effect.
  • the first code domain random number is determined based on at least the time domain resource occupied by the first antenna port, which may include: the first code domain random number is determined based on a seventh correspondence among a plurality of seventh correspondences. The relationship is determined with the time domain resources occupied by the first antenna port.
  • one seventh correspondence among the plurality of seventh correspondences may be indicated by the network device to the terminal device.
  • the configuration information of the reference signal may include indication information indicating a seventh correspondence among a plurality of seventh correspondences, and/or a seventh correspondence among a plurality of seventh correspondences.
  • the network device may select a seventh correspondence relationship from a plurality of seventh correspondence relationships and indicate the selected seventh correspondence relationship to the terminal device.
  • a seventh correspondence may include: a correspondence between at least one first code domain random number and at least one time domain resource.
  • At least one first code-domain random number corresponds to at least one time-domain resource.
  • the time domain resource may be an OFDM symbol, a system frame number, a time slot number, etc.
  • each first correspondence (which can be called a pattern) has n time domain resources
  • the first code domain random number corresponding to the n time domain resources is ⁇ x 1 ,x 2 ,...x n ⁇
  • a is an integer greater than 0
  • the first code domain random number corresponding to n time domain resources is ⁇ x (1+a)modn , x (2+a)modn ,...x (M+a)modn ⁇ .
  • the values of ⁇ x 1 , x 2 ,...x n ⁇ belong to ⁇ 0,1,...,ncs-1 ⁇
  • ncs is the maximum number of CSs that can be supported on a comb tooth.
  • one frequency hopping cycle includes at least one reference signal transmission
  • the corresponding relationship between at least one first code domain random number and at least one time domain resource may include: at least one first code domain random number and at least one reference signal transmission. Correspondence between relative numbers within a frequency hopping cycle where the transmission occurs.
  • At least one first code domain random number corresponds one-to-one to the number of at least one reference signal transmission.
  • the terminal device may determine the corresponding relationship between at least one first code domain random number and a relative number within a frequency hopping cycle in which at least one reference signal is sent based on the number of the current reference signal sent by the first antenna port. , obtain the first code domain random number.
  • the correspondence between at least one first code domain random number and at least one time domain resource may include: a correspondence between at least one first code domain random number and the index of at least one frequency hopping cycle.
  • At least one first code domain random number corresponds one-to-one to the index of at least one frequency hopping cycle.
  • the terminal device may obtain the first first code domain random number from the corresponding relationship between at least one first code domain random number and the index of at least one frequency hopping cycle according to the index of the frequency hopping cycle in which the time domain resource occupied by the first antenna port is located. Code domain random number.
  • the network device may indicate different seventh corresponding relationships to terminal devices in different cells.
  • the network equipment indicates different seventh correspondence relationships to the terminal equipment in different cells, thereby causing the terminal equipment causing interference to the terminal equipment to change randomly, realizing frequency domain interference randomization and achieving better interference randomization effect.
  • the second code domain random number is determined based on at least the frequency domain resources occupied by the first antenna port, which may include: the second code domain random number is determined based on the frequency domain resources occupied by the first antenna port and a pseudo-random sequence. definite.
  • the pseudo-random sequence can be c().
  • the second code domain random number may satisfy formula (53), formula (54), formula (55), or formula (56).
  • a 2 represents the second code domain random number
  • the mathematical symbol ⁇ represents the sum
  • the mathematical symbol mod represents the modulus
  • c() is a pseudo-random sequence
  • k represents the index of the frequency hopping bandwidth and/or the index of the transmission bandwidth corresponding to the frequency domain resource occupied by the first antenna port
  • Y is the maximum antenna port supported by cyclic shift multiplexing in a comb tooth.
  • m in the above formula (53), formula (54), formula (55), or formula (56) has nothing to do with the sequence length M.
  • the above formula (53), formula (54), formula (55) , or in formula (56), take m as an integer between 0 and 7 as an example.
  • This application describes the above formula (53), formula (54), formula (55), or formula (56).
  • the value range of m is not limited.
  • the second code domain random number is determined based on at least the frequency domain resource occupied by the first antenna port, which may include: the second code domain random number is determined based on an eighth correspondence among multiple eighth correspondences. The relationship is determined with the frequency domain resources occupied by the first antenna port.
  • one eighth correspondence among the plurality of eighth correspondences may be indicated by the network device to the terminal device.
  • the configuration information of the reference signal may include indication information indicating an eighth correspondence among a plurality of eighth correspondences, and/or an eighth correspondence among a plurality of eighth correspondences.
  • the network device may select an eighth correspondence relationship from a plurality of eighth correspondence relationships and indicate the selected eighth correspondence relationship to the terminal device.
  • an eighth correspondence may include a correspondence between at least one second code domain random number and at least one frequency domain resource.
  • At least one second code domain random number corresponds to at least one frequency domain resource in a one-to-one manner.
  • the terminal device may obtain the frequency domain resource occupied by the first antenna port based on the frequency domain resource occupied by the first antenna port in the corresponding relationship between at least one second code domain random number and at least one frequency domain resource. The corresponding random number in the second code domain.
  • the specific implementation of the eighth correspondence relationship is similar to the seventh correspondence relationship, and can be explained with reference to the seventh correspondence relationship, which will not be described again here.
  • the second code domain random number obtained by the terminal device changes randomly, and then the second code domain random number is used to determine the cyclic shift value occupied by the first antenna port of the terminal device, so that The cyclic shift value occupied by the terminal device changes randomly at different sending times.
  • the network device may indicate different eighth corresponding relationships to terminal devices in different cells.
  • the network equipment indicates different eighth correspondence relationships to the terminal equipment in different cells, thereby causing the terminal equipment causing interference to the terminal equipment to change randomly, realizing interference randomization and achieving a better interference randomization effect.
  • the value of the cyclic shift value can satisfy ⁇ 0,1,...,K ⁇ Y-1 ⁇ , where Y is the maximum number of antenna ports supported by cyclic shift multiplexing in a comb tooth, Or it is the number of cyclic shift values in a comb that can be configured through high-level parameters.
  • the value of Y is determined based on the number of configured reference signal comb teeth.
  • K is an integer greater than 1.
  • the value of the cyclic shift value can satisfy ⁇ 0,1,...,Y-1 ⁇ , where Y is the number of subcarriers occupied by the first antenna port on one OFDM symbol.
  • the occupied cyclic shift value ⁇ i of the antenna port p i determined according to the first code domain random number A 1 can satisfy the following formula : or, or, or, in, Represents the maximum cyclic shift value, Represents the circular shift reference value, Semi-statically configured by network devices through high-level parameters (such as transmissionComb). The meaning of the representation can be referred to the corresponding value in "Third, cyclic shift value” above. The explanation will not be repeated here. Indicates the number of antenna ports (please refer to the explanation in "First, Configuration Information” above), and M ZC is the length of the sequence. can be replaced by
  • formula (1) can be replaced by in, is a random number in the first code domain.
  • the occupied cyclic shift value ⁇ i of the antenna port p i determined according to the second code domain random number A 2 can satisfy the following formula : or, or, or, in, represents the maximum cyclic shift value, n c S s RS represents the cyclic shift reference value, by network devices through higher layers Semi-static configuration of parameters (e.g. transmissionComb).
  • the meaning of the representation can be referred to the corresponding value in "Third, cyclic shift value" above. The explanation will not be repeated here.
  • Indicates the number of antenna ports please refer to the explanation in "First, Configuration Information” above), and M ZC is the length of the sequence.
  • the antenna port is determined based on the first code domain random number A 1 and the second code domain random number A 2
  • the occupied cyclic shift value ⁇ i of p i can satisfy the following formula: or, or, or, in, Represents the maximum cyclic shift value, Represents the circular shift reference value, Semi-statically configured by network devices through high-level parameters (such as transmissionComb). The meaning of the representation can be referred to the corresponding value in "Third, cyclic shift value" above. The explanation will not be repeated here. Indicates the number of antenna ports (please refer to the explanation in "First, Configuration Information” above), and M ZC is the length of the sequence.
  • the cyclic shift value of each antenna port (antenna port p 0 to antenna port p 3 ) of UE1 to UE8 is determined based on the first code domain random number and/or the second code domain random number.
  • the cyclic shift value (represented by CS) of the antenna port of each UE can be as shown in Table 20.
  • the antenna ports of UE1, UE2, UE5 and UE6 use CS0 and CS2.
  • the antenna port of UE1 will be interfered by the antenna ports of UE5 and UE6.
  • the antenna ports of UE1, UE2, UE7 and UE8 use CS1 and CS3, and the antenna port of UE1 will be interfered by the antenna ports of UE7 and UE8.
  • frequency domain resource n and/or frequency domain resource n the antenna ports of UE1, UE2, UE5 and UE6 use CS1 and CS3, and the antenna port of UE1 will be interfered by the antenna ports of UE5 and UE6.
  • the antenna port p 0 and antenna port p 2 of each UE use a cyclic shift value
  • the antenna port p 1 and antenna port p 3 use a cyclic shift value
  • the cyclic shift value used by antenna port p 0 and antenna port p 2 is the cyclic shift value with the smallest cyclic shift value index among the two cyclic shift values used by the UE, and the cyclic shift value used by antenna port p 1 and antenna port p 3
  • the cyclic shift value is the cyclic shift value with a larger cyclic shift value index among the two cyclic shift values used by the UE.
  • Table 20 shows the UE and the corresponding base sequence and the corresponding cyclic shift value, and the antenna port is not shown.
  • frequency domain resource 1 can be replaced by frequency domain unit 1, subband 1, frequency hopping bandwidth 1, or frequency hopping bandwidth 1, etc.
  • Frequency domain resource 2 to frequency domain resource n are similar, not one by one.
  • Transmission time 1 can be replaced by OFDM symbol 1, system frame number 1, timeslot number 1, time domain resource 1, time unit 1, etc.
  • Transmission time 2 to transmission time 4 are similar to transmission time 1 and will not be explained one by one.
  • the cyclic shift value used by the antenna port of UE1 changes randomly, so that the UEs that cause interference to UE1 change randomly, and some transmission times and/or frequencies change randomly.
  • the UEs that cause interference to UE1 on domain resources are UE5 and UE6.
  • the UEs that cause interference to UE1 at certain transmission times and/or frequency domain resources are UE7 and UE8.
  • the antenna ports that cause interference to the antenna port of UE1 change randomly. , thus achieving better interference randomization effect.

Abstract

本申请提供一种通信方法及装置,能够增强干扰随机化,从而提升信道估计性能。该方法包括:发送参考信号的配置信息,根据配置信息,在M个天线端口上接收参考信号;其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。

