WO2020015757A1 - 信号传输方法、装置、设备及计算机存储介质 - Google Patents

信号传输方法、装置、设备及计算机存储介质 Download PDF

Info

Publication number
WO2020015757A1
WO2020015757A1 PCT/CN2019/096904 CN2019096904W WO2020015757A1 WO 2020015757 A1 WO2020015757 A1 WO 2020015757A1 CN 2019096904 W CN2019096904 W CN 2019096904W WO 2020015757 A1 WO2020015757 A1 WO 2020015757A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
resource
information
signal
communication node
Prior art date
Application number
PCT/CN2019/096904
Other languages
English (en)
French (fr)
Inventor
张淑娟
蒋创新
毕峰
刘星
陈琳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020217004577A priority Critical patent/KR20210030457A/ko
Priority to US17/261,503 priority patent/US20210266128A1/en
Priority to EP19837606.3A priority patent/EP3826211A4/en
Priority to CA3107122A priority patent/CA3107122A1/en
Publication of WO2020015757A1 publication Critical patent/WO2020015757A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03184Details concerning the metric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • Embodiments of the present invention relate to, but are not limited to, the field of communications, and specifically, to but not limited to a signal transmission method, device, device, system, and storage medium.
  • IAB Integrated Access and Backhaul nodes
  • the link (that is, the backhaul link) is connected to the core network.
  • the IAB node needs to communicate with the upper-level node through the wireless backhaul link, and also needs to communicate with the terminal (User Equipment) covered by the wireless access link (that is, the access link), or through the wireless backhaul chain. It communicates with the next-level IAB node.
  • a node that has a wired connection with the core network can also be called an IAB donor node.
  • the signals of the Backhaul link and the signals of the Access link that are allowed at the IAB node may adopt a spatial division multiplexing (SDM) method.
  • SDM spatial division multiplexing
  • Space division multiplexing means that the signals in the two links can occupy the same time / frequency domain resources, but are distinguished by the space domain beams.
  • One of the significant characteristics is that the spectrum utilization is high and the delay is small, but interference cannot be avoided. Through reasonable interference measurement, reducing the interference between two links is an urgent problem.
  • the signal transmission method, device, device, system and storage medium provided by the embodiments of the present invention mainly solve the technical problem of how to reduce the interference problem that exists when communication node links adopt space division multiplexing.
  • an embodiment of the present invention provides a method for transmitting a measurement reference signal, which includes: determining a parameter of the measurement reference signal according to the received first signaling information and / or a pre-negotiated first parameter determination rule. Information; sending a measurement reference signal according to the parameter information.
  • an embodiment of the present invention provides a method for receiving a measurement reference signal, including: sending first signaling information, where the first signaling information includes parameter information of the measurement reference signal; and according to the parameter information , Receiving the measurement reference signal.
  • an embodiment of the present invention further provides a method for transmitting a measurement reference signal, including: a first communication node according to the second signaling information received from the second communication node and / or The second parameter determination rule negotiated in advance by the communication node determines at least one type of measurement reference signal resource; the first communication node sends the corresponding type of measurement reference signal on the determined at least one type of measurement reference signal resource; The at least one type of measurement reference signal includes a first type of measurement reference signal for measuring interference.
  • an embodiment of the present invention provides a method for receiving a measurement reference signal, which includes: a second communication node sends second signaling information to the first communication node, and the second signaling information includes a P-type measurement Reference signal resource information; the second communication node receives a P-type measurement reference signal on a P-type measurement reference signal resource; the P-type measurement reference signal resource includes a measurement reference signal resource for measuring interference; and the P's The value is a positive integer.
  • an embodiment of the present invention further provides a method for receiving a measurement reference signal, including: a first communication node receives third signaling information sent from a second communication node, and the third signaling information Including interference measurement resource information; the first communication node receiving a signal sent by one or more third communication nodes on the interference measurement resource determined according to the interference measurement resource information, and / or the interference measurement resource information includes The intersection between the parameter type of and the parameter type used to determine the uplink reference signal pattern is not empty, and / or the first communication node does not receive a downlink measurement reference signal on the interference measurement resource.
  • an embodiment of the present invention further provides a method for receiving a measurement reference signal, including: a second communication node sending third signaling information to the first communication node, where the third signaling information includes interference measurement Resource information; the third signaling information is used to instruct the first communication node to receive a signal sent by one or more third communication nodes on an interference measurement resource determined according to the interference measurement resource information, and / or The intersection between the parameter type included in the interference measurement resource information and the parameter type used to determine the uplink reference signal pattern is not empty, and / or the second communication node does not send a downlink signal on the interference measurement resource.
  • an embodiment of the present invention further provides a signal transmission method, including: determining a U resource set and a Q number of objects according to the transmitted fifth signaling information and / or a third parameter determination rule.
  • a signal transmission method including: determining a U resource set and a Q number of objects according to the transmitted fifth signaling information and / or a third parameter determination rule.
  • Resource division, power parameter set, set of multiplexing modes between B links set of C reference signal combinations in C links; transmission channels or signals according to the corresponding relationship; wherein the U, Q Take a positive integer greater than or equal to 1, and A, B, and C take a positive integer greater than 1.
  • the resources include at least one of the following resources: time domain resources, frequency domain resources, and reference signal resources.
  • an embodiment of the present invention further provides a signal sending method, including: determining a first type of time-frequency resource according to the received sixth signaling information or a fourth parameter determination rule; and according to the determined first Time-frequency resources, sending channels or signals; wherein the channels or signals cannot occupy the first time-frequency resources.
  • an embodiment of the present invention further provides a method for receiving a channel or signal, including: determining a second type of time-frequency resource according to the received seventh signaling information or a fifth parameter determination rule; and according to the determination, A second type of time-frequency resource, receiving a channel or signal; wherein the channel or signal does not occupy the second type of time-frequency resource.
  • an embodiment of the present invention further provides a method for transmitting signaling information, including: a first communication node sends eighth signaling information to a second communication node; and / or, the first communication node receives the first Ninth signaling information of two communication nodes; wherein the eighth signaling information and / or the ninth signaling information includes at least one of the following information: information of a first signal set, information of a second signal set ,
  • the signals in the first signal set and the second signal set include reference signals; wherein the first channel or signal and at least one signal in the first signal set are related to one or more channel large-scale characteristic parameters Satisfies the quasi co-location relationship, and / or the spatial transmission filtering parameters of the second channel or signal are obtained according to at least one signal in the second signal set; the first channel or signal is sent by the first communication node to one or A channel or signal of a plurality of third communication nodes, where the second channel or signal is a channel or signal sent by the one or more third communication nodes
  • an embodiment of the present invention further provides a device for transmitting a measurement reference signal, including: a first parameter determining module, configured to: according to the received first signaling information and / or the pre-negotiated first parameter Determining a rule to determine parameter information of a measurement reference signal; a first signal sending module is configured to send a measurement reference signal according to the parameter information.
  • an embodiment of the present invention further provides a device for receiving a measurement reference signal, including: a second parameter determination module, which determines a rule according to the received first signaling information and / or a pre-negotiated first parameter To determine parameter information of the measurement reference signal; a third signal receiving module is configured to receive the measurement reference signal according to the parameter information.
  • an embodiment of the present invention further provides a device for transmitting a measurement reference signal, which is applied to a first communication node and includes a first resource determination module configured to receive a second signal from a second communication node. Order information and / or a second parameter determination rule pre-negotiated with the second communication node to determine a P-type measurement reference signal resource; a second signal sending module, configured to send P on the P-type measurement reference signal resource Class measurement reference signal; the class P measurement reference signal resource includes a measurement reference signal resource for measuring interference; and the value of P is a positive integer.
  • an embodiment of the present invention further provides a receiving device for measuring a reference signal, which is applied to a second communication node and includes: a fourth resource determining module, configured to: according to the second information sent to the first communication node; Order information and / or a second parameter determination rule that is pre-negotiated with the first communication node to determine a P-type measurement reference signal resource; a fourth signal receiving module, configured to: Receiving a P-type measurement reference signal; the P-type measurement reference signal resource includes a measurement reference signal resource for measuring interference; and the value of P is a positive integer.
  • an embodiment of the present invention further provides a device for receiving a measurement reference signal, which is applied to a first communication node and includes: a first information receiving module for receiving a third signal sent from a second communication node Signaling information, the third signaling information includes interference measurement resource information; a first signal receiving module, configured to receive, on the interference measurement resource determined according to the interference measurement resource information, a message sent by one or more third communication nodes; The intersection between the signal type and / or the parameter type included in the interference measurement resource information and the parameter type used to determine the uplink reference signal pattern is not empty.
  • an embodiment of the present invention further provides a device for receiving a measurement reference signal, which is applied to a second communication node and includes a third information sending module configured to send third signaling information to the first communication node.
  • the third signaling information includes interference measurement resource information; the third signaling information is used to instruct the first communication node to receive one or more first measurement nodes on the interference measurement resource determined according to the interference measurement resource information;
  • the intersection between the signal sent by the three communication nodes and / or the parameter type included in the interference measurement resource information and the parameter type used to determine the uplink reference signal pattern is not empty, and / or the second communication node is in the No downlink signal is sent on the interference measurement resource.
  • an embodiment of the present invention further provides a signal transmission device, including: a determining module, configured to determine U resource sets and resources according to the transmitted fifth signaling information and / or the third parameter determination rule.
  • a signal transmission device including: a determining module, configured to determine U resource sets and resources according to the transmitted fifth signaling information and / or the third parameter determination rule.
  • a determining module configured to determine U resource sets and resources according to the transmitted fifth signaling information and / or the third parameter determination rule.
  • Q objects spatial transmission filtering parameter set, quasi-co-located reference signal set, spatial transmission filtering parameter and quasi-co-located reference signal combination, frequency domain resource set, reference signal set, A links Frequency domain resource division, power parameter set, multiplexing mode set between B links; transmission module, used for the corresponding relationship transmission channel or signal; wherein U and Q are greater than or equal to 1 A, B are positive integers greater than 1.
  • the resources include at least one of the following resources: time domain resources, frequency domain resources, and reference signal resources.
  • an embodiment of the present invention further provides a signal sending apparatus, including: a second resource determining module, configured to determine a first type of time-frequency resource according to the received sixth signaling information or a fourth parameter determination rule.
  • a third signal sending module configured to send a channel or signal according to the determined first type of time-frequency resources; wherein the channel or signal cannot occupy the first type of time-frequency resources.
  • an embodiment of the present invention further provides a device for receiving a channel or signal, including: a third resource determining module, configured to determine a second type according to the received seventh signaling information or a fifth parameter determination rule Time-frequency resource; a second signal receiving module, configured to receive a channel or signal according to the determined second type of time-frequency resource; wherein the channel or signal does not occupy the second type of time-frequency resource.
  • an embodiment of the present invention further provides a device for transmitting signaling information, which is applied to a first communication node and includes: a second information sending module for sending eighth signaling information to the second communication node ; And / or, a second information receiving module, configured to receive the ninth signaling information of the second communication node; wherein the eighth signaling information and / or the ninth signaling information includes at least one of the following information 1: information of the first signal set, information of the second signal set, and the signals in the first signal set and the second signal set include reference signals; wherein the first channel or signal and the first signal set The at least one signal of one or more channels satisfies the quasi co-location relationship with respect to the large-scale characteristic parameters of one or more channels, and / or the spatial transmission filtering parameters of the second channel or signal are obtained according to at least one signal in the second signal set; One channel or signal is a channel or signal sent by the first communication node to one or more third communication nodes, and the second channel or signal is
  • an embodiment of the present invention further provides a communication node device, including a processor, a memory, and a communication bus; the communication bus is used to implement a communication connection between the processor and the memory;
  • the memory is used to store one or more first programs, and the processor is configured to execute the one or more first programs to implement the steps of the measurement reference signal sending method as described above; or, the memory One or more second programs for storage, and the processor is configured to execute the one or more second programs to implement the steps of the method for receiving a measurement reference signal as described above; or the memory is used for One or more third programs stored, the processor is configured to execute the one or more third programs to implement the steps of the method for transmitting a measurement reference signal as described above; or the memory is used for storing One or more fourth programs, the processor is configured to execute the one or more fourth programs to implement the above-mentioned measurement of the reference signal
  • the steps of the receiving method; or the memory is configured to store one or more fifth programs, and the processor is configured to execute the one or more fifth programs
  • an embodiment of the present invention further provides a computer-readable storage medium, where the computer-readable storage medium is used to store one or more first programs, and the one or more first programs may be Executed by one or more processors to implement the steps of the method for transmitting a measurement reference signal as described above; or the computer-readable storage medium is configured to store one or more second programs, the one or more first programs The two programs may be executed by one or more processors to implement the steps of the method for receiving a measurement reference signal as described above; or the computer-readable storage medium is configured to store one or more third programs, the one Or multiple third programs may be executed by one or more processors to implement the steps of the method for transmitting a measurement reference signal as described above; or the computer-readable storage medium is configured to store one or more fourth programs The one or more fourth programs may be executed by one or more processors to implement the method for receiving a measurement reference signal as described above.
  • the computer-readable storage medium is configured to store one or more fifth programs, and the one or more fifth programs may be executed by one or more processors to implement the measurement reference as described above.
  • the steps of the signal receiving method; or the computer-readable storage medium is configured to store one or more sixth programs, and the one or more sixth programs may be executed by one or more processors to implement the above.
  • the steps of the method for receiving a measurement reference signal; or the computer-readable storage medium is configured to store one or more seventh programs, and the one or more seventh programs may be executed by one or more processors, To implement the steps of the signal transmission method as described above; or, the computer-readable storage medium is configured to store one or more eighth programs, and the one or more eighth programs may be processed by one or more processors.
  • the computer-readable storage medium is used to store one or more ninth programs
  • the one or more ninth programs may be executed by one or more processors to implement the steps of the channel or signal receiving method as described above; or the computer-readable storage medium is configured to store one or more tenth programs.
  • a program, the one or more tenth programs may be executed by one or more processors to implement the steps of the signaling information transmission method as described above.
  • a measurement reference signal can be determined according to the received signaling information and / or pre-negotiated parameter determination rules And then send a measurement reference signal for measurement according to the determined parameter information.
  • a first type of measurement reference signal including, but not limited to, used for measuring interference may be sent to the communication node chain. Interference is effectively measured between channels using space division multiplexing, so that communication nodes can use space division multiplexing to send or receive signals on resources with small interference, reducing the time when space division multiplexing is used between links. Interfering with each other to ensure communication quality.
  • FIG. 1-1 is a schematic diagram of a relay node connection structure in Embodiment 1 of this application;
  • Figure 1-2 is the first exploded view in Figure 1-1;
  • Figure 1-3 is the second exploded view in Figure 1-1;
  • FIG. 2-1 is a schematic flowchart of a measurement reference signal sending method in Embodiment 1 of the present application;
  • FIG. 3-1 is a schematic flowchart of a measurement reference signal sending method in Embodiment 2 of the present application.
  • FIG. 4 is a schematic diagram of introducing an uplink interference measurement resource and an uplink channel measurement resource in Embodiment 3 of the present application;
  • FIG. 5 is a first schematic diagram of an uplink measurement report corresponding to multiple channel measurement resources and one interference measurement resource in Embodiment 3 of the present application;
  • FIG. 6 is a second schematic diagram of an uplink measurement report corresponding to multiple channel measurement resources and one interference measurement resource in Embodiment 3 of the present application;
  • FIG. 7 is a schematic flowchart of a configuration process in which an uplink measurement report corresponds to multiple channel measurement resources and one interference measurement resource in Embodiment 3 of the present application;
  • FIG. 8 is a schematic diagram of a connection between an IAB donor node / gNB node and a UE in Embodiment 3 of the present application;
  • FIG. 9 is a schematic diagram of a connection between an IAB donor node / gNB node and a UE in Embodiment 3 of the present application.
  • FIG. 10 is a schematic diagram of uplink measurement reference signals and uplink channels in different PRBs of an OFDM in Embodiment 5 of the present application;
  • FIG. 10 is a schematic diagram of uplink measurement reference signals and uplink channels in different PRBs of an OFDM in Embodiment 5 of the present application;
  • FIG. 11 is a schematic diagram of an uplink measurement reference signal and an uplink channel located in one PRB of one OFDM in Embodiment 5 of the present application;
  • FIG. 12 is a schematic flowchart of a method for receiving a measurement reference signal in Embodiment 6 of the present application.
  • FIG. 13 is a schematic flowchart of a signal transmission method in Embodiment 7 of the present application.
  • 15-1 is a schematic diagram of different spatial transmission filtering parameter sets corresponding to different time domain resources in Embodiment 7 of the present application;
  • 15-2 is a schematic diagram of different time domain resources corresponding to different frequency domain resource divisions according to Embodiment 7 of the present application;
  • 15-3 is a schematic diagram of different frequency domain resource partitioning between A links in Embodiment 7 of the present application.
  • FIG. 15-4 is a schematic diagram of different time domain resources corresponding to different frequency domain resource sets available in different UB / DBs according to Embodiment 7 of the present application; FIG.
  • 15-5 is a schematic diagram of different reference signal sets available in different UB / DBs corresponding to different time domain resources in Embodiment 7 of this application;
  • 15-6 is a schematic diagram of M time-domain resources appearing alternately in the seventh embodiment of the present application.
  • FIG. 16 is a schematic diagram of an association between a spatial transmission filtering parameter set and a reference signal set according to Embodiment 7 of the present application.
  • FIG. 17 is a schematic flowchart of a signal sending method according to Embodiment 8 of the present application.
  • FIG. 18 is a schematic diagram in which a reserved resource or rate matching resource occupancy pattern of a UB link according to Embodiment 8 of the present application is a CSI-RS pattern;
  • FIG. 18 is a schematic diagram in which a reserved resource or rate matching resource occupancy pattern of a UB link according to Embodiment 8 of the present application is a CSI-RS pattern;
  • FIG. 19 is a schematic flowchart of a channel or signal receiving method according to Embodiment 9 of the present application.
  • FIG. 20 is a schematic diagram of a reserved resource or rate matching resource occupied by a DB link according to Embodiment 9 of the present application, which is an SRS pattern;
  • FIG. 21-1 is a first schematic diagram of determining a resource type according to a relationship between a resource and an interval between a control channel closest to the resource and a predetermined threshold according to Embodiment 11 of the present application;
  • FIG. 21-1 is a first schematic diagram of determining a resource type according to a relationship between a resource and an interval between a control channel closest to the resource and a predetermined threshold according to Embodiment 11 of the present application;
  • 21-2 is a second schematic diagram of determining a resource type according to a relationship between a resource and a distance between a control channel closest to the resource and a predetermined threshold according to Embodiment 11 of the present application;
  • 21-3 is a schematic diagram of different resource division between A links corresponding to different resource types according to Embodiment 11 of the present application;
  • FIG. 22-1 is a schematic structural diagram of a measurement reference signal sending apparatus according to Embodiment 14 of the present application.
  • 22-2 is a schematic structural diagram of a receiving device for measuring a reference signal according to Embodiment 14 of the present application;
  • 23-1 is a schematic structural diagram of a measurement reference signal sending apparatus according to Embodiment 15 of the present application.
  • FIG. 23-2 is a schematic structural diagram of a receiving device for measuring a reference signal according to Embodiment 15 of the present application;
  • FIG. 24-1 is a schematic structural diagram of a receiving apparatus for measuring a reference signal according to Embodiment 16 of the present application.
  • FIG. 24-2 is a schematic structural diagram of another measurement reference signal receiving device according to Embodiment 16 of the present application.
  • FIG. 25 is a schematic structural diagram of a signal transmission device according to Embodiment 17 of the present application.
  • FIG. 26 is a schematic structural diagram of a signal transmitting apparatus according to Embodiment 18 of the present application.
  • FIG. 27 is a schematic structural diagram of a channel or signal receiving apparatus according to Embodiment 19 of the present application.
  • FIG. 28 is a schematic structural diagram of a signaling information transmission device according to Embodiment 20 of the present application.
  • FIG. 29 is a schematic structural diagram of a communication node device according to the twenty-first embodiment of the present application.
  • space division multiplexing is used between two links of a communication node and there is interference between each other.
  • relay node 1 IAB node1
  • IAB node2 relay transmission node
  • relay node 2 is connected to relay node 3 ( IAB node3) or terminal UE link.
  • space division multiplexing can be used between UB (uplink, backhaul) and DA (downlink, access) signals, and DB (downlink, backhaul) and UA (uplink, access) signals can also be used.
  • Space division multiplexing A significant feature of space division multiplexing is high spectrum utilization and small delay, but interference cannot be avoided.
  • the reference signal pattern enhancement scheme can be used to further improve the spectrum utilization rate.
  • the Access link includes the communication link between IAB node2 and IAB node3, and it can also include the communication link between IAB node2 and UEs covered by IAB node2.
  • 1 is divided into Figure 1-2 and Figure 1-3, that is, the communication link between IAB node2 and IAB node3 is called the Backhaul link, and the communication link between IAB node2 and the UE is called the Access link.
  • the communication between the IAB node and the upper-level communication node is called a Backhaul link, and the IAB node and the next-level communication node or other
  • the communication between the covered UEs is called an Access link.
  • the scheduling of the UB / DB link in Figure 1-1 can be controlled by the IAB node1 / IAB donor, and the scheduling of the UA and DA links can be controlled by the IAB node2.
  • this embodiment provides a method for transmitting a measurement reference signal, as shown in FIG. 2-1, including:
  • S201 Determine parameter information of a measurement reference signal according to the received first signaling information and / or a pre-negotiated first parameter determination rule.
  • S202 Send a measurement reference signal to perform corresponding measurement according to the determined parameter information.
  • a method for receiving a measurement reference signal may also be included, as shown in FIG. 2-2, including:
  • S203 Send first signaling information, where the first signaling information includes parameter information of a measurement reference signal.
  • the measurement signal generated and sent according to the process shown in FIG. 2-1 in some application examples may include a measurement reference signal for measuring interference, and may also be called Measure the reference signal for interference.
  • the interference measurement reference signal may be an uplink interference measurement reference signal, which is used to effectively measure the interference existing between the communication node links using space division multiplexing, so that the communication node can operate on resources with small interference. Use space division multiplexing to send or receive signals, reduce mutual interference when using space division multiplexing between links, and ensure communication quality.
  • channel measurement may optionally be performed according to requirements. Therefore, in some application examples, the measurement signal generated and sent according to the process shown in Figure 2-1 may include The measurement reference signal for channel measurement can also be referred to as the channel measurement reference signal. What types of measurement reference signals are included can be flexibly set according to requirements.
  • a measurement reference signal including, but not limited to, interference measurement may be sent to effectively measure interference existing in a communication node link using space division multiplexing, so that the communication node can reduce Signals are sent or received in space-division multiplexing on the resources, which reduces mutual interference between links when space-division multiplexing is used, and ensures communication quality.
  • a spectrum of the measurement reference signal may be set to improve the spectrum utilization rate. Therefore, optionally, the parameter information determined in the above step includes, but is not limited to, at least one of the following information: among M groups of subcarriers occupied by the measurement reference signal in a physical resource block, The lowest subcarrier index or the highest subcarrier index; among the N sets of time domain symbols occupied by the measurement reference signal in a time unit, the lowest time domain symbol index or the highest time domain symbol index in each group of time domain symbols; the measurement reference signal Port code division multiplexing type information; measurement reference signal density information ⁇ ; measurement reference signal corresponding physical resource block set information; measurement reference signal includes a code division multiplexing group corresponding code division multiplex length information; measurement reference signal Including a code division multiplexing group in the time domain multiplexing length; measuring the reference signal multiplexing length in the frequency domain; measuring the number of reference signal ports; measuring the total number of combs corresponding to the reference signal The comb offset
  • the parameter information in this embodiment further includes selection information of a parameter type set;
  • the parameter type set includes at least one of a first parameter type set and a second parameter type set;
  • a parameter type set includes parameter information required for determining a pattern of the first-type measurement reference signal;
  • a second parameter type set includes parameter information required for determining a pattern of the second-type measurement reference signal.
  • the patterns used for the first-type measurement reference signal and the second-type measurement reference signal may be the same or different, and may be flexibly selected according to the application scenario.
  • the second parameter type set at this time may include, but is not limited to, at least one of the following parameters: 1: Among the M groups of subcarriers occupied by the uplink measurement reference signal in a physical resource block, the lowest subcarrier index or the highest subcarrier index in each group of subcarriers; optionally, the group of subcarriers includes consecutive Subcarrier, or the group of subcarriers is a group of subcarriers for code division multiplexing; among the N sets of time domain symbols occupied by the uplink measurement reference signal in a time unit, the lowest time domain in each group of time domain symbols Symbol index or highest time-domain symbol index; optionally, the set of time-domain symbols includes consecutive time-domain symbols; or a set of time-domain symbols that are bit-code-division multiplexed; a group of time-domain symbols; Port code division multiplexing type information; uplink measurement reference signal density information
  • the first parameter type set at this time may include, but is not limited to, at least one of the following parameters: uplink Among the M groups of subcarriers occupied by the measurement reference signal in a physical resource block, the lowest subcarrier index or the highest subcarrier index in each group of subcarriers; optionally, the group of subcarriers includes consecutive subcarriers, Or the group of subcarriers is a group of subcarriers for code division multiplexing; among N groups of time domain symbols occupied by an uplink measurement reference signal in a time unit, the lowest time domain symbol index of each group of time domain symbols or The highest time domain symbol index; optionally, the group of time domain symbols includes consecutive time domain symbols; or a group of time domain symbols that are code-division multiplexed; a group of time domain symbols; the number of ports for uplink measurement reference signals The total number of combs corresponding to the uplink measurement reference signals.
  • the code division multiplexing type information includes at least one of the following types: no code Code division multiplexing in frequency domain length 2; code division multiplexing in frequency domain length 2 and time domain length 2 total length 4; frequency domain length 2 time domain length 4 total length 8 Code division multiplexing; density information ⁇ indicates that the average number of subcarriers occupied by each measurement reference signal port in each physical resource is ⁇ ; density information ⁇ indicates the pattern of measurement reference signals every 1 / ⁇ physical resource blocks Repeat once in the frequency domain; density information ⁇ includes ⁇ 0.5, 1, 3 ⁇ ; a group of subcarriers is a group of subcarriers corresponding to a code division multiplexing group in the frequency domain; a group of subcarriers is a continuous group in the frequency domain Subcarriers; a group of subcarriers are distributed at equal intervals; the number of subcarriers included in a group of subcarrier
  • the pattern of the first type of measurement reference signal may also be an uplink reference signal pattern; in this embodiment, the uplink reference signal includes but is not limited to at least one of the following reference signals: an uplink measurement reference signal and an uplink demodulation reference. Signals, phase-tracking reference signals (PTRS), uplink preamble sequences; the second type of measurement reference signal pattern may be a downlink reference signal pattern.
  • the downlink reference signal includes but is not limited to the following reference signals. At least one of: a downlink measurement reference signal, a downlink demodulation reference signal, a downlink phase tracking reference signal (Phase-tracking reference signal (PTRS), and a downlink synchronization signal.
  • the first type of measurement reference signal may be a measurement reference signal sent by one or more third communication nodes received by the first communication node on the uplink; the second type of measurement reference signal is the first communication node A measurement reference signal sent on the downlink to one or more third communication nodes.
  • the first type of measurement reference signal may be a measurement reference signal sent by one or more fourth communication nodes received by the second communication node on the uplink; the second type of measurement reference signal may be the second communication node on the downlink Measurement reference signals sent on the road to one or more fourth communication nodes;
  • the determination result of whether the measurement reference signal is an uplink reference signal on the Backhaul link is an uplink reference signal on the Backhaul link and the selection information of the parameter type set.
  • the pattern uses CSI-RS pattern.
  • the uplink reference signal on the Access link is the SRS pattern or the uplink reference signal on the Backhaul link
  • the pattern of the uplink reference signal can be selected between the CSI-RS pattern and the SRS pattern.
  • the Backhaul link refers to the wireless link between the two base stations
  • the Access link refers to the link between the base station and the terminal.
  • the port number information included in the measurement reference signal is related to the port number set and the parameter type set selection information.
  • the port number of the uplink measurement reference signal It can be greater than 4.
  • the number of ports for uplink measurement reference signals cannot be greater than 4.
  • the selection information of the above parameter type set is a parameter set required for determining the CSI-RS pattern
  • all the sequence types of the uplink measurement reference signal are PN sequences.
  • the type set is the parameter set required for determining the SRS pattern
  • all the sequence types of the uplink measurement reference signal are ZC sequences.
  • the PN sequence and the ZC sequence refer to the pseudo-random sequence in the protocol in 38.211.
  • the ZC sequence refer to the ZC sequence in protocol 38.211.
  • the association between the two pieces of information includes, but is not limited to, indicating that another piece of information (called the second information) can be obtained based on one piece of information (called the first information), and / or the first piece of information can also be obtained according to the second information.
  • the second information another piece of information
  • the first information one piece of information
  • the first information another piece of information
  • An information, and / or a specific value of the first information and a specific value of the second information cannot appear simultaneously.
  • the first communication node is a communication node that sends a measurement reference signal
  • the second communication node is a communication node that sends the first signaling information.
  • the first communication node may be IAB node2 in Figure 1-1
  • the second communication node may be IAB node1 or IAB node in Figure 1-1
  • the third communication node may be Figure 1-
  • the IAB node3 or UE in 1 and the fourth communication node may also be the IAB node3 or UE in Figure 1-1.
  • the first communication node determines parameter information of the measurement reference signal according to the first signaling information sent by the second communication node and / or a first parameter determination rule negotiated in advance with the second communication node;
  • a communication node sends a measurement reference signal to the second communication node; wherein the parameter information determined by the first communication node includes at least one of the following information: parameter information required for determining a pattern of the first type of reference signal, and the first type of reference Signal type selection information; optionally, the type of the reference signal in this embodiment may include, but is not limited to, at least one of the following reference signals: a downlink demodulation reference signal, a downlink measurement reference signal, a downlink phase tracking reference signal, and downlink synchronization Signals, wherein the first type of reference signal meets at least one of the following characteristics: a reference signal sent for the second communication node; a reference signal sent for the first communication node; a downlink signal for the second communication node or the first communication node Reference signal sent.
  • the transmitted measurement reference signal satisfies at least one of the following characteristics: the transmitted measurement reference signal is a measurement reference signal transmitted on the uplink; the transmitted measurement reference The time domain symbol in which the signal is located is any one or more time domain symbols in a time unit; the pattern of the transmitted measurement reference signal is a CSI-RS pattern; the pattern of the transmitted measurement reference signal is a pattern of the downlink reference signal; A transmitted measurement reference signal resource occupies X consecutive subcarriers in a physical resource block; the number of transmitted subcarriers occupied by a measurement reference signal port in a physical resource block includes ⁇ 0.5, 1, 2 ⁇ ; The number of measurement reference signal ports included in the sent measurement reference signal resource belongs to ⁇ 1, 2, 4, 8, 12, 16, 24, 32 ⁇ ; wherein the value of X is a positive integer.
  • the transmitted measurement reference signal may satisfy at least one of the following characteristics: the measurement reference signal and the first channel or signal (that is, the first channel or the first signal) occupy the same time domain symbol. Different subcarriers; when the measurement reference signal and the first channel or signal occupy the same time domain symbol, the first channel or signal cannot occupy the subcarrier occupied by the measurement reference signal; the subcarrier occupied by the measurement reference signal and the first channel or signal occupy When subcarriers collide, the priority between the measurement reference signal and the first channel or signal may be determined according to the first signaling information and / or the pre-negotiated first parameter determination rule; the first channel or signal is sent by the first communication node
  • the first communication node in this embodiment may be a communication node that sends the measurement reference signal.
  • the first channel in this embodiment includes, but is not limited to, at least one of a control channel and a data channel.
  • the first signal includes but is not limited to at least one of a reference signal and a random access signal.
  • At least one of the following information is associated with whether the first channel or signal and the measurement reference signal can be sent simultaneously on the same time domain symbol: the above-mentioned first signaling information; Measure whether the reference signal pattern belongs to a predetermined pattern type (for example, including but not limited to CSI-RS pattern or SRS pattern); measure whether the transmission of precoding is enabled when the reference signal and / or the first channel or signal is transmitted, for example, in a
  • the transmission precoding enables a transmission waveform using DFT-SC-OFDM (Discrete Fourier-Transform-Spread-OFDM), and the transmission precoding without enabling may be a transmission waveform using CP-OFDM (Cyclic Prefix-OFDM).
  • the measurement reference signal is an uplink reference signal on the Backhaul link; whether the measurement reference signal occupies subcarriers at equal intervals in a physical resource block; the type of sequence used to measure the reference signal; the measurement reference signal is a measurement reference signal used for interference measurement Or a measurement reference signal for channel measurement; whether the usage of the measurement reference signal belongs to a predetermined usage set, for example, in one example, the usage in the usage set includes, but is not limited to, "beam management", “antenna switching" ",” Codebook ",” non-codebook "; the first channel or signal is the channel or signal sent by the first communication node, and the first communication node is the one that sends the measurement reference signal. Communication node.
  • the first channel may include at least one of the following channels: a data channel and a control channel; the first signal may include at least one of the following signals: a reference signal and a random access signal.
  • the uplink reference signal pattern includes a downlink CSI-RS pattern.
  • the uplink reference signal may be a CSI (New-Radio) CSI-RS pattern, where the CSI-RS pattern may be based on an example.
  • the following formula (1) is obtained:
  • k ', l' in formula (1), ⁇ is obtained according to Table 1 below, which respectively represents a local subcarrier index in a group of subcarriers occupied by CSI-RS, a local time domain symbol index in a group of time domain symbols occupied by CSI-RS, and a group of CSI-RS occupied Index of the starting subcarrier in a subcarrier in a PRB, index of the starting time domain symbol in a set of time domain symbols in a set of time domain symbols occupied by the CSI-RS, and the index of the CSI-RS Density information.
  • the CSI-RS density information can indicate the number of RE (Resource Element) resources that each CSI-RS port occupies in each PRB, and / or the density information indicates the CSI-RS pattern every 1 / ⁇ PRBs are repeated once, and / or the density information indicates that the CSI-RS has one RE in a PRB in every 1 / ⁇ PRB group. Indicates the number of subcarriers included in a PRB, and ⁇ CSI-RS indicates the power of the CSI-RS.
  • RE Resource Element
  • w t (l '), w f (k') respectively represent time-domain code-division multiplexed orthogonal codes, frequency-domain code-division multiplexed orthogonal codes, corresponding to different code-division multiplexing types indicated in Table 1.
  • w t (l '), w f (k') can be obtained by referring to Tables 2 to 5 below. It should be understood that the method for obtaining the parameter value in the above example is only an example, and is not limited to the above example description.
  • the base station may notify the following parameters through radio resource control (Radio Resource Control, RRC) signaling (you can see other signaling): frequencyDomainAllocation (used to obtain Table 1) ⁇ K 0 , k 1 , k 2 ..., k 5 ⁇ ), nrofPorts (number of CSI-RS ports), firstOFDMSymbolInTimeDomain (for notification of l 0 in Table 1), firstOFDMSymbolInTimeDomain2 (for notification of Table 1 L 1 ), cdm-Type (code division multiplexing type in Table 1), density (for notification of density information ⁇ in Table 1), freqBand (continuous PRB (Physical resource block corresponding to CSI-RS) Resource block) set, the CSI-RS occupies the RE in each PRB in the PRB set, or the CSI-RS occupies the RE) in the PRB sets that are equally spaced in the PRB.
  • RRC Radio Resource Control
  • the CSI-RSs occupy a group of subcarriers distributed at equal intervals, that is, ⁇ k 0 , k 0 + 4, k 0 +8 ⁇ .
  • the CSI-RSs occupy 4 groups of subcarriers. The first group is ⁇ k 0 , k 0 +1 ⁇ , the second group is ⁇ k 1 , k 1 +1 ⁇ , the third group is ⁇ k 2 , k 2 +1 ⁇ , and the fourth group is ⁇ k 3 , k 3 +1 ⁇ .
  • Table 2 corresponds to the sequences w f (k ′) and w t (l ′) when the cdm-Type is “no CDM”.
  • Table 3 corresponds to the sequences w f (k ′) and w t (l ′) when the cdm-Type is “FD-CDM2”.
  • Table 4 corresponds to the sequences w f (k ′) and w t (l ′) when the cdm-Type is “CDM4”.
  • Table 5 corresponds to the sequences w f (k ′) and w t (l ′) when the cdm-Type is “CDM8”.
  • the configuration information of the uplink reference signal may include one or more of the following parameter information: frequencyDomainAllocation (uplink measurement reference signal)
  • the starting subcarrier of each group of the occupied M groups of subcarriers has subcarrier index information in a PRB, that is, each group of subcarriers in the M group of subcarriers occupied by the uplink measurement reference signal in a physical resource block.
  • nrofPorts the number of uplink reference signal ports, for example, the number of uplink reference signal ports can be any of ⁇ 1, 2, 4, 8, 12, 16, 24 ⁇
  • firstOFDMSymbolInTimeDomain The time-domain symbol index of the starting time-domain symbol in a group of time-domain symbols occupied by the uplink reference signal in a slot, that is, l 0 in Table 1)
  • firstOFDMSymbolInTimeDomain2 another group of time-domain symbols occupied by the uplink reference signal the starting time domain symbols in a slot in the time-domain symbol index, i.e.
  • table 1 l 1 cdm-type (uplink reference signal multiplexing port types), Density (uplink parameter Signal density information), freqBand (continuous PRB set corresponding to uplink reference signal, uplink reference signal occupies RE in each PRB in this PRB set, or uplink reference signal occupies RE in equally spaced PRB in this PRB set ).
  • the uplink reference signal (that is, the measurement reference signal) may also be selected between the SRS pattern and the CSI-RS pattern, so that the configuration information of the uplink reference signal includes the reference signal pattern. Selection information.
  • the configuration information of the uplink reference signal includes the following parameter information: nrofSRS-Ports (the number of ports of the uplink reference signal), transmissionComb (the makeup offset corresponding to the uplink reference signal, including the total number of combs, Comb offset), startPosition (index of starting time domain symbols in a group of time domain symbols occupied by the uplink reference signal), nrofSymbols (number of time domain symbols included in a group of time domain symbols occupied by the uplink reference signal), repetitionFactor (uplink reference signal time-domain frequency hopping unit or repetition factor, that is, every repetitionFactor time domain symbols, the frequency reference position occupied by the uplink reference signal changes once), freqDomainPosition (starting PR
  • the selection information of the reference signal pattern may also be referred to as selection information of a parameter type set.
  • the first parameter type set includes a parameter ⁇ frequencyDomainAllocation, nrofPorts required to determine a CSI-RS pattern.
  • FirstOFDMSymbolInTimeDomain, firstOFDMSymbolInTimeDomain2, cdm-Type, density, freqBand ⁇ , and the second parameter type set includes parameters determining the SRS pattern ⁇ nrofSRS-Ports, transmissionComb, startPosition, nrofSymbols, repetitionFactor, freqDomainPosition, frequenceHousing, IqHoDDoS
  • the intersection between the two parameter type sets is not empty, for example, both include information about the number of ports.
  • the intersection between the two parameter type sets is not excluded.
  • the same parameter types in the two parameter sets are directly notified as common items, and are not included in the two parameter type sets.
  • the uplink reference signal (ie measurement reference signal) pattern can be selected between SRS and CSI-RS
  • another implementation of this embodiment is an uplink reference signal port included in the uplink reference signal resource
  • the SRS pattern is used for the uplink reference signal, otherwise the CSI-RS pattern is used.
  • the CSI-RS pattern cannot be adopted.
  • the CSI-RS pattern and the SRS pattern can be selected.
  • the specific association relationship (that is, the determination rule) can be flexibly determined according to a specific application scenario.
  • the uplink reference signal can use the CSI-RS pattern, it is necessary to determine whether the sequence used for the uplink reference signal is a pseudo-random sequence or a low-PAPR sequence.
  • the generation of these two sequences can refer to the 38.211 protocol.
  • one method can be fixed with pseudo-random sequence, and the other method can be the base station or IAB node1 / IAB node in Figure 1-1 to notify the UE which sequence should be used through signaling.
  • the number of physical resource blocks (PRB) occupied by the uplink measurement reference signal is related to the selection information of the parameter type set, for example, the number of physical resource blocks occupied by the uplink measurement reference signal is less than a predetermined value Only the SRS pattern can be used, otherwise, you can choose between the SRS pattern and the CSI-RS pattern.
  • PRB physical resource blocks
  • the uplink reference signal (that is, the measurement reference signal, specifically the uplink measurement reference signal at this time) can be selected between the CSI-RS pattern and the SRS pattern
  • the uplink reference signal can be established. Association between the pattern selection information and the sequence selection information of the uplink reference signal. For example, when the uplink reference signal is the SRS pattern, Low-PAPR sequence is used. When the uplink reference signal is the CSI-RS pattern, pseudo-random sequence is used, or when the uplink reference signal is the SRS pattern, pseudo-random sequence cannot be used. For CSI-RS patterns, you can choose between the two.
  • whether the uplink reference signal is a Backhaul uplink reference and pattern selection information of the uplink reference signal can be set.
  • the uplink reference signal is the uplink reference signal on the access link (the access link at this time can specifically refer to the link between the base station and the terminal, as shown in Figure 1-3, or IABnode2 in Figure 1-1 Link with IABnode3 / UE)
  • only the SRS pattern can be used.
  • the uplink reference signal is a Backhaul link
  • the Backhaul link here can specifically refer to the link between IAB nodes, as shown in Figure 1-2
  • the uplink reference signal on the link between the IAB node2 node and the upper-level node IABdonor / IABnode1 can also be used as shown in Figure 1-1.
  • the specific association rules can also be flexibly selected according to the specific application scenario.
  • the above-mentioned downlink measurement reference signal pattern only exemplifies the CSI-RS pattern in the NR, but it should be understood that it is not limited to the CSI-RS pattern in the NR, and may also be LTE (Long Term Evolution, long-term CSI-RS patterns in other systems).
  • the uplink reference signal (that is, the uplink measurement reference signal) pattern may use the downlink measurement reference signal pattern, but it should be understood that the uplink measurement reference signal pattern may not be downlink in this embodiment.
  • the reference signal pattern, wherein the downlink reference signal includes, but is not limited to, one or more of the following reference signals: a downlink measurement reference signal, a downlink demodulation reference signal, a downlink synchronization signal, and a downlink phase tracking signal.
  • the first communication node determines a resource of the P-type measurement reference signal according to the second signaling information received from the second communication node and / or a second parameter determination rule that is pre-negotiated with the second communication node.
  • the first communication node sends a corresponding P-type measurement reference signal on the determined resource of the P-type measurement reference signal.
  • the value of P is a positive integer greater than or equal to 1, that is, in this embodiment, the first communication node is based on the second signaling information received from the second communication node and / or with the second communication node.
  • the pre-negotiated second parameter determination rule determines at least one type of measurement reference signal resource. For example, in this embodiment, at least the type of measurement reference signal resource for measuring interference is determined; the P-type measurement reference sent in S302 The signal includes a measurement reference signal for measuring interference.
  • a method for receiving a measurement reference signal may also be included, as shown in FIG. 3-2, including:
  • the second communication node sends second signaling information to the first communication node, where the second signaling information includes resource information of a P-type measurement reference signal.
  • the second communication node receives the P-type measurement reference signal on the resource of the P-type measurement reference signal.
  • the resources of the P-type measurement reference signal may include resources of a measurement reference signal for measuring interference.
  • the method for receiving a measurement reference signal may further include: the second communication node sends channel status report information to the first communication node; and / or the second communication node sends the first communication to the first communication
  • the node sends resource information, which is the resource information occupied by the channel status report information.
  • the channel state report information may satisfy but is not limited to at least one of the following characteristics: the channel state report information is channel state report information obtained based on a P-type measurement reference signal; the channel state report information includes a signal to interference plus noise ratio SINR ; The channel state report information includes performance difference information between the two types of measurement reference signals in the P-type measurement reference signal; the channel state report information is feedback information for the uplink channel state; the channel state report information is between the P-type measurement reference signal There is a corresponding relationship; the channel status report information sent by the second communication node to the first communication node on the downlink channel or signal.
  • SINR signal to interference plus noise ratio
  • the determined resource for class P measurement reference signals may further include this type of measurement reference signal resource used for measurement channels, and the first communication node may further determine A measurement reference signal for a measurement channel is sent on a measurement reference signal resource of the measurement channel.
  • the first communication node may send request information to the second communication node, and the request information may include a measurement reference signal for measuring interference and / or a measurement reference signal for measuring a channel to perform Interference and / or channel measurements.
  • the second communication node can know the interference caused by the signal sent by the first communication node on the DA link to the signal on the UB link, so as to coordinate the multiplexing mode between the UB link and the DA link.
  • Division of resources For example, on resources with low interference, the UB and DA links can occupy resources in a space division multiplexing manner.
  • the second communication node notifies the first communication node of the measurement result, so that the first communication node decides how to pair and combine the space division multiplexing beam pairs of UB and DA, thereby reducing mutual interference of space division multiplexing between UB and DA.
  • the P-type measurement reference signal meets at least one of the following characteristics: the P-type measurement reference signal further includes a measurement reference signal for a measurement channel, and the measurement reference signal resource for the measurement channel is used for the measurement channel; the P-type measurement The spatial reception filtering parameters corresponding to the reference signal are the same; the spatial transmission filtering parameters corresponding to the P-type measurement reference signal are different; each type of the P-type measurement reference signal has its corresponding spatial transmission filtering parameter configuration information; There is a correlation between the spatial transmission filtering parameter information and the type information of the P-type measurement reference signal; the P-type measurement reference signal is an uplink measurement reference signal.
  • the measurement reference signal used to measure interference satisfies at least one of the following characteristics: the configuration information of the measurement reference signal used to measure interference does not carry the configuration information of the spatial transmission filtering parameter; The signal between the first communication node and the second communication node does not carry the spatial filtering parameters of the interference measurement reference signal; the spatial filtering parameters of the measurement reference signal for measuring interference cannot be determined according to the relationship between the first communication node and the second communication node.
  • the intersection of the spatial filtering parameter of the measurement reference signal used to measure the interference with the spatial filtering parameter in the predetermined spatial filtering parameter set is empty, wherein each spatial filtering parameter in the predetermined spatial filtering parameter set is associated with a first communication node
  • the signal between the second communication node and the spatial filtering parameter of the measurement reference signal for measuring interference is obtained according to the spatial transmission filtering parameter of the first reference signal sent by the first communication node to one or more third communication nodes;
  • Information of measurement reference signals for measuring interference and the first communication section The parameter information of the second reference signal sent by the point to one or more third communication nodes is the same; the parameter type of the measurement reference signal used to determine the interference is used to determine the type of the measurement reference signal used to measure the interference and the first communication node is sent to one or more first communication nodes.
  • the parameter types of the third reference signal of the three communication nodes are the same; the first communication node sends a fourth reference signal to one or more third communication nodes on the resources of the measurement reference signal for measuring interference; and the measurement for measuring interference
  • the reference signal is used to measure the interference of the signal sent by the first communication node to one or more third communication nodes to the second communication node; the measurement reference signal used to measure the interference is used to measure the interference of the second communication node; and it is used to measure the interference
  • the measurement reference signal is used by the second communication node to measure the interference of the first type of signal sent by the first communication node to the second communication node, wherein the control channel resource group and the second signaling where the control signaling of the first type of signal is scheduled
  • the control channel resource group where the information is located is two different control channel resource groups, and / or where the first type of signal is located
  • the frequency domain bandwidth and the frequency domain bandwidth where the second signaling information is located are two different frequency domain bandwidths, and / or the frequency domain bandwidth where the
  • the first reference signal, the second reference signal, the third reference signal, and the fourth reference signal may be at least one of the following reference signals: a downlink measurement reference signal, a downlink demodulation reference signal, and a downlink phase tracking reference signal. , Synchronization signal.
  • the first communication node may further include receiving channel status report information sent by the third communication node, and the channel measurement resource of the channel status report information includes a fourth reference signal, and / or, a channel status
  • the channel measurement resources of the report information include resources of a measurement reference signal for measuring interference.
  • the second signaling information in S301 may include at least one of the following parameter information: each of M sets of subcarriers occupied by a measurement reference signal for measuring interference in a physical resource block The lowest subcarrier index or the highest subcarrier index in a group of subcarriers; the lowest time domain symbol index in each group of time domain symbols in the N groups of time domain symbols occupied by the measurement reference signal for measuring interference in a time unit Or the highest time-domain symbol index; information about the physical resource block set occupied by the measurement reference signal used to measure interference; port code division multiplexing type information used to measure the interference reference signal; density information of the measurement reference signal used to measure interference ⁇ ; the code division multiplexing length information of a code division multiplexing group included in the measurement reference signal for measuring interference; the frequency division multiplexing length of a code division multiplexing group included in the measurement reference signal for measuring interference;
