WO2024044992A1 - 测量信号的处理方法及装置 - Google Patents

测量信号的处理方法及装置 Download PDF

Info

Publication number
WO2024044992A1
WO2024044992A1 PCT/CN2022/115974 CN2022115974W WO2024044992A1 WO 2024044992 A1 WO2024044992 A1 WO 2024044992A1 CN 2022115974 W CN2022115974 W CN 2022115974W WO 2024044992 A1 WO2024044992 A1 WO 2024044992A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
measurement
signal
information
measurement signal
Prior art date
Application number
PCT/CN2022/115974
Other languages
English (en)
French (fr)
Inventor
高磊
程型清
王勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/115974 priority Critical patent/WO2024044992A1/zh
Publication of WO2024044992A1 publication Critical patent/WO2024044992A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communication technology, and in particular to methods and devices for processing measurement signals of ranging, angle measurement or positioning based on starlight wireless communication.
  • wireless ranging, angle measurement or positioning functions can be realized based on wireless communication technology in indoor, vehicle or underground parking and other scenarios.
  • Scenarios in which wireless communication technology implements ranging, angle measurement, or positioning may include one or more measuring nodes and measured nodes.
  • the location of the measurement node is used as the reference position for distance measurement, angle measurement or positioning.
  • the measured node is a node that needs to be measured for distance, angle or positioning.
  • Ranging, angle measurement or positioning is achieved by sending measurement signals between the measured node and the measuring node.
  • the implementation of specific measurements is limited by the node's signal sending and receiving capabilities and/or the performance requirements of the measurement. How to implement ranging, angle measurement, or positioning in a wider range of applications needs to be solved by those skilled in the art. technical problem.
  • This application provides a measurement signal processing method and device that can determine the type of measurement signal sent or received by a node, and indicate the type of the measurement signal to the node, so that the node can implement ranging, angle measurement, or positioning measurements. .
  • embodiments of the present application provide a measurement signal processing method, which method includes:
  • the first node determines the type of measurement signal sent and/or received by the second node; the aforementioned first node is the master node, and the aforementioned second node is the slave node; the aforementioned second node is the measuring node or the measured node; the aforementioned measurement is the Ranging, angle measurement or positioning of measured nodes;
  • the first node sends first information to the second node; the first information is used to indicate the type of the measurement signal; the type of the measurement signal includes a single tone signal or a multi-tone signal.
  • the measurement signal used to implement the measurement can be a simple measurement signal (such as a single tone signal), or Use complex measurement signals (e.g. multi-tone signals).
  • This application provides a solution for the measuring node and/or the measured node to determine the type of measurement signal it specifically transmits from a variety of optional measurement signal types during the measurement process. That is, the master node that schedules resources in the communication system indicates the type of measurement signals sent and/or received by the measuring node and/or the measured node.
  • This solution can be applied in measurement scenarios with different measurement performance requirements and equipment with different capabilities for ranging, angle measurement or positioning, so that the measurement node can complete the ranging, angle measurement or positioning of the measured node. Expanded range of applications for distance measurement, angle measurement or positioning.
  • the first node sends second information to the second node, and the second information is used to indicate one or more of the following:
  • the number N of frequency components transmitted simultaneously in the aforementioned measurement signal where the aforementioned N is an integer greater than or equal to 1;
  • the second node determines the corresponding parameters of the measurement signals sent and/or received according to the instruction, and then implements ranging, ranging or positioning functions by sending and/or receiving measurement signals corresponding to the parameters.
  • the above-mentioned second information and the first information may be the same information, or may be information sent in the same signaling or message.
  • the second information and the first information may be different information, for example, information sent in different signaling or messages.
  • the type of the measurement signal single tone signal or multi-tone signal
  • the type of the measurement signal can be determined or eucalyptus can save signaling transmission resources.
  • the first node receives third information from the second node; the third information is used to indicate the ability of the second node to send and/or receive measurement signals.
  • the first node can more reasonably determine and configure the type of measurement signal based on the second node's ability to send and/or receive measurement signals, so that the measurement signal can match the processing capabilities of the node, thereby achieving ranging and angle measurement. or positioning function.
  • the aforementioned first node obtains the performance requirements of the aforementioned measurement, and the aforementioned performance requirements include at least one of the following: ranging accuracy, positioning accuracy, angle measurement accuracy, ranging delay, positioning delay, and angle measurement time. extension, distance measuring range or angle measuring range.
  • the first node can more reasonably determine and configure the type of measurement signals based on the performance requirements of the measurement to meet measurement scenarios with different performance requirements.
  • the ability of the second node to send and/or receive measurement signals, and/or the performance requirements of the measurement may be pre-configured in the first node, and there is no need to configure the second node in advance. Get additionally.
  • the aforementioned method further includes: the aforementioned first node sending fourth information to the aforementioned second node; the aforementioned fourth information is used to indicate a first random seed; the aforementioned first random seed is used to determine whether the disturbance signal is present in the aforementioned Measures the number of times and/or time positions in a signal that are added.
  • adding the disturbance signal can destroy the regularity of the measurement signal, which can effectively prevent attackers from misleading the measurement results by forging measurement signals.
  • adding disturbance signals with random positions and times can add randomness to the measurement signal, making it difficult for attackers to forge measurement signals containing disturbance signals.
  • the legitimate receiving end contains a forged signal in the received measurement signal, it can identify that the measurement signal contains a forged signal based on the characteristics of the disturbance signal. For example, the receiving end detects the existence of the disturbance signal at the position of the disturbance signal or the signal-to-noise ratio of the disturbance signal or other characteristics of the disturbance signal, and can determine whether the received measurement signal contains a forged signal. It is difficult for the attacker to determine the number and time position of the disturbance signal, so it is difficult for the attacker to send the disturbance signal at the time position of the disturbance signal, thus effectively preventing the signal from being forged.
  • the aforementioned disturbance signal is an inverse signal of the original signal.
  • the inverted signal refers to a signal with the same amplitude and opposite phase.
  • the amplitude of the disturbance signal is the same as that of the original signal, which can avoid sudden changes in the energy of the measured signal and ensure that the signal transmitted in each time unit in the transmission resource has a sufficient signal-to-noise ratio.
  • the phase of the disturbance signal is opposite to that of the original signal, which can suppress the impact on the phase of the signal transmitted in other time units when the energy of the time unit of the replaced transmission signal leaks to other time units (it only affects the amplitude, not the phase) , to ensure the performance of measuring channel phase information.
  • the aforementioned method further includes: the aforementioned first node sending fifth information to the aforementioned second node; the aforementioned fifth information is used to indicate a second random seed; the aforementioned second random seed is used to determine the value in the aforementioned measurement signal The initial phase of the frequency component.
  • a random seed can be configured through the master node to randomly determine the initial phase of the measurement signal. Since the random seed can be randomly specified by the master node, and the initial phase of the measurement signal transmitted during the measurement process is also randomly determined based on the random seed. Therefore, the measurement signal can be prevented from being eavesdropped. Even if it is eavesdropped, it is difficult for the eavesdropper to know the true initial phase of the measurement signal, and it is difficult to infer the channel phase information. Then it is difficult to obtain the location of the measured node, achieving safe measurement. That is, this method increases the difficulty for attackers to obtain node location information through eavesdropping, thereby improving security.
  • the aforementioned measurement signal is a multi-tone signal
  • the aforementioned second random seed is used to generate the initial phase of each frequency component in the aforementioned measurement signal.
  • the aforementioned second random seed is used to generate a time offset, and the initial phase of each frequency component in the aforementioned measurement signal is determined by a combination of the aforementioned time offset and a preset phase.
  • the initial phase of each frequency component in the measurement signal can be randomly generated to further enhance the randomness of the phase of the measurement signal to reduce the risk of eavesdropping and achieve safe measurement.
  • using the optimized preset phase combination can make the multi-tone signal power peak-to-average ratio (PAPR) lower than that without optimization. situation, resulting in better measurement performance.
  • PAPR multi-tone signal power peak-to-average ratio
  • the randomly generated time offset makes the initial phase of each frequency component unpredictable by the attacker, making it more difficult for the attacker to obtain node location information through eavesdropping, thereby improving security.
  • the first node sends sixth information to the second node, and the sixth information is used to indicate whether to add a disturbance signal to the measurement signal, and/or to indicate whether to randomize the initial phase of the measurement signal.
  • the sixth information is used to indicate whether to add a disturbance signal to the measurement signal, and/or to indicate whether to randomize the initial phase of the measurement signal.
  • This solution uses the master node to send information instructions to determine whether to add a disturbance signal to the measurement information, which can save the node's computing resources in scenarios where scrambling is not required.
  • embodiments of the present application provide a measurement signal processing method, which is characterized in that the foregoing method includes:
  • the second node receives the first information from the first node.
  • the first information is used to indicate the type of measurement signal sent and/or received by the second node; the type of the measurement signal includes a single tone signal or a multi-tone signal; the aforementioned The first node is the master node, and the aforementioned second node is the slave node; the aforementioned second node is the measuring node or the measured node; the aforementioned measurement is the ranging, angle measurement or positioning of the measured node;
  • the aforementioned second node sends or receives a first measurement signal, and the aforementioned first measurement signal is used for the aforementioned measurement.
  • the measurement signal used to implement the measurement can be a simple measurement signal (such as a single tone signal), or Use complex measurement signals (e.g. multi-tone signals).
  • This application provides a solution for the measuring node and/or the measured node to determine the type of measurement signal it specifically transmits from a variety of optional measurement signal types during the measurement process. That is, the master node that schedules resources in the communication system indicates the type of measurement signals sent and/or received by the measuring node and/or the measured node.
  • This solution can be applied in measurement scenarios with different measurement performance requirements and equipment with different capabilities for ranging, angle measurement or positioning, so that the measurement node can complete the ranging, angle measurement or positioning of the measured node. Expanded range of applications for distance measurement, angle measurement or positioning.
  • the aforementioned second node receives second information from the aforementioned first node, used to indicate one or more of the following:
  • the number N of frequency components transmitted simultaneously in the aforementioned measurement signal where the aforementioned N is an integer greater than or equal to 1;
  • the second node determines the corresponding parameters of the measurement signals sent and/or received according to the instruction, and then implements ranging, ranging or positioning functions by sending and/or receiving measurement signals corresponding to the parameters.
  • the type of the measurement signal single tone signal or multi-tone signal
  • the type of the measurement signal can be determined or eucalyptus can save signaling transmission resources.
  • the foregoing method further includes: the foregoing second node sending third information to the foregoing first node; the foregoing third information is used to indicate the ability of the foregoing second node to send and/or receive measurement signals.
  • the first node can more reasonably determine and configure the type of measurement signal based on the second node's ability to send and/or receive measurement signals, so that the measurement signal can match the processing capabilities of the node, thereby achieving ranging and angle measurement. or positioning function.
  • the aforementioned method also includes:
  • the aforementioned second node sends performance requirement indication information to the aforementioned first node; the performance requirements include at least one of the following: ranging accuracy, positioning accuracy, angle measurement accuracy, ranging delay, positioning delay, angle measurement delay, Distance measurement range or angle measurement range.
  • the first node can more reasonably determine and configure the type of measurement signals based on the performance requirements of the measurement to meet measurement scenarios with different performance requirements.
  • the aforementioned method further includes: the aforementioned second node receiving fourth information from the aforementioned first node; the aforementioned fourth information being used to indicate a first random seed; and the aforementioned first random seed being used to determine where the disturbance signal is The number of times and/or time positions added to the aforementioned first measurement signal.
  • adding the disturbance signal can destroy the regularity of the measurement signal, which can effectively prevent attackers from misleading the measurement results by forging measurement signals.
  • adding disturbance signals with random positions and times can add randomness to the measurement signal, making it difficult for attackers to forge measurement signals containing disturbance signals.
  • the legitimate receiving end contains a forged signal in the received measurement signal, it can identify that the measurement signal contains a forged signal based on the characteristics of the disturbance signal. For example, the receiving end detects the existence of the disturbance signal at the position of the disturbance signal or the signal-to-noise ratio of the disturbance signal or other characteristics of the disturbance signal, and can determine whether the received measurement signal contains a forged signal. It is difficult for the attacker to determine the number and time position of the disturbance signal, so it is difficult for the attacker to send the disturbance signal at the time position of the disturbance signal, thus effectively preventing the signal from being forged.
  • the aforementioned disturbance signal is an inverse signal of the original signal.
  • the inverted signal refers to a signal with the same amplitude and opposite phase.
  • the amplitude of the disturbance signal is the same as that of the original signal, which can avoid sudden changes in the energy of the measured signal and ensure that the signal transmitted in each time unit in the transmission resource has a sufficient signal-to-noise ratio.
  • the phase of the disturbance signal is opposite to that of the original signal, which can suppress the impact on the phase of the signal transmitted in other time units when the energy of the time unit of the replaced transmission signal leaks to other time units (it only affects the amplitude, not the phase) , to ensure the performance of measuring channel phase information.
  • the first measurement signal is transmitted on a first time resource, and the first time resource includes at least M time units, where the M is an integer greater than 1;
  • Whether the i-th time unit among the aforementioned M time units transmits a disturbance signal is determined based on the aforementioned first random seed and the time domain resource corresponding to the aforementioned i-th time unit, where i is any integer from 1 to M.
  • the first measurement signal is transmitted on a first time resource, and the first time resource includes at least M time units, where the M is an integer greater than 1;
  • the number of times of the aforementioned disturbance signal in the aforementioned first measurement signal is L, and the aforementioned L is an integer greater than 0 and less than M; the aforementioned L is determined based on the aforementioned first random seed and the aforementioned first time resource;
  • the time position of the j-th disturbance signal among the aforementioned L disturbance signals in the aforementioned first measurement signal is determined based on the aforementioned first random seed, the aforementioned first time resource and the aforementioned j, where the aforementioned j is greater than 0 and less than or equal to L integer.
  • the number of times to add a disturbance signal is first randomly calculated, and then the position of each addition is randomly calculated, which increases the randomness of whether to scramble and reduces the risk of the measurement signal being eavesdropped or forged.
  • the length of the aforementioned time unit is determined according to at least one of the following:
  • the length of the time unit is relatively flexible and has fewer restrictions on specific implementation. It can be determined according to actual application requirements to increase application flexibility.
  • the method includes: the first node receives fifth information; the fifth information is used to indicate a second random seed; the second random seed is used to determine the frequency component of the first measurement signal. First appearance.
  • a random seed can be configured through the master node to randomly determine the initial phase of the measurement signal. Since the random seed can be randomly specified by the master node, and the initial phase of the measurement signal transmitted during the measurement process is also randomly determined based on the random seed. Therefore, the measurement signal can be prevented from being eavesdropped. Even if it is eavesdropped, it is difficult for the eavesdropper to know the true initial phase of the measurement signal, and it is difficult to infer the channel phase information. Then it is difficult to obtain the location of the measured node, achieving safe measurement. That is, this method increases the difficulty for attackers to obtain node location information through eavesdropping, thereby improving security.
  • the first measurement signal is a multi-tone signal
  • the aforementioned second random seed is used to generate the initial phase of each frequency component in the aforementioned first measurement signal; or,
  • the aforementioned second random seed is used to generate a time offset, and the initial phase of each frequency component in the aforementioned first measurement signal is determined by a combination of the aforementioned time offset and a preset phase.
  • the initial phase of each frequency component in the measurement signal can be randomly generated to further enhance the randomness of the phase of the measurement signal to reduce the risk of eavesdropping and achieve safe measurement.
  • using the optimized preset phase combination can make the multi-tone signal power peak-to-average ratio (PAPR) lower than that without optimization. situation, resulting in better measurement performance.
  • PAPR multi-tone signal power peak-to-average ratio
  • the randomly generated time offset makes the initial phase of each frequency component unpredictable by the attacker, making it more difficult for the attacker to obtain node location information through eavesdropping, thereby improving security.
  • the second node receives sixth information from the first node, and the sixth information is used to indicate whether to add a disturbance signal to the first measurement signal, and/or to indicate whether to randomize the first measurement signal.
  • the sixth information is used to indicate whether to add a disturbance signal to the first measurement signal, and/or to indicate whether to randomize the first measurement signal.
  • This solution uses the master node to send information instructions to determine whether to add a disturbance signal to the measurement information, which can save the node's computing resources in scenarios where scrambling is not required.
  • this application provides a measurement signal processing device, which includes:
  • Determining unit used to determine the type of measurement signal sent and/or received by the second node;
  • the aforementioned device is a master node, and the aforementioned second node is a slave node;
  • the aforementioned second node is a measuring node or a measured node;
  • the aforementioned measurement is a pair Ranging, angle measurement or positioning of measured nodes;
  • the sending unit is configured to send first information to the second node; the first information is used to indicate the type of the measurement signal; the type of the measurement signal includes a single tone signal or a multi-tone signal.
  • the aforementioned sending unit is also used to send second information to the aforementioned second node; the aforementioned second information is used to indicate one or more of the following:
  • the number N of frequency components transmitted simultaneously in the aforementioned measurement signal where the aforementioned N is an integer greater than or equal to 1;
  • the aforementioned device further includes a receiving unit configured to receive third information from the aforementioned second node; the aforementioned third information is used to indicate the ability of the aforementioned second node to send and/or receive measurement signals, and the aforementioned ability Used to determine the type of the aforementioned measurement signal.
  • the aforementioned device further includes an acquisition unit for obtaining the performance requirements of the aforementioned measurement.
  • the aforementioned performance requirements include at least one of the following: ranging accuracy, positioning accuracy, angle measurement accuracy, ranging delay, and positioning time. Delay, angular measurement delay, ranging range or angular measurement range.
  • the aforementioned sending unit is also used for:
  • the fourth information is sent to the second node; the fourth information is used to indicate the first random seed; the first random seed is used to determine the number of times and/or the time position of the disturbance signal added to the measurement signal.
  • the aforementioned disturbance signal is an inverse signal of the original signal.
  • the aforementioned sending unit is also used for:
  • the fifth information is sent to the second node; the fifth information is used to indicate a second random seed; the second random seed is used to determine the initial phase of the frequency component in the measurement signal.
  • the aforementioned measurement signal is a multi-tone signal
  • the aforementioned second random seed is used to generate the initial phase of each frequency component in the aforementioned measurement signal.
  • the aforementioned second random seed is used to generate a time offset, and the initial phase of each frequency component in the aforementioned measurement signal is determined by a combination of the aforementioned time offset and a preset phase.
  • the aforementioned sending unit is also used for:
  • Sixth information is sent to the second node, where the sixth information is used to indicate whether to add a disturbance signal to the aforementioned measurement signal, and/or to indicate whether to randomize the initial phase of the aforementioned measurement signal.
  • this application provides a measurement signal processing device, which includes:
  • a receiving unit configured to receive first information from the first node, where the first information is used to indicate the type of measurement signal sent and/or received by the aforementioned device; the type of the aforementioned measurement signal includes a single tone signal or a multi-tone signal; the aforementioned The first node is the master node, and the aforementioned device is a slave node; the aforementioned device is a measuring node or a measured node; the aforementioned measurement is the ranging, angle measurement or positioning of the measured node;
  • a communication unit is used to send or receive a first measurement signal, and the aforementioned first measurement signal is used for the aforementioned measurement.
  • the aforementioned first information is used to indicate the type of measurement signal sent and/or received by the aforementioned device, including: the aforementioned first information is used to indicate one or more of the following:
  • the number N of frequency components transmitted simultaneously in the aforementioned measurement signal where the aforementioned N is an integer greater than or equal to 1;
  • the aforementioned device further includes a sending unit configured to send third information to the aforementioned first node; the aforementioned third information is used to indicate the capability of the aforementioned device to send and/or receive measurement signals.
  • the foregoing device further includes a sending unit for sending performance requirement indication information to the foregoing first node; the foregoing performance requirement indication information is used for indicating the foregoing measured performance requirement, and the foregoing performance requirement includes at least one of the following: Ranging accuracy, positioning accuracy, angle measurement accuracy, ranging delay, positioning delay, angle measurement delay, ranging range or angle measurement range.
  • the aforementioned receiving unit is also used for:
  • Receive fourth information from the first node is used to indicate a first random seed; the first random seed is used to determine the number of times and/or the time position of the disturbance signal added to the first measurement signal.
  • the aforementioned disturbance signal is an inverse signal of the original signal.
  • the first measurement signal is transmitted on a first time resource, and the first time resource includes at least M time units, where the M is an integer greater than 1;
  • Whether the i-th time unit among the aforementioned M time units transmits a disturbance signal is determined based on the aforementioned first random seed, the aforementioned first time resource and the aforementioned i, where i is any integer from 1 to M.
  • the first measurement signal is transmitted on a first time resource, and the first time resource includes at least M time units, where the M is an integer greater than 1;
  • the number of times of the aforementioned disturbance signal in the aforementioned first measurement signal is L, and the aforementioned L is an integer greater than 0 and less than M; the aforementioned L is determined based on the aforementioned first random seed and the aforementioned first time resource;
  • the time position of the j-th disturbance signal among the aforementioned L disturbance signals in the aforementioned first measurement signal is determined based on the aforementioned first random seed, the aforementioned first time resource and the aforementioned j, where the aforementioned j is greater than 0 and less than or equal to L integer.
  • the length of the aforementioned time unit is determined according to at least one of the following:
  • the aforementioned receiving unit is also used for:
  • the fifth information is received; the fifth information is used to indicate the second random seed; the second random seed is used to determine the initial phase of the frequency component in the first measurement signal.
  • the first measurement signal is a multi-tone signal
  • the aforementioned second random seed is used to generate the initial phase of each frequency component in the aforementioned first measurement signal; or,
  • the aforementioned second random seed is used to generate a time offset, and the initial phase of each frequency component in the aforementioned first measurement signal is determined by a combination of the aforementioned time offset and a preset phase.
  • the aforementioned receiving unit is also used for:
  • Sixth information is received from the first node, and the sixth information is used to indicate whether to add a disturbance signal to the first measurement signal, and/or to indicate whether to randomize the initial phase of the first measurement signal.
  • the present application provides a communication system.
  • the communication system includes a first node and a second node.
  • the first node is the measurement signal processing device according to any one of the above third aspects.
  • the second node is The measurement signal processing device according to any one of the above fourth aspects.
  • the present application provides a measurement signal processing device, which includes a processor and a memory.
  • the memory is coupled to a processor.
  • the processor executes the computer program or computer instructions stored in the memory, the method described in any one of the above first aspects can be implemented.
  • the measurement signal processing device may further include a communication interface, and the communication interface is used for the measurement signal processing device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the device may include:
  • Memory for storing computer programs or computer instructions
  • the aforementioned first node is the master node, and the aforementioned second node is the slave node; the aforementioned second node is the measuring node or the measured node; the aforementioned measurement is for the measured node distance measurement, angle measurement or positioning;
  • the first information is sent to the second node through the communication interface; the first information is used to indicate the type of the measurement signal; the type of the measurement signal includes a single tone signal or a multi-tone signal.
  • the computer program or computer instructions in the memory in this application can be stored in advance or downloaded from the Internet when using the device.
  • This application does not specifically limit the source of the computer program or computer instructions in the memory.
  • the coupling in the embodiment of this application is an indirect coupling or connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the present application provides a measurement signal processing device, which includes a processor and a memory.
  • the memory is coupled to a processor.
  • the processor executes the computer program or computer instructions stored in the memory, the method described in any one of the above second aspects can be implemented.
  • the measurement signal processing device may further include a communication interface, and the communication interface is used for the measurement signal processing device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the device may include:
  • Memory for storing computer programs or computer instructions
  • the aforementioned first information is used to indicate the type of measurement signal sent and/or received by the aforementioned second node;
  • the aforementioned type of measurement signal includes a single tone signal or a multi-tone signal;
  • the aforementioned The first node is the master node, and the aforementioned second node is the slave node;
  • the aforementioned second node is the measuring node or the measured node;
  • the aforementioned measurement is the ranging, angle measurement or positioning of the measured node;
  • a first measurement signal is sent or received through the communication interface, and the aforementioned first measurement signal is used for the aforementioned measurement.