Description

通信方法及装置
本申请要求于2022年04月29日提交国家知识产权局、申请号为202210469116.4、申请名称为“通信方法及装置”的中国专利申请的优先权,以及于2022年08月12日提交国家知识产权局、申请号为202210969093.3、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
网络设备可通过终端设备发送的信道探测参考信号(sounding reference signal,SRS),获取该终端设备的上行信道信息,或根据信道互易性获取该终端设备的下行信道信息,进一步,网络设备可以根据上行信道信息或下行信道信息对终端设备进行调度。然而,终端设备发送SRS使用的物理资源遵循固定的规律,不利于干扰随机化,不利于信道估计。
发明内容
本申请实施例提供一种通信方法及装置,能够增强干扰随机化,从而提升信道估计性能。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法。该通信方法包括:发送配置信息;根据配置信息,在M个天线端口上接收参考信号。其中,配置信息指示参考信号的配置,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量为大于0的整数,第一偏移量至少是根据小区标识和第一天线端口占用的时域资源确定的;或者,第一偏移量是根据第一天线端口占用的循环移位值确定的。
第一方面提供的方法,通过采用第一偏移量确定终端设备的第一天线端口占用的梳齿,可以使不同发送时刻终端设备占用的频域资源(梳齿)随机变化,从而使对该终端设备造成干扰的终端设备随机变化,实现了频域干扰随机化,能够达到更好的干扰随机化效果。
或者,第一方面提供的方法,引入循环移位值,根据第一偏移量获取第一天线端口占用的梳齿,第一偏移量的取值与循环移位值有关,从而第一天线端口占用的梳齿受循环移位值和第一偏移量影响。使得在不同的发送时刻,每个天线端口占用的梳齿和循环移位值均会随机变化,则在不同的发送时刻对终端设备的天线端口造成干扰的天线端口也会随机变化。在相同发送时刻,对终端设备的不同天线端口造成干扰的天线端口不相同。如此,可以实现码域和频域的二维干扰随机化,可以进一步增强干扰随机化效果,加快干扰随机化收敛速度。
在一种可能的设计方式中,第一偏移量至少是根据小区标识和第一天线端口占用的时域资源确定的,第一偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的正交频分复用(orthogonal frequency division multiplexing, OFDM)符号数量、梳齿数量和梳齿偏移量。其中,梳齿数量为参考信号的发送带宽中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。如此,可以使不同发送时刻终端设备占用的频域资源(梳齿)随机变化,从而使对该终端设备造成干扰的终端设备随机变化。
在一种可能的设计方式中,第一天线端口占用的时域资源包括一个或多个OFDM符号,第一天线端口占用的时域资源包括的一个或多个OFDM符号可以是根据以下参数中的一个或多个确定的:第一天线端口对应的系统帧号、第一天线端口对应的时隙编号和第一天线端口对应的OFDM符号编号。
也就是说,本申请不限定第一天线端口占用的时域资源包括的OFDM符号的数量。
可选地,M个天线端口占用的时域资源可以相同或不同。
在一种可能的设计方式中,第一偏移量可以为第一随机数。也就是说,第一偏移量可以为随机数,例如第一偏移量为大于0的随机数。
在一种可能的设计方式中,第一偏移量或第一随机数可以满足 或者, 或者, 或者,
其中,Q1表示第一偏移量或第一随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第一天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第一天线端口对应的时隙编号,l0+l′表示第一天线端口对应的OFDM符号编号,l0表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。
采用该第一偏移量确定终端设备的第一天线端口占用的梳齿,可以使不同发送时刻终端设备占用的频域资源(梳齿)随机变化,从而使对该终端设备造成干扰的终端设备随机变化,能够达到更好的干扰随机化效果。
在一种可能的设计方式中,M个天线端口还可以包括至少一个第二天线端口,第二天线端口占用的梳齿可以至少是根据第二偏移量确定的,第二偏移量为大于0的整数,第二偏移量可以至少是根据小区标识和第二天线端口占用的时域资源确定的,第二偏移量与第一偏移量不同。
如此,通过采用第一偏移量确定终端设备的第一天线端口占用的梳齿、以及采用第二偏移量确定终端设备的第二天线端口占用的梳齿,可以使不同发送时刻终端设备的天线端口占用的梳齿会随机变化,并且同一个终端设备的天线端口的占用的多把梳齿之间的间隔也可以随机变化。这样,在不同发送时刻对终端设备的天线端口造成干扰的天线端口是随机的,在相同发送时刻对终端设备的占用不同梳齿的天线端口造成干扰的天线端口可以不是同一个终端设备的天线端口,实现了频域干扰随机化,可以进一步提高终端设备的天线端口占用的频域资源自由度,从而进一步提高干扰随机化效果。
在一种可能的设计方式中,第二偏移量可以至少是根据小区标识和第二天线端口占用的时域资源确定的,第二偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量;其中,梳齿数量为参考信号的发送带宽中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。可以进一步提高终端设备的天线端口占用的频域资源自由度,从而进一步提高干扰随机化效果。
在一种可能的设计方式中,第二天线端口占用的时域资源可以包括一个或多个OFDM符号,第二天线端口占用的时域资源可以包括的一个或多个OFDM符号是根据以下参数中的一个或多个确定的:第二天线端口对应的系统帧号、第二天线端口对应的时隙编号和第二天线端口对应的OFDM符号编号。也就是说,本申请不限定第二天线端口占用的时域资源包括的OFDM符号的数量。
在一种可能的设计方式中,第二偏移量可以为第二随机数。也就是说,第二偏移量可以为随机数。
在一种可能的设计方式中,第二随机数可以满足 或者, 或者,或者,
其中,Q2表示第二随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第二天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第二天线端口对应的时隙编号,l0+l′表示第二天线端口对应的OFDM符号编号,l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。可以进一步提高终端设备的天线端口占用的频域资源自由度,从而进一步提高干扰随机化效果。
在一种可能的设计方式中,第二偏移量可以为第一偏移量与第三偏移量之和,第三偏移量为大于0的整数。如此,通过采用第一偏移量确定终端设备的第一天线端口占用的梳齿、以及采用第二偏移量确定终端设备的第二天线端口占用的梳齿,可以使不同发送时刻终端设备的天线端口占用的梳齿会随机变化,并且同一个终端设备的天线端口的占用的多把梳齿之间的间隔也可以随机变化。这样,在不同发送时刻对终端设备的天线端口造成干扰的天线端口是随机的,在相同发送时刻对终端设备的占用不同梳齿的天线端口造成干扰的天线端口可以不是同一个终端设备的天线端口,实现了频域干扰随机化,可以进一步提高终端设备的天线端口占用的频域资源自由度,从而进一步提高干扰随机化效果。
在一种可能的设计方式中,所述第三偏移量可以至少是根据小区标识和第二天线端口占用的时域资源确定的,第三偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。可以进一步提高终端设备的天线端口占用的频域资源自由度,从而进一步提高干扰随机化效果。
在一种可能的设计方式中,第三偏移量可以为第三随机数。也就是说,第三偏移量可以为随机数。
在一种可能的设计方式中,第三随机数可以满足 或者, 或者, 或者,
其中,Δ表示第三随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第二天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第二天线端口对应的时隙 编号,l0+l′表示第二天线端口对应的OFDM符号编号,l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。可以进一步提高终端设备的天线端口占用的频域资源自由度,从而进一步提高干扰随机化效果。
在一种可能的设计方式中,第一偏移量是根据第一天线端口占用的循环移位值确定的,可以包括:第一偏移量是根据循环移位值的所属范围确定的。
如此,根据第一偏移量获取天线端口占用的梳齿,第一偏移量的取值与循环移位值有关,从而天线端口占用的梳齿受循环移位值和第一偏移量影响,使得在不同的发送时刻,每个天线端口占用的梳齿和循环移位值均会随机变化,则在不同的发送时刻对终端设备的天线端口造成干扰的天线端口也会随机变化。在相同发送时刻,对终端设备的不同天线端口造成干扰的天线端口不相同。可以实现码域和频域的二维干扰随机化,可以进一步增强干扰随机化效果,加快干扰随机化收敛速度。
此外,由于循环移位值的引入,即使同样是UEx的天线端口pa对UEy的天线端口pb产生的干扰,在不同的发送时刻,干扰水平仍可能会有很大差异。这样,可以保证极好的干扰随机化效果。
在一种可能的设计方式中,M个天线端口中的每个天线端口占用的频域资源的起始位置可以至少是根据第四偏移量确定的,第四偏移量为大于0的整数,第四偏移量可以至少是根据小区标识和参考信号对应的跳频周期的索引确定的。
如此,在确定天线端口占用的频域资源的起始位置时,引入第四偏移量,可以使在不同跳频周期每个天线端口占用的频域资源的起始位置随机变化,对某个终端设备的天线端口造成干扰的天线端口也就会随机变化,实现了频域干扰随机化,这样会带来较好的干扰随机化效果,可以进一步加快干扰随机化收敛速度,进一步提升信道估计性能。
在一种可能的设计方式中,第四偏移量可以是第四随机数。也就是说,第四偏移量可以为随机数。
在一种可能的设计方式中,第四随机数可以满足或者,
其中,krand表示第四随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,表示参考信号对应的跳频周期的索引,数学符号表示向下取整,nSRS表示参考信号的计数值,数学符号∏表示累乘,数学符号mod表示取模。可以进一步加快干扰随机化收敛速度,进一步提升信道估计性能。
第二方面,提供一种通信方法。该通信方法包括:接收配置信息;根据配置信息,在M个天线端口上发送参考信号。其中,配置信息指示参考信号的配置;M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量为大于0的整数,第一偏移量至少是根据小区标识和第一天线端口占用的时域资源确定的;或者,第一偏移量是根据第一天线端口占用的循环移位值确定的。
在一种可能的设计方式中,第一偏移量可以至少是根据小区标识和第一天线端口占用的时域资源确定的,第一偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的正交频分复用OFDM符号数量、梳齿数量和梳齿偏 移量;其中,梳齿数量为参考信号的发送带宽mSRS,bhop中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。
在一种可能的设计方式中,第一天线端口占用的时域资源可以包括一个或多个OFDM符号,第一天线端口占用的时域资源包括的一个或多个OFDM符号可以是根据以下参数中的一个或多个确定的:第一天线端口对应的系统帧号、第一天线端口对应的时隙编号和第一天线端口对应的OFDM符号编号。
在一种可能的设计方式中,第一偏移量可以为第一随机数。
在一种可能的设计方式中,第一随机数可以满足 或者, 或者,或者,
其中,Q1表示第一随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第一天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第一天线端口对应的时隙编号,l0+l′表示第一天线端口对应的OFDM符号编号,l0表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。
在一种可能的设计方式中,M个天线端口还可以包括至少一个第二天线端口,第二天线端口占用的梳齿可以至少是根据第二偏移量确定的,第二偏移量为大于0的整数,第二偏移量至少是根据小区标识和第二天线端口占用的时域资源确定的,第二偏移量与第一偏移量不同。
在一种可能的设计方式中,第二偏移量可以至少是根据小区标识和第二天线端口占用的时域资源确定的,第二偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量;其中,梳齿数量为参考信号的发送带宽中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。
在一种可能的设计方式中,第二天线端口占用的时域资源可以包括一个或多个OFDM符号,第二天线端口占用的时域资源包括的一个或多个OFDM符号可以是根据以下参数中的一个或多个确定的:第二天线端口对应的系统帧号、第二天线端口对应的时隙编号和第二天线端口对应的OFDM符号编号。
在一种可能的设计方式中,第二偏移量可以为第二随机数。
在一种可能的设计方式中,第二随机数可以满足 或者, 或者,或者,
其中,Q2表示第二随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第二天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第二天线端口对应的时隙编号,l0+l′表示第二天线端口对应的OFDM符号编号,l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。
在一种可能的设计方式中,第二偏移量可以为第一偏移量与第三偏移量之和,第三偏移量为大于0的整数。
在一种可能的设计方式中,所述第三偏移量可以至少是根据小区标识和第二天线端口占用的时域资源确定的,第三偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。
在一种可能的设计方式中,第三偏移量可以为第三随机数。
在一种可能的设计方式中,第三随机数可以满足 或者, 或者, 或者,
其中,Δ表示第三随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第二天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第二天线端口对应的时隙编号,l0+l′表示第二天线端口对应的OFDM符号编号,l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。
在一种可能的设计方式中,第一偏移量是根据第一天线端口占用的循环移位值确定的,可以包括:第一偏移量是根据循环移位值的所属范围确定的。
在一种可能的设计方式中,M个天线端口中的每个天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量为大于0的整数,第四偏移量至少是根据小区标识和参考信号对应的跳频周期的索引确定的。
在一种可能的设计方式中,第四偏移量可以是第四随机数。
在一种可能的设计方式中,第四随机数可以满足或者,
其中,krand表示第四随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,表示参考信号对应的跳频周期的索引,数学符号表示向下取整,nSRS表示参考信号的计数值,数学符号∏表示累乘,数学符号mod表示取模。
此外,第二方面所述的通信方法的技术效果可以参考第一方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第三方面,提供一种通信方法。该通信方法包括:发送配置信息;根据配置信息,在M个天线端口上接收参考信号。其中,配置信息指示参考信号的配置;M个天线端口中的每个天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量为大于0的整数,第四偏移量至少是根据小区标识和参考信号对应的跳频周期的索引确定的。
在一种可能的设计方式中,第四偏移量可以是第四随机数。
在一种可能的设计方式中,第四随机数可以满足或者,
其中,krand表示第四随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,表示参考信号对应的跳频周期的索引,数学符号表示向下取整,nSRS表示参考信号的计数值,数学符号∏表示累乘,数学符号mod表示取模。
此外,第三方面所述的通信方法的技术效果可以参考第一方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第四方面,提供一种通信方法。该通信方法包括:接收配置信息;根据配置信息,在M个天线端口上发送参考信号。其中,配置信息指示参考信号的配置;M个天线端口中的每个天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量为大于0的整数,第四偏移量至少是根据小区标识和参考信号对应的跳频周期的索引确定的。
在一种可能的设计方式中,第四偏移量可以是第四随机数。
在一种可能的设计方式中,第四随机数可以满足或者,
其中,krand表示第四随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,表示参考信号对应的跳频周期的索引,数学符号表示向下取整,nSRS表示参考信号的计数值,数学符号∏表示累乘,数学符号mod表示取模。
此外,第四方面所述的通信方法的技术效果可以参考第一方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。
其中,发送模块,用于发送配置信息。其中,配置信息指示参考信号的配置。
接收模块,用于根据配置信息,在M个天线端口上接收参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量为大于0的整数,第一偏移量至少是根据小区标识和第一天线端口占用的时域资源确定的;或者,第一偏移量是根据第一天线端口占用的循环移位值确定的。
在一种可能的设计方式中,第一偏移量可以至少是根据小区标识和第一天线端口占用的时域资源确定的,第一偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的正交频分复用OFDM符号数量、梳齿数量和梳齿偏移量;其中,梳齿数量为参考信号的发送带宽中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。
在一种可能的设计方式中,第一天线端口占用的时域资源可以包括一个或多个OFDM符号,第一天线端口占用的时域资源包括的一个或多个OFDM符号可以是根据以下参数中的一个或多个确定的:第一天线端口对应的系统帧号、第一天线端口对应的时隙编号和第一天线端口对应的OFDM符号编号。
在一种可能的设计方式中,第一偏移量可以为第一随机数。
在一种可能的设计方式中,第一随机数可以满足 或者, 或者,或者,
其中,Q1表示第一随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第一天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第一天线端口对应的时隙编号,l0+l′表示第一天线端口对应的OFDM符号编号,l0表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。
在一种可能的设计方式中,M个天线端口还可以包括至少一个第二天线端口,第二天线端口占用的梳齿可以至少是根据第二偏移量确定的,第二偏移量为大于0的整数,第二偏移量至少是根据小区标识和第二天线端口占用的时域资源确定的,第二偏移量与第一偏移量不同。
在一种可能的设计方式中,第二偏移量可以至少是根据小区标识和第二天线端口占用的时域资源确定的,第二偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量;其中,梳齿数量为参考信号的发送带宽中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。
在一种可能的设计方式中,第二天线端口占用的时域资源可以包括一个或多个OFDM符号,第二天线端口占用的时域资源包括的一个或多个OFDM符号可以是根据以下参数中的一个或多个确定的:第二天线端口对应的系统帧号、第二天线端口对应的时隙编号和第二天线端口对应的OFDM符号编号。
在一种可能的设计方式中,第二偏移量为可以第二随机数。
在一种可能的设计方式中,第二随机数可以满足 或者, 或者,或者,
其中,Q2表示第二随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第二天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第二天线端口对应的时隙编号,l0+l′表示第二天线端口对应的OFDM符号编号,l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。
在一种可能的设计方式中,第二偏移量可以为第一偏移量与第三偏移量之和,第三偏移量为大于0的整数。
在一种可能的设计方式中,所述第三偏移量可以至少是根据小区标识和第二天线端口占用的时域资源确定的,第三偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。
在一种可能的设计方式中,第三偏移量可以为第三随机数。
在一种可能的设计方式中,第三随机数可以满足 或者, 或者, 或者,
其中,Δ表示第三随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第二天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第二天线端口对应的时隙编号,l0+l′表示第二天线端口对应的OFDM符号编号,l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。
在一种可能的设计方式中,第一偏移量是根据第一天线端口占用的循环移位值确定的,可以包括:第一偏移量是根据循环移位值的所属范围确定的。
在一种可能的设计方式中,M个天线端口中的每个天线端口占用的频域资源的起始位置可以至少是根据第四偏移量确定的,第四偏移量为大于0的整数,第四偏移量至少是根据小区标识和参考信号对应的跳频周期的索引确定的。
在一种可能的设计方式中,第四偏移量可以是第四随机数。
在一种可能的设计方式中,第四随机数可以满足或者,
其中,krand表示第四随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,表示参考信号对应的跳频周期的索引,数学符号表示向下取整,nSRS表示参考信号的计数值,数学符号∏表示累乘,数学符号mod表示取模。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第五方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第五方面所述的通信装置可以执行第一方面所述的方法。
需要说明的是,第五方面所述的通信装置可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第五方面所述的通信装置的技术效果可以参考第一方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第六方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。
其中,接收模块,用于接收配置信息。其中,配置信息指示参考信号的配置。
发送模块,用于根据配置信息,在M个天线端口上发送参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量为大于0的整数,第一偏移量至少是根据小区标识和第一天线端口占用的时域资源确定的;或者,第一偏移量是根据第一天线端口占用的循环移位值确定的。
在一种可能的设计方式中,第一偏移量可以至少是根据小区标识和第一天线端口占用的时域资源确定的,第一偏移量还可以根据以下参数中的一个或多个确定:每个系统 帧包含的时隙数量、每个时隙包含的正交频分复用OFDM符号数量、梳齿数量和梳齿偏移量;其中,梳齿数量为参考信号的发送带宽中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。
在一种可能的设计方式中,第一天线端口占用的时域资源可以包括一个或多个OFDM符号,第一天线端口占用的时域资源包括的一个或多个OFDM符号可以是根据以下参数中的一个或多个确定的:第一天线端口对应的系统帧号、第一天线端口对应的时隙编号和第一天线端口对应的OFDM符号编号。
在一种可能的设计方式中,第一偏移量可以为第一随机数。
在一种可能的设计方式中,第一随机数可以满足 或者, 或者,或者,
其中,Q1表示第一随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第一天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第一天线端口对应的时隙编号,l0+l′表示第一天线端口对应的OFDM符号编号,l0表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。
在一种可能的设计方式中,M个天线端口还可以包括至少一个第二天线端口,第二天线端口占用的梳齿可以至少是根据第二偏移量确定的,第二偏移量为大于0的整数,第二偏移量至少是根据小区标识和第二天线端口占用的时域资源确定的,第二偏移量与第一偏移量不同。
在一种可能的设计方式中,第二偏移量可以至少是根据小区标识和第二天线端口占用的时域资源确定的,第二偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量;其中,梳齿数量为参考信号的发送带宽mSRS,bhop中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。
在一种可能的设计方式中,第二天线端口占用的时域资源可以包括一个或多个OFDM符号,第二天线端口占用的时域资源包括的一个或多个OFDM符号可以是根据以下参数中的一个或多个确定的:第二天线端口对应的系统帧号、第二天线端口对应的时隙编号和第二天线端口对应的OFDM符号编号。
在一种可能的设计方式中,第二偏移量可以为第二随机数。
在一种可能的设计方式中,第二随机数可以满足 或者, 或者,或者,
其中,Q2表示第二随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第二天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第二天线端口对应的时隙编号,l0+l′表示第二天线端口对应的OFDM符号编号,l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号 mod表示取模。
在一种可能的设计方式中,第二偏移量可以为第一偏移量与第三偏移量之和,第三偏移量为大于0的整数。
在一种可能的设计方式中,所述第三偏移量可以至少是根据小区标识和第二天线端口占用的时域资源确定的,第三偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。
在一种可能的设计方式中,第三偏移量可以为第三随机数。
在一种可能的设计方式中,第三随机数可以满足 或者, 或者, 或者,
其中,Δ表示第三随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,nf表示第二天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第二天线端口对应的时隙编号,l0+l′表示第二天线端口对应的OFDM符号编号,l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。
在一种可能的设计方式中,第一偏移量是根据第一天线端口占用的循环移位值确定的,可以包括:第一偏移量是根据循环移位值的所属范围确定的。
在一种可能的设计方式中,M个天线端口中的每个天线端口占用的频域资源的起始位置可以至少是根据第四偏移量确定的,第四偏移量为大于0的整数,第四偏移量至少是根据小区标识和参考信号对应的跳频周期的索引确定的。
在一种可能的设计方式中,第四偏移量可以是第四随机数。
在一种可能的设计方式中,第四随机数可以满足或者,
其中,krand表示第四随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,表示参考信号对应的跳频周期的索引,数学符号表示向下取整,nSRS表示参考信号的计数值,数学符号∏表示累乘,数学符号mod表示取模。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第六方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第六方面所述的通信装置可以执行第二方面所述的方法。
需要说明的是,第六方面所述的通信装置可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第六方面所述的通信装置的技术效果可以参考第二方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第七方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。
其中,发送模块,用于发送配置信息。其中,配置信息指示参考信号的配置。
接收模块,用于根据配置信息,在M个天线端口上接收参考信号。其中,M个天线端口中的每个天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量为大于0的整数,第四偏移量至少是根据小区标识和参考信号对应的跳频周期的索引确定的。
在一种可能的设计方式中,第四偏移量可以是第四随机数。
在一种可能的设计方式中,第四随机数可以满足或者,
其中,krand表示第四随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,表示参考信号对应的跳频周期的索引,数学符号表示向下取整,nSRS表示参考信号的计数值,数学符号∏表示累乘,数学符号mod表示取模。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第七方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第七方面所述的通信装置可以执行第三方面所述的方法。
需要说明的是,第七方面所述的通信装置可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第七方面所述的通信装置的技术效果可以参考第三方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第八方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。
其中,接收模块,用于接收配置信息。其中,配置信息指示参考信号的配置。
发送模块,用于根据配置信息,在M个天线端口上发送参考信号。其中,M个天线端口中的每个天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量为大于0的整数,第四偏移量至少是根据小区标识和参考信号对应的跳频周期的索引确定的。
在一种可能的设计方式中,第四偏移量可以是第四随机数。
在一种可能的设计方式中,第四随机数可以满足或者,
其中,krand表示第四随机数,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,表示参考信号对应的跳频周期的索引,数学符号表示向下取整,nSRS表示参考信号的计数值,数学符号∏表示累乘,数学符号mod表示取模。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第八方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存 储有程序或指令。当处理模块执行该程序或指令时,使得第八方面所述的通信装置可以执行第四方面所述的方法。
需要说明的是,第八方面所述的通信装置可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第八方面所述的通信装置的技术效果可以参考第四方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第九方面,提供一种通信方法。该方法包括:发送参考信号的配置信息,根据配置信息,在M个天线端口上接收参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
第十方面,提供一种通信方法。该方法包括:接收参考信号的配置信息,根据配置信息,在M个天线端口上发送参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
第九方面或第十方面提供的方法,通过采用第一偏移量确定终端设备的第一天线端口占用的梳齿,可以使不同发送时刻和/或频域资源上终端设备的天线端口占用的梳齿随机变化,从而使对该终端设备的天线端口造成干扰的终端设备的天线端口随机变化,实现了干扰随机化,能够达到更好的干扰随机化效果。
可选地,第一天线端口占用的梳齿至少是根据第一偏移量确定的,可以包括:第一天线端口占用的梳齿可以是根据第一天线端口占用的梳齿的初始值和第一偏移量确定的。
可选地,第一偏移量为大于0的整数。
可选的,第一天线端口占用的梳齿的初始值是由高层信令RRC配置的。
在一种可能的设计方式中,第一偏移量包括第一随机数和/或第五随机数,第一随机数至少是根据第一天线端口占用的时域资源确定的,第五随机数至少是根据第一天线端口占用的频域资源确定的。
在一种可能的设计方式中,第一随机数至少是根据第一天线端口占用的时域资源确定的,包括:第一随机数是根据多个第一对应关系中的一个第一对应关系、和第一天线端口占用的时域资源确定的,一个第一对应关系包括至少一个第一随机数与至少一个时域资源之间的对应关系。可选地,第一随机数可以替换为第一变量。
在一种可能的设计方式中,多个第一对应关系中每个第一对应关系均包括多个第一变量,多个第一变量的取值互不相同,且多个第一对应关系包括的第一变量取值相同,多个第一变量与多个时域资源之间的对应关系不同。
在一种可能的设计方式中,一个跳频周期包括至少一次参考信号发送,至少一个第一随机数与至少一个时域资源之间的对应关系包括:至少一个第一随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
在一种可能的设计方式中,至少一个第一随机数与至少一个时域资源之间的对应关系包括:至少一个第一随机数与至少一个跳频周期的索引之间的对应关系。在一种可能的设计方式中,第一随机数至少是根据第一天线端口占用的时域资源确定的,包括:第一随机数是根据第一天线端口占用的时域资源和伪随机序列确定的。
在一种可能的设计方式中,第一随机数还根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。其中,梳齿数量为参考信号的发送带宽中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。
在一种可能的设计方式中,第一随机数满足: 或者, 或者,或者,
其中,Q1表示第一随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,nf表示第一天线端口对应的系统帧号,表示每个系统帧中的时隙数量,表示每个时隙中的OFDM符号数量,表示第一天线端口对应的时隙编号,l0表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,KTC表示梳齿数量。
在一种可能的设计方式中,第五随机数至少是根据第一天线端口占用的频域资源确定的,包括:第五随机数是根据多个第二对应关系中的一个第二对应关系、和第一天线端口占用的频域资源确定的,一个第二对应关系包括至少一个第五随机数与至少一个频域资源之间的对应关系。可选地,第五随机数可以替换为第五变量。
在一种可能的设计方式中,多个第二对应关系中每个第二对应关系均包括多个第五变量,多个第五变量的取值互不相同,且多个第一对应关系包括的第五变量取值相同,多个第五变量与多个时域资源之间的对应关系不同。
在一种可能的设计方式中,第五随机数至少是根据第一天线端口占用的频域资源确定的,包括:第五随机数是根据第一天线端口占用的频域资源和伪随机序列确定的。
在一种可能的设计方式中,第五随机数满足:或者,
其中,Q3表示第五随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,k表示第一天线端口占用的频域资源对应的跳频带宽的索引和/或发送带宽的索引,KTC表示梳齿数量。
在一种可能的设计方式中,第一天线端口占用的时域资源包括一个或多个正交频分复用OFDM符号,第一天线端口占用的时域资源包括的一个或多个OFDM符号是根据以下参数中的一个或多个确定的:第一天线端口对应的系统帧号、第一天线端口对应的时隙编号和第一天线端口对应的OFDM符号编号。
在一种可能的设计方式中,根据第一天线端口占用的时域资源确定时域资源所在的跳频周期的索引,或者根据第一天线端口占用的时域资源确定时域资源对应一个跳频周期内的相对索引。相对索引可以定义为:一个跳频周期内的第k次发送的相对索引为k-1。
在一种可能的设计方式中,第一天线端口占用的频域资源包括一个或多个子带宽,第一天线端口占用的频域资源包括的一个或多个子带宽是根据以下参数中的一个或多个确定的:第一天线端口对应的跳频带宽的索引、和第一天线端口对应的发送带宽的索引。
在一种可能的设计方式中,根据第一天线端口占用的频域资源确定频域资源所在的跳频带宽的索引,或者根据第一天线端口占用的频域资源确定频域资源对应一个子带的索引。子带的索引可以定义为:第一天线端口的扫描带宽对应a*b个RB,可以划分成粒 度为b的a个子带,从频率由低到高依次对各个子带编号,包括:{0,…,a-1}。
在一种可能的设计方式中,M个天线端口还包括至少一个第二天线端口,第二天线端口占用的梳齿至少是根据第二偏移量确定的,第二偏移量至少是根据第二天线端口占用的时域资源和/或第二天线端口占用的频域资源确定的,第二偏移量与第一偏移量不同。
可选地,第二偏移量为大于0的整数。
可选的,第一天线端口和第二天线端口的梳齿初始值不同。
可选地,第二天线端口占用的梳齿至少是根据第二偏移量确定的,可以包括:第二天线端口占用的梳齿可以是根据第二天线端口占用的梳齿的初始值和第二偏移量确定的。
可选的,第二天线端口占用的梳齿的初始值是由高层信令RRC配置的。
在一种可能的设计方式中,第二偏移量包括第二随机数和/或第六随机数,第二随机数至少是根据第二天线端口占用的时域资源确定的,第六随机数至少是根据第二天线端口占用的频域资源确定的。
在一种可能的设计方式中,第二随机数至少是根据第二天线端口占用的时域资源确定的,包括:第二随机数是根据多个第三对应关系中的一个第三对应关系、和第二天线端口占用的时域资源确定的,一个第三对应关系包括至少一个第二随机数与至少一个时域资源之间的对应关系。
在一种可能的设计方式中,一个跳频周期包括至少一次参考信号发送,至少一个第二随机数与至少一个时域资源之间的对应关系包括:至少一个第二随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
在一种可能的设计方式中,至少一个第二随机数与至少一个时域资源之间的对应关系包括:至少一个第二随机数与至少一个跳频周期的索引之间的对应关系。
在一种可能的设计方式中,第二随机数至少是根据第二天线端口占用的时域资源确定的,包括:第二随机数是根据第二天线端口占用的时域资源和伪随机序列确定的。
在一种可能的设计方式中,第二随机数还根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。其中,梳齿数量为参考信号的发送带宽中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。
在一种可能的设计方式中,第二随机数满足: 或者, 或者,或者,
其中,Q2表示第二随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,nf表示第二天线端口对应的系统帧号,表示每个系统帧中的时隙数量,表示每个时隙中的OFDM符号数量,表示第二天线端口对应的时隙编号,l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,KTC表示梳齿数量。
在一种可能的设计方式中,第六随机数至少是根据第二天线端口占用的频域资源确定的,包括:第六随机数是根据多个第四对应关系中的一个第四对应关系、和第二天线端口占用的频域资源确定的,一个第四对应关系包括至少一个第六随机数与至少一个频域资源之间的对应关系。
在一种可能的设计方式中,第六随机数至少是根据第二天线端口占用的频域资源确定的,包括:第六随机数是根据第二天线端口占用的频域资源和伪随机序列确定的。
在一种可能的设计方式中,第六随机数满足:或者,其中,Q4表示第六随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,k表示第二天线端口占用的频域资源对应的跳频带宽的索引和/或发送带宽的索引,KTC表示梳齿数量。
在一种可能的设计方式中,第二偏移量是根据第一偏移量和第三偏移量确定的。
在一种可能的设计方式中,第二偏移量为第一偏移量与第三偏移量之和,第三偏移量为大于0的整数。
在一种可能的设计方式中,第三偏移量是一个预先配置的常量。
在一种可能的设计方式中,第三偏移量至少是根据第二天线端口占用的时域资源和/或第二天线端口占用的频域资源确定的。
在一种可能的设计方式中,第三偏移量包括第三随机数和/或第七随机数,第三随机数至少是根据第二天线端口占用的时域资源确定的,第七随机数至少是根据第二天线端口占用的频域资源确定的。
在一种可能的设计方式中,第三随机数至少是根据第二天线端口占用的时域资源确定的,包括:第三随机数是根据多个第五对应关系中的一个第五对应关系、和第二天线端口占用的时域资源确定的,一个第五对应关系包括至少一个第三随机数与至少一个时域资源之间的对应关系。
在一种可能的设计方式中,多个第五对应关系中每个第五对应关系均包括多个第三变量,多个第三变量的取值互不相同,且多个第五对应关系包括的第三变量取值相同,多个第三变量与多个时域资源之间的对应关系不同。
在一种可能的设计方式中,一个跳频周期包括至少一次参考信号发送,至少一个第三随机数与至少一个时域资源之间的对应关系包括:至少一个第三随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
在一种可能的设计方式中,至少一个第三随机数与至少一个时域资源之间的对应关系包括:至少一个第三随机数与至少一个跳频周期的索引之间的对应关系。
在一种可能的设计方式中,第三随机数至少是根据第二天线端口占用的时域资源确定的,包括:第三随机数是根据第二天线端口占用的时域资源和伪随机序列确定的。
在一种可能的设计方式中,第三随机数还根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。其中,梳齿数量为参考信号的发送带宽中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。
在一种可能的设计方式中,第三随机数满足: 或者, 或者, 或者,
其中,Δ表示第三随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,nf表示第二天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第二天线端口对应的时隙编号,l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符 号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,KTC表示梳齿数量。
在一种可能的设计方式中,第七随机数至少是根据第二天线端口占用的频域资源确定的,包括:第七随机数是根据多个第六对应关系中的一个第六对应关系、和第二天线端口占用的频域资源确定的,一个第六对应关系包括至少一个第七随机数与至少一个频域资源之间的对应关系。
在一种可能的设计方式中,第七随机数至少是根据第二天线端口占用的频域资源确定的,包括:第七随机数是根据第二天线端口占用的频域资源和伪随机序列确定的。
在一种可能的设计方式中,第七随机数满足: 或者,其中,Δ1表示第七随机数,数学符号∑表示求和,c()为伪随机序列,数学符号mod表示取模,k表示第二天线端口占用的频域资源对应的跳频带宽的索引和/或发送带宽的索引,KTC表示梳齿数量。
在一种可能的设计方式中,第二天线端口占用的时域资源包括一个或多个OFDM符号,第二天线端口占用的时域资源包括的一个或多个OFDM符号根据以下参数中的一个或多个确定:第二天线端口对应的系统帧号、第二天线端口对应的时隙编号和第二天线端口对应的OFDM符号编号。
在一种可能的设计方式中,第二天线端口占用的频域资源包括一个或多个子带宽,第二天线端口占用的频域资源包括的一个或多个子带宽是根据以下参数中的一个或多个确定的:第二天线端口对应的跳频带宽的索引、和第二天线端口对应的发送带宽的索引。
第十一方面,提供一种通信方法。该方法包括:发送参考信号的配置信息,根据配置信息,在M个天线端口上接收参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量至少是根据第一天线端口占用的时域资源和伪随机序列确定的,或者,第四偏移量是根据多个第九对应关系中的一个第九对应关系、和第一天线端口占用的时域资源确定的,一个第九对应关系包括至少一个第四偏移量与至少一个时域资源之间的对应关系,多个第九对应关系对应同一个频率缩放因子。
第十二方面,提供一种通信方法。该方法包括:接收参考信号的配置信息,根据配置信息,在M个天线端口上发送参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量至少是根据第一天线端口占用的时域资源和伪随机序列确定的,或者,第四偏移量是根据多个第九对应关系中的一个第九对应关系、和第一天线端口占用的时域资源确定的,一个第九对应关系包括至少一个第四偏移量与至少一个时域资源之间的对应关系,多个第九对应关系对应同一个频率缩放因子。
基于第十一方面或第十二方面提供的通信方法,在确定天线端口占用的频域资源的起始位置时,引入第四偏移量,可以使在不同时域资源每个天线端口占用的频域资源的起始位置随机变化,对某个终端设备的天线端口造成干扰的天线端口也就会随机变化,实现了频域干扰随机化,这样会带来较好的干扰随机化效果,可以加快干扰随机化收敛速度,提升信道估计性能。
可选地,第一天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,可以包括:第一天线端口占用的频域资源的起始位置是根据第一天线端口占用的频域资源的起始位置的初始值和第四偏移量确定的。
可选的,第一天线端口占用的频域资源的起始位置的初始值是由高层信令RRC配置的。
在一种可能的设计方式中,第四偏移量是第四随机数。
在一种可能的设计方式中,第四随机数满足: 或者,其中,krand表示第四随机数,数学符号∑表示求和,c()为伪随机序列,表示参考信号对应的跳频周期的索引,数学符号表示向下取整,nSRS表示参考信号的计数值,数学符号∏表示累乘,数学符号mod表示取模。
第十三方面,提供一种通信方法。该方法包括:发送参考信号的配置信息,根据配置信息,在M个天线端口上接收参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口的循环移位值至少是根据第一码域偏移量确定的,第一码域偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
第十四方面,提供一种通信方法。该方法包括:接收参考信号的配置信息,根据配置信息,在M个天线端口上发送参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口的循环移位值至少是根据第一码域偏移量确定的,第一码域偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
基于第十三方面或第十四方面提供的通信方法,通过采用第一码域偏移量确定终端设备的第一天线端口的循环移位值,可以使不同发送时刻和/或频域资源上终端设备的天线端口的循环移位值随机变化,从而使对该终端设备的天线端口造成干扰的终端设备的天线端口随机变化,实现了干扰随机化,能够达到更好的干扰随机化效果。
可选地,第一天线端口的循环移位值至少是根据第一码域偏移量确定的,可以包括:第一天线端口的循环移位值是根据第一天线端口的循环移位值的初始值和第一码域偏移量确定的。
可选的,第一天线端口的循环移位值的初始值是由高层信令RRC配置的。
在一种可能的设计方式中,第一码域偏移量包括第一码域随机数和/或第二码域随机数,第一码域随机数至少是根据第一天线端口占用的时域资源确定的,第二码域随机数至少是根据第一天线端口占用的频域资源确定的。
在一种可能的设计方式中,第一码域随机数至少是根据第一天线端口占用的时域资源确定的,包括:第一码域随机数是根据多个第七对应关系中的一个第七对应关系、和第一天线端口占用的时域资源确定的,一个第七对应关系包括至少一个第一码域随机数与至少一个时域资源之间的对应关系。
在一种可能的设计方式中,多个第七对应关系中每个第七对应关系均包括多个第一码域随机数,多个第一码域随机数的取值互不相同,且多个第一对应关系包括的第一码域随机数取值相同,多个第一码域随机数与多个时域资源之间的对应关系不同。
在一种可能的设计方式中,一个跳频周期包括至少一次参考信号发送,至少一个第一码域随机数与至少一个时域资源之间的对应关系包括:至少一个第一码域随机数与至 少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
在一种可能的设计方式中,至少一个第一码域随机数与至少一个时域资源之间的对应关系包括:至少一个第一码域随机数与至少一个跳频周期的索引之间的对应关系。
在一种可能的设计方式中,第一码域随机数至少是根据第一天线端口占用的时域资源确定的,包括:第一码域随机数是根据第一天线端口占用的时域资源和伪随机序列确定的。
在一种可能的设计方式中,第一码域随机数还根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。其中,梳齿数量为参考信号的发送带宽中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。
在一种可能的设计方式中,第一码域随机数满足: 或者, 或者,或者,A1或者, 或者, 或者,或者,
其中,A1表示第一码域随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,nf表示第一天线端口对应的系统帧号,表示每个系统帧中的时隙数量,表示每个时隙中的OFDM符号数量,表示第一天线端口对应的时隙编号,l0表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,Y为一个梳齿中通过循环移位复用的支持的最大天线端口的数量、或傅里叶变换点数、或第一天线端口在一个OFDM符号上占用的子载波数量。
在一种可能的设计方式中,第二码域随机数至少是根据第一天线端口占用的频域资源确定的,包括:第二码域随机数是根据多个第八对应关系中的一个第八对应关系、和第一天线端口占用的频域资源确定的,一个第八对应关系包括至少一个第二码域随机数与至少一个频域资源之间的对应关系。
在一种可能的设计方式中,第二码域随机数至少是根据第一天线端口占用的频域资源确定的,包括:第二码域随机数是根据第一天线端口占用的频域资源和伪随机序列确定的。
在一种可能的设计方式中,第二码域随机数满足:
或者,
或者,
或者,
其中,A2表示第二码域随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,k表示第一天线端口占用的频域资源对应的跳频带宽的索引和/或发送带宽的索引,Y为一个梳齿中通过循环移位复用的支持的最大天线端口的数量、或傅里叶变换点数、或第一天线端口在一个OFDM符号上占用的子载波数量。
在一种可能的设计方式中,其特征在于,M个参考信号端口包括多个第一参考信号 端口,在时域资源和/或频域资源上,多个第一参考信号端口对应的第一码域偏移量相同。
在一种可能的设计方式中,循环移位值的取值满足α∈{0,1,…,K×Y-1},Y为一个梳齿中通过循环移位复用的最大天线端口的数量或者为一个梳齿中可以通过高层参数配置的循环移位值的数量,Y的取值是根据配置的参考信号梳齿数量确定的,K为大于1的整数。或者,循环移位值的取值满足α∈{0,1,…,Y-1},Y为傅里叶变换点数M,M=2x,x为正整数,M的取值根据系统带宽或者参考信号的扫描带宽确定。或者,循环移位值的取值满足α∈{0,1,…,Y-1},Y为第一天线端口在一个OFDM符号上占用的子载波数量。
在一种可能的设计方式中,第一天线端口占用的时域资源包括一个或多个正交频分复用OFDM符号,第一天线端口占用的时域资源包括的一个或多个OFDM符号是根据以下参数中的一个或多个确定的:第一天线端口对应的系统帧号、第一天线端口对应的时隙编号和第一天线端口对应的OFDM符号编号。
在一种可能的设计方式中,第一天线端口占用的频域资源包括一个或多个子带宽,第一天线端口占用的频域资源包括的一个或多个子带宽是根据以下参数中的一个或多个确定的:第一天线端口对应的跳频带宽的索引、和第一天线端口对应的发送带宽的索引。
在一种可能的设计方式中,M个天线端口还包括至少一个第二天线端口,第二天线端口的循环移位值至少是根据第二码域偏移量确定的,第二码域偏移量至少是根据第二天线端口占用的时域资源和/或第二天线端口占用的频域资源确定的,第二码域偏移量与第一码域偏移量不同。
第一天线端口和第二天线端口的循环移位初始值的配置相同,至少存在一个时域资源和/或频域资源上,第一天线端口的第一码域偏移量和第二天线端口的第二码域偏移量不同。示例性的,在第一时域资源上和第二时域资源上,第一天线端口和第二天线端口的循环移位值之间的间隔不同。或者,在第一频域资源上和第二频域资源上,第一天线端口和第二天线端口的循环移位值之间的间隔不同。
在一种可能的设计方式中,第二码域偏移量包括第三码域随机数和/或第四码域随机数,第三码域随机数至少是根据第二天线端口占用的时域资源确定的,第四码域随机数至少是根据第二天线端口占用的频域资源确定的。
在一种可能的设计方式中,第三码域随机数至少是根据第二天线端口占用的时域资源确定的,包括:第三码域随机数是根据多个第十七对应关系中的一个第十七对应关系、和第二天线端口占用的时域资源确定的,一个第十七对应关系包括至少一个第三码域随机数与至少一个时域资源之间的对应关系。
在一种可能的设计方式中,一个跳频周期包括至少一次参考信号发送,至少一个第三码域随机数与至少一个时域资源之间的对应关系包括:至少一个第三码域随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
在一种可能的设计方式中,至少一个第三码域随机数与至少一个时域资源之间的对应关系包括:至少一个第三码域随机数与至少一个跳频周期的索引之间的对应关系。
在一种可能的设计方式中,第三码域随机数至少是根据第二天线端口占用的时域资源确定的,包括:第三码域随机数是根据第二天线端口占用的时域资源和伪随机序列确定的。
在一种可能的设计方式中,第三码域随机数还根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量; 其中,梳齿数量为参考信号的发送带宽中包括的梳齿数量,梳齿偏移量为参考信号占用的梳齿的参考量。
在一种可能的设计方式中,第四码域随机数至少是根据第二天线端口占用的频域资源确定的,包括:第四码域随机数是根据多个第十八对应关系中的一个第十八对应关系、和第二天线端口占用的频域资源确定的,一个第十八对应关系包括至少一个第六随机数与至少一个频域资源之间的对应关系。
在一种可能的设计方式中,第四码域随机数至少是根据第二天线端口占用的频域资源确定的,包括:第四码域随机数是根据第二天线端口占用的频域资源和伪随机序列确定的。
第十五方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。
其中,发送模块,用于发送参考信号的配置信息。接收模块,用于根据配置信息,在M个天线端口上接收参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
需要说明的是,上述第九方面中任一种可能的实现方式涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第十五方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第十五方面所述的通信装置可以执行第九方面中任一种可能的实现方式所述的方法。
需要说明的是,第十五方面所述的通信装置可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第十五方面所述的通信装置的技术效果可以参考第九方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第十六方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。
其中,接收模块,用于接收参考信号的配置信息。发送模块,用于根据配置信息,在M个天线端口上发送参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
需要说明的是,上述第十方面中任一种可能的实现方式涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第十六方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第十六方面所述的通信装置可以执行第十方面中任一种可能的实现方式所述的方法。
需要说明的是,第十六方面所述的通信装置可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第十六方面所述的通信装置的技术效果可以参考第十方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第十七方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。
其中,发送模块,用于发送参考信号的配置信息。接收模块,用于根据配置信息,在M个天线端口上接收参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量至少是根据第一天线端口占用的时域资源和伪随机序列确定的,或者,第四偏移量是根据多个第九对应关系中的一个第九对应关系、和第一天线端口占用的时域资源确定的,一个第九对应关系包括至少一个第四偏移量与至少一个时域资源之间的对应关系,多个第九对应关系对应同一个频率缩放因子。
需要说明的是,上述第十一方面中任一种可能的实现方式涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第十七方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第十七方面所述的通信装置可以执行第十一方面中任一种可能的实现方式所述的方法。
需要说明的是,第十七方面所述的通信装置可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第十七方面所述的通信装置的技术效果可以参考第十一方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第十八方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。
其中,接收模块,用于接收参考信号的配置信息。发送模块,用于根据配置信息,在M个天线端口上发送参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量至少是根据第一天线端口占用的时域资源和伪随机序列确定的,或者,第四偏移量是根据多个第九对应关系中的一个第九对应关系、和第一天线端口占用的时域资源确定的,一个第九对应关系包括至少一个第四偏移量与至少一个时域资源之间的对应关系,多个第九对应关系对应同一个频率缩放因子。
需要说明的是,上述第十二方面中任一种可能的实现方式涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第十八方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第十八方面所述的通信装置可以执行第十二方面中任一种可能的实现方式所述的方法。
需要说明的是,第十八方面所述的通信装置可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第十八方面所述的通信装置的技术效果可以参考第十二方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第十九方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。
其中,发送模块,用于发送参考信号的配置信息。接收模块,用于根据配置信息,在M个天线端口上接收参考信号。其中,M为大于0的整数,M个天线端口包括至少一个 第一天线端口,第一天线端口的循环移位值至少是根据第一码域偏移量确定的,第一码域偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。需要说明的是,上述第十三方面中任一种可能的实现方式涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第十九方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第十九方面所述的通信装置可以执行第十三方面中任一种可能的实现方式所述的方法。
需要说明的是,第十九方面所述的通信装置可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第十九方面所述的通信装置的技术效果可以参考第十三方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第二十方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。
其中,接收模块,用于接收参考信号的配置信息。发送模块,用于根据配置信息,在M个天线端口上发送参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口的循环移位值至少是根据第一码域偏移量确定的,第一码域偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
需要说明的是,上述第十四方面中任一种可能的实现方式涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第二十方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第二十方面所述的通信装置可以执行第十四方面中任一种可能的实现方式所述的方法。
需要说明的是,第二十方面所述的通信装置可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第二十方面所述的通信装置的技术效果可以参考第十四方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第二十一方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,存储器用于存储计算机程序。
处理器用于执行存储器中存储的计算机程序,以使得如第一方面至第四方面、第九方面至第十四方面中任一种可能的实现方式所述的通信方法被执行。
在一种可能的设计中,第二十方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或输入/输出端口。所述收发器可以用于该通信装置与其他设备通信。
需要说明的是,输入端口可用于实现第一方面至第四方面、第九方面至第十四方面中任一种可能的实现方式所涉及的接收功能,输出端口可用于实现第一方面至第四方面、第九方面至第十四方面中任一种可能的实现方式所涉及的发送功能。
在本申请中,第二十方面所述的通信装置可以为终端设备或网络设备,或者设置于终端设备或网络设备内部的芯片或芯片系统。
此外,第二十方面所述的通信装置的技术效果可以参考第一方面至第四方面、第九方面至第十四方面中任一种实现方式所述的通信方法的技术效果,此处不再赘述。
第二十一方面,提供一种通信系统。该通信系统包括如第五方面所述的通信装置和如第六方面所述的通信装置,还可以包括包括如第七方面所述的通信装置和如第八方面所述的通信装置。或者,该通信系统包括如第七方面所述的通信装置和如第八方面所述的通信装置。
或者,该通信系统包括如第五方面所述的用于实现如第一方面所述方法的通信装置、和如第六方面所述的用于实现如第二方面所述方法的通信装置。或者,该通信系统包括如第七方面所述的用于实现如第三方面所述方法的通信装置、和如第八方面所述的用于实现如第四方面所述方法的通信装置。
或者,该通信系统包括如第十五方面所述的通信装置和如第十六方面所述的通信装置,还可以包括如第十七方面所述的通信装置和如第十八方面所述的通信装置,和/或,还可以包括如第十九方面所述的通信装置和如第二十方面所述的通信装置。
或者,该通信系统包括如第十七方面所述的通信装置和如第十八方面所述的通信装置,还可以包括如第十九方面所述的通信装置和如第二十方面所述的通信装置。
第二十二方面,提供了一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路用于实现第一方面至第四方面、第九方面至第十四方面中任一种可能的实现方式所涉及的处理功能,输入/输出端口用于实现第一方面至第四方面、第九方面至第十四方面中任一种可能的实现方式所涉及的收发功能。具体地,输入端口可用于实现第一方面至第四方面、第九方面至第十四方面中任一种可能的实现方式所涉及的接收功能,输出端口可用于实现第一方面至第四方面、第九方面至第十四方面中任一种可能的实现方式所涉及的发送功能。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现第一方面至第四方面、第九方面至第十四方面中任一种可能的实现方式所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第二十三方面,提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得第一方面至第四方面、第九方面至第十四方面中任一种可能的实现方式中任意一种可能的实现方式所述的通信方法被执行。
第二十四方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得第一方面至第四方面、第九方面至第十四方面中任一种可能的实现方式中任意一种可能的实现方式所述的通信方法被执行。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种发送带宽示意图;
图3为本申请实施例提供的一种梳齿示意图;
图4为本申请实施例提供的一种应用示意图;
图5为本申请实施例提供的一种通信方法的流程示意;
图6为本申请实施例提供的另一种应用示意图;
图7为本申请实施例提供的又一种应用示意图;
图8为本申请实施例提供的又一种应用示意图;
图9为本申请实施例提供的又一种应用示意图;
图10为本申请实施例提供的又一种应用示意图;
图11为本申请实施例提供的另一种通信方法的流程示意;
图12为本申请实施例提供的又一种应用示意图;
图13为本申请实施例提供的又一种通信方法的流程示意;
图14为本申请实施例提供的又一种通信方法的流程示意;
图15为本申请实施例提供的又一种通信方法的流程示意;
图16为本申请实施例提供的一种通信装置的结构示意图;
图17为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如、频分双工(frequency division duplexing,FDD)系统、时分双工(time division duplexing,TDD)系统、无线保真(wireless fidelity,Wi-Fi)系统,车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-to-device,D2D)通信系统、多输入多输出(multiple in multiple out,MIMO)系统、车联网通信系统、第4代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统等。
本申请提供的通信方法适用于涉及参考信号传输的场景中,例如本申请提供的通信方法适用于低频场景(例如6GHz以下的频段),也适用于高频场景(例如6GHz以上的频段);适用于单(Single)传输点(transmission and reception point,TRP)场景,也适用于多传输点(Multi-TRP)场景,以及它们任何一种衍生的场景;适用于同构网络场景,也适用于异构网络场景;适用于多点协同传输场景等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申 请实施例的通信系统。示例性地,图1为本申请实施例提供的通信方法所适用的一种通信系统的架构示意图。
如图1所示,该通信系统包括网络设备和终端设备。
其中,上述终端设备为接入上述通信系统,且具有无线收发功能的终端或可设置于该终端的芯片或芯片系统。该终端设备也可以称为用户设备(user equipment,UE)、用户装置、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、终端、终端单元、终端站、终端装置、无线通信设备、用户代理或用户装置。
例如,本申请的实施例中的终端设备可以是手机(mobile phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、膝上型电脑(laptop computer)、平板电脑(Pad)、带无线收发功能的电脑、机器类型通信(machine type communication,MTC)终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、物联网(internet of things,IoT)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端(例如游戏机、智能电视、智能音箱、智能冰箱和健身器材等)、车载终端、具有终端功能的RSU。接入终端可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备(handset)、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备等。
又例如,本申请实施例中的终端设备可以是智慧物流中的快递终端(例如可监控货物车辆位置的设备、可监控货物温湿度的设备等)、智慧农业中的无线终端(例如可收集禽畜的相关数据的可穿戴设备等)、智慧建筑中的无线终端(例如智慧电梯、消防监测设备、以及智能电表等)、智能医疗中的无线终端(例如可监测人或动物的生理状态的可穿戴设备)、智能交通中的无线终端(例如智能公交车、智能车辆、共享单车、充电桩监测设备、智能红绿灯、以及智能监控以及智能停车设备等)、智能零售中的无线终端(例如自动售货机、自助结账机、以及无人便利店等)。又例如,本申请的终端设备可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的方法。
其中,上述网络设备为位于上述通信系统的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片系统。该网络设备包括但不限于:无线保真(wireless fidelity,Wi-Fi)系统中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)、远程射频头(remote radio head,RRH)等,还可以为5G,如,新空口(new radio,NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板, 或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、具有基站功能的路边单元(road side unit,RSU)等。
需要说明的是,本申请实施例提供的信号处理方法,可以适用于图1所示的任意两个节点之间,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名称也可以用其他通信系统中的对应功能的名称进行替代。
应理解,图1仅为便于理解示例而简化的示意图,该通信系统中还可以包括其他网络设备,和/或,其他终端设备,图1中未予以画出。
为了使得本申请实施例更加清楚,以下对与本申请实施例相关的部分内容以及概念作统一介绍。
第一,配置信息:
以参考信号是SRS为例,配置信息可以称为SRS资源配置信息。本申请实施例提供的方法适用的参考信号包括但不限于:SRS和解调参考信号(demodulation reference signal,DMRS),本申请以SRS为例进行阐述。
示例性地,SRS资源配置信息可指示SRS的资源配置,可以由网络设备通过高层参数半静态配置给终端设备。
SRS资源配置信息可以包括:至少一个天线端口中每个天线端口(antenna port)(例如发送SRS的天线端口可以称为SRS端口)对应的时频码资源。
示例性地,SRS资源配置信息可以包括但不限于如下一项或多项:个天线端口个连续的OFDM符号、每个时隙包括的符号的数量、时域起始位置l0∈{0,1,…,13}、和频域起始位置k0。其中,天线端口pi=1000+i,每个天线端口可以对应终端设备的物理天线或者虚拟天线。
可选地,终端设备的天线端口和网络设备的天线端口之间可基于SRS资源配置信息指示的SRS资源配置在相应的资源上传输SRS。
本申请不对天线端口的名称进行限定,例如,天线端口也可以称为参考信号端口。
第二,重复因子、扫描带宽、跳频带宽、发送带宽、跳频周期和频率缩放因子PF
重复因子R∈{1,2,4}由网络设备通过高层参数(例如repetitionFactor)半静态配置。一次参考信号发送对应一个参考信号资源内的连续R个OFDM符号,一次参考信号发送对应的连续R个OFDM符号中的第一个OFDM符号在参考信号资源内的编号能够被R整除。
示例性地,扫描带宽可以为网络设备根据参考信号获取的信道对应的带宽范围。
示例性地,跳频带宽可以为单次发送参考信号后,网络设备获取的信道对应的带宽范围。
可选地,跳频带宽可以小于或等于扫描带宽。
示例性地,跳频周期可以为网络设备获取扫描带宽对应的信道所需要的参考信号发送次数。
示例性地,扫描带宽、跳频带宽和跳频周期可以是根据高层参数及协议预定义表格确定的。
当未配置频率缩放因子PF时,发送带宽等于跳频带宽。当网络设备通过高层参数配置了频率缩放因子PF时,发送带宽为跳频带宽的PF分之一。
图2为本申请实施例提供的一种发送带宽示意图。
图2中纵向表示频域,横向表示时域,每个格子表示一个资源块(resource block, RB),一个RB包括频域上的12个子载波。假设扫描带宽为16RB,跳频带宽为4RB,跳频周期为4,如图2中的(a)所示,未配置频率缩放因子PF时,发送带宽为4RB(图2的(a)中有阴影的格子)。如图2中的(b)所示,配置频率缩放因子PF=2时,发送带宽为2RB(图2的(b)中有阴影的格子)。
可选地,终端设备和网络设备之间可基于重复因子、扫描带宽、跳频带宽、发送带宽、跳频周期和频率缩放因子在相应的资源上传输SRS。
第三,循环移位值:
示例性地,可以采用序列生成参考信号,序列是基序列(base sequence)的循环移位(cyclic shift,CS)。
示例性地,序列满足
其中,α为循环移位值,α为实数。δ=log2(KTC),δ为整数,KTC为梳齿数量。u,v为基序列组中某个基序列的索引,为整数。j为虚数单位,n为序列中元素的索引,n为整数,0≤n<MZC。MZC为序列的长度,为正整数。e为自然常数。序列元素按照元素的索引由小到大的顺序,依次映射在SRS资源对应的子载波索引由小到大的各个子载波上。
示例性地,梳齿数量可以为参考信号的发送带宽中包括的梳齿数量。
可选地,基序列可以是ZC(Zadoff-Chu)序列生成的序列。
示例性地,基序列是ZC序列本身,或者是ZC序列通过循环移位扩充、或截取生成的序列。
假设长度为N的ZC序列为zq(n),n=0,1,…,N-1,N为正整数,则由该ZC序列生成的长度为M的序列可以表示为:zq(m mod N),m=0,1,…,M-1。
例如,长度为N的ZC序列可以表示为如下公式:其中,q为ZC序列的根指标,q为与N互质且小于N的正整数。n=0,1,…,N-1,j为虚数单位,exp()为以自然常数e为底的指数函数。
在一些实施例中,天线端口pi对应的循环移位αi满足下述公式(1)。
上述公式(1)中,可以表示为如下公式:
其中,表示循环移位参考值,由网络设备通过高层参数(例如transmissionComb)半静态配置。表示最大循环移位值,表示天线端口的数量(可参照上述“第一,配置信息”中的阐述),数学符号mod表示取模,数学符号表示向下取整。
可选地,最大循环移位值可表示将时延域等分成份,或者表示将相位值2π等分成份,每个循环移位值对应每份的起始点。
示例性地,最大循环移位值可与梳齿数量KTC的取值对应,如表1所示,KTC=2时,KTC=1时,KTC=1时,KTC=8时,
表1