  • the measurement reference signal used to measure interference is a multiplexed length of a code division multiplexing group in the time domain; the type of
  • the parameter information when the parameter information includes the following information, the following information satisfies at least one of the following characteristics:
  • the code division multiplexing type information includes at least one of the following types: no code division multiplexing; frequency domain Code division multiplexing of length 2; code division multiplexing of frequency domain length 2 and time domain length 2 of total length 4; code domain multiplexing of frequency domain length 2 of time domain length 4 and total length of 8; density Information ⁇ indicates that the average number of subcarriers occupied by each measurement reference signal port in each physical resource is ⁇ .
  • Density information ⁇ indicates that every 1 / ⁇ physical resource block, the measurement reference signal pattern is repeated in the frequency domain; density The information ⁇ includes ⁇ 0.5, 1, 3 ⁇ ; a group of subcarriers is a group of subcarriers corresponding to a code division multiplexing group in the frequency domain; a group of subcarriers is a group of subcarriers continuous in the frequency domain; a group of subcarriers Equidistantly distributed; the number of subcarriers included in a set of subcarriers belongs to ⁇ 1, 2 ⁇ ; a set of time domain symbols is a set of time domain symbols corresponding to a code division multiplexing group in the time domain; a set of time domain symbols is A continuous set of time domain symbols in the time domain; a set of time domain symbols are equally spaced; The physical resource block set information corresponding to the measurement reference signal includes the starting physical resource index and the number of physical resource blocks; the physical resource block set included in the physical resource block set corresponding to the measurement reference signal is a discontinuous
  • the first type of pattern is a channel sounding reference signal SRS pattern; the first type of pattern is an uplink reference signal pattern; the second type of pattern is a channel state measurement pilot signal CSI-RS pattern; The second type of pattern is a synchronization signal pattern; the second type of pattern is a downlink reference signal pattern.
  • the first communication node after the first communication node sends the uplink measurement reference signal to the second communication node, it may further include receiving the channel state report information sent by the second communication node.
  • the channel state report information may satisfy at least one of the following: the channel state report information is channel state report information obtained based on a measurement reference signal; the channel state report information includes a signal and a SINR (Signal to Interference plus Noise Ratio), Signal to interference plus noise ratio); the channel state report information includes performance difference information between the two types of measurement reference signals in the P-type measurement reference signal, where the P value is a positive integer greater than 1; the channel state report information is for the uplink channel Status feedback information; there is a correspondence between the channel status report information and the P-type measurement reference signal; the first communication node receives the channel status report information sent by the second communication node on the downlink channel or signal.
  • SINR Signal to Interference plus Noise Ratio
  • the channel state report information sent by the second communication node may satisfy at least one of the following characteristics: the channel state report information includes a second measurement reference signal and a measurement reference signal for measuring interference reaching the first Poor performance information of two communication nodes; one channel status report information corresponds to a measurement reference signal used to measure a channel and a measurement reference signal used to measure interference.
  • the measurement reference signal used to measure a channel includes CC measurement reference signal resources.
  • the measurement reference signal for measuring interference includes CI measurement reference signal resources, CC is a positive integer greater than or equal to 1, and CI is a positive integer less than or equal to CC; when the measurement reference signal sent includes a predetermined class among the above-mentioned P classes, The first communication node receives the channel status report information corresponding to the measurement reference signal; when the measurement reference signal sent does not include the predetermined class in the P class, the first communication node does not receive the channel status report information corresponding to the measurement reference signal; the measurement reference signal Type information and whether the first communication node receives the second communication node There is an association between the channel status report information sent; when the measurement reference signal sent includes a measurement reference signal for measuring interference, the first communication node receives the channel status report information sent by the second communication node; the measurement reference signal sent does not include When measuring a reference signal for measuring interference, the first communication node does not receive the channel state report information sent by the second communication node.
  • An example of this embodiment may further include: the first communication node sends request information to the second communication node, and the request information includes information of a measurement reference signal for measuring interference.
  • the first communication node may be IAB node2 in FIG. 1-1
  • the second communication node may be IAB node1 or IAB donor node in FIG. 1-1
  • the third communication node may be FIG. 1
  • the fourth communication node may also be the IAB node3 or UE in Figure 1-1.
  • the measurement reference signal includes an uplink measurement reference signal
  • the uplink measurement reference signal resource includes an interference measurement resource.
  • the signals on the UB and DA are SDM (Spatial Division Multiplexing)
  • Interference situation so that when UB and DA use SDM, IAB node2 can use appropriate beams to send signals on DA, such as IAB node2 and IAB node1 / IAB.
  • the node chooses the DA beam with the least interference on UB to DA Send a signal.
  • IAB node1 / IAB donor allocates the transmission beam of the UB and / or the transmission beam of the DA according to the measurement result, and / or the pairing situation between the transmission beam of the UB and the transmission beam of the DA, and / or assigns the duplicate of the UB and DA. By means, resource occupation.
  • IAB donor node / IAB node1 allocates SRS resource 1 for IAB donor node / IAB node1 measures the channel between IAB node2 and IAB donor / IAB node1, which is sent by IAB node2 and
  • the target node is the channel that IAB's node / IAB node1 experiences, that is, the UB channel
  • SRS resource 2 is used for IAB node / IAB node1 to measure the interference between IAB node2 and IAB node / IAB node1, which is sent by IAB node2
  • the signal that the target node is IAB node3 / UE reaches the channel that IAB donator node / IABnode1 experiences, that is, it is used to measure the interference caused by the DA signal sent by IAB node2 to IAB node3 / UE on the UB signal.
  • IAB node2 can send a DA measurement reference signal to IAB no
  • SRS resource 1 is used for channel measurement
  • SRS resource 2 is used for interference measurement
  • the IAB node / IAB node1 side can perform corresponding beams according to the received signal strength of the corresponding measurement reference signal and other parameters. Confirm the interference situation.
  • SRS resource 2 is used for channel measurement, and SRS resource 1 is used for interference measurement;
  • the configuration information of SRS resource 1 and SRS resource 2 can be IAB donor node / IAB node1 issued to IAB node3 / UE, or IAB node2 receives the allocation information of IAB donor node / IAB node1, and then sends it to IAB node3 / UE.
  • the measurement reference signal pattern in the above SRS resource 1 may be fixed to the SRS pattern, or may be selected between the SRS pattern and the CSI-RS pattern.
  • the measurement reference signal pattern in the above SRS resource 2 can also be fixed to the SRS pattern, or the CSI-RS pattern, or to choose between the SRS pattern and the CSI-RS pattern.
  • the IAB node3 / UE assigns interference measurements to the IAB node2.
  • the reference signal pattern that can indicate the interference measurement resource may be an SRS pattern.
  • the measurement reference signal pattern in the above SRS resource 2 may also be fixed to a CSI-RS pattern.
  • the interference measurement resource allocated to IAB node2 in IAB donor / IAB node1 is a CSI-RS pattern.
  • the measurement reference signal pattern in the above SRS resource 2 can be selected between the CSI-RS pattern and the SRS pattern, so that when IAB node2 allocates downlink interference measurement resources to IAB node3 / UE, the SRS pattern and the CSI-RS pattern can be used. Choose between. As shown in the first or second embodiment, the pattern selection may also be referred to as parameter type set selection. When SRS is used as an interference measurement resource, it can also be called NZP-SRS.
  • the interference measurement resources on the uplink (or called UB link) allocated by IAB node / IAB node1 to IAB node2 can also be selected between CSI-RS patterns and SRS patterns.
  • the SDM multiplexing of two links in this paper indicates that the time domain resources / frequency domain resources occupied by the two links overlap, and the signals of the two links are distinguished by the spatial domain beam.
  • one channel feedback information (ie, channel status report information) can correspond to multiple channel measurement resources and one interference measurement resource; of course, it can also be set to one channel feedback information corresponding to one channel measurement resource and one interference according to demand. Measurement resources.
  • the feedback information of the uplink channel may be set to correspond to multiple channel measurement resources, one interference measurement resource.
  • the available beams of the UB link are the beams in FIG. 5, and these beams IAB donor node / IAB node1 can be dynamically assigned to the data channel transmission of the UB / UB control channel transmission / Measurement reference signal for UB.
  • the beam of the DA can select a beam with less interference to all the candidate beams of the UB according to the measurement result.
  • IAB node / IAB node1 assigns 3 channel measurement resources ⁇ resource1, resource2, resource3 ⁇ and an interference measurement resource ⁇ resource4 ⁇ to IABnode2.
  • the candidate transmission beam of the UB link is used to send the measurement reference signal on the uplink UB.
  • IAB node2 uses the candidate transmission beam corresponding to DA on the interference measurement resource to send the measurement reference signal on the uplink UB.
  • the interference measurement resource on the UB and the channel measurement resource on the DA link may be the same measurement resource.
  • IAB donor node / IAB node1 obtains the channel measurement result 1 (such as CQI1 or SINR1) corresponding to ⁇ channel measurement as resource 1 and interference measurement 4 ⁇ , and ⁇ channel measurement as resource 2 and interference measurement as resource 4 ⁇ .
  • Channel measurement result 2 (such as CQI2, or SINR2)
  • ⁇ channel measurement is resource 3
  • interference measurement is resource 4 ⁇ corresponding channel measurement result 3 (such as CQI3, or SINR3)
  • ⁇ channel measurement result 1 channel measurement result 2.
  • the channel measurement result in the channel measurement result 3 ⁇ that satisfies the predetermined characteristics is fed back to the IAB node2 on the downlink.
  • the configuration process includes:
  • IAB donor node / IAB node1 allocates an uplink channel measurement feedback information in the downlink control signaling corresponding to ⁇ channel measurement resources 1 to 3, interference measurement resource 4 ⁇ .
  • IAB node2 sends channel measurement resources 1 to 3 and interference measurement resource 4 on the uplink.
  • the channel measurement result that meets the predetermined characteristics may be ⁇ channel measurement result 1, channel measurement result 2, channel measurement result 3 ⁇ and the worst performance is fed back to IAB node2.
  • the channel measurement result is CQI
  • IAB node / IAB node1 feeds back the lowest performance of ⁇ CQI1, CQI2, CQI3 ⁇ to IAB node2.
  • the channel measurement result is SINR
  • IAB donor node / IAB node1 feeds back the lowest SINR value in ⁇ SINR1, SINR2, SINR3 ⁇ to IAB node2.
  • IAB node2 can also be notified of the maximum value of the measurement results of multiple channels.
  • IAB node2 After IAB node2 obtains these channel measurement results, it knows the interference caused by the DA beam to the candidate beam of UB. For example, when IAB donor / IAB node1 reports the lowest value among multiple measurement results, IAB node2 knows that this DA beam is The minimum value of interference caused by each candidate beam of UB. When the minimum value exceeds a predetermined threshold, IAB node2 knows that this DA beam cannot use the SDM multiplexing mode with the UB signal.
  • multiple channel measurement results can be notified to IAB node1.
  • the optimal values of the channel measurement results are fed back in an absolute value manner, and other channel measurement results are fed back to IAB node2 in a relative value manner.
  • a spatialRelationInfo can be configured for each measurement reference signal resource, which is used to configure IAB node2 to send this uplink measurement.
  • the spatialRelationInfo of SRS resource 1 can be configured as IA-donor node / IAB CSI-RS / SSB that node 1 sends to IAB node 2.
  • IAB node 2 receives the filter parameters according to the space of receiving CSI-RS / SSB To obtain the spatial filtering parameters of the SRS resource 1 to be transmitted.
  • the spatialRelationInfo of SRS resource 1 can also be configured as the SRS resource 10 sent by IAB node2 to IAB / node / IAB node1.
  • IAB node2 obtains the spatial transmission filter parameters of the measurement reference signal on SRS resource 1 according to the spatial transmission filtering parameters of sending SRS resource 10.
  • another spatial filtering parameter is obtained according to one spatial filtering parameter.
  • One way is that the two spatial filtering parameters are the same.
  • one spatial filtering parameter can be obtained according to another spatial filtering parameter. Not necessarily the same, or can be fine-tuned according to specific application scenarios.
  • the method for determining the spatial filtering parameter of the interference measurement resource 4 includes but is not limited to the following examples:
  • Determining method 1 IAB node2 and IAB node / IAB node1 agree (that is, negotiate) When the uplink measurement reference signal type is an interference measurement resource, IAB node2 itself decides to send the spatial filtering parameters of the uplink measurement reference signal.
  • Determination method two IAB node2 and IAB node / IAB node1 agree that when the uplink measurement reference signal type is an interference measurement resource, IAB node2 cannot use the same spatial filtering parameter as the spatial filtering parameter in the predetermined spatial filtering parameter set to send the uplink.
  • the predetermined spatial filtering parameter set includes at least one of the following spatial filtering parameters: a spatial filtering parameter configured in PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel), and a PUSCH (Physical Uplink Shared Channel)
  • a spatial filtering parameter configured in PUCCH Physical Uplink Control Channel
  • a PUSCH Physical Uplink Shared Channel
  • the purpose of the association is the spatial filtering parameter associated with the SRS resource in the SRS set of the codebook
  • the purpose of the PUSCH association is the spatial filtering parameter associated with the SRS resource in the SRS set of the non-codebook, and the space configured in the PUSCH Filtering parameters.
  • Each spatial filtering parameter in this predetermined spatial filtering parameter set corresponds to an SSB / CSI-RS / SRS, that is, each spatial filtering parameter in this predetermined spatial filtering parameter set is between IAB node2 and IAB donor / IAB node1 A reference signal correlation.
  • Determination method three When IAB node / IAB node1 configures uplink interference measurement reference signal resources for IAB node2, the spatialRelationInfo of this uplink interference measurement reference signal resource (the specific meaning of this parameter can refer to the description of the protocols 38.331 and 38.214) is configured as an IAB A downlink reference signal sent by node2 to IAB node3 / UE. In an embodiment, this downlink reference signal information may be notified by IAB node2 to IAB node / IAB node1.
  • Method 4 of determination IAB donor node / IAB
  • the spatialRelationInfo of the uplink interference measurement reference signal resource is configured as a type of reference signal instead of a specific reference signal.
  • This type of reference signal is IAB.
  • the downlink reference signal that node2 sends to IAB node3 / UE on the DA link, which IAB node2 sends the downlink reference signal to IAB node3 / UE is an implementation problem of IAB node2.
  • IAB donor node / IAB node1 and IAB node2 agree that when IAB donor node / IAB node1 configures the IAB node2 uplink interference measurement reference signal resource, the spatialRelationInfo of the uplink interference measurement reference signal resource is a type of reference signal instead of A specific reference signal, this type of reference signal is the downlink reference signal sent by IAB node2 to IAB node3 / UE on the DA link. Which IAB node2 sends the downlink reference signal to IAB node3 / UE is the implementation problem of IAB node2. .
  • one downlink channel state feedback information corresponds to one channel measurement resource and three interference measurement resources, that is, the channel resource resource is the above-mentioned resource 4 and the interference measurement resource is ⁇ resource 1 to resource 3 ⁇ , IAB node3 / UE based on ⁇ channel measurement is resource 4 and interference measurement is resource 1 ⁇ , ⁇ channel measurement is resource 4 and interference measurement is resource 2 ⁇ , ⁇ channel measurement is resource 4 and interference measurement is resource 3 ⁇ in order to get 3 Downlink channel measurement results ⁇ Downlink measurement result 1, Downlink measurement result 2, Downlink measurement result 3 ⁇ , and the downlink measurement results that meet the predetermined characteristics among the three downlink measurement results are fed back to IAB node2 in the uplink channel,
  • UB may also be referred to herein as Backhaul uplink radio link.
  • the wireless resources between IAB node / IAB node1 and IAB node2 are controlled and scheduled by IAB node / IAB node1, and IAB node / IAB node1 controls and schedules the UB / DB resources occupied by IAB node2. .
  • the above uplink feedback information may also be referred to as an uplink report setting.
  • the above-mentioned method in which the uplink channel feedback information corresponds to multiple channel measurement resources and one interference measurement resource is also applicable to uplink channel measurement between the IAB donor and a general UE, as shown in FIG. 8.
  • And / or the above-mentioned method in which one piece of downlink channel feedback information corresponds to multiple interference measurement resources and one channel measurement resource is also applicable to a method of interference measurement resources and downlink channel measurement between an IAB donor node and a general UE.
  • the IAB donor node in this embodiment may also be a gNB node.
  • Multi-TRP multi-transmission reception point
  • UEs can be scheduled independently between each other, but if you want to measure the mutual interference between the beam 1 that the terminal sends to TRP1 on antenna panel 1 and the beam 2 that the terminal sends to TRP2 on panel 2, you can use the following method, such as TRP1 transmission
  • the second signaling information instructs the terminal to send an uplink measurement reference signal for measuring interference on SRS resource 3. Further, the measurement reference signal for measuring interference is used for a first type of signal sent by the TRP1 measurement terminal.
  • the terminal knows that the SRS resource 3 uses the transmission beam of the beam 2 to send the uplink measurement reference signal.
  • beam 2 is a beam used by the uplink signal sent by the terminal to TRP2.
  • the above-mentioned first type of signal corresponds to the uplink signal sent by the terminal to TRP2.
  • the signal sent by the terminal to TRP1 is scheduled by TRP1
  • the signal sent by the terminal to TPR2 is scheduled by TRP2, where TRP1 corresponds to the core set (CORESET) 1 / One or two of BWP1, and TRP2 corresponds to one or two of CORESET2 / BWP2.
  • TRP1 corresponds to the core set (CORESET) 1 / One or two of BWP1
  • TRP2 corresponds to one or two of CORESET2 / BWP2.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the following describes the configuration of the measurement reference signal with an example in combination with a specific application scenario.
  • the IAB node / gNB node may assign uplink measurement reference signal resources to the IAB node / UE through signaling information, and the signaling information may include type information of the uplink measurement reference signal resources, for example, it may include but not Limited to: the first type of uplink measurement reference signal resources and the second type of uplink measurement reference signal resources, the first type of uplink measurement reference signal resources are uplink measurement reference signals used for interference measurement, and the second type of uplink measurement reference signal resources are used for Uplink measurement reference signal for channel measurement.
  • the IAB node / UE may not receive the channel state information (that is, the channel measurement result) for the uplink channel sent by the IAB node / gNB on the downlink channel; and / or
  • the spatial filtering parameters for sending the uplink measurement reference signal will be configured as a DB downlink reference signal or an UB uplink reference signal between the IAB node / gNB node and the IAB node / UE.
  • the IAB node / UE When the uplink measurement reference signal is an uplink measurement reference signal for interference measurement, the IAB node / UE receives the channel state information (that is, the interference measurement result) for the uplink channel sent by the IAB node / gNB on the downlink channel, and / or sends the
  • the spatial filtering parameters of the uplink measurement reference signal cannot be configured as the downlink reference signal or uplink reference signal between the IAB node / gNB node and the IAB node / UE.
  • the IAB node / UE receives the channel status of the uplink channel sent by the IAB donor / node on the downlink channel for the uplink channel.
  • Information when the measurement reference signal includes only the channel measurement reference signal, the IAB node / UE may not receive the channel status information for the uplink channel sent by the IAB node / gNB on the downlink channel, and the IAB node / gNB is not on the downlink channel
  • the channel state information corresponding to the uplink channel is transmitted on the uplink.
  • the uplink measurement reference signal includes at least one type of uplink measurement reference signal used for channel measurement and another type of measurement reference signal used for channel measurement.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • an uplink measurement reference signal and an uplink channel may be sent simultaneously on the same time domain symbol.
  • the uplink measurement reference signal and the uplink channel are located in different PRBs (Physical Resource Block) of an OFDM, and the uplink measurement reference signal and the uplink channel are different PRBs located in a BWP (Band Bandwidth Part). It may also be located on different PRBs of different carrier members (Component carriers).
  • PRBs Physical Resource Block
  • BWP Band Bandwidth Part
  • the uplink measurement reference signal and the uplink channel are located on different carriers of 12 subcarriers included in one PRB of one OFDM.
  • the uplink channel performs rate matching on the uplink measurement reference signal occupied subcarriers.
  • whether the uplink measurement reference signal and the uplink channel can be sent simultaneously on the same time domain symbol can be determined according to at least one of the following information: according to the received signaling information, for example, IAB node / UE The signaling information sent by the gNB / IAB node determines whether the uplink measurement reference signal and the uplink channel can be sent on the same time domain symbol at the same time; according to whether the measurement reference signal pattern belongs to a predetermined pattern type, for example, when the pattern type of the uplink measurement reference signal is When the CSI-RS pattern is used, the uplink measurement reference signal and the uplink channel can be sent simultaneously on the same time domain symbol.
  • the received signaling information for example, IAB node / UE
  • the signaling information sent by the gNB / IAB node determines whether the uplink measurement reference signal and the uplink channel can be sent on the same time domain symbol at the same time; according to whether the measurement reference signal pattern belongs to a predetermined pattern type, for example, when the pattern type of the uplink
  • the uplink measurement reference signal and the uplink channel cannot be in the same time domain. Simultaneous transmission on symbols; whether transmission precoding is enabled according to the measurement reference signal and / or uplink channel transmission. For example, refer to 38.21 protocol to see that transmission precoding (Transformprecoding) is enabled. This is the transmission waveform using DFT-SC-OFDM. , At this time, the power of the general terminal is limited, so the uplink reference signal and the uplink channel It can send on the same time domain symbol. When the transmission precoding is not enabled, the transmission waveform of CP-OFDM is adopted.
  • the power of the terminal is generally high, so that the uplink reference signal and the uplink channel can be in the same time domain.
  • Send on the symbol according to whether the measurement reference signal is an uplink reference signal on the Backhaul link, for example, when the measurement reference signal is an uplink measurement reference signal on the Backhaul link, the sending node is an IAB node, and the transmission power is not very problematic, so it can be
  • the uplink measurement signal and the uplink channel are sent on the same time domain symbol, and the measurement reference signal is the uplink measurement reference signal on the access link, the uplink measurement signal and the uplink channel cannot be sent on the same time domain symbol at the same time.
  • the reference signals occupy subcarriers at equal intervals in a physical resource block.
  • the uplink measurement signal and the uplink channel cannot be sent simultaneously on the same time domain symbol, otherwise they can be on the same time domain symbol.
  • the sequence type used for example, when the sequence type is pseudo-random in protocol 38.211, the uplink measurement signal and uplink channel can be sent at the same time symbol.
  • the uplink measurement signal and the uplink channel cannot be sent simultaneously on the same time domain symbol; according to whether the measurement reference signal is a measurement reference signal for interference measurement or a measurement reference signal for channel measurement, when the measurement reference signal is used for When measuring a measurement reference signal for interference measurement, an uplink measurement signal and an uplink channel can be sent simultaneously on the same time-domain symbol.
  • the measurement reference signal is a measurement reference signal for channel measurement, it cannot be on the same time-domain symbol.
  • Send the uplink measurement signal and the uplink channel at the same time for example, the measurement reference signal for interference measurement on the UB link in FIG. 5 and the uplink channel on the UB link can be sent simultaneously on the same time domain symbol, but in FIG.
  • the measurement reference signal for channel measurement on the UB link and the uplink channel on the UB link must not be at the same time Simultaneously send on the domain symbol. Because the measurement reference signal used for interference measurement on the UB causes relatively small interference to the uplink channel on the UB link, and the measurement reference signal used for channel measurement on the UB causes relatively large interference to the uplink channel on the UB link . According to whether the measurement reference signal belongs to ⁇ "beam management", “antenna switching" ⁇ or ⁇ "code book”, “non-code book” ⁇ , when it belongs to the former, the uplink measurement reference signal and the uplink channel can be the same. Simultaneous transmission on the time domain symbol, when the uplink measurement reference signal and the uplink channel belonging to the latter cannot be transmitted simultaneously on the same time domain symbol.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • this embodiment further includes the following method for receiving a measurement reference signal, as shown in FIG. 12, including:
  • the first communication node receives third signaling information sent from the second communication node.
  • the third signaling information includes interference measurement resource information.
  • the first communication node receives a signal sent by one or more third communication nodes on the interference measurement resource determined according to the interference measurement resource information; and / or a parameter type included in the interference measurement resource information and used for determining The intersection between the parameter types of the uplink reference signal pattern is not empty, and / or the first communication node does not receive the downlink measurement reference signal on the interference measurement resource.
  • the first communication node receives a signal sent by one or more third communication nodes on the interference measurement resource, and the signal includes one or more of a reference signal and a random access signal.
  • a method for receiving a measurement reference signal may also be included.
  • the method includes: the second communication node sends third signaling information to the first communication node, and the third signaling information includes interference measurement resource information.
  • the three signaling information is used to instruct the first communication node to receive a signal sent by one or more third communication nodes on the interference measurement resource determined according to the interference measurement resource information, and / or the type and use of parameters included in the interference measurement resource information.
  • the intersection between the parameter types for determining the uplink reference signal pattern is not empty, and / or the second communication node does not send a downlink signal on the interference measurement resource.
  • the signal sent by the third communication node is an uplink signal; and the interference measurement resource is an interference measurement corresponding to the channel state report information.
  • the parameters do not satisfy the quasi-co-location relationship, in which the interference measurement resource and the channel measurement resource correspond to the same channel state report information;
  • the quasi-co-location reference signal of the interference measurement resource regarding the spatial reception filter parameter is the first quasi-co-location reference signal and the channel measurement resource
  • the quasi-co-location reference signal for the spatial reception filtering parameter is the second quasi-co-location reference signal, in which the interference measurement resource and the channel measurement resource correspond to the same channel state report information;
  • the pattern of the interference measurement resource is a CSI-RS pattern; the interference measurement resource The pattern
  • the channel state report information is channel state report information sent by the first communication node to the second communication node.
  • the first communication node sends channel status report information to the second communication node
  • the channel status report information may correspond to CC1 channel measurement resources, CI1 interference measurement resources, and CI1 and CC1 are positive or less than CI1. Integer.
  • the third signaling information in the above S1201 includes at least one of the following information: interference measurement resource type information, at least the first type of interference measurement resources and the second type of interference measurement resources exist; non-zero power NZP (Non -Zero Power)-Type information of interference measurement resources, at least the first type of NZP-interference measurement resources and the second type of NZP-interference measurement resources exist; pattern type selection information corresponding to the interference measurement resources; interference measurement resources occupy in a time unit A set of time domain symbol information; repetition factor information of interference measurement resources; frequency hopping parameters of interference measurement resources; and multi-level bandwidth structure information of interference measurement resources.
  • interference measurement resource type information at least the first type of interference measurement resources and the second type of interference measurement resources exist
  • non-zero power NZP (Non -Zero Power)-Type information of interference measurement resources at least the first type of NZP-interference measurement resources and the second type of NZP-interference measurement resources exist
  • pattern type selection information corresponding to the interference measurement resources interference measurement
  • the first type of interference measurement resource meets at least one of the following characteristics: on the first type of interference measurement resource, the first communication node does not receive uplink signals sent by one or more third communication nodes; the first type of interference The intersection between the resources occupied by the measurement resources and the resources occupied by the signal sent by one or more third communication nodes to the first communication node is empty, that is, the resources occupied by the first type of interference measurement resources and one or more third communications The intersection of the resources occupied by the signals sent by the node to the first communication node is empty; the first type of interference measurement resources include downlink measurement reference signal resources; the first communication node receives the downlink measurements sent by the second communication node on the first type of interference measurement resources A reference signal; the first communication node receives a downlink measurement reference signal on the first type of interference measurement resource; and / or, the second type of interference measurement resource meets at least one of the following characteristics: the first communication node is in the second type of interference measurement resource Receive uplink signals sent by one or more third communication nodes; the
  • the method further includes: the first communication node sends fourth signaling information to the third communication, and the fourth signaling information is used to instruct the third communication node to send the second signal;
  • the second signal includes one or more of a data channel signal, a control channel signal, a demodulation reference signal, a measurement reference signal, and a phase tracking reference signal.
  • the second signal may also be an uplink signal, and an intersection of a resource occupied by the second signal and a resource occupied by the interference measurement resource is not empty;
  • the resources in this example may include at least one of the following resources: time domain resources, frequency domain resources, code domain resources, and air domain resources.
  • the parameter type set included in the third signaling information may include at least one of the following information: port number, comb offset, time domain symbol information in one time unit, time domain frequency hopping Unit information, frequency domain information, frequency domain offset in a multi-level bandwidth structure, frequency domain frequency hopping information, sequence group or sequence number hopping information, sequence generation parameters, and selection information for pattern types of interference measurement reference signals.
  • the pattern type may include, but is not limited to, at least one of an uplink reference signal pattern and a downlink reference signal pattern.
  • the third communication node meets at least one of the following characteristics: the third communication node is a communication node accessing the first communication node; the third communication node is a communication node in a link state under the coverage of the first communication node
  • the first communication node sends the downlink control signaling to the third communication node; the first communication node sends the proprietary downlink control signaling information to the third communication node; the third communication node receives the third signaling information on the interference measurement resource Sending a measurement reference signal to the first communication node.
  • IAB donor node / IAB node1 is assigned to IAB node2 Interference measurement resource, instructs IAB node2 to receive the UA signal sent by IAB node3 / UE on this interference measurement resource, and / or the pattern of this interference measurement resource may be an uplink reference signal pattern, and / or IAB donor node / IAB node1 indicates IAB On this interference measurement resource, node 2 does not receive downlink signals from IAB donor node / IAB node 1.
  • IAB node / IAB node1 allocates channel status feedback information such as a report to IAB node2.
  • the channel measurement resource associated with this report setting is the DB downlink measurement reference signal, and the interference measurement resource associated with this report setting is the above
  • the interference measurement resource is the UA uplink measurement reference signal.
  • the channel measurement resource and the interference measurement resource with respect to the spatial reception filtering parameter do not satisfy the quasi-co-location relationship.
  • the channel measurement resource DB's quasi-co-location reference signal with respect to the space reception filtering parameter is another DB reference signal.
  • the quasi co-location reference signal of the interference measurement resource with respect to the spatial reception filtering parameter is a UA reference signal, that is, the reception filtering parameter of the interference measurement resource is obtained or the same according to the reception filtering parameter used at the IAB node 2 of the UA reference signal.
  • the channel measurement resource and the interference measurement resource satisfy the quasi co-location relationship with respect to the spatial reception filtering parameters.
  • IAB node2 measures the interference caused by the UA to the DB, and only measures the UA signal pair DB that is the same as the reception beam of the channel measurement resource DB.
  • causes interference are possible to be used.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • This embodiment provides a signal transmission method.
  • the transmission method receives and sends a signal or channel based on a correspondence between a resource and a communication parameter set.
  • An example signal transmission method is shown in FIG. 13 and includes:
  • S1301 Determine the correspondence between the U resource sets and one of the following Q objects according to the transmitted fifth signaling information and / or the third parameter determination rule: spatial transmission filtering parameter set, quasi co-location reference signal set, and spatial transmission Set of filter parameter and quasi-co-located reference signal combination, frequency domain resource set, reference signal set, frequency domain resource division between A links, power parameter set, multiplexing mode set between B links, C A set of C reference signal combinations in each link; U, Q take a positive integer greater than or equal to 1; A, B, C take a positive integer greater than 1.
  • the corresponding relationship may be established based on the test results in the foregoing embodiments, or other results or configurations may be used as the basis for establishing the corresponding relationship.
  • S1302 Transmit a channel or signal according to the determined correspondence relationship.
  • the transmission includes, but is not limited to, sending or receiving a corresponding channel or signal on a corresponding resource.
  • the resources in S1301 include but are not limited to at least one of the following resources: time domain resources, frequency domain resources, and reference signal resources.
  • the transmission in this embodiment includes sending or receiving.
  • the channel or signal on the sending or receiving resource includes, but is not limited to, the configuration information that does not want to receive at least one of the following characteristics: the first channel on the resource Or the spatial transmission filtering parameter of the signal belongs to the spatial filtering parameter set corresponding to the resource; at least one quasi-co-located reference signal in the second channel on the resource or the quasi-co-located reference signal set corresponding to the signal and the resource satisfies the criterion regarding the spatial reception filtering parameter.
  • the spatial transmission filtering parameter of the first channel or signal on the resource is obtained according to the spatial transmission filtering parameter in at least one combination of the combination of the spatial transmission filtering parameter corresponding to the resource and the quasi-co-located reference signal combination;
  • the quasi-co-location reference signal in at least one combination of the combination of the spatial transmission filter parameter and the quasi-co-location reference signal corresponding to the second channel or signal and resource satisfies a quasi-co-location relationship with respect to the spatial reception filtering parameter;
  • the set corresponding to the signal belongs to the Q set that corresponds to the resource Sets; A link on a channel resource occupied signal or frequency domain resource partitioning between frequency domain resources to meet the resource corresponding to the A number of links.
  • the first channel or signal and the second channel or signal meet at least one of the following characteristics: the first channel or signal and the second channel or signal are channels or signals sent by the first communication node simultaneously; the first channel or signal The signal and the second channel or signal are simultaneously received by the first communication node; the first channel or signal overlaps with the time domain resources occupied by the second channel or signal; the first channel or signal is occupied with the second channel or signal Frequency domain resources overlap; the first channel or signal is the channel or signal between the first communication node and the second communication node; the second channel or signal is the channel or signal between the first communication node and the third communication node ; Wherein the second communication node sends scheduling information about the first channel or signal to the first communication node, the first communication node sends scheduling information about the second channel or signal to the third communication node, and / or, the first communication The node is a communication node that receives the fifth signaling information, the second communication node is a communication node that sends the third signaling information, and the third communication
  • determining the correspondence between the U resource sets and one of the Q objects includes: determining the correspondence between the U time domain resource sets and the Q frequency domain resource sets, where one The frequency domain resources occupied by the channels or signals in the time unit are a subset of the frequency domain resource set corresponding to the time domain resource set to which the time unit belongs; and / or, determining the correspondence between the U resource sets and one of the Q objects
  • the method includes: determining a correspondence between U time domain resource sets and Q reference signal sets, wherein a reference signal corresponding to a channel or signal in a time unit is a reference signal set corresponding to a time domain resource set to which the time unit belongs. Subset.
  • determining the correspondence between the U resource sets and one of the Q objects includes: determining the correspondence between the U time domain resource sets and the Q frequency domain resource partitions between A links, where At least one of the following characteristics: a frequency domain resource occupied by a channel or signal in a time unit is a child of a frequency domain resource set corresponding to a frequency domain resource division corresponding to a time domain resource set to which the time unit belongs The frequency domain resources occupied by the channels or signals in A links in a time unit satisfy the frequency domain resource division corresponding to the time domain resource set to which the time unit belongs; and / or, determine U resource sets and Q numbers as follows
  • the correspondence between one of the objects includes: determining a correspondence between U time domain resource sets and Q power parameter sets, where at least one of the following characteristics is satisfied: the power parameter set corresponding to a channel or signal in a time unit is time The power parameter set corresponding to the time domain resource set to which the unit belongs; the Q power parameter sets include the same type of power parameter; the Q power parameter sets are for
  • transmitting or signaling according to the corresponding relationship includes: when receiving configuration information that does not satisfy at least one of the following characteristics, not transmitting or receiving a channel or signal on a resource:
  • the spatial filtering parameter belongs to the set of spatial filtering parameters corresponding to the resource;
  • the quasi-co-located reference signal of the channel or signal in the resource with respect to the spatial reception filtering parameter belongs to the quasi-co-located reference signal set corresponding to the resource;
  • the channel or signal in the resource corresponds to the resource At least one quasi-co-located reference signal in the quasi-co-located reference signal set satisfies a quasi-co-located relationship with respect to the spatial reception filtering parameters;
  • the set corresponding to the channel or signal on the resource belongs to one of the Q sets that corresponds to the resource;
  • the resource The frequency domain resources occupied by the channels or signals on the A links on the link satisfy the frequency domain resource division between the A links corresponding to the resources.
  • determining the correspondence between the U resource sets and the Q objects includes at least one of the following: determining the correspondence between the U resource sets and the Q sets; determining the U resource sets Correspondence between Q and SRS resource (resource) sets with codebook; determine the correspondence between U resource sets and SRSresource with noncodebook book; determine U resources Correspondence between sets and Q TCI state pools; determining correspondence between U resource sets and Q reference signal combination sets, where one reference signal combination includes the C links C reference signals; one SRS resource set corresponds to a spatial filtering parameter set, each resource in the SRS resource set corresponds to a set of spatial filtering parameters; one TCI state pool corresponds to a quasi-co-located reference signal set, and TCI state pool Each TCI state includes a quasi-co-located reference signal; the value of P is a positive integer, and the value of Q is a positive integer less than or equal to P.
  • the resources meet at least one of the following characteristics: each resource in the U resources corresponds to one of the Q sets; each resource in the U resources corresponds to Q There is a correspondence relationship among one of the divisions; one channel or signal falls on only one resource; one channel or signal cannot fall on more than one resource; a set of spatial transmission filtering parameters corresponds to one reference signal.
  • the intersection between different resources is an empty set; different resources belong to a frequency domain broadband part BWP; There are no discontinuous resources in the set; U time-domain resources appear alternately; the difference between different resources is not empty; there are discontinuous resources in the resources included in one resource; the resources included in a resource are periodic in the time domain Yes; resources included in a resource are periodic in the frequency domain.
  • the intersection between different resources in this embodiment is an empty set, including but not limited to the following cases: the difference between the spatial filtering parameter sets corresponding to different resources is a non-empty set; the quasi-co-located reference signal set corresponding to different resources The difference between them is a non-empty set; the intersection between the spatial filtering parameter sets corresponding to different resources is a non-empty set; the intersection between the quasi-co-located reference signal sets corresponding to different resources is a non-empty set.
  • a frequency domain resource set includes one frequency domain resource, and one frequency domain resource is one of the following frequency domain resources: a BWP, a frequency domain frequency domain bandwidth included in a component carrier, and a physical Resource block, a subcarrier, where I is a non-negative integer.
  • Q is less than or equal to U positive integer; the difference between Q sets is not empty; Q divisions are different divisions
  • the fifth signaling information is the physical layer dynamic control information; the fifth signaling information includes the switching instruction information of the Q objects; the information of the Q objects is included in the high-level signaling information; the agreement rules include, when the agreed time arrives, start Q object switching indication information; the difference between the set corresponding to the first time domain resource and the set corresponding to the second time domain resource is not empty; the frequency domain resource division corresponding to the first time domain resource and the second time domain resource The corresponding frequency domain resource division is different; the first time domain resource set and the second time domain resource set belong to U time domain resource sets.
  • the difference set between the set corresponding to the first time domain resource and the set corresponding to the second time domain resource is not empty, including but not limited to: the first frequency corresponding to the first time domain resource set The difference set between the domain resource set and the second frequency domain resource set corresponding to the second time domain resource set is not empty; the first reference signal set corresponding to the first time domain resource set and the second time domain resource set The difference set between the corresponding second reference signal sets is not empty; the difference set between the first power parameter set corresponding to the first time domain resource set and the second reference signal set corresponding to the second time domain resource set is not empty Empty; the difference between the first multiplexing mode set corresponding to the first time domain resource set and the second multiplexing set corresponding to the second time domain resource set is not empty.
  • the frequency domain resource partition corresponding to the first time domain resource and the frequency domain resource partition corresponding to the second time domain resource are different including, but not limited to, the first frequency domain resource partition corresponding to the first time domain resource set and the second time domain
  • the second frequency domain resource division corresponding to the resource set is different.
  • this embodiment is based on the foregoing content, and further uses the establishment of a correspondence relationship between resources and spatial filtering parameters as an example for further description.
  • a correspondence relationship between a set of spatial filtering parameters and a resource is established, and a channel or signal can be sent on the resource according to the established correspondence relationship.
  • the application scenario shown in FIG. 1-1 is still taken as an example below.
  • the candidate transmission beams on the uplink UB between IAB node2 and IAB node / IAB node1 are ⁇ UB transmission beam 1, UB transmission beam 2, UB transmit beam 3 ⁇
  • the candidate transmit beam on the DA link is ⁇ DA transmit beam 1, DA transmit beam 2 ⁇ .
  • ⁇ UB transmit beam 1 ⁇ can adopt space division multiplexing, that is, the UB signal uses one or more of ⁇ UB transmit beam 1, UB transmit beam 2 ⁇ .
  • the DA signal uses ⁇ DA Send Beam 1 ⁇ , and the time-frequency resources occupied by the UB signal and the DA signal overlap.
  • the DA signal causes less interference to the UB signal, and at IAB node3 / UE side, the interference caused by the UB signal to the DA signal is relatively small.
  • the UB signal uses one or more of the ⁇ UB transmission beam 1, UB transmission beam 2 ⁇
  • the DA signal uses ⁇ DA transmission beam 2 ⁇
  • the time-frequency resources occupied by the UB signal and the DA signal overlap
  • the DA signal causes more interference to the UB signal
  • the ⁇ UB transmit beam 1 cannot be used between ⁇ and ⁇ DA transmit beam 2 ⁇ .
  • ⁇ UB transmit beam 3 ⁇ and ⁇ DA transmit beam 2 ⁇ can be SDM multiplexed.
  • the set of spatial filtering parameters is ⁇ UB transmit beam 1, UB transmit beam 2, UB transmit beam 3 ⁇
  • the IAB node / IAB node1 side dynamically allocates the UB link
  • the transmission beam of PUSCH / PUCCH on the network is one or more of ⁇ UB transmission beam 1, UB transmission beam 2, and UB transmission beam 3 ⁇ , then IAB node2 cannot call the DA signal on the resources occupied by UB, that is, UB signals and DA signals cannot be SDM multiplexed.
  • a transmission beam may also be referred to as a set of transmission spatial filters, or a set of spatial transmission filtering parameters, or may be referred to as a set of transmission spatial filtering parameters.
  • One of the transmission beams is expressed by a reference signal, that is, when the uplink reference signal is configured in protocol 38.331, a spatialRelationInfo is configured.
  • a reference signal in spatialRelationInfo is associated with a transmission beam.
  • the spatial transmission filtering parameters of the uplink reference signal are based on the reference configured in spatialRelationInfo
  • the spatial transmission filtering parameters of the signal are obtained.
  • IAB node / IAB node1 can determine the correspondence between the set of spatial filtering parameters and resources by sending configuration information to IABnode2 and / or by pre-agreed rules with IABnode2, as shown in Figure 15-1. It is assumed that time domain resource 1 corresponds to ⁇ UB transmission beam 1 and UB transmission beam 2 ⁇ , and time domain resource 2 corresponds to ⁇ UB transmission beam 3 ⁇ .
  • the IAB node / IAB node1 allocates the transmission space filter of the UB channel or signal sent by IAB node2 can only belong to ⁇ UB transmit beam 1, UB transmit beam 2 ⁇ , so IAB node2 can use ⁇
  • the DA transmission beam 1 ⁇ calls a DA channel or signal, and the DA channel or signal and the UB channel or signal are multiplexed in an SDM manner.
  • IAB donor / node 1 on time domain resource 2 allocates the UB channel or signal transmission spatial filter sent by IAB 2 and can only belong to ⁇ UB transmit beam 3 ⁇ , so IAB 2 can use ⁇ DA transmit Beam 2 ⁇ calls DA signals, and DA signals and UB signals are multiplexed in SDM.
  • the above example is that it is agreed that the transmission spatial filtering parameters of the UB channel or the signal on the time domain resource must belong to the set of spatial filtering parameters corresponding to the time domain resource. In another example of this embodiment, it is also possible to further limit only the time domain resources.
  • the transmission spatial filtering parameters of a dynamically scheduled UB channel or signal belong to the spatial transmission filtering parameter set corresponding to the time domain resource, and the non-dynamically scheduled UB channels or signals that fall on the resource (for example, semi-statically via RRC (Radio Resource Control) , Radio Resource Control) / Link Control Layer Control Element (Medium Access Control Element (MAC-CE)) scheduling channel or signal transmission space filtering parameters are not limited.
  • the time domain resource 1 is associated with the use "non codebook" UB-SRS set1
  • the time domain resource 2 is associated with the use "non codebook” UB-SRS set2, and accordingly, falls in the time domain resource 1
  • the transmission spatial filtering parameters of the dynamically scheduled PUSCH can only be selected from UB-SRS set1
  • the transmission spatial filtering parameters of the dynamically scheduled PUSCH that falls in time domain resource 2 can only be selected from UB-SRS set2.
  • the intersection between the transmission spatial filtering parameter set corresponding to the time domain resource 1 and the transmission spatial filtering parameter set corresponding to the time domain resource 2 in the above example is empty, and the transmission spatial filtering parameters corresponding to different time domain resources are not excluded in this embodiment.
  • the time domain resource 3 may correspond to ⁇ UB transmit beam 1, UB transmit beam 2, and UB transmit beam 3 ⁇ .
  • SDM multiplexing cannot be used between channels or signals of UB and DA.
  • different time domain resources correspond to different spatial transmission filtering parameter sets.
  • different frequency domain resources can correspond to different spatial filtering transmission parameter sets, or different time domains.
  • the frequency resources correspond to different spatial filtering transmission parameter sets, or different reference signal sets correspond to different spatial filtering parameter sets, for example, the demodulation reference signal set ⁇ 0 ⁇ 3 ⁇ corresponds to the first spatial filtering parameter set, and the demodulation reference signal set ⁇ 4 to 7 ⁇ correspond to the second spatial filtering parameter set.
  • Each set of spatial filtering parameters in the spatial filtering parameter set of the above example is associated with a reference signal.
  • This reference signal can be an uplink reference signal between IAB node / IAB node1 and IAB node2, or it can be an IAB node / IAB. Downlink reference signal between node1 and IAB node2. As shown in FIG.
  • a reference signal set associated with a spatial transmission filtering parameter set is ⁇ CSI-RS1, CSI-RS2, SRS3 ⁇ , and the spatial transmission filtering parameter set corresponds to resource 4, then the channel or signal in resource 4 ( Or the dynamically scheduled channel or signal in resource 4) spatialRelationInfo can only be configured as a reference signal in the ⁇ CSI-RS1, CSI-RS2, SRS3 ⁇ set, that is, the channel or signal in resource 4 (or the dynamic in resource 4)
  • the spatial transmission filtering parameters of the scheduled channels or signals can only be obtained according to the spatial transmission filtering parameters corresponding to the reference signals in ⁇ CSI-RS1, CSI-RS2, SRS3 ⁇ .
  • the above example is to establish the relationship between the resource and the set of spatial transmission filtering parameters.
  • the corresponding relationship between the set of resources and the combination of (spatial transmission filtering parameters and quasi co-location reference signals) can also be established, or the resource and accuracy Correspondence between co-located reference signal sets.
  • the IAB donator node / IAB node1 is obtained (UB transmit beam 1, DA transmit beam 1).
  • the beam discrimination is better, and can be used for the UB link and the DA link.
  • the signals of the channel are multiplexed by SDM.
  • IAB node / IAB node1 allocates resource 1 to IABnode2, and the beam pair of UB and DA is ⁇ (UB transmit beam 1, DA transmit beam 1), (UB transmit beam 2, DA transmit beam 2) ⁇ , and resource 2 All are occupied by Backhaul channels and / or signals, and all resources 3 are occupied by Access channels or signals.
  • IAB donor node / IAB node1 and IAB node2 can determine the following correspondence through signaling or agreed rules: the correspondence between U time domain resources and Q at least one of the following: frequency domain resource set, A Frequency domain resource division between links, reference signal set, power parameter set, and multiplexing mode set between B links.
  • U, Q is a positive integer greater than or equal to 1
  • A, B are positive integers greater than 1.
  • different time domain resources correspond to different frequency domain divisions between UB and DA.
  • This embodiment also does not rule out that when there is a multi-hop Backhaul link, it is necessary to determine the frequency domain resource division between the time domain resources and the A links.
  • the different time domain resources in Figure 15-2 correspond to the different frequency domain resource sets available to UB, and the time domain resource i in Figure 15-2 corresponds to the different frequency domain resource sets shown in Figure 15-4.
  • one frequency The domain resource set includes one or more frequency domain resources, and one frequency domain resource may be a subcarrier, or a PRB, or a BWP.
  • the BWP that can be occupied by UB in time domain resource 1 is one or more BWPs in ⁇ BWP1, BWP2 ⁇
  • the BWP that can be occupied by UB in time domain resource 2 is one or more BWPs in ⁇ BWP1, BWP2, BWP3 ⁇ .
  • the BWP that can be occupied by UB in time domain resource 3 is one or more BWPs in ⁇ BWP4, BWP5, BWP7 ⁇ .
  • the example of the frequency domain resource set indication corresponding to different time domain resources does not exclude other frequency domain resource sets. happening.
  • the reference signal set divisions between UB and DA corresponding to different time domain resources and / or different frequency domain resources are different;
  • the multiplexing method sets between UB and DA corresponding to different time-domain resources are different.
  • the time-domain resource i in Figure 15-2 corresponds to the i-th multiplexing method set.
  • One of the multiplexing method sets includes the following: At least one of the multiplexing modes: time division multiplexing, frequency division multiplexing, and space division multiplexing.
  • the above multiplexing mode can also be extended to the multiplexing mode between B links, where B is a positive integer greater than or equal to two.
  • different time domain resources have different power parameters for UB.
  • the transmission power of UB needs to consider the transmission power of DA, so that the total power cannot exceed the total at IAB Transmission power.
  • the transmission power of UB does not need to consider the transmission power of DA.
  • different power parameters can be configured for different time domain resources, for example, different target powers P 0 are configured, so that IAB nodes or UEs use different transmit powers on different time domain resources. Levels send uplink signals to reach a compromise between nodes and coverage.
  • Figure 3-2 shows three time domain resources. It should be understood that in this embodiment, other U values are not excluded, that is, there are U time domain resources, where U is a positive integer greater than or equal to 1, where The U time domain resources satisfy at least one of the following characteristics: the intersection between any two time domain resource sets in the U time domain resource sets is empty; the time domain resource set constituted by the union of the U time domain resource sets Consecutive time domain resources; there is no discontinuous time domain resource in the time domain resource set formed by the union of U time domain resource sets; U time domain resource sets constitute U period time domain resources, as shown in Figure 15-6 Display, that is, U time domain resources appear in turn. Of course, in this embodiment, other division manners of the U time domain resource sets are not excluded.
  • the correspondence between the U resources and the Q sets, or the correspondence between the U resources and the Q frequency domain resource partitions may be included in one control signaling, and / or U time domains.
  • the resource corresponds to the validity period of a control signaling.
  • U resources and Q objects can be established in dynamic signaling. Correspondence between them, or to determine the division of U resources through dynamic signaling, and / or indication information of Q objects indicated through dynamic signaling, and when the indicated new object is different from the current object, an object switching process is started .
  • RRC configures the above UB-SRS set2 and UB-SRS set1. For example, if UB-SRS set1 is activated by default, the base station can switch from UB-SRS set1 to UB-SRS set2 through dynamic signaling instructions.
  • the handover between two sets requires a predetermined handover delay, and then until a new handover signaling is received or a predetermined time arrives, UB-SRS set2 is used as the active set, that is, PUSCH
