WO2021046724A1 - 一种参考信号发送、信号检测方法及装置 - Google Patents

一种参考信号发送、信号检测方法及装置 Download PDF

Info

Publication number
WO2021046724A1
WO2021046724A1 PCT/CN2019/105198 CN2019105198W WO2021046724A1 WO 2021046724 A1 WO2021046724 A1 WO 2021046724A1 CN 2019105198 W CN2019105198 W CN 2019105198W WO 2021046724 A1 WO2021046724 A1 WO 2021046724A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic shift
reference signal
time unit
system frame
time slot
Prior art date
Application number
PCT/CN2019/105198
Other languages
English (en)
French (fr)
Inventor
位祎
李雪茹
曲秉玉
赵淼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19944848.1A priority Critical patent/EP4068714B1/en
Priority to CN201980099949.2A priority patent/CN114365458B/zh
Priority to PCT/CN2019/105198 priority patent/WO2021046724A1/zh
Publication of WO2021046724A1 publication Critical patent/WO2021046724A1/zh
Priority to US17/690,738 priority patent/US11882071B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a method and device for reference signal transmission and signal detection.
  • uplink reference signals such as uplink demodulation reference signal (DMRS) and uplink sounding reference signal (SRS)
  • DMRS uplink demodulation reference signal
  • SRS uplink sounding reference signal
  • the sequence of) is a sequence generated by using a base sequence (Base Sequence), and the base sequence may be a sequence generated by a ZC (Zadoff-Chu) sequence, such as the ZC sequence itself, or a sequence generated by the ZC sequence through cyclic shift.
  • base sequence may be a sequence generated by a ZC (Zadoff-Chu) sequence, such as the ZC sequence itself, or a sequence generated by the ZC sequence through cyclic shift.
  • different cyclic shift values can be used to obtain different reference signals.
  • the base station can assign different cyclic shift values to different terminal devices to ensure the orthogonality between the reference signals sent by different terminal devices, so that there is no interference between the reference signals sent by different terminal devices .
  • the interference between the reference signals obtained by using the same or different cyclic shift values is not zero. That is to say, when different terminal devices send reference signals based on different base sequences on the same time-frequency resource, these reference signals will interfere with each other.
  • a cyclic shift hopping (cyclic shift hopping) technology is introduced.
  • the uplink cyclic shift hopping pattern is the same, which may cause the reference signal of any two terminal equipment to be different from each other.
  • the interference is unchanged, and the effect of randomization of the interference cannot be achieved, resulting in poor performance of channel time domain filtering.
  • the purpose of the embodiments of the present application is to provide a reference signal transmission and signal detection method and device to solve the problem of how to reduce interference between reference signals sent by terminal equipment.
  • an embodiment of the present application provides a reference signal sending method, including: determining an initial seed parameter of a pseudo-random sequence, and generating the aforementioned pseudo-random sequence according to the initial seed parameter; the initial seed parameter is based on the attribute information of the terminal device Determined; determine the cyclic shift value according to the pseudo-random sequence, and determine the reference signal according to the cyclic shift value; send the reference signal to the network device.
  • an embodiment of the present application provides a signal detection method, including: determining an initial seed parameter of a pseudo-random sequence, and generating a pseudo-random sequence according to the initial seed parameter; the initial seed parameter is determined according to the attribute information of the terminal device ; Determine the cyclic shift value according to the pseudo-random sequence, and determine the reference signal according to the cyclic shift value; use the reference signal to detect the signal from the terminal device.
  • the initial seed parameter of the pseudo-random sequence used to determine the cyclic shift value is determined according to the attribute information of the terminal device.
  • the attribute information of the terminal device is unique information of the terminal device, so different terminal devices are used to determine The pseudo-random sequence of the cyclic shift value is different.
  • the difference between the cyclic shift values used by any two terminal devices in the cell to determine the reference signal can be randomized.
  • interference between reference signals sent between terminal devices can be reduced, the effect of interference randomization can be realized, and the channel time domain filtering performance can be improved.
  • the attribute information includes a root index for determining the ZC sequence used by the reference signal.
  • the attribute information includes the sequence identifier of the reference signal.
  • the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • Is the time slot number in the current system frame of the time slot for sending the reference signal; Is the number of orthogonal frequency division multiplexing OFDM symbols in a slot; l is the symbol number of the symbol for sending the reference signal in the current slot, Where l 0 corresponds to the first symbol in the current time slot; Z is a positive integer; ⁇ init is the initial value of the cyclic shift that is predefined or configured by the network device; T is a positive integer; c( ⁇ ) is a false Random sequence.
  • the cyclic shift value of the reference signal sent by the terminal device in the same system frame can be randomized, so that any two terminal devices that use different ZC sequences to determine the reference signal can be randomized in the same system frame. Interference, to improve the performance of reference signal time-domain filtering, and improve the accuracy of channel estimation.
  • the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • n SRS is the count value of the reference signal counter
  • Z is a positive integer
  • ⁇ init is the initial value of the cyclic shift predefined or configured by the network device
  • T is a positive integer
  • c( ⁇ ) is a pseudo-random sequence.
  • the cyclic shift value of the reference signal sent by the terminal device on the same frequency domain resource two or more times can be randomized, so that any two terminal devices that use different ZC sequences to determine the reference signal can be randomized. Interference between reference signals sent on the same time-frequency resource one or more times can improve the performance of time-domain filtering of the reference signal and improve the accuracy of channel estimation.