第四,梳齿(comb)、梳齿数量KTC、梳齿偏移量
示例性地,频域资源可以划分为多个梳状频域资源组,一个梳状频域资源组可以为一把梳齿。
示例性地,梳齿数量可以为参考信号的发送带宽中包括的梳齿数量。
可选地,梳齿数量也可以称为梳齿度,本申请对此不限定。
可选地,可以根据梳齿数量获得一把梳齿上任意两个相邻子载波之间间隔的子载波数量。
例如,梳齿数量KTC可以等于2、4、或8等。
可选地,梳齿数量可以由网络设备通过高层参数半静态配置。
图3示出了梳齿数量KTC为2、4、或8时分别对应的频域资源的划分。以梳齿数量KTC=2为例,偶数子载波(例如编号为0,2,4…的子载波)组成一个梳状频域资源组,奇数子载波(例如编号为1,3,5…的子载波)组成一个梳状频域资源组。每个格子表示一个资源元素(resource element,RE),一个OFDM符号和一个子载波组成一个RE。
示例性地,梳齿偏移量为参考信号占用的梳齿的参考量。
一些实施例中,天线端口pi的占用的梳齿的索引满足下述公式(2)。
在上述公式(2)中,表示梳齿偏移量,
可选地,梳齿偏移量可以是由网络设备通过高层参数(例如传输梳齿(transmissionComb))配置的。
第五,部分探测偏移量
一些实施例中,天线端口pi的频域起始位置可满足下述公式(3)。
上述公式(3)中,满足其中,为每个资源块包含的子载波数量,例如为12。表示天线端口pi的占用的梳齿的索引。
上述公式(3)中,表示跳频偏移量。
上述公式(3)中,表示部分探测偏移量,部分探测偏移量满足下述公式(4)。
上述公式(4)中,为每个资源块包含的子载波数量。表示跳频带宽,为根据高层参数BSRS和CSRS及协议预定义表格确定的跳频带宽。kF为部分探测起始位置索引,kF∈{0,1,…,PF-1}。khop表示起始资源块跳变偏移量。PF表示频率缩放因子。
可选地,部分探测起始位置索引可以是由网络设备通过高层参数(例如
startRBIndexFScaling-r17)半静态配置的。
一些实施例中,起始资源块跳变偏移量khop由下述公式(5)和表2定义。例如,根据下述公式(5)确定的取值,根据的取值和表2确定khop
上述公式(5)中,表示参考信号对应的跳频周期的索引,PF表示频率缩放因子。其中,数学符号表示向下取整,nSRS表示参考信号(例如SRS)计数值,例如,nSRS表示当前参考信号发送对应的发送次数索引。数学符号∏表示累乘,b′表示跳频层索引。bhop表示起始跳频层索引,bhop∈{0,1,2,3}。BSRS表示终止跳频层索引,BSRS∈{0,1,2,3}。Nb′表示第b′层的并列分支数。
上述公式(5)中,表示一个跳频周期包含的参考信号发送次数。
可选地,bhop和BSRS可以决定跳频的层索引范围,bhop和BSRS均由网络设备通过高层参数(例如freqHopping)半静态配置。
可选地,Nb′可由高层参数BSRS和CSRS及协议预定义表格决定。其中,
表2
下面结合协议预定义表格对CSRS、BSRS、bhop及Nb′进行举例说明。
表3为协议预定义表格,假设网络设备通过高层参数半静态配置CSRS=12、BSRS=3、和bhop=1,则网络设备和终端设备可以通过表3的行索引为12的行以及列索引为BSRS=1(即BSRS=bhop)的列确定参考信号的发送带宽为通过表3的行索引为12的行及列索引为BSRS=3(即BSRS=BSRS)的列确定参考信号的跳频带宽为从bhop=1及BSRS=3可得,该配置下的跳频从第1层开始到第3层结束,则一个参考信号跳频周期包含的参考信号发送次数为第2层的并列分支数N2=2与第3层的并列分支数N3=2的乘积2*2=4。
需要说明的是,注意到在上述计算一个参考信号跳频周期包含的参考信号发送次数的公式中还考虑了起始跳频层索引bhop对应的层中的并列分支数但由于公式 的限制,一个参考信号跳频周期包含的参考信号发送次数并不会因为根据表格得到的的取值而发生改变。规定的原因是计算一个参考信号跳频周期包含的参考信号发送次数时只需要计算起始跳频层之后的层中的并列分支数。
表3


对同一个基序列进行不同的循环移位,例如α1和α2,可以得到不同的序列。当α1和α2满足α1mod 2π≠α2mod 2π时,由基序列和循环移位α1得到的序列与由基序列ru,v(n)和循环移位α2得到的序列是相互正交的,即互相关系数为零。
示例性地,长度为M的序列r1(m)和r2(m)(m=0,1,…,M-1)的互相关系数可表示为:
网络设备可以将基于同一个基序列和不同循环移位值得到的序列分配给不同的终端设备,这些不同的终端设备可以在相同的时频资源上发送由这些序列(基于同一个基序列和不同循环移位值得到的序列)生成的参考信号,这些序列之间相互正交,当终端设备与网络设备之间的信道在序列长度内平坦时,终端设备之间不会产生干扰。
根据不同的基序列(无论采用相同或不同的循环移位值)获得的序列之间不正交,终端设备可以在相同的时频资源上发送由这些序列(根据不同的基序列获得的序列)生成的参考信号,当终端设备与网络设备之间的信道在序列长度内平坦时,会产生干扰。
示例性地,假设小区1包括UE1和UE2,小区2包括UE3和UE4,UE1使用基序列r1和循环移位值α1生成参考信号并发送,UE2使用基序列r1和循环移位值α2生成参考信号并发送,UE3使用基序列r2和循环移位值α3生成参考信号并发送,UE4使用基序列r2和循环移位值α4生成参考信号并发送,如表4所示。
表4
在某个发送时刻,UE1至UE4可以在相同的时频资源上发送参考信号。假设UE1至UE4与网络设备之间的信道在参考信号占用的M个子载波上平坦,且分别为h1、h2、h3和h4。在参考信号占用的M个子载波中的第m个子载波上,网络设备的接收信号y(m)为
网络设备可以将接收信号y(m)与UE1使用的序列进行如下操作,获得UE1的信道h1
其中,为UE3对UE1的信道估计产生的干扰,为UE4对UE1的信道估计产生的干扰。可以看出,UE3与UE1之间的干扰会受到循环移位值之间的差值(α31)的影响,UE4与UE1之间的干扰类似。
如此,在相同的时频资源上发送参考信号时,使用相同基序列的终端设备之间不会产生干扰,使用不同基序列的终端设备之间会产生干扰,且干扰会受循环移位值的影响。
在一些实施例中,天线端口pi的占用的梳齿的索引满足上述公式(2)。根据公式(2)获得天线端口pi的占用的梳齿的索引后,可以得出,如果高层参数(例如梳齿偏移量梳齿数量KTC)不发生变化,则在不同的发送时刻,每个天线端口占用的梳齿是恒定的,某个天线端口总会受到相同天线端口的干扰,这样并不利于干扰随机化。
示例性地,结合表5和图4,场景1:小区1包括UE1、UE2、UE3和UE4,每个UE均包括4个天线端口(例如分别为天线端口p0、天线端口p1、天线端口p2和天线端口p3),UE1、UE2、UE3和UE4的各个天线端口使用基序列r1和各个天线端口对应的循环移位值生成参考信号,UE1、UE2、UE3和UE4的各个天线端口占用的梳齿和使用的循环移位值至少有一个不同,例如占用的梳齿不同,和/或使用的循环移位值不同。小区2包括UE5、UE6、UE7和UE8,每个UE均包括4个天线端口(例如分别为天线端口p0、天线端口p1、天线端口p2和天线端口p3),UE5、UE6、UE7和UE8使用基序列r2和各个天线端口对应的循环移位值生成参考信号,UE5、UE6、UE7和UE8的各个天线端口占用的梳齿和使用的循环移位值至少有一个不同,例如占用的梳齿不同,和/或使用的循环移位值不同。如图4所示,频域资源被划分为4把梳齿(梳齿1、梳齿2、梳齿3和梳齿4),图4中每个格子表示一个RE,不同填充的格子表示不同的梳齿,梳齿数量KTC=4。由于同一小区内的UE的各个天线端口使用相同的基序列和不同的循环移位值生成参考信号,或者,使用相同的基序列和占用不同的梳齿生成并发送参考信号,或者,使用相同的基序列和不同的循环移位值和占用不同的梳齿生成并发送参考信号,所以同一小区内的UE的各个天线端口之间相互正交,同一小区内的UE的天线端口之间没有干扰。
需要说明的是,本申请只是以此场景1为例对本申请提供的方法进行阐述,本申请不对应用的场景进行限定,不对小区数量、小区包括的UE数量、每个UE包括的天线端口数量、以及梳齿数量等进行限定。
表5
根据公式(2)可获得UE1至UE8各个天线端口占用的梳齿。
具体地,UE1至UE8中,每个UE的4个天线端口使用2把梳齿,每两个天线端口使用1把梳齿,共有4把梳齿,有4个终端设备可以在相同的2把梳齿上发送参考信号,每个UE的两个天线端口占用一把梳齿,如表5和图4所示,UE1、UE2、UE5和UE6的天线端口共同占用梳齿1和梳齿3,UE3、UE4、UE7和UE8的天线端口共同占用梳齿2和梳齿4,每个UE的具体哪两个天线端口占用哪一把梳齿发送参考信号是固定的。
例如,以每个UE的天线端口p0和天线端口p2占用一把梳齿,天线端口p1和天线端口p3 占用一把梳齿为例,例如天线端口p0和天线端口p2占用的梳齿为该UE占用的两把梳齿中梳齿索引最小的梳齿,天线端口p1和天线端口p3占用的梳齿为该UE占用的两把梳齿中梳齿索引较大的梳齿。UE1的天线端口p0和天线端口p2占用梳齿1,UE1的天线端口p1和天线端口p3占用梳齿3,UE3的天线端口p0和天线端口p2占用梳齿2,UE3的天线端口p1和天线端口p3占用梳齿4,不一一阐述。为了便于理解,表5和图4中示出了UE和对应的基序列和对应的梳齿,并未示出天线端口。
需要说明的是,梳齿索引也可以称为梳齿编号,本申请对此不限定。
如此,在任意发送时刻,每个UE均会按照表5和图4所示的方式发送参考信号,UE1与UE2、UE5和UE6的各个天线端口使用相同的梳齿发送参考信号,UE1与UE5和UE6的各个天线端口之间使用不同的基序列生成参考信号,UE1与UE5和UE6之间存在干扰。
本申请实施例中,发送时刻指发送参考信号的时刻。
然而,在任意发送时刻,每个UE的每个天线端口占用的梳齿是恒定的,如表5和图4所示,这使在任意发送时刻一个UE的天线端口都会受到相同UE的相同天线端口干扰,结合表5和图4,在任意发送时刻UE1的天线端口都会受到UE5和UE6的天线端口的干扰,具体地,UE1的天线端口p0和天线端口p2在任意发送时刻都会受UE5的天线端口p0和天线端口p2、以及UE6的天线端口p0和天线端口p2的干扰,UE1的天线端口p1和天线端口p2在任意发送时刻都会受UE5的天线端口p1和天线端口p2、以及UE6的天线端口p1和天线端口p2的干扰,其他UE类似,不一一赘述。如此,在多次参考信号发送期间,干扰会呈现一定的规律性,这样并不利于干扰随机化,不利于信道估计。
下面将结合图5-图12对本申请实施例提供的通信方法进行具体阐述。其中,本申请各实施例之间涉及的动作,术语等均可以相互参考,不予限制。本申请实施例中的对象名称或参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。
示例性地,图5为本申请实施例提供的一种通信方法的流程示意图。
如图5所示,该通信方法包括如下步骤:
S501,网络设备发送配置信息。相应地,终端设备接收配置信息。
示例性地,配置信息指示参考信号的配置。
可选地,参考信号可以包括但不限于SRS。
可选地,配置信息的具体实现方式可参照上述“第一,配置信息”中的阐述,此处不再赘述。
S502,终端设备根据配置信息,在M个天线端口上发送参考信号。相应地,网络设备根据配置信息,在M个天线端口上接收参考信号。
示例性地,M为大于0的整数。
可选地,终端设备可以包括M个天线端口。
示例性地,M个天线端口可以包括至少一个第一天线端口。
例如,第一天线端口可以是终端设备的任一个天线端口,例如,结合上述场景1,终端设备为UE1,第一天线端口可以为UE1的天线端口p0至天线端口p3中任一个。
一些实施例中,第一天线端口占用的梳齿可以至少是根据第一偏移量确定的。
例如,结合上述场景1,UE1的天线端口p0至天线端口p3中的一个或多个天线端口占用的梳齿可以至少是根据第一偏移量确定的。
示例性地,第一偏移量可以为大于或等于0的整数。
一些实施例中,第一天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量和第一 偏移量确定的。
可选地,梳齿数量可以为参考信号的发送带宽mSRS,bhop中包括的梳齿数量。
可选地,梳齿偏移量可以为参考信号占用的梳齿的参考量。
示例性地,第一偏移量可以至少是根据小区标识和第一天线端口占用的时域资源确定的,或者,第一偏移量可以是根据第一天线端口占用的循环移位值确定的。
可选地,小区标识可以是配置的。
可选地,小区标识可用于确定伪随机序列。
例如,伪随机序列可以为c()。
例如,伪随机序列可以满足:c(n)=(x1(n+NC)+x2(n+NC))mod 2、x1(n+31)=(x1(n+3)+x1(n))mod 2、x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod 2。
其中,NC=1600,x1(n)基于x1(0)=1,x1(n)=0,n=1,2,...,30做初始化,x2(n)根据做初始化。
示例性地,小区标识可以是配置的配置参数,例如,小区标识可以是第一配置参数。
示例性地,第一配置参数可以是网络设备为该服务小区内的终端设备下发的配置参数,第一配置参数可以是0-65536。
示例性地,同一个服务小区内的终端设备的第一配置参数相同,不同服务小区内的终端设备的第一配置参数不同。
在一种可能的设计方法中,第一偏移量至少是根据小区标识和第一天线端口占用的时域资源确定的,第一偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的正交频分复用OFDM符号数量、梳齿数量和梳齿偏移量。
可选地,第一天线端口占用的时域资源可以包括一个或多个OFDM符号。一个或多个OFDM符号是根据以下参数中的一个或多个确定的:第一天线端口对应的系统帧号、第一天线端口对应的时隙编号和第一天线端口对应的OFDM符号编号。
也就是说,本申请不限定第一天线端口占用的时域资源包括的OFDM符号的数量。
可选地,M个天线端口占用的时域资源可以相同或不同。
可选地,终端设备包括的所有第一天线端口属于同一个参考信号资源,终端设备包括的所有第二天线端口属于同一个参考信号资源,所有第一天线端口属于的参考信号资源与所有第二天线端口属于的参考信号资源可以相同或不同。
一些实施例中,第一偏移量可以为第一随机数。
也就是说,第一偏移量可以为随机数,例如第一偏移量为大于0的随机数。
可选地,第一偏移量或第一随机数可以满足公式(6)、公式(7)、公式(8)、或公式(9)。