  • the transmit spatial filtering parameters in can only come from UB-SRS set2. It can be similarly used in the handover of the other sets mentioned above. That is, for example, Q objects are configured in high-level signaling, and the indication information of Q objects is notified in the physical layer dynamic control signaling. When the indicated Q objects are different from the current object, the object switching process is started, and the current object is activated to new. For the object, a new object notified in the physical layer dynamic control signaling is used on the time domain resource after the handover. It is also possible to switch from one object to another and to switch from one time-domain resource collection to another time-domain resource collection by means of a scheduled time.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • This embodiment provides a signal sending method, which can realize accurate and reliable signal sending. See FIG. 17, including:
  • S1701 Determine the first type of time-frequency resources according to the received sixth signaling information or the fourth parameter determination rule.
  • S1702 Send a channel or signal according to the determined first type of time-frequency resources.
  • the channel or signal cannot occupy the first type of time-frequency resources.
  • the sixth signaling information includes at least one of the following types of time-frequency resources: physical resource block set information; time domain symbol position information occupied in a time unit; time behavior Information, including but not limited to periodic, semi-persistent, non-periodic, etc .; periodic information; periodic offset information; sub-carrier index set information occupied in a physical resource block; group D sub-carriers occupied in a physical resource block The lowest subcarrier index or highest subcarrier index in each group of subcarriers; the lowest time domain symbol index or the highest time domain symbol index in each group of time domain symbols in the J group of time domain symbols occupied in a time unit; Downlink reference signal pattern information; pattern type selection information, which includes at least a first type pattern and a second type pattern; and the values of D and J are positive integers.
  • the first type of pattern is an uplink reference signal pattern
  • the second type of pattern is a downlink reference signal pattern
  • the first type of pattern is an SRS pattern
  • the second type of pattern is a CSI-RS pattern
  • a reserved resource or a rate matching resource is configured for a data channel and / or a control channel and / or a measurement reference signal of a UB link, which are collectively referred to as a first type of time domain resource and And / or frequency domain resources, where data channels and / or control channels and / or measurement reference signals on the UB link cannot occupy resources occupied by the first type of time domain resources and / or frequency domain resources, on the UB link
  • the data channel and / or control channel and / or measurement reference signal must be rate-matched to the first type of time domain resources and / or frequency domain resources.
  • the configuration information of the first type of time domain resources includes but is not limited to at least one of the following information: Information 1: physical resource block set information, and channels and / or signals of the UB cannot occupy resources in the physical resource block set, one of which A physical resource block is a frequency domain resource included in a PRB: Information 2: Position information of time domain symbols occupied in a time unit, such as time domain symbols in a slot, and / or occupied slots Number information, and / or the lowest time-domain symbol index or the highest time-domain symbol index of each group of time-domain symbols in the N groups of time-domain symbols occupied in a time unit, where a group of time-domain symbols includes a continuous one Or multiple time domain symbols, N is a positive integer; information 3: time behavior information, such as which of the first type of time domain resources and / or frequency domain resources is periodic, semi-persistent, or non-periodic; Information 4: Period information, for example, the period is P1 slots; Information 5: Period offset information, for example, when the period
  • downlink reference signal pattern information for example, IAB node / IAB node1 allocates reserved / rate-matched resources of UB to IAB node2, and channels and / or signals of UB cannot occupy resources in reserved / rate-matched resources, reserved / rate-matched
  • the resource configuration information includes CSI-RS pattern information, so that IAB node2 can send DA reference signals on these reserved resources, so that when DA and UB are spatially multiplexed, the orthogonality of the DA and UB reference signals can be guaranteed. Sex. For example, refer to FIG. 18. Of course, the UB-reserved pattern in FIG. 18 is only an example.
  • the resource pattern occupied by the UB-reserved may also be other CSI-RS patterns, a downlink reference signal for DA, and a phase tracking reference signal for DA. , And / or one or more of the DA synchronization signal patterns.
  • Information eight Selection information of pattern types.
  • the pattern types include at least a first type pattern and a second type pattern.
  • the UB-reserved pattern may also be a choice between an SRS pattern and a CSI-RS pattern.
  • This embodiment provides a method for receiving a channel or a signal, which can realize accurate and reliable reception of a channel or a signal. See FIG. 19, including:
  • S1901 Determine the second type of time-frequency resources according to the received seventh signaling information or the fifth parameter determination rule.
  • S1902 Receive a channel or signal according to the determined second type of time-frequency resources.
  • the channel or signal does not occupy the second type of time-frequency resources.
  • the seventh signaling information includes at least one of the following types of time-frequency resources of the second type: port number; comb offset; time-domain symbol information in one time unit; time-domain frequency hopping Unit information; frequency domain frequency hopping information; pattern information of the uplink reference signal; pattern type selection information. At least the first pattern and the second pattern exist.
  • the first-type pattern may be an uplink reference signal pattern, and the second-type pattern may be a downlink reference signal pattern; or, the first-type pattern may be an SRS pattern, and the second-type pattern may be a CSI-RS pattern.
  • IAB node / IAB node1 allocates DB's reserved resources and / or rate matching resources to IAB node2, where the DB's reserved resources and / or rate matching resources occupy
  • the pattern can be an SRS pattern.
  • IAB node2 can receive the UA reference signal on these reserved resources and / or rate matching resources, so that it can be guaranteed when the UB and DA links are spatially multiplexed.
  • the orthogonality of the reference signal can be used to receive the UA reference signal on these reserved resources and / or rate matching resources.
  • Embodiment 10 is a diagrammatic representation of Embodiment 10:
  • This embodiment also provides a method for transmitting signaling information, which can realize flexible and reliable transmission of signaling information.
  • the method includes: the first communication node sends eighth signaling information to the second communication node; and / or, the first A communication node receives the ninth signaling information of the second communication node; the eighth signaling information and / or the ninth signaling information may include but is not limited to at least one of the following information: information of the first signal set, and Information of the two signal sets, the signals in the first signal set and the second signal set include reference signals; wherein at least one of the first channel or signal and the first signal set satisfies large-scale characteristic parameters of one or more channels The quasi co-location relationship, and / or the spatial transmission filtering parameters of the second channel or signal are obtained according to at least one signal in the second signal set; the first channel or signal is sent by the first communication node to one or more third communication nodes.
  • a channel or signal, and the second channel or signal is a channel or signal sent by one or more third communication nodes to
  • it may further include: the first communication node sends tenth signaling information to one or more third communication nodes, and the eighth signaling information is used to indicate one or more third communication nodes Receive signals in the first signal set; and / or, the first communication node sends eleventh signaling information to one or more third communication nodes, and the ninth signaling information is used to indicate one or more third communication nodes Send the signals in the second signal set.
  • the first communication node may send signals in the first signal set on the downlink; the first communication node may receive signals in the second signal set on the uplink.
  • the scenario shown in Figure 1-1 is still taken as an example.
  • IAB node / IAB node1 determines the beam set that IAB node2 can use on the Access link.
  • One of the beams is associated with a reference signal.
  • the Backhaul link and the Access link can be space-division multiplexed, so that IAB node / IAB node1 notifies IAB node2, IAB node2 of the beam information (that is, the reference signal set information).
  • the beams in the beam set can be used to communicate with the IAB node3 / UE.
  • IAB node / IAB node1 notifies IAB node2 of the beam set information in the UA link, that is, the second signal set (for example, the second signal includes a reference signal and / or a synchronization signal).
  • the spatial filtering parameters of the signal must be obtained according to one or more reference signals in the second signal set, that is, the signal of the UA link must be transmitted using the beam in the notified beam set, and the spatial filtering parameters of one signal are based on a reference
  • the signal obtained indicates that the spatial filtering parameters of a signal are the same as the spatial filtering parameters of a reference signal, or the spatial filtering parameters of a signal are obtained according to the spatial filtering parameters of a reference signal, but can be fine-tuned according to specific needs.
  • IAB donor node / IAB node1 can also inform IAB node2 of the beam set information in the DA link, that is, the first signal set (for example, the first signal includes a reference signal and / or a synchronization signal).
  • the signal in the DA link must be One or more reference signals in the first signal set satisfy a quasi-co-location relationship with respect to the spatial filtering parameters. That is, the signals in the DA must be transmitted using the beams in the notified beam set.
  • IAB node2 may also send request information to IAB node / IAB node1, where the request information includes the first signal set information and / or the second signal set information.
  • the spatial filtering parameters include spatial transmitting filtering parameters and / or spatial receiving filtering parameters.
  • the two reference signals satisfy the quasi co-location relationship with respect to the spatial filtering parameters, indicating that the spatial filtering parameters of one reference signal can be obtained from the spatial filtering parameters of the other reference signal.
  • Two reference signals satisfy a quasi co-location relationship with respect to the large-scale information of one type of channel, indicating that the large-scale information of one reference signal can be obtained from the large-scale information of another reference signal.
  • One type of large-scale channel parameters includes at least one of the following parameters: Doppler frequency shift, Doppler spread, average delay, delay spread, and space reception parameters.
  • the above-mentioned channel large-scale parameters may also be referred to as quasi-co-location parameters herein.
  • IAB node2 may also send request information to IAB node / IAB node1, and the request information includes the first signal set information and / or the second signal set information.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • a resource type needs to be determined, where different resource types are based on the interval between the channel or signal falling in the resource and the physical layer dynamic control signaling scheduling the channel or signal and a predetermined threshold. Or different resource types according to the relationship between the interval between the resource and the physical layer control channel closest to the resource and a predetermined threshold, for example, in the first type of resource, the interval is greater than or equal to In the predetermined threshold, in the second type of resource, the interval is less than or equal to a predetermined threshold.
  • determining a resource type may also be referred to as determining a type of a time domain resource.
  • the physical layer control channel closest to the resource is a physical layer control channel that the terminal needs to detect.
  • control information in the physical layer control channel may schedule channels or signals in the resource, for example, the physical layer control channel and the resource are in the same CC (component carrior component carrier) / BWP, or Control information in the physical layer control channel may schedule channels or signals in the resource across the CC.
  • CC component carrior component carrier
  • the physical layer control channel and the resource belong to the same component carrier, or belong to the same BWP (BandWidth).
  • the resource type there is an association between the resource type and at least one of the following information: a multiplexing mode between A links, a resource division between A links, and a resource set occupied by one link.
  • the resources include at least one of the following resources: time domain resources, frequency domain resources, reference signal resources, sequence resources, port resources, and air domain resources.
  • time domain resources included by different resource types appear in turns.
  • the validity period of the time domain resource set included by different resource types is a control signaling.
  • IAB node / IAB node1 assigns the control channel to be detected on the DB link to IAB node1 every 4 slots, and the time domain interval of the dynamic notification in DCI configuration DCI is 1, that is, DCI
  • the interval between the PDSCH / AP-CSI-RS and the PDSCH / AP-CSI-RS is a maximum of one slot.
  • the DCI (Downlink Control Information) in slotn schedules the PDSCH / AP-CSI-RS only to fall on the slotn, slot + 1, so Figure 21
  • the IAB on the ⁇ slotn + 2, slotn + 3, slotn + 6, slotn + 7 ⁇ in -1 / node1 cannot dynamically give the signal on the backhaul resource to IAB node2, so in ⁇ slotn + 2, slotn + 3, Slotn + 6, Slotn + 7 ⁇
  • the Access link can occupy all frequency-domain resources, reference signal resources, or backslots on ⁇ slotn + 2, slotn + 3, slotn + 6, slotn + 7 ⁇ resources except for Backhaul. Any resource other than the resources occupied by the static channel or signal can be used for the Access resource.
  • IAB donor node / IAB node1 may schedule a DB for IAB node2.
  • the Backhaul link and the Access link can only semi-statically negotiate their respective resources, such as the Backhaul link and A Ccess link frequency division, or Backhaul link and Access link space division, each occupy a part of reference signal resources.
  • the resource division of the Backhaul and Access links on the first type of resources meets the frequency domain resource division shown in Figure 21-3, and the resources of the Backhaul and Access links on the second type of resources are shown in Figure 21-3.
  • the division satisfies the frequency domain resource division 1 shown in Fig. 21-3.
  • the interval between the channel or signal in the resource and the physical layer dynamic control signaling scheduling the channel or signal is between the channel or signal in the resource and the physical layer dynamic control signaling
  • the BWP set available for the Backhaul link is different for different types of time domain resources, or the frequency domain resource set available for the Backhaul link is different.
  • the reference signals of the Backhaul link and the Access link are divided differently in different time domain resource types.
  • the reference signal set available for the Backhaul link is different for different time domain resource types.
  • the available airspace resource sets for Backhaul links are different, where the one airspace resource is associated with a reference signal, such as the airspace resource spatial filtering sending parameters of the uplink signal according to the spatial transmission filtering of the reference signal The parameters are obtained, and the downlink signal and the reference signal satisfy the quasi-co-location relationship with respect to the spatial domain resource space receiving parameters.
  • a reference signal such as the airspace resource spatial filtering sending parameters of the uplink signal according to the spatial transmission filtering of the reference signal.
  • the set of available multiplexing modes for Backhaul link and Access link is different for different time domain resource types.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • the multiplexing mode between the A links belongs to a predetermined multiplexing mode set.
  • reference signals of UB and / or DA may be transmitted on the resource, and / or UB and / or The DA's control channel can be transmitted on this resource.
  • the multiplexing mode of UB and DA on a resource is space division multiplexing, reference signals of UB and / or DA are not transmitted on the resource, and / or control channels of UB and / or DA are not transmitted on the resource.
  • the multiplexing mode of DB and UA belongs to ⁇ time division multiplexing, frequency division multiplexing ⁇
  • the reference signals of DB and / or UA can be transmitted on the resource, and / or DB and / or UA
  • the control channel can be transmitted on this resource.
  • the multiplexing mode of DB and UA on a resource is space division multiplexing
  • the reference signal of DB and / or UA is not transmitted on the resource, and / or the control channel of DB and / or UA is not transmitted on this resource.
  • Embodiment 13 is a diagrammatic representation of Embodiment 13:
  • the number of different elements included in an associated airspace resource set on a time domain resource is related to the multiplexing mode set in A links, where A is a positive integer greater than 1.
  • an airspace resource in the DB is represented by a TCI state
  • a TCI state is used to establish the relationship between T reference signal (RS) sets and T demodulation reference signal (DMRS) groups.
  • RS reference signal
  • DMRS demodulation reference signal
  • one DMRS group in T DMRS groups and one RS in one RS set of T RS sets satisfy a quasi-co-location relationship with respect to a class of quasi-co-location parameters.
  • the available TCI state of DA can only include 4 TCI states, and / or the SRS set of UB is used for 'code book' (or use It is a non-code book SRS set)
  • the number of SRS resources included is 4.
  • the available TCI states of the DA can include 8 TCI states, and / or The SRS set of the UB is used for the 'code book' (or the SRS set whose use is the 'non code book'), and the number of SRS resources is eight.
  • the available TCI states of the DB can only include 4 TCI states, and / or the SRS set of the UA is used for the 'code book' ( Or in the SRS set whose use is 'non codebook') the number of SRS resources included is 4.
  • the available TCI state of the DA can include 8 TCI states, UA The number of SRS sets used for the 'code book' (or the SRS set whose use is 'non code book') is eight.
  • the two links need to share airspace resources on the IAB side, and when time division multiplexing, the two links do not need to share airspace resources on the IAB side.
  • the multi-level bandwidth structure information includes one or more of C SRS and B SRS information, and specifically, the meaning of C SRS and B SRS can refer to protocol 38.211.
  • Embodiment 14 is a diagrammatic representation of Embodiment 14:
  • This embodiment provides an apparatus for transmitting a measurement reference signal, which can be applied to a communication node device, and the communication node device can act as each communication node in the foregoing embodiments according to a specific application scenario, for example, including but not limited to the first
  • the communication node includes: a first parameter determining module 2201, configured to determine a measurement reference signal according to the received first signaling information and / or a pre-negotiated first parameter determination rule; Parameter information; a first signal sending module 2202 is configured to send a measurement reference signal according to the parameter information.
  • This embodiment also provides a receiving device for measuring a reference signal, which can also be applied to a communication node device according to specific application requirements, and the communication node device can serve as each communication node in the foregoing embodiments according to a specific application scenario, for example, It includes, but is not limited to, a second communication node, as shown in FIG. 22-2, which includes: a second parameter determining module 2203, configured to send first signaling information, where the first signaling information includes parameter information of a measurement reference signal .
  • the third signal receiving module 2204 is configured to receive a measurement reference signal according to the parameter information determined by the second parameter determining module 2203.
  • the parameter information determined by the first parameter determination module 2201 and / or the second parameter determination module 2203 includes, but is not limited to, at least one of the following information: M of the measurement reference signal occupied in a physical resource block In the group of subcarriers, the lowest subcarrier index or the highest subcarrier index in each group of subcarriers; among the N groups of time domain symbols occupied by the measurement reference signal in a time unit, the lowest time domain in each group of time domain symbols Symbol index or highest time domain symbol index; measurement port port code division multiplexing type information of the reference signal; measurement reference signal density information ⁇ ; measurement reference signal corresponding physical resource block set information; measurement code signal includes a code division multiplexing Group corresponding code division multiplexing length information; measuring the multiplexing length of a code division multiplexing group included in the reference signal in the time domain; measuring the multiplexing length of a code division multiplexing group included in the reference signal in the frequency domain; measuring the reference signal The number of ports; the total number of combs for measuring the
  • the parameter information determined by the first parameter determination module 2201 and / or the second parameter determination module 2203 may include selection information of a parameter type set; wherein the parameter type set includes at least the first parameter At least one of a type set and a second parameter type set; the first parameter type set includes parameter information required for determining a pattern of the first type of measurement reference signal; the second parameter type set includes a parameter for determining the second type of measurement reference Parameter information required for the signal pattern.
  • the measurement reference signal sent by the first signal sending module 2202 satisfies at least one of the following characteristics: it is a measurement reference signal sent on the uplink; and the time domain symbol in which the measurement reference signal is located is Any one or more time domain symbols in a time unit; the pattern of the measurement reference signal is a CSI-RS pattern; the pattern of the measurement reference signal is a pattern of the downlink reference signal; a measurement reference signal resource occupies X in a physical resource block Group of consecutive subcarriers; the number of subcarriers occupied by a measurement reference signal port in a physical resource block includes ⁇ 0.5, 1, 2 ⁇ ; the number of measurement reference signal ports included in a measurement reference signal resource belongs to ⁇ 1, 2, 4 , 8, 12, 16, 24, 32 ⁇ ; the value of X is a positive integer.
  • the measurement reference signal sent by the first signal sending module 2202 may also meet at least one of the following conditions: the measurement reference signal and the first channel or signal occupy different symbols on the same time domain Subcarrier; when the measurement reference signal and the first channel or signal occupy the same time domain symbol, the first channel or signal cannot occupy the subcarrier occupied by the measurement reference signal; the subcarrier occupied by the measurement reference signal and the subchannel occupied by the first channel or signal In the case of a carrier collision, the priority between the measurement reference signal and the first channel or signal is determined according to the first signaling information and / or a pre-negotiated first parameter determination rule; the first channel or signal is a channel sent by the first communication node Or signal.
  • first signaling information is a channel or signal sent by the first communication node; in this embodiment, the first communication node may be a communication node that sends the measurement reference signal.
  • the first parameter determination module 2201 and / or the second parameter determination module 2203 in this embodiment determine the parameter information according to the first signaling information and / or the first parameter determination rule, and the determined parameter information. For the conditions that can be satisfied, refer to the foregoing embodiments, and details are not described in this embodiment.
  • the process of receiving the measurement reference signal of the parameter information can also be referred to the above-mentioned embodiments, and will not be repeated here.
  • first parameter determining module 2201 and the first signal sending module 2202 may be implemented by a processor or controller in the communication node device; the second parameter determining module 2203 and the third signal receiving module 2204 The functions may also be implemented by a processor or a controller in the communication node device; but this embodiment may also provide a communication system including the above device.
  • This embodiment provides a device for transmitting a measurement reference signal, which can be applied to, but not limited to, the first communication node shown in the foregoing embodiments, and it should be understood that the first communication node is not limited to the foregoing implementations.
  • the situations shown in the examples can be flexibly determined according to specific application scenarios.
  • the device for sending the measurement reference signal is shown in FIG. 23-1, and may include: a first resource determining module 2301, configured to receive second signaling information received from the second communication node and / or communicate with the second communication node.
  • a second parameter determination rule pre-negotiated by the node determines a P-type measurement reference signal resource; a second signal sending module 2302 is configured to send a P-type measurement reference signal on the P-type measurement reference signal resource; and the determined P-type measurement
  • the reference signal resource may include, but is not limited to, a measurement reference signal resource for measuring interference; the value of P is a positive integer.
  • This embodiment also provides a receiving device for measuring a reference signal, which can be applied to, but not limited to, the second communication node shown in the foregoing embodiments, and it should be understood that the second communication node is not limited to the foregoing implementations.
  • the situation shown in the example can be flexibly determined according to the specific application scenario.
  • the receiving device for the measurement reference signal in this embodiment includes a fourth resource determination module 2303, which is configured to send a first resource to the first communication node.
  • Second signaling information, the second signaling information includes P-type measurement reference signal resource information; a fourth signal receiving module 2304 is configured to receive the P-type measurement reference signal on the determined P-type measurement reference signal resource.
  • this type P measurement reference signal resource includes a measurement reference signal resource for measuring interference.
  • the device for receiving a measurement reference signal may further include a fourth information sending module 2305, configured to send channel status report information to the first communication node, and / Or, the second communication node sends resource information to the first communication node, where the resource information is resource information occupied by the channel state report information.
  • a fourth information sending module 2305 configured to send channel status report information to the first communication node, and / Or, the second communication node sends resource information to the first communication node, where the resource information is resource information occupied by the channel state report information.
  • the channel state report information can satisfy but is not limited to at least one of the following characteristics: the channel state report information is channel state report information obtained based on a P-type measurement reference signal; the channel state report information includes a signal to interference plus noise ratio SINR; the channel state report information includes performance difference information between the two types of measurement reference signals in the P-type measurement reference signals; the channel state information is feedback information for the uplink channel state; the channel state information exists between the P-type measurement reference signals Correspondence relationship; the second communication node sends channel state information to the first communication node on a downlink channel or signal.
  • SINR signal to interference plus noise ratio
  • SINR signal to interference plus noise ratio
  • the channel state report information includes performance difference information between the two types of measurement reference signals in the P-type measurement reference signals
  • the channel state information is feedback information for the uplink channel state
  • the channel state information exists between the P-type measurement reference signals Correspondence relationship
  • the second communication node sends channel state information to the first communication node on a downlink channel or signal.
  • the measurement reference signal for measuring interference sent by the second signal sending module 2302 and the measurement reference signal for measuring interference received by the fourth signal receiving module 2304 may satisfy but are not limited to At least one of the following characteristics: the configuration information of the measurement reference signal used to measure the interference does not carry the configuration information of the spatial transmission filter parameter; the signal between the first communication node and the second communication node does not carry the Spatial filtering parameters of measurement reference signals; for example, the spatial filtering parameters of measurement reference signals used to measure interference cannot be obtained based on signals between the first communication node and the second communication node, and the spatial filtering parameters of measurement reference signals used to measure interference The associated reference signal does not belong to the reference signal between the first communication node and the second communication node.
  • the intersection of the spatial filtering parameters of the measurement reference signal for measuring interference and the spatial filtering parameters in the predetermined spatial filtering parameter set is empty, wherein each spatial filtering parameter in the predetermined spatial filtering parameter set is associated with a first communication node and a second Signals between communication nodes; spatial filtering parameters of measurement reference signals used to measure interference are obtained according to spatial transmission filtering parameters of first reference signals sent by the first communication node to one or more third communication nodes; used to measure interference
  • the parameter information of the measurement reference signal is the same as the parameter information of the second reference signal sent by the first communication node to one or more third communication nodes; the parameter type of the measurement reference signal used to determine the interference and the parameter type used to determine the
  • the third reference signal sent by the first communication node to one or more third communication nodes has the same parameter type; the first communication node sends one or more third communication nodes on the resource of the measurement reference signal for measuring interference.
  • measurement reference signal for measuring interference The interference from a signal sent by a communication node to one or more third communication nodes to the second communication node; a measurement reference signal for measuring interference is used for measuring interference by the second communication node; a measurement reference signal for measuring interference is used for The second communication node measures the interference of the first type of signal sent by the first communication node to the second communication node, wherein the control channel resource group where the control signaling scheduling the first type signal is located and the control channel resource where the second signaling information is located The group is two different control channel resource groups, and / or the frequency domain bandwidth where the first type of signal is located and the frequency domain bandwidth where the second signaling information is located are two different frequency domain bandwidths, and / or the first type of signal The frequency domain bandwidth and the frequency domain bandwidth of the channel or signal scheduled by the second signaling information are two different frequency domain bandwidths, where the first reference signal, the second reference signal, the third reference signal, and the fourth reference The signal may be at least one of the following reference signals: a downlink measurement reference signal,
  • the second signaling information received from the second communication node may include but is not limited to at least one of the following parameter information: a measurement reference signal for measuring interference is occupied in a physical resource block The lowest subcarrier index or the highest subcarrier index in each of the M groups of subcarriers; each group of time domain symbols in the N group of time domain symbols occupied by the measurement reference signal for measuring interference in a time unit The lowest time-domain symbol index or the highest time-domain symbol index in the information; the physical resource block set information occupied by the measurement reference signal used to measure the interference; the port code division multiplexing type information of the measurement reference signal used to measure the interference; used to measure the interference The density information ⁇ of the measurement reference signal; a code division multiplexing group corresponding to the code division multiplexing length information included in the measurement reference signal for measuring interference; and a code division multiplexing group included in the measurement reference signal for measuring interference at Multiplex length in the frequency domain; multiplex length in the time domain of a code division multiplexing group included in the
  • the P-type measurement reference signal sent by the second signal sending module 2302 may satisfy but is not limited to at least one of the following characteristics: the P-type measurement reference signal further includes a measurement reference signal for a measurement channel; The spatial reception filtering parameters corresponding to the P-type measurement reference signal are the same; the spatial transmission filtering parameters corresponding to the P-type measurement reference signal are different; each type of the P-type measurement reference signal has its corresponding spatial transmission filtering parameter configuration information; the P-type measurement There is an association between the spatial transmission filter parameter information of the reference signal and the type information of the P-type measurement reference signal; the P-type measurement reference signal is an uplink measurement reference signal.
  • the process in which the first resource determination module 2301 in this embodiment determines a P-type measurement reference signal resource according to the second signaling information and / or the second parameter determination rule, and the fourth resource determination module 2303 A process in which the second signaling information sent by a communication node and / or a second parameter determination rule pre-negotiated with the first communication node determines a P-type measurement reference signal resource, and a condition that the determined P-type measurement reference signal resource can satisfy
  • the second signal sending module 2302 sends the P-type measurement reference signal on the P-type measurement reference signal resource, and the conditions that the sent P-type measurement reference signal needs to meet.
  • the fourth signal receiving module 2304 determines the P-type measurement reference signal.
  • the process of receiving the P-type measurement reference signal on the measurement reference signal resource can also refer to the above-mentioned embodiments, and will not be repeated here.
  • first resource determination module 2301 and the second signal sending module 2302 may be implemented by a processor or controller in the communication node device; the fourth resource determination module 2303 and the fourth signal receiving module 2304 The functions may be implemented by a processor or a controller in the communication node device, and this embodiment may further provide a communication system including the foregoing device.
  • This embodiment also provides a receiving device for measuring a reference signal, which can be applied to, but not limited to, the first communication node shown in the foregoing embodiments, and it should be understood that the first communication node is not limited to the foregoing implementations.
  • the situations shown in the examples can be flexibly determined according to specific application scenarios.
  • the receiving device for the measurement reference signal is shown in FIG.
  • a first information receiving module 2401 configured to receive third signaling information sent by a second communication node, and the third signaling information includes Interference measurement resource information
  • a first signal receiving module 2402 configured to receive at least one signal sent by one or more third communication nodes on the interference measurement resource determined according to the interference measurement resource information, and / or the interference measurement resource information includes The intersection between the parameter type of the parameter type and the parameter type used to determine the uplink reference signal pattern is not empty, and / or the first communication node does not receive the downlink measurement reference signal on the interference measurement resource.
  • This embodiment also provides a receiving device for measuring a reference signal, which can be applied to, but not limited to, the second communication node shown in the foregoing embodiments, and it should be understood that the second communication node is not limited to the foregoing implementations.
  • the situations shown in the examples can be flexibly determined according to specific application scenarios.
  • the receiving device for the measurement reference signal is shown in FIG.
  • a third information sending module 2404 configured to send third signaling information to the first communication node, where the third signaling information includes interference measurement Resource information; the third signaling information is used to instruct the first communication node to receive a signal sent by one or more third communication nodes on the interference measurement resource determined according to the interference measurement resource information, and / or the information included in the interference measurement resource information
  • the intersection between the parameter type and the parameter type used to determine the uplink reference signal pattern is not empty, and / or the second communication node does not send a downlink signal on the interference measurement resource.
  • the foregoing signal or resource includes but is not limited to at least one of the following conditions: the signal sent by the third communication node is an uplink signal; the interference measurement resource is an interference measurement resource corresponding to the channel state report information, where The channel state information is the channel state information sent by the first communication node to the second communication node; the interference measurement resource and the channel measurement resource do not satisfy the quasi co-location relationship with respect to the spatial reception filtering parameters, where the interference measurement resource and the channel measurement resource correspond to the same channel Status report information; the quasi-co-located reference signal of the interference measurement resource regarding the spatial reception filtering parameter is the first quasi-co-located reference signal and the quasi-co-located reference signal of the channel measurement resource regarding the spatial reception filtering parameter is the second quasi-co-located reference signal The interference measurement resource and the channel measurement resource correspond to the same channel state report information; the pattern of the interference measurement resource is a CSI-RS pattern; the pattern of the interference measurement resource is an SRS pattern; on the interference measurement resource, the first communication node
  • the channel state information is channel state information sent by the first communication node to the second communication node.
  • the third signaling information received by the first information receiving module 2401 may include, but is not limited to, at least one of the following information: interference measurement resource type information, and at least the first type of interference measurement exists.
  • interference measurement resource type information Non-zero power NZP-interference measurement resource type information, at least the first type NZP-interference measurement resource and the second type NZP-interference measurement resource exist; pattern type selection information corresponding to the interference measurement resource; A set of time-domain symbol information occupied by interference measurement resources in a time unit; repetition factor information of interference measurement resources; frequency hopping parameters of interference measurement resources; and multi-level bandwidth structure information of interference measurement resources.
  • the apparatus for receiving a measurement reference signal further includes a first information sending module 2403, configured to send fourth signaling information to the third communication, and the fourth signaling The information is used to instruct the third communication node to send a second signal; wherein the intersection between the resources occupied by the second signal and the resources occupied by the interference measurement resources is not empty; the occupied resources include at least one of the following resources: time domain resources, frequency Domain resources, code domain resources, airspace resources.
  • the parameter type set included in the third signaling information received by the first information receiving module 2401 includes, but is not limited to, at least one of the following information: port number, comb offset, Time domain symbol information in time unit, time domain frequency hopping unit information, frequency domain information, frequency domain offset in multi-level bandwidth structure, frequency domain frequency hopping information, sequence group or sequence number hopping information, sequence generation parameters , Selection information of a pattern type of the interference measurement reference signal; wherein the pattern type includes, but is not limited to, at least one of an uplink reference signal pattern and a downlink reference signal pattern.
  • the content that can be included in the information and the conditions that can be satisfied can be referred to the foregoing embodiments, and will not be repeated here.
  • the process by which the first signal receiving module 2402 receives at least one signal sent by one or more third communication nodes on the interference measurement resource determined according to the interference measurement resource information, and the content, type, and satisfying conditions of the received signal, etc. See also the embodiments described above, which will not be repeated here; the sending method of the fourth signaling information sent by the first information sending module 2403 to the third communication and the content that the fourth signaling information can include can also be based on Flexible setting for specific application scenarios.
  • the functions of the first information receiving module 2401, the first signal receiving module 2402, and the first information sending module 2403 may be implemented by a processor or a controller in the communication node device; and the third information sending module
  • the function of the 2404 may be implemented by a processor or a controller in the communication node device; and this embodiment may further provide a communication system including the foregoing devices.
  • Embodiment 17 is a diagrammatic representation of Embodiment 17:
  • This embodiment provides a signal transmission device, which can be applied to various communication node devices.
  • a determining module 2501 configured to transmit the fifth signaling information and / or the third parameter according to the transmission Determine the rules to determine the correspondence between U resource sets and one of the following Q objects: spatial transmission filter parameter set, quasi-co-located reference signal set, spatial transmission filter parameter and quasi-co-located reference signal combination, and frequency domain resource set , Reference signal set, frequency domain resource division between A links, power parameter set, set of multiplexing modes between B links, set of C reference signal combinations in C links; transmission module 2502 , Used to transmit a channel or signal according to the corresponding relationship; transmission in this embodiment includes sending or receiving.
  • U and Q are positive integers greater than or equal to 1
  • a and B are positive integers greater than 1.
  • Resources include at least one of the following resources: time domain resources, frequency domain resources, and reference signal resources.
  • the determining module 2501 determining the correspondence between the U resource sets and one of the following Q objects includes: determining a correspondence between the U time domain resource sets and the Q frequency domain resource sets, The frequency domain resources occupied by the channel or signal in a time unit are a subset of the frequency domain resource set corresponding to the time domain resource set to which the time unit belongs; and / or, the determination module 2501 determines U resource sets and Q resources as follows
  • the corresponding relationship of one of the objects includes: a determining module 2501 determines a corresponding relationship between U time domain resource sets and Q reference signal sets, where a reference signal corresponding to a channel or signal in a time unit belongs to a time unit A subset of the reference signal set corresponding to the domain resource set; and / or, the determining module 2501 determines the correspondence between the U resource sets and one of the Q objects including: determining between the U time domain resource sets and A links Correspondence between Q frequency-domain resource partitions, where at least one of the following characteristics is satisfied: the frequency
  • the determining module 2501 determining the correspondence between the U resource sets and the Q sets includes at least one of the following: determining the correspondence between the U resource sets and the Q sets; determining Correspondence between U resource sets and SRS resource sets for codebook; determine the correspondence between U resource sets and SRS resource sets for nonbook codebook; determine U resource sets and Correspondence between Q TCI states and pools; determine the correspondence between U resource sets and Q (first reference signal, quasi co-location reference signal) set; one SRS resource set corresponds to a spatial filtering parameter Set, each resource in the SRS resource set corresponds to a set of spatial filtering parameters; a TCI state pool corresponds to a quasi-co-located reference signal set, and each TCI state in the TCI state pool includes a quasi-co-located reference signal; The value is a positive integer, and the value of Q is a positive integer less than or equal to P.
  • the transmission module 2502 transmitting the channel or signal according to the corresponding relationship includes: when receiving configuration information that does not satisfy at least one of the following characteristics, the channel or signal on the resource is not sent or received: resource
  • the spatial filtering parameters of the channel or signal in the resource belong to the spatial filtering parameter set corresponding to the resource;
  • the quasi-co-located reference signal of the channel or signal in the resource with respect to the spatial reception filtering parameter belongs to the quasi-co-located reference signal set corresponding to the resource;
  • at least one of the quasi-co-located reference signal sets corresponding to the signal and the resource satisfies the quasi-co-located relationship with respect to the spatial reception filtering parameter;
  • the set corresponding to the channel or signal on the resource belongs to Q sets and corresponds to the existence of the resource A set of relationships;
  • the frequency domain resources occupied by the channels or signals in the A links on the resource satisfy the frequency domain resource division between the A links corresponding to the resources.
  • the determination module 2501 in this embodiment determines a correspondence relationship between the U resource sets and one of the Q objects according to the received fifth signaling information and / or the third parameter determination rule, and U For the content of the resource sets and the conditions that can be met, see the above embodiments, and details are not described herein again.
  • the process of transmitting the channel or signal by the transmission module 2502 according to the corresponding relationship may also refer to the foregoing embodiments, and details are not described herein again.
  • the functions of the determining module 2501 and the transmitting module 2502 may be implemented by a processor or a controller in a communication node device, and this embodiment may further provide a communication system including the foregoing devices.
  • Embodiment 18 is a diagrammatic representation of Embodiment 18:
  • This embodiment further provides a signal transmitting apparatus, which can be applied to various communication node devices.
  • the apparatus includes a second resource determination module 2601, which is configured to receive the sixth signaling information or the fourth The parameter determination rule determines the first type of time-frequency resources; the third signal sending module 2602 is configured to send a channel or signal according to the determined first type of time-frequency resources; wherein the channel or signal cannot occupy the first type of time-frequency resources.
  • the sixth signaling information received by the second resource determination module 2601 may include, but is not limited to, at least one of the following types of time-frequency resources of the first type: physical resource block set information; Time domain symbol position information occupied in a time unit; time behavior information; period information; period offset information; subcarrier index set information occupied in a physical resource block; group D subcarriers occupied in a physical resource block The lowest subcarrier index or highest subcarrier index in each group of subcarriers; the lowest time domain symbol index or the highest time domain symbol index in each group of time domain symbols in the J group of time domain symbols occupied in a time unit; Downlink reference signal pattern information; pattern type selection information, which includes at least a first type pattern and a second type pattern; and the values of D and J above are positive integers.
  • the first-type pattern is an uplink reference signal pattern
  • the second-type pattern is a downlink reference signal pattern.
  • the first-type pattern is SRS.
  • Patterns, the second type of patterns are CSI-RS patterns; specific settings can be flexibly set according to the application scenario.
  • the second resource determination module 2601 in this embodiment determines the process of the first type of time-frequency resources according to the received sixth signaling information or the fourth parameter determination rule, and the content and For the conditions that can be satisfied, refer to the foregoing embodiments, and details are not described herein again.
  • the third signal sending module 2602 sends a channel or signal according to the determined first type of time-frequency resources, reference may also be made to the foregoing embodiments, and details are not described herein again.
  • the functions of the second resource determining module 2601 and the third signal sending module 2602 may be implemented by a processor or a controller in a communication node device, and this embodiment may further provide a device including the foregoing devices. Communication system.
  • Embodiment 19 is a diagrammatic representation of Embodiment 19:
  • This embodiment also provides a device for receiving a channel or signal, which can be applied to various communication node devices. As shown in FIG. 27, it includes a third resource determination module 2701, which is configured to receive the seventh signaling information according to the received information. Or the fifth parameter determination rule determines the second type of time-frequency resources; the second signal receiving module 2702 is configured to receive the channel or signal according to the determined second type of time-frequency resources; wherein the channel or signal does not occupy the second type of time-frequency resources .
  • the seventh signaling information received by the third resource determination module 2701 includes, but is not limited to, at least one of the following information of the second type of time-frequency resource: the number of ports; the comb offset; Time domain symbol information in time unit; time domain frequency hopping unit information; frequency domain information; frequency domain offset in a multi-level bandwidth structure; frequency domain frequency hopping information; pattern information of uplink reference signals; pattern type selection information, at least There are first-type patterns and second-type patterns.
  • the first-type pattern is an uplink reference signal pattern
  • the second-type pattern is a downlink reference signal pattern.
  • the first-type pattern is SRS.
  • Patterns, the second type of patterns are CSI-RS patterns; specific settings can be flexibly set according to the application scenario.
  • the third resource determination module 2701 in this embodiment determines a process of the second type of time-frequency resources according to the received seventh signaling information or the fifth parameter determination rule, and the content of the second type of time-frequency resources
  • the process of receiving the channel or signal by the second signal receiving module 2702 according to the determined second type of time-frequency resources reference may also be made to the foregoing embodiments, and details are not described herein again.
  • the functions of the third resource determining module 2701 and the second signal receiving module 2702 may be implemented by a processor or a controller in a communication node device, and this embodiment may further provide a device including the foregoing devices. Communication system.
  • Embodiment 20 is a diagrammatic representation of Embodiment 20.
  • This embodiment also provides a device for transmitting signaling information, which can be applied to, but not limited to, the first communication node shown in the foregoing embodiments, and it should be understood that the first communication node is not limited to the foregoing implementations.
  • the situations shown in the examples can be flexibly determined according to specific application scenarios.
  • the device for transmitting signaling information as shown in FIG.
  • the above eighth signaling information and / or the ninth signaling information includes at least one of the following information: information of the first signal set, Information of the second signal set, and the signals in the first signal set and the second signal set include reference signals; wherein the first channel or signal and at least one signal in the first signal set are related to one or more types of large-scale characteristic parameters Satisfies the quasi co-location relationship, and / or the spatial transmission filtering parameters of the second channel or signal are obtained according to at least one signal in the second signal set; the first channel or signal is sent by the first communication node to one or more third communication nodes
  • the second channel or signal is a channel or signal sent by one or more third communication nodes to the first communication node.
  • the second information sending module 2801 may be further configured to send the tenth signaling information to one or more third communication nodes, and the eighth signaling information is used to indicate one or more third communications.
  • the node receives signals in the first signal set; and / or, the second information sending module 2801 is further configured to send eleventh signaling information to one or more third communication nodes, and the ninth signaling information is used to indicate one or A plurality of third communication nodes send signals in the second signal set.
  • the second information sending module 2801 in this embodiment sends the eighth signaling information to the second communication node, as well as the content and conditions that can be satisfied in the eighth signaling information, refer to the foregoing implementations. As shown in the example, we will not repeat them here.
  • the process of the second information receiving module 2802 receiving the ninth signaling information sent by the second communication node, as well as the content and satisfying conditions included in the ninth signaling information can be seen in the foregoing embodiments, and will not be repeated here. To repeat.
  • the functions of the second information sending module 2801 and the second information receiving module 2802 may be implemented by a processor or a controller in the communication node device, and this embodiment may further provide a device including the foregoing devices. Communication system.
  • Embodiment 21 is a diagrammatic representation of Embodiment 21.
  • This embodiment also provides a communication node device.
  • the communication node device can play the role of each communication node in the foregoing embodiments according to a specific application scenario.
  • a communication node device including at least A communication system composed of two communication node devices in different roles. Referring to FIG. 29, it includes a processor 2901, a memory 2902, and a communication bus 2903.
  • the communication bus 2903 is used to implement a communication connection between the processor 2901 and the memory 2902.
  • the processor 2901 and the memory 2902 may be used to perform the following functions: At least one: the memory 2902 is configured to store one or more first programs, and the processor 2901 is configured to execute the one or more first programs to implement the steps of the measurement reference signal sending method as exemplified in the above embodiments; or The memory 2902 is configured to store one or more second programs, and the processor 2901 is configured to execute one or more second programs to implement the steps of the method for receiving a measurement reference signal as exemplified in the above embodiments; or, the memory 2902 is used to store one or more third programs, and processor 2901 is used to execute one or more third programs to implement the steps of the method for transmitting a measurement reference signal as exemplified in the above embodiments; or, memory 2902 is used for Based on the stored one or more fourth programs, the processor 2901 is configured to execute one or more fourth programs to implement Steps of a method for receiving a measurement reference signal; or, the memory 2902 is configured to store one or more fifth programs, and the processor 2901 is
  • the memory 2902 is configured to store one or more eighth programs, and the processor 2901 is configured to execute one or more eighth programs to implement the steps of the signal sending method as exemplified in the above embodiments; or, the memory 2902 One or more ninth programs for storage, and the processor 2901 is configured to execute one or more ninth programs to implement the above The steps of the method for receiving a channel or signal as shown in the embodiments; or, the memory 2902 is used to store one or more tenth programs, and the processor 2901 is used to execute one or more tenth programs to implement the above embodiments. The steps of the illustrated method of transmitting signaling information.
  • This embodiment also provides a computer-readable storage medium that is implemented in any method or technology for storing information such as computer-readable instructions, data structures, computer program modules, or other data. Volatile or non-volatile, removable or non-removable media.
  • Computer-readable storage media include, but are not limited to, RAM (Random Access Memory), ROM (Read-Only Memory, Read-Only Memory), EEPROM (Electrically Erasable, Programmable, Read-Only Memory, and Erasable Programmable Read-Only Memory) ), Flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic box, magnetic tape, disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and can be accessed by a computer.
  • the computer-readable storage medium may be used to perform at least one of the following functions: the computer-readable storage medium may be used to store one or more first programs, and the one or more first programs may be used by one or more The processor executes the steps of the method for transmitting the measurement reference signal as described above; the computer-readable storage medium may be used to store one or more second programs, and the one or more second programs may be executed by one or more processors.
  • a computer-readable storage medium may be used to store one or more third programs, and one or more third programs may be executed by one or more processors to implement the above Steps of a method for transmitting a measurement reference signal; a computer-readable storage medium may be used to store one or more fourth programs, and the one or more fourth programs may be executed by one or more processors to realize the reception of the measurement reference signals as above Method steps; computer-readable storage medium may be used to store one or more fifth Sequence, one or more fifth programs may be executed by one or more processors to implement the steps of the method for receiving a measurement reference signal as described above; a computer-readable storage medium may be used to store one or more sixth programs, one or A plurality of sixth programs may be executed by one or more processors to implement the steps of the method for receiving a measurement reference signal as described above; a computer-readable storage medium may be used to store one or more seventh programs, and one or more seventh programs.
  • the program may be executed by one or more processors to implement the steps of the above-mentioned signal transmission method; a computer-readable storage medium may be used to store one or more eighth programs, and one or more eighth programs may be one or more A processor executes to implement the steps of the above signal sending method; a computer-readable storage medium may be used to store one or more ninth programs, and one or more ninth programs may be executed by one or more processors to implement Steps of a method for receiving a channel or signal as above; a computer-readable storage medium may be used to store a Tenth or more programs, the one or more programs may be a tenth or more processors to implement the method step of transmitting the signaling information as described above.
  • This embodiment also provides a computer program (or computer software), which can be distributed on a computer-readable medium and executed by a computing device to implement at least one of the methods shown in the at least one embodiment described above. Steps; and in some cases, at least one of the steps shown or described may be performed in an order different from that described in the above embodiments. Therefore, the computer program in this embodiment may include at least one of the foregoing programs according to specific application requirements.
  • This embodiment also provides a computer program product including a computer-readable device, where the computer-readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include a computer-readable storage medium as shown above.
  • a communication medium typically contains computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. Therefore, this application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信号传输方法、装置、设备及计算机存储介质,测量参考信号的发送方法包括:根据接收到的信令信息和/或预先协商的参数确定规则,确定出测量参考信号的参数信息,根据确定出的参数信息发送测量参考信号。