  • the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • the cyclic shift value of the reference signal sent by the terminal device in any two reference signal transmission periods can be randomized, so that it can be randomized between the reference signals of any two terminal devices that use different ZC sequences to determine the reference signal.
  • the interference to improve the performance of reference signal time-domain filtering and improve the accuracy of channel estimation.
  • the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • Is the number of the time slot in the current system frame of the time slot where the reference signal is sent; n f is the number of the system frame; Is the number of time slots in each system frame; l is the symbol number of the symbol sending the reference signal in the current time slot, Where l 0 corresponds to the first symbol in the current time slot; Z is a positive integer; ⁇ init is the initial value of the cyclic shift predefined or configured by the network device; T is a positive integer; S is a positive integer; c ( ⁇ ) is a pseudo-random sequence.
  • the cyclic shift value of the reference signal sent by the terminal device on any two or more symbols can be randomized, so that any two terminal devices that use different ZC sequences to determine the reference signal can be randomized.
  • interference between reference signals sent on multiple symbols can improve the performance of time-domain filtering of reference signals and improve the accuracy of channel estimation.
  • Z is Is the maximum cyclic shift value.
  • the present application also provides a communication device having any method provided in the first aspect or the second aspect.
  • the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes a processor configured to support the communication device to perform corresponding functions of the terminal device or the network device in the above-mentioned method.
  • the communication device may also include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, and the communication interface is used to support communication between the communication device and a device such as a second device.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform the corresponding functions in the foregoing method examples.
  • a processing unit and a communication unit can perform the corresponding functions in the foregoing method examples.
  • these units can perform the corresponding functions in the foregoing method examples.
  • the present application also provides a reference signal sending method, including: determining a cyclic shift value; wherein the cyclic shift value is determined according to a first frequency hopping parameter, and the first frequency hopping parameter is determined according to a first time unit
  • the information of is determined from the first pattern, and the first pattern includes at least two frequency hopping parameters; or, the cyclic shift value is determined based on the first cyclic shift step size and the information of the first time unit; or, cyclic The shift value is determined based on the first initial cyclic shift step size, the first cyclic shift step difference, and the information of the first time unit, where the information of the first time unit includes the system frame number where the first time unit is located and / Or the number of the time slot where the first time unit is located; the first time unit is the time unit for sending the reference signal; the reference signal is determined according to the cyclic shift value, and the reference signal is sent to the network device in the first time unit.
  • the present application also provides a signal detection method, including: determining a cyclic shift value of a reference signal; wherein the cyclic shift value is determined according to the first frequency hopping parameter, and the first frequency hopping parameter is determined according to the first frequency hopping parameter.
  • the information of the time unit is determined from the first pattern, and the first pattern includes at least two frequency hopping parameters; or, the cyclic shift value is determined based on the first cyclic shift step size and the information of the first time unit; or , The cyclic shift value is determined based on the first initial cyclic shift step, the first cyclic shift step difference, and the information of the first time unit, where the information of the first time unit includes the system frame where the first time unit is located The number and/or the number of the time slot where the first time unit is located; the first time unit is the time unit for sending the reference signal; the reference signal is determined according to the cyclic shift value; the reference signal is used to detect the signal from the terminal device.
  • the cyclic shift value is determined according to parameters such as the first frequency hopping parameter, and different terminal devices use different parameters such as the first frequency hopping parameter to determine the cyclic shift value.
  • the difference between the cyclic shift values used by any two terminal devices in the cell to determine the reference signal can be randomized.
  • interference between reference signals sent between terminal devices can be reduced, the effect of interference randomization can be realized, and the channel time domain filtering performance can be improved.
  • the first pattern is determined from X patterns, and X is a positive integer; or,
  • the first cyclic shift step is determined from Z cyclic shift steps, and Z is a positive integer; or,
  • the first initial cyclic shift step size is determined from the Z initial cyclic shift step sizes, and the first cyclic shift step size difference is determined from the Z cyclic shift step size differences.
  • the first pattern is determined from X patterns according to the first indication information, and the first indication information is sent by the network device to the terminal device; or,
  • the first cyclic shift step size is determined from the Z cyclic shift step sizes according to the second indication information, and the second indication information is sent by the network device to the terminal device; or,
  • the first initial cyclic shift step size is determined from the Z initial cyclic shift step sizes according to the third instruction information, the third instruction information is sent by the network device to the terminal device, and the first cyclic shift step size difference is based on
  • the fourth indication information is determined from the Z cyclic shift step difference, and the fourth indication information is sent by the network device to the terminal device.
  • the cyclic shift value is determined according to the first cyclic shift interval
  • the first cyclic shift interval is determined from the first pattern according to the information of the first time unit
  • the first time unit The information includes the system frame number where the first time unit is located and the time slot number of the time slot where the first time unit is located in the current system frame.
  • the cyclic shift value ⁇ is determined according to ⁇ , where ⁇ satisfies the following formula:
  • Is the first cyclic shift interval Is the number of time slots in each system frame
  • n f is the system frame number
  • L is an integer
  • T SRS is the transmission period of the reference signal
  • Z is a positive integer
  • ⁇ init is the initial cyclic shift preset or configured by the network device value.
  • the cyclic shift value is determined according to the first cyclic shift step size and the information of the first time unit, and the information of the first time unit includes the system frame number where the first time unit is located and the first time unit.