上述公式(6)、公式(7)、公式(8)、或公式(9)中,Q1表示第一偏移量或第一随机数(Q1可以表示第一偏移量;当第一偏移量为第一随机数时,Q1可以表示第一随机数),数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关。nf表示第一天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙 包含的OFDM符号数量。表示第一天线端口对应的时隙编号。l0+l′表示第一天线端口对应的OFDM符号编号,l0表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,数学符号mod表示取模。
需要说明的是,上述公式(6)、公式(7)、公式(8)、或公式(9)中的m与序列长度M无关,上述公式(6)、公式(7)、公式(8)、或公式(9)中的以m的取0至7之间的整数为例进行阐述,本申请对上述公式(6)、公式(7)、公式(8)、或公式(9)中的m的取值范围不进行限定。
本申请通过采用第一偏移量确定终端设备的第一天线端口占用的梳齿,可以使不同发送时刻终端设备占用的频域资源(梳齿)随机变化,从而使对该终端设备造成干扰的终端设备随机变化,实现了频域干扰随机化,能够达到更好的干扰随机化效果。
一些实施例中,根据梳齿数量、梳齿偏移量和第一偏移量确定的天线端口pi的占用的梳齿的索引可以满足下述公式:或者, 其中,表示梳齿偏移量,KTC表示梳齿数量,Q1表示第一偏移量。
例如,根据梳齿数量、梳齿偏移量和第一偏移量确定的终端设备的天线端口pi的占用的梳齿的索引可以满足下述公式(10)。
与上述公式(2)类似,在公式(10)中,表示梳齿偏移量,KTC表示梳齿数量,Q1表示第一偏移量。
在满足第一条件:且pi∈{1001,1003},且或者,满足第二条件:且pi∈{1001,1003},且的情况下,根据梳齿数量、梳齿偏移量和第一偏移量确定的天线端口pi的占用的梳齿的索引可表示为 在不满足第一条件且不满足第二条件的情况下,根据梳齿数量、梳齿偏移量和第一偏移量确定的天线端口pi的占用的梳齿的索引可表示为
下面结合表6和图6对至少根据第一偏移量确定第一天线端口占用的梳齿后每个终端设备的天线端口占用的梳齿进行阐述。
以上述场景1为例,至少根据第一偏移量确定UE1至UE8的每一个天线端口(天线端口p0至天线端口p3)占用的梳齿,每个UE的天线端口占用的梳齿可以如表6和图6所示。
在发送时刻1,UE1、UE2、UE5和UE6的天线端口占用梳齿1和梳齿3,UE3、UE4、UE7和UE8的天线端口占用相同的梳齿2和梳齿4。以UE1为例,UE1的天线端口在梳齿1和梳齿3上会受到UE5和UE6的天线端口的干扰。
需要说明的是,表6和图6中,以每个UE的天线端口p0和天线端口p2占用一把梳齿,天线端口p1和天线端口p3占用一把梳齿为例,例如天线端口p0和天线端口p2占用的梳齿为该UE占用的两把梳齿中梳齿索引最小的梳齿,天线端口p1和天线端口p3占用的梳齿为该UE占用的两把梳齿中梳齿索引较大的梳齿。为了便于理解,表6和图6中示出了UE和对应的基序列和对应的梳齿,并未示出天线端口。
在发送时刻2,UE1、UE2、UE7和UE8的天线端口占用梳齿1和梳齿3,UE3、UE4、UE5和UE6的天线端口占用梳齿2和梳齿4。UE1的天线端口在梳齿1和梳齿3上会受到UE7和UE8的天线端口的干扰。
在发送时刻n,UE1、UE2、UE7和UE8的天线端口占用梳齿2和梳齿4,UE3、 UE4、UE5和UE6的天线端口占用梳齿7和梳齿8,UE1的天线端口在梳齿2和梳齿4上会受到UE7和UE8的天线端口的干扰。
表6
如此,在不同的发送时刻,UE1的天线端口占用的频域资源(梳齿)是随机变化的,从而使对UE1造成干扰的UE是随机变化的,某些发送时刻是UE5和UE6,某些发送时刻是UE7和UE8,对UE1的天线端口造成干扰的天线端口是随机变化的,从而能够达到更好的干扰随机化效果。
在一种可能的设计方法中,M个天线端口还可以包括至少一个第二天线端口。
可选地,第二天线端口可以是终端设备的任一个天线端口。
例如,结合上述场景1,终端设备为UE1,UE1的天线端口p0和天线端口p2可以为第一天线端口,UE1的天线端口p1和天线端口p3可以为第二天线端口。
可选地,第二天线端口占用的梳齿可以至少是根据第二偏移量Q2确定的。
可选地,第二偏移量Q2与第一偏移量不同。
例如,结合上述场景1,UE1的天线端口p0和天线端口p2占用的梳齿可以至少是根据第一偏移量确定的,UE1的天线端口p1和天线端口p3占用的梳齿可以至少是根据第二偏移量确定的。
示例性地,第二偏移量Q2可以为大于0或等于0的整数。
一些实施例中,第二天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量和第二偏移量确定的。
可选地,梳齿数量可以为参考信号的发送带宽中包括的梳齿数量。
可选地,梳齿偏移量可以为参考信号占用的梳齿的参考量。
在一些实施例中,第二偏移量Q2可以至少是根据小区标识和第二天线端口占用的时域资源确定的。
一些实施例中,第二偏移量Q2至少是根据小区标识和第二天线端口占用的时域资源 确定的,第二偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。
可选地,第二天线端口占用的时域资源包括一个或多个OFDM符号。可选地,一个或多个OFDM符号是根据以下参数中的一个或多个确定的:第二天线端口对应的系统帧号、第二天线端口对应的时隙编号和第二天线端口对应的OFDM符号编号。
也就是说,本申请不限定第二天线端口占用的时域资源包括的OFDM符号的数量。
一些实施例中,第二偏移量Q2可以为第二随机数。
也就是说,第二偏移量可以为随机数,例如第二偏移量为大于0的随机数。
可选地,第二偏移量或第二随机数满足公式(11)、公式(12)、公式(13)、或公式(14)。



上述公式(11)、公式(12)、公式(13)、或公式(14)中,Q2表示第二偏移量或第二随机数(Q2可以表示第二偏移量;当第二偏移量为第二随机数时,Q2可以表示第二随机数),nf表示第二天线端口对应的系统帧号,表示第二天线端口对应的时隙编号。l0+l′表示第二天线端口对应的OFDM符号编号,l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引。
其他符号表示的含义与上述公式(6)、公式(7)、公式(8)、或公式(9)中类似,数学符号∑表示求和,c()为伪随机序列,伪随机序列与小区标识有关,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,数学符号mod表示取模。
在另一些实施例中,第二偏移量Q2可以为第一偏移量Q1与第三偏移量之Δ和。
可选地,第三偏移量Δ可以为大于或等于0的整数。
一些实施例中,第三偏移量可以至少是根据小区标识和第二天线端口占用的时域资源确定的。
可选地,第三偏移量还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。
一些实施例中,第三偏移量可以为第三随机数。
可选地,第三随机数可以满足公式(15)、公式(16)、公式(17)、或公式(18)。




上述公式(15)、公式(16)、公式(17)、或公式(18)中,Δ表示第三随机数,其他符号表示的含义与上述公式(11)、公式(12)、公式(13)、或公式(14)中相同,此处不再赘述。
本申请通过采用第一偏移量确定终端设备的第一天线端口占用的梳齿、以及采用第二偏移量确定终端设备的第二天线端口占用的梳齿,可以使不同发送时刻终端设备的天线端口占用的梳齿会随机变化,并且同一个终端设备的天线端口的占用的多把梳齿之间的间隔也可以随机变化。这样,在不同发送时刻对终端设备的天线端口造成干扰的天线端口是随机的,在相同发送时刻对终端设备的占用不同梳齿的天线端口造成干扰的天线端口可以不是同一个终端设备的天线端口,可以实现频域干扰随机化,可以进一步提高终端设备的天线端口占用的频域资源自由度,从而进一步提高干扰随机化效果。
一些实施例中,根据梳齿数量、梳齿偏移量和第二偏移量确定的天线端口pi的占用的梳齿的索引可以满足下述公式:或者, 或者,或者, 其中,表示梳齿偏移量,KTC表示梳齿数量,Q1表示第一偏移量,Q2表示第二偏移量,Δ表示第三随机数。
例如,可以根据第一偏移量确定终端设备的部分天线端口占用的梳齿,根据第二偏移量确定终端设备的另一部分天线端口占用的梳齿,终端设备的天线端口pi的占用的梳齿的索引可以满足下述公式(19)、公式(20)、公式(21)、或公式(22)。



与上述公式(2)类似,在公式(19)、公式(20)、公式(21)、或公式(22)中,表示梳齿偏移量,KTC表示梳齿数量,Q1表示第一偏移量,Q2表示第二偏移量,Δ表示第三随机数。
公式(19)中,在满足第一条件:或者,满足第二条件:且pi∈{1001,1003},且的情况下,根据梳齿数量、梳齿偏移量和第一偏移量确定的天线端口pi的占用的梳齿的索引可表示为在不满足第一条件且不满足第二条件的情况下,根据梳齿数量、梳齿偏移量和第二偏移量确定的天线端口pi的占用的梳齿的索引可表示为
公式(20)中,在满足第一条件:且pi∈{1001,1003},且或者,满足第二条件:且pi∈{1001,1003},且的情况下, 根据梳齿数量、梳齿偏移量和第二偏移量确定的天线端口pi的占用的梳齿的索引可表示为在不满足第一条件且不满足第二条件的情况下,根据梳齿数量、梳齿偏移量和第一偏移量确定的天线端口pi的占用的梳齿的索引可表示为
公式(21)中,在满足第一条件:或者,满足第二条件:且pi∈{1001,1003},且的情况下,根据梳齿数量、梳齿偏移量和第一偏移量确定的天线端口pi的占用的梳齿的索引可表示为在不满足第一条件且不满足第二条件的情况下,根据梳齿数量、梳齿偏移量和第二偏移量确定的天线端口pi的占用的梳齿的索引可表示为
公式(22)中,在满足第一条件:且pi∈{1001,1003},且或者,满足第二条件:且pi∈{1001,1003},且的情况下,根据梳齿数量、梳齿偏移量和第二偏移量确定的天线端口pi的占用的梳齿的索引可表示为在不满足第一条件且不满足第二条件的情况下,根据梳齿数量、梳齿偏移量和第一偏移量确定的天线端口pi的占用的梳齿的索引可表示为
下面结合表7和图7对至少根据第一偏移量或第二偏移量确定不同天线端口占用的梳齿后,每个终端设备的天线端口占用的梳齿进行阐述。
以上述场景1为例,以至少根据第一偏移量确定UE1至UE8的两个天线端口占用的梳齿,至少根据第二偏移量确定UE1至UE8的另外两个天线端口占用的梳齿为例,每个UE的天线端口占用的梳齿可以如表7和图7所示。
在发送时刻1,UE1、UE2、UE5和UE6的天线端口占用梳齿1和梳齿3,UE3、UE4、UE7和UE8的天线端口占用相同的梳齿2和梳齿4。
以UE1为例,在发送时刻1,UE1的天线端口在梳齿1和梳齿3上会受到UE5和UE6的天线端口的干扰。
需要说明的是,表7和图7中,以每个UE的天线端口p0和天线端口p2占用一把梳齿,天线端口p1和天线端口p3占用一把梳齿为例,例如天线端口p0和天线端口p2占用的梳齿为该UE占用的两把梳齿中梳齿索引最小的梳齿,天线端口p1和天线端口p3占用的梳齿为该UE占用的两把梳齿中梳齿索引较大的梳齿。为了便于理解,表7和图7中示出了UE和对应的基序列和对应的梳齿,并未示出天线端口。
在发送时刻2,UE1、UE2、UE7和UE8的天线端口占用梳齿1,UE1、UE2、UE5和UE6的天线端口占用梳齿2,UE3、UE4、UE7和UE8的天线端口占用梳齿3,UE3、UE4、UE5和UE6的天线端口占用梳齿4。
以UE1为例,在发送时刻2,UE1的天线端口(例如天线端口p0和天线端口p2)在梳齿1上会受到UE7和UE8的天线端口(例如天线端口p0和天线端口p2)的干扰,UE1的天线端口(例如天线端口p1和天线端口p3)在梳齿2上会受到UE5和UE6的天线端口(例如天线端口p0和天线端口p2)的干扰。
在发送时刻n,UE1、UE2、UE7和UE8的天线端口占用梳齿1,UE1、UE2、UE5和UE6的天线端口占用梳齿4,UE3、UE4、UE5和UE6的天线端口共同占用梳齿2,UE3、UE4、UE7和UE8的天线端口占用梳齿4。
以UE1为例,在发送时刻n,UE1的天线端口(例如天线端口p0和天线端口p2)在梳齿1上会受到UE7和UE8的天线端口(例如天线端口p0和天线端口p2)的干扰,UE1的天线端口(例如天线端口p1和天线端口p3)在梳齿4上会受到UE5和UE6的天线端口(例如天线端口p0和天线端口p2)的干扰。
表7
如此,至少根据第一偏移量确定UE1至UE8的两个天线端口占用的梳齿,至少根据第二偏移量确定UE1至UE8的另外两个天线端口占用的梳齿后,在不同的发送时刻,UE1的天线端口占用的梳齿会随机变化,例如,发送时刻1,UE1采用梳齿1和梳齿3发送参考信号;发送时刻2,UE1采用梳齿1和梳齿4发送参考信号,使对UE1的天线端口造成干扰的天线端口是随机变化的。并且在相同发送时刻对终端设备的占用不同梳齿的天线端口(UE1的天线端口p0和天线端口p2、以及UE1的天线端口p1和天线端口p3)造成干扰的天线端口可以不是同一个终端设备的天线端口,例如,在发送时刻2,UE1的天线端口p0和天线端口p2在梳齿1上会受到UE7和UE8的天线端口p0和天线端口p2的干扰,UE1的天线端口p1和天线端口p3在梳齿2上会受到UE5和UE6的天线端口p0和天线端口p2的干扰。可以进一步提高终端设备的天线端口占用的频域资源自由度,进一步提高对该终端设备造成的干扰随机度,从而进一步提高干扰随机化效果。
在一些实施例中,结合上述场景1,假设对于每个UE,循环移位参考值根据公式(2)获得天线端口pi的占用的梳齿的索引后,每个UE的每个天线端口占用的梳齿如表8和图8所示。
在发送时刻1,UE1的天线端口p0、天线端口p1、天线端口p2和天线端口p3占用梳齿1。UE5的天线端口p0、天线端口p1、天线端口p2和天线端口p3占用梳齿1。其他UE不一一列举,具体参照表8。以UE1为例,UE1的天线端口p0至天线端口p3在梳齿1上会受到UE5的天线端口p0至天线端口p3的干扰。
表8

在发送时刻2,UE1的天线端口p0、天线端口p1、天线端口p2和天线端口p3占用梳齿1。UE5的天线端口p0、天线端口p1、天线端口p2和天线端口p3占用梳齿1。其他UE不一一列举,具体参照表8。以UE1为例,UE1的天线端口p0至天线端口p3在梳齿1上会受到UE5的天线端口p0至天线端口p3的干扰。
类似地,在发送时刻n,UE1的天线端口p0、天线端口p1、天线端口p2和天线端口p3占用梳齿1。UE5的天线端口p0、天线端口p1、天线端口p2和天线端口p3占用梳齿1。其他UE不一一列举,具体参照表8。以UE1为例,UE1的天线端口p0至天线端口p3在梳齿1上会受到UE5的天线端口p0至天线端口p3的干扰。
在任意发送时刻,每个天线端口都会受到相同天线端口的干扰,以UE1为例,在任意发送时刻,UE1的天线端口p0至天线端口p3都会受到UE5的天线端口p0至天线端口p3的干扰,这样并不利于干扰随机化。
在一种可能的设计方法中,第一偏移量是根据第一天线端口占用的循环移位值确定的。
可选地,第一偏移量与循环移位值可存在对应关系。
如此,根据第一偏移量获取天线端口占用的梳齿,第一偏移量的取值与循环移位值有关,从而天线端口占用的梳齿受循环移位值和第一偏移量影响,使得在不同的发送时刻,每个天线端口占用的梳齿和使用的循环移位值均会随机变化,则在不同的发送时刻对终端设备的天线端口造成干扰的天线端口也会随机变化。在相同发送时刻,对终端设备的不同天线端口造成干扰的天线端口不相同。可以实现码域和频域的二维干扰随机化,可以进一步增强干扰随机化效果,加快干扰随机化收敛速度。
此外,由于循环移位值的引入,即使同样是UEx的天线端口pa对UEy的天线端口pb产生的干扰,在不同的发送时刻,干扰水平仍可能会有很大差异。这样,可以保证极好的干扰随机化效果。
在一种可能的设计方法中,第一偏移量是根据第一天线端口占用的循环移位值确定的,可以包括:第一偏移量是根据循环移位值的所属范围确定的。
可选地,循环移位值的所属范围可以划分为至少两个区间。
示例性地,假设将循环移位值的范围划分为第一范围和第二范围,循环移位值为α1,若α1属于第一范围,则第一偏移量的取值为若α1属于第二范围,则第一偏移量的取值为
一些实施例中,若天线端口pi对应的循环移位值αi mod 2π∈R0,则第一偏移量的取值为若αi mod 2π∈R1,则第一偏移量的取值为类似地,若αi mod 2π∈Ry-1,则第一偏移量的取值为
其中,R0表示第一范围,R1表示第二范围,类似地,Ry-1表示第y范围,数学符号∈表示属于。
可选地,也就是说,y个范围的并集为2π,任意两个范围的交集为空。
一些实施例中,循环移位值可以满足公式:
其中,MZC表示序列的长度,c()为伪随机序列,伪随机序列与小区标识有关。nf表示第一天线端口对应的系统帧号,表示每个系统帧包含的时隙数量;表示每个时隙包含的OFDM符号数量。表示子载波配置μ下,第一天线端口对应的时隙编号。l0+l′表示第一天线端口对应的OFDM符号编号,l0表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引。
另一些实施例中,循环移位值可以满足公式: 。其中,表示的含义可参照上述“第三,循环移位值”中对应的的阐述,此处不再赘述。
又一些实施例中,循环移位值可以满足公式:
需要说明的是,本申请实施例中无特殊说明的情况下,各公式之间的参数表示的含义可以相互参考,不予限制。
需要说明的是,本申请实施例不对循环移位值进行限定。
一些实施例中,第一偏移量是根据第一天线端口占用的循环移位值确定的,根据梳齿数量、梳齿偏移量和第一偏移量确定的天线端口pi的占用的梳齿的索引可以满足下述公式:或者,其中,表示梳齿偏移量,KTC表示梳齿数量,koffset表示第一偏移量。
例如,第一偏移量是根据循环移位值的所属范围确定的,根据梳齿数量、梳齿偏移量和第一偏移量确定的天线端口pi的占用的梳齿的索引可以满足下述公式(23)。
与上述公式(2)类似,上述公式(23)中,表示梳齿偏移量,KTC表示梳齿数量,koffset0至koffsetn-1均可表示第一偏移量。
在满足第一条件:且pi∈{1001,1003},且的情况下,天线端口pi的占用的梳齿的索引与循环移位值有关。例如,循环移位值αi mod 2π∈R0时,天线端口pi的占用的梳齿的索引满足例如,循环移位值αi mod 2π∈R1时,天线端口pi的占用的梳齿的索引满足 例如,循环移位值αi mod 2π∈Ry-1时,天线端口pi的占用的梳齿的索引满足
类似地,在满足第二条件:且pi∈{1001,1003},且 的情况下,天线端口pi的占用的梳齿的索引与循环移位值有关,具体参照上述公式,不详细赘述。在不满足第一条件,且不满足第二条件的情况下(如上述公式(23)所示,或者pi∈{1000,1002}或者 天线端口pi的占用的梳齿的索引与循环移位值有关,例如,循环移位值αi mod 2π∈R0时,天线端口pi的占用的梳齿的索引满足 例如,循环移位值αi mod 2π∈R1时,天线端口pi的占用的梳齿的索引满足例如,循环移位值αi mod 2π∈Ry-1时,天线端口pi的占用的梳齿的索引满足
下面结合表9和图9对第一偏移量是根据第一天线端口占用的循环移位值确定的,至少根据第一偏移量确定天线端口占用的梳齿后每个终端设备占用的梳齿进行阐述。
以上述场景1为例,第一偏移量是根据第一天线端口占用的循环移位值确定的,至少根据第一偏移量确定UE1至UE8的每一个天线端口(天线端口p0至天线端口p3)占用的梳齿,假设上述公式(23)中,c=0,1,2,3,y=4,则每个SRS端口pi占用的梳齿的索引可表示为:
,每个UE占用的梳齿可以如表9和图9所示。
结合表9和图9,在发送时刻1,UE1的天线端口p0至天线端口p3分别占用梳齿1、梳齿2、梳齿3和梳齿4。UE2的天线端口p0至天线端口p3分别占用梳齿2、梳齿3、梳齿4和梳齿1。不一一列举,具体参照表9和图9。
以UE1为例,在发送时刻1,UE1的天线端口p0会在梳齿1上受到UE2的天线端口p3、UE3的天线端口p2、UE4的天线端口p1、UE5的天线端口p0、UE6的天线端口p3、UE7的天线端口p3、和UE8的天线端口p1的干扰。UE1的天线端口p1会在梳齿2上受到UE2的天线端口p0、UE3的天线端口p3、UE4的天线端口p2、UE5的天线端口p1、UE6的天线端口p0、UE7的天线端口p2、和UE8的天线端口p2的干扰,不一一列举,具体参照表9和图9。
在发送时刻2,UE1的天线端口p0至天线端口p3分别占用梳齿2、梳齿3、梳齿4和梳齿1。UE2的天线端口p0至天线端口p3分别占用梳齿3、梳齿4、梳齿1和梳齿2。不一一列举,具体参照表9和图9。
以UE1为例,在发送时刻2,UE1的天线端口p0会在梳齿1上受到UE2的天线端口p3、UE3的天线端口p2、UE4的天线端口p1、UE5的天线端口p3、UE6的天线端口p2、UE7的天线端口p1、和UE8的天线端口p0的干扰,不一一列举,具体参照表9和图9。
可见,在不同的发送时刻,每个UE的每个天线端口占用的梳齿均会发生变化,对同一个天线端口产生干扰的天线端口会随机变化,例如在上述发送时刻1和发送时刻2对UE1的天线端口p0造成干扰的天线端口不同。在相同发送时刻,对UE的不同天线端口造成干扰的天线端口不相同,例如在发送时刻1对UE1的天线端口p0造成干扰的天线端口和对UE1的天线端口p1造成干扰的天线端口不同,可以进一步增强干扰随机化效果。
此外,由于循环移位值的引入,即使同样是UEx的天线端口pa对UEy的天线端口pb产生的干扰,在不同的发送时刻干扰水平仍可能会有很大差异。这样,可以保证极好的干扰随机化效果。
表9

图5所示的通信方法,通过采用第一偏移量确定终端设备的第一天线端口占用的梳齿,可以使不同发送时刻终端设备的天线端口占用的频域资源(梳齿)随机变化,从而使对该终端设备的天线端口造成干扰的终端设备的天线端口随机变化,实现了频域干扰随机化,能够达到更好的干扰随机化效果。
或者,引入循环移位值,根据第一偏移量获取第一天线端口占用的梳齿,第一偏移量的取值与循环移位值有关,从而第一天线端口占用的梳齿受循环移位值和第一偏移量影响。使得在不同的发送时刻,每个天线端口占用的梳齿和使用的循环移位值均会随机变化,则在不同的发送时刻对终端设备的天线端口造成干扰的天线端口也会随机变化。在相同发送时刻,对终端设备的不同天线端口造成干扰的天线端口不相同。如此,可以实现码域和频域的二维干扰随机化,可以进一步增强干扰随机化效果,加快干扰随机化收敛速度。
一些实施例中,部分探测偏移量满足上述公式(4):
如果高层参数(例如kF和PF等)不发生变化,则部分探测带宽在跳频带宽中的相对位置仅由起始资源块跳变偏移量khop决定。而khop由参考信号对应的跳频周期的索引和协议预定义的表格(例如表3)决定,这使得每个天线端口占用的部分探测带宽具有很强的规律性,不利于干扰随机化。
结合表10和图10,场景2:小区1包括UE1和UE2,每个UE均包括2个天线端口(例如分别为天线端口p0和天线端口p1),UE1和UE2的各个天线端口使用基序列r1 和各个天线端口对应的循环移位值生成参考信号,UE1和UE2的各个天线端口占用的梳齿和使用的循环移位值至少有一个不同。小区2包括UE3和UE4,每个UE均包括2个天线端口(例如分别为天线端口p0和天线端口p1),UE3和UE4的各个天线端口使用基序列r2和各个天线端口对应的循环移位值生成参考信号,UE3和UE4的各个天线端口占用的梳齿和使用的循环移位值至少有一个不同。图10中每个格子表示一个RB,扫描带宽为16RB,跳频带宽为4RB,跳频周期为4。需要说明的是,表10和图10中未示出天线端口。
每个终端设备的各个天线端口对应的部分探测起始位置索引kF和频率缩放因子PF相同,具体如表10所示,有2个UE可以在相同的时频资源上发送参考信号。
表10
假设同一小区内UE的各个天线端口之间相互正交,如果高层参数(例如kF、和PF等)不发生变化,则在任意发送时刻一个UE的天线端口都会受到固定的干扰,例如UE1的天线端口都会受到UE3的天线端口的干扰。
示例性地,图11为本申请实施例提供的另一种通信方法的流程示意图。图11所示的方法可以与图5所示的方法结合使用,结合使用可以达到更好的干扰随机化效果,图11所示的方法可以与图5所示的方法也可以分别单独使用。
如图11所示,该通信方法包括如下步骤:
S1101,网络设备发送配置信息。相应地,终端设备接收配置信息。
关于S1101的具体实现方式可参照上述S501,此处不再赘述。
S1102,终端设备根据配置信息,在M个天线端口上发送参考信号。相应地,根据配置信息,在M个天线端口上接收参考信号。
示例性地,M为大于0的整数。
可选地,终端设备可以包括M个天线端口。
在一种可能的设计方法中,M个天线端口中的每个天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的。
例如,结合上述场景2,UE1的天线端口p0至天线端口p1中的每个天线端口占用的频域资源的起始位置可以至少是根据第四偏移量确定的。
可选地,第四偏移量可以为大于或等于0的整数。
在一些实施例中,第四偏移量可以至少是根据小区标识和参考信号对应的跳频周期的索引确定的。
例如,结合图10,参考信号对应的跳频周期的索引可以为:跳频周期1等。
一些实施例中,第四偏移量可以是第四随机数。
也就是说,第四偏移量可以为随机数,例如第四偏移量为大于0的随机数。
可选地,第四偏移量或第四随机数可以满足公式(24)、或公式(25)。