  • the computer program or computer instructions in the memory in this application can be stored in advance or downloaded from the Internet when using the device.
  • This application does not specifically limit the source of the computer program or computer instructions in the memory.
  • the coupling in the embodiment of this application is an indirect coupling or connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the present application provides a computer-readable storage medium that stores a computer program or computer instructions.
  • the computer program or computer instructions are executed by a processor to implement any one of the above-mentioned first aspects. Methods.
  • the present application provides a computer-readable storage medium that stores a computer program or computer instructions.
  • the computer program or computer instructions are executed by a processor to implement any one of the above-mentioned second aspects. Methods.
  • the present application provides a computer program product.
  • the computer program product is executed by a processor, any of the methods described in the first aspect will be executed.
  • the present application provides a computer program product.
  • the computer program product is executed by a processor, any of the methods described in the second aspect will be executed.
  • embodiments of the present application provide a chip, which includes a processor, wherein the processor is used to execute a computer program or computer instructions stored in a memory, so that the chip executes any one of the above first aspects.
  • embodiments of the present application provide a chip, which includes a processor, wherein the processor is used to execute a computer program or computer instructions stored in a memory, so that the chip executes any one of the above second aspects.
  • Figures 1 and 2 are schematic structural diagrams of the communication system
  • Figure 3 is a flow diagram of a measurement signal processing method
  • Figure 4 is a schematic spectrum diagram of the measurement signal
  • Figures 5A to 5D are schematic diagrams of the composition of time resources
  • Figures 6 to 9 are schematic structural diagrams of the device.
  • multiple refers to two or more.
  • “and/or” is used to describe the association of associated objects, indicating three relationships that can exist independently.
  • a and/or B can mean: A exists alone, B exists alone, or both.
  • Descriptions such as "at least one (or at least one) of a1, a2, ... and an” used in the embodiments of this application include the situation where any one of a1, a2, ... and an exists alone. , also includes any combination of any more of a1, a2,...
  • each situation can exist alone; for example, the description of "at least one of a, b, and c" includes a single a , b alone, c alone, a and b combination, a and c combination, b and c combination, or a, b, c combination.
  • Measurement anchor point also called measurement node: Among the nodes participating in ranging, angle measurement, or positioning, it is the node that serves as the reference position for ranging, angle measurement, or positioning. For convenience of description, the distance measurement, angle measurement or positioning may be collectively referred to as measurement in the following.
  • Measurement tag also called measured node: The measured node among the nodes involved in ranging, angle measurement, or positioning. Determine the distance, angle, or position of a positioning tag relative to a reference position through the process of odometry, angle measurement, or positioning.
  • Master node configures resources and services for the transmission of signals (including measurement signals), signaling (including ranging, angle measurement, or positioning-related signaling) and business information (including ranging, angle measurement, or positioning-related business information) between nodes.
  • signal node including measurement signals
  • signaling including ranging, angle measurement, or positioning-related signaling
  • business information including ranging, angle measurement, or positioning-related business information
  • a master node can be an independent entity, a measurement tag, or a measurement anchor.
  • the master node can also be called M node (master node), C node (central node), or G node (grand node).
  • Slave node receives the configuration of the master node, and transmits (including sending and/or receiving) signals (including measurement signals), signaling (including signaling related to ranging, angle measurement or positioning) with other nodes according to the configuration of the master node ) and business information (including business information related to ranging, angle measurement or positioning).
  • the slave node can also be called S node (slave node), P node (peripheral node), or T node (terminal node).
  • Random seed is an input parameter of the pseudo-random function. This pseudo-random function is used to pseudo-randomly generate a certain parameter.
  • the communication system 100 includes a first node 110 and a second node 120 .
  • Wireless communication can be performed between the first node 110 and the second node 120 .
  • it can be achieved through Spark Link, long term evolution (LTE) technology, 5th Generation Mobile Communication Technology (5G), wireless LAN (for example, Wi-Fi) technology, Bluetooth (Bluetooth, BT), Zigbee or vehicle-mounted short-range wireless communication technology to achieve communication.
  • LTE long term evolution
  • 5G 5th Generation Mobile Communication Technology
  • wireless LAN for example, Wi-Fi
  • Bluetooth Bluetooth, BT
  • Zigbee Zigbee or vehicle-mounted short-range wireless communication technology
  • the above-mentioned first node 110 may be a master node in the communication system 100 .
  • the above-mentioned second node 120 may be a slave node in the communication system 100 .
  • the master node may be used to configure transmission resources for nodes (including master nodes and slave nodes) in the communication system 100 to send and/or receive information.
  • the transmission resources are, for example, time domain resources and/or frequency domain resources.
  • the master node may also be used to configure parameters of signals sent and/or received by nodes in the communication system 100 .
  • This signal can be, for example, a measurement signal used for the above-mentioned measurements.
  • This parameter may include, for example, the type of signal, the modulation method, or the random seed used to add perturbation, etc.
  • the slave node may be used to receive the configuration of the master node and then send and/or receive signals based on the configured transmission resources.
  • the master node may configure the transmission resources and/or parameters of the slave node by determining the corresponding transmission resources and/or parameters, and then indicating the transmission resources and/or parameters by sending information to the slave node.
  • the sent information may be carried in the form of signaling or messages.
  • the nodes in the above communication system 100 may be used to implement the above measurement function according to the transmission resources configured by the master node and the parameters of the measurement signal.
  • the above-mentioned first node 110 may be a measurement node, that is, the master node is a measurement node.
  • the above-mentioned second node 120 may be a measured node.
  • the location of the measurement node serves as the reference location for the above measurement.
  • the measured node is a node whose distance or position needs to be measured.
  • the first node 110 is the master node. Then, after the first node 110 configures transmission resources and measurement signal parameters for itself and the second node 120, measurements can be sent between the first node 110 and the second node 120. signal to implement the measurement of the measured node, that is, the second node 120.
  • the first node 110 may send one or more measurement signals to the second node 120.
  • the second node 120 may send the measurement signal to the first node 110 one or more times.
  • the first node 110 may send one or more measurement signals to the second node 120, and the second node 120 may also send one or more measurement signals to the first node 110. That is, the measurement of the measured node can be achieved through the transmission of one or more measurement signals between the measuring node and the measured node.
  • the embodiments of this application do not limit the specific measurement implementation process.
  • the above-mentioned first node 110 may be the measured node, that is, the master node is the measured node.
  • the above-mentioned second node 120 may be a measurement node.
  • the first node 110 is a master node.
  • the measurement signal is sent to implement the above measurement on the measured node, that is, the first node 110 .
  • the description of this measurement can be exemplarily referred to the previous introduction and will not be repeated here.
  • the above-mentioned first node 110 is neither a measuring node nor a measured node, and is mainly used to configure transmission resources and measurement signal parameters for the measuring node and the measured node. . That is, the main node is a node independent of the measuring node and the measured node.
  • the communication system 100 may also include a third node 130 .
  • the third node 130 is a slave node in the communication system 100. Wireless communication can be performed between any two of the first node 110, the second node 120 and the third node 130.
  • the transmission resources used by the third node 130 to send and/or receive information, and the parameters of the measurement signals sent and/or received by the third node 130 are also configured by the master node, that is, the first node 110 .
  • the above-mentioned second node 120 may be a measuring node
  • the above-mentioned third node 130 may be a measured node.
  • the first node 110 configures the transmission resources and measurement signal parameters for the second node 120 and the third node 130
  • the second node 120 and the third node 130 can send measurement signals to realize the measurement of the measured signals.
  • the measurement node is the measurement of the third node 130 .
  • the description of this measurement can be exemplarily referred to the previous introduction and will not be repeated here.
  • the above-mentioned measurement node can be used to perform the above-mentioned measurement on one or more measured nodes.
  • the positioning of the measured node can be achieved by exchanging measurement signals between one or more measuring nodes and the measured node. Positioning the measured node through multiple measurement nodes can improve positioning accuracy.
  • the master node in the above communication system 100 may be pre-configured.
  • the master node may be determined by multiple nodes in the communication system 100 through election. After the master node is determined in the communication system 100, other nodes are slave nodes. This is only an example and does not constitute a limitation on the embodiments of the present application. The embodiment of this application does not limit the method of determining the master node.
  • the above-mentioned measurement node may also be called a measurement anchor point or a measurement base station.
  • the measurement node may be called a ranging anchor point or a ranging base station.
  • the measurement node may be called a positioning anchor point or a positioning base station.
  • the above-mentioned measured node can also be called a measurement tag.
  • the measured node in a ranging application scenario, the measured node may be called a ranging label.
  • the measured node in a positioning application scenario, the measured node may be called a positioning tag.
  • the above-mentioned master node and slave node may be devices or devices equipped with wireless communication functions.
  • it can be any possible user terminal equipment, network equipment, base station, user station, mobile station, mobile station, transportation equipment, intelligent manufacturing equipment, smart home equipment, etc.
  • the above-mentioned user terminal device may include but is not limited to any electronic product based on an intelligent operating system, which can perform human-computer interaction with the user through input devices such as keyboards, virtual keyboards, touch pads, touch screens, and voice control devices.
  • an intelligent operating system which can perform human-computer interaction with the user through input devices such as keyboards, virtual keyboards, touch pads, touch screens, and voice control devices.
  • smartphones tablet computers (tablet personal computers, Tablet PC), handheld computers, wearable electronic devices, personal computers (personal computers, PC) and desktop computers.
  • smart operating systems include but are not limited to any operating system that enriches device functions by providing various applications to the device, such as Android, IOS, Windows, MAC or HarmonyOS.
  • the above network equipment may include but is not limited to switches, routers, bridges, hubs, gateways, servers, network interface cards), wireless access points, modems, optical terminals or fiber optic transceivers, etc.
  • the above-mentioned transportation equipment may include, but is not limited to, vehicles or boats, and the like.
  • the above-mentioned intelligent manufacturing equipment may include, but is not limited to, intelligent instrumentation, CNC machine tools, master control cabinets, transmission equipment and other automated production equipment.
  • the above-mentioned smart home devices may include but are not limited to smart speakers, air conditioners, washing machines or televisions, etc.
  • the above-mentioned master node and slave node may also be vehicle-mounted devices.
  • it can be a cockpit domain device, or a module in a cockpit domain device.
  • it is one or more modules such as cockpit domain controller (CDC), camera, screen, microphone, audio, electronic key, keyless entry or starting system controller.
  • CDC cockpit domain controller
  • the above communication system 100 can be applied in various application scenarios.
  • mobile Internet mobile Internet
  • industrial control industrial control
  • self-driving self-driving
  • transportation safety transportation safety
  • Internet of things IoT
  • intelligence City smart home
  • smart home smart home
  • the communication system 100 shown in FIGS. 1 and 2 is only an example.
  • the communication system 100 may include more slave nodes, which is not limited to the number of slave nodes shown in FIG. 1 or FIG. 2 .
  • the embodiment of the present application does not limit the number of slave nodes included in the communication system 100.
  • a measurement signal needs to be sent between the measuring node and the measured node.
  • the signal sending and receiving capabilities of each node are different, which limits the realization of measurement or limits the performance of measurement. Therefore, in order to implement node measurement in a wider application range, embodiments of the present application provide a measurement signal processing method and device.
  • the measurement signal processing method may include but is not limited to the following steps:
  • the first node determines the type of measurement signal sent and/or received by the second node; the first node is the master node and the second node is the slave node; the second node is the measuring node or the measured node; the measurement is to measure the measured node. Ranging, angle measurement or positioning of nodes.
  • the first node may be the first node 110 shown in FIG. 1 or FIG. 2 above.
  • the second node 120 may be, for example, the second node 120 shown in the above-mentioned FIG. 1 or FIG. 2 .
  • the types of measurement signals may include single-tone signals and multi-tone signals.
  • the single tone signal is a signal containing only a single frequency component, such as a sine wave signal of a single frequency.
  • the tone signal may be an unmodulated carrier signal, or the tone signal may be a binary phase shift keying (BPSK) modulated signal without phase rotation.
  • the unmodulated carrier signal is mainly used as a measurement signal for interactions between nodes that only support Gaussian frequency shift keying (GFSK) modulation.
  • GFSK Gaussian frequency shift keying
  • This BPSK modulated signal without phase rotation is a signal in which the same value is mapped to a plurality of consecutive different symbols.
  • the BPSK modulated signal without phase rotation can be used as a measurement signal for interaction between nodes that support phase shift keying (PSK) type modulation.
  • PSK type modulation may include BPSK modulation or multi-ary phase shift keying modulation.
  • the above-mentioned multi-tone signal is a signal containing multiple (two or more) frequency components transmitted simultaneously.
  • the two or more frequency components may be frequency components distributed at equal frequency intervals.
  • the signal of each frequency component of the plurality of frequency components is a sine wave signal of a single frequency.
  • the number of frequency components in a multi-tone signal is the number of tones in the multi-tone signal. For example, if a multi-tone signal includes 8 frequency components, then the number of tones in the multi-tone signal is 8.
  • FIG. 4 illustrates the spectrogram of a single tone signal. It can be seen that the single tone signal has only one frequency component, and its center frequency is f 0 .
  • (b) and (c) in FIG. 4 exemplarily show the spectrum diagram of the multi-tone signal. Among them, (b) in FIG. 4 exemplarily shows the spectrum diagram of a multi-tone signal including four frequency components. The center frequencies of the four frequency components are f 1 , f 2 , f 3 and f 4 respectively. In addition, it can be seen that the frequency intervals between adjacent frequencies among the four frequencies are equal, which is ⁇ f1.
  • FIG. 4 exemplarily shows a spectrogram of a multi-tone signal including eight frequency components.
  • the center frequencies of the eight frequency components are f 1 , f 2 , f 3 , f 4 , f 5 , f 6 , f 7 and f 8 respectively.
  • the frequency intervals between adjacent frequencies among the eight frequencies are equal, which is ⁇ f2. It can be understood that what is shown in Figure 4 is only an example and does not constitute a limitation on the embodiments of the present application.
  • the above-mentioned first node may determine the type of measurement signal sent and/or received by the second node based on the ability of the second node to receive and/or send the measurement signal.
  • the embodiments of this application will simply refer to sending and/or receiving as processing.
  • the capability may be reported to the first node by the second node or other nodes.
  • the embodiment of this application takes the second node reporting as an example.
  • the second node may send information indicating the capability to the first node.
  • the information indicating the capability is called second information.
  • the first node may determine the type of measurement signal processed by the second node based on the capability indicated by the second information.
  • the above-mentioned second information may directly indicate the type of measurement signal that the second node can process.
  • the type of measurement signal that the second node can process is a single tone signal and/or a multi-tone signal. If the second information indicates that the second node can process only one type of measurement signal, that is, only single-tone signals (or only multi-tone signals). Then, after receiving the second capability indication information, the first node can determine based on the second information that the measurement signal that the second node can process is a single tone signal (or multi-tone signal).
  • the first node can randomly determine one type from the two types as the type of measurement signal processed by the second node.
  • the first node may refer to the node that interacts with the second node to measure signals (referred to as the third node for short, for example, it may be the third node 130 shown in Figure 2 above) that can process Type of measurement signal.
  • the third node for short, for example, it may be the third node 130 shown in Figure 2 above
  • the types of measurement signals of the two nodes are the same.
  • the first node can determine that the measurement signal that the second node can process is a single tone signal. If the third node can only process multi-tone signals, then the first node can determine that the measurement signal that the second node can process is a multi-tone signal. If the third node can process both single-tone signals and multi-tone signals, then the first node can select one of them as the type of measurement signal for interaction between the second node and the third node.
  • the type of measurement signal processed by the third node may be determined with reference to the description of the second node, which will not be described again here.
  • the above-mentioned second information may indicate the performance of the processor of the second node.
  • the second information may include performance parameters of the processor.
  • the performance parameters of the processor can be, for example, one or more of the following: the main frequency, FSB, memory, cache, operating voltage or multiplication factor of the central processing unit (CPU).
  • the first node determines that the second node can process single-tone signals and multi-tone signals based on the performance parameters of the processor in the second information. Then, in a possible implementation, the first node can randomly determine one type from the two types as the type of measurement signal processed by the second node. Or, in another possible implementation, the first node may determine the measurement signal processed by the second node by referring to the type of measurement signal that the node that interacts with the second node with measurement signals (such as the above-mentioned third node) can process. type. For specific implementation, please refer to the above description and will not be repeated here.
  • the first node determines that the second node can process the single tone signal based on the performance parameters of the processor in the second information. It is further determined that the type of the measurement signal processed by the second node is a single tone signal.
  • the above-mentioned preset conditions include one or more of the following: the main frequency of the above-mentioned CPU is within the first frequency range, the above-mentioned external frequency is within the second frequency range, and the capacity of the above-mentioned memory is within the first capacity range, The capacity of the buffer memory is within the second capacity range, the operating voltage is within the first voltage range, or the frequency multiplication coefficient is within the first numerical range. It can be understood that the range of these parameters can be set according to actual applications, and the embodiments of the present application do not limit this.
  • the first node may determine the type of measurement signal sent and/or received by the second node based on the performance requirements of the measurement.
  • the performance requirements include at least one of the following: ranging accuracy, positioning accuracy, angle measurement accuracy, ranging delay, positioning delay, angle measurement delay, ranging range or angle measurement range.
  • ranging accuracy, ranging delay and ranging range are performance requirements in ranging scenarios.
  • the angle measurement accuracy, angle measurement delay, and angle measurement range are the performance requirements in angle measurement scenarios.
  • the positioning accuracy and positioning delay are performance requirements in positioning scenarios. For example, in a scenario where positioning is achieved by measuring a distance, the ranging range may also be a performance requirement in the positioning scenario.
  • the distance measurement accuracy, angle measurement accuracy and positioning accuracy can be collectively referred to as measurement accuracy.
  • the ranging delay, angle measurement delay and positioning delay are collectively referred to as measurement delay.
  • the distance measurement range and angle measurement range are called measurement ranges.
  • the above-mentioned second node or other nodes send information indicating the performance requirement to the first node.
  • this information is called third information.
  • the third information includes the performance requirement.
  • it includes the value or range of one or more of the above measurement accuracy, measurement delay or measurement range. It can be understood that the numerical value or numerical range can be determined according to actual applications, and the embodiments of the present application do not limit this.
  • the first node may determine the type of measurement signal sent and/or received by the second node according to the value or value range of the performance requirement included in the third information.
  • the value or value range of the performance requirement included in the third information is introduced below.
  • the wider the bandwidth covered by the measurement signal sent in a single time the more frequency components are included in the measurement signal (or the smaller the interval between frequency components), and the measurement range is The larger the value, the smaller the measurement delay.
  • a single-sent multi-tone signal covers a wider bandwidth
  • a single-send single-tone signal covers a narrower bandwidth. Therefore, measurements that require a large measurement range and/or a small measurement delay can be achieved by matching multi-tone signals. Measurements with lower requirements on measurement range and/or measurement delay can be achieved by matching single tone signals.
  • the size of the measurement range can be distinguished by setting a range threshold. If the value of the measurement range is smaller than the range threshold, the measurement range is smaller. If the value of the measurement range is greater than the range threshold, the measurement range is larger. For example, assume the range threshold is 5 meters. Then, if the value of the measurement range is less than 5 meters, it indicates that the measurement range is small. If the value of the measurement range is greater than 5 meters, it indicates that the measurement range is larger. It can be understood that this is only an example. In specific implementation, the size of the measurement range can also be distinguished in other ways, which is not limited by the embodiment of the present application.
  • the requirements for measuring delay can be distinguished by setting a delay threshold.
  • the smaller the value of the measured delay the higher the requirement for measuring the delay. Therefore, if the value of the measured delay is less than the delay threshold, the measurement delay requirement is higher. If the measured delay value is greater than the delay threshold, the measured delay requirement is lower. For example, assume that the delay threshold is 1 second. Then, if the measurement delay value is less than 1 second, it indicates that the measurement delay requirement is high. If the measured delay value is greater than 1 second, it indicates that the measured delay requirement is low. It can be understood that this is only an example. In specific implementations, other methods can be used to distinguish the requirements for measuring delay, which are not limited by the embodiments of this application.
  • the first node After receiving the third information, the first node obtains the value or value range of the measured delay in the third information. Then, it is determined whether the value or value range of the measured delay is within a preset delay range.
  • the preset delay range is a range in which the delay value is less than the above delay threshold. For example, assuming that the delay threshold is 1 second, then the preset delay range is less than 1 second. Therefore, if the obtained value or value range of the measurement delay is within the preset delay range, it indicates that the requirements for the measurement delay are relatively high.
  • the first node may determine that the type of the measurement signal processed by the second node is a multi-tone signal. If the obtained measurement delay value or value range is not within the preset delay range, it indicates that the requirements for the measurement delay are low. Then, the first node may determine that the type of the measurement signal processed by the second node is a single tone signal.
  • the first node After receiving the third information, the first node obtains the numerical value or numerical range of the measurement range in the third information. Then, determine whether the value or value range of the measurement range is within the preset range.
  • the preset range is a range with a range value greater than the above range threshold. For example, assuming that the range threshold is 5 meters, then the preset range is a range greater than 5 meters. Therefore, if the obtained value or value range of the measurement range is within the preset range, it indicates that the requirements for the measurement range are relatively high. Then, the first node may determine that the type of the measurement signal processed by the second node is a multi-tone signal. If the obtained value or value range of the measurement range is not within the preset range, it indicates that the requirements for the measurement range are low. Then, the first node may determine that the type of the measurement signal processed by the second node is a single tone signal.
  • the measurement accuracy can be distinguished by setting an accuracy threshold. The smaller the value of measurement accuracy, the higher the measurement accuracy. Therefore, if the value of the measurement accuracy is smaller than the accuracy threshold, the measurement accuracy is higher. If the value of measurement accuracy is greater than the accuracy threshold, the measurement accuracy is low. For example, in this angle measurement scenario, assume that the accuracy threshold of the angle measurement accuracy is 2°. Then, if the value of the measurement accuracy is less than 2°, it indicates that the measurement accuracy is high.
  • a value of measurement accuracy greater than 2° indicates that the measurement accuracy is low. It can be understood that this is only an example, and other methods can be used to distinguish the level of measurement accuracy in specific implementations, which are not limited by the embodiments of this application.
  • the size of the measurement range can be distinguished by referring to the foregoing description, and will not be repeated here.
  • the first node After receiving the third information, the first node obtains the numerical value or numerical range of the measurement accuracy in the third information. Then, it is determined whether the numerical value or numerical range of the measurement accuracy is within the preset accuracy range.
  • the preset accuracy range is a range in which the accuracy value is less than the above-mentioned accuracy threshold. For example, in the above angle measurement scenario, assuming that the accuracy threshold is 2°, then the preset accuracy range is less than 2°. Therefore, if the obtained numerical value or numerical range of the measurement accuracy is within the preset accuracy range, it indicates that the requirements for the measurement accuracy are relatively high.
  • the first node may determine that the type of the measurement signal processed by the second node is a multi-tone signal. If the value or value range of the obtained measurement accuracy is not within the preset accuracy range, it indicates that the requirements for measurement accuracy are low. Then, the first node may determine that the type of the measurement signal processed by the second node is a single tone signal.
  • the above-mentioned third information may simultaneously include values or value ranges of at least two of the above-mentioned measurement accuracy, measurement delay and measurement range.
  • the first node may then determine the type of measurement signal processed by the second node based on the value or range of values of the at least two terms. For example, if the above third information includes a numerical value or a numerical range of the measurement range, and a numerical value or a numerical range of the measurement delay. Then, after receiving the third information, the first node can determine the type of measurement signal processed by the second node based on the judgment results based on the measurement range and the measurement delay.