  • the time slot number in the current system frame of the time slot in which a time unit is located, the cyclic shift value ⁇ is determined according to ⁇ , where ⁇ satisfies the following formula:
  • the cyclic shift value is determined based on the first initial cyclic shift step, the first cyclic shift step difference, and the information of the first time unit, and the information of the first time unit includes the first time unit.
  • the cyclic shift value ⁇ is determined according to ⁇ , where ⁇ satisfies the following formula:
  • Z is Is the maximum cyclic shift value.
  • the present application also provides a communication device, which has the method for implementing any one of the foregoing fourth aspect or fifth aspect.
  • the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes a processor configured to support the communication device to perform corresponding functions of the terminal device or the network device in the above-mentioned method.
  • the communication device may also include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, and the communication interface is used to support communication between the communication device and a device such as a second device.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit. These units can perform the corresponding functions in the foregoing method examples. For details, refer to the description in the method provided by the fourth aspect or the fifth aspect, here Do not repeat it.
  • the present application provides a communication device, including: a processor and a memory; the memory is used to store computer execution instructions, and when the device is running, the processor executes the computer execution instructions stored in the memory to enable the The device executes the methods described in the above aspects.
  • the present application provides a communication device, including: including units or means for performing each step of the above-mentioned aspects.
  • the present application provides a communication device, including a processor and a communication interface, where the processor is configured to communicate with other devices through the communication interface and execute the methods described in the foregoing aspects.
  • the processor includes one or more.
  • the present application provides a communication device, including a processor, configured to be connected to at least one memory, and configured to call a program stored in the at least one memory to execute the methods described in the foregoing aspects.
  • the at least one memory may be located inside the device or outside the device.
  • the processor includes one or more.
  • the present application also provides a computer-readable storage medium having instructions stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute the methods described in the above aspects.
  • this application also provides a computer program product including instructions, which when run on a computer, causes the computer to execute the methods described in the above aspects.
  • the present application also provides a chip system, including a processor, configured to execute the methods described in the foregoing aspects.
  • the present application also provides a communication system, including: a terminal device for executing any of the methods described in the first aspect above and a network device for executing any of the methods described in the second aspect above.
  • the present application also provides a communication system, including: a terminal device for executing any of the methods described in the foregoing fourth aspect and a network device for executing any of the methods described in the foregoing fifth aspect.
  • FIG. 1 is a schematic flowchart of a reference signal transmission method provided by an embodiment of this application
  • FIG. 2 is a schematic flowchart of a reference signal transmission method provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • NR new radio
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • UMTS universal mobile telecommunication systems
  • eLTE evolved long term evolution
  • the terminal device may be a device with a wireless transceiver function or a chip that can be installed in any device, and may also be referred to as user equipment (UE), access terminal, user unit, or user station. , Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • Mobile station mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal equipment in the embodiments of this application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety
  • Network equipment which can be wireless access equipment under various standards, such as evolved Node B (eNB), radio network controller (RNC) or Node B (NB), base station control Base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (
  • the access point (AP), wireless relay node, wireless backhaul node, and transmission point (transmission and reception point, TRP or transmission point, TP) in the wireless fidelity (WIFI) system can also be 5G ( NR) gNB or transmission point (TRP or TP) in the system, one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or it can also be a network node that constitutes a gNB or transmission point, such as Baseband unit, or DU under a centralized unit-distributed (CU-DU) architecture, etc.
  • FIG. 1 it is a schematic flowchart of a reference signal transmission method provided by an embodiment of this application.
  • the method includes:
  • Step 101 Determine an initial seed parameter of a pseudo-random sequence, and generate the pseudo-random sequence according to the initial seed parameter.
  • the initial seed parameter is determined according to the attribute information of the terminal device. Further, the initial seed parameter may be an integer determined according to the attribute information of the terminal device.
  • Step 102 Determine a cyclic shift value according to the pseudo-random sequence, and determine a reference signal according to the cyclic shift value.
  • Step 103 Send the reference signal to the network device.
  • the reference signal may be an uplink sounding reference signal (sounding reference signal, SRS), may also be an uplink demodulation reference signal (demodulation reference signal, DMRS), a phase tracking signal, etc.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • phase tracking signal etc.
  • Step 101 to step 103 can be executed by the terminal device.
  • Step 104 Determine the initial seed parameter of the pseudo-random sequence, and generate the pseudo-random sequence according to the initial seed parameter.
  • Step 105 Determine a cyclic shift value according to the pseudo-random sequence, and determine a reference signal according to the cyclic shift value.
  • Step 106 Use the reference signal to detect the signal from the terminal device.
  • Step 104 to step 106 can be performed by a network device.
  • the initial seed parameter of the pseudo-random sequence used to determine the cyclic shift value is determined according to the attribute information of the terminal device.
  • the attribute information of the terminal device is unique information of the terminal device, so different terminal devices are used to determine The pseudo-random sequence of the cyclic shift value is different.
  • the difference between the cyclic shift values used by any two terminal devices in the cell to determine the reference signal can be randomized.
  • interference between reference signals sent between terminal devices can be reduced, the effect of interference randomization can be realized, and the channel time domain filtering performance can be improved.
  • step 101 to step 103 and step 104 to step 106 can be implemented separately. That is, from the perspective of the terminal device, in the above method flow, only step 101 to step 103 may be executed, and from the perspective of the network device, in the above method flow, only step 104 to step 106 may be executed.