Description

信号传输方法、装置、设备及计算机存储介质
本申请要求在2018年07月19日提交中国专利局、申请号为201810796374.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及但不限于通信领域,具体的,涉及但不限于一种信号传输方法、装置、设备、系统及存储介质。
背景技术
为了增加覆盖以及降低运营商的部署成本,相关技术引入了IAB(Integrated access and backhaul)节点(也可以称为中继节点),IAB node和核心网之间不存在有线连接,而是通过无线Backhaul链路(也即回程链路)连接到核心网。IAB node节点既要通过无线Backhaul链路和上一级节点通信,也需要通过无线access链路(也即访问链路)和其覆盖下的终端(User Equipment,UE)通信,或者通过无线Backhaul链路和下一级的IAB节点通信。当然也可以把与核心网之间存在有线连接的节点称为IAB donor节点。为了增加频谱效率和降低延迟,允许在IAB node处Backhaul链路的信号和Access链路的信号可以采用空分复用(Spatial division multiplex,SDM)的方式。空分复用指两个链路中的信号可以占有相同的时域/频域资源,只是通过空域波束区分,其一个显著特点是频谱利用率高,延迟小,但是无法避免存在干扰,因此如何通过合理的干扰测量,降低两个链路之间的干扰问题是急需解决的问题。
发明内容
本发明实施例提供的一种信号传输方法、装置、设备、系统及存储介质,主要解决的技术问题是:如何降低通信节点链路间采用空分复用而存在的干扰问题。
为解决上述技术问题,本发明实施例提供一种测量参考信号的发送方法,包括:根据接收到的第一信令信息和/或预先协商的第一参数确定规则,确定出测量参考信号的参数信息;根据所述参数信息,发送测量参考信号。
为解决上述技术问题,本发明实施例提供一种测量参考信号的接收方法,包括:发送第一信令信息,所述第一信令信息中包括测量参考信号的参数信息;根据所述参数信息,接收所述测量参考信号。
为解决上述技术问题,本发明实施例还提供了一种测量参考信号的发送方法,包括:第一通信节点根据从第二通信节点接收到的第二信令信息和/或与所述第二通信节点预先协商的第二参数确定规则确定出至少一类测量参考信号的资源;所述第一通信节点在确定的所述至少一类测量参考信号资源上,发送相应类的测量参考信号;所述至少一类测量参考信号包括用于测量干扰的第一类测量参考信号。
为解决上述技术问题,本发明实施例提供一种测量参考信号的接收方法,包括:第二通信节点向第一通信节点发送第二信令信息,所述第二信令信息中包括P类测量参考信号资源信息;所述第二通信节点在P类测量参考信号资源上,接收P类测量参考信号;所述P类测量参考信号资源包括用于测量干扰的测量参考信号资源;所述P的取值为正整数。
为解决上述技术问题,本发明实施例还提供了一种测量参考信号的接收方法,包括:第一通信节点接收来自于第二通信节点发送的第三信令信息,所述第三信令信息包括干扰测量资源信息;所述第一通信节点在根据所述干扰测量资源信息确定的干扰测量资源上接收一个或者多个第三通信节点发送的信号,和/或所述干扰测量资源信息中包括的参数类型和用于确定上行参考信号图样的参数类型之间的交集非空,和/或所述第一通信节点在所述干扰测量资源上不接收下行测量参考信号。
为解决上述技术问题,本发明实施例还提供了一种测量参考信号的接收方法,包括:第二通信节点向第一通信节点发送第三信令信息,所述第三信令信息包括干扰测量资源信息;所述第三信令信息用于指示所述第一通信节点在根据所述干扰测量资源信息确定的干扰测量资源上接收一个或者多个第三通信节点发送的信号,和/或所述干扰测量资源信息中包括的参数类型和用于确定上行参考信号图样的参数类型之间的交集非空,和/或所述第二通信节点在所述干扰测量资源上不发送下行信号。
为解决上述技术问题,本发明实施例还提供了一种信号的传输方法,包括:根据传输的第五信令信息和/或第三参数确定规则,确定U个资源集合与Q个如下对象之一的对应关系:空间发送滤波参数集合,准共址参考信号集合,空间发送滤波参数与准共址参考信号组合的集合,频域资源集合,参考信号集合,A个链路之间的频域资源划分,功率参数集合,B个链路之间的复用方式集合;C个链路中的C个参考信号组合的集合;根据所述对应关系传输信道或信号;其中,所述U,Q取大于或者等于1的正整数,所述A,B,C取大于1的正整数;所述资源包括如下资源至少之一:时域资源,频域资源,参考信号资源。
为解决上述技术问题,本发明实施例还提供了一种信号发送方法,包括: 根据接收的第六信令信息或者第四参数确定规则确定第一类时频资源;根据所述确定的第一类时频资源,发送信道或信号;其中所述信道或信号不能占有所述第一类时频资源。
为解决上述技术问题,本发明实施例还提供了一种信道或信号的接收方法,包括:根据接收的第七信令信息或者第五参数确定规则确定第二类时频资源;根据所述确定的第二类时频资源,接收信道或信号;其中所述信道或信号不占有所述第二类时频资源。
为解决上述技术问题,本发明实施例还提供了一种信令信息的传输方法,包括:第一通信节点向第二通信节点发送第八信令信息;和/或,第一通信节点接收第二通信节点的第九信令信息;其中所述第八信令信息,和/或所述第九信令信息中包括如下信息至少之一:第一信号集合的信息,第二信号集合的信息,所述第一信号集合和所述第二信号集合中的信号包括参考信号;其中第一信道或信号和所述第一信号集合中的至少一个信号关于一种或者多种信道大尺度特性参数满足准共址关系,和/或第二信道或信号的空间发送滤波参数根据所述第二信号集合中至少一个信号得到;所述第一信道或信号为所述第一通信节点发送给一个或者多个第三通信节点的信道或信号,所述第二信道或信号为所述一个或者多个第三通信节点发送给所述第一通信节点的信道或信号。
为解决上述技术问题,本发明实施例还提供了一种测量参考信号的发送装置,包括:第一参数确定模块,用于根据接收到的第一信令信息和/或预先协商的第一参数确定规则,确定出测量参考信号的参数信息;第一信号发送模块,用于根据所述参数信息,发送测量参考信号。
为解决上述技术问题,本发明实施例还提供了一种测量参考信号的接收装置,包括:第二参数确定模块,根据接收到的第一信令信息和/或预先协商的第一参数确定规则,确定出测量参考信号的参数信息;第三信号接收模块,用于根据所述参数信息,接收测量参考信号。
为解决上述技术问题,本发明实施例还提供了一种测量参考信号的发送装置,应用于第一通信节点,包括:第一资源确定模块,用于从第二通信节点接收到的第二信令信息和/或与所述第二通信节点预先协商的第二参数确定规则确定出P类测量参考信号资源;第二信号发送模块,用于在所述P类测量参考信号资源上,发送P类测量参考信号;所述P类测量参考信号资源包括用于测量干扰的测量参考信号资源;所述P的取值为正整数。
为解决上述技术问题,本发明实施例还提供了一种测量参考信号的接收装置,应用于第二通信节点,包括:第四资源确定模块,用于根据向第一通信节点发送的第二信令信息和/或与所述第一通信节点预先协商的第二参数确定规则 确定出P类测量参考信号资源;第四信号接收模块,用于在确定的所述P类测量参考信号资源上,接收P类测量参考信号;所述P类测量参考信号资源包括用于测量干扰的测量参考信号资源;所述P的取值为正整数。
为解决上述技术问题,本发明实施例还提供了一种测量参考信号的接收装置,应用于第一通信节点,包括:第一信息接收模块,用于接收来自于第二通信节点发送的第三信令信息,所述第三信令信息包括干扰测量资源信息;第一信号接收模块,用于在根据所述干扰测量资源信息确定的干扰测量资源上接收一个或者多个第三通信节点发送的信号,和/或所述干扰测量资源信息中包括的参数类型和用于确定上行参考信号图样的参数类型之间的交集非空。
为解决上述技术问题,本发明实施例还提供了一种测量参考信号的接收装置,应用于第二通信节点,包括:第三信息发送模块,用于向第一通信节点发送第三信令信息,所述第三信令信息包括干扰测量资源信息;所述第三信令信息用于指示所述第一通信节点在根据所述干扰测量资源信息确定的干扰测量资源上接收一个或者多个第三通信节点发送的信号,和/或所述干扰测量资源信息中包括的参数类型和用于确定上行参考信号图样的参数类型之间的交集非空,和/或所述第二通信节点在所述干扰测量资源上不发送下行信号。
为解决上述技术问题,本发明实施例还提供了一种信号的传输装置,包括:确定模块,用于根据传输的第五信令信息和/或第三参数确定规则,确定U个资源集合与Q个如下对象之一的对应关系:空间发送滤波参数集合,准共址参考信号集合,空间发送滤波参数与准共址参考信号组合的集合,频域资源集合,参考信号集合,A个链路之间的频域资源划分,功率参数集合,B个链路之间的复用方式集合;传输模块,用于所述对应关系传输信道或信号;其中,所述U,Q取大于或者等于1的正整数,所述A,B取大于1的正整数;所述资源包括如下资源至少之一:时域资源,频域资源,参考信号资源。
为解决上述技术问题,本发明实施例还提供了一种信号发送装置,包括:第二资源确定模块,用于根据接收的第六信令信息或者第四参数确定规则确定第一类时频资源;第三信号发送模块,用于根据所述确定的第一类时频资源,发送信道或信号;其中所述信道或信号不能占有所述第一类时频资源。
为解决上述技术问题,本发明实施例还提供了一种信道或信号的接收装置,包括:第三资源确定模块,用于根据接收的第七信令信息或者第五参数确定规则确定第二类时频资源;第二信号接收模块,用于根据所述确定的第二类时频资源,接收信道或信号;其中所述信道或信号不占有所述第二类时频资源。
为解决上述技术问题,本发明实施例还提供了一种信令信息的传输装置,应用于第一通信节点,包括:第二信息发送模块,用于向第二通信节点发送第 八信令信息;和/或,第二信息接收模块,用于接收第二通信节点的第九信令信息;其中所述第八信令信息,和/或所述第九信令信息中包括如下信息至少之一:第一信号集合的信息,第二信号集合的信息,所述第一信号集合和所述第二信号集合中的信号包括参考信号;其中第一信道或信号和所述第一信号集合中的至少一个信号关于一种或者多种信道大尺度特性参数满足准共址关系,和/或第二信道或信号的空间发送滤波参数根据所述第二信号集合中至少一个信号得到;所述第一信道或信号为所述第一通信节点发送给一个或者多个第三通信节点的信道或信号,所述第二信道或信号为所述一个或者多个第三通信节点发送给所述第一通信节点的信道或信号。
为解决上述技术问题,本发明实施例还提供了一种通信节点设备,包括处理器、存储器以及通信总线;所述通信总线用于实现所述处理器与所述存储器之间的通信连接;所述存储器用于存储的一个或者多个第一程序,所述处理器用于执行所述一个或者多个第一程序,以实现如上所述的测量参考信号的发送方法的步骤;或,所述存储器用于存储的一个或者多个第二程序,所述处理器用于执行所述一个或者多个第二程序,以实现如上所述的测量参考信号的接收方法的步骤;或,所述存储器用于存储的一个或者多个第三程序,所述处理器用于执行所述一个或者多个第三程序,以实现如上所述的测量参考信号的发送方法的步骤;或,所述存储器用于存储的一个或者多个第四程序,所述处理器用于执行所述一个或者多个第四程序,以实现如上测量参考信号的接收方法的步骤;或,所述存储器用于存储的一个或者多个第五程序,所述处理器用于执行所述一个或者多个第五程序,以实现如上所述的测量参考信号的接收方法的步骤;或,所述存储器用于存储的一个或者多个第六程序,所述处理器用于执行所述一个或者多个第六程序,以实现如上所述的测量参考信号的接收方法的步骤;或,所述存储器用于存储的一个或者多个第七程序,所述处理器用于执行所述一个或者多个第七程序,以实现如上所述的信号的传输方法的步骤;或,所述存储器用于存储的一个或者多个第八程序,所述处理器用于执行所述一个或者多个第八程序,以实现如上所述的信号发送方法的步骤;或,所述存储器用于存储的一个或者多个第九程序,所述处理器用于执行所述一个或者多个第九程序,以实现如上所述的信道或信号的接收方法的步骤;或,所述存储器用于存储的一个或者多个第十程序,所述处理器用于执行所述一个或者多个第十程序,以实现如上所述的信令信息的传输方法的步骤。
为解决上述技术问题,本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储一个或者多个第一程序,所述一个或者多个第一程序可被一个或者多个处理器执行,以实现如上所述的测量参考信号的发送方法的步骤;或,所述计算机可读存储介质用于存储一个或者多个第二程序, 所述一个或者多个第二程序可被一个或者多个处理器执行,以实现如上所述的测量参考信号的接收方法的步骤;或,所述计算机可读存储介质用于存储一个或者多个第三程序,所述一个或者多个第三程序可被一个或者多个处理器执行,以实现如上所述的测量参考信号的发送方法的步骤;或,所述计算机可读存储介质用于存储一个或者多个第四程序,所述一个或者多个第四程序可被一个或者多个处理器执行,以实现如上所述测量参考信号的接收方法的步骤;或,所述计算机可读存储介质用于存储一个或者多个第五程序,所述一个或者多个第五程序可被一个或者多个处理器执行,以实现如上所述的测量参考信号的接收方法的步骤;或,所述计算机可读存储介质用于存储一个或者多个第六程序,所述一个或者多个第六程序可被一个或者多个处理器执行,以实现如上所述的测量参考信号的接收方法的步骤;或,所述计算机可读存储介质用于存储一个或者多个第七程序,所述一个或者多个第七程序可被一个或者多个处理器执行,以实现如上所述的信号的传输方法的步骤;或,所述计算机可读存储介质用于存储一个或者多个第八程序,所述一个或者多个第八程序可被一个或者多个处理器执行,以实现如上所述的信号发送方法的步骤;或,所述计算机可读存储介质用于存储一个或者多个第九程序,所述一个或者多个第九程序可被一个或者多个处理器执行,以实现如上所述的信道或信号的接收方法的步骤;或,所述计算机可读存储介质用于存储一个或者多个第十程序,所述一个或者多个第十程序可被一个或者多个处理器执行,以实现如上所述的信令信息的传输方法的步骤。
本申请的有益效果是:根据本发明实施例提供的信号传输方法、装置、设备、系统及存储介质,可根据接收到的信令信息和/或预先协商的参数确定规则,确定出测量参考信号的参数信息,然后根据确定出的参数信息发送测量参考信号以进行测量,在某些应用示例中可发送包括但不限于用于测量干扰的第一类测量参考信号,以用于对通信节点链路间采用空分复用存在的干扰进行有效测量,从而使得通信节点可以在干扰小的资源上采用空分复用的方式进行信号的发送或接收,降低链路间采用空分复用时的相互干扰,保证通信质量。
本申请其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本申请说明书中的记载变的显而易见。
附图说明
图1-1为本申请实施例一中的中继节点连接结构示意图;
图1-2为图1-1中的分解示意图一;
图1-3为图1-1中的分解示意图二;
图2-1为本申请实施例一中的测量参考信号的发送方法流程示意图;
图2-2为本申请实施例一中的测量参考信号的接收方法流程示意图;
图3-1为本申请实施例二中的测量参考信号的发送方法流程示意图;
图3-2为本申请实施例二中的测量参考信号的接收方法流程示意图;
图4为本申请实施例三中的引入上行干扰测量资源和上行信道测量资源示意图;
图5为本申请实施例三中的上行测量报告对应多个信道测量资源和一个干扰测量资源的示意图一;
图6为本申请实施例三中的上行测量报告对应多个信道测量资源和一个干扰测量资源的示意图二;
图7为本申请实施例三中的上行测量报告对应多个信道测量资源和一个干扰测量资源的配置流程示意图;
图8为本申请实施例三中的IAB donor node/gNB节点与UE连接示意图;
图9为本申请实施例三中的IAB donor node/gNB节点与UE连接示意图;
图10为本申请实施例五中的上行测量参考信号和上行信道位于一个OFDM的不同PRB的示意图;
图11为本申请实施例五中的上行测量参考信号和上行信道位于一个OFDM的一个PRB的示意图;
图12为本申请实施例六中的测量参考信号的接收方法流程示意图;
图13为本申请实施例七中的信号的传输方法流程示意图;
图14为本申请实施例七的波束分配示意图;
图15-1为本申请实施例七的不同时域资源对应不同的空间发送滤波参数集合示意图;
图15-2为本申请实施例七的不同时域资源对应不同的频域资源划分的示意图;
图15-3为本申请实施例七的A个链路之间的不同的频域资源划分的示意图;
图15-4为本申请实施例七的不同时域资源对应不同的UB/DB中可用的频域资源集合的示意图;
图15-5为本申请实施例七的不同时域资源对应不同的UB/DB中可用的参考 信号集合的示意图;
图15-6为本申请实施例七的M个时域资源轮流出现的示意图;
图16为本申请实施例七的空间发送滤波参数集合与参考信号集合关联示意图;
图17为本申请实施例八的信号发送方法流程示意图;
图18为本申请实施例八的UB链路的reserved资源或速率匹配资源占有的图样是CSI-RS图样的示意图;
图19为本申请实施例九的信道或信号的接收方法流程示意图;
图20为本申请实施例九的DB链路的reserved资源或速率匹配资源占有的图样是SRS图样的示意图;
图21-1为本申请实施例十一的根据资源和距离资源最近的控制信道之间的间隔与预定阀值之间的关系确定资源类型的示意图一;
图21-2为本申请实施例十一的根据资源和距离资源最近的控制信道之间的间隔与预定阀值之间的关系确定资源类型的示意图二;
图21-3为本申请实施例十一的不同资源类型对应的A个链路之间的资源划分不同的示意图;
图22-1为本申请实施例十四的测量参考信号的发送装置结构示意图;
图22-2为本申请实施例十四的测量参考信号的接收装置结构示意图;
图23-1为本申请实施例十五的测量参考信号的发送装置结构示意图;
图23-2为本申请实施例十五的测量参考信号的接收装置结构示意图;
图24-1为本申请实施例十六的测量参考信号的接收装置结构示意图;
图24-2为本申请实施例十六的另一测量参考信号的接收装置结构示意图;
图25为本申请实施例十七的信号的传输装置结构示意图;
图26为本申请实施例十八的信号发送装置结构示意图;
图27为本申请实施例十九的信道或信号的接收装置结构示意图;
图28为本申请实施例二十的信令信息的传输装置结构示意图;
图29为本申请实施例二十一的通信节点设备结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明实施例作进一步详细说明。应当 理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例一:
相关技术中,通信节点的两链路间采用空分复用而相互之间存在干扰。例如参见图1-1所示,中继节点1(IAB node1)或中继传输节点(IAB donor node)与中继节点2(IAB node2)连接,中继节点2与其下的中继节点3(IAB node3)或终端UE链接。如图1-1所示,UB(uplink backhaul)信号和DA(downlink access)信号之间可以采用空分复用的方式,DB(downlink backhaul)信号和UA(uplink access)信号之间也可以采用空分复用的方式。空分复用的一个显著特点是频谱利用率高,延迟小,但是无法避免存在干扰,如何通过合理的干扰测量,降低两个链路(例如UB和DA,DB和UA)之间的干扰问题是本实施例可解决的技术问题。同时考虑到Backhaul链路两个IAB node节点之间的信道环境以直射径为主,可选地,本实施例还可通过参考信号的图样增强方案,进一步提高频谱利用率。
在图1-1中,Access链路即包括IAB node2和IAB node3之间的通信链路,也可以包括IAB node2和IAB node2覆盖下的UE之间的通信链路,当然也可以将图1-1分解为图1-2和图1-3,即IAB node2和IAB node3之间的通信链路称为Backhaul链路,IAB node2和UE之间的通信链路才称为Access链路。为了便于描述和理解,本实施例下面的描述中采用图1-1的方式,其中IAB node和上一级通信节点之间的通信称为Backhaul链路,IAB node和下一级通信节点或者其覆盖下的UE之间的通信称为Access链路。可选地,图1-1中UB/DB链路的调度可由IAB node1/IAB donor node控制,UA和DA链路的调度可由IAB node2控制。
针对上述通信节点链路间采用空分复用而存在的干扰问题,本实施例提供了一种测量参考信号的发送方法,参见图2-1所示,包括:
S201:根据接收到的第一信令信息和/或预先协商的第一参数确定规则,确定出测量参考信号的参数信息。
S202:根据确定出的参数信息,发送测量参考信号以进行相应的测量。
相应的,在本实施例中还可包括测量参考信号的接收方法,请参见图2-2所示,包括:
S203:发送第一信令信息,该第一信令信息中包括测量参考信号的参数信息。
S204:根据所述参数信息,接收测量参考信号。
在本实施例中,当需要进行干扰测量时,则在某些应用示例中按照图2-1所示的过程所生成发送的测量信号可包括用于测量干扰的类测量参考信号,也可称为干扰测量参考信号。且可选地,该干扰测量参考信号可为上行干扰测量参考信号,以用于对通信节点链路间采用空分复用存在的干扰进行有效测量,从而使得通信节点可以在干扰小的资源上采用空分复用的方式进行信号的发送或接收,降低链路间采用空分复用时的相互干扰,保证通信质量。
在本实施例中,除了进行干扰测量外,可选地,也可根据需求进行信道测量,因此在某些应用示例中按照图2-1所示的过程所生成发送的测量信号可包括用于信道测量的测量参考信号,也可称为信道测量参考信号。具体包括哪些类型的测量参考信号可以根据需求灵活设定。
在某些应用示例中可发送包括但不限于用于测量干扰的测量参考信号,以用于对通信节点链路间采用空分复用存在的干扰进行有效测量,从而使得通信节点可以在干扰小的资源上采用空分复用的方式进行信号的发送或接收,降低链路间采用空分复用时的相互干扰,保证通信质量。
可选地,为了提高频谱利用率,本实施例还可通过设置测量参考信号的图样提高频谱利用率。因此,可选地,上述步骤中所确定的参数信息包括但不限于以下信息中的至少一种:测量参考信号在一个物理资源块中占有的M组子载波中,每一组子载波中的最低子载波索引或最高子载波索引;测量参考信号在一个时间单元中占有的N组时域符号中,每一组时域符号中的最低时域符号索引或最高时域符号索引;测量参考信号的端口码分复用类型信息;测量参考信号的密度信息ρ;测量参考信号对应的物理资源块集合信息;测量参考信号包括的一个码分复用组对应码分复用长度信息;测量参考信号包括的一个码分复用组在时域的复用长度;测量参考信号包括的一个码分复用组在频域的复用长度;测量参考信号的端口个数;测量参考信号对应的梳总数;测量参考信号对应的梳偏移;所述参数信息中包括的参数类型集合和确定下行测量参考信号的图样需要的参数类型集合的交集非空;测量参考信号占有的一组时域符号中包括的时域符号个数;序列组或者序列号跳变参数;序列跳变时参数信息;M和N的取值为正整数。
为了便于参数的确认和选择,可选地,本实施例中的参数信息还包括参数类型集合的选择信息;参数类型集合至少包括第一参数类型集合和第二参数类型集合中的至少一个;第一参数类型集合包括用于确定第一类测量参考信号的图样所需的参数信息;第二参数类型集合包括用于确定第二类测量参考信号的图样所需的参数信息。
且应当理解的是,本实施例中第一类测量参考信号和第二类测量参考信号所采用的图样可以相同,也可以不同,具体可根据应用场景灵活选择。
例如,在一种示例中,第二类测量参考信号采用CSI-RS(CSI Reference Signal,信道状态测量导频信号)图样时,此时的第二参数类型集合可包括但不限于以下参数至少之一:上行测量参考信号在一个物理资源块中占有的M组子载波中,每一组子载波中的最低子载波索引或最高子载波索引;可选地,所述一组子载波包括连续的子载波,或者所述一组子载波为码分复用的一组子载波;上行测量参考信号在一个时间单元中占有的N组时域符号中,每一组时域符号中的最低时域符号索引或最高时域符号索引;可选地,所述一组时域符号包括连续的时域符号;或者一组时域符号位码分复用的一组时域符号;上行测量参考信号的端口码分复用类型信息;上行测量参考信号的密度信息;上行测量参考信号对应的物理资源块集合信息;上行测量参考信号的端口个数。
又例如,在一种示例中,第一类测量参考信号采用SRS(Sounding Reference Signal,信道探测参考信号)图样时,此时的第一参数类型集合可包括但不限于以下参数至少之一:上行测量参考信号在一个物理资源块中占有的M组子载波中,每一组子载波中的最低子载波索引或最高子载波索引;可选地,所述一组子载波包括连续的子载波,或者所述一组子载波为码分复用的一组子载波;上行测量参考信号在一个时间单元中占有的N组时域符号中,每一组时域符号中的最低时域符号索引或最高时域符号索引;可选地,所述一组时域符号包括连续的时域符号;或者一组时域符号位码分复用的一组时域符号;上行测量参考信号的端口个数;上行测量参考信号对应的梳总数;上行测量参考信号对应的梳偏移;上行测量参考信号包括的一个码分复用组在时域的复用长度;上行测量参考信号包括的一个码分复用组在频域的复用长度。
在本实施例中的一种示例中,上述参数信息包括以下各信息时,以下各信息可选地可满足如下特征至少之一:码分复用类型信息包括如下类型中的至少之一:无码分复用;频域长度为2的码分复用;频域长度为2和时域长度为2 总长度为4的码分复用;频域长度为2时域长度为4总长度为8的码分复用;密度信息ρ表示每个测量参考信号端口在每个物理资源中占有的平均子载波数为ρ;密度信息ρ表示每隔1/ρ个物理资源块,测量参考信号的图样在频域重复一次;密度信息ρ包括{0.5,1,3};一组子载波为一个码分复用组在频域对应的一组子载波;一组子载波为频域连续的一组子载波;一组子载波等间隔分布;一组子载波中包括的子载波数属于{1,2};一组时域符号为一个码分复用组在时域对应的一组时域符号;一组时域符号为时域连续的一组时域符号;一组时域符号等间隔分布;测量参考信号对应的物理资源块集合信息包括起始物理资源索引和物理资源块个数信息;测量参考信号对应的物理资源块集合包括的物理资源块是非连续的物理资源块;测量参考信号等间隔占有物理资源块集合中的物理资源块;测量参考信号对应的梳总数属于{1,2,4,8,12,a*12,b*4},其中a和b的取值为正整数;测量参考信号对应的梳偏移的最大值属于{0,1,3,7,11,a*12-1,b*4-1}。
又例如,可选地,第一类测量参考信号的图样也可为上行参考信号图样;本实施例中上行参考信号包括但不限于如下参考信号至少之一:上行测量参考信号,上行解调参考信号,上行相位跟踪参考信号(Phase-tracking reference signal,PTRS),上行Preamble序列;第二类测量参考信号的图样可为下行参考信号图样,本实施例中下行参考信号包括但不限于如下参考信号至少之一:下行测量参考信号,下行解调参考信号,下行相位跟踪参考信号(Phase-tracking reference signal,PTRS),下行同步信号。
在一些应用示例中,第一类测量参考信号可为第一通信节点在上行链路上接收的一个或者多个第三通信节点发送的测量参考信号;第二类测量参考信号为第一通信节点在下行链路上发送给一个或者多个第三通信节点的测量参考信号。或,第一类测量参考信号可为第二通信节点在上行链路上接收的一个或者多个第四通信节点发送的测量参考信号;第二类测量参考信号可为第二通信节点在下行链路上发送给一个或者多个第四通信节点的测量参考信号;
在一些示例中,上述测量参考信号是否是Backhaul链路上的上行参考信号的判断结果和参数类型集合的选择信息之间有关联,例如为Backhaul链路上的上行参考信号时,上行参考信号的图样采用CSI-RS图样,一般Access链路上的上行参考信号为SRS图样,或者为Backhaul链路上的上行参考信号时,上行参考信号的图样可以在CSI-RS图样和SRS图样之间选择,此处Backhaul链路 指两个基站之间的无线链路,Access链路指基站和终端之间的链路。
上述测量参考信号包括的端口数信息属于的端口数集合和参数类型集合的选择信息之间有关联,当参数类型集合选择为确定CSI-RS图样需要的参数集合时,上行测量参考信号的端口数可以为大于4,当参数类型集合选择为确定SRS图样需要的参数集合时,上行测量参考信号的端口数不能大于4。
上述参数类型集合的选择信息和测量参考信号所用的序列类型信息之间有关联,例如参数类型集合为确定CSI-RS图样需要的参数集合时,上行测量参考信号所有的序列类型为PN序列,参数类型集合为确定SRS图样需要的参数集合时,上行测量参考信号所有的序列类型为ZC序列,PN序列和ZC序列可以参考38.211中协议中的伪随机序列(Pseudo-random sequence),ZC序列可以参考协议38.211中的ZC序列。
上述测量参考信号占有的物理资源块数和上述参数类型集合的选择信息之间有关联。
在本实施例中,两个信息之间有关联包括但不限于表示根据一个信息(称第一信息)可以得到另一个信息(称第二信息),和/或根据第二信息也可以得到第一信息,和/或第一信息的特定取值和第二信息的特定取值不能同时出现等。
其中,第一通信节点为发送测量参考信号的通信节点,第二通信节点为发送第一信令信息的通信节点。例如,一种示例中,第一通信节点可为图1-1中的IAB node2,第二通信节点可为图1-1中的IAB node1或IAB donor node,第三通信节点可为图1-1中的IAB node3或UE,第四通信节点也可为图1-1中的IAB node3或UE。
在实施例的一种示例中,第一通信节点根据第二通信节点发送的第一信令信息和/或与第二通信节点预先协商的第一参数确定规则确定测量参考信号的参数信息;第一通信节点向第二通信节点发送测量参考信号;其中,第一通信节点所确定的参数信息包括如下信息至少之一:用于确定第一类参考信号的图样需要的参数信息,第一类参考信号的类型选择信息;可选地,本实施例中的参考信号的类型可包括但不限于如下参考信号至少之一:下行解调参考信号,下行测量参考信号,下行相位跟踪参考信号,下行同步信号;其中,第一类参考信号满足如下特征至少之一:为第二通信节点发送的参考信号;为第一通信节点发送的参考信号;为第二通信节点或者第一通信节点在下行链路发送的参考信号。
可选地,在本实施例的一种示例中,所发送的测量参考信号满足如下特征至少之一:所发送的测量参考信号为在上行链路上发送的测量参考信号;所发送的测量参考信号所在的时域符号为一个时间单元中的任意一个或者多个时域符号;所发送的测量参考信号的图样为CSI-RS图样;所发送的测量参考信号的图样为下行参考信号的图样;所发送的一个测量参考信号资源在一个物理资源块中占有X组连续的子载波;所发送的一个测量参考信号端口在一个物理资源块中占有的子载波数包括{0.5,1,2};所发送的一个测量参考信号资源包括的测量参考信号端口数属于{1,2,4,8,12,16,24,32};其中,上述X的取值为正整数。
可选地,在一种示例中,所发送的测量参考信号可满足如下特征至少之一:测量参考信号和第一信道或信号(即第一信道或第一信号)占有相同时域符号上的不同子载波;测量参考信号和第一信道或信号占有相同时域符号时,第一信道或信号不能占有测量参考信号占有的子载波;测量参考信号占有的子载波和第一信道或信号占有的子载波碰撞时,可根据第一信令信息和/或预先协商的第一参数确定规则确定测量参考信号和第一信道或信号之间的优先级;第一信道或信号为第一通信节点发送的信道或信号,本实施例中的第一通信节点可为发送上述测量参考信号的通信节点。
本实施例中的第一信道包括但不限于控制信道,数据信道中的至少一种,第一信号包括但不限于参考信号,随机接入信号中的至少一种。
可选地,在本实施例的一种示例中,如下信息至少之一与根据是否可在相同时域符号上同时发送第一信道或信号和测量参考信号相关联:上述第一信令信息;测量参考信号图样是否属于预定图样类型(例如包括但不限于CSI-RS图样或SRS图样);测量参考信号和/或第一信道或信号发送时,传输预编码是否使能,例如,在一种示例中,传输预编码使能采用DFT-SC-OFDM(Discrete Fourier Transform-Spread-OFDM)的发送波形,传输预编码不使能可为采用CP-OFDM(Cyclic Prefix-OFDM)的发送波形。测量参考信号是否为Backhaul链路上的上行参考信号;测量参考信号在一个物理资源块中是否等间隔占有子载波;测量参考信号所用的序列类型;测量参考信号是用于干扰测量的测量参考信号还是用于信道测量的测量参考信号;测量参考信号的用途是否属于预定用途集合,例如,一种示例中,该用途集合中的用途包括但不限于“光束管理(beam management)”、“天线切换”、“码本(code book)”、“非码本(non code  book”);第一信道或信号为第一通信节点发送的信道或信号,该第一通信节点为发送上述测量参考信号的通信节点。
可选地,第一信道可包括如下信道至少之一:数据信道,控制信道;第一信号可包括如下信号至少之一:参考信号,随机接入信号。
为了便于理解,本实施例下面结合一种具体的应用场景为示例进行说明。
在本应用场景示例中,上行参考信号图样包括下行CSI-RS图样,例如,上行参考信号可以为NR(New-Radio)的CSI-RS图样,其中,CSI-RS图样在一种示例中可根据如下公式(1)得到:
Figure PCTCN2019096904-appb-000001
可选地,公式(1)中的k',l',
Figure PCTCN2019096904-appb-000002
ρ根据以下表1得到,分别代表CSI-RS占有的一组子载波中的局部子载波索引,CSI-RS占有的一组时域符号中的局部时域符号索引,CSI-RS占有的一组子载波中的起始子载波在一个PRB中的子载波索引,CSI-RS占有的一组时域符号中的起始时域符号在一个slot时隙中的时域符号索引,CSI-RS的密度信息,本示例中,CSI-RS的密度信息可表示每个PRB中每个CSI-RS端口平均占有的RE(资源单元,Resource Element)数,和/或密度信息表示CSI-RS图样每隔1/ρ个PRB重复一次,和/或密度信息表示CSI-RS在每1/ρ个PRB组中有一个PRB中的RE。
Figure PCTCN2019096904-appb-000003
表示一个PRB中包括的子载波数,β CSI-RS表示CSI-RS的功率。w t(l'),w f(k')分别表示时域码分复用的正交码,频域码分复用的正交码,表1中指示的不同码分复用类型对应的w t(l'),w f(k')可以参照以下表2~表5获取。应当理解的是,上述示例的参数值的获取方式仅仅是一种示例,并不限于以上示例说明。
因此,在本实施例中,为了确定CSI-RS的图样,基站可通过无线资源控制(Radio Resource Control,RRC)信令(可以看通过其他信令)通知如下参数:frequencyDomainAllocation(用于获取表1中的{k 0,k 1,k 2...,k 5}),nrofPorts(CSI-RS 端口数),firstOFDMSymbolInTimeDomain(用于通知表1中的l 0)信息,firstOFDMSymbolInTimeDomain2(用于通知表1中的l 1),cdm-Type(表1中的码分复用类型),density(用于通知表1中的密度信息ρ),freqBand(CSI-RS对应的连续的PRB(Physical resource block物理资源块)集合,CSI-RS在这个PRB集合中每个PRB中都占有RE,或者CSI-RS在这个PRB集合中等间隔分布的PRB中占有RE)。
在表1的Row1中CSI-RS占有等间隔分布的一组子载波,即{k 0,k 0+4,k 0+8},在表1的Row6中CSI-RS占有4组子载波,第一组为{k 0,k 0+1},第二组为{k 1,k 1+1},第三组为{k 2,k 2+1},第四组为{k 3,k 3+1}。
表1
Figure PCTCN2019096904-appb-000004
Figure PCTCN2019096904-appb-000005
表2
Index w f(k′) w t(l′)
0 1 1
其中,表2对应cdm-Type为“no CDM”时,序列w f(k′)和w t(l′)。
表3
Index w f(k′) w t(l′)
0 [+1 +1] 1
1 [+1 -1] 1
其中,表3对应cdm-Type为“FD-CDM2”时,序列w f(k′)和w t(l′)。
表4
Index w f(k′) w t(l′)
0 [+1 +1] [+1 +1]
1 [+1 -1] [+1 +1]
2 [+1 +1] [+1 -1]
3 [+1 -1] [+1 -1]
其中,表4对应cdm-Type为“CDM4”时,序列w f(k′)和w t(l′)。
表5
Index w f(k′) w t(l′)
0 [+1 +1] [+1 +1 +1 +1]
1 [+1 -1] [+1 +1 +1 +1]
2 [+1 +1] [+1 -1 +1 -1]
3 [+1 -1] [+1 -1 +1 -1]
4 [+1 +1] [+1 +1 -1 -1]
5 [+1 -1] [+1 +1 -1 -1]
6 [+1 +1] [+1 -1 -1 +1]
7 [+1 -1] [+1 -1 -1 +1]
其中,表5对应cdm-Type为“CDM8”时,序列w f(k′)和w t(l′)。
因此,可选地,为了实现上行参考信号采用CSI-RS图样,可以在上行参考信号(也即测量参考信号)的配置信息包括如下参数信息中的一种或者多种:frequencyDomainAllocation(上行测量参考信号占有的M组子载波中的每一组的起始子载波在一个PRB中子载波索引信息,也即上行测量参考信号在一个物理资源块中占有的M组子载波中,每一组子载波中的最低子载波索引),nrofPorts(上行参考信号的端口个数,例如上行参考信号的端口数可以为{1,2,4,8,12,16,24}中的任意一种),firstOFDMSymbolInTimeDomain(上行参考信号占有的一组时域符号中的起始时域符号在一个slot中的时域符号索引,即表1中的l 0),firstOFDMSymbolInTimeDomain2(上行参考信号占有的另一组时域符号中的起始时域符号在一个slot中的时域符号索引,即表1中的l 1),cdm-Type(上行参考信号端口复用类型),density(上行参考信号的密度信息),freqBand(上行参考信号对应的连续的PRB集合,上行参考信号在这个PRB集合中每个PRB中都占有RE,或者上行参考信号在这个PRB集合中等间隔分布的PRB中占有 RE)。
可选地,如上述分析,在一些示例中,上行参考信号(即测量参考信号)也可以在SRS图样和CSI-RS图样之间选择,从而在上行参考信号的配置信息中包括参考信号图样的选择信息,当选择为SRS图样时,上行参考信号的配置信息中包括如下参数信息:nrofSRS-Ports(上行参考信号的端口数),transmissionComb(上行参考信号对应的梳妆偏移,包括梳的总数,梳的偏移),startPosition(上行参考信号占有的一组时域符号中的起始时域符号索引),nrofSymbols(上行参考信号占有的一组时域符号中包括的时域符号个数),repetitionFactor(上行参考信号时域跳频单位或者称为重复因子,即每隔repetitionFactor个时域符号,上行参考信号占有的频域位置发生一次跳变),freqDomainPosition(上行参考信号占有的起始PRB信息),freqDomainShift(上行参考信号占有的树状结构中的树根对应的一个带宽的起始物理资源块的位置信息,或者称为上行参考信号占有的树状结构中的树根对应的一个带宽相对预定频域位置的偏移量),freqHopping(频域跳频相关参数),groupOrSequenceHopping(序列组或者序列号跳变参数),sequenceId(序列跳变时的参数信息)。
上述参考信号图样的选择信息,也可以称为参数类型集合的选择信息,例如,根据上述示例可知,在一种示例中,第一参数类型集合包括确定CSI-RS图样需要的参数{frequencyDomainAllocation,nrofPorts,firstOFDMSymbolInTimeDomain,firstOFDMSymbolInTimeDomain2,cdm-Type,density,freqBand},第二参数类型集合包括确定SRS图样的参数{nrofSRS-Ports,transmissionComb,startPosition,nrofSymbols,repetitionFactor,freqDomainPosition,freqDomainShift,freqHopping,groupOrSequenceHopping,sequenceId},上述两个参数类型集合之间交集非空,例如都包括端口个数的信息。当然应当理解的是,在一些应用示例中,也不排除两个参数类型集合之间的交集为空。例如两个参数集合中的相同参数类型作为共有项直接通知,不包括在上述两个参数类型集合中。
当上行参考信号(即测量参考信号)图样可以在SRS和CSI-RS之间选择的时候,可选地,本实施例的另一种实施方式是,上行参考信号资源中包括的上行参考信号端口数信息和参考信号图样选择信息之间有关联。
如上所示,本实施例中两个信息之间有关联可表示根据一个信息可以得到另一个信息,或者一个信息的特定取值和另一个信息的特定取值不能同时出现。 例如约定当上行参考信号的端口数小于预定值(例如4)时,上行参考信号采用SRS图样,否则用CSI-RS图样。和/或端口数属于预定集合时,不能采用CSI-RS图样,端口数不属于预定集合时,可以在CSI-RS图样和SRS图样之间选择。具体关联关系(也即确定规则)可根据具体应用场景灵活确定。
可选地,当上行参考信号可以用CSI-RS图样,此时需要确定上行参考信号所用的序列是Pseudo-random sequence,还是Low-PAPR sequence,这两个序列的产生具体可以参考38.211协议。在一种示例中,一种方式可固定用Pseudo-random sequence,另一种方式可为基站或图1-1中的IAB node1/IAB donor node通过信令通知UE应该采用哪一种序列。
可选地,当上行测量参考信号占有的物理资源块(physical resource block,PRB)的个数和参数类型集合的选择信息之间有关联,比如上行测量参考信号占有的物理资源块数小于预定值时,只能用SRS图样,否则,可以在SRS图样和CSI-RS图样之间选择。
在本应用场景示例中,当上行参考信号(即测量参考信号,此时具体为上行测量参考信号)可以在CSI-RS图样和SRS图样之间选择时,可选地,可建立上行参考信号的图样选择信息和上行参考信号的序列选择信息的关联关系。例如当上行参考信号为SRS图样采用Low-PAPR sequence,当上行参考信号为CSI-RS图样固定用Pseudo-random sequence,或者约定上行参考信号为SRS图样不能采用Pseudo-random sequence,当上行参考信号为CSI-RS图样时,可以在两者之间选择。
在本应用场景示例的另一示例中,可以设置上行参考信号是否为Backhaul上行参考和上行参考信号的图样选择信息之间有关联。例如当上行参考信号是access链路上的上行参考信号(此时的access链路可以专指基站和终端之间链路如图1-3所示,也可以是如图1-1中的IABnode2与IABnode3/UE之间的链路)时,只能采用SRS图样,当上行参考信号是Backhaul链路(此处的Backhaul链路可以专指IAB node节点之间的链路,如图1-2所示,也可以是如图1-1所示,IAB node2节点和上一级节点IABdonor/IABnode1之间的链路)上的上行参考信号时,只能采用CSI-RS图样,或者可以在CSI-RS图样和SRS图样之间选择等,具体关联规则也可根据具体应用场景灵活选定。
且应当理解的是,上述下行测量参考信号的图样只举例了NR中的CSI-RS图样,但应当理解的是并不限于NR中的CSI-RS图样,也可以是LTE(Long Term  Evolution,长期演进)或其他系统中的CSI-RS图样。
上述示例中所示例的方式是上行参考信号(也即上行测量参考信号)图样可以采用下行测量参考信号的图样,但应当理解的是,本实施例中也不排除上行测量参考信号图样可以是下行参考信号的图样,其中下行参考信号包括但不限于如下参考信号中的一种或多种:下行测量参考信号,下行解调参考信号,下行同步信号,下行相位跟踪信号。
实施例二:
为了便于理解,本实施例下面在上述实施例一所示例的测量参考信号发送的基础上,以发送包括干扰测量参考信号为示例进行说明,此时的一种示例的测量参考信号的发送方法参见图3-1所示,包括:
S301:第一通信节点根据从第二通信节点接收到的第二信令信息和/或与第二通信节点预先协商的第二参数确定规则确定出P类测量参考信号的资源。
S302:第一通信节点在确定的P类测量参考信号的资源上,发送相应P类测量参考信号。
本实施例中P的取值为大于或者等于1的正整数,也即本实施例中,第一通信节点根据从第二通信节点接收到的第二信令信息和/或与第二通信节点预先协商的第二参数确定规则,确定出至少一类测量参考信号的资源,例如本实施例中至少确定出用于测量干扰的这一类测量参考信号的资源;S302中发送的P类测量参考信号中,包括用于测量干扰的测量参考信号。
相应的,在本实施例中,还可包括一种测量参考信号的接收方法,参见图3-2所示,包括:
S303:第二通信节点向第一通信节点发送第二信令信息,该第二信令信息中包括P类测量参考信号的资源信息。
S304:第二通信节点在该P类测量参考信号的资源上,接收P类测量参考信号。
如上所示,该P类测量参考信号的资源可包括用于测量干扰的测量参考信号的资源。
可选地,在本实施例的一种示例中,测量参考信号的接收方法还可包括: 第二通信节点向第一通信节点发送信道状态报告信息;和/或第二通信节点向第一通信节点发送资源信息,该资源信息是信道状态报告信息占有的资源信息。
可选地,该信道状态报告信息可满足但不限于如下特征至少之一:信道状态报告信息是基于P类测量参考信号得到的信道状态报告信息;信道状态报告信息包括信号与干扰加噪声比SINR;信道状态报告信息包括P类测量参考信号中的两类测量参考信号之间的性能差信息;信道状态报告信息是对于上行信道状态的反馈信息;信道状态报告信息和P类测量参考信号之间存在对应关系;第二通信节点在下行信道或信号上向第一通信节点发送的信道状态报告信息。
可选地,在本实施例的一种示例中,确定的出P类测量参考信号的资源还可包括用于测量信道的这一类的测量参考信号资源,第一通信节点还可在确定出的用于测量信道的测量参考信号资源上发送用于测量信道的测量参考信号。
例如,在一种示例中,第一通信节点可向第二通信节点发送请求信息,该请求信息中可包括用于测量干扰的测量参考信号和/或用于测量信道的测量参考信号,以进行干扰和/或信道测量。
通过干扰测量,第二通信节点可以知道第一通信节点在DA链路上发送的信号对于UB链路上的信号造成的干扰,从而可以协调UB链路和DA链路之间的复用方式,资源划分。例如在干扰小的资源上就可以使得UB和DA链路采用空分复用的方式占有资源。或者第二通信节点将测量结果告知第一通信节点,使得第一通信节点决定UB和DA的空分复用波束对如何配对组合,降低UB和DA之间空分复用的相互干扰。
在本示例中,P类测量参考信号满足如下特征至少之一:P类测量参考信号还包括用于测量信道的测量参考信号,用于测量信道的测量参考信号资源用于测量信道;P类测量参考信号对应的空间接收滤波参数相同;P类测量参考信号对应的空间发送滤波参数不同;P类测量参考信号中的每一类有其对应的空间发送滤波参数配置信息;P类测量参考信号的空间发送滤波参数信息和P类测量参考信号的类型信息之间有关联;P类测量参考信号为上行测量参考信号。
在本实施例中的一种示例中,用于测量干扰的测量参考信号满足如下特征中的至少之一:用于测量干扰的测量参考信号的配置信息中不携带空间发送滤波参数的配置信息;第一通信节点和第二通信节点之间的信号不携带干扰测量参考信号的空间滤波参数;用于测量干扰的测量参考信号的空间滤波参数不能根据第一通信节点和第二通信节点之间的信号获取;用于测量干扰的测量参考 信号的空间滤波参数与预定空间滤波参数集合中的空间滤波参数的交集为空,其中预定空间滤波参数集合中的每个空间滤波参数关联一个第一通信节点与第二通信节点之间的信号;用于测量干扰的测量参考信号的空间滤波参数根据第一通信节点发送给一个或者多个第三通信节点的第一参考信号的空间发送滤波参数得到;用于测量干扰的测量参考信号的参数信息和第一通信节点发送给一个或者多个第三通信节点的第二参考信号的参数信息相同;用于确定用于测量干扰的测量参考信号的参数类型和用于确定第一通信节点发送给一个或者多个第三通信节点的第三参考信号的参数类型相同;第一通信节点在用于测量干扰的测量参考信号的资源上给一个或者多个第三通信节点发送第四参考信号;用于测量干扰的测量参考信号用于测量第一通信节点给一个或者多个第三通信节点发送的信号到达第二通信节点的干扰;用于测量干扰的测量参考信号用于第二通信节点测量干扰;用于测量干扰的测量参考信号用于第二通信节点测量第一通信节点发送的第一类信号到达第二通信节点的干扰,其中调度第一类信号的控制信令所在的控制信道资源组和第二信令信息所在的控制信道资源组是两个不同的控制信道资源组,和/或第一类信号所在的频域带宽与第二信令信息所在的频域带宽是两个不同的频域带宽,和/或第一类信号所在的频域带宽与第二信令信息调度的信道或信号所在的频域带宽是两个不同的频域带宽。
其中,上述第一参考信号,第二参考信号,第三参考信号,第四参考信号都可以为如下参考信号中的至少多种:下行测量参考信号,下行解调参考信号,下行相位跟踪参考信号,同步信号。
在本实施例中的一种示例中,第一通信节点还可包括接收第三通信节点发送的信道状态报告信息,信道状态报告信息的信道测量资源包括第四参考信号,和/或,信道状态报告信息的信道测量资源包括用于测量干扰的测量参考信号的资源。