上述公式(24)、或公式(25)中,krand表示第四偏移量或第四随机数(krand可以表示第四偏移量;当第四偏移量为第四随机数时,krand可以表示第四随机数),数学符号∑ 表示求和,c()为伪随机序列,伪随机序列与小区标识有关,表示参考信号对应的跳频周期的索引,数学符号表示向下取整,nSRS表示参考信号的计数值,数学符号∏表示累乘,数学符号mod表示取模。
可选地,
需要说明的是,上述公式(25)和中参数的含义可参照上述对公式(5)以及表3的阐述,此处不再赘述。
需要说明的是,上述公式(24)、或公式(25)中的m与序列长度M无关,上述公式(24)、或公式(25)中的以m的取0至7之间的整数为例进行阐述,本申请对上述公式(24)、或公式(25)中的m的取值范围不进行限定。
一些实施例中,M个天线端口中的每个天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,可以包括:M个天线端口中的每个天线端口占用的频域资源的起始位置可以是根据部分探测偏移量确定的。
可选地,部分探测偏移量可以是根据每个资源块包含的子载波数量、跳频带宽、部分探测起始位置索引、起始资源块跳变偏移量、频率缩放因子和第四偏移量确定的。
示例性地,部分探测偏移量可以满足下述公式(26)。
在公式(26)中,krand表示第四偏移量。
公式(26)中其他参数的含义与上述公式(4)类似,为每个资源块包含的子载波数量。表示跳频带宽,mSRS,BSRS为根据高层参数BSRS和CSRS及协议预定义表格(例如表3)确定的跳频带宽。kF为部分探测起始位置索引,kF∈{0,1,…,PF-1}。khop表示起始资源块跳变偏移量。PF表示频率缩放因子。
一些实施例中,天线端口pi的频域起始位置可满足下述公式(27)。
上述公式(27)中,满足其中,为每个资源块包含的子载波数量,例如为12。表示天线端口pi的占用的梳齿的索引。
上述公式(27)中,表示跳频偏移量。可选地,跳频偏移量可满足其中,为每个资源块包含的子载波数量。
上述公式(27)中,可表示部分探测偏移量,部分探测偏移量可以是根据每个资源块包含的子载波数量、跳频带宽、部分探测起始位置索引、起始资源块跳变偏移量、频率缩放因子和第四偏移量确定的,例如上述公式(26)。
结合图12,以上述场景2为例,至少根据第四偏移量确定UE1至UE4的每一个天线端口(天线端口p0至天线端口p1)占用的频域资源的起始位置,每个UE占用的频域资源的起始位置可以如图12所示。
在跳频周期1,UE1的天线端口和UE3的天线端口占用相同的频域资源的起始位置,UE2的天线端口和UE4的天线端口占用相同的频域资源的起始位置。在跳频周期2,UE1的天线端口和UE4的天线端口占用相同的频域资源的起始位置,UE2的天线端口和UE3的天线端口占用相同的频域资源的起始位置。类似地,在跳频周期n,UE1的天线端口和UE3的天线端口占用相同的频域资源的起始位置,UE2的天线端口和UE4的天线端口占用相同的频域资源的起始位置。
以UE1为例,在跳频周期1,对UE1的天线端口造成干扰是UE3的天线端口,在跳频周期2,对UE1的天线端口造成干扰是UE4的天线端口,可见,在不同的跳频周期对UE1的天线端口造成干扰的天线端口不同,这样会带来较好的干扰随机化效果,可以加快干扰随机化收敛速度,提升信道估计性能。
基于图11所示的通信方法,在确定天线端口占用的频域资源的起始位置时,引入第四偏移量,可以使在不同跳频周期每个天线端口占用的频域资源的起始位置随机变化,对某个终端设备的天线端口造成干扰的天线端口也就会随机变化,实现了频域干扰随机化,这样会带来较好的干扰随机化效果,可以加快干扰随机化收敛速度,提升信道估计性能。
示例性地,图13为本申请实施例提供的一种通信方法的流程示意图。图13所示的方法与图5所示的方法可以是并列的方案,也可以结合使用。
如图13所示,该通信方法包括如下步骤:
S1301,网络设备发送参考信号的配置信息。相应地,终端设备接收参考信号的配置信息。
关于S1301和配置信息的具体实现可参照上述S501中对应的阐述,此处不再赘述。
S1302,终端设备根据配置信息,在M个天线端口上发送参考信号。相应地,网络设备根据配置信息,在M个天线端口上接收参考信号。
示例性地,M为大于0的整数,M个天线端口包括至少一个第一天线端口。关于M、M个天线端口、和第一天线端口的具体实现可参照上述S502中对应的阐述,此处不再赘述。
一些实施例中,第一天线端口占用的梳齿至少是根据第一偏移量确定的。
例如,结合上述场景1,UE1的天线端口p0至天线端口p3中的一个或多个天线端口占用的梳齿可以至少是根据第一偏移量确定的。
可选地,第一偏移量可以为大于或等于0的整数。
可选地,第一天线端口占用的梳齿至少是根据第一偏移量确定的,可以包括:第一天线端口占用的梳齿可以是根据第一天线端口占用的梳齿的初始值和第一偏移量确定的。
可选地,第一天线端口占用的梳齿的初始值可以是根据梳齿偏移量确定的,或者,第一天线端口占用的梳齿的初始值可以是根据梳齿数量和梳齿偏移量确定的。
可选地,梳齿数量可以为参考信号的发送带宽中包括的梳齿数量。
可选地,梳齿偏移量可以为参考信号占用的梳齿的参考量。
例如,第一天线端口占用的梳齿的初始值可满足上述公式(2)。
示例性地,第一天线端口占用的梳齿可以是根据梳齿偏移量和第一偏移量确定的,或者,第一天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量和第一偏移量确定的。
示例性地,第一偏移量可以至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
可选地,第一天线端口占用的时域资源可以包括一个或多个OFDM符号。第一天线端口占用的时域资源包括的一个或多个OFDM符号可以是根据以下参数中的一个或多个确定的:第一天线端口对应的系统帧号、第一天线端口对应的时隙编号和第一天线端口对应的OFDM符号编号。
本申请不限定第一天线端口占用的时域资源包括的OFDM符号的数量。
在一种可能的设计方式中,根据第一天线端口占用的时域资源确定时域资源所在的 跳频周期的索引,或者根据第一天线端口占用的时域资源确定时域资源对应一个跳频周期内的相对索引。相对索引可以定义为:一个跳频周期内的第k次发送的相对索引为k-1。
可选地,M个天线端口分别占用的时域资源可以相同或不同。
可选地,第一天线端口占用的频域资源可以包括一个或多个子带宽。第一天线端口占用的频域资源包括的一个或多个子带宽可以是根据以下参数中的一个或多个确定的:第一天线端口对应的跳频带宽的索引、和第一天线端口对应的发送带宽的索引。
在一种可能的设计方式中,根据第一天线端口占用的频域资源确定频域资源所在的跳频带宽的索引,或者根据第一天线端口占用的频域资源确定频域资源对应一个子带的索引。子带的索引可以定义为:第一天线端口的扫描带宽对应a*b个RB,可以划分成粒度为b的a个子带,从频率由低到高依次对各个子带编号,包括:{0,…,a-1}。
可选地,M个天线端口占用的频域资源可以相同或不同。
在一些实施例中,第一偏移量可以包括第一随机数和/或第五随机数。
可选地,第一随机数可以至少是根据第一天线端口占用的时域资源确定的。例如,第一随机数可以用Q1表示。
例如,第一随机数可以为大于0的随机数。
可选地,第五随机数可以至少是根据第一天线端口占用的频域资源确定的。例如,第五随机数可以用Q3表示。
例如,第五随机数可以为大于0的随机数。
如此,第一天线端口占用的梳齿可以是根据第一随机数和/或第五随机数确定的。
示例性地,第一天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量和第一随机数确定的,或者,第一天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量和第五随机数确定的,或者,第一天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量、第一随机数和第五随机数确定的。
一些实施例中,第一随机数至少是根据第一天线端口占用的时域资源确定的,可以包括:第一随机数是根据第一天线端口占用的时域资源和伪随机序列确定的。
可选地,伪随机序列可以为c()。关于伪随机序列的具体实现方式可参照上述S502中对应的阐述,此处不再赘述。
可选地,第一随机数是根据第一天线端口占用的时域资源和伪随机序列确定的,第一随机数还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量,另外,第一随机数的取值范围还可以根据梳齿数量和梳齿偏移量确定。
例如,本申请中,每个系统帧包含的时隙数量可指一个系统帧包含的时隙数量。
例如,本申请中,每个时隙包含的OFDM符号数量可指一个时隙包含的OFDM符号数量。
可选地,第一随机数可以满足上述S502中的公式(6)、公式(7)、公式(8)、或公式(9),此处不再赘述。
上述公式(6)、公式(7)、公式(8)、或公式(9)中,Q1表示第一随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,nf表示第一天线端口对应的系统帧号(或者,nf表示第一天线端口占用的时域资源的系统帧号),表示每个系统帧中的时隙数量,表示每个时隙中的OFDM符号数量,表示第一天线端 口对应的时隙编号(或者,表示第一天线端口占用的时域资源的时隙编号),l0表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引(或者,l0表示起始OFDM符号的索引),l′表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引(或者,l′表示第一天线端口占用的时域资源的OFDM符号的相对索引),KTC表示梳齿数量。
本申请通过采用第一随机数确定终端设备的第一天线端口占用的梳齿,可以使不同发送时刻终端设备占用的频域资源(梳齿)随机变化,从而使对该终端设备造成干扰的终端设备随机变化,实现了频域干扰随机化,能够达到更好的干扰随机化效果。
另一些实施例中,第一随机数至少是根据第一天线端口占用的时域资源确定的,可以包括:第一随机数是根据多个第一对应关系中的一个第一对应关系、和第一天线端口占用的时域资源确定的。可选地,第一随机数可以替换为第一变量。
可选地,多个第一对应关系中的一个第一对应关系可以是网络设备向终端设备指示的。例如,参考信号的配置信息可以包括用于指示多个第一对应关系中的一个第一对应关系的指示信息、和/或多个第一对应关系中的一个第一对应关系。
示例性地,网络设备可以从多个第一对应关系中选择一个第一对应关系,并向终端设备指示该选择出的一个第一对应关系。
可选地,一个第一对应关系可以包括:至少一个第一随机数与至少一个时域资源之间的对应关系。
示例性地,至少一个第一随机数与至少一个时域资源一一对应。例如,时域资源可以为OFDM符号、系统帧号、或时隙编号等。
示例性地,终端设备可以根据第一天线端口占用的时域资源,在至少一个第一随机数与至少一个时域资源之间的对应关系中,获取第一天线端口占用的时域资源对应的第一随机数。
例如,第一对应关系1包括:第一随机数1对应时域资源1,第一随机数2对应时域资源2。终端设备的第一天线端口占用时域资源1,则终端设备根据第一对应关系1和终端设备1的第一天线端口占用时域资源1,获得第一随机数为第一随机数1。
示例性地,假设每个第一对应关系(可以称为图案(pattern))中均包括n个时域资源和n个第一随机数之间的对应关系,对于第k个第一对应关系,n个时域资源{y1,y2,…yn}依次对应的第一随机数为{x1,x2,…xn},则对于第k+1个第一对应关系的n个时域资源依次对应的第一随机数为{x(1+a)modn,x(2+a)modn,…x(M+a)modn}。其中,{x1,x2,…xn}的取值属于{0,1,…,KTC-1},KTC为梳齿度。可选的,a=1。
如此,在不同时域资源,终端设备获取的第一随机数的是随机变化的,再通过采用第一随机数确定终端设备的第一天线端口占用的梳齿,可以使不同发送时刻终端设备占用的梳齿随机变化。
可选地,一个跳频周期可以包括至少一次参考信号发送,至少一个第一随机数与至少一个时域资源之间的对应关系可以包括:至少一个第一随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
示例性地,至少一个第一随机数与至少一次参考信号发送的编号一一对应。
例如,终端设备可以根据第一天线端口的本次参考信号发送的编号,在至少一个第一随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系中,获取第一随机数。
或者,可选地,至少一个第一随机数与至少一个时域资源之间的对应关系可以包括:至少一个第一随机数与至少一个跳频周期的索引之间的对应关系。
示例性地,至少一个第一随机数与至少一个跳频周期的索引一一对应。
例如,终端设备可以根据第一天线端口占用的时域资源所在的跳频周期的索引,在至少一个第一随机数与至少一个跳频周期的索引之间的对应关系中,获取第一随机数。
可选地,网络设备可以向不同小区的终端设备指示不同的第一对应关系。
如此,网络设备向不同小区的终端设备指示不同的第一对应关系,从而使对该终端设备造成干扰的终端设备随机变化,实现了频域干扰随机化,能够达到更好的干扰随机化效果。
一些实施例中,第一偏移量为第一随机数(第一随机数是根据第一天线端口占用的时域资源确定的)时,根据第一偏移量确定的天线端口pi的占用的梳齿的索引可以满足下述公式:或者,其中,表示梳齿偏移量,KTC表示梳齿数量,Q1表示第一随机数或第一偏移量。
例如,根据第一随机数确定的终端设备的天线端口pi的占用的梳齿的索引可以满足上述S502中的公式(10),Q1表示第一随机数或第一偏移量。具体实现可参照上述S502中对公式(10)的阐述,此处不再赘述。
示例性地,根据第一偏移量(第一偏移量是根据第一天线端口占用的时域资源确定的,第一偏移量为第一随机数)确定第一天线端口占用的梳齿后,每个终端设备的天线端口占用的梳齿可参照上述S502中对表6和图6的阐述,此处不再赘述。
一些实施例中,第五随机数至少是根据第一天线端口占用的频域资源确定的,可以包括:第五随机数是根据第一天线端口占用的频域资源和伪随机序列确定的。
可选地,伪随机序列可以为c()。
可选地,第五随机数可以满足公式(28)、或公式(29)。

上述公式(28)或公式(29)中,Q3表示第五随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,k表示第一天线端口占用的频域资源对应的跳频带宽的索引和/或发送带宽的索引,KTC表示梳齿数量。
需要说明的是,上述公式(28)或公式(29)中的m与序列长度M无关,上述公式(28)或公式(29)中的以m的取0至7之间的整数为例进行阐述,本申请对上述公式(28)或公式(29)中的m的取值范围不进行限定。
另一些实施例中,第五随机数至少是根据第一天线端口占用的频域资源确定的,可以包括:第五随机数是根据多个第二对应关系中的一个第二对应关系、和第一天线端口占用的频域资源确定的。
可选地,多个第二对应关系中的一个第二对应关系可以是网络设备向终端设备指示的。例如,参考信号的配置信息可以包括用于指示多个第二对应关系中的一个第二对应关系的指示信息、和/或多个第二对应关系中的一个第二对应关系。
示例性地,网络设备可以从多个第二对应关系中选择一个第二对应关系,并向终端设备指示该选择出的一个第二对应关系。
可选地,一个第二对应关系可以包括至少一个第五随机数与至少一个频域资源之间 的对应关系。
示例性地,至少一个第五随机数与至少一个频域资源一一对应。
示例性地,终端设备可以根据第一天线端口占用的频域资源,在至少一个第五随机数与至少一个频域资源之间的对应关系中,获取第一天线端口占用的频域资源对应的第五随机数。
例如,第二对应关系的具体实现与第一对应关系类似,可参照对第一对应关系阐述,此处不再赘述。
如此,对于不同频域资源,终端设备获取的第五随机数的是随机变化的,再通过采用第五随机数确定终端设备的第一天线端口占用的梳齿,可以使不同发送时刻终端设备占用的频域资源(梳齿)随机变化。
可选地,网络设备可以向不同小区的终端设备指示不同的第二对应关系。
如此,网络设备向不同小区的终端设备指示不同的第二对应关系,从而使对该终端设备造成干扰的终端设备随机变化,实现了干扰随机化,能够达到更好的干扰随机化效果。
一些实施例中,第一偏移量为第五随机数(第一偏移量是根据第一天线端口占用的频域资源确定的)时,根据第五随机数确定的天线端口pi的占用的梳齿的索引可以满足下述公式:或者,其中,表示梳齿偏移量,KTC表示梳齿数量,Q3表示第五随机数或第一偏移量。
例如,根据第五随机数确定的终端设备的天线端口pi的占用的梳齿的索引可以满足下述公式(30)。
与上述公式(10)类似,在公式(30)中,表示梳齿偏移量,KTC表示梳齿数量,Q3表示第五随机数或第一偏移量。
下面结合表11对至少根据第五随机数确定第一天线端口占用的梳齿后每个终端设备的天线端口占用的梳齿进行阐述。
以上述场景1为例,至少根据第五随机数确定UE1至UE8的每一个天线端口(天线端口p0至天线端口p3)占用的梳齿,每个UE的天线端口占用的梳齿可以如表11所示。
在频域资源1,UE1、UE2、UE5和UE6的天线端口占用梳齿1和梳齿3,UE3、UE4、UE7和UE8的天线端口占用相同的梳齿2和梳齿4。以UE1为例,UE1的天线端口在梳齿1和梳齿3上会受到UE5和UE6的天线端口的干扰。
需要说明的是,表11中,以每个UE的天线端口p0和天线端口p2占用一把梳齿,天线端口p1和天线端口p3占用一把梳齿为例,例如天线端口p0和天线端口p2占用的梳齿为该UE占用的两把梳齿中梳齿索引最小的梳齿,天线端口p1和天线端口p3占用的梳齿为该UE占用的两把梳齿中梳齿索引较大的梳齿。为了便于理解,表11中示出了UE和对应的基序列和对应的梳齿,并未示出天线端口。
在频域资源2,UE1、UE2、UE7和UE8的天线端口占用梳齿1和梳齿3,UE3、UE4、UE5和UE6的天线端口占用梳齿2和梳齿4。UE1的天线端口在梳齿1和梳齿3上会受到UE7和UE8的天线端口的干扰。
在频域资源n,UE1、UE2、UE7和UE8的天线端口占用梳齿2和梳齿4,UE3、UE4、UE5和UE6的天线端口占用梳齿7和梳齿8,UE1的天线端口在梳齿2和梳齿4上会受到UE7和UE8的天线端口的干扰。
可选地,表11中,频域资源1可以替换为频域单元1、子带1、跳频带宽1、或跳频带宽1等,频域资源2至频域资源n类似,不一一阐述。
表11
如此,在不同的频域资源,UE1的天线端口占用的梳齿是随机变化的,从而使对UE1造成干扰的UE是随机变化的,某些频域资源上对UE1造成干扰的UE是UE5和UE6,某些频域资源上对UE1造成干扰的UE是UE7和UE8,对UE1的天线端口造成干扰的天线端口是随机变化的,从而能够达到更好的干扰随机化效果。
一些实施例中,第一偏移量包括第一随机数和第五随机数(第一随机数是根据第一天线端口占用的时域资源确定的,第五随机数是根据第一天线端口占用的频域资源确定的)时,根据梳齿数量、梳齿偏移量、第一随机数和第五随机数确定的天线端口pi的占用的梳齿的索引可以满足下述公式:或者,其中,表示梳齿偏移量,KTC表示梳齿数量,Q1表示第一随机数,Q3表示第五随机数。
例如,根据梳齿数量、梳齿偏移量、第一随机数和第五随机数确定的终端设备的天线端口pi的占用的梳齿的索引可以满足下述公式(31)。
与上述公式(10)类似,在公式(31)中,表示梳齿偏移量,KTC表示梳齿数量,Q1表示第一随机数,Q3表示第五随机数。
下面对根据第一随机数和第五随机数确定第一天线端口占用的梳齿后,每个终端设备的天线端口占用的梳齿进行阐述。
以上述场景1为例,根据第一随机数和第五随机数确定UE1至UE8的每一个天线端 口(天线端口p0至天线端口p3)占用的梳齿,每个UE的天线端口占用的梳齿可以是上述表6与表11的结合,例如,如表12所示。
在发送时刻1和频域资源1,UE1、UE2、UE5和UE6的天线端口占用梳齿1和梳齿3,UE3、UE4、UE7和UE8的天线端口占用相同的梳齿2和梳齿4。以UE1为例,UE1的天线端口在梳齿1和梳齿3上会受到UE5和UE6的天线端口的干扰。
在发送时刻2和频域资源2,UE1、UE2、UE7和UE8的天线端口占用梳齿1和梳齿3,UE3、UE4、UE5和UE6的天线端口占用梳齿2和梳齿4。UE1的天线端口在梳齿1和梳齿3上会受到UE7和UE8的天线端口的干扰。
在发送时刻n和频域资源n,UE1、UE2、UE7和UE8的天线端口占用梳齿2和梳齿4,UE3、UE4、UE5和UE6的天线端口占用梳齿7和梳齿8,UE1的天线端口在梳齿2和梳齿4上会受到UE7和UE8的天线端口的干扰。
表12
如此,在不同的发送时刻和频域资源,UE1的天线端口占用的梳齿是随机变化的,从而使对UE1造成干扰的UE是随机变化的,某些发送时刻和频域资源上对UE1造成干扰的UE是UE5和UE6,某些发送时刻和频域资源上对UE1造成干扰的UE是UE7和UE8,对UE1的天线端口造成干扰的天线端口是随机变化的,从而能够达到更好的干扰随机化效果。
另一些实施例中,第一天线端口占用的梳齿可以是根据多个第十对应关系中的一个第十对应关系、和第一天线端口占用的时域资源确定的。
可选地,多个第十对应关系中的一个第十对应关系可以是网络设备向终端设备指示的。例如,参考信号的配置信息可以包括用于指示多个第十对应关系中的一个第十对应关系的指示信息、和/或多个第十对应关系中的一个第十对应关系。
示例性地,网络设备可以从多个第十对应关系中选择一个第十对应关系,并向终端设备指示该选择出的一个第十对应关系。
可选地,网络设备可以向不同小区的终端设备指示不同的第十对应关系。
可选地,一个第十对应关系可以包括至少一个梳齿值与至少一个时域资源之间的对 应关系。
示例性地,至少一个梳齿与至少一个时域资源一一对应。
示例性地,假设每个第十对应关系(可以称为图案(pattern))中均包括n个时域资源和n个梳齿值之间的对应关系,对于第k个第一对应关系,n个时域资源{y1,y2,…yn}依次对应的第一随机数为{cb1,cb2,…cbn},则对于第k+1个第一对应关系的n个时域资源依次对应的梳齿值为{cb(1+a)modn,cb(2+a)modn,…cb(M+a)modn}。其中,{cb1,cb2,…cbn}的取值属于{0,1,…,KTC-1},KTC为梳齿度。可选的,a=1。
示例性地,终端设备可以根据第一天线端口占用的时域资源,在至少一个梳齿与至少一个时域资源之间的对应关系中,获取第一天线端口占用的梳齿。
多个第十对应关系可以如表13所示,表13中以第十对应关系的数量为4个、每个第十对应关系包括4个时域资源、梳齿数量是4为例,第十对应关系1至第十对应关系4之间互不相同,具体见表13。
例如,表13中,发送时刻1可以替换为OFDM符号1、系统帧号1、时隙编号1、时域资源1、时间单元1等,发送时刻2至发送时刻4与发送时刻1类似,不一一阐述。
可选地,表13中,第十对应关系还包括发送时刻1至发送时刻8,发送时刻5至发送时刻8分别对应的梳齿与发送时刻1至发送时刻4分别对应的梳齿相同。
例如,第十对应关系1中,发送时刻1至发送时刻4分别对应的梳齿1至梳齿4,发送时刻5至发送时刻8分别对应的梳齿1至梳齿4。
表13
如此,终端设备采用多个第十对应关系中的一个第十对应关系、和第一天线端口占用的时域资源,获取第一天线端口占用的梳齿,可使在不同的发送时刻占用的梳齿随机变化。网络设备为不同小区的终端设备分配不同的第十对应关系(图案),从而使对该终端设备造成干扰的终端设备随机变化,实现了频域干扰随机化,能够达到更好的干扰随机化效果。
另一些实施例中,第一天线端口占用的梳齿可以是根据多个第十一对应关系中的一个第十一对应关系、和第一天线端口占用的频域资源确定的。
可选地,多个第十一对应关系中的一个第十一对应关系可以是网络设备向终端设备指示的。例如,参考信号的配置信息可以包括用于指示多个第十一对应关系中的一个第十一对应关系的指示信息、和/或多个第十一对应关系中的一个第十一对应关系。
示例性地,网络设备可以从多个第十一对应关系中选择一个第十一对应关系,并向终端设备指示该选择出的一个第十一对应关系。
可选地,网络设备可以向不同小区的终端设备指示不同的第十一对应关系。
可选地,一个第十一对应关系可以包括至少一个梳齿与至少一个频域资源之间的对应关系。
示例性地,至少一个梳齿与至少一个频域资源一一对应。
示例性地,假设每个第十对应关系(可以称为图案(pattern))中均包括n个频域资源和n个梳齿值之间的对应关系,对于第k个第一对应关系,n个频域资源{y1,y2,…yn}依次对应的第一随机数为{cb1,cb2,…cbn},则对于第k+1个第一对应关系的n个频域资源依次对应的梳齿值为{cb(1+a)modn,cb(2+a)modn,…cb(M+a)modn}。其中,{cb1,cb2,…cbn}的取值属于{0,1,…,KTC-1},KTC为梳齿度。可选的,a=1。
示例性地,终端设备可以根据第一天线端口占用的频域资源,在至少一个梳齿与至少一个频域资源之间的对应关系中,获取第一天线端口占用的梳齿。
多个第十一对应关系可以如表14所示,表14中以第十一对应关系的数量为4个、每个第十一对应关系包括4个时域资源、梳齿数量是4为例,第十一对应关系1至第十一对应关系4之间互不相同,具体见表14。
可选地,表14中,频域资源1可以替换为频域单元1、子带1、跳频带宽1、或跳频带宽1等,频域资源2至频域资源4类似,不一一阐述。
可选地,表14中,第十一对应关系还包括频域资源1至频域资源8,频域资源5至频域资源8分别对应的梳齿与频域资源1至频域资源4分别对应的梳齿相同。
表14
如此,终端设备采用多个第十一对应关系中的一个第十一对应关系、和第一天线端口占用的频域资源,获取第一天线端口占用的梳齿,可使在不同的频域资源占用的梳齿随机变化。网络设备为不同小区的终端设备分配不同的第十一对应关系(图案),从而使对该终端设备造成干扰的终端设备随机变化,实现了干扰随机化,能够达到更好的干扰随机化效果。
另一些实施例中,第一天线端口占用的梳齿可以是根据多个第十二对应关系中的一个第十二对应关系、和第一天线端口占用的时域资源和频域资源确定的。
可选地,多个第十二对应关系中的一个第十二对应关系可以是网络设备向终端设备 指示的。例如,参考信号的配置信息可以包括用于指示多个第十二对应关系中的一个第十二对应关系的指示信息、和/或多个第十二对应关系中的一个第十二对应关系。
示例性地,网络设备可以从多个第十二对应关系中选择一个第十二对应关系,并向终端设备指示该选择出的一个第十二对应关系。
可选地,网络设备可以向不同小区的终端设备指示不同的第十二对应关系。
可选地,一个第十二对应关系可以包括至少一个梳齿与至少一个时域资源和至少一个频域资源之间的对应关系。
示例性地,至少一个梳齿与至少一个时域资源和至少一个频域资源一一对应。
示例性地,终端设备可以根据第一天线端口占用的时域资源和频域资源,在至少一个梳齿与至少一个时域资源和至少一个频域资源之间的对应关系中,获取第一天线端口占用的梳齿。
多个第十二对应关系可以是上述表13与表14的结合,例如,如表15所示。
表15中以第十二对应关系的数量为4个、每个第十二对应关系包括4个时域资源和4个频域资源、梳齿数量是4为例,第十二对应关系1至第十二对应关系4之间互不相同,具体见表15。
表15
如此,终端设备采用多个第十二对应关系中的一个第十二对应关系、和第一天线端口占用的频域资源和时域资源,获取第一天线端口占用的梳齿,可使第一天线端口在不同的频域资源和时域资源占用的梳齿随机变化。网络设备为不同小区的终端设备分配不同的第十二对应关系(图案),从而使对该终端设备造成干扰的终端设备随机变化,实现了干扰随机化,能够达到更好的干扰随机化效果。
在一种可能的设计方法中,M个天线端口还可以包括至少一个第二天线端口。关于第二天线端口的阐述可参照上述S502中对应的阐述,此处不再赘述。
可选地,第二天线端口占用的梳齿可以至少是根据第二偏移量确定的。
可选地,第二偏移量与第一偏移量不同。
示例性地,第二偏移量可以为大于0或等于0的整数。
可选地,第二天线端口占用的梳齿至少是根据第二偏移量确定的,可以包括:第二天线端口占用的梳齿可以是根据第二天线端口占用的梳齿的初始值和第二偏移量确定的。
可选地,第二天线端口占用的梳齿的初始值可以是根据梳齿偏移量确定的,或者,第二天线端口占用的梳齿的初始值可以是根据梳齿数量和梳齿偏移量确定的。
例如,第二天线端口占用的梳齿的初始值可满足上述公式(2)。
示例性地,第二天线端口占用的梳齿可以是根据梳齿偏移量和第二偏移量确定的,或者,第二天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量和第二偏移量确定的。
示例性地,第二偏移量可以至少是根据第二天线端口占用的时域资源和/或第二天线端口占用的频域资源确定的。
可选地,第二天线端口占用的时域资源可以包括一个或多个OFDM符号。可选地,第二天线端口占用的时域资源可以包括的一个或多个OFDM符号根据以下参数中的一个或多个确定:第二天线端口对应的系统帧号、第二天线端口对应的时隙编号和第二天线端口对应的OFDM符号编号。
本申请不限定第二天线端口占用的时域资源包括的OFDM符号的数量。
可选地,第二天线端口占用的频域资源可以包括一个或多个子带宽。可选地,第二天线端口占用的频域资源包括的一个或多个子带宽是根据以下参数中的一个或多个确定的:第二天线端口对应的跳频带宽的索引、和第二天线端口对应的发送带宽的索引。
可选地,终端设备包括的所有第一天线端口属于同一个参考信号资源,终端设备包括的所有第二天线端口属于同一个参考信号资源,所有第一天线端口属于的参考信号资源与所有第二天线端口属于的参考信号资源可以相同或不同。
在一些实施例中,第二偏移量可以包括第二随机数和/或第六随机数。
可选地,第二随机数可以至少是根据第二天线端口占用的时域资源确定的。例如,第二随机数可以用Q2表示。
例如,第二随机数可以为大于0或等于0的随机数。
可选地,第六随机数可以至少是根据第二天线端口占用的频域资源确定的。例如,第六随机数可以用Q4表示。
例如,第六随机数可以为大于0或等于0的随机数。
如此,第二天线端口占用的梳齿可以是根据第二随机数和/或第六随机数确定的。
示例性地,第二天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量和第二随机数确定的,或者,第二天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量和第六随机数确定的,或者,第二天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量、第二随机数和第六随机数确定的。
一些实施例中,第二随机数至少是根据第二天线端口占用的时域资源确定的,可以包括:第二随机数是根据第二天线端口占用的时域资源和伪随机序列确定的。
可选地,第二随机数是根据第二天线端口占用的时域资源和伪随机序列确定的,第二随机数还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。
可选地,第一随机数可以满足上述S502中的公式(11)、公式(12)、公式(13)、或公式(14),此处不再赘述。
上述公式(11)、公式(12)、公式(13)、或公式(14)中,Q2表示第二随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,nf表示第二天线端口对应的系统帧号(或者,nf表示第二天线端口占用的时域资源的系统帧号),表示每个系统帧中的时隙数量,表示每个时隙中的OFDM符号数量,表示第二天线端口对应的时隙编号(或者,表示第二天线端口占用的时域资源的时隙编号),l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引(或者,l′表示第二天线端口占用的时域资源的OFDM符号的相对索引),KTC表示梳齿数量。
另一些实施例中,第二随机数至少是根据第二天线端口占用的时域资源确定的,可以包括:第二随机数是根据多个第三对应关系中的一个第三对应关系、和第二天线端口占用的时域资源确定的。
可选地,多个第三对应关系中的一个第三对应关系可以是网络设备向终端设备指示的。例如,参考信号的配置信息可以包括用于指示多个第三对应关系中的一个第三对应关系的指示信息、和/或多个第三对应关系中的一个第三对应关系。
示例性地,网络设备可以从多个第三对应关系中选择一个第三对应关系,并向终端设备指示该选择出的一个第三对应关系。
可选地,一个第三对应关系可以包括:至少一个第二随机数与至少一个时域资源之间的对应关系。第三对应关系的具体实现与第一对应关系类似,可参照上述对第一对应关系的阐述,此处不再赘述。
示例性地,至少一个第二随机数与至少一个时域资源一一对应。例如,时域资源可以为OFDM符号、系统帧号、或时隙编号等。
示例性地,终端设备可以根据第二天线端口占用的时域资源,在至少一个第二随机数与至少一个时域资源之间的对应关系中,获取第二天线端口占用的时域资源对应的第二随机数。
如此,在不同发送时刻,终端设备获取的第二随机数的是随机变化的,再通过采用第二随机数确定终端设备的第二天线端口占用的梳齿,可以使不同发送时刻终端设备的第二天线端口占用的频域资源(梳齿)随机变化。
可选地,一个跳频周期可以包括至少一次参考信号发送,至少一个第二随机数与至少一个时域资源之间的对应关系可以包括:至少一个第二随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
示例性地,至少一个第二随机数与至少一次参考信号发送的编号一一对应。
例如,终端设备可以根据第二天线端口的本次参考信号发送的编号,在至少一个第二随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系中,获取第二随机数。
可选地,至少一个第二随机数与至少一个时域资源之间的对应关系可以包括:至少一个第二随机数与至少一个跳频周期的索引之间的对应关系。
示例性地,至少一个第二随机数与至少一个跳频周期的索引一一对应。
例如,终端设备可以根据第二天线端口占用的时域资源所在的跳频周期的索引,在至少一个第二随机数与至少一个跳频周期的索引之间的对应关系中,获取第二随机数。
可选地,网络设备可以向不同小区的终端设备指示不同的第二对应关系。
如此,网络设备向不同小区的终端设备指示不同的第二对应关系,从而使对该终端设备造成干扰的终端设备随机变化,实现了频域干扰随机化,能够达到更好的干扰随机化效果。
一些实施例中,第六随机数至少是根据第二天线端口占用的频域资源确定的,可以包括:第六随机数是根据第二天线端口占用的频域资源和伪随机序列确定的。
可选地,伪随机序列可以为c()。
可选地,第六随机数可以满足公式(32)、或公式(33)。