  • the pseudo-random sequence c( ⁇ ) can satisfy the following form:
  • the initial seed parameter c init of the pseudo-random sequence c( ⁇ ) in the formula (1) is actually the cell identity of the cell where the terminal device is located.
  • the initial seed parameter c init is the cell identity of the cell in which the terminal device is located
  • the reference signal finally determined by all terminal devices in the cell according to the initial seed parameter cannot achieve interference randomization, resulting in poor channel time-domain filtering performance, and the reference signal The interference between them is greater.
  • the attribute information of the terminal device may be used to determine the initial seed parameters of the pseudo-random sequence, which are described separately below.
  • the attribute information of the terminal device may specifically be used to characterize the characteristics of a terminal device that is different from other terminal devices, or used to characterize the characteristics that are common to a group of terminal devices but are different from other terminal devices.
  • the following several possible implementation manners are only examples for illustration, and do not limit the attribute information of the terminal device in this application.
  • the attribute information of the terminal device includes a root index (Root Index) q for determining the ZC sequence used by the reference signal.
  • Root Index a root index
  • the terminal device due to the different base sequences corresponding to different root index ZC sequence, so that the same c init same ZC sequence to generate a reference signal value of the terminal device, the terminal device generates a reference signal using different ZC sequences of c init taken The value is different.
  • c init f 1 (q)
  • the reference signals generated based on different cyclic shifts of the same base sequence are orthogonal, only interference between reference signals generated based on different base sequences needs to be considered. Since the values of the root index q of the ZC sequences corresponding to different base sequences are different, the cyclic shift hopping patterns of the reference signals generated based on different base sequences can be made different, thereby achieving the effect of interference randomization.
  • the attribute information of the terminal device includes the sequence identifier of the reference signal.
  • the sequence identifier The following relationship can be satisfied with the initial seed parameter c init: Identified by a different sequence owned The value of is different. Wherein the same identifier different due to the different sequences of reference signals, the terminal apparatus using the same reference signal the value c init, different terminal devices using different reference signal the value c init.
  • K the initial seed parameter c init and sequence identification equal. Other situations will not be repeated.
  • different terminal devices can be configured with different reference signal sequence identifiers
  • the cyclic shift hopping patterns of the reference signals sent by different terminal devices are made different, so as to achieve the effect of interference randomization.
  • the attribute information of the terminal device may include the identification information of the terminal device.
  • the identification information can be a terminal device-specific identification information.
  • the identification information can be the cell radio network temporary identity (C-RNTI) of the terminal device, or the international mobile subscriber identity code of the terminal device (international mobile subscriber). identity, IMSI), may also be a temporary mobile station identifier (TMSI) of the terminal device, etc.
  • C-RNTI cell radio network temporary identity
  • IMSI international mobile subscriber identity code of the terminal device
  • TMSI temporary mobile station identifier
  • the identification information may also be identification information shared by a group of terminal devices. This application is not restricted.
  • the identification information of the terminal device The following relationship can be satisfied with the initial seed parameter c init:
  • identification information owned The value of is different.
  • the values of c init of terminal devices that use different identification information are different.
  • the cyclic shift value can be determined by a variety of methods, which are described separately below.
  • the first method the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • the slot number is the slot number of the time slot for sending the reference signal in the current system frame.
  • OFDM orthogonal frequency division multiplexing
  • l 10
  • Z is a positive integer
  • ⁇ init is the pre- The initial value of the cyclic shift defined or configured by the network device
  • c( ⁇ ) is all The pseudo-random sequence.
  • Z is a positive integer fixed by the protocol, or Z is a positive integer determined according to predefined rules and/or network device configuration information.
  • Z can be Is the maximum cyclic shift value, that is, the maximum value of the cyclic shift value specified in the standard. In the embodiments of the present application, if there is no special description, the meaning of Z is the same as that described here, and will not be repeated.
  • the cyclic shift value of the reference signal sent by the terminal device in the same system frame can be randomized, so that any two terminal devices that use different ZC sequences to determine the reference signal can be randomized in the same system frame. Interference, to improve the performance of reference signal time-domain filtering, and improve the accuracy of channel estimation.
  • the second method the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • n SRS is the count value of the reference signal counter
  • Z is a preset positive integer, or a positive integer determined according to predefined rules and/or network device configuration information.
  • the content of Z can refer to the description in formula (2). This will not be repeated here
  • ⁇ init is a predefined or initial value of the cyclic shift configured by the network device
  • c( ⁇ ) is the pseudo-random sequence.
  • n SRS in formula (3) may satisfy the following formula:
  • the number of time slots in each system frame is related to the subcarrier spacing, where ⁇ is the configuration value of the subcarrier spacing, and corresponds to the size of the subcarrier spacing one-to-one, and the subcarrier spacing It can also be called sub-carrier width;
  • n f is the system frame number;
  • T SRS is the transmission period of the reference signal
  • T offset is the time slot offset value of the reference signal
  • T SRS and T offset are based on It is determined by a predefined rule and/or network device configuration information;
  • R is a reference signal repetition factor, which is determined according to a predefined rule and/or network device configuration information.
  • the cyclic shift value of the reference signal sent by the terminal device on the same frequency domain resource two or more times can be randomized, so that any two terminal devices that use different ZC sequences to determine the reference signal can be randomized. Interference between reference signals sent on the same time-frequency resource one or more times can improve the performance of time-domain filtering of the reference signal and improve the accuracy of channel estimation.