在本实施例的一种示例中,S301中的第二信令信息中可包括如下参数信息至少之一:用于测量干扰的测量参考信号在一个物理资源块中占有的M组子载波中每一组子载波中的最低子载波索引或最高子载波索引;用于测量干扰的测量参考信号在一个时间单元中占有的N组时域符号中每一组时域符号中的最低时域符号索引或最高时域符号索引;用于测量干扰的测量参考信号占有的物理资源块集合信息;用于测量干扰的测量参考信号端口码分复用类型信息;用于测量干扰的测量参考信号的密度信息ρ;用于测量干扰的测量参考信号包括的一 个码分复用组对应码分复用长度信息;用于测量干扰的测量参考信号包括的一个码分复用组在频域的复用长度;用于测量干扰的测量参考信号包括的一个码分复用组在时域的复用长度;用于测量干扰的测量参考信号图样类型信息,至少包括第一类图样和第二类图样;用于测量干扰的测量参考信号对应的参数类型集合的选择信息;用于测量干扰的测量参考信号对应的梳总数;用于测量干扰的测量参考信号对应的梳偏移;上述M和N的取值为正整数。
在本实施例的一种示例中,当上述参数信息包括如下信息时,如下信息满足如下特征至少之一:码分复用类型信息包括如下类型中的至少之一:无码分复用;频域长度为2的码分复用;频域长度为2和时域长度2总长度为4的码分复用;频域长度为2时域长度为4总长度为8的码分复用;密度信息ρ表示每个测量参考信号端口在每个物理资源中占有的平均子载波数为ρ;密度信息ρ表示每隔1/ρ个物理资源块,测量参考信号的图样在频域重复一次;密度信息ρ包括{0.5,1,3};一组子载波为一个码分复用组在频域对应的一组子载波;一组子载波为频域连续的一组子载波;一组子载波等间隔分布;一组子载波中包括的子载波数属于{1,2};一组时域符号为一个码分复用组在时域对应的一组时域符号;一组时域符号为时域连续的一组时域符号;一组时域符号等间隔分布;测量参考信号对应的物理资源块集合信息包括起始物理资源索引和物理资源块个数信息;测量参考信号对应的物理资源块集合包括的物理资源块是非连续的物理资源块;测量参考信号等间隔占有物理资源块集合中的物理资源块;测量参考信号对应的梳总数属于{1,2,4,8,12,a*12,b*4},其中a和b的取值为正整数;例如a为大于等于2的正整数,b的取值是使得b*4大于a*12的正整数;测量参考信号对应的梳偏移的最大值属于{0,1,3,7,11,a*12-1,b*4-1}。
在本实施例中的一种示例中,第一类图样为信道探测参考信号SRS图样;第一类图样为上行参考信号图样;第二类图样为信道状态测量导频信号CSI-RS图样;第二类图样为同步信号图样;第二类图样为下行参考信号图样。
在本实施例中的一种示例中,第一通信节点向第二通信节点发送上行测量参考信号之后,还可包括接收第二通信节点发送的信道状态报告信息。
在一种示例中,信道状态报告信息可满足如下特至少之一:信道状态报告信息是基于测量参考信号得到的信道状态报告信息;信道状态报告信息包括信号与SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比);信道状态报告信息包括P类测量参考信号中的两类测量参考信号之间的性能差信 息,其中P值为大于1的正整数;信道状态报告信息是对于上行信道状态的反馈信息;信道状态报告信息和P类测量参考信号之间存在对应关系;第一通信节点在下行信道或信号上接收第二通信节点发送的信道状态报告信息。
在本实施例中的一种示例中,第二通信节点发送的信道状态报告信息可满足如下特征至少之一:信道状态报告信息包括第二测量参考信号和用于测量干扰的测量参考信号到达第二通信节点的性能差信息;一个信道状态报告信息对应用于测量信道的测量参考信号和用于测量干扰的测量参考信号,其中用于测量信道的测量参考信号包括CC个测量参考信号资源,用于测量干扰的测量参考信号包括CI个测量参考信号资源,CC为大于或者等于1的正整数,CI为小于或者等于CC的正整数;发送的测量参考信号包括上述P类中的预定类时,第一通信节点接收对应测量参考信号的信道状态报告信息;发送的测量参考信号不包括上述P类中的预定类时,第一通信节点不接收对应测量参考信号的信道状态报告信息;测量参考信号的类型信息和第一通信节点是否接收第二通信节点发送的信道状态报告信息之间有关联;发送的测量参考信号包括用于测量干扰的测量参考信号时,第一通信节点接收第二通信节点发送的信道状态报告信息;发送的测量参考信号不包括用于测量干扰的测量参考信号时,第一通信节点不接收第二通信节点发送的信道状态报告信息。
在本实施例的一种示例中还可包括:第一通信节点向第二通信节点发送请求信息,该请求信息中包括用于测量干扰的测量参考信号的信息。
例如,在一种示例中,第一通信节点可为图1-1中的IAB node2,第二通信节点可为图1-1中的IAB node1或IAB donor node,第三通信节点可为图1-1中的IAB node3或UE,第四通信节点也可为图1-1中的IAB node3或UE。
实施例三:
为了便于理解,本实施例在上述实施例基础上,结合图1-1所示的应用场景的一个示例测量过程进行说明。
在本实施例中,测量参考信号包括上行测量参考信号,其中上行测量参考信号资源中包括干扰测量资源。例如图1-1中当UB和DA上的信号SDM(Spatial division multiplex,空分复用)的时候,需要采用上述实施例一或二所示的方法,测量DA上的信号对于UB上的信号的干扰情况,从而使得当UB和DA采用 SDM的时候,IAB node2可以采用合适的波束在DA上发送信号,例如IAB node2和IAB node1/IAB donor node选择对于UB上的干扰最小的DA波束给DA发送信号。或者IAB node1/IAB donor node根据测量结果分配UB的发送波束和/或DA的发送波束,和/或UB的发送波束和DA的发送波束之间的配对情况,和/或分配UB和DA的复用方式,资源占有情况。
一种示例中,假设如图4所示,IAB donor node/IAB node1分配SRS资源1用于IAB donor node/IAB node1测量IAB node2与IAB donor/IAB node1之间的信道,即IAB node2发送的且目标节点为IAB donor node/IAB node1的信号经历的信道,即UB信道,SRS资源2用于IAB donor node/IAB node1测量IAB node2与IAB donor node/IAB node1之间的干扰,即IAB node2发送的且目标节点为IAB node 3/UE的信号到达IAB donor node/IAB node1经历的信道,即用于测量IAB node2给IAB node3/UE发送的DA信号对于UB信号造成的干扰。在SRS资源2中IAB node2可以向IAB node3/UE发送DA测量参考信号。
在IAB donor node/IAB node1侧,SRS资源1用于信道测量,SRS资源2用于干扰测量,IAB donor node/IAB node1侧可根据接收到的相应的测量参考信号的信号强度等参数进行相应波束间干扰情况的确认。
相应的,在IAB node3/UE侧,SRS资源2用于信道测量,SRS资源1用于干扰测量;其中SRS资源1和SRS资源2的配置信息可以是IAB donor node/IAB node1下发给IAB node3/UE,也可以是IAB node2接收到IAB donor node/IAB node1的分配信息之后,进一步下发给IAB node3/UE。
如实施例一或二所示,以上SRS资源1中的测量参考信号图样可以固定为SRS图样,也可以在SRS图样和CSI-RS图样之间选择。
以上SRS资源2中的测量参考信号图样也可以固定为SRS图样,或者固定CSI-RS图样,或者在SRS图样和CSI-RS图样之间选择,此时在IAB node2给IAB node3/UE分配干扰测量资源的时候,可以指示干扰测量资源的参考信号图样可以是SRS图样。
以上SRS资源2中的测量参考信号图样也可以固定为CSI-RS图样,此时在IAB donor/IAB node1分配给IAB node2的干扰测量资源就为CSI-RS图样。
以上SRS资源2中的测量参考信号图样可以在CSI-RS图样和SRS图样之间选择,从而IAB node2给IAB node3/UE分配下行链路的干扰测量资源的时候 可以在SRS图样和CSI-RS图样之间选择。如上述实施例一或二所示,图样选择也可以称为参数类型集合选择。当SRS作为干扰测量资源时,也可以称为NZP-SRS。在IAB donor node/IAB node1分配给IAB node2的上行链路(或者称为UB链路)上的干扰测量资源也可以在CSI-RS图样和SRS图样之间选择。
本文中两个链路SDM复用表示这两个链路占有的时域资源/频域资源有重叠,两个链路的信号通过空域波束区分。
在进行测量过程中,一个信道反馈信息(也即信道状态报告信息)可以对应多个信道测量资源,一个干扰测量资源;当然根据需求也可设置为一个信道反馈信息对应一个信道测量资源,一个干扰测量资源。
可选地,在本示例中,可设置上行信道的反馈信息对应多个信道测量资源,一个干扰测量资源。
例如,如图5所示,通过上行测量,UB链路可用的波束为图5中的波束,而这些波束IAB donor node/IAB node1可以动态分配给UB的数据信道传输/UB的控制信道传输/UB的测量参考信号。当UB和DA采用SDM复用的时候,DA的波束可根据测量结果选择对于UB的所有候选波束的干扰都比较小的波束。
进一步地如图6和图7所示,IAB donor node/IAB node1给IAB node2分配了3个信道测量资源{资源1,资源2,资源3}和一个干扰测量资源{资源4},IAB node2在3个信道测量资源上依次采用UB链路的候选发送波束在上行链路UB上发送测量参考信号,IAB node2在干扰测量资源上采用DA对应的候选发送波束在上行链路UB上发送测量参考信号(UB的干扰测量资源上和DA链路上信道测量资源可能就是同一个测量资源,从而这个干扰测量资源即可以说在UB链路上发送,也可以说在DA链路上发送)。IAB donor node/IAB node1依次得到{信道测量为资源1,干扰测量为资源4}对应的信道测量结果1(例如CQI1,或SINR1),{信道测量为资源2,干扰测量为资源4}对应的信道测量结果2(例如CQI2,或SINR2),{信道测量为资源3,干扰测量为资源4}对应的信道测量结果3(例如CQI3,或SINR3),并将{信道测量结果1,信道测量结果2,信道测量结果3}中的满足预定特征的信道测量结果在下行链路反馈给IAB node2。
其中,配置过程参见图7所示包括:
S701:IAB donor node/IAB node1在下行控制信令中分配一个上行信道测 量反馈信息和{信道测量资源1~3,干扰测量资源4}对应。
S702:IAB node2在上行链路上发送信道测量资源1~3,干扰测量资源4
S703:IAB donor/IAB node1在下行链路上反馈上行信道测量结果。
当然,应当理解的是,上述满足预定特征的信道测量结果可以为{信道测量结果1,信道测量结果2,信道测量结果3}性能最差的反馈给IAB node2。例如信道测量结果为CQI,则IAB donor node/IAB node1将{CQI1,CQI2,CQI3}中的最低性能反馈给IAB node2。或者信道测量结果为SINR,IAB donor node/IAB node1将{SINR1,SINR2,SINR3}中的最低SINR值反馈给IAB node2。当然根据需求也可以将多个信道测量结果中的最大值告知IAB node2。IAB node2得到这些信道测量结果后就知道DA的波束对UB的候选波束造成的干扰情况,例如当IAB donor/IAB node1反馈的是多个测量结果中的最低值时,IAB node2知道这个DA波束对于UB的每个候选波束造成的干扰的最小值,当最小值超过预定阀值时,IAB node2知道这个DA波束不能和UB信号采用SDM的复用方式。
在一种示例中,可以将多个信道测量结果都告知IAB node1,信道测量结果的最优值采用绝对值反馈方式,其他信道测量结果采用相对值方式反馈给IAB node2。
IAB donor node/IAB node1在分配上述信道测量资源{测量参考信号资源1~测量参考资源3}的时候,可以为每个测量参考信号资源配置一个spatialRelationInfo,即用于配置IAB node2在发送这个上行测量参考信号所用的空间发送滤波参数信息,例如SRS资源1的spatialRelationInfo可以配置为IAB donor node/IAB node1发送给IAB node2的CSI-RS/SSB,IAB node2根据接收CSI-RS/SSB的空间接收滤波参数,得到发送SRS资源1的空间滤波参数。SRS资源1的spatialRelationInfo也可以配置为IAB node2发送给IAB donor node/IAB node1的SRS资源10,IAB node2根据发送SRS资源10的空间发送滤波参数得到SRS资源1上的测量参考信号的空间发送滤波参数,本实施例中根据一个空间滤波参数得到另一个空间滤波参数,一种方式是两个空间滤波参数相同,另一种方式是一个空间滤波参数可以根据另一个空间滤波参数得到,两者之间不一定完全相同,或者可根据具体应用场景可进行微调。
在本实施例中,对于上述干扰测量资源4的空间滤波参数的确定方法包括但不限于以下示例的几种:
确定方法一:IAB node2和IAB donor node/IAB node1约定(即协商)当上行测量参考信号类型为干扰测量资源时,则IAB node2自己决定发送上行测量参考信号的空间滤波参数。
确定方法二:IAB node2和IAB donor node/IAB node1约定当上行测量参考信号类型为干扰测量资源时,IAB node2不能采用与预定空间滤波参数集合中的空间滤波参数相同的空间滤波参数发送所述上行测量参考信号,预定空间滤波参数集合包括如下空间滤波参数至少之一:PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)中配置的空间滤波参数,PUSCH(Physical Uplink Shared Channel,物理上行共享信道)关联的用途为code book的SRS集合(set)中的SRS资源关联的空间滤波参数,PUSCH关联的用途为non-code book的SRS set中的SRS资源关联的空间滤波参数,PUSCH中配置的空间滤波参数。在这个预定空间滤波参数集合中的每个空间滤波参数和一个SSB/CSI-RS/SRS对应,即这个预定空间滤波参数集合中的每个空间滤波参数和IAB node2和IAB donor/IAB node1之间的一个参考信号关联。
确定方法三:IAB donor node/IAB node1给IAB node2配置上行干扰测量参考信号资源时,这个上行干扰测量参考信号资源的spatialRelationInfo(这个参数的具体意义可以参考协议38.331,38.214的描述)配置为一个IAB node2给IAB node3/UE发送的一个下行参考信号。在一实施例中,这个下行参考信号信息可以由IAB node2告知IAB donor node/IAB node1。
确定方法四:IAB donor node/IAB node1给IAB node2配置上行干扰测量参考信号资源时,上行干扰测量参考信号资源的spatialRelationInfo配置为一类参考信号而不是具体的一个参考信号,这类参考信号就是IAB node2给IAB node3/UE在DA链路上发送的下行参考信号,具体采用哪个IAB node2给IAB node3/UE发送的下行参考信号是IAB node2的实现问题。
确定方法五:IAB donor node/IAB node1与IAB node2约定,当IAB donor node/IAB node1给IAB node2配置上行干扰测量参考信号资源时,上行干扰测量参考信号资源的spatialRelationInfo就为一类参考信号而不是具体的一个参考信号,这类参考信号就是IAB node2给IAB node3/UE在DA链路上发送的下行参考信号,具体采用哪个IAB node2给IAB node3/UE发送的下行参考信号是IAB node2的实现问题。
当IAB node2在上述{资源1~资源4}上发送测量参考信号时,对于图1-1中 的IAB node3/UE(即IAB node2覆盖下的用户,或者称为接入IAB node2的用户,即所述第三通信节点)来说,一个下行信道状态反馈信息对应1个信道测量资源和3个干扰测量资源,即信道资源资源为上述资源4,干扰测量资源为{资源1~资源3},IAB node3/UE基于{信道测量为资源4,干扰测量为资源1},{信道测量为资源4,干扰测量为资源2},{信道测量为资源4,干扰测量为资源3}依次得到3个下行信道测量结果{下行测量结果1,下行测量结果2,下行测量结果3},并将这3个下行测量结果中的满足预定特征的下行测量结果在上行信道中反馈给IAB node2,或者将这3个下行测量结果都反馈给IAB node2。在一实施例中,可以最大值采用绝对值反馈,其他值采用相对值反馈。
本文中UB也可以称为Backhaul上行无线链路。因为图1-1中IAB donor node/IAB node1与IAB node2之间的无线资源是由IAB donor node/IAB node1控制和调度的,IAB donor node/IAB node1控制和调度IAB node2占有的UB/DB资源。
上述一个上行反馈信息也可以称为一个上行report setting。上述一个上行信道反馈信息对应多个信道测量资源和一个干扰测量资源的方法也适用于IAB donor和一般UE之间的上行信道测量,如图8所示。和/或上述一个下行信道反馈信息对应多个干扰测量资源和一个信道测量资源的方法也适用于一个干扰测量资源的方法和IAB donor node和一般UE之间的下行信道测量。
应当理解的是,本实施例中的IAB donor节点也可以是gNB节点。
类似地,如图9所示的应用场景,在图9所示的多传输接收点(Multi-Transmission Reception Point,Multi-TRP)的传输中,如果两个TRP之间没有理想Backhaul,各个TRP之间可以独立调度UE,但是如果要测量终端在天线面板(panel)1发送给TRP1的波束1与终端在panel2发送给TRP2的波束2之间的相互干扰,就可以采用如下的方法,比如TRP1发送第二信令信息指示终端在SRS资源3上发送用于测量干扰的上行测量参考信号,进一步地,其中所述用于测量干扰的测量参考信号用于所述TRP1测量终端发送的第一类信号到达所述TRP1的干扰,其中调度所述第一类信号的控制信令所在的控制信道资源组和所述第二信令信息所在的控制信道资源组是两个不同的控制信道资源组,和/或所述第一类信号所在的频域带宽与所述第二信令信息所在的频域带宽是两个不同的频域带宽,和/或所述第一类信号所在的频域带宽与所述第二信令信息调度的信道或信号所在的频域带宽是两个不同的频域带宽。通过这些限定, 终端就知道在SRS资源3采用波束2的发送波束发送上行测量参考信号。其中波束2是终端发送给TRP2的上行信号所用的波束。上述第一类信号对应终端发送给TRP2的上行信号,如图9所示,终端发送给TRP1的信号由TRP1调度,终端发送给TPR2的信号由TRP2调度,其中TRP1对应核心集(CORESET)1/BWP1中的一种或两种,TRP2对应CORESET2/BWP2中的一种或两种。
实施例四:
为了便于理解,本实施例下面结合具体应用场景对测量参考信号的配置进行示例说明。
本实施例中,IAB donor node/gNB节点给IAB node/UE可通过信令信息分配上行测量参考信号资源,在该信令信息中可包括上行测量参考信号资源的类型信息,例如可包括但不限于:第一类上行测量参考信号资源和第二类上行测量参考信号资源,第一类上行测量参考信号资源是用于干扰测量的上行测量参考信号,第二类上行测量参考信号资源是用于信道测量的上行测量参考信号。
当上行测量参考信号为信道测量的上行测量参考信号时,IAB node/UE可以不接收IAB donor node/gNB在下行信道发送的对于上行信道的信道状态信息(也即信道测量结果);和/或发送该上行测量参考信号的空间滤波参数会配置为IAB donor node/gNB节点与IAB node/UE之间的DB下行参考信号或者UB上行参考信号。
当上行测量参考信号为干扰测量的上行测量参考信号时,IAB node/UE接收IAB donor node/gNB在下行信道发送的对于上行信道的信道状态信息(也即干扰测量结果),和/或发送该上行测量参考信号的空间滤波参数不能配置为IAB donor node/gNB节点与IAB node/UE之间的下行参考信号或者上行参考信号。
或者配置当测量参考信号包括用于信道测量的参考信号和用于干扰测量的参考信号两类测量参考信号时,IAB node/UE接收IAB donor node/gNB在下行信道发送的对于上行信道的信道状态信息;当所述测量参考信号只包括信道测量参考信号时,IAB node/UE可以不接收IAB donor node/gNB在下行信道发送的对于上行信道的信道状态信息,IAB donor node/gNB也不在下行信道上发送对应上行信道的信道状态信息。
可见,本实施例中,上行测量参考信号至少包括用于信道测量的一类上行 测量参考信号和用于信道测量的另一类测量参考信号。
实施例五:
在本实施例中,可选地,可以在相同的时域符号上同时发送上行测量参考信号和上行信道。
如图10所示,上行测量参考信号和上行信道位于一个OFDM的不同PRB(Physical Resource Block,物理资源块)上,其中上行测量参考信号和上行信道是位于一个BWP(Band Width Part)的不同PRB上,也可以是位于不同载波成员(Component carrier)的不同PRB上。
或者如图11所示,上行测量参考信号和上行信道位于一个OFDM的一个PRB包括的12个子载波的不同的载波上。在一实施例中,上行信道对于上行测量参考信号占有子载波上做速率匹配。
可选地,在本实施例中,可以根据如下信息至少之一确定上行测量参考信号和上行信道是否可以在相同的时域符号上同时发送:根据接收的信令信息,例如IAB node/UE根据gNB/IAB node发送的信令信息确定上行测量参考信号和上行信道是否可以位于相同的时域符号上同时发送;根据测量参考信号图样是否属于预定图样类型,例如当上行测量参考信号的图样类型为CSI-RS图样时,上行测量参考信号和上行信道可以在相同的时域符号上同时发送,当上行参考信号的图样类型为SRS图样时,上行测量参考信号和上行信道不可以在相同的时域符号上同时发送;根据测量参考信号和/或上行信道发送时,传输预编码是否使能,例如参考38.21协议可以看出传输预编码(Transformprecoding)使能即为采用DFT-SC-OFDM的发送波形,此时一般终端的功率受限,从而上行参考信号和上行信道不能在相同时域符号上发送,当传输预编码(Transform precoding)不使能即采用CP-OFDM的发送波形,此时终端的功率一般比较高,从而上行参考信号和上行信道可以在相同时域符号上发送;根据测量参考信号是否为Backhaul链路上的上行参考信号,例如当测量参考信号为Backhaul链路上的上行测量参考信号,发送节点是IAB node,发送功率不是很成问题,从而可以在相同的时域符号上同时发送上行测量信号和上行信道,测量参考信号为access链路上的上行测量参考信号时,不能在相同的时域符号上同时发送上行测量信号和上行信道;根据测量参考信号在一个物理资源块中是否等间隔占有子载波,例如当等间隔占有子载波时,不能在相同的时域符号上同时发送上行测量信号 和上行信道,否则能在相同的时域符号上同时发送上行测量信号和上行信道;根据测量参考信号所用的序列类型,例如当序列类型为协议38.211中的Pseudo-random sequence时,能在相同的时域符号上同时发送上行测量信号和上行信道,当序列类型为协议38.211中的Low-PAPR sequence时,不能在相同的时域符号上同时发送上行测量信号和上行信道;根据测量参考信号是用于干扰测量的测量参考信号还是用于信道测量的测量参考信号,当所述测量参考信号为用于干扰测量的测量参考信号时,能在相同的时域符号上同时发送上行测量信号和上行信道,当所述测量参考信号为用于信道测量的测量参考信号时,不能在相同的时域符号上同时发送上行测量信号和上行信道,例如图5中的用于UB链路上的干扰测量的测量参考信号和UB链路上的上行信道可以在相同的时域符号上同时发送,但图5中的用于UB链路上的信道测量的测量参考信号和UB链路上的上行信道不可以在相同的时域符号上同时发送。因为UB上用于干扰测量的测量参考信号对于UB链路上的上行信道造成的干扰一般比较小,而UB上用于信道测量的测量参考信号对于UB链路上的上行信道造成的干扰比较大。根据测量参考信号的用途属于{“波束管理”,“天线切换”}还是属于{“code book”,“non-code book”},当属于前者上行测量参考信号和上行信道之间可以在相同的时域符号上同时发送,当属于后者上行测量参考信号和上行信道之间不可以在相同的时域符号上同时发送。
当然,应当理解的是,上述确定上行测量参考信号和上行信道是否可以在相同的时域符号上同时发送的方式仅仅是几种示例的方式,且具体选用哪种或哪几种方式都可以根据应用场景灵活设定。
实施例六:
相应的,在测量过程中,本实施例还包括以下测量参考信号的接收方法,参见图12所示,包括:
S1201:第一通信节点接收来自于第二通信节点发送的第三信令信息。
第三信令信息包括干扰测量资源信息。
S1202:第一通信节点在根据该干扰测量资源信息确定的干扰测量资源上接收一个或者多个第三通信节点发送的信号;和/或所述干扰测量资源信息中包括的参数类型和用于确定上行参考信号图样的参数类型之间的交集非空,和/或第 一通信节点在干扰测量资源上不接收下行测量参考信号。
S1202中第一通信节点在干扰测量资源上接收一个或者多个第三通信节点发送的信号,该信号包括参考信号,随机接入信号中的一种或者多种。
相应的,在本实施例中还可包括一种测量参考信号的接收方法,包括:第二通信节点向第一通信节点发送第三信令信息,第三信令信息包括干扰测量资源信息,第三信令信息用于指示第一通信节点在根据干扰测量资源信息确定的干扰测量资源上接收一个或者多个第三通信节点发送的信号,和/或干扰测量资源信息中包括的参数类型和用于确定上行参考信号图样的参数类型之间的交集非空,和/或第二通信节点在干扰测量资源上不发送下行信号。
如上所示,可选地,在本实施例的一种示例中,还可包括如下至少之一:上述第三通信节点发送的信号为上行信号;干扰测量资源为信道状态报告信息对应的干扰测量资源,其中信道状态报告信息为第一通信节点发送给所述第二通信节点的信道状态报告信息;干扰测量资源为NZP-CSI-RS干扰测量资源;干扰测量资源和信道测量资源关于空间接收滤波参数不满足准共址关系,其中干扰测量资源和信道测量资源对应同一个信道状态报告信息;干扰测量资源关于空间接收滤波参数的准共址参考信号为第一准共址参考信号和信道测量资源关于空间接收滤波参数的准共址参考信号为第二准共址参考信号,其中干扰测量资源和信道测量资源对应同一个信道状态报告信息;干扰测量资源的图样为CSI-RS图样;干扰测量资源的图样为SRS图样;在干扰测量资源上第一通信节点不接收第二通信节点发送的下行测量参考信号;在干扰测量资源上第一通信节点不接收下行测量参考信号;干扰测量资源占有的资源和第一通信节点和第二通信节点之间的测量参考信号占有的资源之间的交集为空。
其中信道状态报告信息为第一通信节点发送给第二通信节点的信道状态报告信息。
在一种示例中,第一通信节点向第二通信节点发送信道状态报告信息,该信道状态报告信息可对应CC1个信道测量资源,CI1个干扰测量资源,CI1,CC1为小于或者等于CI1的正整数。
在一种示例中,上述S1201中第三信令信息中包括如下信息至少之一:干扰测量资源类型信息,至少存在第一类干扰测量资源和第二类干扰测量资源;非零功率NZP(Non-Zero Power)-干扰测量资源类型信息,至少存在第一类NZP-干扰测量资源和第二类NZP-干扰测量资源;干扰测量资源对应的图样类型选择 信息;干扰测量资源在一个时间单元中占有的一组时域符号信息;干扰测量资源的重复因子信息;干扰测量资源的跳频参数;干扰测量资源的多级带宽结构信息。
在一种示例中,第一类干扰测量资源满足如下特征至少之一:在第一类干扰测量资源上第一通信节点不接收一个或者多个第三通信节点发送的上行信号;第一类干扰测量资源占有的资源和一个或者多个第三通信节点发送给第一通信节点的信号占有的资源之间的交集为空,即第一类干扰测量资源占有的资源和一个或者多个第三通信节点发送给第一通信节点的信号占有的资源交集为空;第一类干扰测量资源包括下行测量参考信号资源;第一通信节点在第一类干扰测量资源上接收第二通信节点发送的下行测量参考信号;第一通信节点在第一类干扰测量资源上接收下行测量参考信号;和/或,第二类干扰测量资源满足如下特征至少之一:第一通信节点在在第二类干扰测量资源上接收一个或者多个第三通信节点发送的上行信号;第一通信节点在第二类干扰测量资源上接收上行测量参考信号;第二类干扰测量资源对应上行测量参考信号资源;第二类干扰测量资源为NZP-CSI-RS干扰测量资源;第二类干扰测量资源为NZP-SRS干扰测量资源;在第二类干扰测量资源上不接收第二通信节点发送的下行测量参考信号;在第二类干扰测量资源上不接收下行信号;第二类干扰测量资源占有的资源和第一通信节点和第二通信节点之间的信号占有的资源之间交集为空;和/或,干扰测量资源对应的图样类型选择信息用于指示在上行测量参考信号图样和下行测量参考信号图样之间的选择;和/或,第一类NZP-干扰测量资源为NZP-CSI-RS,第二类NZP-干扰测量资源为NZP-SRS。
可选地,在本实施例的一种示例中,方法还包括:第一通信节点向第三通信发送第四信令信息,第四信令信息用于指示第三通信节点发送第二信号;其中,上述第二信号包括数据信道信号,控制信道信号,解调参考信号,测量参考信号,相位跟踪参考信号中的一项或者多项。可选地,该第二信号也可以为上行信号,该第二信号占有的资源和干扰测量资源占有的资源交集为非空;
本示例中的资源可包括如下资源至少之一:时域资源,频域资源,码域资源,空域资源。
在本实施例的一种示例中,第三信令信息中包括的参数类型集合可包括如下信息至少之一:端口数,梳偏移,在一个时间单元中时域符号信息,时域跳频单位信息,频域信息,多级带宽结构中的频域偏移量,频域跳频信息,序列 组或者序列号的跳变信息,序列产生参数,干扰测量参考信号的图样类型的选择信息。
其中图样类型可包括但不限于:上行参考信号图样和下行参考信号图样中的至少一种。
在本实施例中,第三通信节点满足如下特征至少之一:第三通信节点为接入第一通信节点的通信节点;第三通信节点为第一通信节点覆盖之下处于链接态的通信节点;第一通信节点向第三通信节点发送下行控制信令;第一通信节点向第三通信节点发送专有下行控制信令信息;第三通信节点接收第三信令信息,在干扰测量资源上向第一通信节点发送测量参考信号。
例如,在图1-1所示的应用场景中,当DB和UA采用SDM复用的时候,需要测量UA对于DB造成的干扰,参考图1-1,IAB donor node/IAB node1为IAB node2分配干扰测量资源,指示IAB node2在此干扰测量资源上接收IAB node3/UE发送的UA信号,和/或此干扰测量资源的图样可以为上行参考信号图样,和/或IAB donor node/IAB node1指示IAB node2在此干扰测量资源上,IAB node2不接收下行来自IAB donor node/IAB node1的下行信号。
可选地,IAB donor node/IAB node1为IAB node2分配了一个信道状态反馈信息比如一个report setting,此report setting关联的信道测量资源为DB下行测量参考信号,此report setting关联的干扰测量资源为上述干扰测量资源,即所述UA上行测量参考信号。
可选地,所述信道测量资源和干扰测量资源关于空间接收滤波参数不满足准共址关系,比如所述信道测量资源DB关于空间接收滤波参数的准共址参考信号为另一个DB参考信号,干扰测量资源关于空间接收滤波参数的准共址参考信号为一个UA参考信号,即干扰测量资源的接收滤波参数根据所述UA参考信号在IAB node2处采用的接收滤波参数得到或相同。或者所述信道测量资源和所述干扰测量资源关于空间接收滤波参数满足准共址关系,这样IAB node2测量UA对于DB造成的干扰,只测量与信道测量资源DB的接收波束相同的UA信号对DB造成的干扰。
实施例七:
本实施例提供了一种信号的传输方法,传输方法基于资源与通信参数集合 的对应关系进行信号或/信道的接收和发送。一种示例的信号的传输方法参见图13所示,包括:
S1301:根据传输的第五信令信息和/或第三参数确定规则,确定U个资源集合与Q个如下对象之一的对应关系:空间发送滤波参数集合,准共址参考信号集合,空间发送滤波参数与准共址参考信号组合的集合,频域资源集合,参考信号集合,A个链路之间的频域资源划分,功率参数集合,B个链路之间的复用方式集合,C个链路中的C个参考信号组合的集合;其中,U,Q取大于或者等于1的正整数;A,B,C取大于1的正整数。
在本实施例中,可选地,可以上述实施例中的测试结果为依据建立该对应关系,也可依据其他结果或配置作为建立该对应关系的依据。
S1302:根据所确定的对应关系传输信道或信号。对应的,该传输包括但不限于在对应资源上发送或者接收相应的信道或信号。
本实施例中,S1301中的资源包括但不限于如下资源至少之一:时域资源,频域资源,参考信号资源。
本实施例中的所述传输包括发送或者接收。
在本实施例中,S1302中根据所确定的对应关系,发送或者接收资源上的信道或信号包括但不限于:不希望收到不满足如下特征至少之一的配置信息:资源上的第一信道或者信号的空间发送滤波参数属于资源对应的空间滤波参数集合;资源上的第二信道或者信号和资源对应的准共址参考信号集合中的至少一个准共址参考信号关于空间接收滤波参数满足准共址关系;资源上的第一信道或信号的空间发送滤波参数根据资源对应的空间发送滤波参数与准共址参考信号组合的集合中的至少一个组合中的空间发送滤波参数得到;资源上的第二信道或者信号和资源对应的空间发送滤波参数与准共址参考信号组合的集合中的至少一个组合中的准共址参考信号关于空间接收滤波参数满足准共址关系;资源上的信道或信号对应的集合属于Q个集合中与资源存在对应关系的一个集合;资源上的A个链路中的信道或信号占有的频域资源满足资源对应的A个链路之间的频域资源划分。
可选地,上述第一信道或信号与第二信道或信号满足如下特征至少之一:第一信道或信号与第二信道或信号是第一通信节点同时发送的信道或信号;第一信道或信号与第二信道或信号是第一通信节点同时接收的信道或信号;第一 信道或信号与第二信道或信号占有的时域资源有重叠;第一信道或信号与第二信道或信号占有的频域资源有重叠;第一信道或信号是第一通信节点和第二通信节点之间的信道或信号;第二信道或信号是第一通信节点和第三通信节点之间的信道或信号;其中,第二通信节点给第一通信节点发送关于第一信道或者信号的调度信息,第一通信节点给第三通信节点发送关于第二信道或者信号的调度信息,和/或,第一通信节点为接收第五信令信息的通信节点,第二通信节点为发送第三信令信息的通信节点,第三通信节点接收第一通信节点发送的控制信令。
在本实施例的一种示例中,确定U个资源集合与Q个如下对象之一的对应关系包括:确定U个时域资源集合和Q个频域资源集合之间的对应关系,其中,一个时间单元中的信道或信号占有的频域资源是时间单元所属的时域资源集合对应的频域资源集合的子集;和/或,确定U个资源集合与Q个如下对象之一的对应关系包括:确定U个时域资源集合和Q个参考信号集合之间的对应关系,其中,一个时间单元中的信道或信号对应的参考信号是时间单元所属的时域资源集合对应的参考信号集合的子集。和/或,确定U个资源集合与Q个如下对象之一的对应关系包括:确定U个时域资源集合和A个链路之间的Q个频域资源划分之间的对应关系,其中满足如下特征至少之一:一个时间单元中的信道或信号占有的频域资源是时间单元所属的时域资源集合对应的频域资源划分中信道或信号所属的链路对应的频域资源集合的子集;一个时间单元中A个链路中的信道或信号所占的频域资源满足时间单元所属的时域资源集合对应的频域资源划分;和/或,确定U个资源集合与Q个如下对象之一的对应关系包括:确定U个时域资源集合和Q个功率参数集合之间的对应关系,其中满足如下特征至少之一:一个时间单元中的信道或信号对应的功率参数集合为时间单元所属的时域资源集合对应的功率参数集合;Q个功率参数集合包括的功率参数类型相同;Q个功率参数集合是对于同一类参数集合的Q个配置值;和/或,确定U个资源集合与Q个如下对象之一的对应关系包括:确定U个资源集合和Q个复用方式集合之间的对应关系,其中一个复用方式包括B个链路之间的复用方式,一个资源中B个链路之间的复用方式集合属于资源对应的复用方式集合;和/或,确定U个资源集合与Q个如下对象之一的对应关系包括:确定U个资源集合和Q个参考信号组合之间的对应关系,其中一个参考信号组合包括C个链路中每个链路对应的参考信号,一个资源中C个链路中的参考信号组合属于资源对应的C个链路中的参考信号组合的集合。
可选地,上述S1302中,根据对应关系传输或信号包括:当收到不满足如下特征至少之一的配置信息时,不发送或者不接收资源上的信道或信号:资源中的信道或者信号的空间滤波参数属于资源对应的空间滤波参数集合;资源中的信道或者信号关于空间接收滤波参数的准共址参考信号属于资源对应的准共址参考信号集合;资源中的信道或者信号和资源对应的准共址参考信号集合中的至少一个准共址参考信号关于空间接收滤波参数满足准共址关系;资源上的信道或信号对应的集合属于Q个集合中与资源存在对应关系的一个集合;资源上的A个链路中的信道或信号占有的频域资源满足资源对应的A个链路之间的频域资源划分。
可选地,在一些实施例中,确定U个资源集合与Q个对象之间的对应关系包括如下至少之一:确定U个资源集合和Q个集合之间的对应关系;确定U个资源集合和Q个用途为code book的SRS资源(resource)集合(set)之间的对应关系;确定U个资源集合和Q个用途为non code book的SRS resource set之间的对应关系;确定U个资源集合和Q个TCI状态(state)池(pool)之间的对应关系;确定U个资源集合和Q个参考信号组合的集合之间的对应关系,其中一个参考信号组合包括所述C个链路中C个参考信号;其中一个SRS resource set对应一个空间滤波参数集合,SRS resource set中的每个resource对应一套空间滤波参数;一个TCI state pool对应一个准共址参考信号集合,TCI state pool中的每个TCI state包括一个准共址参考信号;P的取值为正整数,Q的取值为小于或者等于P的正整数。
可选地,在本实施例的一些示例中,资源满足如下特征至少之一:U个资源中的每个资源与Q个集合中其中一个存在对应关系;U个资源中的每个资源与Q个划分中其中一个存在对应关系;一个信道或信号只落在一个资源;一个信道或信号不能落在一个以上的资源;一套空间发送滤波参数与一个参考信号对应。
可选地,上述S1301所示的资源中,U个资源集合之间满足如下特征至少之一:不同资源之间的交集为空集;不同资源属于一个频域宽带部分BWP;U个资源集合的并集中不存在非连续的资源;U个时域资源轮流出现;不同资源之间的差集非空;一个资源中包括的资源存在非连续的资源;一个资源中包括的资源在时域是周期的;一个资源中包括的资源在频域是周期的。
其中,本实施例中不同资源之间的交集为空集包括但不限于以下情况:不 同资源对应的空间滤波参数集合之间的差集为非空集合;不同资源对应的准共址参考信号集合之间的差集为非空集合;不同资源对应的空间滤波参数集合之间的交集为非空集合;不同资源对应的准共址参考信号集合之间的交集为非空集合。
在本实施例的一种示例中,一个频域资源集合包括I个频域资源,一个频域资源为如下频域资源之一:一个BWP,一个成员载波包括的频域频域带宽,一个物理资源块,一个子载波,其中I为非负整数。
在本实施例中的一种示例中,可选地还可满足如下特征至少之一:Q为小于或者等于U正整数;Q个集合之间的差集非空;Q个划分是不同的划分;第五信令信息为物理层动态控制信息;第五信令信息包括Q个对象的切换指示信息;Q个对象的信息包括在高层信令信息中;约定规则包括,当约定时间到达,启动Q个对象的切换指示信息;第一时域资源对应的集合和第二时域资源对应的集合之间的差集非空;第一时域资源对应的频域资源划分和第二时域资源对应的频域资源划分不同;其中第一时域资源集合和第二时域资源集合属于U个时域资源集合。
在本实施例的一种示例中,第一时域资源对应的集合和第二时域资源对应的集合之间的差集非空包括但不限于:第一时域资源集合对应的第一频域资源集合和所述第二时域资源集合对应的第二频域资源集合之间的差集非空;第一时域资源集合对应的第一参考信号集合和所述第二时域资源集合对应的第二参考信号集合之间的差集非空;第一时域资源集合对应的第一功率参数集合和所述第二时域资源集合对应的第二参考信号集合之间的差集非空;第一时域资源集合对应的第一复用方式集合和所述第二时域资源集合对应的第二复用凡是集合之间的差集非空。
第一时域资源对应的频域资源划分和第二时域资源对应的频域资源划分不同包括但不限于:第一时域资源集合对应的第一频域资源划分和所述第二时域资源集合对应的第二频域资源划分不同。
为了便于理解,本实施例在上述内容基础之上,以建立资源与空间滤波参数结合的对应关系为示例做进一步说明。
在本示例中,建立空间滤波参数集合和资源之间的对应关系,可根据建立的该对应关系,在该资源上发送信道或信号,下面仍以图1-1所示的应用场景为示例。
如图14所示,通过测量(或者依据预先的配置等),IAB node2和IAB donor node/IAB node1之间的上行链路UB上的候选发送波束是{UB发送波束1,UB发送波束2,UB发送波束3},DA链路上的候选发送波束是{DA发送波束1,DA发送波束2}。假设只有{UB发送波束1,UB发送波束2}和{DA发送波束1}可以采用空分复用的方式,即UB信号采用{UB发送波束1,UB发送波束2}中的一个或者多个发送波束,DA信号采用{DA发送波束1},且UB信号和DA信号占有的时频资源有重叠,在IAB donor node/IAB node1侧,DA信号对UB信号造成的干扰比较小,在IAB node3/UE侧,UB信号对于DA信号造成的干扰比较小。但是如果UB信号采用{UB发送波束1,UB发送波束2}中的一个或者多个发送波束,DA信号采用{DA发送波束2},且UB信号和DA信号占有的时频资源有重叠,在IAB donor node/IAB node1侧,DA信号对UB信号造成的干扰比较大,和/或在IAB node3node/UE侧,UB信号对于DA信号造成的干扰比较大,{UB发送波束1,UB发送波束2}和{DA发送波束2}之间不可以SDM复用。类似地,{UB发送波束3}和{DA发送波束2}之间可以SDM复用。
假设如果UB所有资源都用相同的空间滤波参数集合,例如空间滤波参数集合为{UB发送波束1,UB发送波束2,UB发送波束3},且IAB donor node/IAB node1侧动态分配UB链路上的PUSCH/PUCCH,的发送波束是{UB发送波束1,UB发送波束2,UB发送波束3}中的一个或者多个,则IAB node2就在UB占有的资源上都不能调用DA信号,即UB信号和DA信号不能SDM复用。
本示例中,一个发送波束也可以称为一套发送空间滤波器,或者一套空间发送滤波参数,或也可以称为一套发送空间滤波参数。其中一个发送波束通过一个参考信号表达,即协议38.331中在配置上行参考信号时会配置一个spatialRelationInfo,spatialRelationInfo中的一个参考信号关联一个发送波束,上行参考信号的空间发送滤波参数根据spatialRelationInfo中配置的参考信号的空间发送滤波参数得到。
为此IAB donor node/IAB node1可以通过给IABnode2发送配置信息,和/或通过与IAB node2预先约定规则,从而确定空间发送滤波参数集合和资源之间的对应关系,如图15-1所示,假设时域资源1对应{UB发送波束1,UB发送波束2},时域资源2对应{UB发送波束3}。假设约定在时域资源1上IAB donor node/IAB node1分配IAB node2发送的UB信道或信号的发送空间滤波器只能属于{UB发送波束1,UB发送波束2},从而IAB node2上可以采用{DA发送波束 1}调用DA信道或信号,而且DA信道或信号和UB信道或信号采用SDM方式复用。
又例如,假设约定在时域资源2上IAB donor node/IAB node1分配IAB node2发送的UB信道或信号的发送空间滤波器只能属于{UB发送波束3},从而IAB node2上可以采用{DA发送波束2}调用DA信号,DA信号和UB信号采用SDM方式复用。
上述示例是约定时域资源上的UB信道或信号的发送空间滤波参数都要属于该时域资源对应的空间滤波参数集合,本实施例的另一示例中,也可以进一步限定只有时域资源上动态调度的UB信道或信号的发送空间滤波参数属于该时域资源对应的空间发送滤波参数集合,落在该资源上的非动态调度的UB的信道或信号(例如半静态通过RRC(Radio Resource Control,无线资源控制)/链路控制层控制元素(Medium Access Control Control Element,MAC-CE))调度的信道或信号的发送空间滤波参数没有限定。具体地,例如时域资源1和用途为“non code book”UB-SRS set1关联,时域资源2和用途为”non code book”UB-SRS set2关联,相应的,落在时域资源1中的动态调度的PUSCH的发送空间滤波参数只能从UB-SRS set1中选取,落在时域资源2中的动态调度的PUSCH的发送空间滤波参数只能从UB-SRS set2中选取。
上述示例的时域资源1对应的发送空间滤波参数集合和时域资源2对应的发送空间滤波参数集合之间的交集为空,本实施例中也不排除不同时域资源对应的发送空间滤波参数之间的交集非空的情况,如图15-1中,时域资源3可以对应{UB发送波束1,UB发送波束2,UB发送波束3},在一实施例中,在时域资源3上,UB和DA的信道或信号之间不能采用SDM的复用方式。
图15-1中是不同时域资源对应不同的空间发送滤波参数集合,类似地,根据具体应用场景的需求,也可以是不同的频域资源对应不同的空间滤波发送参数集合,或者不同的时频资源对应不同的空间滤波发送参数集合,或者不同的参考信号集合对应不同的空间滤波参数集合,例如解调参考信号集合{0~3}对应第一空间滤波参数集合,解调参考信号集合{4~7}对应第二空间滤波参数集合。
上述示例的空间滤波参数集合中的每套空间发送滤波参数和一个参考信号关联,这个参考信号可以是IAB donor node/IAB node1和IAB node2之间的上行参考信号,也可以是IAB donor node/IAB node1和IAB node2之间的下行参考信号。如图16所示,一个空间发送滤波参数集合关联的参考信号集合为{CSI-RS1, CSI-RS2,SRS3},该空间发送滤波参数集合与资源4对应,则资源4中的信道或信号(或者资源4中的动态调度的信道或信号)的spatialRelationInfo只能配置为{CSI-RS1,CSI-RS2,SRS3}集合中的参考信号,即资源4中的信道或信号(或者资源4中的动态调度的信道或信号的空间发送滤波参数只能根据{CSI-RS1,CSI-RS2,SRS3}中的参考信号对应的空间发送滤波参数得到。
上述示例的是建立资源和空间发送滤波参数集合之间的关系,对应的也可以建立资源与(空间发送滤波参数,准共址参考信号)的组合的集合之间的对应关系,或资源与准共址参考信号集合之间的对应关系。例如在图1-1中,通过测量IAB donor node/IAB node1得到(UB发送波束1,DA发送波束1)波束区分度比较好,可以分别用于UB链路和DA链路,而且两个链路的信号采用SDM的方式复用。(UB发送波束2,DA发送波束2)波束区分度比较好,可以分别用于UB链路和DA链路,而且两个链路的信号采用SDM的方式复用。从而IAB donor node/IAB node1给IABnode2分配资源1上,UB和DA的波束对为{(UB发送波束1,DA发送波束1),(UB发送波束2,DA发送波束2)},资源2上全部被Backhaul信道和/或信号占有,资源3上全部被Access信道或信号占有。
类似地,IAB donor node/IAB node1和IAB node2可以通过信令或者约定规则,确定如下对应关系:U个时域资源和Q个如下至少之一之间的对应关系:频域资源集合,A个链路之间的频域资源划分,参考信号集合,功率参数集合,B个链路之间的复用方式集合。其中U,Q大于或者等于1的正整数,A,B为大于1的正整数。
如图15-2所示,不同的时域资源对应UB和DA之间不同频域划分。具体地图15-2中的时域资源i对应的UB和DA之间的频域划分如图15-3中的频域资源划分i,i=1,2,3;图15-2中所示的是UB和DA两个链路之间的频域划分,本实施例也不排除当存在多跳Backhaul链路时,需要确定时域资源和A个链路之间的频域资源划分。
图15-2中的不同时域资源对应UB可用的不同的频域资源集合,图15-2中的时域资源i对应如图15-4中的不同的频域资源集合,此处一个频域资源集合中包括一个或者多个频域资源,其中一个频域资源可以为一个子载波,或者为一个PRB,或者为一个BWP。如时域资源1中UB可占有的BWP为{BWP1,BWP2}中的一个或者多个BWP,时域资源2中UB可占有的BWP为{BWP1,BWP2,BWP3}中的一个或者多个BWP,时域资源3中UB可占有的BWP为 {BWP4,BWP5,BWP7}中的一个或者多个BWP,其中不同时域资源对应的频域资源集合指示示例,并不排除其他的频域资源集合情况。
类似地,不同的时域资源和/或不同的频域资源对应的UB的参考信号集合不同,例如图15-2中的时域资源i对应图15-5中的参考信号集合i,i=1,2,3,这是由于当UB和DA之间的复用方式不同时,UB和/或DA可占有的参考信号集合不同,例如当UB和DA空分复用时,UB和DA占有的参考信号需要时正交的,UB和/或DA占有全部参考信号的一个子集,UB和DA时分复用和/或频分复用时,UB和DA都可以占有全部参考信号,例如可以占有全部解调参考信号端口。
类似地,不同的时域资源和/或不同的频域资源对应的UB和DA之间的参考信号集合划分不同;