  • the first node may determine that the type of the measurement signal processed by the second node is a multi-tone signal (or a single-tone signal).
  • the first node may determine that the type of the measurement signal processed by the second node is a multi-tone signal. It can be understood that this is only an example and does not constitute a limitation on the embodiments of the present application.
  • the third information includes an index of the measured performance requirement.
  • the index for this performance requirement can be configured in advance.
  • the performance requirements including measurement range and measurement delay are taken as an example below. See Table 1 for an example.
  • index 1 may indicate that the performance requirements of the above measurement have higher requirements on measurement range and measurement delay, and the type of the matching measurement signal is a multi-tone signal. Then, after receiving the third information, the first node obtains the index in the third information. If the index obtained from the third information is the index 1, then it can be determined based on the index 1 that the type of the measurement signal processed by the second node is a multi-tone signal. The use of other indexes is the same and will not be repeated.
  • the index of the above performance requirements can be represented by numbers, letters, special symbols or any combination thereof.
  • the index of the performance requirement may be indicated by a flag field included in the above third information.
  • the embodiment of this application does not limit the specific representation of the index.
  • the first node sends first information to the second node; the first information is used to indicate the type of the measurement signal; the type of the measurement signal includes a single tone signal or a multi-tone signal.
  • the first information can be generated.
  • the first information carries information indicating the type of measurement signal processed by the second node. Then, the first information is sent to the above-mentioned second node.
  • the second node receives the first information.
  • the above-mentioned second node sends or receives a first measurement signal, and the first measurement signal is used for the above-mentioned measurement.
  • the second node After receiving the first information, the second node determines the type of measurement signal it receives and/or sends based on the information. Then, during the process of participating in the above-mentioned measurement, a measurement signal of this type is generated and sent to other nodes (for example, the above-mentioned third node). Alternatively, during the process of participating in the above-mentioned measurement, this type of measurement signal is received from other nodes (for example, the above-mentioned third node). Then, the measurement task is completed based on the sent and/or received measurement signals of this type, that is, ranging, angle measurement or positioning of the measured node is completed.
  • the information carried in the first information indicating the type of measurement signal processed by the second node may be an index or identification of the type.
  • This type of index or identification can be configured in advance.
  • the index or identification of a single tone signal may be "S”
  • the index or identification of a multi-tone signal may be "M”.
  • This type of index or identification can be represented by numbers, letters, special symbols, or any combination thereof.
  • the index or identification of this type may be indicated by a flag field included in the above-mentioned first information.
  • the embodiment of the present application does not limit the specific expression of the index or identification.
  • the frequency, period, amplitude, etc. of the single tone signal sent or received during the above measurement process may be preconfigured.
  • the second node determines that the type of measurement signal sent and/or received by it is a single tone signal based on the received first information, it can determine the type of measurement signal sent and/or received in the subsequent measurement process based on the pre-configuration. Measure information such as frequency, period, and amplitude of the signal.
  • the frequency, frequency interval, number, period and amplitude of the multi-tone signals sent or received during the above measurement process may be pre-configured.
  • the second node determines that the type of measurement signal sent and/or received by it is a multi-tone signal based on the received first information, it can determine the type of measurement signal sent and/or received in the subsequent measurement process based on the pre-configuration.
  • Measure information such as frequency, frequency interval, number of frequency components, period and amplitude of the signal.
  • the configuration information (including first information, second information and/or other information) sent by the first node to the second node also includes other configuration information for the measurement signal.
  • the second node also determines parameters for sending and/or receiving measurement signals based on the other configuration information, which is not limited by the present invention.
  • the other configuration information is resource configuration information, and the second node determines resources (such as time domain/frequency domain/time-frequency resources) for sending and/or receiving measurement signals according to the resource configuration information.
  • the information carried in the first information indicating the type of measurement signal processed by the second node may include the number N of frequency components transmitted simultaneously in the measurement signal.
  • the N may be an integer greater than or equal to 1.
  • the type of the measurement signal may be determined by the number N of frequency components included in the first information. For example, if N in the above-mentioned first information is equal to 1, it indicates that there is one frequency component transmitted simultaneously in the measurement signal.
  • the indicated measurement signal type is a single tone signal.
  • the second node After the second node receives the first information, it can determine that the type of the measurement signal processed by the second node is a single tone signal based on the value of N being 1.
  • N in the above-mentioned first information is greater than 1, it indicates that there are multiple frequency components transmitted simultaneously in the measurement signal. Then the type of the indicated measurement signal is a multi-tone signal.
  • the second node After the second node receives the first information, it can determine that the type of the measurement signal processed by the second node is a multi-tone signal based on the value of N being greater than 1, and determine the number of frequency components transmitted simultaneously, that is, determine the number of frequency components of the measurement signal. The number of sounds.
  • the information carried in the first information indicating the type of measurement signal processed by the second node may include a frequency interval between frequency components of the measurement signal.
  • the type of the measurement signal may be determined by the frequency interval included in the first information. For example, if the frequency interval in the above-mentioned first information is equal to the frequency interval of the frequency hopping channel, it means that only a measurement signal of one frequency component is transmitted in a frequency hopping channel, that is, the transmitted measurement signal is a single tone signal.
  • the second node After receiving the first information, the second node can determine based on the frequency interval that the type of the measurement signal processed by the second node is a single tone signal.
  • the frequency hopping channel is a channel through which the second node sends the measurement signal through frequency hopping.
  • Each frequency hopping channel corresponds to a center frequency, and the frequency interval of the frequency hopping channel is the interval between the center frequencies corresponding to two adjacent frequency hopping channels in the frequency domain.
  • the frequency hopping channel may be configured by the master node, that is, the above-mentioned first node.
  • the frequency interval between the frequency components of the measurement signal in the above-mentioned first information is smaller than the frequency interval of the frequency hopping channel, it means that measurement signals of multiple frequency components can be transmitted simultaneously in one frequency hopping channel, that is, the transmitted measurement signal is multi-tone.
  • the frequency interval may be obtained by dividing the frequency interval of the frequency hopping channel by the number N of frequency components simultaneously transmitted by the measurement signal.
  • the second node After receiving the first information, the second node can determine based on the frequency interval that the type of measurement signal processed by the second node is a multi-tone signal, and can determine the frequency interval of frequency components transmitted simultaneously in the measurement signal.
  • the information carried in the first information indicating the type of measurement signal processed by the second node may include an index of a frequency interval between frequency components of the measurement signal.
  • the index of the frequency interval may be preconfigured.
  • the second node can determine the frequency interval between the frequency components of the measurement signal based on the index. For processing operations after determining the frequency interval, reference can be made to the foregoing description and will not be described again here.
  • the information carried in the first information indicating the type of measurement signal processed by the second node may include the modulation mode of the measurement signal or an index including the modulation mode of the measurement signal.
  • the index of the modulation mode may be preconfigured.
  • the second node can determine the modulation mode of the measurement signal based on the index.
  • the modulation method may be a modulation method such as PSK or GFSK, and the embodiment of the present application does not limit the specific modulation method.
  • the sent measurement signal can be modulated by the determined modulation mode.
  • the above-mentioned first information may include multiple pieces of information, for example, may include three pieces of information.
  • the three pieces of information can be referred to as information A, information B and information C for short.
  • the information A is used to indicate the number of frequency components transmitted simultaneously in the measurement signal.
  • This information B is used to indicate the frequency interval between frequency components of the measurement signal.
  • This information C is used to indicate the modulation method of the measurement signal.
  • the above-mentioned first information may include two pieces of information.
  • One of the messages is used to indicate the number and frequency spacing of simultaneously transmitted frequency components in the measurement signal.
  • Another piece of information indicates how the measurement signal is modulated. This is only an example and does not constitute a limitation on the embodiments of the present application.
  • the first node may indicate the type of measurement signal processed by the second node by sending a piece of information (for example, the first information) to the second node, and then send a message to the second node. Additional information is sent indicating one or more of the frequency component N of the measurement signal, the spacing of the frequency components, and the modulation scheme. Similarly, it can be understood that the additional information may include multiple pieces of information, and corresponding content is indicated to the second node by sending the multiple pieces of information. For details, please refer to the description in the previous paragraph and will not be repeated here.
  • the first information and the additional information may be the same information, that is, the same information may indicate the measurement signal type, and may also indicate the frequency component N of the measurement signal and the interval between the frequency components. and one or more of the modulation methods.
  • the first information and the additional information may be information transmitted in the same message (MSG).
  • the first information and the further information may be information transmitted in different messages.
  • the information sent by the first node to the second node can be indicated.
  • the protocol may stipulate a limited number of optional parameter values, and each optional parameter value corresponds to an index value.
  • the information sent by the first node to the second node indicates the corresponding index value to indicate the corresponding parameter (i.e. Indicates the type of measurement signal, frequency component N, frequency component spacing or modulation method, etc.).
  • the corresponding parameter value can also be calculated according to the calculation method specified in the protocol by using the numerical value indicated in the information sent by the first node to the second node using the calculation method specified in the protocol.
  • other implementation methods are also possible, which are not limited by the embodiments of this application.
  • the first measurement signal sent or received by the second node may be a signal obtained after adding a disturbance signal to the original measurement signal. If the first measurement signal is a signal sent by the second node, then the original measurement signal is a signal without added disturbance generated by the second node based on the above-determined measurement signal type. If the first measurement signal is a signal received by the second node, then the original measurement signal is a signal without added disturbance generated by the node that sent the first measurement signal (for example, the above-mentioned third node). The following introduction takes the first measurement signal as a signal sent by the second node as an example.
  • the number and/or position of adding a perturbation signal to the original measurement signal can be determined based on a random seed.
  • This random seed can be configured by the master node.
  • the location may be a time location.
  • the above-mentioned first measurement signal is transmitted on the first time resource configured by the first node.
  • the first time resource includes at least M time units, where M is an integer greater than 1.
  • the first measurement signal is specifically transmitted on the M time units. For example, see FIG. 5A for example. Each time unit can be viewed as a time position. Then, the first transmission resource includes M time positions.
  • the first time resource may also include other time resources.
  • the other time resources may be used, for example, to transmit at least one of signals, signaling and data.
  • This signal may be, for example, a pilot signal and/or a synchronization signal.
  • the signaling may be, for example, control signaling.
  • the data may be business data, for example.
  • This embodiment of the present application does not limit the information specifically used for transmission by the other time resources.
  • the other time resources may be in front of the M time units, for example, see FIG. 5B .
  • the other time resources may be behind the M time units, for example, see FIG. 5C .
  • the other time resources may be before and after the M time units.
  • the length of the other time resources may be greater than the length of the above-mentioned single time unit.
  • the length of the other time resources may be less than or equal to the length of the above-mentioned single time unit.
  • the embodiment of the present application does not limit the length of the other time resources.
  • the first time resource may be a time resource of a wireless frame or a measurement frame. That is, the information transmitted in the wireless frame or the measurement frame includes the above-mentioned first measurement signal, and may also include at least one of the above-mentioned preamble signal, synchronization signal, control signaling, service data and other information.
  • the length of the time unit may be the length of one or more symbols in the first time resource.
  • This symbol may be the basic unit of signal modulation.
  • the first time resource includes 10 symbols. If the length of the time unit is the length of one symbol, the first time resource includes 10 time units. If the length of the time unit is the length of two symbols, the first time resource includes 5 time units. It can be understood that this is only an example. In specific implementation, the number of symbols included in the first time resource and the length of the specific time unit can be set according to the actual application, and are not limited by the embodiments of this application.
  • the length of the time unit may be, for example, the reciprocal of the interval of frequency hopping points at which the second node sends and/or receives the measurement signal.
  • the length of the time unit may be, for example, the reciprocal of the frequency interval in the multi-tone signal. It can be understood that this is only an example and does not constitute a limitation on the embodiments of the present application.
  • the above-mentioned addition of the disturbance signal may be to replace the preset transmission signal in the time unit with the disturbance signal. After replacement, the disturbance signal is transmitted in this time unit.
  • the signal preset for transmission in the time unit may be called the original signal. Replacing the original signal in a time unit with a perturbation signal is adding a perturbation signal. Then, the number of times the above-mentioned perturbation signal is added is equal to the number of time units of the replaced transmission signal.
  • the above disturbance signal is an inverse signal of the original signal.
  • the inverted signal refers to a signal with the same amplitude and opposite phase.
  • the disturbance signal may be a signal obtained by multiplying the original signal by -1.
  • the amplitude of the disturbance signal is the same as that of the original signal, which can avoid sudden changes in the energy of the measured signal and ensure that the signal transmitted in each time unit in the transmission resource has a sufficient signal-to-noise ratio.
  • the phase of the disturbance signal is opposite to that of the original signal, which can suppress the impact on the phase of the signal transmitted in other time units when the energy of the time unit of the replaced transmission signal leaks to other time units (it only affects the amplitude, not the phase) , to ensure the performance of measuring channel phase information.
  • the disturbance signal can also be other signals, for example, it can be a signal orthogonal to the original signal or a pseudo-randomly generated signal, etc.
  • the embodiment of the present application does not limit the type of the disturbance signal and the generation method of the disturbance signal.
  • the first node may send information indicating the random seed to the second node.
  • this information is called fourth information, and this random seed is called first random seed.
  • the second node After receiving the fourth information, the second node obtains the first random seed. And based on the first random seed, the number of times and/or the time position that the disturbance signal is added to the above-mentioned first measurement signal is determined.
  • each unit of the M time units in the first time resource transmits a disturbance signal. For example, whether the i-th time unit among the M time units transmits a disturbance signal can be determined based on the first random seed, the above-mentioned first time resource and the i, where i is any integer from 1 to M.
  • the first time resource may include multiple time slots, and each time slot may include multiple symbols.
  • whether the i-th time unit transmits a disturbance signal is determined based on the first random seed, the above-mentioned first time resource and the i, which may be based on the first random seed and multiple time slots included in the first time resource. The starting slot number in is determined by the i.
  • the above-mentioned second node may input the above-mentioned first random seed, the number i of the i-th time unit and the starting time slot number of the first time resource into a function (referred to as the first function for short). Calculate, obtain a calculation result.
  • the calculation result may be a random number (referred to as the first random number).
  • the second node determines whether the i-th time unit transmits a disturbance signal according to the first random number. For example, if the first random number is an odd number, then the second node determines that the i-th time unit transmits the disturbance signal. If the first random number is an even number, then the second node determines that the i-th time unit does not transmit a disturbance signal.
  • the second node determines that the i-th time unit transmits the disturbance signal. If the first random number is less than the preset value, then the second node determines that the i-th time unit does not transmit a disturbance signal. It can be understood that this is only an example and does not constitute a limitation on the embodiments of the present application. In a specific implementation, after the second node obtains the above calculation result, it can determine whether the i-th time unit transmits a disturbance signal according to any preset rules, which is not limited by the embodiment of this application. In addition, the above-mentioned first function may be a random function or a customized function, which is not limited by the embodiments of this application.
  • the second node determines that the above-mentioned i-th time unit transmits the disturbance signal. Then, the second node replaces the original signal transmitted in the i-th time unit with the disturbance signal, and the replaced disturbance signal will be transmitted in the i-th time unit. If the above-mentioned second node determines that the above-mentioned i-th time unit does not transmit a disturbance signal. Then, the second node still transmits the original signal in the i-th time unit.
  • the second node may first determine the number of times the disturbance signal is added to the first measurement signal based on the first random seed. Then, further determine the location of each addition. For example, the first node may first determine the number of times based on the first random seed and the above-mentioned first time resource. Specifically, the number of times may be determined based on the first random seed and the number of the starting time slot in the first time resource. For example, the first random seed and the number of the starting time slot can be input into a function (referred to as the second function for short) for calculation, and a random number (referred to as the second random number for short) can be calculated. The second random number can be used as the number of times the disturbance signal is added.
  • a function referred to as the second function for short
  • a random number referred to as the second random number for short
  • the second random number can be further processed, for example, calculated with a preset number and the number obtained is then used as the number of times of adding the disturbance signal.
  • the calculation with a certain preset number may include addition, subtraction, multiplication, division or modulo operation with the certain preset number. It can be understood that this is only an example and does not constitute a limitation on the embodiments of the present application.
  • the above-mentioned second function may be a random function or a customized function, and there is no limitation in the embodiment of this application.
  • the second node further calculates the time position of the disturbance signal corresponding to the number in the first measurement signal based on the number of times of adding the disturbance signal, the first random seed and the starting time slot number. That is, the time position of the j-th disturbance signal among the L disturbance signals in the first measurement signal can be determined based on the first random seed, the starting slot number of the first time resource and j, where j is greater than 0 and An integer less than or equal to L.
  • the first random seed, the starting slot number and j can be input into a function (referred to as the third function for short) for calculation, and a random number (referred to as the third random number for short) can be calculated.
  • the third random number may indicate the time position of the jth disturbance signal in the first measurement signal. Based on the previous description, it can be known that the time position is a time unit in the above-mentioned first time resource, and each time unit is configured with a corresponding number. In a possible implementation, the calculated third random number is used as the number of the time unit, and then it can be determined that the time position of the j-th disturbance signal in the first measurement signal is the number of the third random number. time unit.
  • the third random number can be further processed, for example, the number obtained after calculation with a certain preset number can be used as the number of the time unit.
  • the calculation with a certain preset number may include addition, subtraction, multiplication, division or modulo operation with the certain preset number. It can be understood that this is only an example and does not constitute a limitation on the embodiments of the present application.
  • the above-mentioned third function may be a random function or a customized function, and there is no limitation in the embodiment of this application.
  • the random seed used to determine the number of times to add a disturbance signal and the random seed used to determine the adding position may be different random seeds.
  • the above-mentioned first random seed may include two sub-random seeds (referred to as sub-random seed A and sub-random seed B).
  • the random seed A can be used to determine the number of times to add a perturbation signal.
  • the random seed A and the number of the starting time slot can be input into the above-mentioned second function for calculation to obtain a random number. Then determine the number of times to add the disturbance signal. Please refer to the above description for details and will not go into details here.
  • use random seed B to determine the location to add.
  • the random seed B, the above-mentioned starting time slot number and j are input into the third function for calculation, and a random number is obtained. Then the time position of the jth disturbance signal in the first measurement signal is determined. Please refer to the above description for details and will not go into details here.
  • the above-mentioned second node sends the first measurement signal obtained after adding the disturbance signal to other nodes (for example, the above-mentioned third node).
  • the third node can also determine the addition of disturbance to the first measurement signal in the same processing manner as the above-mentioned second node. The number and time position of the signal. Then, after receiving the first measurement signal, the disturbance signal can be filtered out.
  • the random seed used in the third node to determine the number of times and time positions of the disturbance signal added to the first measurement signal also comes from the master node, that is, the above-mentioned first node, and the random seed is the same as the random seed used by the above-mentioned second node. . Only in this way can the number of times and time position of the disturbance signal added to the first measurement signal be determined.
  • first measurement signal is a signal received by the second node
  • specific implementation of processing the first measurement signal by the second node can refer to the description of the third node in the previous paragraph, which will not be described again here.
  • the above addition of the disturbance signal can destroy the regularity of the measurement signal, and can effectively prevent attackers from misleading the measurement results by forging measurement signals. Specifically, adding disturbance signals with random positions and times can add randomness to the measurement signal, making it difficult for attackers to forge measurement signals containing disturbance signals.
  • the legitimate receiving end contains a forged signal in the received measurement signal, it can identify that the measurement signal contains a forged signal based on the characteristics of the disturbance signal. For example, the receiving end detects the existence of the disturbance signal at the position of the disturbance signal or the signal-to-noise ratio of the disturbance signal or other characteristics of the disturbance signal, and can determine whether the received measurement signal contains a forged signal. It is difficult for the attacker to determine the number and time position of the disturbance signal, so it is difficult for the attacker to send the disturbance signal at the time position of the disturbance signal, thus effectively preventing the signal from being forged.
  • the number of times of adding the disturbance signal to the first measurement signal L is much smaller than the number of time units M.
  • the L is only one-tenth, one-twentieth, or one-hundredth of the M, etc. This is not limited in the embodiment of the present application.
  • the above method first determines the number of times a disturbance signal is added to the first measurement signal based on the first random seed, and then further determines the number of times each added disturbance signal is added.
  • the implementation of time position can greatly save computing resources.
  • the second node after the first node sends the fourth information to the second node, whether the second node adds a disturbance signal to the first measurement signal based on the first random seed indicated in the fourth information. This may be further indicated by the first node.
  • the fourth information may also include information indicating whether to add a disturbance signal to the measurement signal. If the fourth information indicates adding disturbance information to the measurement signal, then the second node adds the disturbance signal to the first measurement signal based on the first random seed. If the fourth information indicates not to add disturbance information to the measurement signal, then after receiving the fourth information, the second node can first obtain the first random seed and save it to wait for subsequent usage instructions.
  • the first node may additionally send information to the second node indicating whether to add a disturbance signal to the measurement signal. This information may be sent before or after the fourth information is sent, which is not limited by the embodiment of the present application.
  • the master node determines whether to add a disturbance signal to the measurement information by sending a message indication, which can save the computing resources of the node in a scenario where scrambling is not required.
  • the initial phase of the first measurement signal sent or received by the second node may be determined based on a random seed.
  • the above-mentioned first node may send information indicating a random seed used to randomly generate the initial phase of the measurement signal to the second node.
  • this information is referred to as the fifth information, and the random seed is referred to as the second random seed.
  • the following description takes the first measurement signal as a signal received by the second node as an example.
  • the second node After receiving the fifth information, the second node obtains the second random seed. Then, an initial phase of the frequency component in the first measurement signal is generated based on the second random seed. This initial phase is the initial phase of transmitting the corresponding frequency component.
  • the second random seed can be input into a function (referred to as the fourth function for short), and a random number (referred to as the fourth random number for short) is calculated.
  • the initial phase of the single tone signal can be determined based on the fourth random number.
  • the fourth random number can be directly used as the value of the initial phase of the single tone signal.
  • the fourth random number can be further processed, for example, calculated with a certain preset number and the number obtained is then used as the value of the initial phase of the single tone signal.
  • the calculation with a certain preset number may include addition, subtraction, multiplication, division or modulo operation with the certain preset number. It can be understood that this is only an example and does not constitute a limitation on the embodiments of the present application.
  • the above-mentioned fourth function may be a random function or a customized function, and there is no limitation in the embodiment of this application.
  • the second random seed and the starting time slot number of the first time resource can be input into the fourth function to calculate a random number. Then the initial phase of the above-mentioned single tone signal is determined based on the random number. Please refer to the description in the previous paragraph for details and will not go into details here.
  • the second node may generate the initial phase of each of the N frequency components of the multi-tone signal based on the second random seed.
  • the second random seed and the number k of the k-th frequency component can be input into a function (referred to as the fifth function for short), or the second random seed, the number k of the k-th frequency component and the above-mentioned first
  • the starting time slot number of the time resource is input into the fifth function, and a random number (referred to as the kth random number for short) is calculated.
  • the initial phase of the kth frequency component is determined based on the kth random number.
  • the k is an integer between 1 and N.
  • the kth random number can be directly used as the value of the initial phase of the kth frequency component.
  • the kth random number can be further processed, for example, the number obtained after calculation with a certain preset number can be used as the value of the initial phase of the kth frequency component.
  • the calculation with a certain preset number may include addition, subtraction, multiplication, division or modulo operation with the certain preset number. It can be understood that this is only an example and does not constitute a limitation on the embodiments of the present application.
  • the above-mentioned fifth function may be a random function or a customized function, and there is no limitation in the embodiment of this application.
  • the second node can generate a time offset ⁇ t based on the second random seed. Then, the initial phase of each of the N frequency components is calculated based on the time offset and the preset phase combination.