  • the third method the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • the time slot number is related to the subcarrier interval, where ⁇ is the configuration value of the subcarrier interval and corresponds to the size of the subcarrier interval one-to-one ;
  • N f is the system frame number;
  • T SRS is the reference signal transmission period;
  • L is a preset integer, or according to a predetermined method and/or configuration of network equipment
  • a non-negative integer determined by the information, for example, L can be the time slot offset value T offset of the reference signal;
  • Z is a preset positive integer, or a positive integer determined according to predefined rules and/or network device configuration information , The content of Z can refer to the description in formula (2), which will not be repeated here;
  • ⁇ init is the initial value of the cyclic shift predefined or configured by the network device;
  • T is
  • the cyclic shift value of the reference signal sent by the terminal device in any two reference signal transmission periods can be randomized, so that it can be randomized between the reference signals of any two terminal devices that use different ZC sequences to determine the reference signal.
  • the interference to improve the performance of reference signal time-domain filtering and improve the accuracy of channel estimation.
  • the fourth method the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • the time slot number is related to the subcarrier interval, where ⁇ is the configuration value of the subcarrier interval and corresponds to the size of the subcarrier interval one-to-one ;
  • N f is the system frame number;
  • Z is a preset positive integer, or a positive integer determined according to predefined rules and/or network device configuration information, the content of Z can refer to the formula (2) The description in (2) will not be repeated here;
  • ⁇ init is a predefined or initial value of the cyclic shift configured by the network device;
  • T is a preset positive integer, or according to a predefined rule and/or configuration of the network device A positive integer determined by the
  • the cyclic shift value of the reference signal sent by the terminal device on any two or more symbols can be randomized, so that any two terminal devices that use different ZC sequences to determine the reference signal can be randomized.
  • interference between reference signals sent on multiple symbols can improve the performance of time-domain filtering of reference signals and improve the accuracy of channel estimation.
  • SRSs(m) of length M can be generated from the base sequence r(m) by the following formula:
  • A is the preset plural.
  • the base sequence may be a sequence generated by the ZC sequence, for example, the ZC sequence itself, or a sequence generated by the ZC sequence through cyclic shift.
  • the cyclic shift value is determined according to the pseudo-random sequence.
  • the cyclic shift value may also be determined according to other methods, which will be described in detail below.
  • FIG. 2 it is a schematic diagram of a reference signal transmission process provided by an embodiment of this application. Referring to Figure 2, the method includes:
  • Step 201 Determine the cyclic shift value of the reference signal.
  • the cyclic shift value is determined according to a first cyclic shift interval, and the first cyclic shift interval is determined from a first pattern according to the information of the first time unit, and the first pattern includes Y cyclic shift intervals, Y is an integer greater than 1, the first pattern is determined from X patterns, and X is a positive integer; or, the cyclic shift value is based on the first cyclic shift step And determined by the information of the first time unit, the first cyclic shift step size is determined from Z cyclic shift step sizes, and Z is a positive integer; or, the cyclic shift value is based on the first An initial cyclic shift step size, a first cyclic shift step size difference, and the information of the first time unit are determined, and the first initial cyclic shift step size is determined from Z initial cyclic shift step sizes , The first cyclic shift step difference is determined from Z cyclic shift step differences, and Z is a positive integer; the information of the first time unit includes the system frame where the first time
  • the first pattern may be determined from X patterns according to first indication information; the first cyclic shift step may be determined from Z cyclic shift steps according to second indication information
  • the first initial cyclic shift step size may be determined from the Z initial cyclic shift step sizes according to the third indication information; the first cyclic shift step size difference may be determined from the fourth indication information Z cyclic shift step difference is determined.
  • the first instruction information to the fourth instruction information may be sent by the network device to the terminal device.
  • the first time unit may be a time slot, an OFDM symbol, or a time unit such as a subframe or a system frame.
  • the information of the first time unit includes the system frame number where the first time unit is located, and/or the time slot number of the time slot where the first time unit is located in the current system frame, and /Or the symbol number in the current time slot of the symbol where the first time unit is located, which may include the following situations:
  • the first time unit is a subframe, and the information of the first time unit includes the system frame number where the first time unit is located;
  • the first time unit is a time slot
  • the information of the first time unit includes the system frame number where the first time unit is located, and/or the first time unit (that is, a time slot) is The slot number in the current system frame;
  • the first time unit is an OFDM symbol
  • the information of the first time unit includes the system frame number where the first time unit is located, and/or the time slot where the first time unit is located is in the current system
  • the slot number in the frame, and/or the symbol number of the first time unit (ie a symbol) in the current slot is an OFDM symbol
  • the first time unit is an OFDM symbol
  • the information of the first time unit includes the system frame number where the first time unit is located, and/or the time slot where the first time unit is located is in the current system
  • case 3 can be applied to formula (8), formula (10), and formula (12) described later; case 4 can be applied to formula (9), formula (11), and formula (13) described later.
  • Step 202 Determine a reference signal according to the cyclic shift value, and send the reference signal to a network device in the first time unit.
  • the reference signal may be SRS, or DMRS, and so on.
  • Steps 201 to 202 can be executed by the terminal device.
  • Step 203 Determine the cyclic shift value of the reference signal.
  • the method for determining the cyclic shift value in step 203 may be the same as that in step 201, and will not be repeated here.