类似地,不同时域资源对应的UB和DA之间的复用方式集合不同,例如图15-2中的时域资源i对应第i个复用方式集合,其中一个复用方式集合中包括如下复用方式至少之一:时分复用,频分复用,空分复用。上述的复用方式也可以扩展到B个链路之间的复用方式,B为大于或者等于2的正整数。
类似地,不同时域资源对应UB的功率参数不同,例如当UB和DA空分复用或者频分复用时,UB的发送功率需要考虑DA的发送功率,使得总功率不能超过IAB处的总发送功率,当UB和DA时分复用时,UB的发送功率不需要考虑DA的发送功率。另一方面,考虑到节电和覆盖,可以对应不同的时域资源配置不同的功率参数,例如配置不同的目标功率P 0,使得IAB node或者UE在不同的时域资源上采用不同的发送功率等级发送上行信号,达到节点和覆盖折中。
图15-2中给出了3个时域资源,应当理解的是,本实施例中不排除其他U值情况,即有U个时域资源,其中U是大于或者等于1的正整数,其中U个时域资源满足如下特征至少之一:U个时域资源集合中的任意两个时域资源集合之间的交集为空;U个时域资源集合的并集构成的时域资源集合构成连续的时域资源;U个时域资源集合的并集构成的时域资源集合不存在非连续的时域资源;U个时域资源集合构成U周期的时域资源,如图15-6所示,即U个时域资源轮流出现。当然本实施例中并不排除U个时域资源集合的其他划分方式。
进一步地,上述U个资源和Q个集合之间的对应关系,或者U个资源和Q个频域资源划分之间的对应关系,可包括在一个控制信令中,和/或U个时域资 源对应一个控制信令的有效期。
上述是在半静态控制信令比如RRC中配置U个资源和Q个对象之间的对应关系,本实施例的另一种实施方式中,可以在动态信令中建立U个资源和Q个对象之间的对应关系,或者称为通过动态信令确定U个资源的划分,和/或通过动态信令指示Q个对象的指示信息,当指示的新对象和当前对象不同时,启动对象切换流程。比如RRC配置上述UB-SRS set2和UB-SRS set1,比如默认激活UB-SRS set1,基站可以通过动态信令指示从UB-SRS set1切换到UB-SRS set2。在一实施例中,两个set之间的切换需要有预定的切换时延,然后直到收到新的切换信令,或者预定时间到达,就一直采用UB-SRS set2为激活的set,即PUSCH中的发送空间滤波参数只能来自于UB-SRS set2。类似地可以用于上述其他集合的切换中。即比如高层信令中配置Q个对象,在物理层动态控制信令中通知Q个对象的指示信息,当指示的Q个对象和当前对象不同时,启动对象切换流程,从当前对象激活到新对象,切换之后的时域资源上采用物理层动态控制信令中通知的新对象。也可以通过约定时间的方式从一个对象切换到另一个对象,从一个时域资源集合切换到另一个时域资源集合。
实施例八:
本实施例提供了一种信号发送方法,可实现信号准确、可靠的发送,参见图17所示,包括:
S1701:根据接收的第六信令信息或者第四参数确定规则确定第一类时频资源。
S1702:根据确定的第一类时频资源,发送信道或信号。
其中上述信道或信号不能占有所述第一类时频资源。
在本实施例的一种示例中,第六信令信息包括第一类时频资源的如下信息至少之一:物理资源块集合信息;在一个时间单元中占有的时域符号位置信息;时间行为信息,包括但不限于周期,半持续,非周期等;周期信息;周期偏置信息;在一个物理资源块中占有的子载波索引集合信息;在一个物理资源块中占有的D组子载波中每一组子载波中的最低子载波索引或最高子载波索引;在一个时间单元中占有的J组时域符号中每一组时域符号中的最低时域符号索引或最高时域符号索引;下行参考信号图样信息;图样类型的选择信息,所述图 样类型至少存在第一类图样和第二类图样;所述D,J的取值为正整数。
在本实施例的一种示例中,第一类图样是上行参考信号图样,第二类图样是下行参考信号图样;或,第一类图样是SRS图样,所述第二类图样是CSI-RS图样。
在本实施例中,为UB链路的数据信道和/或控制信道和/或测量参考信号配置预留(reserved)资源,或者称为速率匹配资源,此处统称为第一类时域资源和/或频域资源,所述UB链路上的数据信道和/或控制信道和/或测量参考信号不能占有第一类时域资源和/或频域资源占有的资源,所述UB链路上的数据信道和/或控制信道和/或测量参考信号要对第一类时域资源和/或频域资源做速率匹配。
其中第一类时域资源的配置信息中包括但不限于如下信息至少之一:信息一:物理资源块集合信息,UB的信道和/或信号不能占有所述物理资源块集合中资源,其中一个物理资源块即为一个PRB包括的频域资源:信息二:在一个时间单元中占有的时域符号位置信息,例如在一个时隙(slot)中的时域符号,和/或占有的slot个数信息,和/或在一个时间单元中占有的N组时域符号中每一组时域符号中的最低时域符号索引或最高时域符号索引,其中一组时域符号中包括连续的一个或者多个时域符号,N为正整数;信息三:时间行为信息,例如所述第一类时域资源和/或频域资源是周期的,半持续的,非周期中的哪一种;信息四:周期信息,例如周期是P1个slot;信息五:周期偏置信息,例如周期为P1个slot时,所述第一类时域资源和/或频域资源的在一个周期的哪个slot中;信息六:在一个物理资源块中占有的子载波索引集合信息,例如通过12比特(bit)映射(maping)的方式指示在第一类时域资源和/或频域资源在一个物理资源块中占有的子载波集合,或者在一个物理资源块中占有的M组子载波中每一组子载波中的最低子载波索引或最高子载波索引,其中每一组子载波中包括连续的一个或者多个子载波,所述M的取值为正整数。信息七:下行参考信号图样信息,例如IAB donor node/IAB node1给IAB node2分配UB的reserved/速率匹配资源,UB的信道和/或信号不能占有reserved/速率匹配资源中的资源,reserved/速率匹配资源配置信息中包括CSI-RS图样信息,这样IAB node2在这些reserved资源上就可以发送DA的参考信号,从而在DA和UB空分复用的时候,可以保证DA和UB的参考信号的正交性。例如参见图18所示,当然图18中UB-reserved的图样是只是一种示例,UB-reserved占有的资源图样还可以是 其他CSI-RS图样,DA的下行参考信号,DA的相位跟踪参考信号,和/或DA的同步信号图样中的一种或者多种。信息八:图样类型的选择信息,所述图样类型至少存在第一类图样和第二类图样,UB-reserved图样也可以是SRS图样和CSI-RS图样之间选择。
实施例九:
本实施例提供了一种信道或信号的接收方法,可实现信道或信号准确、可靠的接收,参见图19所示,包括:
S1901:根据接收的第七信令信息或者第五参数确定规则确定第二类时频资源。
S1902:根据确定的第二类时频资源,接收信道或信号。
其中上述信道或信号不占有所述第二类时频资源。
可选地,在本实施例中,第七信令信息包括第二类时频资源的如下信息至少之一:端口数;梳偏移;在一个时间单元中时域符号信息;时域跳频单位信息;频域跳频信息;上行参考信号的图样信息;图样类型选择信息,至少存在第一类图样和第二类图样。
可选地,上述第一类图样可为上行参考信号图样,第二类图样可为下行参考信号图样;或,上述第一类图样可为SRS图样,第二类图样可为CSI-RS图样。
例如,图1-1所示的应用场景的一种实例中,IAB donor node/IAB node1给IAB node2分配DB的reserved资源和/或速率匹配资源,其中DB的reserved资源和/或速率匹配资源占有的图样可以是SRS图样,例如参见图20所示,IAB node2在这些reserved资源和/或速率匹配资源上就可以接收UA参考信号,从而在UB和DA链路空分复用的时候,可以保证参考信号的正交性。
实施例十:
本实施例还提供了一种信令信息的传输方法,可实现信令信息灵活、可靠的传输,其包括:第一通信节点向第二通信节点发送第八信令信息;和/或,第一通信节点接收第二通信节点的第九信令信息;其中第八信令信息,和/或第九信令信息中可包括但不限于如下信息至少之一:第一信号集合的信息,第二信 号集合的信息,第一信号集合和第二信号集合中的信号包括参考信号;其中第一信道或信号和第一信号集合中的至少一个信号关于一种或者多种信道大尺度特性参数满足准共址关系,和/或第二信道或信号的空间发送滤波参数根据第二信号集合中至少一个信号得到;第一信道或信号为第一通信节点发送给一个或者多个第三通信节点的信道或信号,第二信道或信号为一个或者多个第三通信节点发送给第一通信节点的信道或信号。
在本实施例的一种示例中,还可包括:第一通信节点向一个或者多个第三通信节点发送第十信令信息,第八信令信息用于指示一个或者多个第三通信节点接收第一信号集合中的信号;和/或,第一通信节点向一个或者多个第三通信节点发送第十一信令信息,第九信令信息用于指示一个或者多个第三通信节点发送第二信号集合中的信号。
在本实施例的一种示例中,第一通信节点可在下行链路上发送第一信号集合中的信号;第一通信节点可在上行链路上接收第二信号集合中的信号。
例如仍以图1-1所示的场景为示例,假设通过测量,IAB donor node/IAB node1确定IAB node2在Access链路上可以采用的波束集合,其中一个波束关联一个参考信号,在一实施例中,当Access链路上采用这些波束通信时,Backhaul链路和Access链路可以空分复用,从而IAB donor node/IAB node1将波束信息(即参考信号集合信息)通知给IAB node2,IAB node2在Access链路上只能采用波束集合中的波束与IAB node3/UE进行通信。
一种示例中,IAB donor node/IAB node1向IAB node2通知UA链路中的波束集合信息,即第二信号集合(例如第二信号中包括参考信号和/或同步信号),UA链路中的信号的空间滤波参数必须根据第二信号集合中的其中一个或者多个参考信号得到,即UA链路的信号必须采用通知的波束集合中的波束进行传输,其中一个信号的空间滤波参数根据一个参考信号得到,表示一个信号的空间滤波参数和一个参考信号的空间滤波参数相同,或者一个信号的空间滤波参数根据一个参考信号的空间滤波参数得到,但是可以根据具体需求有微调。
IAB donor node/IAB node1也可以向IAB node2通知DA链路中的波束集合信息,即第一信号集合(例如第一信号中包括参考信号和/或同步信号),DA链路中的信号必须和第一信号集合中的其中一个或者多个参考信号关于空间滤波参数满足准共址关系。即DA中的信号必须采用通知的波束集合中的波束进 行传输。
当然,IAB node2也可以向IAB donor node/IAB node1发送请求信息,所述请求信息中包括上述第一信号集合信息和/或上述第二信号集合信息。
在本文中,空间滤波参数包括空间发送滤波参数,和/或空间接收滤波参数。
在本文中,两个参考信号关于空间滤波参数满足准共址关系,表示一个参考信号的空间滤波参数可以由另一个参考信号的空间滤波参数得到。
在本文中,两个参考信号关于一类信道大尺度信息满足准共址关系,表示一个参考信号的信道大尺度信息可以由另一个参考信号的信道大尺度信息获得。其中一类信道大尺度参数包括如下参数至少之一:多普勒频移、多普勒扩展、平均延迟、延迟扩展、空间接收参数。上述信道大尺度参数,在本文中也可以称为准共址参数。
当然,IAB node2也可以向IAB donor node/IAB node1发送请求信息,请求信息中包括上述第一信号集合信息和/或上述第二信号集合信息。
实施例十一:
在本实施例中,需要确定资源类型,其中不同资源类型根据落在所述资源中的信道或信号和调度所述信道或信号的物理层动态控制信令之间的间隔与预定阀值之间的关系区分;或者不同资源类型根据所述资源和距离所述资源最近的物理层控制信道之间的间隔与预定阀值之间的关系区分,比如第一类资源中,所述间隔大于或者等于所述预定阀值,所述第二类资源中,所述间隔小于或者等于预定阀值。
进一步地,所述确定资源类型,也可以称为确定时域资源的类型。
进一步地,所述距离所述资源最近的物理层控制信道是终端需要检测的物理层控制信道。
进一步地,所述物理层控制信道中的控制信息可以调度所述资源中的信道或信号,比如所述物理层控制信道和所述资源在相同的CC(component carrior成员载波)/BWP中,或者所述物理层控制信道中的控制信息可以跨CC调度所述资 源中的信道或信号。
进一步地,所述物理层控制信道和所述资源属于相同的成员载波,或者属于相同的BWP(BandWidth part)。
进一步所述资源类型和如下信息至少之一之间有关联:A个链路之间的复用方式,A个链路之间的资源划分,一个链路占有的资源集合。
其中所述资源包括如下资源至少之一:时域资源,频域资源,参考信号资源,序列资源,端口资源,空域资源。
进一步地,不同资源类型包括的时域资源集合的并集不存在非连续的时域资源。
进一步地,一个资源类型包括的时域资源中存在非连续的时域资源。
进一步地,不同资源类型包括的时域资源轮流出现。
进一步地,不同资源类型包括的时域资源集合的有效期是一个控制信令。
如图21-1所示,IAB donor node/IAB node1给IAB node1分配DB链路上需要检测的控制信道每4个slot出现一次,而且RRC配置DCI中动态通知的时域间隔为1,即DCI和PDSCH/AP-CSI-RS之间的间隔最大为1个slot,比如slotn中的DCI(Downlink control information)调度PDSCH/AP-CSI-RS只能落在slotn,slotn+1上,从而图21-1中的{slotn+2,slotn+3,slotn+6,slotn+7}上IAB donor node/IAB node1不能动态给给IAB node2在Backhaul资源上的信号,从而在{slotn+2,slotn+3,slotn+6,slotn+7}上Access链路可以占有全部的频域资源,参考信号资源,或者在{slotn+2,slotn+3,slotn+6,slotn+7}资源上除了Backhaul半静态信道或信号占有的资源之外的其他资源都可以用于Access资源,而在{slotn,slotn+1,slotn+4,slotn+5}上IAB donor node/IAB node1有可能给IAB node2调度DB/UB信道或信号,Backhaul链路和Access链路只能半静态协商各自占有的资源,比如Backhaul链路和Access链路频分,或者Backhaul链路和Access链路空分,各自占有一部分参考信号资源。将上述{slot4n+2,slot4n+3,n=0,1,2,...}称为第一类资源,上述{slot4n,slot4n+1,n=0,1,2,...}称为第二类资源, 比如在第一类资源上Backhaul和Access链路的资源划分满足图21-3所示的频域资源划分2所示,第二类资源上Backhaul和Access链路的资源划分满足图21-3所示的频域资源划分1所示。
进一步地,所述资源中的信道或信号和调度所述信道或信号的物理层动态控制信令之间的间隔为所述资源中的信道或信号和所述物理层动态控制信令的之间的间隔的最小值。比如图21-2所示,slotn+2上有可能被search space2(即搜索空间2)中的控制信道调度,从而第一类资源{slotn+3,slotn+7},即{slot4n+3,n=0,1,2,...},第二类资源{slotn,slotn+1,slotn+2,slotn+4,slotn+5,slotn+6},即{slot4n,slot4n+1,slot4n+2,n=0,1,2,...}。
类似地,不同的时域资源类型上,Backhaul链路可用的BWP集合不同,或者Backhaul链路可用的频域资源集合不同。
类似地,不同的时域资源类型上,Backhaul链路和Access链路的参考信号的划分不同。
类似地,不同的时域资源类型上,Backhaul链路可用的参考信号集合不同。
类似地,不同的时域资源类型上,Backhaul链路可用空域资源集合不同,其中所述一个空域资源关联一个参考信号,比如上行信号的空域资源空间滤波发送参数根据所述参考信号的空间发送滤波参数得到,下行信号和所述参考信号关于空域资源空间接收参数满足准共址关系。
类似地,不同的时域资源类型上,Backhaul链路和Access链路的可用的复用方式集合不同。
实施例十二:
在本实施例中,参考信号和/或控制信道所在的资源上,A个链路之间的复用方式属于预定复用方式集合。
具体地,比如一个资源上,UB和DA的复用方式属于{时分复用,频分复用}时,UB和/或DA的参考信号可以在该资源上传输,和/或UB和/或DA的 控制信道可以在该资源上传输。当一个资源上,UB和DA的复用方式为空分复用时,UB和/或DA的参考信号不在该资源上传输,和/或UB和/或DA的控制信道不在该资源上传输。
类似地,一个资源上,DB和UA的复用方式属于{时分复用,频分复用}时,DB和/或UA的参考信号可以在该资源上传输,和/或DB和/或UA的控制信道可以在该资源上传输。当一个资源上,DB和UA的复用方式为空分复用时,DB和/或UA的参考信号不在该资源上传输,和/或DB和/或UA的控制信道不在该资源上传输。
实施例十三:
在本实施例中,一个时域资源上关联的空域资源集合中包括的不同元素的个数和A个链路中的复用方式集合有关联,A为大于1的正整数。
比如DB中的一个空域资源用一个TCI state表示,一个TCI state用于建立T个参考信号(Reference Signal,RS)set和T个解调参考信号(Demodulation Reference Signal,DMRS)组之间的关系,其中T个DMRS组中的一个DMRS组和T个RS set中的一个RS set中的一个RS关于一类准共址参数满足准共址关系。
比如UB和DA空分复用和/或频分复用时,DA的可用的TCI state pool中只能包括4个TCI state,和/或UB的SRS set用于为’code book’(或者用途是’non code book’的SRS set中)包括的SRS资源数的个数为4个,UB和DA时分复用时,DA的可用的TCI state pool中就可以包括8个TCI state,和/或UB的SRS set用于为’code book’(或者用途是’non code book’的SRS set中)包括的SRS资源数的个数为8个。
类似地,DB和UA空分复用和/或频分复用时,DB的可用的TCI state pool中只能包括4个TCI state,和/或UA的SRS set用于为’code book’(或者用途是’non code book’的SRS set中)包括的SRS资源数的个数为4个,UB和DA时分复用时,DA的可用的TCI state pool中就可以包括8个TCI state,UA的SRS  set用于为’code book’(或者用途是’non code book’的SRS set中)包括的SRS资源数的个数为8个。
因为空分复用和/或频分复用时,两个链路需要共享IAB侧的空域资源,而时分复用的时候,两个链路不需要共享IAB侧的空域资源。
在本文中,所述多级带宽结构信息,包括C SRS,B SRS信息中的一种或者多种,具体地C SRS,B SRS的意义,可以参考协议38.211。
实施例十四:
本实施例提供了一种测量参考信号的发送装置,其可应用于通信节点设备,且该通信节点设备根据具体应用场景可以充当上述各实施例中的各通信节点,例如包括但不限于第一通信节点,参见图22-1所示,其包括:第一参数确定模块2201,用于根据接收到的第一信令信息和/或预先协商的第一参数确定规则,确定出测量参考信号的参数信息;第一信号发送模块2202,用于根据参数信息,发送测量参考信号。
本实施例还提供了一种测量参考信号的接收装置,其也可根据具体应用需求应用于通信节点设备,且该通信节点设备根据具体应用场景可以充当上述各实施例中的各通信节点,例如包括但不限于第二通信节点,参见图22-2所示,其包括:第二参数确定模块2203,用于发送第一信令信息,该第一信令信息中包括测量参考信号的参数信息。
第三信号接收模块2204,用于根据第二参数确定模块2203确定的参数信息,接收测量参考信号。
在本实施例中,第一参数确定模块2201和/或第二参数确定模块2203确定出来的参数信息包括但不限于以下信息中的至少一种:测量参考信号在一个物理资源块中占有的M组子载波中,每一组子载波中的最低子载波索引或最高子载波索引;测量参考信号在一个时间单元中占有的N组时域符号中,每一组时域符号中的最低时域符号索引或最高时域符号索引;测量参考信号的端口码分复用类型信息;测量参考信号的密度信息ρ;测量参考信号对应的物理资源块集合信息;测量参考信号包括的一个码分复用组对应码分复用长度信息;测量参考信号包括的一个码分复用组在时域的复用长度;测量参考信号包括的一个码 分复用组在频域的复用长度;测量参考信号的端口个数;测量参考信号的梳总数;测量参考信号的梳偏移;参数信息中包括的参数类型集合和确定下行测量参考信号的图样需要的参数类型集合的交集非空;M和N的取值为正整数。
在本实施例中的一种示例中,第一参数确定模块2201和/或第二参数确定模块2203确定出来的参数信息可包括参数类型集合的选择信息;其中,参数类型集合至少包括第一参数类型集合和第二参数类型集合中的至少一个;第一参数类型集合包括用于确定第一类测量参考信号的图样所需的参数信息;第二参数类型集合包括用于确定第二类测量参考信号的图样所需的参数信息。
在本实施例中的一种示例中,第一信号发送模块2202发送的测量参考信号满足如下特征至少之一:为在上行链路上发送的测量参考信号;测量参考信号所在的时域符号为一个时间单元中的任意一个或者多个时域符号;测量参考信号的图样为CSI-RS图样;测量参考信号的图样为下行参考信号的图样;一个测量参考信号资源在一个物理资源块中占有X组连续的子载波;一个测量参考信号端口在一个物理资源块中占有的子载波数包括{0.5,1,2};一个测量参考信号资源包括的测量参考信号端口数属于{1,2,4,8,12,16,24,32};X的取值为正整数。
在本实施例中的一种示例中,第一信号发送模块2202发送的测量参考信号还可满足以下条件中的至少一种:测量参考信号和第一信道或信号占有相同时域符号上的不同子载波;测量参考信号和第一信道或信号占有相同时域符号时,第一信道或信号不能占有测量参考信号占有的子载波;测量参考信号占有的子载波和第一信道或信号占有的子载波碰撞时,根据第一信令信息和/或预先协商的第一参数确定规则确定测量参考信号和第一信道或信号之间的优先级;第一信道或信号为第一通信节点发送的信道或信号。
在本实施例的一种示例中,如下信息至少之一与是否可在相同时域符号上同时发送第一信道或信号和测量参考信号之间有关联:第一信令信息;测量参考信号图样是否属于预定图样类型;测量参考信号和/或第一信道或信号发送时,传输预编码是否使能;测量参考信号是否为Backhaul链路上的上行参考信号;测量参考信号在一个物理资源块中是否等间隔占有子载波;测量参考信号所用的序列类型;测量参考信号是用于干扰测量的测量参考信号还是用于信道测量的测量参考信号;测量参考信号的用途是否属于预定用途集合;其中,第一信道或信号为第一通信节点发送的信道或信号;本实施例中第一通信节点可为发 送上述测量参考信号的通信节点。
应当理解的是,本实施例中的第一参数确定模块2201和/或第二参数确定模块2203根据第一信令信息和/或第一参数确定规则确定参数信息的过程,以及确定的参数信息可满足的条件等可参见上述各实施例所示,在本实施例中不再赘述。第一信号发送模块2202根据第一参数确定模块确定出的参数信息发送测量参考信号的过程,以及发送的测量参考信号需要满足的条件,以及第三信号接收模块2204根据第二参数确定模块2203确定的参数信息接收测量参考信号的过程等也可参见上述各实施例所示,在此也不再赘述。
另外,应当理解的是,上述第一参数确定模块2201和第一信号发送模块2202的功能可通过通信节点设备中的处理器或控制器实现;第二参数确定模块2203和第三信号接收模块2204的功能也可通过通信节点设备中的处理器或控制器实现;可本实施例还可提供一种包括上述装置的通信系统。
实施例十五:
本实施例中提供了一种测量参考信号的发送装置,可应用于但不限于上述各实施例中所示的第一通信节点,且应当理解的是,第一通信节点并不限于上述各实施例所示例的情况,可根据具体应用场景灵活确定。其中,该测量参考信号的发送装置参见图23-1所示,其可包括:第一资源确定模块2301,用于从第二通信节点接收到的第二信令信息和/或与第二通信节点预先协商的第二参数确定规则确定出P类测量参考信号资源;第二信号发送模块2302,用于在P类测量参考信号资源上,发送P类测量参考信号;其中确定出的P类测量参考信号资源可包括但不限于用于测量干扰的测量参考信号资源;P的取值为正整数。
本实施例还提供了一种测量参考信号的接收装置,可应用于但不限于上述各实施例中所示的第二通信节点,且应当理解的是,第二通信节点并不限于上述各实施例所示例的情况,可根据具体应用场景灵活确定;本实施例中测量参考信号的接收装置参见图23-2所示,包括:第四资源确定模块2303,用于向第一通信节点发送第二信令信息,该第二信令信息中包括P类测量参考信号资源信息;第四信号接收模块2304,用于在确定的P类测量参考信号资源上,接收P类测量参考信号。
如上所示,该P类测量参考信号资源包括用于测量干扰的测量参考信号资 源。
在本实施例的一种实施例中,参见图23-2所示,测量参考信号的接收装置还可包括第四信息发送模块2305,用于向第一通信节点发送信道状态报告信息,和/或第二通信节点向第一通信节点发送资源信息,该资源信息是信道状态报告信息占有的资源信息。
一种示例中,该信道状态报告信息可满足但不限于如下特征至少之一:信道状态报告信息是基于P类测量参考信号得到的信道状态报告信息;信道状态报告信息包括信号与干扰加噪声比SINR;信道状态报告信息包括P类测量参考信号中的两类测量参考信号之间的性能差信息;信道状态信息是对于上行信道状态的反馈信息;信道状态信息和P类测量参考信号之间存在对应关系;第二通信节点在下行信道或信号上向第一通信节点发送信道状态信息。
在本实施例的一种示例中,第二信号发送模块2302发送的用于测量干扰的测量参考信号和或第四信号接收模块2304接收到的用于测量干扰的测量参考信号可满足但不限于如下特征中的至少之一:用于测量干扰的测量参考信号的配置信息中不携带空间发送滤波参数的配置信息;第一通信节点和第二通信节点之间的信号不携带用于测量干扰的测量参考信号的空间滤波参数;比如用于测量干扰的测量参考信号的空间滤波参数不能根据第一通信节点和第二通信节点之间的信号获取,用于测量干扰的测量参考信号的空间滤波参数关联的参考信号不属于第一通信节点和第二通信节点之间的参考信号。用于测量干扰的测量参考信号的空间滤波参数与预定空间滤波参数集合中的空间滤波参数的交集为空,其中预定空间滤波参数集合中的每个空间滤波参数关联一个第一通信节点与第二通信节点之间的信号;用于测量干扰的测量参考信号的空间滤波参数根据第一通信节点发送给一个或者多个第三通信节点的第一参考信号的空间发送滤波参数得到;用于测量干扰的测量参考信号的参数信息和第一通信节点发送给一个或者多个第三通信节点的第二参考信号的参数信息相同;用于确定用于测量干扰的测量参考信号的参数类型和用于确定第一通信节点发送给一个或者多个第三通信节点的第三参考信号的参数类型相同;第一通信节点在用于测量干扰的测量参考信号的资源上给一个或者多个第三通信节点发送第四参考信号;用于测量干扰的测量参考信号用于测量第一通信节点给一个或者多个第三通信节点发送的信号到达第二通信节点的干扰;用于测量干扰的测量参考信号用于第二通信节点测量干扰;用于测量干扰的测量参考信号用于第二通信节点 测量第一通信节点发送的第一类信号到达第二通信节点的干扰,其中调度第一类信号的控制信令所在的控制信道资源组和第二信令信息所在的控制信道资源组是两个不同的控制信道资源组,和/或第一类信号所在的频域带宽与第二信令信息所在的频域带宽是两个不同的频域带宽,和/或第一类信号所在的频域带宽与第二信令信息调度的信道或信号所在的频域带宽是两个不同的频域带宽;其中,第一参考信号,第二参考信号,第三参考信号,第四参考信号可为如下参考信号中的至少一种:下行测量参考信号,下行解调参考信号,下行相位跟踪参考信号,同步信号。
在本实施例的一种示例中,从第二通信节点接收到的第二信令信息可包括但不限于如下参数信息至少之一:用于测量干扰的测量参考信号在一个物理资源块中占有的M组子载波中每一组子载波中的最低子载波索引或最高子载波索引;用于测量干扰的测量参考信号在一个时间单元中占有的N组时域符号中每一组时域符号中的最低时域符号索引或最高时域符号索引;用于测量干扰的测量参考信号占有的物理资源块集合信息;用于测量干扰的测量参考信号端口码分复用类型信息;用于测量干扰的测量参考信号的密度信息ρ;用于测量干扰的测量参考信号包括的一个码分复用组对应码分复用长度信息;用于测量干扰的测量参考信号包括的一个码分复用组在频域的复用长度;用于测量干扰的测量参考信号包括的一个码分复用组在时域的复用长度;用于测量干扰的测量参考信号图样类型信息,至少包括第一类图样和第二类图样;用于测量干扰的测量参考信号对应的参数类型集合的选择信息;用于测量干扰的测量参考信号对应的梳总数;用于测量干扰的测量参考信号对应的梳偏移;M和N的取值为正整数。
在本实施例的一种示例中,第二信号发送模块2302发送的P类测量参考信号可满足但不限于如下特征至少之一:P类测量参考信号还包括用于测量信道的测量参考信号;P类测量参考信号对应的空间接收滤波参数相同;P类测量参考信号对应的空间发送滤波参数不同;P类测量参考信号中的每一类有其对应的空间发送滤波参数配置信息;P类测量参考信号的空间发送滤波参数信息和P类测量参考信号的类型信息之间有关联;P类测量参考信号为上行测量参考信号。
应当理解的是,本实施例中的第一资源确定模块2301根据第二信令信息和/或第二参数确定规则确定出P类测量参考信号资源的过程,第四资源确定模块 2303根据向第一通信节点发送的第二信令信息和/或与第一通信节点预先协商的第二参数确定规则确定出P类测量参考信号资源的过程,以及确定的P类测量参考信号资源可满足的条件等可参见上述各实施例所示,在此不再赘述。第二信号发送模块2302在P类测量参考信号资源上,发送P类测量参考信号的过程,以及发送的P类测量参考信号需要满足的条件,第四信号接收模块2304在确定的所述P类测量参考信号资源上接收P类测量参考信号的过程等也可参见上述各实施例所示,在此也不再赘述。
另外,应当理解的是,上述第一资源确定模块2301和第二信号发送模块2302的功能可通过通信节点设备中的处理器或控制器实现;第四资源确定模块2303和第四信号接收模块2304的功能可通过通信节点设备中的处理器或控制器实现,且本实施例还可提供一种包括上述装置的通信系统。
实施例十六:
本实施例还提供了一种测量参考信号的接收装置,可应用于但不限于上述各实施例中所示的第一通信节点,且应当理解的是,第一通信节点并不限于上述各实施例所示例的情况,可根据具体应用场景灵活确定。其中,该测量参考信号的接收装置参见图24-1所示,其包括:第一信息接收模块2401,用于接收来自于第二通信节点发送的第三信令信息,第三信令信息包括干扰测量资源信息;第一信号接收模块2402,用于在根据干扰测量资源信息确定的干扰测量资源上接收一个或者多个第三通信节点发送的至少一个信号,和/或干扰测量资源信息中包括的参数类型和用于确定上行参考信号图样的参数类型之间的交集非空,和/或第一通信节点在干扰测量资源上不接收下行测量参考信号。
本实施例还提供了一种测量参考信号的接收装置,可应用于但不限于上述各实施例中所示的第二通信节点,且应当理解的是,第二通信节点并不限于上述各实施例所示例的情况,可根据具体应用场景灵活确定。其中,该测量参考信号的接收装置参见图24-2所示,其包括:第三信息发送模块2404,用于向第一通信节点发送第三信令信息,该第三信令信息包括干扰测量资源信息;第三信令信息用于指示第一通信节点在根据干扰测量资源信息确定的干扰测量资源上接收一个或者多个第三通信节点发送的信号,和/或干扰测量资源信息中包括的参数类型和用于确定上行参考信号图样的参数类型之间的交集非空,和/或第二通信节点在干扰测量资源上不发送下行信号。
在本实施例的一种示例中,上述信号或资源包括但不限于如下条件至少之一:第三通信节点发送的信号为上行信号;干扰测量资源为信道状态报告信息对应的干扰测量资源,其中信道状态信息为第一通信节点发送给第二通信节点的信道状态信息;干扰测量资源和信道测量资源关于空间接收滤波参数不满足准共址关系,其中干扰测量资源和信道测量资源对应同一个信道状态报告信息;干扰测量资源关于空间接收滤波参数的准共址参考信号为第一准共址参考信号和信道测量资源关于空间接收滤波参数的准共址参考信号为第二准共址参考信号,其中干扰测量资源和信道测量资源对应同一个信道状态报告信息;干扰测量资源的图样为CSI-RS图样;干扰测量资源的图样为SRS图样;在干扰测量资源上第一通信节点不接收第二通信节点发送的下行测量参考信号;在干扰测量资源上第一通信节点不接收下行测量参考信号;干扰测量资源占有的资源和第一通信节点和第二通信节点之间的测量参考信号占有的资源之间的交集为空;
其中信道状态信息为第一通信节点发送给第二通信节点的信道状态信息。
在本实施例的一种实施例中,第一信息接收模块2401所接收到的第三信令信息可包括但不限于如下信息至少之一:干扰测量资源类型信息,至少存在第一类干扰测量资源和第二类干扰测量资源;非零功率NZP-干扰测量资源类型信息,至少存在第一类NZP-干扰测量资源和第二类NZP-干扰测量资源;干扰测量资源对应的图样类型选择信息;干扰测量资源在一个时间单元中占有的一组时域符号信息;干扰测量资源的重复因子信息;干扰测量资源的跳频参数;干扰测量资源的多级带宽结构信息。
参见图24-1所示,在本实施例的一种示例中,测量参考信号的接收装置还包括第一信息发送模块2403,用于向第三通信发送第四信令信息,第四信令信息用于指示第三通信节点发送第二信号;其中,第二信号占有的资源和干扰测量资源占有的资源之间的交集非空;占有的资源包括如下资源至少之一:时域资源,频域资源,码域资源,空域资源。
在本实施例的一种示例中,第一信息接收模块2401所接收到的第三信令信息中包括的参数类型集合包括但不限于如下信息至少之一:端口数,梳偏移,在一个时间单元中时域符号信息,时域跳频单位信息,频域信息,多级带宽结构中的频域偏移量,频域跳频信息,序列组或者序列号的跳变信息,序列产生参数,干扰测量参考信号的图样类型的选择信息;其中图样类型包括但不限于:上行参考信号图样和下行参考信号图样中的至少一种。
应当理解的是,本实施例中的第一信息接收模块2401接收第三信令信息的过程,第三信息发送模块2404向第一通信节点发送第三信令信息的过程,以及第三信令信息可包括的内容和可满足的条件等可参见上述各实施例所示,在此不再赘述。第一信号接收模块2402在根据干扰测量资源信息确定的干扰测量资源上接收一个或者多个第三通信节点发送的至少一个信号的过程,以及接收到的信号的内容、类型以及可满足的条件等也可参见上述各实施例所示,在此不再赘述;第一信息发送模块2403向第三通信发送的第四信令信息的发送方式和第四信令信息可包括的内容等也可根据具体应用场景灵活设置。
另外,应当理解的是,上述第一信息接收模块2401、第一信号接收模块2402和第一信息发送模块2403的功能可通过通信节点设备中的处理器或控制器实现;上述第三信息发送模块2404的功能可通过通信节点设备中的处理器或控制器实现;且本实施例还可提供一种包括上述各装置的通信系统。
实施例十七:
本实施例提供了一种信号的传输装置,可应用于各种通信节点设备,参见图25所示,其包括:确定模块2501,用于根据传输的第五信令信息和/或第三参数确定规则,确定U个资源集合与Q个如下对象之一的对应关系:空间发送滤波参数集合,准共址参考信号集合,空间发送滤波参数与准共址参考信号组合的集合,频域资源集合,参考信号集合,A个链路之间的频域资源划分,功率参数集合,B个链路之间的复用方式集合,C个链路中的C个参考信号组合的集合;传输模块2502,用于根据对应关系传输信道或信号;本实施例中的传输包括发送或者接收。其中,U,Q取大于或者等于1的正整数,A,B取大于1的正整数;资源包括如下资源至少之一:时域资源,频域资源,参考信号资源。
在本实施例的一种示例中,确定模块2501确定U个资源集合与Q个如下对象之一的对应关系包括:确定U个时域资源集合和Q个频域资源集合之间的对应关系,其中,一个时间单元中的信道或信号占有的频域资源是时间单元所属的时域资源集合对应的频域资源集合的子集;和/或,确定模块2501确定U个资源集合与Q个如下对象之一的对应关系包括:确定模块2501确定U个时域资源集合和Q个参考信号集合之间的对应关系,其中,一个时间单元中的信道或信号对应的参考信号是时间单元所属的时域资源集合对应的参考信号集合的子集;和/或,确定模块2501确定U个资源集合与Q个如下对象之一的对应 关系包括:确定U个时域资源集合和A个链路之间的Q个频域资源划分之间的对应关系,其中满足如下特征至少之一:一个时间单元中的信道或信号占有的频域资源是时间单元所属的时域资源集合对应的频域资源划分中信道或信号所属的链路对应的频域资源集合的子集;一个时间单元中A个链路中的信道或信号所占的频域资源满足时间单元所属的时域资源集合对应的频域资源划分;和/或,确定模块2501确定U个资源集合与Q个如下对象之一的对应关系包括:确定U个时域资源集合和Q个功率参数集合之间的对应关系,其中满足如下特征至少之一:一个时间单元中的信道或信号对应的功率参数集合为时间单元所属的时域资源集合对应的功率参数集合;Q个功率参数集合包括的功率参数类型相同;Q个功率参数集合是对于同一类参数集合的Q个配置值;和/或,确定U个资源集合与Q个如下对象之一的对应关系包括:确定U个资源集合和Q个复用方式集合之间的对应关系,其中一个复用方式包括B个链路之间的复用方式,一个资源中B个链路之间的复用方式集合属于资源对应的复用方式集合;和/或,确定U个资源集合与Q个如下对象之一的对应关系包括:确定U个资源集合和Q个参考信号组合之间的对应关系,其中一个参考信号组合包括C个链路中每个链路对应的参考信号,一个资源中C个链路中的参考信号组合属于资源对应的C个链路中的参考信号组合的集合。
在本实施例的一种应用场景中,确定模块2501确定U个资源集合与Q个集合之间的对应关系包括如下至少之一:确定U个资源集合和Q个集合之间的对应关系;确定U个资源集合和Q个用途为code book的SRS resource set之间的对应关系;确定U个资源集合和Q个用途为non code book的SRS resource set之间的对应关系;确定U个资源集合和Q个TCI state pool之间的对应关系;确定U个资源集合和Q个(第一参考信号,准共址参考信号)组合的集合之间的对应关系;其中一个SRS resource set对应一个空间滤波参数集合,SRS resource set中的每个resource对应一套空间滤波参数;一个TCI state pool对应一个准共址参考信号集合,TCI state pool中的每个TCI state包括一个准共址参考信号;P的取值为正整数,Q的取值为小于或者等于P的正整数。
在本实施例的一种示例中,传输模块2502根据对应关系传输信道或信号包括:当收到不满足如下特征至少之一的配置信息时,不发送或者不接收资源上的信道或信号:资源中的信道或者信号的空间滤波参数属于资源对应的空间滤波参数集合;资源中的信道或者信号关于空间接收滤波参数的准共址参考信号属于资源对应的准共址参考信号集合;资源中的信道或者信号和资源对应的准 共址参考信号集合中的至少一个准共址参考信号关于空间接收滤波参数满足准共址关系;资源上的信道或信号对应的集合属于Q个集合中与资源存在对应关系的一个集合;资源上的A个链路中的信道或信号占有的频域资源满足资源对应的A个链路之间的频域资源划分。
应当理解的是,本实施例中的确定模块2501根据接收的第五信令信息和/或第三参数确定规则,确定U个资源集合与Q个如下对象之一的对应关系的过程,以及U个资源集合的内容和可满足的条件等可参见上述各实施例所示,在此不再赘述。传输模块2502根据对应关系传输信道或信号的过程也可参见上述各实施例所示,在此不再赘述。
另外,应当理解的是,上述确定模块2501、传输模块2502的功能可通过通信节点设备中的处理器或控制器实现,且本实施例还可提供一种包括上述各装置的通信系统。
实施例十八:
本实施例还提供了一种信号发送装置,其可应用于各种通信节点设备,参见图26所示,包括:第二资源确定模块2601,用于根据接收的第六信令信息或者第四参数确定规则确定第一类时频资源;第三信号发送模块2602,用于根据确定的第一类时频资源,发送信道或信号;其中上述信道或信号不能占有第一类时频资源。
在本实施例的一种示例中,第二资源确定模块2601接收到的第六信令信息可包括但不限于第一类时频资源的如下信息至少之一:物理资源块集合信息;在一个时间单元中占有的时域符号位置信息;时间行为信息;周期信息;周期偏置信息;在一个物理资源块中占有的子载波索引集合信息;在一个物理资源块中占有的D组子载波中每一组子载波中的最低子载波索引或最高子载波索引;在一个时间单元中占有的J组时域符号中每一组时域符号中的最低时域符号索引或最高时域符号索引;下行参考信号图样信息;图样类型的选择信息,图样类型至少存在第一类图样和第二类图样;上述D,J的取值为正整数。
在本实施例的一种实施例中,上述第一类图样是上行参考信号图样,第二类图样是下行参考信号图样;在本实施例的另一种实施例中,第一类图样是SRS图样,第二类图样是CSI-RS图样;具体如何设置可以根据应用场景灵活设定。
应当理解的是,本实施例中的第二资源确定模块2601根据接收的第六信令信息或者第四参数确定规则确定第一类时频资源的过程,以及第一类时频资源的内容和可满足的条件等可参见上述各实施例所示,在此不再赘述。第三信号发送模块2602根据确定的第一类时频资源发送信道或信号的过程也可参见上述各实施例所示,在此不再赘述。
另外,应当理解的是,上述第二资源确定模块2601、第三信号发送模块2602的功能可通过通信节点设备中的处理器或控制器实现,且本实施例还可提供一种包括上述各装置的通信系统。
实施例十九:
本实施例还提供了一种信道或信号的接收装置,其可应用于各种通信节点设备,参见图27所示,包括:第三资源确定模块2701,用于根据接收的第七信令信息或者第五参数确定规则确定第二类时频资源;第二信号接收模块2702,用于根据确定的第二类时频资源,接收信道或信号;其中信道或信号不占有第二类时频资源。
在本实施例的一种示例中,第三资源确定模块2701接收到的第七信令信息包括但不限于第二类时频资源的如下信息至少之一:端口数;梳偏移;在一个时间单元中时域符号信息;时域跳频单位信息;频域信息;多级带宽结构中的频域偏移量;频域跳频信息;上行参考信号的图样信息;图样类型选择信息,至少存在第一类图样和第二类图样。
在本实施例的一种实施例中,上述第一类图样是上行参考信号图样,第二类图样是下行参考信号图样;在本实施例的另一种实施例中,第一类图样是SRS图样,第二类图样是CSI-RS图样;具体如何设置可以根据应用场景灵活设定。
应当理解的是,本实施例中的第三资源确定模块2701根据根据接收的第七信令信息或者第五参数确定规则确定第二类时频资源的过程,以及第二类时频资源的内容和可满足的条件等可参见上述各实施例所示,在此不再赘述。第二信号接收模块2702根据确定的第二类时频资源接收信道或信号的过程也可参见上述各实施例所示,在此不再赘述。
另外,应当理解的是,上述第三资源确定模块2701、第二信号接收模块2702的功能可通过通信节点设备中的处理器或控制器实现,且本实施例还可提供一 种包括上述各装置的通信系统。
实施例二十:
本实施例还提供了一种信令信息的传输装置,可应用于但不限于上述各实施例中所示的第一通信节点,且应当理解的是,第一通信节点并不限于上述各实施例所示例的情况,可根据具体应用场景灵活确定。其中,该信令信息的传输装置参见图28所示,包括:第二信息发送模块2801,用于向第二通信节点发送第八信令信息;和/或,第二信息接收模块2802,用于接收第二通信节点发送的第九信令信息;其中在一些示例中,上述第八信令信息,和/或第九信令信息中包括如下信息至少之一:第一信号集合的信息,第二信号集合的信息,第一信号集合和第二信号集合中的信号包括参考信号;其中第一信道或信号和第一信号集合中的至少一个信号关于一种或者多种信道大尺度特性参数满足准共址关系,和/或第二信道或信号的空间发送滤波参数根据第二信号集合中至少一个信号得到;第一信道或信号为第一通信节点发送给一个或者多个第三通信节点的信道或信号,第二信道或信号为一个或者多个第三通信节点发送给第一通信节点的信道或信号。
可选地,在一些应用场景中,第二信息发送模块2801还可用于向一个或者多个第三通信节点发送第十信令信息,第八信令信息用于指示一个或者多个第三通信节点接收第一信号集合中的信号;和/或,第二信息发送模块2801还用于向一个或者多个第三通信节点发送第十一信令信息,第九信令信息用于指示一个或者多个第三通信节点发送第二信号集合中的信号。
应当理解的是,本实施例中的第二信息发送模块2801向第二通信节点发送第八信令信息的过程,以及第八信令信息包括的内容和可满足的条件等可参见上述各实施例所示,在此不再赘述。第二信息接收模块2802接收第二通信节点发送的第九信令信息的过程,以及第九信令信息包括的内容和可满足的条件等可参见上述各实施例所示,在此也不再赘述。
另外,应当理解的是,上述第二信息发送模块2801和第二信息接收模块2802的功能可通过通信节点设备中的处理器或控制器实现,且本实施例还可提供一种包括上述各装置的通信系统。
实施例二十一:
本实施例还提供了一种通信节点设备,该通信节点设备根据具体应用场景可作为上述各实施例中各通信节点角色,且在本实施例的一种应用场景中,可提供一种包括至少两个处于不同角色的通信节点设备组成的通信系统。参见图29所示,其包括处理器2901、存储器2902以及通信总线2903;通信总线2903用于实现处理器2901与存储器2902之间的通信连接,处理器2901和存储器2902可用于执行以下功能中的至少一个:存储器2902用于存储的一个或者多个第一程序,处理器2901用于执行一个或者多个第一程序,以实现如上各实施例所示例的测量参考信号的发送方法的步骤;或,存储器2902用于存储的一个或者多个第二程序,处理器2901用于执行一个或者多个第二程序,以实现如上各实施例所示例的测量参考信号的接收方法的步骤;或,存储器2902用于存储的一个或者多个第三程序,处理器2901用于执行一个或者多个第三程序,以实现如上各实施例所示例的测量参考信号的发送方法的步骤;或,存储器2902用于存储的一个或者多个第四程序,处理器2901用于执行一个或者多个第四程序,以实现如上测量参考信号的接收方法的步骤;或,存储器2902用于存储的一个或者多个第五程序,处理器2901用于执行一个或者多个第五程序,以实现如上各实施例所示例的测量参考信号的接收方法的步骤;或,存储器2902用于存储的一个或者多个第六程序,处理器2901用于执行一个或者多个第六程序,以实现如上各实施例所示例的测量参考信号的接收方法的步骤;或,存储器2902用于存储的一个或者多个第七程序,处理器2901用于执行一个或者多个第七程序,以实现如上各实施例所示例的信号的传输方法的步骤;或,存储器2902用于存储的一个或者多个第八程序,处理器2901用于执行一个或者多个第八程序,以实现如上各实施例所示例的信号发送方法的步骤;或,存储器2902用于存储的一个或者多个第九程序,处理器2901用于执行一个或者多个第九程序,以实现如上各实施例所示例的信道或信号的接收方法的步骤;或,存储器2902用于存储的一个或者多个第十程序,处理器2901用于执行一个或者多个第十程序,以实现如上各实施例所示例的信令信息的传输方法的步骤。
应当理解的是,在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据) 的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
在本实施例中,计算机可读存储介质可用于执行以下功能中的至少一个:计算机可读存储介质可用于存储一个或者多个第一程序,一个或者多个第一程序可被一个或者多个处理器执行,以实现如上的测量参考信号的发送方法的步骤;计算机可读存储介质可用于存储一个或者多个第二程序,一个或者多个第二程序可被一个或者多个处理器执行,以实现如上的测量参考信号的接收方法的步骤;计算机可读存储介质可用于存储一个或者多个第三程序,一个或者多个第三程序可被一个或者多个处理器执行,以实现如上的测量参考信号的发送方法的步骤;计算机可读存储介质可用于存储一个或者多个第四程序,一个或者多个第四程序可被一个或者多个处理器执行,以实现如上测量参考信号的接收方法的步骤;计算机可读存储介质可用于存储一个或者多个第五程序,一个或者多个第五程序可被一个或者多个处理器执行,以实现如上的测量参考信号的接收方法的步骤;计算机可读存储介质可用于存储一个或者多个第六程序,一个或者多个第六程序可被一个或者多个处理器执行,以实现如上的测量参考信号的接收方法的步骤;计算机可读存储介质可用于存储一个或者多个第七程序,一个或者多个第七程序可被一个或者多个处理器执行,以实现如上的信号的传输方法的步骤;计算机可读存储介质可用于存储一个或者多个第八程序,一个或者多个第八程序可被一个或者多个处理器执行,以实现如上的信号发送方法的步骤;计算机可读存储介质可用于存储一个或者多个第九程序,一个或者多个第九程序可被一个或者多个处理器执行,以实现如上的信道或信号的接收方法的步骤;计算机可读存储介质可用于存储一个或者多个第十程序,一个或者多个第十程序可被一个或者多个处理器执行,以实现如上的信令信息的传输方法的步骤。
本实施例还提供了一种计算机程序(或称计算机软件),该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现上述至少一个实施例所示的方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施 例所描述的顺序执行所示出或描述的至少一个步骤。因此,本实施例中的该计算机程序根据具体应用需求可以包括上述各程序中的至少一个。
应当理解的是,在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本申请不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (95)