  • the second random seed can be input into a function (referred to as the sixth function for short), or the second random seed and the starting time slot number of the above-mentioned first time resource can be input into the sixth function.
  • a random number (referred to as the sixth random number) is calculated.
  • the time offset ⁇ t may be determined based on the sixth random number.
  • the sixth random number can be directly used as the time offset ⁇ t.
  • the sixth random number can be further processed, for example, the number obtained after calculation with a certain preset number can be used as the time offset ⁇ t.
  • the calculation with a certain preset number may include addition, subtraction, multiplication, division or modulo operation with the certain preset number. It can be understood that this is only an example and does not constitute a limitation on the embodiments of the present application.
  • the above-mentioned sixth function may be a random function or a customized function, and there is no limitation in the embodiment of this application.
  • the above-mentioned preset phase combination may be a combination of the phases of the N frequency components in the original measurement signal (referred to as the generated phase for short) when the second node generates the original measurement signal corresponding to the above-mentioned first measurement signal.
  • the generated phases of the N frequency components may be configured by the protocol or the master node, that is, the preset phase combination is configured by the protocol or the master node.
  • the second node After the second node obtains the above time offset ⁇ t, it can calculate the initial phase of the kth frequency component through the following formula: in, represents the initial phase of the kth frequency component, f k represents the center frequency of the kth frequency component, Represents the generated phase of the kth frequency component.
  • the second node After determining the initial phase of each frequency component of the first measurement signal based on the above method, the second node sends the first measurement signal according to the determined initial phase.
  • the above implementation of determining the initial phase of each frequency component of the first measurement signal is only an example and does not constitute a limitation on the embodiments of the present application.
  • the initial phase of the measurement signal is random, and it is difficult for an eavesdropper to know the phase of the original measurement signal. Even if the measurement signal is received, it is difficult to infer the channel phase information, and it is further difficult to eavesdrop to obtain the location of the measured node. Thus playing a protective role.
  • the first random seed may be the same as or different from the second random seed.
  • the fourth information and the fifth information may be the same information.
  • the master node can determine the type of measurement signal sent or received by the node, and instruct the node to use a specific type of measurement signal, so that the node can achieve ranging, angle measurement or positioning measurements.
  • this solution also provides a solution for scrambling and randomly setting the initial phase of the measurement signal in the measurement signal, which can effectively destroy the regularity of the measurement signal and reduce the risk of the measurement signal being forged or eavesdropped.
  • each node includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the embodiments of the present application.
  • Embodiments of the present application can divide functional modules into nodes according to the above method examples.
  • functional modules can be divided into corresponding functional modules, or two or more functions can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 6 shows a possible logical structure diagram of the device 600.
  • the device 600 may be the above-mentioned first node, or may be a chip in the first node, or may be a processing system in the first node, or the like.
  • the device 600 includes a determining unit 601 and a sending unit 602. in:
  • Determining unit 601 used to determine the type of measurement signal sent and/or received by the second node; the device 600 is a master node, and the second node is a slave node; the second node is a measuring node or a measured node; the measurement For ranging, angle measurement or positioning of the measured node; the determination unit 601 can be used to perform the determination operation in S301 in Figure 3 above.
  • the sending unit 602 is configured to send first information to the second node; the first information is used to indicate the type of the measurement signal; the type of the measurement signal includes a single tone signal or a multi-tone signal.
  • the sending unit 602 may be used to perform the sending operation in S302 in Figure 3 above.
  • the sending unit 602 is also used to send second information to the second node; the second information is used to indicate one or more of the following:
  • N The number N of frequency components transmitted simultaneously in the measurement signal, where N is an integer greater than or equal to 1;
  • the device 600 further includes a receiving unit configured to receive second information from the second node; the second information is used to indicate the second node's ability to send and/or receive measurement signals, the Capabilities are used to determine the type of this measurement signal.
  • the device 600 further includes an acquisition unit for acquiring performance requirements for the measurement.
  • the performance requirements include at least one of the following: ranging accuracy, positioning accuracy, angle measurement accuracy, ranging delay, and positioning. Time delay, angle measurement delay, ranging range or angle measurement range.
  • the sending unit 602 is also used to:
  • Third information is sent to the second node; the third information is used to indicate a first random seed; the first random seed is used to determine the number of times and/or the time position of the disturbance signal added to the measurement signal.
  • the disturbance signal is an inverse signal of the original signal.
  • the sending unit 602 is also used to:
  • Fourth information is sent to the second node; the fourth information is used to indicate a second random seed; the second random seed is used to determine the initial phase of the frequency component in the measurement signal.
  • the measurement signal is a multi-tone signal
  • the second random seed is used to generate the initial phase of each frequency component in the measurement signal.
  • the second random seed is used to generate a time offset, and the initial phase of each frequency component in the measurement signal is determined by a combination of the time offset and a preset phase.
  • the sending unit 602 is also used to:
  • Sixth information is sent to the second node, and the sixth information is used to indicate whether to add a disturbance signal to the measurement signal, and/or to indicate whether to randomize the initial phase of the measurement signal.
  • FIG. 7 shows a possible logical structure diagram of the device 700.
  • the device 700 may be the above-mentioned second node, or may be a chip in the second node, or may be a processing system in the second node, or the like.
  • the device 700 includes a receiving unit 701 and a communication unit 702. in:
  • the receiving unit 701 is configured to receive first information from the first node, the first information is used to indicate the type of measurement signal sent and/or received by the device 700; the type of the measurement signal includes a single tone signal or a multi-tone signal. ;
  • the first node is a master node, and the device 700 is a slave node; the device 700 is a measuring node or a measured node; the measurement is ranging, angle measurement, or positioning of the measured node; the receiving unit 701 can be used Execute the receiving operation in S303 in Figure 3 above.
  • the communication unit 702 is used to send or receive a first measurement signal, which is used for the measurement.
  • the communication unit 702 may be used to perform the sending or receiving operation in S304 in FIG. 3 described above.
  • the first information is used to indicate the type of measurement signal sent and/or received by the device 700, including: the first information is used to indicate one or more of the following:
  • N The number N of frequency components transmitted simultaneously in the measurement signal, where N is an integer greater than or equal to 1;
  • the device 700 further includes a sending unit configured to send second information to the first node; the second information is used to indicate the ability of the device 700 to send and/or receive measurement signals.
  • the device 700 further includes a sending unit configured to send performance requirement indication information to the first node; the performance requirement indication information is used to indicate the measured performance requirement, and the performance requirement includes at least one of the following: : Ranging accuracy, positioning accuracy, angle measurement accuracy, ranging delay, positioning delay, angle measurement delay, ranging range or angle measurement range.
  • the receiving unit 701 is also used to:
  • Third information is received from the first node; the third information is used to indicate a first random seed; the first random seed is used to determine the number of times and/or the time position of the disturbance signal added to the first measurement signal.
  • the disturbance signal is an inverse signal of the original signal.
  • the first measurement signal is transmitted on a first time resource, and the first time resource includes at least M time units, where M is an integer greater than 1;
  • Whether the i-th time unit among the M time units transmits a disturbance signal is determined based on the first random seed, the first time resource and the i, where i is any integer from 1 to M.
  • the first measurement signal is transmitted on a first time resource, and the first time resource includes at least M time units, where M is an integer greater than 1;
  • the number of times of the disturbance signal in the first measurement signal is L, and L is an integer greater than 0 and less than M; L is determined based on the first random seed and the first time resource;
  • the time position of the j-th disturbance signal among the L disturbance signals in the first measurement signal is determined based on the first random seed, the first time resource and the j, which is greater than 0 and less than or equal to L integer.
  • the length of the time unit is determined according to at least one of the following:
  • the receiving unit 701 is also used to:
  • Fourth information is received; the fourth information is used to indicate a second random seed; the second random seed is used to determine an initial phase of the frequency component in the first measurement signal.
  • the first measurement signal is a multi-tone signal
  • the second random seed is used to generate the initial phase of each frequency component in the first measurement signal.
  • the second random seed is used to generate a time offset, and the initial phase of each frequency component in the first measurement signal is determined by a combination of the time offset and a preset phase.
  • the receiving unit 701 is also used to:
  • the sixth information is used to indicate whether to add a disturbance signal to the first measurement signal, and/or to indicate whether to randomize the initial phase of the first measurement signal.
  • FIG 8 shows a possible hardware structure diagram of the device 800 provided by this application.
  • the device 800 may be the first node in the method described in the above embodiment, or may be a chip in the first node, or may be a processing system in the first node, etc.
  • the device 800 includes: a processor 801, a memory 802, and a communication port 803.
  • the processor 801, communication port 803, and memory 802 may be connected to each other or to each other through a bus 804.
  • the memory 802 is used to store computer programs and data of the device 800.
  • the memory 802 may include, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), Erasable programmable read only memory (EPROM) or portable read-only memory (compact disc read-only memory, CD-ROM), etc.
  • the processor 801 in addition to calling the program code in the memory 802 to implement some of the functions, can also cooperate with other components (such as the communication port 803) to complete the diagram.
  • Other functions described in the method shown in 3 such as the function of receiving information).
  • the number of communication ports 803 may be multiple, and are used to support the device 800 to communicate, such as receiving or sending data, signals or signaling.
  • the processor 801 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field-programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof.
  • the processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the processor 801 may be used to read the program stored in the memory 802 and perform the method described in FIG. 3 and the operations performed by the first node in the possible implementation. For example, the processor 801 can perform the following operations:
  • the first node is the master node, and the second node is the slave node; the second node is the measuring node or the measured node; the measurement is for the measured node distance measurement, angle measurement or positioning;
  • the first information is sent to the second node through the communication interface; the first information is used to indicate the type of the measurement signal; the type of the measurement signal includes a single tone signal or a multi-tone signal.
  • Figure 9 shows a possible hardware structure diagram of the device 900 provided by this application.
  • the device 900 may be the second node in the method described in the above embodiment, or may be a chip in the second node, or may be a processing system in the second node, etc.
  • the device 900 includes: a processor 901, a memory 902, and a communication port 903.
  • the processor 901, communication port 903, and memory 902 may be connected to each other or to each other through a bus 904.
  • the memory 902 is used to store computer programs and data of the device 900.
  • the memory 902 may include, but is not limited to, random access memory (RAM), read-only memory (ROM), Erasable programmable read only memory (EPROM) or portable read-only memory (compact disc read-only memory, CD-ROM), etc.
  • the processor 901 in addition to calling the program code in the memory 902 to implement some of the functions, can also cooperate with other components (such as the communication port 903) to complete the diagram.
  • Other functions described in the method shown in 3 such as the function of receiving information).
  • the number of communication ports 903 may be multiple, and are used to support the device 900 to communicate, such as receiving or sending data, signals or signaling.
  • the processor 901 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field-programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof.
  • the processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the processor 901 can be used to read the program stored in the memory 902 and perform the method described in FIG. 3 and the operations performed by the second node in the possible implementation. For example, the processor 901 can perform the following operations:
  • the aforementioned first information is used to indicate the type of measurement signal sent and/or received by the aforementioned second node;
  • the aforementioned type of measurement signal includes a single tone signal or a multi-tone signal;
  • the aforementioned The first node is the master node, and the aforementioned second node is the slave node;
  • the aforementioned second node is the measuring node or the measured node;
  • the aforementioned measurement is the ranging, angle measurement or positioning of the measured node;
  • a first measurement signal is sent or received through the communication interface, and the aforementioned first measurement signal is used for the aforementioned measurement.
  • An embodiment of the present application also provides a chip, which includes a processor, wherein the processor is used to execute a computer program or computer instructions stored in a memory, so that the chip executes any one of the above-mentioned Figure 3 and its possible method embodiments. The operation performed by the first node in the method described in the embodiment.
  • An embodiment of the present application also provides a chip, which includes a processor, wherein the processor is used to execute a computer program or computer instructions stored in a memory, so that the chip executes any one of the above-mentioned Figure 3 and its possible method embodiments. The operations performed by the second node in the method described in the embodiment.
  • Embodiments of the present application also provide a computer-readable storage medium, which stores a computer program.
  • the computer program is executed by a processor to implement any of the above-mentioned Figure 3 and its possible method embodiments. The operation performed by the first node in the above method.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor to implement any one of the above-mentioned Figure 3 and its possible method embodiments. The operation performed by the second node in the above method.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product is read and executed by a computer, the first node in the method described in any of the above-mentioned Figure 3 and its possible method embodiments does The operation will be performed.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product is read and executed by a computer, the second node in the method described in any of the above-mentioned Figure 3 and its possible method embodiments does The operation will be performed.
  • the master node can determine the type of measurement signal sent or received by the node, and instruct the node to use a specific type of measurement signal, so that the node can achieve ranging, angle measurement or positioning measurements.
  • this solution also provides a solution for scrambling and randomly setting the initial phase of the measurement signal in the measurement signal, which can effectively destroy the regularity of the measurement signal and reduce the risk of the measurement signal being forged or eavesdropped.
  • the number of described objects is not limited by the prefix, and can be one or more. Taking “first device” as an example, the number of "devices" can be one or more.
  • the objects modified by different prefixes can be the same or different. For example, if the described object is "device”, then the “first device” and the “second device” can be the same device, the same type of device, or different types of devices. ; For another example, if the described object is "information”, then the "first information" and the "second information” may be information with the same content or information with different contents.
  • a first node may be referred to as a second node, and similarly, a second node may be referred to as a first node, without departing from the scope of various described examples.
  • Both the first node and the second node may be nodes, and in some cases, may be separate and different nodes.
  • the use of prefixes used to distinguish the described objects in the embodiments of this application does not constitute a limitation on the described objects. For the description of the described objects, please refer to the claims or the context description in the embodiments. The use of such words should not be used. Prefix words constitute redundant restrictions.
  • references such as "at least one (or at least one) of a1, a2, ... and an” are used, including any one of a1, a2, ... and an.
  • the situation that exists alone also includes any combination of any number of a1, a2,... and an.
  • Each situation can exist alone.
  • the description of "at least one of a, b, and c" includes a alone, b alone, c alone, a combination of a and b, a combination of a and c, a combination of b and c, or a combination of abc. Condition.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation of the examples does not constitute any limitations.
  • references throughout this specification to "one embodiment,” “an embodiment,” and “a possible implementation” mean that specific features, structures, or characteristics related to the embodiment or implementation are included herein. In at least one embodiment of the application embodiment. Therefore, “in one embodiment” or “in an embodiment” or “a possible implementation” appearing in various places throughout this specification do not necessarily refer to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种测量信号的处理方法及装置,方法包括:第一节点(110)确定第二节点(120)发送和/或接收的测量信号的类型;第一节点(110)为主节点,第二节点(120)为从节点;第二节点(120)为测量节点或被测量节点;测量为对被测量节点的测距、测角或定位;第一节点(110)向第二节点(120)发送第一信息;第一信息用于指示测量信号的类型;测量信号的类型包括单音信号或多音信号。测量信号的处理方法及装置能够确定节点发送或接收的测量信号的类型,并向节点指示测量信号的类型,使得节点可以实现测距、测角或定位的测量。

Description

测量信号的处理方法及装置 技术领域
本申请涉及通信技术领域,特别是涉及基于星闪无线通信实现的测距、测角或定位的测量信号的处理方法及装置。
背景技术
随着无线通信技术的不断发展,可以基于无线通信技术在室内、车辆内或地下停车场等场景中实现无线测距、测角或定位功能。无线通信技术实现测距、测角或定位的场景中可以包括一个或多个测量节点和被测量节点。该测量节点所在的位置作为测距、测角或定位的基准位置。该被测量节点为需要被测量距离、角度或定位的节点。该被测量节点与测量节点之间通过发送测量信号来实现测距、测角或定位。但是在实际应用中,具体测量的实现受限于节点的信号收发能力和/或测量的性能需求,如何在更广的应用范围内实现测距、测角或定位是本领域技术人员需要解决的技术问题。
发明内容
本申请提供一种测量信号的处理方法及装置,能够确定节点发送或接收的测量信号的类型,并向该节点指示该测量信号的类型,使得该节点可以实现测距、测角或定位的测量。
第一方面,本申请实施例提供一种测量信号的处理方法,该方法包括:
第一节点确定第二节点发送和/或接收的测量信号的类型;前述第一节点为主节点,前述第二节点为从节点;前述第二节点为测量节点或被测量节点;前述测量为对被测量节点的测距、测角或定位;
前述第一节点向前述第二节点发送第一信息;前述第一信息用于指示前述测量信号的类型;前述测量信号的类型包括单音信号或多音信号。
在无线测距、无线测角或无线定位的测量场景中,为了支持不同的测量性能需求和不同设备能力,用于实现测量的测量信号可以选用简单的测量信号(例如单音信号),也可以选用复杂的测量信号(例如多音信号)。本申请提供了在测量的过程中,测量节点和/或被测量节点从多种可选的测量信号类型中明确自身具体传输的测量信号的类型的方案。即通过通信系统中调度资源的主节点来指示该测量节点和/或被测量节点发送和/或接收的测量信号的类型。本方案可以应用于不同的测量性能需求和不同能力的设备测距、测角或定位的测量场景中,使得测量节点可以完成对被测量节点的测距、测角或定位。扩大了测距、测角或定位的应用范围。
一种可能的实现中,前述第一节点向前述第二节点发送第二信息,前述第二信息用于指示如下的一项或多项:
前述测量信号中同时传输的频率分量的数量N,前述N为大于或等于1的整数;
前述测量信号的频率分量之间的频率间隔;
前述测量信号的调制方式。
本方案中,第二节点根据该指示确定发送和/或接收的测量信号的对应参数,进而通过发送和/或接收对应参数的测量信号,实现测距、测距或定位功能。可以理解的是,上述第二信息和第一信息可以是同一个信息,或者可以是在同一个信令或消息中发送的信息。或者,该第二信息和第一信息可以是不同的信息,例如可以是在不同的信令或消息中发送的信息。在上述第一信息与第二信息为同一个信息的情况下,可以根据这些参数确定测量信号的类型(单音信号或多音信号),相比于发送不同的两个信息分别指示测量信号的类型和参数,基于一个信息即可确定测量信号的类型或桉树可以节约信令的传输资源。
一种可能的实现中,前述第一节点接收来自前述第二节点的第三信息;前述第三信息用于指示前述第二节点发送和/或接收测量信号的能力。
本方案中,第一节点可以根据第二节点发送和/或接收测量信号的能力,更合理的确定和配置测量信号的类型,使得测量信号可以匹配节点的处理能力,进而实现测距、测角或定位的功能。
一种可能的实现中,前述第一节点获取前述测量的性能需求,前述性能需求包括以下至少一种:测距精度、定位精度、测角精度、测距时延、定位时延、测角时延、测距量程或测角范围。
本方案中,第一节点可以根据测量的性能需求,更合理的确定和配置测量信号的类型,以满足不同性能需求的测量场景。
可以理解的是,另一种可能的实现中,上述第二节点发送和/或接收测量信号的能力,和/或上述测量的性能需求,可以是预先配置在上述第一节点中的,无需再另外获取。
一种可能的实现中,前述方法还包括:前述第一节点向前述第二节点发送第四信息;前述第四信息用于指示第一随机种子;前述第一随机种子用于确定扰动信号在前述测量信号中被添加的次数和/或时间位置。
本方案中,增加该扰动信号后可以破坏测量信号的规律性,可以有效防止攻击者通过伪造测量信号来误导测量结果。具体来说,增加位置和次数都随机的扰动信号,可以在测量信号中增加随机性,使攻击者难以伪造包含扰动信号的测量信号。合法的接收端在收到的测量信号中包含伪造信号时,可以根据扰动信号的特征识别出测量信号中包含伪造的信号。例如,接收端在扰动信号位置检测扰动信号的存在性或者扰动信号的信噪比或扰动信号的其它特征,可以判断收到的测量信号中是否包含伪造的信号。而攻击者则难以确定扰动信号的次数和时间位置,因此难以在扰动信号的时间位置发送扰动信号,从而有效防止信号被伪造。
一种可能的实现中,前述扰动信号为原始信号的反相信号。
该反相信号指的是幅值相同,相位相反的信号。该扰动信号与原始信号的幅值相同可以避免测量信号能量突变,确保传输资源中各个时间单元传输的信号都可以有足够的信噪比。该扰动信号与原始信号的相位相反,可以抑制被替换传输信号的时间单元的能量泄露到其它时间单元时,对该其它时间单元传输的信号的相位的影响(只影响幅值,不影响相位),以确保测量信道相位信息的性能。
一种可能的实现中,前述方法还包括:前述第一节点向前述第二节点发送第五信息;前述第五信息用于指示第二随机种子;前述第二随机种子用于确定前述测量信号中的频率分量的初相。
本方案中,可以通过主节点配置随机种子,以用于随机确定测量信号的初相。由于该随机种子可以是由主节点随机指定的,并且在测量过程中传输的测量信号的初相也是基于随机 种子随机确定的。因此,可以防止测量信号被窃听。即使被窃听到了,窃听者也难以知道测量信号真正的初相,就难以推测出信道相位信息。进而难以获取到被测量节点的位置,实现了安全测量。即该方法提高了攻击者通过窃听获取节点位置信息的难度,从而提高了安全性。
一种可能的实现中,在前述测量信号为多音信号的情况下,
前述第二随机种子用于生成前述测量信号中每一个频率分量的初相;或者,
前述第二随机种子用于生成时间偏移量,前述测量信号中每一个频率分量的初相由前述时间偏移量和预设的相位组合确定。
本方案中,可以随机生成测量信号中每一个频率分量的初相,进一步增强测量信号相位的随机性,以降低被窃听的风险,实现安全测量。
上述基于时间偏移量和预设的相位组合确定初相的方案中,使用经过优化的预设相位组合可以使多音信号功率峰均比(peak to average power ratio,PAPR)低于不优化的情况,从获得更好的测量性能。此外,随机生成的时间偏移量又使各个频率分量的初相无法被攻击者预知,提高了攻击者通过窃听获取节点位置信息的难度,从而提高了安全性。
一种可能的实现中,前述第一节点向前述第二节点发送第六信息,前述第六信息用于指示是否在前述测量信号中添加扰动信号,和/或指示是否随机化前述测量信号的初相。
由于在测量信号中添加扰动信息,需要计算添加的次数和时间位置,消耗较多的计算资源。本方案通过主节点发信息指示的方式来确定是否在测量信息中添加扰动信号,可以在无需加扰的场景中节省节点的计算资源。
第二方面,本申请实施例提供一种测量信号的处理方法,其特征在于,前述方法包括:
第二节点接收来自第一节点的第一信息,前述第一信息用于指示前述第二节点发送和/或接收的测量信号的类型;前述测量信号的类型包括单音信号或多音信号;前述第一节点为主节点,前述第二节点为从节点;前述第二节点为测量节点或被测量节点;前述测量为对被测量节点的测距、测角或定位;
前述第二节点发送或接收第一测量信号,前述第一测量信号用于前述测量。
在无线测距、无线测角或无线定位的测量场景中,为了支持不同的测量性能需求和不同设备能力,用于实现测量的测量信号可以选用简单的测量信号(例如单音信号),也可以选用复杂的测量信号(例如多音信号)。本申请提供了在测量的过程中,测量节点和/或被测量节点从多种可选的测量信号类型中明确自身具体传输的测量信号的类型的方案。即通过通信系统中调度资源的主节点来指示该测量节点和/或被测量节点发送和/或接收的测量信号的类型。本方案可以应用于不同的测量性能需求和不同能力的设备测距、测角或定位的测量场景中,使得测量节点可以完成对被测量节点的测距、测角或定位。扩大了测距、测角或定位的应用范围。
一种可能的实现中,前述第二节点接收来自前述第一节点的第二信息,用于指示如下的一项或多项:
前述测量信号中同时传输的频率分量的数量N,前述N为大于或等于1的整数;
前述测量信号的频率分量之间的频率间隔;
前述测量信号的调制方式。
本方案中,第二节点根据该指示确定发送和/或接收的测量信号的对应参数,进而通过发送和/或接收对应参数的测量信号,实现测距、测距或定位功能。在上述第一信息与第二信息为同一个信息的情况下,可以根据这些参数确定测量信号的类型(单音信号或多音信号), 相比于发送不同的两个信息分别指示测量信号的类型和参数,基于一个信息即可确定测量信号的类型或桉树可以节约信令的传输资源。
一种可能的实现中,前述方法还包括:前述第二节点向前述第一节点发送第三信息;前述第三信息用于指示前述第二节点发送和/或接收测量信号的能力。
本方案中,第一节点可以根据第二节点发送和/或接收测量信号的能力,更合理的确定和配置测量信号的类型,使得测量信号可以匹配节点的处理能力,进而实现测距、测角或定位的功能。
一种可能的实现中,前述方法还包括:
前述第二节点向前述第一节点发送性能需求指示信息;所述性能需求包括以下至少一种:测距精度、定位精度、测角精度、测距时延、定位时延、测角时延、测距量程或测角范围。
本方案中,第一节点可以根据测量的性能需求,更合理的确定和配置测量信号的类型,以满足不同性能需求的测量场景。
一种可能的实现中,前述方法还包括:前述第二节点接收来自前述第一节点的第四信息;前述第四信息用于指示第一随机种子;前述第一随机种子用于确定扰动信号在前述第一测量信号中被添加的次数和/或时间位置。
本方案中,增加该扰动信号后可以破坏测量信号的规律性,可以有效防止攻击者通过伪造测量信号来误导测量结果。具体来说,增加位置和次数都随机的扰动信号,可以在测量信号中增加随机性,使攻击者难以伪造包含扰动信号的测量信号。合法的接收端在收到的测量信号中包含伪造信号时,可以根据扰动信号的特征识别出测量信号中包含伪造的信号。例如,接收端在扰动信号位置检测扰动信号的存在性或者扰动信号的信噪比或扰动信号的其它特征,可以判断收到的测量信号中是否包含伪造的信号。而攻击者则难以确定扰动信号的次数和时间位置,因此难以在扰动信号的时间位置发送扰动信号,从而有效防止信号被伪造。
一种可能的实现中,前述扰动信号为原始信号的反相信号。
该反相信号指的是幅值相同,相位相反的信号。该扰动信号与原始信号的幅值相同可以避免测量信号能量突变,确保传输资源中各个时间单元传输的信号都可以有足够的信噪比。该扰动信号与原始信号的相位相反,可以抑制被替换传输信号的时间单元的能量泄露到其它时间单元时,对该其它时间单元传输的信号的相位的影响(只影响幅值,不影响相位),以确保测量信道相位信息的性能。
一种可能的实现中,前述第一测量信号在第一时间资源上传输,前述第一时间资源中至少包括M个时间单元,前述M为大于1的整数;
前述M个时间单元中第i时间单元是否传输扰动信号根据前述第一随机种子和前述第i时间单元对应的时域资源确定,i为1到M中的任一个整数。
本方案中,通过使用随机种子,结合传输测量信号的时间资源中时间单元对应的时域资源来确定该时间单元中是否加扰(即在该时间单元中传输扰动信号),可以增加是否加扰的结果的随机性,降低测量信号被窃听或伪造的风险。
一种可能的实现中,前述第一测量信号在第一时间资源上传输,前述第一时间资源中至少包括M个时间单元,前述M为大于1的整数;
前述第一测量信号中前述扰动信号的次数为L,前述L为大于0小于M的整数;前述L为基于前述第一随机种子和前述第一时间资源确定;
前述L个扰动信号中的第j个扰动信号在前述第一测量信号中的时间位置,基于前述第 一随机种子、前述第一时间资源和前述j确定,前述j为大于0且小于或等于L的整数。
本方案中,先随机计算出添加扰动信号的次数,再随机地计算出每次添加的位置,增加了是否加扰的随机性,降低测量信号被窃听或伪造的风险。
一种可能的实现中,前述时间单元的长度根据以下至少一种确定:
前述时间资源中的一个或多个符号的长度;
跳频频点间隔;
多个频率分量的频率间隔。
本方案中,时间单元的长度比较灵活,对具体实现的限制较少,可以根据实际应用需求确定,增加应用的灵活度。
一种可能的实现中,前述方法包括:前述第一节点接收第五信息;前述第五信息用于指示第二随机种子;前述第二随机种子用于确定前述第一测量信号中的频率分量的初相。
本方案中,可以通过主节点配置随机种子,以用于随机确定测量信号的初相。由于该随机种子可以是由主节点随机指定的,并且在测量过程中传输的测量信号的初相也是基于随机种子随机确定的。因此,可以防止测量信号被窃听。即使被窃听到了,窃听者也难以知道测量信号真正的初相,就难以推测出信道相位信息。进而难以获取到被测量节点的位置,实现了安全测量。即该方法提高了攻击者通过窃听获取节点位置信息的难度,从而提高了安全性。
一种可能的实现中,在前述第一测量信号为多音信号的情况下,