上述公式(32)或公式(33)中,Q4表示第六随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,k表示第二天线端口占用的频域资源对应的跳频带宽的索引和/或发送带宽的索引,KTC表示梳齿数量。
需要说明的是,上述公式(32)或公式(33)中的m与序列长度M无关,上述公式(32)或公式(33)中的以m的取0至7之间的整数为例进行阐述,本申请对上述公式(32)或公式(33)中的m的取值范围不进行限定。
另一些实施例中,第六随机数至少是根据第二天线端口占用的频域资源确定的,可以包括:第六随机数是根据多个第四对应关系中的一个第四对应关系、和第二天线端口占用的频域资源确定的。
可选地,多个第四对应关系中的一个第四对应关系可以是网络设备向终端设备指示的。例如,参考信号的配置信息可以包括用于指示多个第四对应关系中的一个第四对应关系的指示信息、和/或多个第四对应关系中的一个第四对应关系。
示例性地,网络设备可以从多个第四对应关系中选择一个第四对应关系,并向终端设备指示该选择出的一个第四对应关系。
可选地,一个第四对应关系可以包括至少一个第六随机数与至少一个频域资源之间的对应关系。
示例性地,至少一个第六随机数与至少一个频域资源一一对应。
示例性地,终端设备可以根据第二天线端口占用的频域资源,在至少一个第六随机数与至少一个频域资源之间的对应关系中,获取第二天线端口占用的频域资源对应的第六随机数。
例如,第四对应关系的具体实现与第一对应关系类似,可参照对第一对应关系阐述,此处不再赘述。
如此,对于不同频域资源,终端设备获取的第六随机数的是随机变化的,再通过采用第六随机数确定终端设备的第二天线端口占用的梳齿,可以使不同发送时刻终端设备的第二天线端口占用的频域资源(梳齿)随机变化。
可选地,网络设备可以向不同小区的终端设备指示不同的第四对应关系。
如此,网络设备向不同小区的终端设备指示不同的第四对应关系,从而使对该终端设备造成干扰的终端设备随机变化,实现了干扰随机化,能够达到更好的干扰随机化效果。
在另一种可能的设计方法中,第二偏移量可以为第一偏移量与第三偏移量之和。
可选地,第三偏移量可以为大于或等于0的整数。
在一些实施例中,第三偏移量可以至少是根据第二天线端口占用的时域资源和/或第二天线端口占用的频域资源确定的。关于第二天线端口占用的时域资源和第二天线端口占用的频域资源的具体实现可参照上述阐述,此处不再赘述。
在一些实施例中,第三偏移量可以包括第三随机数和/或第七随机数。
可选地,第三随机数可以至少是根据第二天线端口占用的时域资源确定的。例如,第三随机数可以用Δ表示。
例如,第三随机数可以为大于0或等于0的随机数。
可选地,第七随机数至少是根据第二天线端口占用的频域资源确定的。例如,第七随机数可以用Δ1表示。
例如,第七随机数可以为大于0或等于0的随机数。
如此,第二天线端口占用的梳齿可以是根据第三随机数和/或第七随机数确定的。
示例性地,第二天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量和第三随机数确定的,或者,第二天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量和第七随机数确定的,或者,第二天线端口占用的梳齿可以是根据梳齿数量、梳齿偏移量、第三随机数和第七随机数确定的。
一些实施例中,第三随机数至少是根据第二天线端口占用的时域资源确定的,可以包括:第三随机数是根据第二天线端口占用的时域资源和伪随机序列确定的。
可选地,第三随机数是根据第二天线端口占用的时域资源和伪随机序列确定的,第三随机数还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。
可选地,第三随机数可以满足上述S502中的公式(15)、公式(16)、公式(17)、公式(18)、公式(34)、或公式(35),此处不再赘述。

上述公式(15)、公式(16)、公式(17)、公式(18)、公式(34)、或公式(35)中,Δ表示第三随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,nf表示第二天线端口对应的系统帧号(或者,nf表示第二天线端口占用的时域资源的系统帧号),表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示第二天线端口对应的时隙编号(或者,表示第二天线端口占用的时域资源的时隙编号),l0表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引(或者,l′表示第二天线端口占用的时域资源的OFDM符号的相对索引),KTC表示梳齿数量。
另一些实施例中,第三随机数至少是根据第二天线端口占用的时域资源确定的,包括:第三随机数是根据多个第五对应关系中的一个第五对应关系、和第二天线端口占用的时域资源确定的。
可选地,多个第五对应关系中的一个第五对应关系可以是网络设备向终端设备指示的。例如,参考信号的配置信息可以包括用于指示多个第五对应关系中的一个第五对应 关系的指示信息、和/或多个第五对应关系中的一个第五对应关系。
示例性地,网络设备可以从多个第五对应关系中选择一个第五对应关系,并向终端设备指示该选择出的一个第五对应关系。
可选地,一个第五对应关系可以包括:至少一个第三随机数与至少一个时域资源之间的对应关系。
示例性地,至少一个第三随机数与至少一个时域资源一一对应。例如,时域资源可以为OFDM符号、系统帧号、或时隙编号等。
示例性地,终端设备可以根据第二天线端口占用的时域资源,在至少一个第三随机数与至少一个时域资源之间的对应关系中,获取第二天线端口占用的时域资源对应的第三随机数。
例如,第五对应关系的具体实现与第一对应关系类似,可参照对第一对应关系阐述,此处不再赘述。
如此,在不同发送时刻,终端设备获取的第三随机数的是随机变化的,再通过采用第三随机数确定终端设备的第二天线端口占用的梳齿,可以使不同发送时刻终端设备占用的频域资源(梳齿)随机变化。
可选地,一个跳频周期可以包括至少一次参考信号发送,至少一个第三随机数与至少一个时域资源之间的对应关系可以包括:至少一个第三随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
示例性地,至少一个第三随机数与至少一次参考信号发送的编号一一对应。
例如,终端设备可以根据第二天线端口的本次参考信号发送的编号,在至少一个第三随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系中,获取第三随机数。
或者,可选地,至少一个第三随机数与至少一个时域资源之间的对应关系可以包括:至少一个第三随机数与至少一个跳频周期的索引之间的对应关系。
示例性地,至少一个第三随机数与至少一个跳频周期的索引一一对应。
例如,终端设备可以根据第二天线端口占用的时域资源所在的跳频周期的索引,在至少一个第三随机数与至少一个跳频周期的索引之间的对应关系中,获取第三随机数。
可选地,网络设备可以向不同小区的终端设备指示不同的第五对应关系。
如此,网络设备向不同小区的终端设备指示不同的第五对应关系,从而使对该终端设备造成干扰的终端设备随机变化,实现了频域干扰随机化,能够达到更好的干扰随机化效果。
一些实施例中,第七随机数至少是根据第二天线端口占用的频域资源确定的,可以包括:第七随机数是根据第二天线端口占用的频域资源和伪随机序列确定的。可选地,伪随机序列可以为c()。
可选地,第七随机数可以满足公式(36)、公式(37)、或公式(38)。


上述公式(36)、公式(37)或公式(38)中,Δ1表示第七随机数,数学符号∑表示求和,c()为伪随机序列,数学符号mod表示取模,k表示第二天线端口占用的频域 资源对应的跳频带宽的索引和/或发送带宽的索引,KTC表示梳齿数量。
需要说明的是,上述公式(36)、公式(37)或公式(38)中的m与序列长度M无关,上述公式(36)、公式(37)或公式(38)中的以m的取0至7之间的整数为例进行阐述,本申请对上述公式(36)、公式(37)或公式(38)中的m的取值范围不进行限定。
另一些实施例中,第七随机数至少是根据第二天线端口占用的频域资源确定的,可以包括:第七随机数是根据多个第六对应关系中的一个第六对应关系、和第二天线端口占用的频域资源确定的。
可选地,多个第六对应关系中的一个第六对应关系可以是网络设备向终端设备指示的。例如,参考信号的配置信息可以包括用于指示多个第六对应关系中的一个第六对应关系的指示信息、和/或多个第六对应关系中的一个第六对应关系。
示例性地,网络设备可以从多个第六对应关系中选择一个第六对应关系,并向终端设备指示该选择出的一个第六对应关系。
可选地,一个第六对应关系包括至少一个第七随机数与至少一个频域资源之间的对应关系。
示例性地,至少一个第七随机数与至少一个频域资源一一对应。
示例性地,终端设备可以根据第二天线端口占用的频域资源,在至少一个第七随机数与至少一个频域资源之间的对应关系中,获取第二天线端口占用的频域资源对应的第七随机数。
例如,第六对应关系的具体实现与第一对应关系类似,可参照对第一对应关系阐述,此处不再赘述。
如此,对于不同频域资源,终端设备获取的第七随机数的是随机变化的,再通过采用第七随机数确定终端设备的第二天线端口占用的梳齿,可以使不同发送时刻终端设备的第二天线端口占用的频域资源(梳齿)随机变化。
可选地,网络设备可以向不同小区的终端设备指示不同的第六对应关系。
如此,网络设备向不同小区的终端设备指示不同的第六对应关系,从而使对该终端设备造成干扰的终端设备随机变化,实现了干扰随机化,能够达到更好的干扰随机化效果。
本申请通过采用第一偏移量确定终端设备的第一天线端口占用的梳齿、以及采用第二偏移量确定终端设备的第二天线端口占用的梳齿,可以使不同发送时刻终端设备的天线端口占用的梳齿会随机变化,并且同一个终端设备的天线端口的占用的多把梳齿之间的间隔也可以随机变化。这样,在不同发送时刻对终端设备的天线端口造成干扰的天线端口是随机的,在相同发送时刻对终端设备的占用不同梳齿的天线端口造成干扰的天线端口可以不是同一个终端设备的天线端口,可以实现干扰随机化,可以进一步提高终端设备的天线端口占用的资源自由度,从而进一步提高干扰随机化效果。
一些实施例中,第二偏移量为第二随机数Q2(第二随机数是根据第二天线端口占用的时域资源确定的)时,根据第二偏移量确定的天线端口pi的占用的梳齿的索引可以满足下述公式:或者,其中,表示梳齿偏移量,KTC表示梳齿数量,Q2表示第二随机数或第二偏移量。
一些实施例中,第二偏移量为第六随机数Q4(第六随机数是根据第一天线端口占用的频域资源确定的)时,根据第二偏移量确定的天线端口pi的占用的梳齿的索引可以 满足下述公式:或者,其中,表示梳齿偏移量,KTC表示梳齿数量,Q4表示第六随机数或第二偏移量。
一些实施例中,第二偏移量为第一偏移量与第三偏移量之和,第一偏移量为第一随机数Q1,第三偏移量为第三随机数Δ,时,根据第二偏移量确定的天线端口pi的占用的梳齿的索引可以满足下述公式:或者,或者,
一些实施例中,第二偏移量为第一偏移量与第三偏移量之和,第一偏移量为第五随机数Q3,第三偏移量为第七随机数Δ1时,根据第二偏移量确定的天线端口pi的占用的梳齿的索引可以满足下述公式:或者,或者,
一些实施例中,第二偏移量为第一偏移量与第三偏移量之和,第一偏移量包括第一随机数Q1和第五随机数Q3,第三偏移量包括第三随机数Δ和第七随机数Δ1时,根据第二偏移量确定的天线端口pi的占用的梳齿的索引可以满足下述公式:或者,KTC/2+Q1+Δ+Q31)mod KTC,或者,
例如,可以根据第一偏移量确定终端设备的部分天线端口占用的梳齿,根据第二偏移量确定终端设备的另一部分天线端口占用的梳齿,终端设备的天线端口pi的占用的梳齿的索引可以满足上述公式(19)、上述公式(20)、上述公式(21)、上述公式(22)、下述公式(39)、下述公式(40)、下述公式(41)、下述公式(42)、下述公式(43)、或下述公式(44)。





下面结合表7和图7对至少根据第一偏移量或第二偏移量确定不同天线端口占用的梳齿后,每个终端设备的天线端口占用的梳齿进行阐述。
示例性地,根据第一偏移量(第一偏移量是根据第一天线端口占用的时域资源确定的)或第二偏移量(第二偏移量是根据第二天线端口占用的时域资源确定的)确定终端 设备的不同天线端口占用的梳齿后,每个终端设备的天线端口占用的梳齿可参照上述S502中对表7和图7的阐述,此处不再赘述。
示例性地,根据第一偏移量(第一偏移量是根据第一天线端口占用的频域资源确定的)或第二偏移量(第二偏移量是根据第二天线端口占用的频域资源确定的)确定终端设备的不同天线端口占用的梳齿后,每个终端设备的天线端口占用的梳齿可参照表16。
以上述场景1为例,以至少根据第一偏移量确定UE1至UE8的两个天线端口占用的梳齿,至少根据第二偏移量确定UE1至UE8的另外两个天线端口占用的梳齿为例,每个UE的天线端口占用的梳齿可以如表16所示。
在频域资源1,UE1、UE2、UE5和UE6的天线端口占用梳齿1和梳齿3,UE3、UE4、UE7和UE8的天线端口占用相同的梳齿2和梳齿4。
以UE1为例,在频域资源1,UE1的天线端口在梳齿1和梳齿3上会受到UE5和UE6的天线端口的干扰。
需要说明的是,表16中,以每个UE的天线端口p0和天线端口p2占用一把梳齿,天线端口p1和天线端口p3占用一把梳齿为例,例如天线端口p0和天线端口p2占用的梳齿为该UE占用的两把梳齿中梳齿索引最小的梳齿,天线端口p1和天线端口p3占用的梳齿为该UE占用的两把梳齿中梳齿索引较大的梳齿。为了便于理解,表16中示出了UE和对应的基序列和对应的梳齿,并未示出天线端口。
在频域资源2,UE1、UE2、UE7和UE8的天线端口占用梳齿1,UE1、UE2、UE5和UE6的天线端口占用梳齿2,UE3、UE4、UE7和UE8的天线端口占用梳齿3,UE3、UE4、UE5和UE6的天线端口占用梳齿4。
以UE1为例,在频域资源2,UE1的天线端口(例如天线端口p0和天线端口p2)在梳齿1上会受到UE7和UE8的天线端口(例如天线端口p0和天线端口p2)的干扰,UE1的天线端口(例如天线端口p1和天线端口p3)在梳齿2上会受到UE5和UE6的天线端口(例如天线端口p0和天线端口p2)的干扰。
在频域资源n,UE1、UE2、UE7和UE8的天线端口占用梳齿1,UE1、UE2、UE5和UE6的天线端口占用梳齿4,UE3、UE4、UE5和UE6的天线端口共同占用梳齿2,UE3、UE4、UE7和UE8的天线端口占用梳齿4。
以UE1为例,在频域资源n,UE1的天线端口(例如天线端口p0和天线端口p2)在梳齿1上会受到UE7和UE8的天线端口(例如天线端口p0和天线端口p2)的干扰,UE1的天线端口(例如天线端口p1和天线端口p3)在梳齿4上会受到UE5和UE6的天线端口(例如天线端口p0和天线端口p2)的干扰。
可选地,表16中,频域资源1可以替换为频域单元1、子带1、跳频带宽1、或跳频带宽1等,频域资源2至频域资源n类似,不一一阐述。
表16

如此,至少根据第一偏移量确定UE1至UE8的两个天线端口占用的梳齿,至少根据第二偏移量确定UE1至UE8的另外两个天线端口占用的梳齿后,在不同的频域资源,UE1的天线端口占用的梳齿会随机变化,例如,频域资源1,UE1采用梳齿1和梳齿3发送参考信号;频域资源2,UE1采用梳齿1和梳齿4发送参考信号,使对UE1的天线端口造成干扰的天线端口是随机变化的。并且在相同频域资源对终端设备的占用不同梳齿的天线端口(UE1的天线端口p0和天线端口p2、以及UE1的天线端口p1和天线端口p3)造成干扰的天线端口可以不是同一个终端设备的天线端口,例如,在频域资源2,UE1的天线端口p0和天线端口p2在梳齿1上会受到UE7和UE8的天线端口p0和天线端口p2的干扰,UE1的天线端口p1和天线端口p3在梳齿2上会受到UE5和UE6的天线端口p0和天线端口p2的干扰。可以进一步提高终端设备的天线端口占用的资源自由度,进一步提高对该终端设备造成的干扰随机度,从而进一步提高干扰随机化效果。
示例性地,根据第一偏移量(第一偏移量是根据第一天线端口占用的时域资源和第一天线端口占用的频域资源确定的)或第二偏移量(第二偏移量是根据第二天线端口占用的时域资源和第二天线端口占用的频域资源确定的)确定终端设备的不同天线端口占用的梳齿后,每个终端设备的天线端口占用的梳齿可以是上述表7与表16的结合,例如,如表17所示。
以上述场景1为例,以至少根据第一偏移量确定UE1至UE8的两个天线端口占用的梳齿,至少根据第二偏移量确定UE1至UE8的另外两个天线端口占用的梳齿为例,每个UE的天线端口占用的梳齿可以如表17所示。具体阐述可参照上述表7或表16。
表17
如此,至少根据第一偏移量确定UE1至UE8的两个天线端口占用的梳齿,至少根据第二偏移量确定UE1至UE8的另外两个天线端口占用的梳齿后,在不同的发送时刻和频域资源,UE1的天线端口占用的梳齿会随机变化,例如,发送时刻1和频域资源1,UE1采用梳齿1和梳齿3发送参考信号;发送时刻2和频域资源2,UE1采用梳齿1和梳齿4发送参考信号,使对UE1的天线端口造成干扰的天线端口是随机变化的。并且在相同发送时刻和频域资源,对终端设备的占用不同梳齿的天线端口(UE1的天线端口p0和天线端口p2、以及UE1的天线端口p1和天线端口p3)造成干扰的天线端口可以不是同一个终端设备的天线端口,例如,在发送时刻2和频域资源2,UE1的天线端口p0和天线端口p2在梳齿1上会受到UE7和UE8的天线端口p0和天线端口p2的干扰,UE1的天线端口p1和天线端口p3在梳齿2上会受到UE5和UE6的天线端口p0和天线端口p2的干扰。可以进一步提高终端设备的天线端口占用的资源自由度,进一步提高对该终端设备造成的干扰随机度,从而进一步提高干扰随机化效果。
另一些实施例中,第二天线端口占用的梳齿可以是根据多个第十三对应关系中的一个第十三对应关系、和第二天线端口占用的时域资源确定的。
可选地,多个第十三对应关系中的一个第十三对应关系可以是网络设备向终端设备指示的。可选地,网络设备可以向不同小区的终端设备指示不同的第十三对应关系。
可选地,一个第十三对应关系可以包括至少一个梳齿与至少一个时域资源之间的对应关系。
示例性地,至少一个梳齿与至少一个时域资源一一对应。
可选地,第十三对应关系与第十对应关系不相同。
示例性地,终端设备可以根据第二天线端口占用的时域资源,在至少一个梳齿与至少一个时域资源之间的对应关系中,获取第二天线端口占用的梳齿。
可选地,第十三对应关系的具体实现方式与上述第十对应关系类似,可参照上述对第十对应关系的阐述,此处不再赘述。
另一些实施例中,第二天线端口占用的梳齿可以是根据多个第十四对应关系中的一个第十四对应关系、和第二天线端口占用的频域资源确定的。
可选地,多个第十四对应关系中的一个第十四对应关系可以是网络设备向终端设备指示的。可选地,网络设备可以向不同小区的终端设备指示不同的第十四对应关系。
可选地,一个第十四对应关系可以包括至少一个梳齿与至少一个频域资源之间的对应关系。
示例性地,至少一个梳齿与至少一个频域资源一一对应。
可选地,第十四对应关系与第十一对应关系不相同。
示例性地,终端设备可以根据第二天线端口占用的频域资源,在至少一个梳齿与至少一个频域资源之间的对应关系中,获取第二天线端口占用的梳齿。
可选地,第十四对应关系的具体实现方式与上述第十一对应关系类似,可参照上述对第十一对应关系的阐述,此处不再赘述。
另一些实施例中,第二天线端口占用的梳齿可以是根据多个第十五对应关系中的一个第十五对应关系、和第二天线端口占用的时域资源和频域资源确定的。
可选地,多个第十五对应关系中的一个第十五对应关系可以是网络设备向终端设备指示的。可选地,网络设备可以向不同小区的终端设备指示不同的第十五对应关系。
可选地,一个第十五对应关系可以包括至少一个梳齿与至少一个时域资源和至少一个频域资源之间的对应关系。
示例性地,至少一个梳齿与至少一个时域资源和至少一个频域资源一一对应。
可选地,第十五对应关系与第十二对应关系不相同。
示例性地,终端设备可以根据第二天线端口占用的频域资源和频域资源,在至少一个梳齿与至少一个时域资源和至少一个频域资源之间的对应关系中,获取第二天线端口占用的梳齿。
可选地,第十五对应关系的具体实现方式与上述第十二对应关系类似,可参照上述对第十二对应关系的阐述,此处不再赘述。
如此,根据第十对应关系、第十一对应关系、第十二对应关系、或第一偏移量确定UE1至UE8的两个天线端口占用的梳齿,根据第十三对应关系、第十四对应关系、或第十五对应关系确定UE1至UE8的另外两个天线端口占用的梳齿后,在不同的发送时刻和/或频域资源,UE1的天线端口占用的梳齿会随机变化。并且在相同发送时刻和频域资源,对终端设备的占用不同梳齿的天线端口(UE1的天线端口p0和天线端口p2、以及UE1的天线端口p1和天线端口p3)造成干扰的天线端口可以不是同一个终端设备的天线端口,可以进一步提高终端设备的天线端口占用的资源自由度,进一步提高对该终端设备造成的干扰随机度,从而进一步提高干扰随机化效果。
图13所示的通信方法,通过采用第一偏移量确定终端设备的第一天线端口占用的梳齿,可以使不同发送时刻和/或频域资源上终端设备的天线端口占用的梳齿随机变化,从而使对该终端设备的天线端口造成干扰的终端设备的天线端口随机变化,实现了干扰随机化,能够达到更好的干扰随机化效果。
示例性地,图14为本申请实施例提供的一种通信方法的流程示意图。图14所示的方法可以与图5或图13所示的方法结合使用,结合使用可以达到更好的干扰随机化效果,图14所示的方法可以与图5或图13所示的方法也可以分别单独使用。
如图14所示,该通信方法包括如下步骤:
S1401,网络设备发送参考信号的配置信息。相应地,终端设备接收参考信号的配置信息。
关于S1401的具体实现方式可参照上述S501,此处不再赘述。
S1402,终端设备根据配置信息,在M个天线端口上发送参考信号。相应地,网络设备根据配置信息,在M个天线端口上接收参考信号。
示例性地,M为大于0的整数,M个天线端口包括至少一个第一天线端口。关于M、M个天线端口、和第一天线端口的具体实现可参照上述S502中对应的阐述,此处不再赘述。
在一种可能的设计方法中,M个天线端口中的每个天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的。
一些实施例中,第一天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的。
例如,结合上述场景2,UE1的天线端口p0至天线端口p1中的每个天线端口占用的频域资源的起始位置可以至少是根据第四偏移量确定的。
可选地,第四偏移量可以为大于或等于0的整数。
可选地,第一天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,可以包括:第一天线端口占用的频域资源的起始位置是根据第一天线端口占用的频域资源的起始位置的初始值和第四偏移量确定的。
可选地,第一天线端口占用的频域资源的起始位置的初始值可以是根据跳频偏移量 和跳频带宽确定的。
例如,第一天线端口占用的频域资源的起始位置的初始值可满足上述公式(3)。
示例性地,第一天线端口占用的频域资源的起始位置是根据跳频偏移量、部分探测偏移量和第四偏移量确定的。
示例性地,第四偏移量可以至少是根据第一天线端口占用的时域资源和伪随机序列确定的。
可选地,第一天线端口占用的时域资源可以包括:参考信号对应的跳频周期的索引。
例如,结合图10,参考信号对应的跳频周期的索引可以为:跳频周期1等。
可选地,第一天线端口占用的时域资源可以包括一个或多个OFDM符号。第一天线端口占用的时域资源包括的一个或多个OFDM符号可以是根据以下参数中的一个或多个确定的:第一天线端口对应的系统帧号、第一天线端口对应的时隙编号和第一天线端口对应的OFDM符号编号。
本申请不限定第一天线端口占用的时域资源包括的OFDM符号的数量。
在一种可能的设计方式中,根据第一天线端口占用的时域资源确定时域资源所在的跳频周期的索引,或者根据第一天线端口占用的时域资源确定时域资源对应一个跳频周期内的相对索引。相对索引可以定义为:一个跳频周期内的第k次发送的相对索引为k-1。
可选地,伪随机序列可以为c()。关于伪随机序列的具体实现方式可参照上述S502中对应的阐述,此处不再赘述。
可选地,第四偏移量可以是第四随机数。
例如,第四偏移量可以为随机数,例如第四偏移量为大于0的随机数。
可选地,第四随机数可以满足上述公式(24)、或公式(25)。
上述公式(24)、或公式(25)中,krand表示第四随机数,数学符号∑表示求和,c()为伪随机序列,表示参考信号对应的跳频周期的索引,数学符号表示向下取整,nSRS表示参考信号的计数值,数学符号∏表示累乘,数学符号mod表示取模。
可选地,
需要说明的是,上述公式(25)和中参数的含义可参照上述对公式(5)以及表3的阐述,此处不再赘述。
需要说明的是,上述公式(24)、或公式(25)中的m与序列长度M无关,上述公式(24)、或公式(25)中的以m的取0至7之间的整数为例进行阐述,本申请对上述公式(24)、或公式(25)中的m的取值范围不进行限定。
或者,示例性地,第四偏移量是根据多个第九对应关系中的一个第九对应关系、和第一天线端口占用的时域资源确定的。
可选地,多个第九对应关系中的一个第九对应关系可以是网络设备向终端设备指示的。例如,参考信号的配置信息可以包括用于指示多个第九对应关系中的一个第九对应关系的指示信息、和/或多个第九对应关系中的一个第九对应关系。
示例性地,网络设备可以从多个第九对应关系中选择一个第九对应关系,并向终端设备指示该选择出的一个第九对应关系。
可选地,一个第九对应关系可以包括:至少一个第四偏移量与至少一个时域资源之 间的对应关系。
示例性地,至少一个第四偏移量与至少一个时域资源一一对应。例如,时域资源可以为OFDM符号、系统帧号、或时隙编号等。
可选地,多个第九对应关系对应同一个频率缩放因子。
可选地,一个跳频周期可以包括至少一次参考信号发送,至少一个第四偏移量与至少一个时域资源之间的对应关系可以包括:至少一个第四偏移量与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
示例性地,至少一个第四偏移量与至少一次参考信号发送的编号一一对应。
例如,终端设备可以根据第一天线端口的本次参考信号发送的编号,在至少一个第四偏移量与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系中,获取第四偏移量。
或者,可选地,至少一个第四偏移量与至少一个时域资源之间的对应关系可以包括:至少一个第四偏移量与至少一个跳频周期的索引之间的对应关系。
示例性地,至少一个第四偏移量与至少一个跳频周期的索引一一对应。
例如,终端设备可以根据第一天线端口占用的时域资源所在的跳频周期的索引,在至少一个第四偏移量与至少一个跳频周期的索引之间的对应关系中,获取第四偏移量。
一些实施例中,M个天线端口中的每个天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,可以包括:M个天线端口中的每个天线端口占用的频域资源的起始位置可以是根据部分探测偏移量确定的。具体实现可参照上述S1101中对应的阐述,此处不再赘述。
部分探测偏移量的具体实现可参照上述S1101中对应的阐述,此处不再赘述。
一些实施例中,天线端口pi的频域起始位置可满足上述公式(27)。具体实现可参照上述S1101中对应的阐述,此处不再赘述。
以上述场景2为例,根据第四偏移量确定UE1至UE4的每一个天线端口(天线端口p0至天线端口p1)占用的频域资源的起始位置,每个UE占用的频域资源的起始位置可以如图12所示,具体实现可参照上述S1101中对应的阐述,此处不再赘述。
以上述场景1为例,根据第四偏移量确定UE1至UE8的每一个天线端口(天线端口p0至天线端口p1)占用的频域资源的起始位置,每个UE占用的频域资源的起始位置可以如表18所示。
表13中,发送时刻1可以替换为跳频周期1、OFDM符号1、系统帧号1、时隙编号1、时域资源1、时间单元1等,发送时刻2至发送时刻n与发送时刻1类似,不一一阐述。
以UE1为例,在发送时刻1,对UE1的天线端口造成干扰是UE5的天线端口,在发送时刻2,对UE1的天线端口造成干扰是UE7的天线端口,可见,在不同的发送时刻对UE1的天线端口造成干扰的天线端口不同,这样会带来较好的干扰随机化效果,可以加快干扰随机化收敛速度,提升信道估计性能。
表18