  1. 一种测量参考信号的发送方法,包括:
    根据接收到的第一信令信息和预先协商的第一参数确定规则中的至少之一,确定测量参考信号的参数信息;
    根据所述参数信息,发送所述测量参考信号。
  2. 如权利要求1所述的方法,其中,所述参数信息包括以下信息中的至少一种:
    所述测量参考信号在一个物理资源块中占有的M组子载波中,每一组子载波中的最低子载波索引或最高子载波索引;
    所述测量参考信号在一个时间单元中占有的N组时域符号中,每一组时域符号中的最低时域符号索引或最高时域符号索引;
    所述测量参考信号的端口码分复用类型信息;
    所述测量参考信号的密度信息ρ;
    所述测量参考信号对应的物理资源块集合信息;
    所述测量参考信号包括的一个码分复用组对应的码分复用长度信息;
    所述测量参考信号包括的一个码分复用组在时域的复用长度;
    所述测量参考信号包括的一个码分复用组在频域的复用长度;
    所述测量参考信号的端口个数;
    所述测量参考信号的梳总数;
    所述测量参考信号的梳偏移;
    所述参数信息中包括的参数类型集合和确定下行测量参考信号的图样需要的参数类型集合的交集非空;
    所述M和N的取值为正整数。
  3. 如权利要求2所述的方法,其中,所述参数信息满足如下特征至少之一:
    所述码分复用类型信息包括如下类型中的至少之一:无码分复用;频域长度为2的码分复用;频域长度为2和时域长度为2总长度为4的码分复用;频域长度为2和时域长度为4总长度为8的码分复用;
    所述密度信息ρ表示每个测量参考信号端口在每个物理资源中占有的平均 子载波数为ρ;
    所述密度信息ρ表示每隔1/ρ个物理资源块,所述测量参考信号的图样在频域重复一次;
    所述密度信息ρ包括{0.5,1,3};
    一组子载波为一个码分复用组在频域对应的一组子载波;
    一组子载波为频域连续的一组子载波;
    一组子载波等间隔分布;
    一组子载波中包括的子载波数属于{1,2};
    一组时域符号为一个码分复用组在时域对应的一组时域符号;
    一组时域符号为时域连续的一组时域符号;
    一组时域符号等间隔分布;
    所述测量参考信号对应的物理资源块集合信息包括起始物理资源索引和物理资源块个数信息;
    所述测量参考信号对应的物理资源块集合包括的物理资源块是非连续的物理资源块;
    所述测量参考信号等间隔占有所述测量参考信号对应的物理资源块集合中的物理资源块;
    所述测量参考信号对应的梳总数属于{1,2,4,8,12,a*12,b*4},其中所述a和b的取值为正整数;
    所述测量参考信号对应的梳偏移的最大值属于{0,1,3,7,11,a*12-1,b*4-1}。
  4. 如权利要求1所述的方法,其中,所述参数信息包括参数类型集合的选择信息;
    所述参数类型集合包括第一参数类型集合和第二参数类型集合中的至少一个;
    所述第一参数类型集合包括用于确定第一类测量参考信号的图样所需的参数信息;
    所述第二参数类型集合包括用于确定第二类测量参考信号的图样所需的参 数信息。
  5. 如权利要求4所述的方法,满足如下特征至少之一:
    所述第一类测量参考信号的图样为信道探测参考信号SRS图样;
    所述第一类测量参考信号的图样为上行参考信号图样;
    所述第二类测量参考信号的图样为信道状态测量导频信号CSI-RS图样;
    所述第二类测量参考信号的图样为下行参考信号图样;
    所述第一类测量参考信号为第一通信节点在上行链路上接收的第三通信节点发送的测量参考信号;
    所述第二类测量参考信号为第一通信节点在下行链路上发送给第三通信节点的测量参考信号;
    所述第一类测量参考信号为第二通信节点在上行链路上接收的第四通信节点发送的测量参考信号;
    所述第二类测量参考信号为第二通信节点在下行链路上发送给第四通信节点的测量参考信号;
    所述测量参考信号是否是回程Backhaul链路上的上行参考信号的判断结果和所述参数类型集合的选择信息之间有关联;
    所述测量参考信号包括的端口数信息属于的端口数集合和所述参数类型集合的选择信息之间有关联;
    所述参数类型集合的选择信息和所述测量参考信号所用的序列类型信息之间有关联;
    所述测量参考信号占有的物理资源块数和所述参数类型集合的选择信息之间有关联;
    所述第一通信节点为发送所述测量参考信号的通信节点,所述第二通信节点为发送所述第一信令信息的通信节点。
  6. 如权利要求1所述的方法,其中,
    第一通信节点根据第二通信节点发送的第一信令信息和与所述第二通信节点预先协商的第一参数确定规则中的至少之一确定测量参考信号的参数信息;
    所述第一通信节点向所述第二通信节点发送所述测量参考信号;
    其中,所述参数信息包括参数类型,所述参数类型包括如下至少之一:确定第一类参考信号的图样需要的参数,第一类参考信号的类型选择参数;
    其中,所述第一类参考信号满足如下特征至少之一:
    所述第一类参考信号为所述第二通信节点发送的参考信号;
    所述第一类参考信号为所述第一通信节点发送的参考信号;
    所述第一类参考信号为所述第二通信节点或者所述第一通信节点在下行链路发送的参考信号。
  7. 如权利要求1-5任一项所述的方法,其中,所述测量参考信号满足如下特征至少之一:
    所述测量参考信号为在上行链路上发送的测量参考信号;
    所述测量参考信号所在的时域符号为一个时间单元中的任意至少一个时域符号;
    所述测量参考信号的图样为CSI-RS图样;
    所述测量参考信号的图样为下行参考信号的图样;
    所述测量参考信号的资源在一个物理资源块中占有X组连续的子载波;
    所述测量参考信号的端口在一个物理资源块中占有的子载波数包括{0.5,1,2};
    所述测量参考信号的资源包括的测量参考信号端口数属于{1,2,4,8,12,16,24,32};
    所述X的取值为正整数。
  8. 如权利要求1-5任一项所述的方法,其中,所述测量参考信号满足如下特征至少之一:
    所述测量参考信号和第一信道或信号占有相同时域符号上的不同子载波;
    在所述测量参考信号和第一信道或信号占有相同时域符号的情况下,所述第一信道或信号不能占有所述测量参考信号占有的子载波;
    所述测量参考信号和所述第一信道或信号之间的优先级通过在所述测量参考信号占有的子载波和第一信道或信号占有的子载波碰撞的情况下,根据所述第一信令信息和所述预先协商的第一参数确定规则中的至少之一确定;
    其中,所述第一信道或信号为第一通信节点发送的信道或信号,所述第一通信节点为发送所述测量参考信号的通信节点。
  9. 如权利要求1-5任一项所述的方法,其中,如下信息至少之一与是否可在相同时域符号上同时发送第一信道或信号和所述测量参考信号之间有关联:
    所述第一信令信息;
    所述测量参考信号的图样是否属于预定图样类型;
    所述测量参考信号和所述第一信道或信号中的至少之一发送时,传输预编码是否使能;
    所述测量参考信号是否为Backhaul链路上的上行参考信号;
    所述测量参考信号在一个物理资源块中是否等间隔占有子载波;
    所述测量参考信号所用的序列类型;
    所述测量参考信号是用于干扰测量的测量参考信号还是用于信道测量的测量参考信号;
    所述测量参考信号的用途是否属于预定用途集合;
    其中,所述第一信道或信号为第一通信节点发送的信道或信号,所述第一通信节点为发送所述测量参考信号的通信节点。
  10. 一种测量参考信号的接收方法,包括:
    发送第一信令信息,所述第一信令信息中包括测量参考信号的参数信息;
    根据所述参数信息,接收所述测量参考信号。
  11. 如权利要求10所述的方法,其中,所述参数信息包括以下信息中的至少一种:
    所述测量参考信号在一个物理资源块中占有的M组子载波中,每一组子载波中的最低子载波索引或最高子载波索引;
    所述测量参考信号在一个时间单元中占有的N组时域符号中,每一组时域符号中的最低时域符号索引或最高时域符号索引;
    所述测量参考信号的端口码分复用类型信息;
    所述测量参考信号的密度信息ρ;
    所述测量参考信号对应的物理资源块集合信息;
    所述测量参考信号包括的一个码分复用组对应码分复用长度信息;
    所述测量参考信号包括的一个码分复用组在时域的复用长度;
    所述测量参考信号包括的一个码分复用组在频域的复用长度;
    所述测量参考信号的端口个数;
    所述测量参考信号的梳总数;
    所述测量参考信号的梳偏移;
    所述参数信息中包括的参数类型集合和确定下行测量参考信号的图样需要的参数类型集合的交集非空;
    所述M和N的取值为正整数。
  12. 一种测量参考信号的发送方法,包括:
    第一通信节点根据从第二通信节点接收到的第二信令信息和与所述第二通信节点预先协商的第二参数确定规则中的至少之一确定出P类测量参考信号资源;
    所述第一通信节点在确定的所述P类测量参考信号资源上,发送P类测量参考信号;
    所述P类测量参考信号资源包括用于测量干扰的测量参考信号的资源;所述P的取值为正整数。
  13. 如权利要求12所述的方法,其中,所述用于测量干扰的测量参考信号满足如下特征中的至少之一:
    所述用于测量干扰的测量参考信号的配置信息中不携带空间发送滤波参数的配置信息;
    所述第一通信节点和所述第二通信节点之间的信号不携带所述用于测量干扰的测量参考信号的空间滤波参数;
    所述用于测量干扰的测量参考信号的空间滤波参数与预定空间滤波参数集合中的空间滤波参数的交集为空,其中所述预定空间滤波参数集合中的每个空间滤波参数关联一个所述第一通信节点与所述第二通信节点之间的信号;
    所述用于测量干扰的测量参考信号的空间滤波参数根据所述第一通信节点 发送给第三通信节点的第一参考信号的空间发送滤波参数得到;
    所述用于测量干扰的测量参考信号的参数信息和所述第一通信节点发送给第三通信节点的第二参考信号的参数信息相同;
    用于确定所述用于测量干扰的测量参考信号的参数类型和用于确定所述第一通信节点发送给第三通信节点的第三参考信号的参数类型相同;
    所述第一通信节点在所述用于测量干扰的测量参考信号的资源上给第三通信节点发送第四参考信号;
    所述用于测量干扰的测量参考信号用于测量第一通信节点给第三通信节点发送的信号到达所述第二通信节点的干扰;
    所述用于测量干扰的测量参考信号用于所述第二通信节点测量干扰;
    所述用于测量干扰的测量参考信号用于所述第二通信节点测量所述第一通信节点发送的第一类信号到达所述第二通信节点的干扰,且所述第一类信号和所述第二信令信息满足如下至少之一:调度所述第一类信号的控制信令所在的控制信道资源组和所述第二信令信息所在的控制信道资源组是两个不同的控制信道资源组;所述第一类信号所在的频域带宽与所述第二信令信息所在的频域带宽是两个不同的频域带宽;所述第一类信号所在的频域带宽与所述第二信令信息调度的信道或信号所在的频域带宽是两个不同的频域带宽;
    其中,所述第一参考信号,第二参考信号,第三参考信号,第四参考信号可为如下参考信号中的至少一种:下行测量参考信号,下行解调参考信号,下行相位跟踪参考信号,同步信号。
  14. 如权利要求13所述的方法,还包括:所述第一通信节点接收所述第三通信节点发送的信道状态报告信息,所述信道状态报告信息的信道测量资源包括所述第四参考信号和所述用于测量干扰的测量参考信号的资源中的至少之一。
  15. 如权利要求12所述的方法,其中,所述第二信令信息包括如下参数信息至少之一:
    所述用于测量干扰的测量参考信号在一个物理资源块中占有的M组子载波中每一组子载波中的最低子载波索引或最高子载波索引;
    所述用于测量干扰的测量参考信号在一个时间单元中占有的N组时域符号 中每一组时域符号中的最低时域符号索引或最高时域符号索引;
    所述用于测量干扰的测量参考信号占有的物理资源块集合信息;
    所述用于测量干扰的测量参考信号的端口码分复用类型信息;
    所述用于测量干扰的测量参考信号的密度信息ρ;
    所述用于测量干扰的测量参考信号包括的一个码分复用组对应码分复用长度信息;
    所述用于测量干扰的测量参考信号包括的一个码分复用组在频域的复用长度;
    所述用于测量干扰的测量参考信号包括的一个码分复用组在时域的复用长度;
    所述用于测量干扰的测量参考信号的图样类型信息,所述图样类型至少包括第一类图样和第二类图样;
    所述用于测量干扰的测量参考信号对应的参数类型集合的选择信息;
    所述用于测量干扰的测量参考信号对应的梳总数;
    所述用于测量干扰的测量参考信号对应的梳偏移;
    所述M和N的取值为正整数。
  16. 如权利要求15所述的方法,其中,所述参数信息满足如下特征至少之一:
    所述码分复用类型信息包括如下类型中的至少之一:无码分复用;频域长度为2的码分复用;频域长度为2和时域长度为2总长度为4的码分复用;频域长度为2和时域长度为4总长度为8的码分复用;
    所述密度信息ρ表示每个测量参考信号端口在每个物理资源中占有的平均子载波数为ρ;
    所述密度信息ρ表示每隔1/ρ个物理资源块,所述用于测量干扰的测量参考信号的图样在频域重复一次;
    所述密度信息ρ包括{0.5,1,3};
    一组子载波为一个码分复用组在频域对应的一组子载波;
    一组子载波为频域连续的一组子载波;
    一组子载波等间隔分布;
    一组子载波中包括的子载波数属于{1,2}
    一组时域符号为一个码分复用组在时域对应的一组时域符号;
    一组时域符号为时域连续的一组时域符号;
    一组时域符号等间隔分布;
    所述用于测量干扰的测量参考信号对应的物理资源块集合信息包括起始物理资源索引和物理资源块个数信息;
    所述用于测量干扰的测量参考信号对应的物理资源块集合包括的物理资源块是非连续的物理资源块;
    所述用于测量干扰的测量参考信号等间隔占有所述物理资源块集合中的物理资源块;
    所述用于测量干扰的测量参考信号对应的梳总数属于{1,2,4,8,12,a*12,b*4},其中所述a和b的取值为正整数;
    所述用于测量干扰的测量参考信号对应的梳偏移的最大值属于{0,1,3,7,11,a*12-1,b*4-1}。
  17. 如权利要求15所述的方法,满足如下特征至少之一:
    所述第一类图样为信道探测参考信号SRS图样;
    所述第一类图样为上行参考信号图样;
    所述第二类图样为信道状态测量导频信号CSI-RS图样;
    所述第二类图样为同步信号图样;
    所述第二类图样为下行参考信号图样。
  18. 如权利要求12-17任一项所述的方法,还包括:
    所述第一通信节点接收所述第二通信节点发送的信道状态报告信息。
  19. 如权利要求18所述的方法,其中,所述信道状态报告信息满足如下特征至少之一:
    所述信道状态报告信息是基于所述P类测量参考信号得到的信道状态报告信息;
    所述信道状态报告信息包括信号与干扰加噪声比SINR;
    所述信道状态报告信息包括所述P类测量参考信号中的两类测量参考信号之间的性能差信息;
    所述信道状态报告信息是对于上行信道状态的反馈信息;
    所述信道状态报告信息和所述P类测量参考信号之间存在对应关系;
    所述信道状态报告信息为所述第一通信节点在下行信道或信号上接收所述第二通信节点发送的所述信道状态报告信息。
  20. 如权利要求18所述的方法,其中,所述信道状态报告信息满足如下特征至少之一:
    所述信道状态报告信息包括用于测量信道的测量参考信号和所述用于测量干扰的测量参考信号到达所述第二通信节点的性能差信息;
    所述信道状态报告信息对应所述用于测量信道的测量参考信号和所述用于测量干扰的测量参考信号,其中所述用于测量信道的测量参考信号包括CC个测量参考信号资源,所述用于测量干扰的测量参考信号包括CI个测量参考信号资源,所述CC为大于或者等于1的正整数,所述CI为小于或者等于CC的正整数;
    在发送的所述测量参考信号包括所述P类测量参考信号中的预定类测量参考信号的情况下,所述第一通信节点接收对应所述测量参考信号的信道状态报告信息;
    在发送的所述测量参考信号不包括所述P类测量参考信号中的预定类测量参考信号的情况下,所述第一通信节点不接收对应所述测量参考信号的信道状态报告信息;
    所述测量参考信号的类型信息和所述第一通信节点是否接收第二通信节点发送的信道状态报告信息之间有关联;
    在发送的所述测量参考信号包括所述用于测量干扰的测量参考信号的情况下,所述第一通信节点接收所述第二通信节点发送的信道状态报告信息;
    在发送的所述测量参考信号不包括所述用于测量干扰的测量参考信号的情况下,所述第一通信节点不接收所述第二通信节点发送的信道状态报告信息。
  21. 如权利要求12-17任一项所述的方法,还包括:
    所述第一通信节点向所述第二通信节点发送请求信息,所述请求信息中包括用于测量干扰的测量参考信号的信息。
  22. 如权利要求12-17任一项或权利要求20所述的方法,其中,所述P类测量参考信号满足如下特征至少之一:
    所述P类测量参考信号还包括用于测量信道的测量参考信号;
    所述P类测量参考信号对应的空间接收滤波参数相同;
    所述P类测量参考信号对应的空间发送滤波参数不同;
    所述P类测量参考信号中的每一类测量参考信号有对应的空间发送滤波参数配置信息;
    所述P类测量参考信号的空间发送滤波参数信息和所述P类测量参考信号的类型信息之间有关联;
    所述P类测量参考信号为上行测量参考信号。
  23. 一种测量参考信号的接收方法,包括:
    第二通信节点向第一通信节点发送第二信令信息,所述第二信令信息中包括P类测量参考信号资源的信息;
    所述第二通信节点在所述P类测量参考信号资源上,接收P类测量参考信号;
    其中,所述P类测量参考信号资源包括用于测量干扰的测量参考信号的资源,所述P的取值为正整数。
  24. 如权利要求23所述的方法,其中,所述用于测量干扰的测量参考信号满足如下特征中的至少之一:
    所述用于测量干扰的测量参考信号的配置信息中不携带空间发送滤波参数的配置信息;
    所述第一通信节点和所述第二通信节点之间的信号不携带所述用于测量干扰的测量参考信号的空间滤波参数;
    所述用于测量干扰的测量参考信号的空间滤波参数与预定空间滤波参数集合中的空间滤波参数的交集为空,其中所述预定空间滤波参数集合中的每个空间滤波参数关联一个所述第一通信节点与所述第二通信节点之间的信号;
    所述用于测量干扰的测量参考信号的空间滤波参数根据所述第一通信节点发送给第三通信节点的第一参考信号的空间发送滤波参数得到;
    所述用于测量干扰的测量参考信号的参数信息和所述第一通信节点发送给第三通信节点的第二参考信号的参数信息相同;
    用于确定所述用于测量干扰的测量参考信号的参数类型和用于确定所述第一通信节点发送给第三通信节点的第三参考信号的参数类型相同;
    所述第一通信节点在所述用于测量干扰的测量参考信号的资源上给第三通信节点发送第四参考信号;
    所述用于测量干扰的测量参考信号用于测量第一通信节点给第三通信节点发送的信号到达所述第二通信节点的干扰;
    所述用于测量干扰的测量参考信号用于所述第二通信节点测量干扰;
    所述用于测量干扰的测量参考信号用于所述第二通信节点测量第一通信节点发送的第一类信号到达所述第二通信节点的干扰,且所述第一类信号和所述第二信令信息满足如下至少之一:调度所述第一类信号的控制信令所在的控制信道资源组和所述第二信令信息所在的控制信道资源组是两个不同的控制信道资源组;所述第一类信号所在的频域带宽与所述第二信令信息所在的频域带宽是两个不同的频域带宽;所述第一类信号所在的频域带宽与所述第二信令信息调度的信道或信号所在的频域带宽是两个不同的频域带宽;
    其中,所述第一参考信号,第二参考信号,第三参考信号,第四参考信号可为如下参考信号中的至少一种:下行测量参考信号,下行解调参考信号,下行相位跟踪参考信号,同步信号。
  25. 如权利要求23或24所述的方法,还包括以下至少之一:
    所述第二通信节点向所述第一通信节点发送信道状态报告信息;
    所述第二通信节点向所述第一通信节点发送资源信息,所述资源信息是信道状态报告信息占有的资源信息。
  26. 如权利要求25所述的方法,其中,所述信道状态报告信息满足如下特征至少之一:
    所述信道状态报告信息是基于所述P类测量参考信号得到的信道状态报告信息;
    所述信道状态报告信息包括信号与干扰加噪声比SINR;
    所述信道状态报告信息包括所述P类测量参考信号中的两类测量参考信号之间的性能差信息;
    所述信道状态报告信息是对于上行信道状态的反馈信息;
    所述信道状态报告信息和所述P类测量参考信号之间存在对应关系;
    所述信道状态报告信息为所述第二通信节点在下行信道或信号上向所述第一通信节点发送的信道状态报告信息。
  27. 一种测量参考信号的接收方法,包括:
    第一通信节点接收来自于第二通信节点发送的第三信令信息,所述第三信令信息包括干扰测量资源信息;
    所述方法满足以下至少之一:所述第一通信节点在根据所述干扰测量资源信息确定的干扰测量资源上接收第三通信节点发送的信号,所述干扰测量资源信息中包括的参数类型集合和用于确定上行参考信号图样的参数类型集合之间的交集非空,所述第一通信节点在所述干扰测量资源上不接收下行测量参考信号。
  28. 如权利要求27所述的方法,满足如下至少之一:
    所述第三通信节点发送的第一信号为上行信号;
    所述干扰测量资源为信道状态报告信息对应的干扰测量资源,其中所述信道状态报告信息为所述第一通信节点发送给所述第二通信节点的信道状态报告信息;
    所述干扰测量资源和信道测量资源关于空间接收滤波参数不满足准共址关系,其中所述干扰测量资源和所述信道测量资源对应同一个信道状态报告信息;
    所述干扰测量资源关于空间接收滤波参数的准共址参考信号为第一准共址参考信号和信道测量资源关于空间接收滤波参数的准共址参考信号为第二准共址参考信号,其中所述干扰测量资源和所述信道测量资源对应同一个信道状态报告信息;
    所述干扰测量资源的图样为信道状态测量导频信号CSI-RS图样;
    所述干扰测量资源的图样为信道探测参考信号SRS图样;
    所述第一通信节点在所述干扰测量资源上不接收所述第二通信节点发送的下行测量参考信号;
    所述第一通信节点在所述干扰测量资源上不接收下行测量参考信号;
    所述干扰测量资源占有的资源和所述第一通信节点和所述第二通信节点之间的测量参考信号占有的资源之间的交集为空。
    其中,所述信道状态报告信息为所述第一通信节点发送给所述第二通信节点的信道状态报告信息。
  29. 如权利要求27所述的方法,其中,所述第三信令信息中还包括如下信息至少之一:
    干扰测量资源类型信息,至少存在第一类干扰测量资源和第二类干扰测量资源;
    非零功率NZP-干扰测量资源类型信息,至少存在第一类NZP-干扰测量资源和第二类NZP-干扰测量资源;
    干扰测量资源对应的图样类型选择信息;
    干扰测量资源在一个时间单元中占有的一组时域符号信息;
    干扰测量资源的重复因子信息;
    干扰测量资源的跳频参数;
    干扰测量资源的多级带宽结构信息。
  30. 如权利要求29所述的方法,其中,所述第一类干扰测量资源满足如下特征至少之一:
    所述第一通信节点在第一类干扰测量资源上不接收第三通信节点发送的上行信号;
    所述第一类干扰测量资源占有的资源和第三通信节点发送给所述第一通信节点的信号占有的资源之间的交集为空;
    所述第一类干扰测量资源包括下行测量参考信号资源;
    所述第一通信节点在所述第一类干扰测量资源上接收所述第二通信节点发送的下行测量参考信号;
    所述第一通信节点在所述第一类干扰测量资源上接收下行测量参考信号。
  31. 如权利要求29或30所述的方法,其中,所述第二类干扰测量资源满足如下特征至少之一:
    所述第一通信节点在所述第二类干扰测量资源上接收所述第三通信节点发送的上行信号;
    所述第一通信节点在所述第二类干扰测量资源上接收上行测量参考信号;
    所述第二类干扰测量资源对应上行测量参考信号资源;
    所述第二类干扰测量资源为非零功率--信道状态测量导频信号NZP-CSI-RS干扰测量资源;
    所述第二类干扰测量资源为非零功率-信道探测参考信号NZP-SRS干扰测量资源;
    在所述第二类干扰测量资源上不接收所述第二通信节点发送的下行测量参考信号;
    在所述第二类干扰测量资源上不接收下行信号;
    所述第二类干扰测量资源占有的资源和所述第一通信节点和所述第二通信节点之间的信号占有的资源之间的交集为空。
  32. 如权利要求29-31任一项所述的方法,其中,干扰测量资源对应的图样类型选择信息用于指示在上行测量参考信号图样和下行测量参考信号图样之间的选择;
  33. 如权利要求29-32任一项所述的方法,其中,所述第一类NZP-干扰测量资源为NZP-CSI-RS,所述第二类NZP-干扰测量资源为NZP-SRS。
  34. 如权利要求27-33任一项所述的方法,还包括:
    所述第一通信节点向所述第三通信节点发送第四信令信息,所述第四信令信息用于指示所述第三通信节点发送第二信号;
    其中,所述第二信号占有的资源和所述干扰测量资源占有的资源之间的交集非空;所述占有的资源包括如下资源至少之一:时域资源,频域资源,码域资源,空域资源。
  35. 如权利要求27-33任一项所述的方法,其中,所述第三信令信息中包括的参数类型集合包括如下信息至少之一:
    端口数,梳偏移,在一个时间单元中时域符号信息,时域跳频单位信息,频域信息,多级带宽结构中的频域偏移量,频域跳频信息,序列组或者序列号的跳变信息,序列产生参数,干扰测量参考信号的图样类型的选择信息;
    其中所述图样类型包括:上行参考信号图样和下行参考信号图样中的至少一种。
  36. 如权利要求27-33任一项所述的方法,其中,所述第三通信节点满足如下特征至少之一:
    所述第三通信节点为接入所述第一通信节点的通信节点;
    所述第三通信节点为所述第一通信节点覆盖之下处于链接态的通信节点;
    所述第一通信节点向所述第三通信节点发送下行控制信令;
    所述第一通信节点向所述第三通信节点发送专有下行控制信令信息;
    所述第三通信节点接收所述第三信令信息,在所述干扰测量资源上向所述第一通信节点发送所述第一信号。
  37. 如权利要求27-33任一项所述的方法,还包括:所述第一通信节点向所述第二通信节点发送信道状态报告信息,其中所述信道状态报告信息对应CC1个信道测量资源,CI1个干扰测量资源,所述CI1和CC1均为大于或者等于1的正整数。
  38. 一种测量参考信号的接收方法,包括:
    第二通信节点向第一通信节点发送第三信令信息,所述第三信令信息包括干扰测量资源信息;
    所述方法满足以下至少之一:所述第三信令信息用于指示所述第一通信节点在根据所述干扰测量资源信息确定的干扰测量资源上接收第三通信节点发送的信号;所述干扰测量资源信息中包括的参数类型集合和用于确定上行参考信号图样的参数类型集合之间的交集非空;所述第二通信节点在所述干扰测量资源信息对应的干扰测量资源上不发送下行信号。
  39. 如权利要求38所述的方法,还满足如下至少之一:
    所述第三通信节点发送的信号为上行信号;
    所述干扰测量资源为信道状态报告信息对应的干扰测量资源,其中所述信道状态报告信息为所述第一通信节点发送给所述第二通信节点的信道状态报告 信息;
    所述干扰测量资源为非零功率-信道状态测量导频信号NZP-CSI-RS干扰测量资源;
    所述干扰测量资源为非零功率-信道探测参考信号NZP-SRS干扰测量资源;
    所述第一通信节点在所述干扰测量资源上不接收所述第二通信节点发送的下行测量参考信号;
    所述第一通信节点在所述干扰测量资源上不接收下行信号;
    所述干扰测量资源占有的资源和所述第一通信节点和所述第二通信节点之间的信号占有的资源之间的交集为空。
  40. 一种信号的传输方法,包括:
    根据传输的第五信令信息和第三参数确定规则中的至少之一,确定U个资源集合与Q个如下对象之一的对应关系:空间发送滤波参数集合,准共址参考信号集合,空间发送滤波参数与准共址参考信号组合的集合,频域资源集合,参考信号集合,A个链路之间的频域资源划分,功率参数集合,B个链路之间的复用方式集合,C个链路中的C个参考信号组合的集合;
    根据所述对应关系传输信道或信号;
    其中,U,Q取大于或者等于1的正整数,A,B,C取大于1的正整数;所述资源集合中的资源包括如下资源至少之一:时域资源,频域资源,参考信号资源。
  41. 如权利要求40所述的方法,其中,传输的所述信道或信号满足以下至少之一:
    所述资源集合中的资源上的第一信道或者信号的空间发送滤波参数属于所述资源对应的空间滤波参数集合;
    所述资源集合中的资源上的第二信道或者信号和所述资源对应的所述准共址参考信号集合中的至少一个准共址参考信号关于空间接收滤波参数满足准共址关系;
    所述资源集合中的资源上的第一信道或信号的空间发送滤波参数根据所述资源对应的空间发送滤波参数与准共址参考信号组合的集合中的至少一个组合中的空间发送滤波参数得到;
    所述资源集合中的资源上的第二信道或者信号和所述资源对应的空间发送滤波参数与准共址参考信号组合的集合中的至少一个组合中的准共址参考信号关于空间接收滤波参数满足准共址关系;
    所述资源集合中的资源上的信道或信号对应的集合属于所述Q个集合中与所述资源存在对应关系的一个集合;
    所述资源集合中的资源上的所述A个链路中的信道或信号占有的频域资源满足所述资源对应的A个链路之间的频域资源划分。
  42. 如权利要求41所述的方法,其中,所述第一信道或信号与所述第二信道或信号满足如下特征至少之一:
    所述第一信道或信号与所述第二信道或信号是第一通信节点同时发送的信道或信号;
    所述第一信道或信号与所述第二信道或信号是第一通信节点同时接收的信道或信号;
    所述第一信道或信号与所述第二信道或信号占有的时域资源有重叠;
    所述第一信道或信号与所述第二信道或信号占有的频域资源有重叠;
    所述第一信道或信号是所述第一通信节点和第二通信节点之间的信道或信号;
    所述第二信道或信号是所述第一通信节点和第三通信节点之间的信道或信号;
    其中,所述第一通信节点和所述第二通信节点满足以下至少之一:
    所述第二通信节点给所述第一通信节点发送关于所述第一信道或者信号的调度信息,且所述第一通信节点给所述第三通信节点发送关于所述第二信道或者信号的调度信息;以及,
    所述第一通信节点为接收所述第五信令信息的通信节点,所述第二通信节点为发送所述第五信令信息的通信节点,所述第三通信节点接收所述第一通信节点发送的控制信令。
  43. 如权利要求40-42任一项所述的方法,其中,所述确定U个资源集合与Q个如下对象之一的对应关系包括如下至少之一:
    确定U个时域资源集合和Q个频域资源集合之间的对应关系,其中,一个 时间单元中的信道或信号占有的频域资源是所述时间单元所属的所述时域资源集合对应的频域资源集合的子集;
    确定U个时域资源集合和Q个参考信号集合之间的对应关系,其中,一个时间单元中的信道或信号对应的参考信号是所述时间单元所属的所述时域资源集合对应的参考信号集合的子集;
    确定U个时域资源集合和A个链路之间的Q个频域资源划分之间的对应关系,其中满足如下特征至少之一:一个时间单元中的信道或信号占有的频域资源是所述时间单元所属的所述时域资源集合对应的频域资源划分中所述信道或信号所属的链路对应的频域资源集合的子集;一个时间单元中所述A个链路中的信道或信号所占的频域资源满足所述时间单元所属的所述时域资源集合对应的频域资源划分;
    确定U个时域资源集合和Q个功率参数集合之间的对应关系,其中满足如下特征至少之一:一个时间单元中的信道或信号对应的功率参数集合为所述时间单元所属的所述时域资源集合对应的功率参数集合;所述Q个功率参数集合包括的功率参数类型相同;所述Q个功率参数集合是对于同一类参数集合的Q个配置值;
    确定U个资源集合和Q个复用方式集合之间的对应关系,其中一个复用方式包括所述B个链路之间的复用方式,一个资源中所述B个链路之间的复用方式集合属于所述资源对应的所述复用方式集合;
    确定U个资源集合和Q个参考信号组合之间的对应关系,其中一个参考信号组合包括所述C个链路中每个链路对应的参考信号,一个资源中所述C个链路中的参考信号组合属于所述资源对应的C个链路中的参考信号组合的集合。
  44. 如权利要求40-42任一项所述的方法,还包括:在所述U个资源集合中的资源上的信道或信号不满足如下特征至少之一的配置信息的情况下,不发送或者不接收所述资源上的信道或信号:
    所述U个资源集合中的资源中的信道或者信号的空间滤波参数属于所述资源对应的空间滤波参数集合;
    所述U个资源集合中的资源中的信道或者信号关于空间接收滤波参数的准共址参考信号属于所述资源对应的所述准共址参考信号集合;
    所述U个资源集合中的资源中的信道或者信号和所述资源对应的所述准共 址参考信号集合中的至少一个准共址参考信号关于空间接收滤波参数满足准共址关系;
    所述U个资源集合中的资源上的信道或信号对应的集合属于所述Q个集合中与所述资源存在对应关系的一个集合;
    所述U个资源集合中的资源上的所述A个链路中的信道或信号占有的频域资源满足所述资源对应的A个链路之间的频域资源划分。
  45. 如权利要求40-42任一项所述的方法,其中,所述确定U个资源集合与所述Q个对象之间的对应关系包括如下至少之一:
    确定U个资源集合和Q个用途为码本code book的信道探测参考信号SRS资源集合之间的对应关系;
    确定U个资源集合和Q个用途为非码本non code book的SRS资源集合之间的对应关系;
    确定U个资源集合和Q个TCI状态池之间的对应关系;
    确定U个资源集合和Q个参考信号组合的集合之间的对应关系,其中一个参考信号组合包括所述C个链路中C个参考信号;
    其中一个SRS资源集合对应一个空间滤波参数集合,所述SRS资源集合中的每个资源对应一套空间滤波参数;一个TCI状态池对应一个所述准共址参考信号集合,所述TCI状态池中的每个TCI状态包括一个准共址参考信号;
    所述P的取值为正整数,Q的取值为小于或者等于P的正整数。
  46. 如权利要求40-42任一项所述的方法,其中,所述资源满足如下特征至少之一:
    所述U个资源集合中的每个资源集合与所述Q个集合中的一个集合存在对应关系;
    所述U个资源集合中的每个资源集合与所述Q个频域资源划分中的一个频域资源划分存在对应关系;
    一个信道或信号只落在所述U个资源集合中的一个资源集合;
    一个信道或信号不能落在所述U个资源集合中的一个以上的资源集合;
    一套空间发送滤波参数与一个参考信号对应。
  47. 如权利要求40-42任一项所述的方法,其中,所述U个资源集合之间满足如下特征至少之一:
    不同资源集合之间的交集为空集;
    不同资源集合属于一个频域宽带部分BWP;
    所述U个资源集合的并集中不存在非连续的资源;
    U个时域资源集合轮流出现;
    不同资源集合之间的差集非空;
    一个资源集合中包括的资源存在非连续的资源;
    一个资源集合中包括的资源在时域是周期的;
    一个资源集合中包括的资源在频域是周期的。
  48. 根据权利要求40-42任一项所述的方法,一个频域资源集合包括I个频域资源,一个频域资源为如下频域资源之一:一个BWP,一个成员载波包括的频域频域带宽,一个物理资源块,一个子载波;
    其中所述I为非负整数。
  49. 根据权利要求40-42任一项所述的方法,满足如下特征至少之一:
    Q为小于或者等于U正整数;
    Q个集合之间的差集非空;
    Q个频域资源划分是不同的划分;
    所述第五信令信息为物理层动态控制信息;
    所述第五信令信息包括Q个对象的切换指示信息;
    Q个对象的信息包括在高层信令信息中;
    所述约定规则包括,当约定时间到达时,启动Q个对象的切换指示信息;
    第一时域资源对应的所述集合和第二时域资源对应的所述集合之间的差集非空;
    第一时域资源对应的所述频域资源划分和第二时域资源对应的所述频域资源划分不同;
    其中所述第一时域资源集合和第二时域资源集合属于所述U个时域资源集 合。
  50. 一种信号发送方法,包括:
    根据接收的第六信令信息或者第四参数确定规则确定第一类时频资源;
    根据所述确定的第一类时频资源,发送信道或信号;
    其中所述信道或信号不能占有所述第一类时频资源。
  51. 如权利要求50所述的方法,其中,所述第六信令信息包括所述第一类时频资源的如下信息至少之一:
    物理资源块集合信息;
    在一个时间单元中占有的时域符号位置信息;
    时间行为信息;
    周期信息;
    周期偏置信息;
    在一个物理资源块中占有的子载波索引集合信息;
    在一个物理资源块中占有的D组子载波中每一组子载波中的最低子载波索引或最高子载波索引;
    在一个时间单元中占有的J组时域符号中每一组时域符号中的最低时域符号索引或最高时域符号索引;
    下行参考信号图样信息;
    图样类型的选择信息,所述图样类型至少存在第一类图样和第二类图样;
    所述D,J的取值为正整数。
  52. 如权利要求50所述的方法,其中,所述第一类图样是上行参考信号图样,所述第二类图样是下行参考信号图样;
    或,所述第一类图样是信道探测参考信号SRS图样,所述第二类图样是信道状态测量导频信号CSI-RS图样。
  53. 一种信道或信号的接收方法,包括:
    根据接收的第七信令信息或者第五参数确定规则确定第二类时频资源;
    根据所述确定的第二类时频资源,接收信道或信号;
    其中所述信道或信号不占有所述第二类时频资源。
  54. 如权利要求53所述的方法,其中,所述第七信令信息包括所述第二类时频资源的如下信息至少之一:
    端口数;
    梳偏移;
    在一个时间单元中时域符号信息;
    时域跳频单位信息;
    频域信息;
    多级带宽结构中的频域偏移量;
    频域跳频信息;
    上行参考信号的图样信息;
    图样类型选择信息,所述图样类型包括第一类图样和第二类图样。
  55. 如权利要求54所述的方法,其中,所述第一类图样是上行参考信号图样,所述第二类图样是下行参考信号图样;
    或,所述第一类图样是信道探测参考信号SRS图样,所述第二类图样是信道状态测量导频信号CSI-RS图样。
  56. 一种信令信息的传输方法,包括以下至少之一:
    第一通信节点向第二通信节点发送第八信令信息;其中所述第八信令信息包括如下信息至少之一:第一信号集合的信息,第二信号集合的信息,所述第一信号集合和所述第二信号集合中的信号包括参考信号;以及,第一通信节点接收第二通信节点发送的第九信令信息;所述第九信令信息中包括如下信息至少之一:第一信号集合的信息,第二信号集合的信息,所述第一信号集合和所述第二信号集合中的信号包括参考信号;
    其中上述方法满足以下至少之一:所述第一信道或信号和所述第一信号集合中的至少一个信号关于至少一种信道大尺度特性参数满足准共址关系;以及,所述第二信道或信号的空间发送滤波参数根据所述第二信号集合中至少一个信号得到;
    所述第一信道或信号为所述第一通信节点发送给第三通信节点的信道或信 号,所述第二信道或信号为所述第三通信节点发送给所述第一通信节点的信道或信号。
  57. 如权利要求56所述的方法,还包括以下至少之一:
    所述第一通信节点向所述第三通信节点发送第十信令信息,所述第八信令信息用于指示所述第三通信节点接收所述第一信号集合中的信号;以及,所述第一通信节点向所述第三通信节点发送第十一信令信息,所述第九信令信息用于指示所述第三通信节点发送所述第二信号集合中的信号。
  58. 如权利要求56或57所述的方法,还包括:
    所述第一通信节点在下行链路上发送所述第一信号集合中的信号;
    所述第一通信节点在上行链路上接收所述第二信号集合中的信号。
  59. 一种测量参考信号的发送装置,包括:
    第一参数确定模块,设置为根据接收到的第一信令信息和预先协商的第一参数确定规则中的至少之一,确定测量参考信号的参数信息;
    第一信号发送模块,设置为根据所述参数信息,发送所述测量参考信号。
  60. 如权利要求59所述的装置,其中,所述参数信息包括以下信息中的至少一种:
    所述测量参考信号在一个物理资源块中占有的M组子载波中,每一组子载波中的最低子载波索引或最高子载波索引;
    所述测量参考信号在一个时间单元中占有的N组时域符号中,每一组时域符号中的最低时域符号索引或最高时域符号索引;
    所述测量参考信号的端口码分复用类型信息;
    所述测量参考信号的密度信息ρ;
    所述测量参考信号对应的物理资源块集合信息;
    所述测量参考信号包括的一个码分复用组对应的码分复用长度信息;
    所述测量参考信号包括的一个码分复用组在时域的复用长度;
    所述测量参考信号包括的一个码分复用组在频域的复用长度;
    所述测量参考信号的端口个数;
    所述测量参考信号的梳总数;
    所述测量参考信号的梳偏移;
    所述参数信息中包括的参数类型集合和确定下行测量参考信号的图样需要的参数类型集合的交集非空;
    所述M和N的取值为正整数。
  61. 如权利要求59所述的装置,其中,所述参数信息包括参数类型集合的选择信息;
    所述参数类型集合包括第一参数类型集合和第二参数类型集合中的至少一个;
    所述第一参数类型集合包括用于确定第一类测量参考信号的图样所需的参数信息;
    所述第二参数类型集合包括用于确定第二类测量参考信号的图样所需的参数信息。
  62. 如权利要求57-59任一项所述的装置,其中,所述测量参考信号满足如下特征至少之一:
    所述测量参考信号为在上行链路上发送的测量参考信号;
    所述测量参考信号所在的时域符号为一个时间单元中的任意至少一个时域符号;
    所述测量参考信号的图样为信道状态测量导频信号CSI-RS图样;
    所述测量参考信号的图样为下行参考信号的图样;
    所述测量参考信号的资源在一个物理资源块中占有X组连续的子载波;
    所述测量参考信号的端口在一个物理资源块中占有的子载波数包括{0.5,1,2};
    所述测量参考信号的资源包括的测量参考信号端口数属于{1,2,4,8,12,16,24,32};
    所述X的取值为正整数。
  63. 如权利要求59-61任一项所述的装置,其中,所述测量参考信号满足如下特征至少之一:
    所述测量参考信号和第一信道或信号占有相同时域符号上的不同子载波;
    在所述测量参考信号和第一信道或信号占有相同时域符号的情况下,所述第一信道或信号不能占有所述测量参考信号占有的子载波;
    所述测量参考信号和所述第一信道或信号之间的优先级通过在所述测量参考信号占有的子载波和第一信道或信号占有的子载波碰撞的情况下,根据所述第一信令信息和所述预先协商的第一参数确定规则中的至少之一确定;
    其中,所述第一信道或信号为第一通信节点发送的信道或信号,所述第一通信节点为发送所述测量参考信号的通信节点。
  64. 如权利要求59-61任一项所述的装置,其中,如下信息至少之一与是否可在相同时域符号上同时发送第一信道或信号和所述测量参考信号之间有关联:
    所述第一信令信息;
    所述测量参考信号的图样是否属于预定图样类型;
    所述测量参考信号和所述第一信道或信号中的至少之一发送时,传输预编码是否使能;
    所述测量参考信号是否为回程Backhaul链路上的上行参考信号;
    所述测量参考信号在一个物理资源块中是否等间隔占有子载波;
    所述测量参考信号所用的序列类型;
    所述测量参考信号是用于干扰测量的测量参考信号还是用于信道测量的测量参考信号;
    所述测量参考信号的用途是否属于预定用途集合;
    其中,所述第一信道或信号为第一通信节点发送的信道或信号,所述第一通信节点为发送所述测量参考信号的通信节点。
  65. 一种测量参考信号的接收装置,包括:
    第二参数确定模块,设置为发送第一信令信息,所述第一信令信息中包括测量参考信号的参数信息;
    第三信号接收模块,设置为根据所述参数信息,接收所述测量参考信号。
  66. 如权利要求65所述的装置,其中,所述参数信息包括以下信息中的至 少一种:
    所述测量参考信号在一个物理资源块中占有的M组子载波中,每一组子载波中的最低子载波索引或最高子载波索引;
    所述测量参考信号在一个时间单元中占有的N组时域符号中,每一组时域符号中的最低时域符号索引或最高时域符号索引;
    所述测量参考信号的端口码分复用类型信息;
    所述测量参考信号的密度信息ρ;
    所述测量参考信号对应的物理资源块集合信息;
    所述测量参考信号包括的一个码分复用组对应码分复用长度信息;
    所述测量参考信号包括的一个码分复用组在时域的复用长度;
    所述测量参考信号包括的一个码分复用组在频域的复用长度;
    所述测量参考信号的端口个数;
    所述测量参考信号的梳总数;
    所述测量参考信号的梳偏移;
    所述参数信息中包括的参数类型集合和确定下行测量参考信号的图样需要的参数类型集合的交集非空;
    所述M和N的取值为正整数。
  67. 一种测量参考信号的发送装置,应用于第一通信节点,包括:
    第一资源确定模块,设置为从第二通信节点接收到的第二信令信息和与所述第二通信节点预先协商的第二参数确定规则中的至少之一确定出P类测量参考信号资源;
    第二信号发送模块,设置为在所述P类测量参考信号资源上,发送P类测量参考信号;
    所述P类测量参考信号资源包括用于测量干扰的测量参考信号的资源;所述P的取值为正整数。
  68. 如权利要求67所述的装置,其中,所述用于测量干扰的测量参考信号满足如下特征中的至少之一:
    所述用于测量干扰的测量参考信号的配置信息中不携带空间发送滤波参数的配置信息;
    所述第一通信节点和所述第二通信节点之间的信号不携带所述用于测量干扰的测量参考信号的空间滤波参数;
    所述用于测量干扰的测量参考信号的空间滤波参数与预定空间滤波参数集合中的空间滤波参数的交集为空,其中所述预定空间滤波参数集合中的每个空间滤波参数关联一个所述第一通信节点与所述第二通信节点之间的信号;
    所述用于测量干扰的测量参考信号的空间滤波参数根据所述第一通信节点发送给第三通信节点的第一参考信号的空间发送滤波参数得到;
    所述用于测量干扰的测量参考信号的参数信息和所述第一通信节点发送给第三通信节点的第二参考信号的参数信息相同;
    用于确定所述用于测量干扰的测量参考信号的参数类型和用于确定所述第一通信节点发送给第三通信节点的第三参考信号的参数类型相同;
    所述第一通信节点在所述用于测量干扰的测量参考信号的资源上给第三通信节点发送第四参考信号;
    所述用于测量干扰的测量参考信号用于测量第一通信节点给第三通信节点发送的信号到达所述第二通信节点的干扰;
    所述用于测量干扰的测量参考信号用于所述第二通信节点测量干扰;
    所述用于测量干扰的测量参考信号用于所述第二通信节点测量第一通信节点发送的第一类信号到达所述第二通信节点的干扰,且所述第一类信号和所述第二信令信息满足如下至少之一:调度所述第一类信号的控制信令所在的控制信道资源组和所述第二信令信息所在的控制信道资源组是两个不同的控制信道资源组;所述第一类信号所在的频域带宽与所述第二信令信息所在的频域带宽是两个不同的频域带宽;所述第一类信号所在的频域带宽与所述第二信令信息调度的信道或信号所在的频域带宽是两个不同的频域带宽;
    其中,所述第一参考信号,第二参考信号,第三参考信号,第四参考信号可为如下参考信号中的至少一种:下行测量参考信号,下行解调参考信号,下行相位跟踪参考信号,同步信号。
  69. 如权利要求67所述的装置,其中,所述第二信令信息包括如下参数信 息至少之一:
    所述用于测量干扰的测量参考信号在一个物理资源块中占有的M组子载波中每一组子载波中的最低子载波索引或最高子载波索引;
    所述用于测量干扰的测量参考信号在一个时间单元中占有的N组时域符号中每一组时域符号中的最低时域符号索引或最高时域符号索引;
    所述用于测量干扰的测量参考信号占有的物理资源块集合信息;
    所述用于测量干扰的测量参考信号的端口码分复用类型信息;
    所述用于测量干扰的测量参考信号的密度信息ρ;
    所述用于测量干扰的测量参考信号包括的一个码分复用组对应码分复用长度信息;
    所述用于测量干扰的测量参考信号包括的一个码分复用组在频域的复用长度;
    所述用于测量干扰的测量参考信号包括的一个码分复用组在时域的复用长度;
    所述用于测量干扰的测量参考信号的图样类型信息,所述图样类型至少包括第一类图样和第二类图样;
    所述用于测量干扰的测量参考信号对应的参数类型集合的选择信息;
    所述用于测量干扰的测量参考信号对应的梳总数;
    所述用于测量干扰的测量参考信号对应的梳偏移;
    所述M和N的取值为正整数。
  70. 如权利要求67-69任一项所述的装置,其中,所述P类测量参考信号满足如下特征至少之一:
    所述P类测量参考信号还包括用于测量信道的测量参考信号;
    所述P类测量参考信号对应的空间接收滤波参数相同;
    所述P类测量参考信号对应的空间发送滤波参数不同;
    所述P类测量参考信号中的每一类测量参考信号有对应的空间发送滤波参数配置信息;
    所述P类测量参考信号的空间发送滤波参数信息和所述P类测量参考信号的类型信息之间有关联;
    所述P类测量参考信号为上行测量参考信号。
  71. 一种测量参考信号的接收装置,应用于第二通信节点,包括:
    第四资源确定模块,设置为第二通信节点向第一通信节点发送第二信令信息,所述第二信令信息中包括P类测量参考信号资源的信息;
    第四信号接收模块,设置为在确定的所述P类测量参考信号资源上,接收所述P类测量参考信号;
    其中,所述P类测量参考信号资源包括用于测量干扰的测量参考信号的资源;所述P的取值为正整数。
  72. 如权利要求71所述的装置,其中,所述用于测量干扰的测量参考信号满足如下特征中的至少之一:
    所述用于测量干扰的测量参考信号的配置信息中不携带空间发送滤波参数的配置信息;
    所述第一通信节点和所述第二通信节点之间的信号不携带所述用于测量干扰的测量参考信号的空间滤波参数;
    所述用于测量干扰的测量参考信号的空间滤波参数与预定空间滤波参数集合中的空间滤波参数的交集为空,其中所述预定空间滤波参数集合中的每个空间滤波参数关联一个所述第一通信节点与所述第二通信节点之间的信号;
    所述用于测量干扰的测量参考信号的空间滤波参数根据所述第一通信节点发送给第三通信节点的第一参考信号的空间发送滤波参数得到;
    所述用于测量干扰的测量参考信号的参数信息和所述第一通信节点发送给第三通信节点的第二参考信号的参数信息相同;
    用于确定所述用于测量干扰的测量参考信号的参数类型和用于确定所述第一通信节点发送给第三通信节点的第三参考信号的参数类型相同;
    所述第一通信节点在所述用于测量干扰的测量参考信号的资源上给第三通信节点发送第四参考信号;
    所述用于测量干扰的测量参考信号用于测量第一通信节点给一个或者多个第三通信节点发送的信号到达所述第二通信节点的干扰;
    所述用于测量干扰的测量参考信号用于所述第二通信节点测量干扰;
    其中,所述第一参考信号,第二参考信号,第三参考信号,第四参考信号可为如下参考信号中的至少一种:下行测量参考信号,下行解调参考信号,下行相位跟踪参考信号,同步信号。
  73. 如权利要求71或72所述的装置,还包括第四信息发送模块,设置为执行以下至少之一:向所述第一通信节点发送信道状态报告信息,以及,向所述第一通信节点发送资源信息,所述资源信息是所述信道状态报告信息占有的资源信息。
  74. 如权利要求73所述的装置,其中,所述信道状态报告信息满足如下特征至少之一:
    所述信道状态报告信息是基于所述P类测量参考信号得到的信道状态报告信息;
    所述信道状态报告信息包括信号与干扰加噪声比SINR;
    所述信道状态报告信息包括所述P类测量参考信号中的两类测量参考信号之间的性能差信息;
    所述信道状态报告信息是对于上行信道状态的反馈信息;
    所述信道状态报告信息和所述P类测量参考信号之间存在对应关系;
    所述信道状态报告信息是所述第二通信节点在下行信道或信号上向所述第一通信节点发送的信道状态报告信息。
  75. 一种测量参考信号的接收装置,应用于第一通信节点,包括:
    第一信息接收模块,设置为接收来自于第二通信节点发送的第三信令信息,所述第三信令信息包括干扰测量资源信息;
    第一信号接收模块,设置为以下之一:在根据所述干扰测量资源信息确定的干扰测量资源上接收第三通信节点发送的信号,所述干扰测量资源信息中包括的参数类型集合和用于确定上行参考信号图样的参数类型集合之间的交集非空,所述第一通信节点在所述干扰测量资源上不接收下行测量参考信号。
  76. 如权利要求75所述的装置,满足如下至少之一:
    所述第三通信节点发送的第一信号为上行信号;
    所述干扰测量资源为信道状态报告信息对应的干扰测量资源,其中所述信道状态报告信息为所述第一通信节点发送给所述第二通信节点的信道状态报告信息;
    所述干扰测量资源和信道测量资源关于空间接收滤波参数不满足准共址关系,其中所述干扰测量资源和所述信道测量资源对应同一个信道状态报告信息;
    所述干扰测量资源关于空间接收滤波参数的准共址参考信号为第一准共址参考信号和信道测量资源关于空间接收滤波参数的准共址参考信号为第二准共址参考信号,其中所述干扰测量资源和所述信道测量资源对应同一个信道状态报告信息;
    所述干扰测量资源的图样为信道状态测量导频信号CSI-RS图样;
    所述干扰测量资源的图样为信道探测参考信号SRS图样;
    所述第一通信节点在所述干扰测量资源上不接收所述第二通信节点发送的下行测量参考信号;
    所述第一通信节点在所述干扰测量资源上不接收下行测量参考信号;
    所述干扰测量资源占有的资源和所述第一通信节点和所述第二通信节点之间的测量参考信号占有的资源之间的交集为空;
    其中,所述信道状态报告信息为所述第一通信节点发送给所述第二通信节点的信道状态报告信息。
  77. 如权利要求75所述的装置,其中,所述第三信令信息中包括如下信息至少之一:
    干扰测量资源类型信息,至少存在第一类干扰测量资源和第二类干扰测量资源;
    非零功率NZP-干扰测量资源类型信息,至少存在第一类NZP-干扰测量资源和第二类NZP-干扰测量资源;
    干扰测量资源对应的图样类型选择信息;
    干扰测量资源在一个时间单元中占有的一组时域符号信息;
    干扰测量资源的重复因子信息;
    干扰测量资源的跳频参数;
    干扰测量资源的多级带宽结构信息。
  78. 如权利要求75-77任一项所述的装置,还包括第一信息发送模块,设置为向所述第三通信节点发送第四信令信息,所述第四信令信息用于指示所述第三通信节点发送第二信号;
    其中,所述第二信号占有的资源和所述干扰测量资源占有的资源之间的交集非空;所述占有的资源包括如下资源至少之一:时域资源,频域资源,码域资源,空域资源。
  79. 如权利要求75-77任一项所述的装置,其中,所述第三信令信息中包括的参数类型集合包括如下信息至少之一:
    端口数,梳偏移,在一个时间单元中时域符号信息,时域跳频单位信息,频域信息,多级带宽结构中的频域偏移量,频域跳频信息,序列组或者序列号的跳变信息,序列产生参数,干扰测量参考信号的图样类型的选择信息;
    其中所述图样类型包括:上行参考信号图样和下行参考信号图样中的至少一种。
  80. 一种测量参考信号的接收装置,应用于第二通信节点,包括:
    第三信息发送模块,设置为向第一通信节点发送第三信令信息,所述第三信令信息包括干扰测量资源信息;
    所述装置满足以下至少之一:所述第三信令信息用于指示所述第一通信节点在根据所述干扰测量资源信息确定的干扰测量资源上接收第三通信节点发送的信号;所述干扰测量资源信息中包括的参数类型和用于确定上行参考信号图样的参数类型之间的交集非空;所述第二通信节点在所述干扰测量资源上不发送下行信号。
  81. 如权利要求80所述的装置,还满足如下至少之一:
    所述第三通信节点发送的信号为上行信号;
    所述干扰测量资源为信道状态报告信息对应的干扰测量资源,其中所述信道状态报告信息为所述第一通信节点发送给所述第二通信节点的信道状态报告信息;
    所述干扰测量资源为非零功率-信道状态测量导频信号NZP-CSI-RS干扰测量资源;
    所述干扰测量资源为非零功率-信道探测参考信号NZP-SRS干扰测量资源;
    所述第一通信节点在所述干扰测量资源上不接收所述第二通信节点发送的下行测量参考信号;
    所述第一通信节点在所述干扰测量资源上不接收下行信号;
    所述干扰测量资源占有的资源和所述第一通信节点和所述第二通信节点之间的信号占有的资源之间的交集为空。
  82. 一种信号的传输装置,包括:
    确定模块,设置为根据传输的第五信令信息和第三参数确定规则中的至少之一,确定U个资源集合与Q个如下对象之一的对应关系:空间发送滤波参数集合,准共址参考信号集合,空间发送滤波参数与准共址参考信号组合的集合,频域资源集合,参考信号集合,A个链路之间的频域资源划分,功率参数集合,B个链路之间的复用方式集合,C个链路中的C个参考信号组合的集合;
    传输模块,设置为根据所述对应关系传输信道或信号;
    其中,U,Q取大于或者等于1的正整数,A,B取大于1的正整数;所述资源集合中的资源包括如下资源至少之一:时域资源,频域资源,参考信号资源。
  83. 如权利要求82所述的装置,其中,所述确定模块是设置为执行以下操作至少之一:
    确定U个时域资源集合和Q个频域资源集合之间的对应关系,其中,一个时间单元中的信道或信号占有的频域资源是所述时间单元所属的所述时域资源集合对应的频域资源集合的子集;
    确定模块确定U个时域资源集合和Q个参考信号集合之间的对应关系,其中,一个时间单元中的信道或信号对应的参考信号是所述时间单元所属的所述时域资源集合对应的参考信号集合的子集;
    确定U个时域资源集合和A个链路之间的Q个频域资源划分之间的对应关系,其中满足如下特征至少之一:一个时间单元中的信道或信号占有的频域资源是所述时间单元所属的所述时域资源集合对应的频域资源划分中所述信道或信号所属的链路对应的频域资源集合的子集;一个时间单元中所述A个链路中的信道或信号所占的频域资源满足所述时间单元所属的所述时域资源集合对应 的频域资源划分;
    确定U个时域资源集合和Q个功率参数集合之间的对应关系,其中满足如下特征至少之一:一个时间单元中的信道或信号对应的功率参数集合为所述时间单元所属的所述时域资源集合对应的功率参数集合;所述Q个功率参数集合包括的功率参数类型相同;所述Q个功率参数集合是对于同一类参数集合的Q个配置值;
    确定U个资源集合和Q个复用方式集合之间的对应关系,其中一个复用方式包括所述B个链路之间的复用方式,一个资源中所述B个链路之间的复用方式集合属于所述资源对应的所述复用方式集合;
    确定U个资源集合和Q个参考信号组合之间的对应关系,其中一个参考信号组合包括所述C个链路中每个链路对应的参考信号,一个资源中所述C个链路中的参考信号组合属于所述资源对应的C个链路中的参考信号组合的集合。
  84. 如权利要求82所述的装置,其中,所述确定U个资源集合与所述Q个集合之间的对应关系包括如下至少之一:
    确定U个资源集合和Q个集合之间的对应关系;
    确定U个资源集合和Q个用途为码本code book的信道探测参考信号SRS资源集合之间的对应关系;
    确定U个资源集合和Q个用途为非码本non code book的SRS资源集合之间的对应关系;
    确定U个资源集合和Q个TCI状态池之间的对应关系;
    确定U个资源集合和Q个(第一参考信号,准共址参考信号)组合的集合之间的对应关系;
    其中一个SRS资源集合对应一个空间滤波参数集合,所述SRS资源集合中的每个资源对应一套空间滤波参数;一个TCI状态池对应一个所述准共址参考信号集合,所述TCI状态池中的每个TCI状态包括一个所述准共址参考信号;
    所述P的取值为正整数,Q的取值为小于或者等于P的正整数。
  85. 如权利要求81-84任一项所述的,所述传输模块还设置为:在所述U个资源集合中的资源的信道或信号不满足如下特征至少之一的配置信息的情况下,不发送或者不接收所述资源上的信道或信号:
    所述U个资源集合中的资源中的信道或者信号的空间滤波参数属于所述资源对应的空间滤波参数集合;
    所述U个资源集合中的资源中的信道或者信号关于空间接收滤波参数的准共址参考信号属于所述资源对应的所述准共址参考信号集合;
    所述U个资源集合中的资源中的信道或者信号和所述资源对应的所述准共址参考信号集合中的至少一个准共址参考信号关于空间接收滤波参数满足准共址关系;
    所述U个资源集合中的资源上的信道或信号对应的集合属于所述Q个集合中与所述资源存在对应关系的一个集合;
    所述U个资源集合中的资源上的所述A个链路中的信道或信号占有的频域资源满足所述资源对应的A个链路之间的频域资源划分。
  86. 一种信号发送装置,包括:
    第二资源确定模块,设置为根据接收的第六信令信息或者第四参数确定规则确定第一类时频资源;
    第三信号发送模块,设置为根据所述确定的第一类时频资源,发送信道或信号;
    其中所述信道或信号不能占有所述第一类时频资源。
  87. 如权利要求86所述的装置,其中,所述第六信令信息包括所述第一类时频资源的如下信息至少之一:
    物理资源块集合信息;
    在一个时间单元中占有的时域符号位置信息;
    时间行为信息;
    周期信息;
    周期偏置信息;
    在一个物理资源块中占有的子载波索引集合信息;
    在一个物理资源块中占有的D组子载波中每一组子载波中的最低子载波索引或最高子载波索引;
    在一个时间单元中占有的J组时域符号中每一组时域符号中的最低时域符 号索引或最高时域符号索引;
    下行参考信号图样信息;
    图样类型的选择信息,所述图样类型至少存在第一类图样和第二类图样;
    所述D,J的取值为正整数。
  88. 如权利要求87所述的装置,其中,所述第一类图样是上行参考信号图样,所述第二类图样是下行参考信号图样;
    或,所述第一类图样是信道探测参考信号SRS图样,所述第二类图样是信道状态测量导频信号CSI-RS图样。
  89. 一种信道或信号的接收装置,包括:
    第三资源确定模块,设置为根据接收的第七信令信息或者第五参数确定规则确定第二类时频资源;
    第二信号接收模块,设置为根据所述确定的第二类时频资源,接收信道或信号;
    其中所述信道或信号不占有所述第二类时频资源。
  90. 如权利要求89所述的装置,其中,所述第七信令信息包括所述第二类时频资源的如下信息至少之一:
    端口数;
    梳偏移;
    在一个时间单元中时域符号信息;
    时域跳频单位信息;
    频域信息;
    多级带宽结构中的频域偏移量;
    频域跳频信息;
    上行参考信号的图样信息;
    图样类型选择信息,所述图样类型至少存在第一类图样和第二类图样。
  91. 如权利要求90所述的装置,其中,所述第一类图样是上行参考信号图样,所述第二类图样是下行参考信号图样;
    或,所述第一类图样是信道探测参考信号SRS图样,所述第二类图样是信道状态测量导频信号CSI-RS图样。
  92. 一种信令信息的传输装置,应用于第一通信节点,包括以下至少之一:第二信息发送模块,设置为向第二通信节点发送第八信令信息;其中所述第八信令信息,包括如下信息至少之一:第一信号集合的信息,第二信号集合的信息,所述第一信号集合和所述第二信号集合中的信号包括参考信号;以及,第二信息接收模块,设置为接收第二通信节点发送的第九信令信息;其中所述第九信令信息中包括如下信息至少之一:第一信号集合的信息,第二信号集合的信息,所述第一信号集合和所述第二信号集合中的信号包括参考信号;
    其中上述装置满足以下至少之一:所述第一信道或信号和所述第一信号集合中的至少一个信号关于一种或者多种信道大尺度特性参数满足准共址关系;以及,第二信道或信号的空间发送滤波参数根据所述第二信号集合中至少一个信号得到;
    所述第一信道或信号为所述第一通信节点发送给第三通信节点的信道或信号,所述第二信道或信号为所述第三通信节点发送给所述第一通信节点的信道或信号。
  93. 如权利要求92所述的装置,其中,所述第二信息发送模块还设置为执行以下操作至少之一:向所述第三通信节点发送第十信令信息,所述第八信令信息用于指示所述第三通信节点接收所述第一信号集合中的信号;以及,向所述第三通信节点发送第十一信令信息,所述第九信令信息用于指示所述一个或者多个第三通信节点发送所述第二信号集合中的信号。
  94. 一种通信节点设备,包括处理器、存储器以及通信总线;
    所述通信总线用于实现所述处理器与所述存储器之间的通信连接;
    所述存储器设置为存储至少一个第一程序,所述处理器设置为执行所述至少一个第一程序,以实现如权利要求1-9任一项所述的测量参考信号的发送方法;
    或,
    所述存储器设置为存储至少一个第二程序,所述处理器设置为执行所述至少一个第二程序,以实现如权利要求10或11所述的测量参考信号的接收方法;
    或,
    所述存储器设置为存储至少一个第三程序,所述处理器设置为执行所述至少一个第三程序,以实现如权利要求12-22任一项所述的测量参考信号的发送方法;或,
    所述存储器设置为存储至少一个第四程序,所述处理器设置为执行所述至少一个第四程序,以实现如权利要求23-26任一项测量参考信号的接收方法;
    或,
    所述存储器设置为存储至少一个第五程序,所述处理器设置为执行所述至少一个第五程序,以实现如权利要求27-37任一项所述的测量参考信号的接收方法;
    或,
    所述存储器设置为存储至少一个第六程序,所述处理器设置为执行所述至少一个第六程序,以实现如权利要求38或39所述的测量参考信号的接收方法;
    或,
    所述存储器设置为存储至少一第七程序,所述处理器设置为执行所述至少一个第七程序,以实现如权利要求40-49任一项所述的信号的传输方法;
    或,
    所述存储器设置为存储至少一个第八程序,所述处理器设置为执行所述至少一个第八程序,以实现如权利要求50-52任一项所述的信号发送方法;
    或,
    所述存储器设置为存储至少一个第九程序,所述处理器设置为执行所述一个或者多个第九程序,以实现如权利要求53-55任一项所述的信道或信号的接收方法;
    或,
    所述存储器设置为存储至少一个第十程序,所述处理器设置为执行所述至 少一个第十程序,以实现如权利要求56-58任一项所述的信令信息的传输方法。
  95. 一种计算机可读存储介质,存储至少一个第一程序,所述至少一个第一程序可被至少一个处理器执行,以实现如权利要求1-9任一项所述的测量参考信号的发送方法;
    或,
    存储至少一个第二程序,所述至少一个第二程序可被至少一个处理器执行,以实现如权利要求10或11所述的测量参考信号的接收方法;
    或,
    存储至少一个第三程序,所述至少一个第三程序可被至少一个处理器执行,以实现如权利要求12-22任一项所述的测量参考信号的发送方法;
    或,
    存储至少一个第四程序,所述至少一个第四程序可被至少一个处理器执行,以实现如权利要求23-26任一项测量参考信号的接收方法;
    或,
    存储至少一个第五程序,所述至少一个第五程序可被至少一个处理器执行,以实现如权利要求27-37任一项所述的测量参考信号的接收方法;
    或,
    存储至少一个个第六程序,所述至少一个第六程序可被至少一个处理器执行,以实现如权利要求38或39所述的测量参考信号的接收方法;
    或,
    所述计算机可读存储介质用于存储至少一个第七程序,所述至少一个第七程序可被一个或者多个处理器执行,以实现如权利要求40-49任一项所述的信号的传输方法;
    或,
    存储至少一个第八程序,所述至少一个第八程序可被至少一个处理器执行, 以实现如权利要求50-52任一项所述的信号发送方法;
    或,
    存储至少一个第九程序,所述至少一个第九程序可被至少一个处理器执行,以实现如权利要求53-55任一项所述的信道或信号的接收方法;
    或,
    存储至少一个第十程序,所述至少一个第十程序可被至少一个处理器执行,以实现如权利要求56-58任一项所述的信令信息的传输方法。
PCT/CN2019/096904 2018-07-19 2019-07-19 信号传输方法、装置、设备及计算机存储介质 WO2020015757A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217004577A KR20210030457A (ko) 2018-07-19 2019-07-19 신호 전송 방법, 장치, 기기 및 컴퓨터 저장 매체
US17/261,503 US20210266128A1 (en) 2018-07-19 2019-07-19 Signal transmission method, apparatus, device, and computer storage medium
EP19837606.3A EP3826211A4 (en) 2018-07-19 2019-07-19 SIGNAL TRANSMISSION METHOD AND APPARATUS, DEVICE, AND COMPUTER STORAGE MEDIA
CA3107122A CA3107122A1 (en) 2018-07-19 2019-07-19 Signal transmission method, apparatus, device, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810796374.7 2018-07-19
CN201810796374.7A CN110740020B (zh) 2018-07-19 2018-07-19 信号传输方法、装置、设备及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2020015757A1 true WO2020015757A1 (zh) 2020-01-23