前述第二随机种子用于生成前述第一测量信号中每一个频率分量的初相;或者,
前述第二随机种子用于生成时间偏移量,前述第一测量信号中每一个频率分量的初相由前述时间偏移量和预设的相位组合确定。
本方案中,可以随机生成测量信号中每一个频率分量的初相,进一步增强测量信号相位的随机性,以降低被窃听的风险,实现安全测量。
上述基于时间偏移量和预设的相位组合确定初相的方案中,使用经过优化的预设相位组合可以使多音信号功率峰均比(peak to average power ratio,PAPR)低于不优化的情况,从获得更好的测量性能。此外,随机生成的时间偏移量又使各个频率分量的初相无法被攻击者预知,提高了攻击者通过窃听获取节点位置信息的难度,从而提高了安全性。
一种可能的实现中,前述第二节点接收来自前述第一节点的第六信息,前述第六信息用于指示是否在前述第一测量信号中添加扰动信号,和/或指示是否随机化前述第一测量信号的初相。
由于在测量信号中添加扰动信息,需要计算添加的次数和时间位置,消耗较多的计算资源。本方案通过主节点发信息指示的方式来确定是否在测量信息中添加扰动信号,可以在无需加扰的场景中节省节点的计算资源。
第三方面,本申请提供一种测量信号的处理装置,该装置包括:
确定单元,用于确定第二节点发送和/或接收的测量信号的类型;前述装置为主节点,前述第二节点为从节点;前述第二节点为测量节点或被测量节点;前述测量为对被测量节点的测距、测角或定位;
发送单元,用于向前述第二节点发送第一信息;前述第一信息用于指示前述测量信号的类型;前述测量信号的类型包括单音信号或多音信号。
一种可能的实现中,前述发送单元,还用于向前述第二节点发送第二信息;前述第二信息用于指示如下的一项或多项:
前述测量信号中同时传输的频率分量的数量N,前述N为大于或等于1的整数;
前述测量信号的频率分量之间的频率间隔;
前述测量信号的调制方式。
一种可能的实现中,前述装置还包括接收单元,用于接收来自前述第二节点的第三信息;前述第三信息用于指示前述第二节点发送和/或接收测量信号的能力,前述能力用于确定前述测量信号的类型。
一种可能的实现中,前述装置还包括获取单元,用于获取前述测量的性能需求,前述性能需求包括以下至少一种:测距精度、定位精度、测角精度、测距时延、定位时延、测角时延、测距量程或测角范围。
一种可能的实现中,前述发送单元还用于:
向前述第二节点发送第四信息;前述第四信息用于指示第一随机种子;前述第一随机种子用于确定扰动信号在前述测量信号中被添加的次数和/或时间位置。
一种可能的实现中,前述扰动信号为原始信号的反相信号。
一种可能的实现中,前述发送单元还用于:
向前述第二节点发送第五信息;前述第五信息用于指示第二随机种子;前述第二随机种子用于确定前述测量信号中的频率分量的初相。
一种可能的实现中,在前述测量信号为多音信号的情况下,
前述第二随机种子用于生成前述测量信号中每一个频率分量的初相;或者,
前述第二随机种子用于生成时间偏移量,前述测量信号中每一个频率分量的初相由前述时间偏移量和预设的相位组合确定。
一种可能的实现中,前述发送单元还用于:
向前述第二节点发送第六信息,前述第六信息用于指示是否在前述测量信号中添加扰动信号,和/或指示是否随机化前述测量信号的初相。
第四方面,本申请提供一种测量信号的处理装置,该装置包括:
接收单元,用于接收来自第一节点的第一信息,前述第一信息用于指示前述装置发送和/或接收的测量信号的类型;前述测量信号的类型包括单音信号或多音信号;前述第一节点为主节点,前述装置为从节点;前述装置为测量节点或被测量节点;前述测量为对被测量节点的测距、测角或定位;
通信单元,用于发送或接收第一测量信号,前述第一测量信号用于前述测量。
一种可能的实现中,前述第一信息用于指示前述装置发送和/或接收的测量信号的类型,包括:前述第一信息用于指示如下的一项或多项:
前述测量信号中同时传输的频率分量的数量N,前述N为大于或等于1的整数;
前述测量信号的频率分量之间的频率间隔;
前述测量信号的调制方式。
一种可能的实现中,前述装置还包括发送单元,用于向前述第一节点发送第三信息;前述第三信息用于指示前述装置发送和/或接收测量信号的能力。
一种可能的实现中,前述装置还包括发送单元,用于向前述第一节点发送性能需求指示信息;前述性能需求指示信息用于指示前述测量的性能需求,前述性能需求包括以下至少一种:测距精度、定位精度、测角精度、测距时延、定位时延、测角时延、测距量程或测角范围。
一种可能的实现中,前述接收单元还用于:
接收来自前述第一节点的第四信息;前述第四信息用于指示第一随机种子;前述第一随机种子用于确定扰动信号在前述第一测量信号中被添加的次数和/或时间位置。
一种可能的实现中,前述扰动信号为原始信号的反相信号。
一种可能的实现中,前述第一测量信号在第一时间资源上传输,前述第一时间资源中至少包括M个时间单元,前述M为大于1的整数;
前述M个时间单元中第i时间单元是否传输扰动信号根据前述第一随机种子、前述第一时间资源和前述i确定,i为1到M中的任一个整数。
一种可能的实现中,前述第一测量信号在第一时间资源上传输,前述第一时间资源中至少包括M个时间单元,前述M为大于1的整数;
前述第一测量信号中前述扰动信号的次数为L,前述L为大于0小于M的整数;前述L为基于前述第一随机种子和前述第一时间资源确定;
前述L个扰动信号中的第j个扰动信号在前述第一测量信号中的时间位置,基于前述第一随机种子、前述第一时间资源和前述j确定,前述j为大于0且小于或等于L的整数。
一种可能的实现中,前述时间单元的长度根据以下至少一种确定:
前述时间资源中的一个或多个符号的长度;
跳频频点间隔;
多个频率分量的频率间隔。
一种可能的实现中,前述接收单元还用于:
接收第五信息;前述第五信息用于指示第二随机种子;前述第二随机种子用于确定前述第一测量信号中的频率分量的初相。
一种可能的实现中,在前述第一测量信号为多音信号的情况下,
前述第二随机种子用于生成前述第一测量信号中每一个频率分量的初相;或者,
前述第二随机种子用于生成时间偏移量,前述第一测量信号中每一个频率分量的初相由前述时间偏移量和预设的相位组合确定。
一种可能的实现中,前述接收单元还用于:
接收来自前述第一节点的第六信息,前述第六信息用于指示是否在前述第一测量信号中添加扰动信号,和/或指示是否随机化前述第一测量信号的初相。
第五方面,本申请提供一种通信系统,该通信系统包括第一节点和第二节点,该第一节点为上述第三方面任一项所述的测量信号的处理装置,该第二节点为上述第四方面任一项所述的测量信号的处理装置。
第六方面,本申请提供一种测量信号的处理装置,该测量信号的处理装置包括处理器和存储器。该存储器与处理器耦合,处理器执行存储器中存储的计算机程序或计算机指令时,可以实现上述第一方面任一项描述的方法。该测量信号的处理装置还可以包括通信接口,通信接口用于该测量信号的处理装置与其它装置进行通信。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
在一种可能的实现中,该设备可以包括:
存储器,用于存储计算机程序或计算机指令;
处理器,用于:
确定第二节点发送和/或接收的测量信号的类型;前述第一节点为主节点,前述第二节点 为从节点;前述第二节点为测量节点或被测量节点;前述测量为对被测量节点的测距、测角或定位;
通过通信接口向前述第二节点发送第一信息;前述第一信息用于指示前述测量信号的类型;前述测量信号的类型包括单音信号或多音信号。
需要说明的是,本申请中存储器中的计算机程序或计算机指令可以预先存储也可以使用该设备时从互联网下载后存储,本申请对于存储器中计算机程序或计算机指令的来源不进行具体限定。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或连接,其可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
第七方面,本申请提供一种测量信号的处理装置,该测量信号的处理装置包括处理器和存储器。该存储器与处理器耦合,处理器执行存储器中存储的计算机程序或计算机指令时,可以实现上述第二方面任一项描述的方法。该测量信号的处理装置还可以包括通信接口,通信接口用于该测量信号的处理装置与其它装置进行通信。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
在一种可能的实现中,该设备可以包括:
存储器,用于存储计算机程序或计算机指令;
处理器,用于:
通过通信接口接收来自第一节点的第一信息,前述第一信息用于指示前述第二节点发送和/或接收的测量信号的类型;前述测量信号的类型包括单音信号或多音信号;前述第一节点为主节点,前述第二节点为从节点;前述第二节点为测量节点或被测量节点;前述测量为对被测量节点的测距、测角或定位;
通过通信接口发送或接收第一测量信号,前述第一测量信号用于前述测量。
需要说明的是,本申请中存储器中的计算机程序或计算机指令可以预先存储也可以使用该设备时从互联网下载后存储,本申请对于存储器中计算机程序或计算机指令的来源不进行具体限定。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或连接,其可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
第八方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或计算机指令,前述计算机程序或计算机指令被处理器执行以实现上述第一方面任一项所述的方法。
第九方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或计算机指令,前述计算机程序或计算机指令被处理器执行以实现上述第二方面任一项所述的方法。
第十方面,本申请提供一种计算机程序产品,该计算机程序产品被处理器执行时,上述第一方面任一项所述的方法将被执行。
第十一方面,本申请提供一种计算机程序产品,该计算机程序产品被处理器执行时,上述第二方面任一项所述的方法将被执行。
第十二方面,本申请实施例提供一种芯片,该芯片包括处理器,其中,前述处理器用于执行存储器中存储的计算机程序或计算机指令,使得前述芯片执行上述第一方面任一项所述的方法。
第十三方面,本申请实施例提供一种芯片,该芯片包括处理器,其中,前述处理器用于执行存储器中存储的计算机程序或计算机指令,使得前述芯片执行上述第二方面任一项所述 的方法。
上述第三方面至第十三方面提供的方案,用于实现或配合实现上述第一方面或第二方面中对应提供的方法,因此可以与第一方面或第二方面中对应的方法达到相同或相应的有益效果,此处不再进行赘述。
附图说明
下面将对本申请实施例中所需要使用的附图作介绍。
图1和图2为通信系统的结构示意图;
图3为测量信号的处理方法的流程示意图;
图4为测量信号的频谱示意图;
图5A至图5D为时间资源的组成示意图;
图6至图9为装置的结构示意图。
具体实施方式
本申请实施例中,“多个”是指两个或两个以上。本申请实施例中,“和/或”用于描述关联对象的关联关系,表示可以独立存在的三种关系,例如,A和/或B,可以表示:单独存在A,单独存在B,或同时存在A和B。本申请实施例中采用的诸如“a1、a2、……和an中的至少一项(或至少一个)”等的描述方式,包括了a1、a2、……和an中任意一个单独存在的情况,也包括了a1、a2、……和an中任意多个的任意组合情况,每种情况可以单独存在;例如,“a、b和c中的至少一项”的描述方式,包括了单独a,单独b,单独c、a和b组合,a和c组合,b和c组合,或a、b、c三者组合的情况。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,各个实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
下面先对本申请实施例涉及的技术术语作介绍。
测量锚点(也称为测量节点):参与测距、测角或定位的节点中,作为测距、测角或定位的基准位置的节点。为了便于描述,后续可以将该测距、测角或定位统称为测量。
测量标签(也称为被测量节点):参与测距、测角或定位的节点中的被测量节点。通过测距、测角或定位过程,确定定位标签相对于基准位置的距离、角度或位置。
主节点:为节点间传输信号(包括测量信号)、信令(包括测距、测角或定位相关的信令)和业务信息(包括测距、测角或定位相关的业务信息)配置资源和参数的节点。主节点可以是独立的实体,也可以是一个测量标签或一个测量锚点。主节点又可以称为M节点(master node),C节点(central node),或G节点(grand node)。
从节点:接收主节点的配置,并根据主节点的配置,与其它节点传输(包括发送和/或接收)信号(包括测量信号)、信令(包括测距、测角或定位相关的信令)和业务信息(包括测距、测角或定位相关的业务信息)的节点。从节点又可以称为S节点(slave node),P节点(peripheral node),或T节点(terminal node)。
随机种子:随机种子是伪随机函数的一个输入参数。该伪随机函数用于伪随机生成某个 参数。
下面结合附图对本申请实施例进行示例性描述。
参见图1,示例性示出了通信系统100。该通信系统100包括第一节点110和第二节点120。该第一节点110和第二节点120之间可以进行无线通信。例如可以通过星闪技术(Spark Link)、长期演进(long term evolution,LTE)技术、第五代移动通信技术(5th Generation Mobile Communication Technology,5G)、无线局域网(例如,Wi-Fi)技术、蓝牙(Bluetooth,BT)、紫峰(Zigbee)或车载短距无线通信技术等实现通信。
上述第一节点110可以是该通信系统100中的主节点。上述第二节点120可以是该通信系统100中的从节点。该主节点可以用于配置该通信系统100中的节点(包括主节点和从节点)发送和/或接收信息的传输资源。该传输资源例如时域资源和/或频域资源。该主节点还可以用于配置该通信系统100中的节点发送和/或接收的信号的参数。该信号例如可以是用于上述测量的测量信号。该参数例如可以包括信号的类型、调制方式或用于添加扰动的随机种子等。该从节点可以用于接收主节点的配置,然后,基于配置的传输资源发送和/或接收信号。该主节点配置从节点的传输资源和/或参数可以是该主节点确定对应的传输资源和/或参数,然后通过向从节点发送信息来指示该传输资源和/或参数。该发送的信息可以是通过信令或消息(message)的方式来承载。
上述通信系统100中的节点可以用于根据主节点配置的传输资源和测量信号的参数来实现上述测量功能。
一种可能的实现中,在上述测量的应用场景中,上述第一节点110可以是测量节点,即主节点是测量节点。上述第二节点120可以是被测量节点。该测量节点所在的位置作为上述测量的基准位置。该被测量节点为需要被测量距离或定位的节点。该第一节点110为主节点,那么,在第一节点110为自身和该第二节点120配置好传输资源和测量信号的参数后,该第一节点110和第二节点120之间可以发送测量信号来实现对被测量节点即该第二节点120的测量。
示例性地,上述第一节点110和第二节点120之间发送测量信号来实现对第二节点120的测量的过程中,可以是第一节点110向第二节点120发送一次或多次测量信号。或者,可以是第二节点120向第一节点110发送一次或多次测量信号。或者,可以是第一节点110向第二节点120发送一次或多次测量信号,第二节点120也向第一节点110发送一次或多次测量信号。即测量节点和被测量节点之间可以通过一次或多次测量信号的传输来实现对被测量节点的测量。本申请实施例对具体的测量实现过程不做限制。
另一种可能的实现中,在上述测量的应用场景中,上述第一节点110可以是被测量节点,即主节点是被测量节点。上述第二节点120可以是测量节点。同理,该第一节点110为主节点,在该第一节点110为自身和该第二节点120配置好传输资源和测量信号的参数后,该第一节点110和第二节点120之间可以发送测量信号来实现对被测量节点即该第一节点110的上述测量。该测量的描述可以示例性参考前面的介绍,此处不赘述。
另一种可能的实现中,在上述测量的应用场景中,上述第一节点110既不是测量节点也不是被测量节点,其主要用于为测量节点和被测量节点配置传输资源和测量信号的参数。即主节点是独立于测量节点和被测量节点之外的节点。为了便于理解,可以示例性地参见图2。可以看到,该通信系统100还可以包括第三节点130。该第三节点130是该通信系统100中 的从节点。该第一节点110、第二节点120和该第三节点130任意两者之间可以进行无线通信。该第三节点130发送和/或接收信息的传输资源,以及该第三节点130发送和/或接收的测量信号的参数也是由主节点即该第一节点110配置。
上述第二节点120可以是测量节点,上述第三节点130可以是被测量节点。在上述第一节点110为该第二节点120和该第三节点130配置好传输资源和测量信号的参数后,该第二节点120和该第三节点130之间可以发送测量信号来实现对被测量节点即该第三节点130的测量。该测量的描述可以示例性参考前面的介绍,此处不赘述。
可以理解的是,上述测量节点可以用于对一个或多个被测量节点进行上述测量。可以通过一个或多个测量节点与被测量节点交互测量信号来实现该被测量节点的定位。通过多个测量节点来实现被测量节点的定位可以提高定位准确度。
示例性地,上述通信系统100中的主节点可以是预先配置好的。或者,主节点可以是该通信系统100中的多个节点通过选举的方式确定的。该通信系统100中确定主节点后,其它节点即为从节点。此处仅为示例,不构成对本申请实施例的限制。本申请实施例对确定主节点的方式不做限制。
一种可能的实现方式中,上述测量节点又可以称为测量锚点或测量基站。示例性地,在测距的应用场景中,该测量节点可以称为测距锚点或测距基站。示例性地,在定位的应用场景中,该测量节点可以称为定位锚点或定位基站。
一种可能的实现中,上述被测量节点又可以称为测量标签。示例性地,在测距的应用场景中,该被测量节点可以称为测距标签。示例性地,在定位的应用场景中,该被测量节点可以称为定位标签。
示例性地,上述主节点和从节点可以是具备无线通信功能的装置或设备。例如,可以是任一可能的用户终端设备,网络设备,基站,用户站,移动站,移动台,运输设备,智能制造设备,智能家居设备等等。
示例性地,上述用户终端设备可以包括但不限于任何一种基于智能操作系统的电子产品,其可与用户通过键盘、虚拟键盘、触摸板、触摸屏以及声控设备等输入设备来进行人机交互。诸如智能手机、平板电脑(tablet personal computer,Tablet PC)、手持计算机、可穿戴电子设备、个人计算机(personal computer,PC)和台式计算机等。其中,智能操作系统包括但不限于任何通过向设备提供各种应用来丰富设备功能的操作系统,诸如安卓Android、IOS、Windows、MAC或鸿蒙系统(HarmonyOS)等操作系统。
示例性地,上述网络设备可以包括但不限于交换机、路由器、网桥、集线器、网关、服务器、网络接口卡)、无线接入点、调制解调器、光端机或光纤收发器等等。
示例性地,上述运输设备可以包括但不限于车辆或船等等。
示例性地,上述智能制造设备可以包括但不限于智能仪器仪表、数控机床、师傅控制柜或传动设备等自动化生产设备。
示例性地,上述智能家居设备可以包括但不限于智能音箱、空调、洗衣机或电视机等等。
示例性地,上述主节点和从节点还可以是车载设备。例如可以是汽车座舱(cockpit domain)设备,或者汽车座舱设备中的一个模块。例如为座舱域控制器(cockpit domain controller,CDC)、摄像头、屏幕、麦克风、音响、电子钥匙、无钥匙进入或启动系统控制器等模块中的一个或者多个。
一种可能的实现中,上述通信系统100可以应用于多种应用场景中。例如可以应用于以 下应用场景:移动互联网(mobile internet,MI)、工业控制(industrial control)、无人驾驶(self driving)、运输安全(transportation safety)、物联网(internet of things,IoT)、智慧城市(smart city)、或智慧家庭(smart home)等。
可以理解的是,上述图1和图2所示的通信系统100仅为示例。在一种可能的实现中,该通信系统100中可以包括更多的从节点,不限于图1或图2所示的从节点数量。本申请实施例对通信系统100中包括的从节点的数量不做限制。
基于上述的描述,为了实现对被测量节点的测量,测量节点和被测量节点之间需要发送测量信号。但是,在实际应用中,各节点的信号收发能力不同,限制了测量的实现,或者限制了测量的性能等。因此,为了能在更广的应用范围内实现节点的测量,本申请实施例提供了一种测量信号的处理方法及装置。
参见图3,示例性示出了本申请实施例提供的一种测量信号的处理方法的流程示意图。该测量信号的处理方法可以包括但不限于如下步骤:
S301、第一节点确定第二节点发送和/或接收的测量信号的类型;第一节点为主节点,第二节点为从节点;第二节点为测量节点或被测量节点;测量为对被测量节点的测距、测角或定位。
示例性地,该第一节点例如可以是上述图1或图2中所示的第一节点110。该第二节点120例如可以是上述图1或图2中所示的第二节点120。
在本申请实施例中,测量信号的类型可以包括单音信号和多音信号。
该单音信号为仅包含单一频率分量的信号,例如为单一频率的正弦波信号。该单音信号可以是无调制的载波信号,或者该单音信号可以是无相位旋转的二进制相移键控(binary phase shift keying,BPSK)调制信号。该无调制的载波信号主要用于作为仅支持高斯频移键控(gauss frequency shift keying,GFSK)调制的节点之间交互的测量信号。该无相位旋转的BPSK调制信号为在连续多个不同符号映射相同的值的信号。该无相位旋转的BPSK调制信号可以用于作为支持相移键控(phase shift keying,PSK)类调制的节点之间交互的测量信号。该PSK类调制可以包括BPSK调制或多进制相移键控调制。
上述多音信号为包含同时传输的多个(两个或两个以上)频率分量的信号。可选的,该两个以上频率分量可以为等频率间隔分布的频率分量。示例性地,该多个频率分量中每一个频率分量的信号为单一频率的正弦波信号。多音信号中频率分量的数量即为该多音信号的音的数量。例如,一个多音信号包括8个频率分量,那么该多音信号的音的数量为8。
为了便于理解上述单音信号和多音信号,可以示例性地参见图4。图4中的(a)示例性示出了单音信号的频谱图,可以看到单音信号只有一个频率分量,其中心频率为f 0。图4中的(b)和(c)示例性示出了多音信号的频谱图。其中,图4中的(b)示例性示出了包括四个频率分量的多音信号的频谱图。该四个频率分量的中心频率分别为f 1、f 2、f 3和f 4。另外还可以看到,该四个频率中相邻频率之间的频率间隔相等,均为Δf1。图4中的(c)示例性示出了包括八个频率分量的多音信号的频谱图。该八个频率分量的中心频率分别为f 1、f 2、f 3、f 4、f 5、f 6、f 7和f 8。另外还可以看到,该八个频率中相邻频率之间的频率间隔相等,均为Δf2。可以理解,图4所示仅为示例,不构成对本申请实施例的限制。
示例性地,在具体实现中,上述第一节点可以基于第二节点接收和/或发送测量信号的能力来确定该第二节点发送和/或接收的测量信号的类型。为了便于后续的描述,本申请实施例 将发送和/或接收简称为处理。
一种可能的实现中,该能力可以是由该第二节点或其它节点上报给该第一节点的。本申请实施例以第二节点上报为例。例如,该第二节点可以向该第一节点发送指示该能力的信息。为了便于后续的描述,将该指示能力的信息称为第二信息。该第一节点接收到该第二信息后,可以基于该第二信息指示的能力确定该第二节点处理的测量信号的类型。
示例性地,上述第二信息可以直接指示该第二节点能够处理的测量信号的类型。例如可以直接指示该第二节点能够处理的测量信号的类型为单音信号和/或多音信号。若该第二信息指示该第二节点能够处理的测量信号的类型只有一种,即只有单音信号(或只有多音信号)。那么,该第一节点接收到上述能力指示第二信息后,可以基于该第二信息确定第二节点能够处理的测量信号为单音信号(或多音信号)。
若该第二信息指示该第二节点能够处理的测量信号的类型包括单音信号和多音信号。那么,一种可能的实现中,第一节点可以从该两种类型中随机确定一种作为该第二节点处理的测量信号的类型。或者,另一种可能的实现中,第一节点可以参考与该第二节点交互测量信号的节点(简称为第三节点,例如可以是上述图2中所示的第三节点130)能够处理的测量信号的类型。具体的,由于还第二节点与该第三节点互相发送和接收对方的测量信号,因此,该两个节点的测量信号的类型相同。若该第三节点只能处理单音信号,那么,第一节点可以确定该第二节点能够处理的测量信号为单音信号。若该第三节点只能处理多音信号,那么,第一节点可以确定该第二节点能够处理的测量信号为多音信号。若该第三节点既能处理单音信号又能处理多音信号,那么,第一节点可以选择其中一种作为该第二节点和第三节点交互的测量信号的类型。第三节点处理的测量信号的类型的确定可以参考第二节点的描述,此处不赘述。
另一种实现中,上述第二信息可以指示该第二节点的处理器的性能。例如,该第二信息中可以包括该处理器的性能参数。该处理器的性能参数例如可以通过以下的一项或多项:中央处理器(central processing unit,CPU)的主频、外频、内存、缓存、工作电压或倍频系数等参数。
在该处理器的性能参数满足预设条件时,表明其处理能力较强,可以处理多音信号,当然也可以处理单音信号。这种情况下,第一节点接收到该第二信息后,并基于该第二信息中的处理器的性能参数确定出上述第二节点能够处理单音信号和多音信号。那么,一种可能的实现中,第一节点可以从该两种类型中随机确定一种作为该第二节点处理的测量信号的类型。或者,另一种可能的实现中,第一节点可以参考与该第二节点交互测量信号的节点(例如上述第三节点)能够处理的测量信号的类型,来确定该第二节点处理的测量信号的类型。具体实现可以参考上述的描述,此处不赘述。
在该处理器的性能参数不满足预设条件时,表明其处理能力较弱,只能处理单音信号。这种情况下,第一节点接收到上述第二信息后,并基于该第二信息中的处理器的性能参数确定出上述第二节点能够处理单音信号。进而确定第二节点处理的测量信号的类型为单音信号。
示例性地,上述预设条件包括以下的一项或多项:上述CPU的主频在第一频率范围内,上述外频在第二频率范围内,上述内存的容量在第一容量范围内,上述缓存的容量在第二容量范围内,上述工作电压在第一电压范围内,或上述倍频系数在第一数值范围内。可以理解的是,这些参数的范围可以根据实际应用来设定,本申请实施例对此不做限制。
另一种可能的实施例中,上述第一节点可以基于上述测量的性能需求来确定该第二节点 发送和/或接收的测量信号的类型。示例性地,该性能需求包括以下至少一种:测距精度、定位精度、测角精度、测距时延、定位时延、测角时延、测距量程或测角范围。可以理解的是,该测距精度、测距时延和测距量程为测距场景中的性能需求。该测角精度、测角时延和测角范围为角度测量场景中的性能需求。该定位精度和定位时延为定位场景中的性能需求。示例性地,对于通过测量出距离后实现定位的场景中,测距量程也可以是定位场景中的性能需求。为了便于后续的描述,可以将该测距精度、测角精度和定位精度统称为测量精度。将该测距时延、测角时延和定位时延统称为测量时延。将测距量程和测角范围称为测量范围。
示例性地,在具体实现中,上述第二节点或其它节点(例如上述第三节点等)向第一节点发送指示该性能需求的信息。为了便于后续描述,将该信息称为第三信息。
一种可能的实现中,该第三信息包括该性能需求。例如,包括上述测量精度、测量时延或测量范围中一项或多项的数值或数值范围。可以理解的是,该数值或数值范围可以根据实际应用确定,本申请实施例对此不做限制。
第一节点接收到上述第三信息后,可以根据该第三信息中包括的性能需求的数值或数值范围确定第二节点发送和/或接收的测量信号的类型。为了便于理解,下面示例性介绍。
示例性地,在测距或定位的应用场景中,单次发送的测量信号覆盖的带宽越宽,该测量信号中包括的频率分量越多(或者说频率分量的间隔越小),测量范围就越大,测量时延也越小。一般地,单次发送的多音信号覆盖的带宽较宽,单次发送的单音信号覆盖的带宽较窄。因此,要求测量范围大和/或测量时延小的性能需求的测量,可以匹配多音信号来实现。而对测量范围和/或测量时延要求较低的测量,可以匹配单音信号来实现。
示例性地,测量范围的大小可以通过设置一个范围阈值来区分。测量范围的值小于该范围阈值,则该测量范围较小。测量范围的值大于该范围阈值,则该测量范围较大。例如,假设该范围阈值为5米。那么,测量范围的值小于5米,则表明该测量范围较小。测量范围的值大于5米,则表明该测量范围较大。可以理解,此处仅为示例,具体实现中还可以通过其它的方式来区分测量范围的大小,本申请实施例不做限制。
同理,示例性地,测量时延的要求高低可以通过设置一个时延阈值来区分。测量时延的值越小,则表明测量时延的要求越高。因此,测量时延的值小于该时延阈值,则该测量时延要求较高。测量时延的值大于该时延阈值,则该测量时延要求较低。例如,假设该时延阈值为1秒。那么,测量时延的值小于1秒,则表明该测量时延要求较高。测量时延的值大于1秒,则表明该测量时延要求较低。可以理解,此处仅为示例,具体实现中还可以通过其它的方式来区分测量时延的要求高低,本申请实施例不做限制。
示例性地,若上述第三信息中包括的性能需求的数值或数值范围为测量时延的数值或数值范围。第一节点接收到该第三信息后,获取该第三信息中的测量时延的数值或数值范围。然后,判断该测量时延的数值或数值范围是否在预设的时延范围。该预设的时延范围为时延值小于上述时延阈值的范围。例如,假设该时延阈值为1秒,那么,该预设的时延范围为小于1秒的范围。因此,若获取的测量时延的数值或数值范围在该预设的时延范围内,表明对测量时延的要求较高。则,第一节点可以确定出上述第二节点处理的测量信号的类型为多音信号。若获取的测量时延的数值或数值范围不在该预设的时延范围内,表明对测量时延的要求较低。则,第一节点可以确定出上述第二节点处理的测量信号的类型为单音信号。
示例性地,若上述第三信息中包括的性能需求的数值或数值范围为测量范围的数值或数值范围。第一节点接收到该第三信息后,获取该第三信息中的测量范围的数值或数值范围。 然后,判断该测量范围的数值或数值范围是否在预设的范围。该预设的范围为范围值大于上述范围阈值的范围。例如,假设该范围阈值为5米,那么,该预设的范围为大于5米的范围。因此,若获取的测量范围的数值或数值范围在该预设的范围内,表明对测量范围的要求较高。则,第一节点可以确定出上述第二节点处理的测量信号的类型为多音信号。若获取的测量范围的数值或数值范围不在该预设的范围内,表明对测量范围的要求较低。则,第一节点可以确定出上述第二节点处理的测量信号的类型为单音信号。
示例性地,在测角的应用场景中,在测量精度要求高和/或测量范围要求小的情况下,可以匹配单音信号来实现。在测量精度要求低和/或测量范围要求大的情况下,可以匹配多音信号来实现。示例性地,测量精度的高低可以通过设置一个精度阈值来区分。测量精度的值越小,测量精度越高。因此,测量精度的值小于该精度阈值,则该测量精度较高。测量精度的值大于该精度阈值,则该测量精度较低。例如,在该测角场景中,假设该测角精度的精度阈值为2°。那么,测量精度的值小于2°,则表明该测量精度较高。测量精度的值大于2°,则表明该测量精度较低。可以理解,此处仅为示例,具体实现中还可以通过其它的方式来区分测量精度的高低,本申请实施例不做限制。测量范围的大小的区分可以参考前述的描述,此处不赘述。