另一些实施例中,第一天线端口占用的频域资源的起始位置可以是根据多个第十六对应关系中的一个第十六对应关系、和第一天线端口占用的时域资源确定的。
可选地,多个第十六对应关系中的一个第十六对应关系可以是网络设备向终端设备指示的。
可选地,网络设备可以向不同小区的终端设备指示不同的第十六对应关系。
可选地,一个第十六对应关系可以包括至少一个频域资源的起始位置与至少一个时域资源之间的对应关系。
示例性地,至少一个频域资源的起始位置与至少一个时域资源一一对应。
示例性地,假设每个第十六对应关系(可以称为图案(pattern))有n个时域资源,对于第十六对应关系1,n个时域资源对应的频域资源的起始位置之间的偏移量为{x1,x2,…xn},则存在第十六对应关系1+a,a为大于0的整数,n个时域资源对应的梳齿之间的为{x(1+a)modn,x(2+a)modn,…x(M+a)modn}。其中,{x1,x2,…xn}的取值属于{0,N/S,…,(S-1)*N/S},S为一个子带中包括的部分带宽数量,N为一个子带包括的RB数。
示例性地,终端设备可以根据第一天线端口占用的时域资源,在至少一个频域资源的起始位置与至少一个时域资源之间的对应关系中,获取第一天线端口占用的频域资源的起始位置。
多个第十对应关系可以如表19所示,表19中以第十六对应关系的数量为4个、每个第十六对应关系包括4个时域资源为例,第十六对应关系1至第十六对应关系4之间互不相同,具体见表19。
例如,表19中,发送时刻1可以替换为OFDM符号1、系统帧号1、时隙编号1、时域资源1、或时间单元1等,发送时刻2至发送时刻14与发送时刻1类似,不一一阐述。
可选地,表19中,第十六对应关系还包括发送时刻1至发送时刻8,发送时刻5至发送时刻8分别对应的频域资源的起始位置与发送时刻1至发送时刻4分别对应的频域资源的起始位置相同。
表19

如此,终端设备采用多个第十六对应关系中的一个第十六对应关系、和第一天线端口占用的时域资源,获取第一天线端口占用的频域资源的起始位置,可使在不同的发送时刻对该终端设备的天线端口造成干扰的天线端口不同,这样会带来较好的干扰随机化效果,可以加快干扰随机化收敛速度,提升信道估计性能。
基于图14所示的通信方法,在确定天线端口占用的频域资源的起始位置时,引入第四偏移量,可以使在不同时域资源每个天线端口占用的频域资源的起始位置随机变化,对某个终端设备的天线端口造成干扰的天线端口也就会随机变化,实现了频域干扰随机化,这样会带来较好的干扰随机化效果,可以加快干扰随机化收敛速度,提升信道估计性能。
示例性地,图15为本申请实施例提供的一种通信方法的流程示意图。图15所示的方法可以与图13和/或图14所示的方法结合使用,或者,图15所示的方法可以与图5和/或图11所示的方法结合使用,结合使用可以达到更好的干扰随机化效果,图15所示的方法也可以单独使用。
如图15所示,该通信方法包括如下步骤:
S1501,网络设备发送参考信号的配置信息。相应地,终端设备接收参考信号的配置信息。
S1502,终端设备根据配置信息,在M个天线端口上发送参考信号。相应地,网络设备根据配置信息,在M个天线端口上接收参考信号。
其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口。关于M、M个天线端口、和第一天线端口的具体实现可参照上述S502中对应的阐述,此处不再赘述。
一些实施例中,第一天线端口的循环移位值至少是根据第一码域偏移量确定的。
可选地,第一偏移量可以为大于或等于0的整数。
可选地,第一天线端口的循环移位值至少是根据第一码域偏移量确定的,可以包括:第一天线端口的循环移位值是根据第一天线端口的循环移位值的初始值和第一码域偏移量确定的。
可选地,第一天线端口的循环移位值可以是根据循环移位值的初始值和第一码域偏移量确定的。
一些实施例中,第一码域偏移量可以至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
可选地,第一天线端口占用的时域资源可以包括一个或多个OFDM符号。第一天线端口占用的时域资源包括的一个或多个OFDM符号可以是根据以下参数中的一个或多个 确定的:第一天线端口对应的系统帧号、第一天线端口对应的时隙编号和第一天线端口对应的OFDM符号编号。
本申请不限定第一天线端口占用的时域资源包括的OFDM符号的数量。
可选地,第一天线端口占用的频域资源可以包括一个或多个子带宽。第一天线端口占用的频域资源包括的一个或多个子带宽可以是根据以下参数中的一个或多个确定的:第一天线端口对应的跳频带宽的索引、和第一天线端口对应的发送带宽的索引。
可选地,M个参考信号端口包括多个第一参考信号端口,在时域资源和/或频域资源上,多个第一参考信号端口对应的第一码域偏移量相同。
在一些实施例中,第一码域偏移量包括第一码域随机数和/或第二码域随机数。
可选地,第一码域随机数至少是根据第一天线端口占用的时域资源确定的。例如,第一码域随机数可以用A1表示。
可选地,第二码域随机数至少是根据第一天线端口占用的频域资源确定的。例如,第一码域随机数可以用A2表示。
如此,第一天线端口占用的循环移位值可以是根据第一随机数和/或第五随机数确定的。
一些实施例中,第一码域随机数至少是根据第一天线端口占用的时域资源确定的,包括:第一码域随机数是根据第一天线端口占用的时域资源和伪随机序列确定的。
可选地,伪随机序列可以为c()。关于伪随机序列的具体实现方式可参照上述S502中对应的阐述,此处不再赘述。
可选地,第一码域随机数是根据第一天线端口占用的时域资源和伪随机序列确定的,第一码域随机数还可以根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量。
例如,本申请中,每个系统帧包含的时隙数量可指一个系统帧包含的时隙数量。
例如,本申请中,每个时隙包含的OFDM符号数量可指一个时隙包含的OFDM符号数量。
可选地,梳齿数量可以为参考信号的发送带宽中包括的梳齿数量。
可选地,梳齿偏移量可以为参考信号占用的梳齿的参考量。
可选地,第一码域随机数可以满足公式(45)、公式(46)、公式(47)、公式(48)、公式(49)、公式(50)、公式(51)、或公式(52)。







上述公式(45)、公式(46)、公式(47)、公式(48)、公式(49)、公式(50)、公式(51)、或公式(52)中,A1表示第一码域随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,nf表示第一天线端口对应的系统帧号(或者,nf表示第一天线端口占用的时域资源的系统帧号),表示每个系统帧中的时隙数量,表示每个时隙中的OFDM符号数量,表示第一天线端口对应的时隙编号(或者,表示第一天线端口占用的时域资源的时隙编号),l0表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引(或者,l0表示起始OFDM符号的索引),l′表示第一天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引(或者,l′表示第一天线端口占用的时域资源的OFDM符号的相对索引),Y为一个梳齿中通过循环移位复用的支持的最大天线端口的数量、或傅里叶变换点数、或第一天线端口在一个OFDM符号上占用的子载波数量。
需要说明的是,上述公式(45)、公式(46)、公式(47)、公式(48)、公式(49)、公式(50)、公式(51)、或公式(52)中的m与序列长度M无关,上述公式(45)、公式(46)、公式(47)、公式(48)、公式(49)、公式(50)、公式(51)、或公式(52)中的以m的取0至7之间的整数为例进行阐述,本申请对上述公式(45)、公式(46)、公式(47)、公式(48)、公式(49)、公式(50)、公式(51)、或公式(52)中的m的取值范围不进行限定。
本申请通过采用第一码域随机数确定终端设备的第一天线端口的循环移位值,可以使不同发送时刻终端设备的循环移位值随机变化,从而使对该终端设备造成干扰的终端设备随机变化,实现了频域干扰随机化,能够达到更好的干扰随机化效果。
另一些实施例中,第一码域随机数至少是根据第一天线端口占用的时域资源确定的,可以包括:第一码域随机数是根据多个第七对应关系中的一个第七对应关系、和第一天线端口占用的时域资源确定的。
可选地,多个第七对应关系中的一个第七对应关系可以是网络设备向终端设备指示的。例如,参考信号的配置信息可以包括用于指示多个第七对应关系中的一个第七对应关系的指示信息、和/或多个第七对应关系中的一个第七对应关系。
示例性地,网络设备可以从多个第七对应关系中选择一个第七对应关系,并向终端设备指示该选择出的一个第七对应关系。
可选地,一个第七对应关系可以包括:至少一个第一码域随机数与至少一个时域资源之间的对应关系。
示例性地,至少一个第一码域随机数与至少一个时域资源一一对应。例如,时域资源可以为OFDM符号、系统帧号、或时隙编号等。
示例性地,假设每个第一对应关系(可以称为图案(pattern))有n个时域资源,对于第七对应关系1,n个时域资源对应的第一码域随机数为{x1,x2,…xn},则存在第七对应关系1+a,a为大于0的整数,n个时域资源对应的第一码域随机数为{x(1+a)modn,x(2+a)modn,…x(M+a)modn}。其中,{x1,x2,…xn}的取值属于{0,1,…,ncs-1},ncs为一个梳齿上可支持的最大CS数。
可选地,一个跳频周期包括至少一次参考信号发送,至少一个第一码域随机数与至少一个时域资源之间的对应关系可以包括:至少一个第一码域随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
示例性地,至少一个第一码域随机数与至少一次参考信号发送的编号一一对应。
例如,终端设备可以根据第一天线端口的本次参考信号发送的编号,在至少一个第一码域随机数与至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系中,获取第一码域随机数。
或者,可选地,至少一个第一码域随机数与至少一个时域资源之间的对应关系可以包括:至少一个第一码域随机数与至少一个跳频周期的索引之间的对应关系。
示例性地,至少一个第一码域随机数与至少一个跳频周期的索引一一对应。
例如,终端设备可以根据第一天线端口占用的时域资源所在的跳频周期的索引,在至少一个第一码域随机数与至少一个跳频周期的索引之间的对应关系中,获取第一码域随机数。
可选地,网络设备可以向不同小区的终端设备指示不同的第七对应关系。
如此,网络设备向不同小区的终端设备指示不同的第七对应关系,从而使对该终端设备造成干扰的终端设备随机变化,实现了频域干扰随机化,能够达到更好的干扰随机化效果。
一些实施例中,第二码域随机数至少是根据第一天线端口占用的频域资源确定的,可以包括:第二码域随机数是根据第一天线端口占用的频域资源和伪随机序列确定的。
可选地,伪随机序列可以为c()。
可选地,第二码域随机数可满足公式(53)、公式(54)、公式(55)、或公式(56)。



上述公式(53)、公式(54)、公式(55)、或公式(56)中,A2表示第二码域随机数,数学符号∑表示求和,数学符号mod表示取模,c()为伪随机序列,k表示第一天线端口占用的频域资源对应的跳频带宽的索引和/或发送带宽的索引,Y为一个梳齿中通过循环移位复用的支持的最大天线端口的数量、或傅里叶变换点数、或第一天线端口在一个OFDM符号上占用的子载波数量。
需要说明的是,上述公式(53)、公式(54)、公式(55)、或公式(56)中的m与序列长度M无关,上述公式(53)、公式(54)、公式(55)、或公式(56)中的以m的取0至7之间的整数为例进行阐述,本申请对上述公式(53)、公式(54)、公式(55)、或公式(56)中的m的取值范围不进行限定。
另一些实施例中,第二码域随机数至少是根据第一天线端口占用的频域资源确定的,可以包括:第二码域随机数是根据多个第八对应关系中的一个第八对应关系、和第一天线端口占用的频域资源确定的。
可选地,多个第八对应关系中的一个第八对应关系可以是网络设备向终端设备指示的。例如,参考信号的配置信息可以包括用于指示多个第八对应关系中的一个第八对应关系的指示信息、和/或多个第八对应关系中的一个第八对应关系。
示例性地,网络设备可以从多个第八对应关系中选择一个第八对应关系,并向终端设备指示该选择出的一个第八对应关系。
可选地,一个第八对应关系可以包括至少一个第二码域随机数与至少一个频域资源之间的对应关系。
示例性地,至少一个第二码域随机数与至少一个频域资源一一对应。
示例性地,终端设备可以根据第一天线端口占用的频域资源,在至少一个第二码域随机数与至少一个频域资源之间的对应关系中,获取第一天线端口占用的频域资源对应的第二码域随机数。
例如,第八对应关系的具体实现与第七对应关系类似,可参照对第七对应关系阐述,此处不再赘述。
如此,对于不同频域资源,终端设备获取的第二码域随机数的是随机变化的,再通过采用第二码域随机数确定终端设备的第一天线端口占用的循环移位值,可以使不同发送时刻终端设备占用的循环移位值随机变化。
可选地,网络设备可以向不同小区的终端设备指示不同的第八对应关系。
如此,网络设备向不同小区的终端设备指示不同的第八对应关系,从而使对该终端设备造成干扰的终端设备随机变化,实现了干扰随机化,能够达到更好的干扰随机化效果。
可选地,循环移位值的取值可满足α∈{0,1,…,K×Y-1},Y为一个梳齿中通过循环移位复用的支持的最大天线端口的数量,或者为一个梳齿中可以通过高层参数配置的循环移位值的数量,Y的取值是根据配置的参考信号梳齿数量确定的,K为大于1的整数。
或者,可选地,循环移位值的取值可满足α∈{0,1,…,Y-1},Y为傅里叶变换点数M,M=2x,x为正整数,M的取值根据系统带宽或者参考信号的扫描带宽确定。
或者,可选地,循环移位值的取值可满足α∈{0,1,…,Y-1},Y为第一天线端口在一个OFDM符号上占用的子载波数量。
一些实施例中,第一码域偏移量为第一码域随机数时,根据第一码域随机数A1确定的天线端口pi的占用的循环移位值αi可以满足下述公式: 或者, 或者,或者,其中,表示最大循环移位值,表示循环移位参考值,由网络设备通过高层参数(例如transmissionComb)半静态配置。表示的含义可参照上述“第三,循环移位值”中对应的的阐述,此处不再赘述。表示天线端口的数量(可参照上述“第一,配置信息”中的阐述),MZC为序列的长度。可以替换为
可选的,公式(1)中的可以替换为其中,为第一码域随机数。
一些实施例中,第一码域偏移量为第二码域随机数时,根据第二码域随机数A2确定的天线端口pi的占用的循环移位值αi可以满足下述公式: 或者, 或者,或者,其中,表示最大循环移位值,nc S s RS表示循环移位参考值,由网络设备通过高层 参数(例如transmissionComb)半静态配置。表示的含义可参照上述“第三,循环移位值”中对应的的阐述,此处不再赘述。表示天线端口的数量(可参照上述“第一,配置信息”中的阐述),MZC为序列的长度。
一些实施例中,第一码域偏移量包括第一码域随机数和第二码域随机数时,根据第一码域随机数A1和第二码域随机数A2确定的天线端口pi的占用的循环移位值αi可以满足下述公式:或者, 或者, 或者,其中,表示最大循环移位值,表示循环移位参考值,由网络设备通过高层参数(例如transmissionComb)半静态配置。表示的含义可参照上述“第三,循环移位值”中对应的的阐述,此处不再赘述。表示天线端口的数量(可参照上述“第一,配置信息”中的阐述),MZC为序列的长度。
下面结合表20对根据第一码域随机数和/或第二码域随机数确定第一天线端口的循环移位值进行阐述。
以上述场景1为例,根据第一码域随机数和/或第二码域随机数确定UE1至UE8的每一个天线端口(天线端口p0至天线端口p3)的循环移位值,每个UE的天线端口的循环移位值(用CS表示)可以如表20所示。
在频域资源1和/或频域资源1,UE1、UE2、UE5和UE6的天线端口使用CS0和CS2。以UE1为例,UE1的天线端口会受到UE5和UE6的天线端口的干扰。
在频域资源2和/或频域资源2,UE1、UE2、UE7和UE8的天线端口使用CS1和CS3,UE1的天线端口会受到UE7和UE8的天线端口的干扰。
在频域资源n和/或频域资源n,UE1、UE2、UE5和UE6的天线端口使用CS1和CS3,UE1的天线端口会受到UE5和UE6的天线端口的干扰。
需要说明的是,表20中,以每个UE的天线端口p0和天线端口p2占用使用一个循环移位值,天线端口p1和天线端口p3使用一个循环移位值为例,例如天线端口p0和天线端口p2使用的循环移位值为该UE使用的两个循环移位值中循环移位值索引最小的循环移位值,天线端口p1和天线端口p3使用的循环移位值为该UE使用的两个循环移位值中循环移位值索引较大的循环移位值。为了便于理解,表20中示出了UE和对应的基序列和对应的循环移位值,并未示出天线端口。
可选地,表20中,频域资源1可以替换为频域单元1、子带1、跳频带宽1、或跳频带宽1等,频域资源2至频域资源n类似,不一一阐述。发送时刻1可以替换为OFDM符号1、系统帧号1、时隙编号1、时域资源1、时间单元1等,发送时刻2至发送时刻4与发送时刻1类似,不一一阐述。
表20