Family

ID=69164133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096904 WO2020015757A1 (zh) 2018-07-19 2019-07-19 信号传输方法、装置、设备及计算机存储介质

Country Status (6)

Country Link
US (1) US20210266128A1 (zh)
EP (1) EP3826211A4 (zh)
KR (1) KR20210030457A (zh)
CN (2) CN110740020B (zh)
CA (1) CA3107122A1 (zh)
WO (1) WO2020015757A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227984A1 (zh) * 2020-05-11 2021-11-18 维沃移动通信有限公司 信道质量指示上报方法和自回传节点
WO2021254305A1 (zh) * 2020-06-16 2021-12-23 华为技术有限公司 通信方法和通信装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102441982B1 (ko) * 2018-07-05 2022-09-13 삼성전자주식회사 무선 통신 시스템에서 빔 포밍을 수행하는 방법 및 장치
US20210320768A1 (en) * 2018-08-27 2021-10-14 Nec Corporation Method, device and computer readable medium for iab transmission
US11700045B2 (en) * 2019-10-29 2023-07-11 Qualcomm Incorporated System and method for beam training with relay links
US11516865B2 (en) * 2019-11-14 2022-11-29 Qualcomm Incorporated Techniques for determining upstream nodes in full duplex wireless communications
US11889479B2 (en) * 2020-01-16 2024-01-30 Qualcomm Incorporated Time division multiplexing mapping of transmission configuration indicator states to a control channel
CN113260066B (zh) * 2020-02-10 2022-11-11 维沃移动通信有限公司 Ssb的测量配置方法和设备
CN115244963A (zh) * 2020-03-13 2022-10-25 华为技术有限公司 资源指示方法及通信装置
US20230155772A1 (en) * 2020-06-05 2023-05-18 Qualcomm Incorporated Reference signal orthogonality
CN114070519B (zh) * 2020-08-07 2023-05-16 大唐移动通信设备有限公司 信息传输方法、装置及存储介质
WO2022086431A1 (en) * 2020-10-23 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Technique for allocating spatial radio resources for an integrated access and backhaul node
CN116724521A (zh) * 2021-01-15 2023-09-08 苹果公司 利用信道互易性的端口选择码本的csi-rs增强
WO2023050118A1 (en) * 2021-09-29 2023-04-06 Zte Corporation Phase tracking reference signal pattern configuration and signaling in wireless communication system
CN115915198A (zh) * 2021-09-30 2023-04-04 华为技术有限公司 一种通信方法及装置
WO2023184147A1 (en) * 2022-03-29 2023-10-05 Qualcomm Incorporated Selection and quantization of time domain coefficients through an extended etype-ii codebook
WO2024044992A1 (zh) * 2022-08-30 2024-03-07 华为技术有限公司 测量信号的处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110292823A1 (en) * 2010-05-27 2011-12-01 Qualcomm Incorporated Sounding reference signal (srs) in heterogeneous network (hetnet) with time division multiplexing (tdm) partitioning
CN108111282A (zh) * 2017-09-30 2018-06-01 中兴通讯股份有限公司 一种信息传输方法及装置
CN108111287A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 一种信号发送方法及装置、计算机存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219724A (zh) * 2013-05-31 2014-12-17 中兴通讯股份有限公司 一种小区间协作进行干扰测量的方法和节点
WO2015166861A1 (ja) * 2014-04-28 2015-11-05 シャープ株式会社 端末装置および集積回路
US11929957B2 (en) * 2016-05-23 2024-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods and user equipment for handling communication
WO2018127149A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种信道状态信息处理的方法、装置和系统
US11843554B2 (en) * 2017-03-23 2023-12-12 Ntt Docomo, Inc. User equipment and transmission and reception point
WO2019099857A1 (en) * 2017-11-17 2019-05-23 Huawei Technologies Co., Ltd. System and method for channel measurement and interference measurement in wireless network
US11502761B2 (en) * 2018-05-25 2022-11-15 Qualcomm Incorporated Enhanced RRM/CSI measurement for interference management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110292823A1 (en) * 2010-05-27 2011-12-01 Qualcomm Incorporated Sounding reference signal (srs) in heterogeneous network (hetnet) with time division multiplexing (tdm) partitioning
CN108111282A (zh) * 2017-09-30 2018-06-01 中兴通讯股份有限公司 一种信息传输方法及装置
CN108111287A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 一种信号发送方法及装置、计算机存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227984A1 (zh) * 2020-05-11 2021-11-18 维沃移动通信有限公司 信道质量指示上报方法和自回传节点
WO2021254305A1 (zh) * 2020-06-16 2021-12-23 华为技术有限公司 通信方法和通信装置

Also Published As

Publication number Publication date
CN110740020B (zh) 2022-12-06
CN110740020A (zh) 2020-01-31
KR20210030457A (ko) 2021-03-17
EP3826211A4 (en) 2022-05-04
US20210266128A1 (en) 2021-08-26
CN116722959A (zh) 2023-09-08
EP3826211A1 (en) 2021-05-26
CA3107122A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
WO2020015757A1 (zh) 信号传输方法、装置、设备及计算机存储介质
US11751185B2 (en) Method for transmitting/receiving signals by using beams in wireless communication system, and device for same
US11425705B2 (en) Method and apparatus for transmitting and receiving control information in communication system supporting unlicensed band
JP7130832B2 (ja) アップリンク送信のための電力制御の方法
US10749585B2 (en) Method and apparatus for beam management reference signals in wireless communication systems
JP7217234B2 (ja) 参照信号送信方法、装置、およびシステム
AU2018342485B2 (en) Information transmission method and apparatus
JP6938645B2 (ja) 柔軟な新無線(nr)ロングタームエボリューション(lte)共存のための信号表示
KR102603814B1 (ko) 상향링크 제어정보 전송 방법 및 장치
CN109150424B (zh) 参考信号、消息的传输方法、传输资源确定方法和装置
CN108633061B9 (zh) 传输参数确定方法及装置
CN108023722B (zh) 一种控制信道的发送方法和装置
US11539562B2 (en) Reference signal having variable structure
JP6559903B2 (ja) 自己完結型エアインターフェースパーティションのためのシステムおよび方法
US11523384B2 (en) Resource allocation method and apparatus for backhaul link and access link
KR102574954B1 (ko) 통신 시스템에서 기준 신호를 송수신하는 방법 및 장치
CN107615834A (zh) 自适应导频分配的系统和方法
WO2017008562A1 (zh) 在上行控制信道上发送信号的方法和装置
KR20190038219A (ko) 무선 통신 시스템에서 상향링크 자원 설정 방법 및 장치
JP2023533083A (ja) 繰り返しベースの上りリンク送信を行うための無線通信方法及びユーザ機器
US11063715B2 (en) Multi numerology transmission method for a radio communication system
CN113853763B (zh) 用于区分多个物理下行链路共享信道(pdsch)传输方案的方法
KR20230062404A (ko) 다중 셀에 의한 스케쥴링 방법 및 이에 기초한 pdcch 오프로딩 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3107122

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217004577

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019837606

Country of ref document: EP