示例性地,若上述第三信息中包括的性能需求的数值或数值范围为测量精度的数值或数值范围。第一节点接收到该第三信息后,获取该第三信息中的测量精度的数值或数值范围。然后,判断该测量精度的数值或数值范围是否在预设的精度范围。该预设的精度范围为精度值小于上述精度阈值的范围。例如,在上述测角场景中,假设该精度阈值为2°,那么,该预设的精度范围为小于2°的范围。因此,若获取的测量精度的数值或数值范围在该预设的精度范围内,表明对测量精度的要求较高。则,第一节点可以确定出上述第二节点处理的测量信号的类型为多音信号。若获取的测量精度的数值或数值范围不在该预设的精度范围内,表明对测量精度的要求较低。则,第一节点可以确定出上述第二节点处理的测量信号的类型为单音信号。
一种可能的实现中,上述第三信息中可以同时包括上述测量精度、测量时延和测量范围中至少两项的数值或数值范围。然后,第一节点可以基于该至少两项的数值或数值范围确定第二节点处理的测量信号的类型。例如,若上述第三信息中包括测量范围的数值或数值范围,以及包括测量时延的数值或数值范围。那么,第一节点接收到该第三信息后,可以综合基于该测量范围和测量时延的判断结果确定第二节点处理的测量信号的类型。
例如,若基于该测量范围的数值或数值范围确定出的类型和基于该测量时延的数值或数值范围确定出的类型相同,例如为多音信号(或单音信号)。则,第一节点可以确定出上述第二节点处理的测量信号的类型为多音信号(或单音信号)。
又例如,若基于该测量范围的数值或数值范围确定出的类型和基于该测量时延的数值或数值范围确定出的类型不同,例如一个确定出的类型为单音信号,另一个确定出的类型为多音信号。那么,为了满足其中要求较高的测量范围或测量时延的要求,第一节点可以确定出上述第二节点处理的测量信号的类型为多音信号。可以理解,此处仅为示例,不构成对本申请实施例的限制。
另一种可能的实现中,上述第三信息包括上述测量的性能需求的索引。该性能需求的索引可以是提前配置好的。为了便于理解,下面以该性能需求包括测量范围和测量时延为例介 绍。可以示例性地参见表1。
表1
索引 测量范围的要求 测量时延的要求 匹配的测量信号的类型
索引1 多音信号
索引2 多音信号
索引3 单音信号
索引4 多音信号
在表1中可以看到,不同的索引对应的不同的性能需求。例如,索引1可以指示上述测量的性能需求中对测量范围和测量时延的要求都较高,其匹配的测量信号的类型为多音信号。那么,上述第一节点在收到上述第三信息后,获取该第三信息中的索引。若从该第三信息中获取的索引为该索引1,那么,可以基于该索引1确定出上述第二节点处理的测量信号的类型为多音信号。其它索引的使用同理,不再赘述。
示例性地,上述性能需求的索引可以通过数字、字母、特殊符号或其任意的结合来表示。或者,该性能需求的索引可以通过上述第三信息中包括的标志字段来指示。本申请实施例对该索引的具体表示不作限制。
可以理解的是,上述介绍的用于确定第二节点处理的测量信号的类型的方式仅为示例,不构成对本申请实施例的限制。
S302、上述第一节点向上述第二节点发送第一信息;第一信息用于指示上述测量信号的类型;该测量信号的类型包括单音信号或多音信号。
在具体实现中,第一节点确定出第二节点处理的测量信号的类型后,可以生成该第一信息。该第一信息中携带指示该第二节点处理的测量信号的类型的信息。然后,将该第一信息发送给上述第二节点。
S303、上述第二节点接收上述第一信息。
S304、上述第二节点发送或接收第一测量信号,该第一测量信号用于上述测量。
上述第二节点接收到上述第一信息后,基于该信息明确自身接收和/或发送的测量信号的类型。然后,在参与上述测量的过程中,生成该类型的测量信号发送给其它的节点(例如上述第三节点)。或者,在参与上述测量的过程中,从其它的节点(例如上述第三节点)接收该类型的测量信号。进而基于发送和/或接收的该类型的测量信号完成该测量任务,即完成对被测量节点的测距、测角或定位。
一种可能的实施例,上述第一信息中携带的指示该第二节点处理的测量信号的类型的信息,可以是该类型的索引或标识。该类型的索引或标识可以是提前配置好的。例如,单音信号的索引或标识可以是“S”,多音信号的索引或标识可以是“M”。此处仅为示例,不构成对本申请实施例的限制。该类型的索引或标识可以通过数字、字母、特殊符号或其任意的结合来表示。或者,该类型的索引或标识可以通过上述第一信息中包括的标志字段来指示。本申请实施例对该索引或标识的具体表示不作限制。
一种可能的实现中,上述测量过程中发送或接收的单音信号的频率、周期和幅度等可以是预先配置好的。这种情况下,上述第二节点基于上述接收的第一信息明确自身发送和/或接收的测量信号的类型为单音信号后,可以基于预先的配置确定后续测量过程中发送和/或接收的测量信号的频率、周期和幅度等信息。
另一种可能的实现中,上述测量过程中发送或接收的多音信号的频率、频率间隔、频率分量的数量、周期和幅度等可以是预先配置好的。这种情况下,上述第二节点基于上述接收的第一信息明确自身发送和/或接收的测量信号的类型为多音信号后,可以基于预先的配置确定后续测量过程中发送和/或接收的测量信号的频率、频率间隔、频率分量的数量、周期和幅度等信息。
另一种可能的实现中,上述第一节点发送给第二节点的配置信息(包括第一信息、第二信息和/或其它信息)中,还包含对测量信号的其它配置信息。第二节点还根据该其它配置信息确定发送和/或接收测量信号的参数,本发明不做限制。例如,该其它配置信息为资源配置信息,第二节点根据资源配置信息确定发送和/或接收测量信号的资源(如时域/频域/时频资源)。
一种可能的实施例中,上述第一信息中携带的指示该第二节点处理的测量信号的类型的信息,可以包括该测量信号中同时传输的频率分量的数量N。该N可以是大于或等于1的整数。
示例性地,可以通过该第一信息中包括的频率分量的数量N确定测量信号的类型。例如,若上述第一信息中该N等于1,表明测量信号中同时传输的频率分量为一个。则指示的测量信号的类型为单音信号。第二节点接收到该第一信息后,可以根据该N的值为1确定出第二节点处理的测量信号的类型为单音信号。
若上述第一信息中该N大于1,表明测量信号中同时传输的频率分量为多个。则指示的测量信号的类型为多音信号。第二节点接收到该第一信息后,可以根据该N的值大于1确定出第二节点处理的测量信号的类型为多音信号,并确定同时传输的频率分量的数量,即确定测量信号的音的数量。
一种可能的实施例中,上述第一信息中携带的指示该第二节点处理的测量信号的类型的信息,可以包括该测量信号的频率分量之间的频率间隔。
示例性地,可以通过该第一信息中包括的频率间隔确定测量信号的类型。例如,若上述第一信息中该频率间隔等于跳频信道的频率间隔,则表明在一个跳频信道中只传输一个频率分量的测量信号,即传输的测量信号为单音信号。第二节点接收到该第一信息后,可以根据该频率间隔确定出第二节点处理的测量信号的类型为单音信号。该跳频信道为该第二节点通过跳频的方式发送测量信号的信道。每一个跳频信道对应一个中心频率,该跳频信道的频率间隔为频域相邻的两个跳频信道对应的中心频率之间的间隔。该跳频信道可以是由主节点即上述第一节点配置。
若上述第一信息中测量信号的频率分量之间频率间隔小于跳频信道的频率间隔,则表明在一个跳频信道中可以同时传输多个频率分量的测量信号,即传输的测量信号为多音信号。示例性地,该频率间隔可以是跳频信道的频率间隔除以该测量信号同时传输的频率分量的数量N得到。第二节点接收到该第一信息后,可以根据该频率间隔确定出第二节点处理的测量信号的类型为多音信号,并可以确定该测量信号中同时传输的频率分量的频率间隔。
另一种实现中,上述第一信息中携带的指示该第二节点处理的测量信号的类型的信息,可以包括该测量信号的频率分量之间的频率间隔的索引。该频率间隔的索引可以是预先配置好的。第二节点接收到该第一信息后,可以基于该索引确定该测量信号的频率分量之间的频 率间隔。确定频率间隔之后的处理操作可以参考前述的描述,此处不赘述。
一种可能的实施例中,上述第一信息中携带的指示该第二节点处理的测量信号的类型的信息,可以包括该测量信号的调制方式或包括该测量信号的调制方式的索引。该调制方式的索引可以是预先配置好的。第二节点接收到该第一信息后,可以基于该索引确定该测量信号的调制方式。示例性地,该调制方式可以是PSK或GFSK等调制方式,本申请实施例对具体的调制方式不做限制。第二节点确定测量信号的调制方式后,在后续的测量过程中,可以通过该确定的调制方式来调制发送的测量信号。
可以理解的是,上述第一信息可以包括多个信息,例如可以包括三个信息。为了便于描述可以将该三个信息简称为信息A、信息B和信息C。其中,该信息A用于指示测量信号中同时传输的频率分量的数量。该信息B用于指示测量信号的频率分量之间的频率间隔。该信息C用于指示测量信号的调制方式。或者,上述第一信息可以包括两个信息。其中一个信息用于指示测量信号中同时传输的频率分量的数量和频率间隔。另一个信息用于指示测量信号的调制方式。此处仅为示例,不构成对本申请实施例的限制。
另一种可能的实施方式中,上述第一节点可以通过向上述第二节点发送一个信息(例如上述第一信息)来指示上述第二节点处理的测量信号的类型,然后通过向上述第二节点发送另外的信息来指示该测量信号的频率分量N、频率分量的间隔和调制方式中的一项或多项。同理,可以理解的是,该另外的信息可以包括多个信息,通过发送该多个信息来向第二节点指示对应的内容。具体可以参考上一段的描述,此处不赘述。或者,另一种实现中,该第一信息和该另外的信息可以是同一个信息,即在同一个信息中可以指示测量信号类型,还可以指示该测量信号的频率分量N、频率分量的间隔和调制方式中的一项或多项。或者,另一种实现中,该第一信息和该另外的信息可以是在同一个消息(message,MSG)中传输的信息。或者,该第一信息和该另外的信息可以是在不同的消息中传输的信息。
可以理解的是,无论是单音信号或多音信号的类型的指示,还是上述测量信号的频率分量N、频率分量的间隔和调制方式的指示等,第一节点向第二节点发送的信息中可以指示参数本身。或者,可以是协议规定有限个可选的参数值,并为每个可选参数值与一个索引值对应,第一节点向第二节点发送的信息中指示对应索引值来指示对应的参数(即指示测量信号的类型、频率分量N、频率分量的间隔或调制方式等)。或者,还可以按照协议中规定的计算方式,通过第一节点向第二节点发送的信息中指示的数值使用协议规定的计算方式算出对应的参数值。或者,也可以是其它的实现方式,本申请实施例不做限制。
一种可能的实施例中,上述第二节点发送或接收的第一测量信号可以是在原始测量信号中添加了扰动信号之后获得的信号。若该第一测量信号为该第二节点发送的信号,那么,该原始测量信号为该第二节点基于上述确定的测量信号类型生成的未添加扰动的信号。若该第一测量信号为该第二节点接收的信号,那么,该原始测量信号为发送该第一测量信号的节点(例如上述第三节点)生成的未添加扰动的信号。下面以该第一测量信号为该第二节点发送的信号为例介绍。
一种可能的实现中,在该原始测量信号中添加扰动信号的次数和/或位置可以基于随机种 子(random seed)确定。该随机种子可以由主节点配置。
示例性地,该位置可以是时间位置。在具体实现中,上述第一测量信号是在第一节点配置好的第一时间资源上传输的。该第一时间资源中至少包括M个时间单元,该M为大于1的整数。示例性的,该第一测量信号具体在该M个时间单元上传输。例如,可以示例性参见图5A。每个时间单元可以看成是一个时间位置。那么,该第一传输资源中包括M个时间位置。
另一种可能的实现中,上述第一时间资源除了上述用于传输第一测量信号的M个时间单元之外,还可以包括其它时间资源。该其它时间资源例如可以用于传输信号、信令和数据中的至少一种。该信号例如可以是前导信号和/或同步信号。该信令例如可以是控制信令等。该数据例如可以是业务数据等。本申请实施例对该其它时间资源具体用于传输的信息不做限制。示例性地,该其它时间资源可以在该M个时间单元的前面,例如可以示例性地参见图5B。或者,示例性地,该其它时间资源可以在该M个时间单元的后面,例如可以示例性地参见图5C。或者,示例性地,该其它时间资源可以在该M个时间单元的前面和后面,例如可以示例性地参见图5D。示例性地,该其它时间资源的长度可以大于上述单个时间单元的长度。或者,该其它时间资源的长度可以小于或等于上述单个时间单元的长度。本申请实施例对该其它时间资源的长度不做限制。示例性地,该第一时间资源可以是一个无线帧或者说测量帧的时间资源。即该无线帧或测量帧中传输的信息包括上述第一测量信号,还可以包括上述前导信号、同步信号、控制信令和业务数据等信息中的至少一种。
示例性地,上述时间单元的长度例如可以是上述第一时间资源中一个或多个符号的长度。该符号可以是信号调制的基本单位。例如,假设该第一时间资源中包括10个符号。若时间单元的长度为一个符号的长度,则该第一时间资源中包括10个时间单元。若时间单元的长度为两个符号的长度,则该第一时间资源中包括5个时间单元。可以理解,此处仅为示例,具体实现中第一时间资源中包括的符号数量以及具体的时间单元的长度可以根据实际应用设置,本申请实施例不做限制。
或者,示例性地,该时间单元的长度例如可以是上述第二节点发送和/或接收测量信号的跳频频点的间隔的倒数。
或者,示例性地,在该第一测量信号为多音信号的情况下,该时间单元的长度例如可以是该多音信号中的频率间隔的倒数。可以理解的是,此处仅为示例,不构成对本申请实施例的限制。
示例性地,上述添加扰动信号可以是将时间单元中预设传输的信号替换为扰动信号。替换后,在该时间单元中传输的即为扰动信号。为了便于后续的描述,可以将时间单元中预设传输的信号称为原始信号。将一个时间单元中的原始信号替换为扰动信号即为添加一次扰动信号。那么,上述添加扰动信号的次数等于被替换传输信号的时间单元的数量。
一种可能的实现中,上述扰动信号为原始信号的反相信号。该反相信号指的是幅值相同,相位相反的信号。示例性地,该扰动信号可以是该原始信号乘以-1后获得的信号。该扰动信号与原始信号的幅值相同可以避免测量信号能量突变,确保传输资源中各个时间单元传输的信号都可以有足够的信噪比。该扰动信号与原始信号的相位相反,可以抑制被替换传输信号的时间单元的能量泄露到其它时间单元时,对该其它时间单元传输的信号的相位的影响(只影响幅值,不影响相位),以确保测量信道相位信息的性能。可以理解的是,此处仅为示例,不构成对本申请实施例的限制。在具体实现中,该扰动信号还可以是其它信号,例如可以是 与原始信号的正交的信号或伪随机生成的信号等等。本申请实施例对该扰动信号的类型和扰动信号的生成方式不做限制。
在具体实现中,上述第一节点可以向上述第二节点发送用于指示随机种子的信息。为了便于后续的描述,将该信息称为第四信息,将该随机种子称为第一随机种子。第二节点接收到该第四信息后,获取该第一随机种子。并基于该第一随机种子确定扰动信号在上述第一测量信号中被添加的次数和/或时间位置。
一种可能的实现中,可以根据该第一随机种子分别确定上述第一时间资源中M个时间单元的每个单元是否传输扰动信号。示例性的,该M个时间单元中第i时间单元是否传输扰动信号可以根据该第一随机种子、上述第一时间资源和该i确定,i为1到M中的任一个整数。在具体实现中,该第一时间资源可以包括多个时隙,每个时隙中可以包括多个符号。示例性地,该第i时间单元是否传输扰动信号根据该第一随机种子、上述第一时间资源和该i确定,可以是根据该第一随机种子、该第一时间资源包括的多个时隙中的起始时隙编号和该i确定。
示例性地,上述第二节点可以将上述第一随机种子、上述第i时间单元的编号i和该第一时间资源的起始时隙编号一起输入到一个函数(简称为第一函数)中进行计算,获得一个计算结果。该计算结果可以是一个随机数(简称为第一随机数)。然后,第二节点根据该第一随机数判断该第i时间单元是否传输扰动信号。例如,若该第一随机数为单数,那么第二节点确定该第i时间单元传输扰动信号。若该第一随机数为双数,那么第二节点确定该第i时间单元不传输扰动信号。或者,例如,若该第一随机数大于预设数值,那么第二节点确定该第i时间单元传输扰动信号。若该第一随机数小于预设数值,那么第二节点确定该第i时间单元不传输扰动信号。可以理解的是,此处仅为示例,不构成对本申请实施例的限制。在具体实现中,第二节点获得上述计算结果后,可以根据任意预设的规则判断该第i时间单元是否传输扰动信号,本申请实施例不做限制。另外,上述第一函数可以是一个随机函数或者自定义的函数,本申请实施例也不做限制。
若上述第二节点确定上述第i时间单元传输扰动信号。那么,该第二节点将在该第i时间单元中传输的原始信号替换为该扰动信号,替换后的扰动信号将在该第i时间单元中传输。若上述第二节点确定上述第i时间单元不传输扰动信号。那么,该第二节点在该第i时间单元中仍然传输原始信号。
一种可能的实现中,第二节点可以先基于上述第一随机种子确定上述第一测量信号中添加扰动信号的次数。然后,再进一步确定每次添加的位置。示例性地,第一节点可以先基于该第一随机种子和上述第一时间资源确定该次数。具体的,可以基于该第一随机种子和该第一时间资源中起始时隙的编号确定该次数。示例性地,可以将该第一随机种子和该起始时隙的编号输入到一个函数(简称为第二函数)中计算,可以计算得到一个随机数(简称为第二随机数)。可以将该第二随机数作为添加扰动信号的次数。或者,可对该第二随机数进行进一步的处理,例如与某个预设的数进行计算后获得的数再作为该添加扰动信号的次数。该与某个预设的数进行计算可以是与该某个预设的数进行加、减、乘、除或取模等运算。可以理解的是,此处仅为示例,不构成对本申请实施例的限制。上述第二函数可以是一个随机函数或者自定义的函数,本申请实施例也不做限制。
假设上述第二节点基于上述第一随机种子和起始时隙的编号确定的添加扰动信号的次数为L,L为大于0小于M的整数。然后,第二节点基于该添加扰动信号的次数的编号、该第一随机种子和该起始时隙编号,进一步计算得到该编号对应的扰动信号在上述第一测量信号 中的时间位置。即该L个扰动信号中的第j个扰动信号在第一测量信号中的时间位置,可以基于第一随机种子、第一时间资源的起始时隙编号和该j确定,j为大于0且小于或等于L的整数。
具体的,可以将该第一随机种子、起始时隙编号和j输入到一个函数(简称为第三函数)中计算,可以计算得到一个随机数(简称为第三随机数)。该第三随机数可以指示该第j个扰动信号在第一测量信号中的时间位置。基于前面的描述可知,该时间位置为上述第一时间资源中的时间单元,每个时间单元都配置都对应的编号。一种可能的实现中,将该计算得到的第三随机数作为时间单元的编号,进而可以确定该第j个扰动信号在第一测量信号中的时间位置即为编号为该第三随机数的时间单元。
另一种可能的实现中,可对该第三随机数进行进一步的处理,例如与某个预设的数进行计算后获得的数再作为时间单元的编号。该与某个预设的数进行计算可以是与该某个预设的数进行加、减、乘、除或取模等运算。可以理解的是,此处仅为示例,不构成对本申请实施例的限制。上述第三函数可以是一个随机函数或者自定义的函数,本申请实施例也不做限制。
一种可能的实施例中,上述用于确定添加扰动信号的次数的随机种子,与上述用于确定添加位置的随机种子可以是不同的随机种子。这种情况下,上述第一随机种子可以包括两个子随机种子(简称为子随机种子A和子随机种子B)。可以用该随机种子A来确定添加扰动信号的次数。例如,可以是将该随机种子A和该起始时隙的编号输入到上述第二函数中计算,获得随机数。进而确定添加扰动信号的次数。具体参考上述的描述,此处不赘述。然后,用随机种子B来确定添加的位置。例如,将该随机种子B、上述起始时隙编号和j输入到第三函数中计算,得到一个随机数。进而确定第j个扰动信号在第一测量信号中的时间位置。具体参考上述的描述,此处不赘述。
可以理解的是,上述第二节点将添加扰动信号后获得的第一测量信号发送给其它节点(例如上述第三节点)。为了使得该第三节点可以从该第一测量信号中恢复出去除扰动信号之后的信号,那么,该第三节点也可以按照与上述第二节点同样的处理方式确定该第一测量信号中添加扰动信号的次数和时间位置。进而在接收到该第一测量信号后可以过滤掉扰动信号。该第三节点中用于确定该第一测量信号中添加扰动信号的次数和时间位置的随机种子也是来自与主节点即上述第一节点,并且该随机种子与上述第二节点使用的随机种子相同。这样才能确定出该第一测量信号中添加扰动信号的次数和时间位置。
若上述第一测量信号为第二节点接收的信号,那么,第二节点处理该第一测量信号的具体实现可以参考上一段中第三节点的描述,此处不赘述。
上述增加该扰动信号后可以破坏测量信号的规律性,可以有效防止攻击者通过伪造测量信号来误导测量结果。具体来说,增加位置和次数都随机的扰动信号,可以在测量信号中增加随机性,使攻击者难以伪造包含扰动信号的测量信号。合法的接收端在收到的测量信号中包含伪造信号时,可以根据扰动信号的特征识别出测量信号中包含伪造的信号。例如,接收端在扰动信号位置检测扰动信号的存在性或者扰动信号的信噪比或扰动信号的其它特征,可以判断收到的测量信号中是否包含伪造的信号。而攻击者则难以确定扰动信号的次数和时间位置,因此难以在扰动信号的时间位置发送扰动信号,从而有效防止信号被伪造。
另一种可能的实现中,上述在第一测量信号中添加扰动信号的次数为L远小于上述时间单元的个数M。例如,该L只是该M的十分之一、二十分之一或者百分之一等等,本申请实施例对此不做限定。这种情况下,相比于上述分别计算每个时间单元中是否添加扰动信号的 实现方式,上述先基于第一随机种子确定第一测量信号中添加扰动信号的次数,再进一步确定每次添加的时间位置的实现方式,可以极大地节省计算资源。
一种可能的实施例中,上述第一节点向上述第二节点发送上述第四信息之后,第二节点是否基于该第四信息中指示的第一随机种子在上述第一测量信号中添加扰动信号可以由第一节点进一步指示。
一种可能的实现中,上述第四信息中除了指示上述第一随机种子信息,还可以包括指示是否在测量信号中添加扰动信号的信息。若该第四信息中指示在测量信号中添加扰动信息,那么,第二节点基于该第一随机种子在上述第一测量信号中添加扰动信号。若该第四信息中指示不在测量信号中添加扰动信息,那么,第二节点接收到第四信息后,可以先获取第一随机种子并保存,以等待后续的使用指示。
另一种可能的实现中,上述第一节点可以另外向上述第二节点发送信息指示是否在测量信号中添加扰动信号的信息。该信息可以是在上述发送上述第四信息之前或之后发送,本申请实施例不做限制。
由于在测量信号中添加扰动信息,需要计算添加的次数和时间位置,消耗较多的计算资源。本申请实施例通过主节点发信息指示的方式来确定是否在测量信息中添加扰动信号,可以在无需加扰的场景中节省节点的计算资源。
一种可能的实施例中,上述第二节点发送或接收的第一测量信号的初相可以是基于随机种子确定的。
在具体实施例中,上述第一节点可以向第二节点发送指示用于随机生成测量信号初相的随机种子的信息。为了便于后续的描述,将该信息简称为第五信息,将该随机种子简称为第二随机种子。下面以第一测量信号为第二节点接收的信号为例描述。
第二节点接收到上述第五信息后,获取上述第二随机种子。然后,基于该第二随机种子生成上述第一测量信号中的频率分量的初相。该初相即为发送对应频率分量的初始相位。
若该第一测量信号为单音信号,示例性地,可以将该第二随机种子输入到一个函数中(简称为第四函数),计算得到一个随机数(简称为第四随机数)。可以基于该第四随机数确定该单音信号的初相。例如,可以直接将该第四随机数作为该单音信号的初相的值。或者,例如,可以对该第四随机数进行进一步的处理,例如与某个预设的数进行计算后获得的数再作为该单音信号的初相的值。该与某个预设的数进行计算可以是与该某个预设的数进行加、减、乘、除或取模等运算。可以理解的是,此处仅为示例,不构成对本申请实施例的限制。上述第四函数可以是一个随机函数或者自定义的函数,本申请实施例也不做限制。
或者。另一种实现中可以将上述第二随机种子和上述第一时间资源的起始时隙编号输入到上述第四函数中,计算得到一个随机数。然后基于该随机数确定上述单音信号的初相。具体参考上一段的描述,此处不赘述。
若该第一测量信号为多音信号,那么,上述第二节点可以基于上述第二随机种子生成该多音信号的N个频率分量中每一个频率分量的初相。例如,可以将该第二随机种子和第k频率分量的编号k输入到一个函数中(简称为第五函数),或者可以将该第二随机种子、第k频率分量的编号k和上述第一时间资源的起始时隙编号输入到该第五函数中,计算得到一个随机数(简称为第k随机数)。基于该第k随机数确定该第k频率分量的初相。该k为1至 N之间的整数。例如,可以直接将该第k随机数作为该第k频率分量的初相的值。或者,例如,可以对该第k随机数进行进一步的处理,例如与某个预设的数进行计算后获得的数再作为该第k频率分量的初相的值。该与某个预设的数进行计算可以是与该某个预设的数进行加、减、乘、除或取模等运算。可以理解的是,此处仅为示例,不构成对本申请实施例的限制。上述第五函数可以是一个随机函数或者自定义的函数,本申请实施例也不做限制。
另一种可能的实现中,第二节点可以基于上述第二随机种子生成一个时间偏移量Δt。然后,基于该时间偏移量与预设的相位组合计算出上述N个频率分量中每一个频率分量的初相。
示例性地,可以将该第二随机种子输入到一个函数中(简称为第六函数),或者将该第二随机种子和上述第一时间资源的起始时隙编号一起输入到该第六函数中,计算得到一个随机数(简称为第六随机数)。可以基于该第六随机数确定该时间偏移量Δt。例如,可以直接将该第六随机数作为该时间偏移量Δt。或者,例如,可以对该第六随机数进行进一步的处理,例如与某个预设的数进行计算后获得的数再作为该时间偏移量Δt。该与某个预设的数进行计算可以是与该某个预设的数进行加、减、乘、除或取模等运算。可以理解的是,此处仅为示例,不构成对本申请实施例的限制。上述第六函数可以是一个随机函数或者自定义的函数,本申请实施例也不做限制。
上述预设的相位组合可以是第二节点生成上述第一测量信号对应的原始测量信号时,该原始测量信号中N个频率分量的相位(简称为生成相位)的组合。示例性地,该N个频率分量的生成相位可以是由协议或主节点配置好的,即预设的相位组合是协议或主节点配置好的。
那么,第二节点获得上述时间偏移量Δt后,可以通过如下公式计算出第k频率分量的初相:
Figure PCTCN2022115974-appb-000001
其中,
Figure PCTCN2022115974-appb-000002
表示第k频率分量的初相,f k表示第k频率分量的中心频率,
Figure PCTCN2022115974-appb-000003
表示第k频率分量的生成相位。
第二节点基于上述方式确定上述第一测量信号的各个频率分量的初相之后,按照该确定的初相来发送该第一测量信号。
可以理解的是,上述确定第一测量信号的各个频率分量的初相的实现仅为示例,不构成对本申请实施例的限制。本方案中通过随机改变该第一测量信号的初相,可以破坏该第一测量信号的规律性,降低测量信号被窃听的风险。另外,本申请实施例中,测量信号的初相随机,窃听者难以知道原始测量信号的相位,即使收到测量信号,也难以推测信道相位信息,进而难以窃听获取被测量节点位置。从而起到了保护的作用。
一种可能的实现中,上述第一随机种子可以与上述第二随机种子相同或者不同。示例性地,若该第一随机种子和第二随机种子相同,上述第四信息和第五信息可以是同一个信息。
综上所述,本方案中主节点可以确定节点发送或接收的测量信号的类型,并指示节点使用具体的类型的测量信号,使得该节点可以实现测距、测角或定位的测量。另外,本方案中还提供了在测量信号中加扰和随机设置测量信号的初相的方案,可以有效破坏测量信号的规律性,降低测量信号被伪造或窃听的风险。
上述主要对本申请实施例提供的测量信号的处理方法进行了介绍。可以理解的是,各个节点为了实现上述对应的功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本文中所公开的实施例描述的各示例的单元及步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技 术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法示例对节点进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图6示出了装置600的一种可能的逻辑结构示意图。该装置600可以是上述第一节点,或者可以是该第一节点中的芯片,或者可以是该第一节点中的处理系统等。该装置600包括确定单元601和发送单元602。其中:
确定单元601,用于确定第二节点发送和/或接收的测量信号的类型;该装置600为主节点,该第二节点为从节点;该第二节点为测量节点或被测量节点;该测量为对被测量节点的测距、测角或定位;该确定单元601可以用于执行上述图3中S301中的确定操作。
发送单元602,用于向该第二节点发送第一信息;该第一信息用于指示该测量信号的类型;该测量信号的类型包括单音信号或多音信号。该发送单元602可以用于执行上述图3中S302中的发送操作。
一种可能的实现中,该发送单元602,还用于向该第二节点发送第二信息;该第二信息用于指示如下的一项或多项:
该测量信号中同时传输的频率分量的数量N,该N为大于或等于1的整数;
该测量信号的频率分量之间的频率间隔;
该测量信号的调制方式。
一种可能的实现中,该装置600还包括接收单元,用于接收来自该第二节点的第二信息;该第二信息用于指示该第二节点发送和/或接收测量信号的能力,该能力用于确定该测量信号的类型。
一种可能的实现中,该装置600还包括获取单元,用于获取该测量的性能需求,该性能需求包括以下至少一种:测距精度、定位精度、测角精度、测距时延、定位时延、测角时延、测距量程或测角范围。
一种可能的实现中,该发送单元602还用于:
向该第二节点发送第三信息;该第三信息用于指示第一随机种子;该第一随机种子用于确定扰动信号在该测量信号中被添加的次数和/或时间位置。
一种可能的实现中,该扰动信号为原始信号的反相信号。
一种可能的实现中,该发送单元602还用于:
向该第二节点发送第四信息;该第四信息用于指示第二随机种子;该第二随机种子用于确定该测量信号中的频率分量的初相。
一种可能的实现中,在该测量信号为多音信号的情况下,
该第二随机种子用于生成该测量信号中每一个频率分量的初相;或者,
该第二随机种子用于生成时间偏移量,该测量信号中每一个频率分量的初相由该时间偏移量和预设的相位组合确定。
一种可能的实现中,该发送单元602还用于:
向该第二节点发送第六信息,该第六信息用于指示是否在该测量信号中添加扰动信号, 和/或指示是否随机化该测量信号的初相。
图6所示装置600中各个单元的具体操作以及有益效果可以参见上述图3所述方法及其可能的实施方式中的描述,此处不再赘述。
在采用对应各个功能划分各个功能模块的情况下,图7示出了装置700的一种可能的逻辑结构示意图。该装置700可以是上述第二节点,或者可以是该第二节点中的芯片,或者可以是该第二节点中的处理系统等。该装置700包括接收单元701和通信单元702。其中:
接收单元701,用于接收来自第一节点的第一信息,该第一信息用于指示该装置700发送和/或接收的测量信号的类型;该测量信号的类型包括单音信号或多音信号;该第一节点为主节点,该装置700为从节点;该装置700为测量节点或被测量节点;该测量为对被测量节点的测距、测角或定位;该接收单元701可以用于执行上述图3中S303中的接收操作。
通信单元702,用于发送或接收第一测量信号,该第一测量信号用于该测量。该通信单元702可以用于执行上述图3中S304中的发送或接收操作。
一种可能的实现中,该第一信息用于指示该装置700发送和/或接收的测量信号的类型,包括:该第一信息用于指示如下的一项或多项:
该测量信号中同时传输的频率分量的数量N,该N为大于或等于1的整数;
该测量信号的频率分量之间的频率间隔;
该测量信号的调制方式。
一种可能的实现中,该装置700还包括发送单元,用于向该第一节点发送第二信息;该第二信息用于指示该装置700发送和/或接收测量信号的能力。