  • Step 204 Determine a reference signal according to the cyclic shift value, and use the reference signal to detect the signal from the terminal device.
  • Steps 203 to 204 can be executed by a network device.
  • step 201 to step 202 and step 203 to step 204 can be implemented separately. That is, from the perspective of the terminal device, in the above method flow, only step 201 to step 202 may be performed, and from the perspective of the network device, in the above method flow, only step 203 to step 204 may be performed.
  • the cyclic shift value is determined according to the first cyclic shift step size and the information of the first time unit, the first time unit is an OFDM symbol, and the information of the first time unit includes all information.
  • ⁇ hopping is the first cyclic shift step size
  • n f is the system frame number
  • L is a preset integer, or is based on a predetermined method and/or configuration information of a network device A determined non-negative integer.
  • L can be the time slot offset value T offset of the reference signal
  • T SRS is the transmission period of the reference signal
  • Z is a preset positive integer, or according to a predefined rule and/or A positive integer determined by the configuration information of the network device, the content of Z can refer to the description in formula (2), which will not be repeated here
  • ⁇ init is the initial value of the cyclic shift that is predefined or configured by the network device
  • R is the reference signal repeat Factor (repetition factor); Is the symbol number of the symbol for transmitting the reference signal in the reference signal resource; The number of consecutive OFDM symbols that are predefined or configured by the network device and can be used to send the reference signal
  • B is a preset integer, or an integer determined according to a predefined rule and/or configuration information of the network device.
  • n f and I the information of the first time unit.
  • n f , And l' are the information of the first time unit.
  • the network device may send second indication information to the terminal device, where the second indication information is used to indicate the first cyclic shift step size.
  • the terminal device can thus determine the first cyclic shift step size according to the second indication information.
  • the network device configures the terminal device with Z cyclic shift steps in advance, and the second indication information is used to indicate one cyclic shift step among the Z cyclic shift steps.
  • the second indication information may It is the index value of the first cyclic shift step size in the Z cyclic shift step sizes, and the terminal device may determine the first cyclic shift step size according to the second indication information.
  • terminal devices that transmit reference signals on the same time-frequency resource can be divided into G groups according to the base sequence that generates the reference signal, G is the number of base sequences, and the terminal devices belonging to the same group use the same base sequence to generate the reference signal. Terminal devices belonging to different groups use different base sequences to generate reference signals.
  • G is less than or equal to Z
  • the network device can configure different values of ⁇ hopping for the terminal devices of the G group. That is to say, terminal devices that use the same base sequence to determine the reference signal are configured with the same value of ⁇ hopping, and terminal devices that use different base sequences to determine the reference signal are configured with different values of ⁇ hopping.
  • Method 2 The cyclic shift value is determined according to the first cyclic shift interval, the first time unit is an OFDM symbol, and the first cyclic shift interval is determined from the first cyclic shift interval according to the information of the first time unit.
  • the information of the first time unit includes the system frame number where the first time unit is located and the time slot number of the time slot where the first time unit is located in the current system frame.
  • the cyclic shift value is determined according to a first cyclic shift interval
  • the first time unit is an OFDM symbol
  • the first cyclic shift interval is determined from the first pattern according to the information of the first time unit.
  • the information of the first time unit includes the number of the system frame where the first time unit is located, the number of the time slot in the current system frame of the time slot where the first time unit is located, and the first time unit.
  • the symbol number of the unit in the reference signal resource where the symbol number belongs to the set The number of consecutive OFDM symbols that are predefined or configured by a network device and can be used to send reference signals.
  • L can be the time slot offset value T offset of the reference signal
  • T SRS is the transmission period of the reference signal
  • Z is a preset positive integer, or according to a predefined rule and/or A positive integer determined by the configuration information of the network device, the content of Z can refer to the description in formula (2), which will not be repeated here
  • ⁇ init is the initial value of the cyclic shift that is predefined or configured by the network device
  • R is the reference signal repeat Factor (repetition factor); Is the symbol number of the symbol for transmitting the reference signal in the reference signal resource; The number of consecutive OFDM symbols that are predefined or configured by the network device and can be used to send the reference signal
  • B is a preset integer, or an integer determined according to a predefined rule and/or configuration information of the network device.
  • the first pattern is a set including Y cyclic shift intervals, and the first pattern is [ ⁇ 0 , ⁇ 1 , ⁇ 2 ,..., ⁇ Y-1 ], Y is an integer greater than 1, and each cyclic shift interval included in the first pattern is an integer.
  • n f and I the information of the first time unit.
  • n f , And l' are the information of the first time unit.
  • the Y cyclic shift intervals included in the first pattern may be a predefined integer.
  • X patterns can be defined in advance, X is a positive integer, each pattern in the X patterns includes Y cyclic shift intervals, and the network device may send the first indication information to the terminal device, and the first An indication information is used to indicate one of the X patterns, and the terminal device may determine the first pattern from the X patterns according to the first indication information.
  • the Y cyclic shift intervals included in the x-th pattern among the predefined X patterns are:
  • the second indication information indicates that the first pattern is the x-th pattern among the X patterns
  • the X patterns can be any X patterns that meet the following conditions:
  • Condition 1 For all non-negative integers i and j, It is any value in the set ⁇ 0,1,...,Z-1 ⁇ .