如此,在不同的发送时刻和/或频域资源,UE1的天线端口使用的循环移位值是随机变化的,从而使对UE1造成干扰的UE是随机变化的,某些发送时刻和/或频域资源上对UE1造成干扰的UE是UE5和UE6,某些发送时刻和/或频域资源上对UE1造成干扰的UE是UE7和UE8,对UE1的天线端口造成干扰的天线端口是随机变化的,从而能够达到更好的干扰随机化效果。
图15所示的通信方法,通过采用第一码域偏移量确定终端设备的第一天线端口的循环移位值,可以使不同发送时刻和/或频域资源上终端设备的天线端口的循环移位值随机变化,从而使对该终端设备的天线端口造成干扰的终端设备的天线端口随机变化,实现了干扰随机化,能够达到更好的干扰随机化效果。
示例性地,图13所示的方法、图14所示的方法和图15所示的方法之间可以结合或单独使用。
例如,网络设备发送参考信号的配置信息。相应地,终端设备接收参考信号的配置信息。终端设备根据配置信息,在M个天线端口上发送参考信号。相应地,网络设备根据配置信息,在M个天线端口上接收参考信号。其中,第一天线端口占用的梳齿至少是根据第一偏移量确定的,和/或,第一天线端口的循环移位值至少是根据第一码域偏移量确定的,和/或,第一天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,具体实现可分别参照上述图13、图14和图15中对应的阐述。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
以上结合图5-图15详细说明了本申请实施例提供的通信方法。以下结合图16-图17详细说明本申请实施例提供的通信装置。
图16为可用于执行本申请实施例提供的一种通信装置的结构示意图。
通信装置1600可以是终端设备或网络设备,也可以是应用于终端设备或网络设备中的芯片或者其他具有相应功能的部件。如图16所示,通信装置1600可以包括处理器1601。可选地,通信装置1600还可以包括存储器1602和收发器1603中的一个或多个。其中,处理器1601可以与存储器1602和收发器1603中的一个或多个耦合,如可以通过通信总线连接,处理器1601也可以单独使用。
下面结合图16对通信装置1600的各个构成部件进行具体的介绍:
处理器1601是通信装置1600的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器1601是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器1601可以通过运行或执行存储在存储器1602内的软件程序,以及调用存储在存储器1602内的数据,执行通信装置1600的各种功能。
在具体的实现中,作为一种实施例,处理器1601可以包括一个或多个CPU,例如图16中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置1600也可以包括多个处理器,例如图16中所示的处理器1601和处理器1604。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
可选地,存储器1602可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1602可以和处理器1601集成在一起,也可以独立存在,并通过通信装置1600的输入/输出端口(图16中未示出)与处理器1601耦合,本申请实施例对此不作具体限定。
示例性地,输入端口可用于实现上述任一方法实施例中由终端设备或网络设备执行的接收功能,输出端口可用于实现上述任一方法实施例中由终端设备或网络设备执行的发送功能。
其中,存储器1602可用于存储执行本申请方案的软件程序,并由处理器1601来控制执行。上述具体实现方式可以参考下述方法实施例,此处不再赘述。
可选地,收发器1603,用于与其他通信装置之间的通信。例如,通信装置1600为网络设备时,收发器1603可以用于与终端设备通信。又例如,通信装置1600为终端设备时,收发器1603可以用于与网络设备等通信。
此外,收发器1603可以包括接收器和发送器(图16中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。收发器1603可以和处理器1601集成在一起,也可以独立存在,并通过通信装置1600的输入/输出端口(图16中未示出)与处理器1601耦合,本申请实施例对此不作具体限定。
需要说明的是,图16中示出的通信装置1600的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,上述图5-图15中网络设备的动作可以由图16所示的通信装置1600中的处理器1601调用存储器1602中存储的应用程序代码以指令网络设备执行。
上述图5-图15中终端设备的动作可以由图16所示的通信装置1600中的处理器1601调用存储器1602中存储的应用程序代码以指令应用网元执行,本实施例对此不作任何限制。
当通信装置为网络设备时,通信装置1600可执行上述方法实施例中的网络设备所涉及的任一种或多种可能的设计方式。
当通信装置为终端设备时,通信装置1600可执行上述方法实施例中的终端设备所涉及的任一种或多种可能的设计方式。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图17为本申请实施例提供的另一种通信装置的结构示意图。为了便于说明,图17仅示出了该通信装置的主要部件。
该通信装置1700可以包括发送模块1701、和接收模块1702,还可以包括处理模块1703。
该通信装置1700可以是前述方法实施例中的终端设备或网络设备。发送模块1701,也可以称为发送单元,用以实现上述任一方法实施例中由终端设备或网络设备执行的发送功能。接收模块1702,也可以称为接收单元,用以实现上述任一方法实施例中由终端设备或网络设备执行的接收功能。
需要说明的是,发送模块1701和接收模块1702可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。该收发模块可以由收发电路、收发机、收发器或者通信接口构成。
可选地,通信装置1700还可以包括存储模块(图17中未示出),该存储模块存储有程序或指令。当处理模块1703执行该程序或指令时,使得通信装置1700可以执行上述任一方法实施例所述的方法。
处理模块1703,可以用于实现上述任一方法实施例中由终端设备或网络设备执行的处理功能。该处理模块1703可以为处理器。
在本实施例中,该通信装置1700以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置1700可以采用图16所示的通信装置1600的形式。
比如,图16所示的通信装置1600中的处理器1601可以通过调用存储器1602中存储的计算机执行指令,使得上述方法实施例中的通信方法被执行。
具体地,图17中的处理模块1703和存储模块的功能/实现过程可以通过图16中所示的通信装置1600中的收发器1603来实现。图17中的处理模块1703的功能/实现过程可以通过图16所示的通信装置1600中的处理器1601调用存储器1602中存储的计算机执行指令来实现。
由于本实施例提供的通信装置1700可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在一种可能的设计方案中,图17所示出的通信装置1700可适用于图1所示出的系统中,执行上述任一方法实施例所述的通信方法中网络设备的功能。
其中,发送模块1701,用于发送配置信息。其中,配置信息指示参考信号的配置。
接收模块1702,用于根据配置信息,在M个天线端口上接收参考信号。其中,M为 大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量为大于0的整数,第一偏移量至少是根据小区标识和第一天线端口占用的时域资源确定的;或者,第一偏移量是根据第一天线端口占用的循环移位值确定的。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块1702和发送模块1701可以分开设置,也可以集成在一个模块中,即收发模块。本申请对此不做具体限定。
可选地,通信装置1700还可以包括处理模块1703和存储模块(图17中未示出),存储模块存储有程序或指令。当处理模块1703执行该程序或指令时,使得通信装置1700可以执行图5-图15所示的通信方法中网络设备的功能。
需要说明的是,通信装置1700可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置1700的技术效果可以参考图5-图15中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
在另一种可能的设计方案中,图17所示出的通信装置1700可适用于图1所示出的系统中,执行上述任一方法实施例所述的通信方法中终端设备的功能。
其中,接收模块1702,用于接收配置信息。其中,配置信息指示参考信号的配置。
发送模块1701,用于根据配置信息,在M个天线端口上发送参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量为大于0的整数,第一偏移量至少是根据小区标识和第一天线端口占用的时域资源确定的;或者,第一偏移量是根据第一天线端口占用的循环移位值确定的。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块1702和发送模块1701可以分开设置,也可以集成在一个模块中,即收发模块。本申请对此不做具体限定。
可选地,通信装置1700还可以包括处理模块1703和存储模块(图17中未示出),存储模块存储有程序或指令。当处理模块1703执行该程序或指令时,使得通信装置1700可以执行图5-图9所示的通信方法中终端设备的功能。
需要说明的是,通信装置1700可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置1700的技术效果可以参考图5-图9中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
在一种可能的设计方案中,图17所示出的通信装置1700可适用于图1所示出的系统中,执行上述任一方法实施例所述的通信方法中网络设备的功能。
其中,发送模块1701,用于发送配置信息。其中,配置信息指示参考信号的配置。
接收模块1702,用于根据配置信息,在M个天线端口上接收参考信号。其中,M个天线端口中的每个天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量为大于0的整数,第四偏移量至少是根据小区标识和参考信号对应的跳频周期的索引确定的。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块1702和发送模块1701可以分开设置,也可以集成在一个模块中,即收发模块。本申请对此不做具体限定。
可选地,通信装置1700还可以包括处理模块1703和存储模块(图17中未示出),存储模块存储有程序或指令。当处理模块1703执行该程序或指令时,使得通信装置1700可以执行图11-图12所示的通信方法中网络设备的功能。
需要说明的是,通信装置1700可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置1700的技术效果可以参考图11-图12中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
在另一种可能的设计方案中,图17所示出的通信装置1700可适用于图1所示出的系统中,执行上述任一方法实施例所述的通信方法中终端设备的功能。
其中,接收模块1702,用于接收配置信息。其中,配置信息指示参考信号的配置。
发送模块1701,用于根据配置信息,在M个天线端口上发送参考信号。其中,M个天线端口中的每个天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量为大于0的整数,第四偏移量至少是根据小区标识和参考信号对应的跳频周期的索引确定的。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块1702和发送模块1701可以分开设置,也可以集成在一个模块中,即收发模块。本申请对此不做具体限定。
可选地,通信装置1700还可以包括处理模块1703和存储模块(图17中未示出),存储模块存储有程序或指令。当处理模块1703执行该程序或指令时,使得通信装置1700可以执行图11-图12所示的通信方法中终端设备的功能。
需要说明的是,通信装置1700可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
在又一种可能的设计方案中,图17所示出的通信装置1700可适用于图1所示出的系统中,执行上述任一方法实施例所述的通信方法中网络设备的功能。
其中,发送模块1701,用于发送参考信号的配置信息。
接收模块1702,用于根据配置信息,在M个天线端口上接收参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块1702和发送模块1701可以分开设置,也可以集成在一个模块中,即收发模块。本申请对此不做具体限定。
可选地,通信装置1700还可以包括处理模块1703和存储模块(图17中未示出),存储模块存储有程序或指令。当处理模块1703执行该程序或指令时,使得通信装置1700可以执行图13-图15所示的通信方法中网络设备的功能。
需要说明的是,通信装置1700可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置1700的技术效果可以参考图13-图15中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
在又一种可能的设计方案中,图17所示出的通信装置1700可适用于图1所示出的系统中,执行上述任一方法实施例所述的通信方法中终端设备的功能。
其中,接收模块1702,用于接收参考信号的配置信息。
发送模块1701,用于根据配置信息,在M个天线端口上发送参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的梳齿至少是根据第一偏移量确定的,第一偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块1702和发送模块1701可以分开设置,也可以集成在一个模块中,即收发模块。本申请对此不做具体限定。
可选地,通信装置1700还可以包括处理模块1703和存储模块(图17中未示出),存储模块存储有程序或指令。当处理模块1703执行该程序或指令时,使得通信装置1700可以执行图13-图15所示的通信方法中终端设备的功能。
需要说明的是,通信装置1700可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置1700的技术效果可以参考图13-图15中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
在又一种可能的设计方案中,图17所示出的通信装置1700可适用于图1所示出的系统中,执行上述任一方法实施例所述的通信方法中网络设备的功能。
其中,发送模块1701,用于发送参考信号的配置信息。
接收模块1702,用于根据配置信息,在M个天线端口上接收参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量至少是根据第一天线端口占用的时域资源和伪随机序列确定的,或者,第四偏移量是根据多个第九对应关系中的一个第九对应关系、和第一天线端口占用的时域资源确定的,一个第九对应关系包括至少一个第四偏移量与至少一个时域资源之间的对应关系,多个第九对应关系对应同一个频率缩放因子。需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块1702和发送模块1701可以分开设置,也可以集成在一个模块中,即收发模块。本申请对此不做具体限定。
可选地,通信装置1700还可以包括处理模块1703和存储模块(图17中未示出),存储模块存储有程序或指令。当处理模块1703执行该程序或指令时,使得通信装置1700可以执行图13-图15所示的通信方法中网络设备的功能。
需要说明的是,通信装置1700可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置1700的技术效果可以参考图13-图15中任一种可能的实现方式所述 的通信方法的技术效果,此处不再赘述。
在又一种可能的设计方案中,图17所示出的通信装置1700可适用于图1所示出的系统中,执行上述任一方法实施例所述的通信方法中终端设备的功能。
其中,接收模块1702,用于接收参考信号的配置信息。
发送模块1701,用于根据配置信息,在M个天线端口上发送参考信号。其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口占用的频域资源的起始位置至少是根据第四偏移量确定的,第四偏移量至少是根据第一天线端口占用的时域资源和伪随机序列确定的,或者,第四偏移量是根据多个第九对应关系中的一个第九对应关系、和第一天线端口占用的时域资源确定的,一个第九对应关系包括至少一个第四偏移量与至少一个时域资源之间的对应关系,多个第九对应关系对应同一个频率缩放因子。需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块1702和发送模块1701可以分开设置,也可以集成在一个模块中,即收发模块。本申请对此不做具体限定。
可选地,通信装置1700还可以包括处理模块1703和存储模块(图17中未示出),存储模块存储有程序或指令。当处理模块1703执行该程序或指令时,使得通信装置1700可以执行图13-图15所示的通信方法中终端设备的功能。
需要说明的是,通信装置1700可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置1700的技术效果可以参考图13-图15中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
在又一种可能的设计方案中,图17所示出的通信装置1700可适用于图1所示出的系统中,执行上述任一方法实施例所述的通信方法中网络设备的功能。
其中,发送模块1701,用于发送参考信号的配置信息。
接收模块1702,用于根据配置信息,在M个天线端口上接收参考信号。
其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口的循环移位值至少是根据第一码域偏移量确定的,第一码域偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块1702和发送模块1701可以分开设置,也可以集成在一个模块中,即收发模块。本申请对此不做具体限定。
可选地,通信装置1700还可以包括处理模块1703和存储模块(图17中未示出),存储模块存储有程序或指令。当处理模块1703执行该程序或指令时,使得通信装置1700可以执行图13-图15所示的通信方法中网络设备的功能。
需要说明的是,通信装置1700可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置1700的技术效果可以参考图13-图15中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
在又一种可能的设计方案中,图17所示出的通信装置1700可适用于图1所示出的系统中,执行上述任一方法实施例所述的通信方法中终端设备的功能。
其中,接收模块1702,用于接收参考信号的配置信息。
发送模块1701,用于根据配置信息,在M个天线端口上发送参考信号。
其中,M为大于0的整数,M个天线端口包括至少一个第一天线端口,第一天线端口的循环移位值至少是根据第一码域偏移量确定的,第一码域偏移量至少是根据第一天线端口占用的时域资源和/或第一天线端口占用的频域资源确定的。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块1702和发送模块1701可以分开设置,也可以集成在一个模块中,即收发模块。本申请对此不做具体限定。
可选地,通信装置1700还可以包括处理模块1703和存储模块(图17中未示出),存储模块存储有程序或指令。当处理模块1703执行该程序或指令时,使得通信装置1700可以执行图13-图15所示的通信方法中终端设备的功能。
需要说明的是,通信装置1700可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置1700的技术效果可以参考图13-图15中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
本申请实施例提供一种通信系统。该通信系统包括:网络设备和终端设备。不对网络设备和终端设备的数量进行限定。
其中,网络设备用于执行上述方法实施例中网络设备的动作,终端设备用于执行上述方法实施例中终端设备的动作,具体执行方法和过程可参照上述方法实施例,此处不再赘述。
本申请实施例提供一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路可用于实现本申请实施例提供的通信方法所涉及的处理功能,输入/输出端口可用于本申请实施例提供的通信方法所涉及的收发功能。
示例性地,输入端口可用于实现本申请实施例提供的通信方法所涉及的接收功能,输出端口可用于实现本申请实施例提供的通信方法所涉及的发送功能。
示例性的,通信装置1600中的处理器可用于进行,例如但不限于,基带相关处理,通信装置1600中的收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本发明实施例对上述器件的具体实现形式不做限定。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现本申请实施例提供的通信方法所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的通信方 法被执行。
本申请实施例提供一种计算机程序产品,该计算机程序产品包括:计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的通信方法被执行。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b- c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种通信方法,其特征在于,包括:
    发送参考信号的配置信息;
    根据所述配置信息,在M个天线端口上接收所述参考信号;其中,M为大于0的整数,所述M个天线端口包括至少一个第一天线端口,所述第一天线端口占用的梳齿至少是根据第一偏移量确定的,所述第一偏移量至少是根据所述第一天线端口占用的时域资源和/或所述第一天线端口占用的频域资源确定的。
  2. 一种通信方法,其特征在于,包括:
    接收参考信号的配置信息;
    根据所述配置信息,在M个天线端口上发送所述参考信号;其中,M为大于0的整数,所述M个天线端口包括至少一个第一天线端口,所述第一天线端口占用的梳齿至少是根据第一偏移量确定的,所述第一偏移量至少是根据所述第一天线端口占用的时域资源和/或所述第一天线端口占用的频域资源确定的。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述第一偏移量包括第一随机数和/或第五随机数,所述第一随机数至少是根据所述第一天线端口占用的时域资源确定的,所述第五随机数至少是根据所述第一天线端口占用的频域资源确定的。
  4. 根据权利要求3所述的通信方法,其特征在于,所述第一随机数至少是根据所述第一天线端口占用的时域资源确定的,包括:所述第一随机数是根据多个第一对应关系中的一个第一对应关系、和所述第一天线端口占用的时域资源确定的,所述一个第一对应关系包括至少一个第一随机数与至少一个时域资源之间的对应关系。
  5. 根据权利要求4所述的通信方法,其特征在于,一个跳频周期包括至少一次参考信号发送,所述至少一个第一随机数与至少一个时域资源之间的对应关系包括:所述至少一个第一随机数与所述至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
  6. 根据权利要求4所述的通信方法,其特征在于,所述至少一个第一随机数与至少一个时域资源之间的对应关系包括:所述至少一个第一随机数与至少一个跳频周期的索引之间的对应关系。
  7. 根据权利要求3所述的通信方法,其特征在于,所述第一随机数至少是根据所述第一天线端口占用的时域资源确定的,包括:
    所述第一随机数是根据所述第一天线端口占用的时域资源和伪随机序列确定的。
  8. 根据权利要求7所述的通信方法,其特征在于,所述第一随机数还根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量;其中,所述梳齿数量为所述参考信号的发送带宽中包括的梳齿数量,所述梳齿偏移量为所述参考信号占用的梳齿的参考量。
  9. 根据权利要求7或8所述的通信方法,其特征在于,所述第一随机数满足:
    或者,
    或者,
    或者,
    其中,Q1表示所述第一随机数,数学符号∑表示求和,数学符号mod表示取模,c()为所述伪随机序列,nf表示所述第一天线端口对应的系统帧号,表示每个系 统帧中的时隙数量,表示每个时隙中的OFDM符号数量,表示所述第一天线端口对应的时隙编号,l0表示所述第一天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示所述第一天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,KTC表示梳齿数量。
  10. 根据权利要求3-9中任一项所述的通信方法,其特征在于,所述第五随机数至少是根据所述第一天线端口占用的频域资源确定的,包括:所述第五随机数是根据多个第二对应关系中的一个第二对应关系、和所述第一天线端口占用的频域资源确定的,所述一个第二对应关系包括至少一个第五随机数与至少一个频域资源之间的对应关系。
  11. 根据权利要求3-9中任一项所述的通信方法,其特征在于,所述第五随机数至少是根据所述第一天线端口占用的频域资源确定的,包括:
    所述第五随机数是根据所述第一天线端口占用的频域资源和伪随机序列确定的。
  12. 根据权利要求11所述的通信方法,其特征在于,所述第五随机数满足:
    或者,
    其中,Q3表示所述第五随机数,数学符号∑表示求和,数学符号mod表示取模,c()为所述伪随机序列,k表示所述第一天线端口占用的所述频域资源对应的跳频带宽的索引和/或发送带宽的索引,KTC表示梳齿数量。
  13. 根据权利要求1-12任一项所述的通信方法,其特征在于,所述第一天线端口占用的时域资源包括一个或多个正交频分复用OFDM符号,所述第一天线端口占用的时域资源包括的所述一个或多个OFDM符号是根据以下参数中的一个或多个确定的:所述第一天线端口对应的系统帧号、所述第一天线端口对应的时隙编号和所述第一天线端口对应的OFDM符号编号。
  14. 根据权利要求1-13中任一项所述的通信方法,其特征在于,所述第一天线端口占用的频域资源包括一个或多个子带宽,所述第一天线端口占用的频域资源包括的所述一个或多个子带宽是根据以下参数中的一个或多个确定的:所述第一天线端口对应的跳频带宽的索引、和所述第一天线端口对应的发送带宽的索引。
  15. 根据权利要求1-14中任一项所述的通信方法,其特征在于,所述M个天线端口还包括至少一个第二天线端口,所述第二天线端口占用的梳齿至少是根据第二偏移量确定的,所述第二偏移量至少是根据所述第二天线端口占用的时域资源和/或所述第二天线端口占用的频域资源确定的,所述第二偏移量与所述第一偏移量不同。
  16. 根据权利要求15所述的通信方法,其特征在于,所述第二偏移量包括第二随机数和/或第六随机数,所述第二随机数至少是根据所述第二天线端口占用的时域资源确定的,所述第六随机数至少是根据所述第二天线端口占用的频域资源确定的。
  17. 根据权利要求16所述的通信方法,其特征在于,所述第二随机数至少是根据所述第二天线端口占用的时域资源确定的,包括:所述第二随机数是根据多个第三对应关系中的一个第三对应关系、和所述第二天线端口占用的时域资源确定的,所述一个第三对应关系包括至少一个第二随机数与至少一个时域资源之间的对应关系。
  18. 根据权利要求17所述的通信方法,其特征在于,一个跳频周期包括至少一次参考信号发送,所述至少一个第二随机数与至少一个时域资源之间的对应关系包括:所述至少一个第二随机数与所述至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
  19. 根据权利要求17所述的通信方法,其特征在于,所述至少一个第二随机数与至少 一个时域资源之间的对应关系包括:所述至少一个第二随机数与至少一个跳频周期的索引之间的对应关系。
  20. 根据权利要求13所述的通信方法,其特征在于,所述第二随机数至少是根据所述第二天线端口占用的时域资源确定的,包括:
    所述第二随机数是根据所述第二天线端口占用的时域资源和伪随机序列确定的。
  21. 根据权利要求20所述的通信方法,其特征在于,所述第二随机数还根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量;其中,所述梳齿数量为所述参考信号的发送带宽中包括的梳齿数量,所述梳齿偏移量为所述参考信号占用的梳齿的参考量。
  22. 根据权利要求20或21所述的通信方法,其特征在于,所述第二随机数满足:
    或者,
    或者,
    或者,
    其中,Q2表示所述第二随机数,数学符号∑表示求和,数学符号mod表示取模,c()为所述伪随机序列,nf表示所述第二天线端口对应的系统帧号,表示每个系统帧中的时隙数量,表示每个时隙中的OFDM符号数量,表示所述第二天线端口对应的时隙编号,l0表示所述第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示所述第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,KTC表示梳齿数量。
  23. 根据权利要求16-22中任一项所述的通信方法,其特征在于,所述第六随机数至少是根据所述第二天线端口占用的频域资源确定的,包括:
    所述第六随机数是根据多个第四对应关系中的一个第四对应关系、和所述第二天线端口占用的频域资源确定的,所述一个第四对应关系包括至少一个第六随机数与至少一个频域资源之间的对应关系。
  24. 根据权利要求16-22中任一项所述的通信方法,其特征在于,所述第六随机数至少是根据所述第二天线端口占用的频域资源确定的,包括:
    所述第六随机数是根据所述第二天线端口占用的频域资源和伪随机序列确定的。
  25. 根据权利要求24所述的通信方法,其特征在于,所述第六随机数满足:
    或者,
    其中,Q4表示所述第六随机数,数学符号∑表示求和,数学符号mod表示取模,c()为所述伪随机序列,k表示所述第二天线端口占用的所述频域资源对应的跳频带宽的索引和/或发送带宽的索引,KTC表示梳齿数量。
  26. 根据权利要求15所述的通信方法,其特征在于,所述第二偏移量为所述第一偏移量与第三偏移量之和,所述第三偏移量为大于0的整数。
  27. 根据权利要求26所述的通信方法,其特征在于,所述第三偏移量至少是根据所述第二天线端口占用的时域资源和/或所述第二天线端口占用的频域资源确定的。
  28. 根据权利要求27所述的通信方法,其特征在于,所述第三偏移量包括第三随机数和/或第七随机数,所述第三随机数至少是根据所述第二天线端口占用的时域资源确定的,所述第七随机数至少是根据所述第二天线端口占用的频域资源确定的。
  29. 根据权利要求28所述的通信方法,其特征在于,所述第三随机数至少是根据所述 第二天线端口占用的时域资源确定的,包括:所述第三随机数是根据多个第五对应关系中的一个第五对应关系、和所述第二天线端口占用的时域资源确定的,所述一个第五对应关系包括至少一个第三随机数与至少一个时域资源之间的对应关系。
  30. 根据权利要求29所述的通信方法,其特征在于,一个跳频周期包括至少一次参考信号发送,所述至少一个第三随机数与至少一个时域资源之间的对应关系包括:所述至少一个第三随机数与所述至少一次参考信号发送所在的一个跳频周期内的相对编号之间的对应关系。
  31. 根据权利要求29所述的通信方法,其特征在于,所述至少一个第三随机数与至少一个时域资源之间的对应关系包括:所述至少一个第三随机数与至少一个跳频周期的索引之间的对应关系。
  32. 根据权利要求23所述的通信方法,其特征在于,所述第三随机数至少是根据所述第二天线端口占用的时域资源确定的,包括:
    所述第三随机数是根据所述第二天线端口占用的时域资源和伪随机序列确定的。
  33. 根据权利要求32所述的通信方法,其特征在于,所述第三随机数还根据以下参数中的一个或多个确定:每个系统帧包含的时隙数量、每个时隙包含的OFDM符号数量、梳齿数量和梳齿偏移量;其中,所述梳齿数量为所述参考信号的发送带宽中包括的梳齿数量,所述梳齿偏移量为所述参考信号占用的梳齿的参考量。
  34. 根据权利要求32或33所述的通信方法,其特征在于,所述第三随机数满足:
    或者,
    或者,
    或者,
    其中,Δ表示所述第三随机数,数学符号∑表示求和,数学符号mod表示取模,c()为所述伪随机序列,nf表示所述第二天线端口对应的系统帧号,表示每个系统帧包含的时隙数量,表示每个时隙包含的OFDM符号数量,表示所述第二天线端口对应的时隙编号,l0表示所述第二天线端口占用的时域资源包括的一个或多个OFDM符号中起始OFDM符号的索引,l′表示所述第二天线端口占用的时域资源包括的一个或多个OFDM符号中一个OFDM符号的相对索引,KTC表示梳齿数量。
  35. 根据权利要求28-34中任一项所述的通信方法,其特征在于,所述第七随机数至少是根据所述第二天线端口占用的频域资源确定的,包括:所述第七随机数是根据多个第六对应关系中的一个第六对应关系、和所述第二天线端口占用的频域资源确定的,所述一个第六对应关系包括至少一个第七随机数与至少一个频域资源之间的对应关系。
  36. 根据权利要求28-34中任一项所述的通信方法,其特征在于,所述第七随机数至少是根据所述第二天线端口占用的频域资源确定的,包括:
    所述第七随机数是根据所述第二天线端口占用的频域资源和伪随机序列确定的。
  37. 根据权利要求36所述的通信方法,其特征在于,所述第七随机数满足:
    或者,
    其中,Δ1表示所述第七随机数,数学符号∑表示求和,c()为所述伪随机序列,数学符号mod表示取模,k表示所述第二天线端口占用的所述频域资源对应的跳频带宽的索引和/或发送带宽的索引,KTC表示梳齿数量。
  38. 根据权利要求15-37中任一项所述的通信方法,其特征在于,所述第二天线端口占用的时域资源包括一个或多个OFDM符号,所述第二天线端口占用的时域资源包括的所述一个或多个OFDM符号根据以下参数中的一个或多个确定:所述第二天线端口对应的系统帧号、所述第二天线端口对应的时隙编号和所述第二天线端口对应的OFDM符号编号。
  39. 根据权利要求15-38中任一项所述的通信方法,其特征在于,所述第二天线端口占用的频域资源包括一个或多个子带宽,所述第二天线端口占用的频域资源包括的所述一个或多个子带宽是根据以下参数中的一个或多个确定的:所述第二天线端口对应的跳频带宽的索引、和所述第二天线端口对应的发送带宽的索引。
  40. 一种通信装置,其特征在于,所述通信装置包括用于执行如权利要求1至39中任一项所述方法的单元或模块。
  41. 一种通信装置,其特征在于,所述通信装置包括:处理器;所述处理器,用于执行如权利要求1-39中任一项所述的通信方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-39中任一项所述的通信方法被执行。
  43. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-39中任一项所述的通信方法被执行。
PCT/CN2023/090409 2022-04-29 2023-04-24 通信方法及装置 WO2023207925A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210469116.4 2022-04-29
CN202210469116 2022-04-29
CN202210969093.3 2022-08-12
CN202210969093.3A CN116981060A (zh) 2022-04-29 2022-08-12 通信方法及装置

Publications (2)

Publication Number Publication Date
WO2023207925A1 true WO2023207925A1 (zh) 2023-11-02
WO2023207925A9 WO2023207925A9 (zh) 2024-02-01

Family

ID=88481922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090409 WO2023207925A1 (zh) 2022-04-29 2023-04-24 通信方法及装置

Country Status (2)

Country Link
CN (1) CN116981060A (zh)
WO (1) WO2023207925A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106922207A (zh) * 2014-12-16 2017-07-04 富士通株式会社 基于探测参考信号的下行信道估计方法、装置以及通信系统
CN108260219A (zh) * 2018-01-12 2018-07-06 中兴通讯股份有限公司 一种参考信号的接收和发送方法、设备及计算机可读存储介质
CN109802801A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 发送和接收信号的方法、装置和系统
CN113366900A (zh) * 2019-07-22 2021-09-07 Oppo广东移动通信有限公司 探测参考信号传输方法和装置
WO2021208779A1 (zh) * 2020-04-14 2021-10-21 中兴通讯股份有限公司 Srs的传输方法、装置、系统、存储介质及电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106922207A (zh) * 2014-12-16 2017-07-04 富士通株式会社 基于探测参考信号的下行信道估计方法、装置以及通信系统
CN109802801A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 发送和接收信号的方法、装置和系统
CN108260219A (zh) * 2018-01-12 2018-07-06 中兴通讯股份有限公司 一种参考信号的接收和发送方法、设备及计算机可读存储介质
CN113366900A (zh) * 2019-07-22 2021-09-07 Oppo广东移动通信有限公司 探测参考信号传输方法和装置
WO2021208779A1 (zh) * 2020-04-14 2021-10-21 中兴通讯股份有限公司 Srs的传输方法、装置、系统、存储介质及电子装置

Also Published As

Publication number Publication date
WO2023207925A9 (zh) 2024-02-01
CN116981060A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2020015757A1 (zh) 信号传输方法、装置、设备及计算机存储介质
EP2850863B1 (en) Reuse of legacy radio access technology
WO2017185915A1 (zh) 分配时频资源的方法和装置
CN108282305B (zh) 参考信号的传输方法和设备
CN106465368B (zh) 一种子带资源确定装置及方法
JP2020511814A (ja) 参照信号送信方法及び送信機器
JP7094995B2 (ja) 情報送信方法、端末デバイス、及びネットワーク・デバイス
WO2019137098A1 (zh) 一种参考信号的接收和发送方法、设备及计算机可读存储介质
WO2022022579A1 (zh) 一种通信方法及装置
WO2019029731A1 (zh) 一种资源配置方法及设备
CN109150487A (zh) 用于确定传输方向的方法和设备
US20180220412A1 (en) Pucch region determination and usage for mtc
CN108347323B (zh) 一种rs生成、接收方法及终端、基站
TW201947906A (zh) 用於新無線電未授權頻譜操作的交錯內通道多工
CN114667685B (zh) 通信方法和装置
WO2023207925A1 (zh) 通信方法及装置
US20210360617A1 (en) Signal transmission method and apparatus
CN109803397A (zh) 确定用于免授权传输的时域资源的方法和装置
CN111201821B (zh) 序列生成和分配
CN107534999A (zh) 一种数据传输方法及接入点、站点
WO2019157679A1 (zh) 一种信息指示方法及相关设备
WO2019157685A1 (zh) 一种物理上行共享信道pusch传输方法及装置
WO2024067652A1 (zh) 通信方法、通信装置、芯片及计算机可读存储介质
WO2019062789A1 (zh) 一种时域信息的确定方法及装置
WO2023011108A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795358

Country of ref document: EP

Kind code of ref document: A1