一种可能的实现中,该装置700还包括发送单元,用于向该第一节点发送性能需求指示信息;该性能需求指示信息用于指示该测量的性能需求,该性能需求包括以下至少一种:测距精度、定位精度、测角精度、测距时延、定位时延、测角时延、测距量程或测角范围。
一种可能的实现中,该接收单元701还用于:
接收来自该第一节点的第三信息;该第三信息用于指示第一随机种子;该第一随机种子用于确定扰动信号在该第一测量信号中被添加的次数和/或时间位置。
一种可能的实现中,该扰动信号为原始信号的反相信号。
一种可能的实现中,该第一测量信号在第一时间资源上传输,该第一时间资源中至少包括M个时间单元,该M为大于1的整数;
该M个时间单元中第i时间单元是否传输扰动信号根据该第一随机种子、该第一时间资源和该i确定,i为1到M中的任一个整数。
一种可能的实现中,该第一测量信号在第一时间资源上传输,该第一时间资源中至少包括M个时间单元,该M为大于1的整数;
该第一测量信号中该扰动信号的次数为L,该L为大于0小于M的整数;该L为基于该第一随机种子和该第一时间资源确定;
该L个扰动信号中的第j个扰动信号在该第一测量信号中的时间位置,基于该第一随机种子、该第一时间资源和该j确定,该j为大于0且小于或等于L的整数。
一种可能的实现中,该时间单元的长度根据以下至少一种确定:
该时间资源中的一个或多个符号的长度;
跳频频点间隔;
多个频率分量的频率间隔。
一种可能的实现中,该接收单元701还用于:
接收第四信息;该第四信息用于指示第二随机种子;该第二随机种子用于确定该第一测量信号中的频率分量的初相。
一种可能的实现中,在该第一测量信号为多音信号的情况下,
该第二随机种子用于生成该第一测量信号中每一个频率分量的初相;或者,
该第二随机种子用于生成时间偏移量,该第一测量信号中每一个频率分量的初相由该时间偏移量和预设的相位组合确定。
一种可能的实现中,该接收单元701还用于:
接收来自该第一节点的第六信息,该第六信息用于指示是否在该第一测量信号中添加扰动信号,和/或指示是否随机化该第一测量信号的初相。
图7所示装置700中各个单元的具体操作以及有益效果可以参见上述图3所述方法及其可能的实施方式中的描述,此处不再赘述。
图8所示为本申请提供的装置800的一种可能的硬件结构示意图。该装置800可以是上述实施例所述方法中的第一节点,或者可以是该第一节点中的芯片,或者可以是该第一节点中的处理系统等。该装置800包括:处理器801、存储器802和通信端口803。处理器801、通信端口803以及存储器802可以相互连接或者通过总线804相互连接。
示例性的,存储器802用于存储装置800的计算机程序和数据,存储器802可以包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM)等。
上述用于实现图3所示方法的全部或部分单元的功能所需的软件或程序代码存储在存储器802中。
如果是部分单元的功能所需的软件或程序代码存储在存储器802中,则处理器801除了调用存储器802中的程序代码实现部分功能外,还可以配合其他部件(如通信端口803)共同完成图3所示方法所描述的其他功能(如接收信息的功能)。
通信端口803的个数可以为多个,用于支持装置800进行通信,例如接收或发送数据、信号或信令等。
示例性的,处理器801可以是中央处理器单元、通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。处理器801可以用于读取上述存储器802中存储的程序,执行上述图3所述的方法以及可能的实施方式中第一节点所做的操作。例如,该处理器801可以执行如下操作:
确定第二节点发送和/或接收的测量信号的类型;该第一节点为主节点,该第二节点为从节点;该第二节点为测量节点或被测量节点;该测量为对被测量节点的测距、测角或定位;
通过通信接口向该第二节点发送第一信息;该第一信息用于指示该测量信号的类型;该测量信号的类型包括单音信号或多音信号。
图8所示装置800所执行的具体操作以及有益效果可以参见上述图3所述方法及其可能 的实施方式中的描述,此处不再赘述。
图9所示为本申请提供的装置900的一种可能的硬件结构示意图。该装置900可以是上述实施例所述方法中的第二节点,或者可以是该第二节点中的芯片,或者可以是该第二节点中的处理系统等。该装置900包括:处理器901、存储器902和通信端口903。处理器901、通信端口903以及存储器902可以相互连接或者通过总线904相互连接。
示例性的,存储器902用于存储装置900的计算机程序和数据,存储器902可以包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM)等。
上述用于实现图3所示方法的全部或部分单元的功能所需的软件或程序代码存储在存储器902中。
如果是部分单元的功能所需的软件或程序代码存储在存储器902中,则处理器901除了调用存储器902中的程序代码实现部分功能外,还可以配合其他部件(如通信端口903)共同完成图3所示方法所描述的其他功能(如接收信息的功能)。
通信端口903的个数可以为多个,用于支持装置900进行通信,例如接收或发送数据、信号或信令等。
示例性的,处理器901可以是中央处理器单元、通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。处理器901可以用于读取上述存储器902中存储的程序,执行上述图3所述的方法以及可能的实施方式中第二节点所做的操作。例如,该处理器901可以执行如下操作:
通过通信接口接收来自第一节点的第一信息,前述第一信息用于指示前述第二节点发送和/或接收的测量信号的类型;前述测量信号的类型包括单音信号或多音信号;前述第一节点为主节点,前述第二节点为从节点;前述第二节点为测量节点或被测量节点;前述测量为对被测量节点的测距、测角或定位;
通过通信接口发送或接收第一测量信号,前述第一测量信号用于前述测量。
图9所示装置900所执行的具体操作以及有益效果可以参见上述图3所述方法及其可能的实施方式中的描述,此处不再赘述。
本申请实施例还提供一种芯片,该芯片包括处理器,其中,该处理器用于执行存储器中存储的计算机程序或计算机指令,使得该芯片执行上述图3及其可能的方法实施例中任一实施例所述方法中第一节点所做的操作。
本申请实施例还提供一种芯片,该芯片包括处理器,其中,该处理器用于执行存储器中存储的计算机程序或计算机指令,使得该芯片执行上述图3及其可能的方法实施例中任一实施例所述方法中第二节点所做的操作。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行以实现上述图3及其可能的方法实施例中任一实施例所述方法中第一节点所做的操作。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行以实现上述图3及其可能的方法实施例中任一实施例所述方法中第二节点所做的操作。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品被计算机读取并执行时,上述图3及其可能的方法实施例中任一实施例所述方法中第一节点所做的操作将被执行。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品被计算机读取并执行时,上述图3及其可能的方法实施例中任一实施例所述方法中第二节点所做的操作将被执行。
综上所述,本方案中主节点可以确定节点发送或接收的测量信号的类型,并指示节点使用具体的类型的测量信号,使得该节点可以实现测距、测角或定位的测量。另外,本方案中还提供了在测量信号中加扰和随机设置测量信号的初相的方案,可以有效破坏测量信号的规律性,降低测量信号被伪造或窃听的风险。
需要说明的是,本申请中采用诸如“第一”、“第二”的前缀词,仅仅为了区分不同的描述对象,对被描述对象的位置、顺序、优先级、数量或内容等没有任何限定作用。例如,被描述对象为“字段”,则“第一字段”和“第二字段”中“字段”之前的序数词并不限制“字段”之间的位置或顺序,“第一”和“第二”并不限制其修饰的“字段”是否在同一个消息中,也不限制“第一字段”和“第二字段”的先后顺序。再如,被描述对象为“等级”,则“第一等级”和“第二等级”中“等级”之前的序数词并不限制“等级”之间的优先级。再如,被描述对象的数量并不受前缀词的限制,可以是一个或者多个,以“第一设备”为例,其中“设备”的数量可以是一个或者多个。此外,不同前缀词修饰的对象可以相同或不同,例如,被描述对象为“设备”,则“第一设备”和“第二设备”可以是同一个设备、相同类型的设备或者不同类型的设备;再如,被描述对象为“信息”,则“第一信息”和“第二信息”可以是相同内容的信息或者不同内容的信息。例如,在不脱离各种所述示例的范围的情况下,第一节点可以被称为第二节点,并且类似地,第二节点可以被称为第一节点。第一节点和第二节点都可以是节点,并且在某些情况下,可以是单独且不同的节点。总之,本申请实施例中对用于区分描述对象的前缀词的使用不构成对所描述对象的限制,对所描述对象的陈述参见权利要求或实施例中上下文的描述,不应因为使用这种前缀词而构成多余的限制。
需要说明的是,本申请实施例中采用诸如“a1、a2、……和an中的至少一项(或至少一个)”等的描述方式,包括了a1、a2、……和an中任意一个单独存在的情况,也包括了a1、a2、……和an中任意多个的任意组合情况,每种情况可以单独存在。例如,“a、b和c中的至少一项”的描述方式,包括了单独a、单独b、单独c、a和b组合、a和c组合、b和c组合,或abc三者组合的情况。
还应理解,在本申请实施例的各个实施例中,各个过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,术语“包括”(也称“includes”、“including”、“comprises”和/或“comprising”)当在本说明书中使用时指定存在所陈述的特征、整数、步骤、操作、元素、和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元素、部件、和/或其分组。
还应理解,说明书通篇中提到的“一个实施例”、“一实施例”、“一种可能的实现方 式”意味着与实施例或实现方式有关的特定特征、结构或特性包括在本申请实施例的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”、“一种可能的实现方式”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (45)

  1. 一种测量信号的处理方法,其特征在于,所述方法包括:
    第一节点确定第二节点发送和/或接收的测量信号的类型;所述第一节点为主节点,所述第二节点为从节点;所述第二节点为测量节点或被测量节点;所述测量为对被测量节点的测距、测角或定位;
    所述第一节点向所述第二节点发送第一信息;所述第一信息用于指示所述测量信号的类型;所述测量信号的类型包括单音信号或多音信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一节点向所述第二节点发送第二信息,所述第二信息用于指示如下的一项或多项:
    所述测量信号中同时传输的频率分量的数量N,所述N为大于或等于1的整数;
    所述测量信号的频率分量之间的频率间隔;
    所述测量信号的调制方式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一节点接收来自所述第二节点的第三信息;所述第三信息用于指示所述第二节点发送和/或接收测量信号的能力。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一节点获取所述测量的性能需求;所述性能需求包括以下至少一种:测距精度、定位精度、测角精度、测距时延、定位时延、测角时延、测距量程或测角范围。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点向所述第二节点发送第四信息;所述第四信息用于指示第一随机种子;所述第一随机种子用于确定扰动信号在所述测量信号中被添加的次数和/或时间位置。
  6. 根据权利要求5所述的方法,其特征在于,所述扰动信号为原始信号的反相信号。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点向所述第二节点发送第五信息;所述第五信息用于指示第二随机种子;所述第二随机种子用于确定所述测量信号中的频率分量的初相。
  8. 根据权利要求7所述的方法,其特征在于,在所述测量信号为多音信号的情况下,
    所述第二随机种子用于生成所述测量信号中每一个频率分量的初相;或者,
    所述第二随机种子用于生成时间偏移量,所述测量信号中每一个频率分量的初相由所述时间偏移量和预设的相位组合确定。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点向所述第二节点发送第六信息,所述第六信息用于指示是否在所述测量信号中添加扰动信号,和/或指示是否随机化所述测量信号的初相。
  10. 一种测量信号的处理方法,其特征在于,所述方法包括:
    第二节点接收来自第一节点的第一信息,所述第一信息用于指示所述第二节点发送和/或接收的测量信号的类型;所述测量信号的类型包括单音信号或多音信号;所述第一节点为主节点,所述第二节点为从节点;所述第二节点为测量节点或被测量节点;所述测量为对被测量节点的测距、测角或定位;
    所述第二节点发送或接收第一测量信号,所述第一测量信号用于所述测量。
  11. 根据权利要求10所述的方法,其特征在于,所述第二节点接收来自所述第一节点的第二信息,所述第二信息用于指示如下的一项或多项:
    所述测量信号中同时传输的频率分量的数量N,所述N为大于或等于1的整数;
    所述测量信号的频率分量之间的频率间隔;
    所述测量信号的调制方式。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述第二节点向所述第一节点发送第三信息;所述第三信息用于指示所述第二节点发送和/或接收测量信号的能力。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点向所述第一节点发送性能需求指示信息;所述性能需求包括以下至少一种:测距精度、定位精度、测角精度、测距时延、定位时延、测角时延、测距量程或测角范围。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点接收来自所述第一节点的第四信息;所述第四信息用于指示第一随机种子;所述第一随机种子用于确定扰动信号在所述第一测量信号中被添加的次数和/或时间位置。
  15. 根据权利要求14所述的方法,其特征在于,所述扰动信号为原始信号的反相信号。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一测量信号在第一时间资源上传输,所述第一时间资源中至少包括M个时间单元,所述M为大于1的整数;
    所述M个时间单元中第i时间单元是否传输扰动信号根据所述第一随机种子、所述第一时间资源和所述i确定,i为1到M中的任一个整数。
  17. 根据权利要求14或15所述的方法,其特征在于,所述第一测量信号在第一时间资源上传输,所述第一时间资源中至少包括M个时间单元,所述M为大于1的整数;
    所述第一测量信号中所述扰动信号的次数为L,所述L为大于0小于M的整数;所述L为基于所述第一随机种子和所述第一时间资源确定;
    所述L个扰动信号中的第j个扰动信号在所述第一测量信号中的时间位置,基于所述第一随机种子、所述第一时间资源和所述j确定,所述j为大于0且小于或等于L的整数。
  18. 根据权利要求16或17所述的方法,其特征在于,所述时间单元的长度根据以下至少一种确定:
    所述时间资源中的一个或多个符号的长度;
    跳频频点间隔;
    多个频率分量的频率间隔。
  19. 根据权利要求10-18任一项所述的方法,其特征在于,所述方法包括:
    所述第一节点接收第五信息;所述第五信息用于指示第二随机种子;所述第二随机种子用于确定所述第一测量信号中的频率分量的初相。
  20. 根据权利要求19所述的方法,其特征在于,在所述第一测量信号为多音信号的情况下,
    所述第二随机种子用于生成所述第一测量信号中每一个频率分量的初相;或者,
    所述第二随机种子用于生成时间偏移量,所述第一测量信号中每一个频率分量的初相由所述时间偏移量和预设的相位组合确定。
  21. 根据权利要求10-20任一项所述的方法,其特征在于,所述方法包括:
    所述第二节点接收来自所述第一节点的第六信息,所述第六信息用于指示是否在所述第一测量信号中添加扰动信号,和/或指示是否随机化所述第一测量信号的初相。
  22. 一种测量信号的处理装置,其特征在于,所述装置包括:
    确定单元,用于确定第二节点发送和/或接收的测量信号的类型;所述装置为主节点,所述第二节点为从节点;所述第二节点为测量节点或被测量节点;所述测量为对被测量节点的测距、测角或定位;
    发送单元,用于向所述第二节点发送第一信息;所述第一信息用于指示所述测量信号的类型;所述测量信号的类型包括单音信号或多音信号。
  23. 根据权利要求22所述的装置,其特征在于,所述发送单元,还用于向所述第二节点发送第二信息;所述第二信息用于指示如下的一项或多项:
    所述测量信号中同时传输的频率分量的数量N,所述N为大于或等于1的整数;
    所述测量信号的频率分量之间的频率间隔;
    所述测量信号的调制方式。
  24. 根据权利要求22或23所述的装置,其特征在于,所述装置还包括接收单元,用于接收来自所述第二节点的第三信息;所述第三信息用于指示所述第二节点发送和/或接收测量信号的能力。
  25. 根据权利要求22-24任一项所述的装置,其特征在于,所述装置还包括获取单元,用于获取所述测量的性能需求;所述性能需求包括以下至少一种:测距精度、定位精度、测角精度、测距时延、定位时延、测角时延、测距量程或测角范围。
  26. 根据权利要求22-25任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述第二节点发送第四信息;所述第四信息用于指示第一随机种子;所述第一随机种子用于确定扰动信号在所述测量信号中被添加的次数和/或时间位置。
  27. 根据权利要求26所述的装置,其特征在于,所述扰动信号为原始信号的反相信号。
  28. 根据权利要求22-27任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述第二节点发送第五信息;所述第五信息用于指示第二随机种子;所述第二随机种子用于确定所述测量信号中的频率分量的初相。
  29. 根据权利要求28所述的装置,其特征在于,在所述测量信号为多音信号的情况下,
    所述第二随机种子用于生成所述测量信号中每一个频率分量的初相;或者,
    所述第二随机种子用于生成时间偏移量,所述测量信号中每一个频率分量的初相由所述时间偏移量和预设的相位组合确定。
  30. 根据权利要求22-29任一项所述的装置,其特征在于,所述发送单元还用于:
    向所述第二节点发送第六信息,所述第六信息用于指示是否在所述测量信号中添加扰动信号,和/或指示是否随机化所述测量信号的初相。
  31. 一种测量信号的处理装置,其特征在于,所述装置包括:
    接收单元,用于接收来自第一节点的第一信息,所述第一信息用于指示所述装置发送和/或接收的测量信号的类型;所述测量信号的类型包括单音信号或多音信号;所述第一节点为主节点,所述装置为从节点;所述装置为测量节点或被测量节点;所述测量为对被测量节点的测距、测角或定位;
    通信单元,用于发送或接收第一测量信号,所述第一测量信号用于所述测量。
  32. 根据权利要求31所述的装置,其特征在于,所述第一信息用于指示所述装置发送和/或接收的测量信号的类型,包括:所述第一信息用于指示如下的一项或多项:
    所述测量信号中同时传输的频率分量的数量N,所述N为大于或等于1的整数;
    所述测量信号的频率分量之间的频率间隔;
    所述测量信号的调制方式。
  33. 根据权利要求31或32所述的装置,其特征在于,所述装置还包括发送单元,用于向所述第一节点发送第三信息;所述第三信息用于指示所述装置发送和/或接收测量信号的能力。
  34. 根据权利要求31-33任一项所述的装置,其特征在于,所述装置还包括发送单元,用于向所述第一节点发送性能需求指示信息;所述性能需求包括以下至少一种:测距精度、定位精度、测角精度、测距时延、定位时延、测角时延、测距量程或测角范围。
  35. 根据权利要求31-34任一项所述的装置,其特征在于,所述接收单元还用于:
    接收来自所述第一节点的第四信息;所述第四信息用于指示第一随机种子;所述第一随机种子用于确定扰动信号在所述第一测量信号中被添加的次数和/或时间位置。
  36. 根据权利要求35所述的装置,其特征在于,所述扰动信号为原始信号的反相信号。
  37. 根据权利要求35或36所述的装置,其特征在于,所述第一测量信号在第一时间资源上传输,所述第一时间资源中至少包括M个时间单元,所述M为大于1的整数;
    所述M个时间单元中第i时间单元是否传输扰动信号根据所述第一随机种子、所述第一时间资源和所述i确定,i为1到M中的任一个整数。
  38. 根据权利要求34或36所述的装置,其特征在于,所述第一测量信号在第一时间资源上传输,所述第一时间资源中至少包括M个时间单元,所述M为大于1的整数;
    所述第一测量信号中所述扰动信号的次数为L,所述L为大于0小于M的整数;所述L为基于所述第一随机种子和所述第一时间资源确定;
    所述L个扰动信号中的第j个扰动信号在所述第一测量信号中的时间位置,基于所述第一随机种子、所述第一时间资源和所述j确定,所述j为大于0且小于或等于L的整数。
  39. 根据权利要求37或38所述的装置,其特征在于,所述时间单元的长度根据以下至少一种确定:
    所述时间资源中的一个或多个符号的长度;
    跳频频点间隔;
    多个频率分量的频率间隔。
  40. 根据权利要求31-39任一项所述的装置,其特征在于,所述接收单元还用于:
    接收第五信息;所述第五信息用于指示第二随机种子;所述第二随机种子用于确定所述第一测量信号中的频率分量的初相。
  41. 根据权利要求40所述的装置,其特征在于,在所述第一测量信号为多音信号的情况下,
    所述第二随机种子用于生成所述第一测量信号中每一个频率分量的初相;或者,
    所述第二随机种子用于生成时间偏移量,所述第一测量信号中每一个频率分量的初相由所述时间偏移量和预设的相位组合确定。
  42. 根据权利要求31-41任一项所述的装置,其特征在于,所述接收单元还用于:
    接收来自所述第一节点的第六信息,所述第六信息用于指示是否在所述第一测量信号中添加扰动信号,和/或指示是否随机化所述第一测量信号的初相。
  43. 一种测量信号的处理装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,使得所 述装置执行如权利要求1-9任一项所述的方法;或者,使得所述装置执行如权利要求10-21任一项所述的方法。
  44. 一种通信系统,其特征在于,所述通信系统包括第一节点和第二节点,所述第一节点为上述权利要求22-30任一项所述的测量信号的处理装置,所述第二节点为上述权利要求31-42任一项所述的测量信号的处理装置。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现权利要求1至9任意一项所述的方法;
    或者,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现权利要求10至21任意一项所述的方法。
PCT/CN2022/115974 2022-08-30 2022-08-30 测量信号的处理方法及装置 WO2024044992A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115974 WO2024044992A1 (zh) 2022-08-30 2022-08-30 测量信号的处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115974 WO2024044992A1 (zh) 2022-08-30 2022-08-30 测量信号的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2024044992A1 true WO2024044992A1 (zh) 2024-03-07

Family

ID=90100236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115974 WO2024044992A1 (zh) 2022-08-30 2022-08-30 测量信号的处理方法及装置

Country Status (1)

Country Link
WO (1) WO2024044992A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448088A (zh) * 2010-09-30 2012-05-09 华为技术有限公司 测量资源指示的方法、测量方法和装置
CN104170434A (zh) * 2013-01-18 2014-11-26 华为技术有限公司 一种测量方法、装置及通信节点
US20180049196A1 (en) * 2016-08-09 2018-02-15 Qualcomm Incorporated Combination of single-tone and multiple-tone signaling in sidelink communications
CN107942321A (zh) * 2017-11-21 2018-04-20 中国电子科技集团公司第四十研究所 一种基于fpga的侧音测距中的测距音处理方法
CN108020830A (zh) * 2017-12-05 2018-05-11 中国人民解放军陆军工程大学 基于时频矩阵的跳频测距方法及系统
CN108337681A (zh) * 2017-12-29 2018-07-27 天津理工大学 一种基于信道状态特征的无线网络Sybil攻击的检测方法
CN110740020A (zh) * 2018-07-19 2020-01-31 中兴通讯股份有限公司 信号传输方法、装置、设备及计算机存储介质
CN113014337A (zh) * 2021-02-20 2021-06-22 展讯通信(上海)有限公司 通信终端的测试方法及装置、存储介质、控制终端、测试系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448088A (zh) * 2010-09-30 2012-05-09 华为技术有限公司 测量资源指示的方法、测量方法和装置
CN104170434A (zh) * 2013-01-18 2014-11-26 华为技术有限公司 一种测量方法、装置及通信节点
US20180049196A1 (en) * 2016-08-09 2018-02-15 Qualcomm Incorporated Combination of single-tone and multiple-tone signaling in sidelink communications
CN107942321A (zh) * 2017-11-21 2018-04-20 中国电子科技集团公司第四十研究所 一种基于fpga的侧音测距中的测距音处理方法
CN108020830A (zh) * 2017-12-05 2018-05-11 中国人民解放军陆军工程大学 基于时频矩阵的跳频测距方法及系统
CN108337681A (zh) * 2017-12-29 2018-07-27 天津理工大学 一种基于信道状态特征的无线网络Sybil攻击的检测方法
CN110740020A (zh) * 2018-07-19 2020-01-31 中兴通讯股份有限公司 信号传输方法、装置、设备及计算机存储介质
CN113014337A (zh) * 2021-02-20 2021-06-22 展讯通信(上海)有限公司 通信终端的测试方法及装置、存储介质、控制终端、测试系统

Similar Documents

Publication Publication Date Title
US20220077886A1 (en) Backscatter Communication Method, Excitation Device, Backscatter Device, and Receiving Device
CN109803407B (zh) 一种上行控制信道的资源配置方法和装置
US11757688B2 (en) Sequence-based signal processing method and apparatus
WO2018228568A1 (zh) 无线通信方法和无线通信装置
WO2020001532A1 (zh) 定位参考信号配置方法、网络侧设备和终端设备
WO2021032017A1 (zh) 通信方法和装置
EP3614782A1 (en) Data transmission method and communication device
CN108631986A (zh) 一种确定下行控制信道dmrs资源的方法和装置
KR20230027263A (ko) 물리적 다운링크 제어 채널 반복 수신을 위한 사용자 장비 복잡성 감소
US11464032B2 (en) Sequence-based signal processing method and apparatus
WO2021046724A1 (zh) 一种参考信号发送、信号检测方法及装置
Lee et al. Frequency diversity-aware Wi-Fi using OFDM-based Bloom filters
WO2024044992A1 (zh) 测量信号的处理方法及装置
WO2023236805A1 (zh) 信息交互方法及相关装置
CN112019473B (zh) 生成序列的方法和装置
CN113162881B (zh) 一种序列的生成及处理方法和装置
JP7414960B2 (ja) 通信方法及び機器
WO2019096147A1 (zh) 一种控制信息的检测方法及装置
CN114503487A (zh) 一种通信方法及装置
WO2023142970A1 (zh) Uwb中的测距方法、装置及可读存储介质
WO2023142120A1 (zh) 通信方法、装置、设备、芯片、存储介质、产品及程序
US20230171642A1 (en) Method and device for uwb communication
WO2024087223A1 (zh) 通信方法及装置
WO2023202667A1 (zh) 一种参考信号传输方法、装置及存储介质
WO2024109638A1 (zh) 信号传输方法、装置、信号发送节点及信号接收节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956824

Country of ref document: EP

Kind code of ref document: A1