  • the value of can be determined by the terminal device according to predefined rules and/or network device configuration information, where Can be any value in the set ⁇ 0,1,...,Z-1 ⁇ , corresponding to different x
  • the value of may be the same or different, which is not limited in the embodiment of the present application.
  • the value of is an integer that satisfies the second condition and belongs to the set ⁇ 0,1,...,Z-1 ⁇ .
  • Terminal equipment can be based on The value of and is determined according to condition three The value of.
  • the terminal equipment can be based on And To determine The value of. specific, The value of satisfies the following formula:
  • the X patterns may be:
  • terminal devices that transmit reference signals on the same time-frequency resource can be divided into G groups according to the base sequence that generates the reference signal, G is the number of base sequences, and the terminal devices belonging to the same group use the same base sequence to generate the reference signal.
  • Terminal devices belonging to different groups use different base sequences to generate reference signals, and the network device can configure different cyclic shift hop patterns for these G groups of terminal devices, that is, different values of x. That is to say, terminal devices that use the same base sequence to determine reference signals are configured with the same cyclic shift hop pattern, that is, the same value of x, and terminal devices that use different base sequences to determine reference signals are configured with different cyclic shifts.
  • the pattern of, that is, different values of x is to be divided into G groups according to the base sequence that generates the reference signal, G is the number of base sequences, and the terminal devices belonging to the same group use the same base sequence to generate the reference signal.
  • Terminal devices belonging to different groups use different base sequences to generate reference signals
  • the network device
  • G is less than or equal to Z
  • the difference between the cyclic shifts of the reference signals sent by any two terminal devices belonging to different groups in any two adjacent groups of terminal devices on the same frequency domain resource is different. That is to say, the interference between reference signals between any two terminal devices that generate reference signal sequences based on different base sequences can be randomized, so that the channel measurement accuracy can be improved.
  • G is greater than Z and less than Z 2
  • the difference between the cyclic shifts of the reference signals sent on any adjacent three co-frequency and resources of any two terminal devices belonging to different groups in the G group is different. Exactly the same. That is to say, when the coherence bandwidth is greater than or equal to twice the reference signal transmission period, time domain filtering can be used to improve the accuracy of channel measurement.
  • the cyclic shift value is determined according to the first initial cyclic shift step size, the first cyclic shift step difference, and the information of the first time unit, and the first time unit is an OFDM symbol ,
  • the cyclic shift value is determined according to the first initial cyclic shift step size, the first cyclic shift step difference, and the information of the first time unit, and the first time unit is an OFDM symbol
  • the information of the first time unit includes the system frame number where the first time unit is located, the time slot number of the time slot where the first time unit is located in the current system frame, and the reference signal of the first time unit.
  • n f is the system frame number
  • L is a preset integer, or is based on a predetermined method and/or configuration information of a network device A certain integer, for example, L can be the time slot offset value T offset of the reference signal
  • T SRS is the transmission period of the reference signal
  • Z is a preset positive integer, or according to predefined rules and/or network equipment A positive integer determined by the configuration information, the content of Z can refer to the description in formula (2), which will not be repeated here
  • ⁇ h init is the first initial cyclic shift step size, and ⁇ h gap is the first cyclic shift Step difference
  • ⁇ init is the
  • n f and I the information of the first time unit.
  • n f , And l' are the information of the first time unit.
  • the network device sends third indication information to the terminal device, and the third indication information is used to indicate the first initial cyclic shift step to the terminal device.
  • the network device pre-configures Z initial cyclic shift step sizes, and the third indication information is used to indicate one initial cyclic shift step size among the Z initial cyclic shift step sizes, so that the terminal device can follow the third instruction
  • the information determines the first initial cyclic shift step size from the Z initial cyclic shift step sizes.
  • the network device may also send fourth indication information to the terminal device, and indicate the first cyclic shift step difference to the terminal device through the fourth indication information.
  • the network device pre-configures Z first cyclic shift step size differences, and the fourth indication information is used to indicate one of the Z first cyclic shift step size differences, and the terminal device Therefore, the first cyclic shift step difference can be determined from the Z first cyclic shift step difference according to the fourth indication information.
  • terminal devices that transmit reference signals on the same time-frequency resource can be divided into G groups according to the base sequence that generates the reference signal, where G is the number of base sequences, and terminal devices belonging to the same group use the same base sequence to generate reference signals.
  • Terminal devices belonging to different groups use different base sequences to generate reference signals, and the network device may configure different initial cyclic shift step lengths and/or different cyclic shift step length differences for the G group terminal devices. That is to say, configure the same initial cyclic shift step size and cyclic shift step difference for terminal devices that use the same base sequence to determine reference signals, and configure different initial cyclic shifts for terminal devices that use different base sequences to determine reference signals. Step size and/or different cyclic shift step size difference.
  • G is less than or equal to Z
  • the difference between the cyclic shifts of the reference signals sent by any two terminal devices belonging to different groups in any two adjacent groups of terminal devices on the same frequency domain resource is different. That is to say, the interference between reference signals between any two terminal devices that generate reference signal sequences based on different base sequences can be randomized, so that the channel measurement accuracy can be improved.
  • G is greater than Z and less than Z 2
  • the difference between the cyclic shifts of the reference signals sent on any adjacent three co-frequency and resources of any two terminal devices belonging to different groups in the G group is different. Exactly the same. That is to say, when the coherence bandwidth is greater than or equal to twice the reference signal transmission period, time domain filtering can be used to improve the accuracy of channel measurement.
  • the cyclic shift value before generating the reference signal, the cyclic shift value needs to be determined first.
  • the embodiment of the present application also provides a method.
  • the cyclic shift value is determined according to a predefined rule and/or configuration information of a network device. Yes, in this case, the orthogonal cover code is added to the reference signal to achieve the purpose of randomizing the interference between the reference signals, which will be described in detail below.
  • Step 1 The terminal device generates a reference signal
  • Step 2 The terminal device sends the reference signal.
  • Step 3 The network device generates a reference signal
  • Step 4 The network device uses the reference signal to detect the signal from the terminal device.
  • the reference signal generated by the terminal device or the network device may satisfy the following formula:
  • r(m) is the base sequence used to generate the reference signal
  • M is an integer greater than 1, which is the length of the reference signal
  • is the cyclic shift value, which is predefined or configured by the network device ⁇
  • j is an imaginary unit
  • A is a preset complex number
  • B x, y is an orthogonal cover code, which can satisfy the following formula:
  • the network device can be determined using the same base sequence
  • the terminal device of the reference signal is configured with the same value of y; Z root is a positive integer, which is determined according to a predefined rule and/or configuration information of the network device.
  • orthogonal variable spread factor sequence Meet the following formula:
  • terminal devices that transmit reference signals on the same time-frequency resource can be divided into G groups according to the base sequence that generates the reference signal.
  • G is the number of base sequences. Terminal devices belonging to the same group use the same base sequence to generate reference signals. Different groups of terminal devices use different base sequences to generate reference signals.
  • the network device can assign different values of y to the terminal devices belonging to different groups, and then transmit the reference signal in consecutive Z root cycles.
  • Time-domain filtering is performed on the above to eliminate the interference of the reference signal sent by any terminal device in the G group of terminal devices from the reference signal sent by other terminal devices in the G group of terminal devices. That is to say, when the coherence time is greater than or equal to Z root times the reference signal transmission period, time domain filtering can be used to improve the accuracy of channel measurement.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device
  • the methods and operations implemented by the network device can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • each network element described above includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the present invention.
  • the device 300 may exist in the form of software or hardware.
  • the apparatus 300 may include: a processing unit 302 and a communication unit 303.
  • the communication unit 303 may include a receiving unit and a sending unit.
  • the processing unit 302 is used to control and manage the actions of the device 300.
  • the communication unit 303 is used to support communication between the device 300 and other network entities.
  • the device 300 may further include a storage unit 301 for storing program codes and data of the device 300.
  • the processing unit 302 may be a processor or a controller, for example, a general-purpose central processing unit (central processing unit, CPU), a general-purpose processor, a digital signal processing (digital signal processing, DSP), and an application specific integrated circuit (application specific integrated circuit). circuits, ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the storage unit 301 may be a memory.
  • the communication unit 303 is an interface circuit of the device for receiving signals from other devices.
  • the communication unit 303 is an interface circuit used by the chip to receive signals from other chips or devices, or an interface circuit used by the chip to send signals to other chips or devices.
  • the apparatus 300 may be the terminal device in any of the above-mentioned embodiments, and may also be a chip used for the terminal device.
  • the processing unit 302 may be a processor, for example, and the communication unit 303 may be a transceiver, for example.
  • the transceiver may include a radio frequency circuit
  • the storage unit may be, for example, a memory.
  • the processing unit 302 may be a processor, for example, and the communication unit 303 may be an input/output interface, a pin or a circuit, for example.
  • the processing unit 302 can execute computer-executable instructions stored in the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal device.
  • Storage units such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the apparatus 300 may be a network device in any of the above-mentioned embodiments, and may also be a chip for a network device.
  • the processing unit 302 may be a processor, for example, and the communication unit 303 may be a transceiver, for example.
  • the device 300 is a terminal device, and the processing unit 302 is configured to determine the initial seed parameter of the pseudo-random sequence, and generate the pseudo-random sequence according to the initial seed parameter; the initial seed parameter is based on the terminal The attribute information of the device is determined; the cyclic shift value is determined according to the pseudo-random sequence, and the reference signal is determined according to the cyclic shift value;
  • the communication unit 303 is configured to send the reference signal to a network device.
  • the apparatus 300 is a network device, and the communication unit 303 is configured to receive a signal from a terminal device;
  • the processing unit 302 is configured to determine the initial seed parameter of the pseudo-random sequence, and generate the pseudo-random sequence according to the initial seed parameter; the initial seed parameter is determined according to the attribute information of the terminal device; according to the pseudo-random sequence Determine a cyclic shift value, and determine a reference signal according to the cyclic shift value; use the reference signal to detect the signal from the terminal device.
  • the apparatus 300 when the apparatus 300 is a terminal device or a network device, it further includes the following implementation methods:
  • the attribute information includes a root index for determining the ZC sequence used by the reference signal.
  • the attribute information includes the sequence identifier of the reference signal.
  • the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • Is the time slot number in the current system frame of the time slot for sending the reference signal; Is the number of orthogonal frequency division multiplexing OFDM symbols in a slot; l is the symbol number of the symbol for sending the reference signal in the current slot, Where l 0 corresponds to the first symbol in the current time slot; Z is a positive integer; ⁇ init is the initial value of the cyclic shift that is predefined or configured by the network device; T is a positive integer; c( ⁇ ) is a false Random sequence.
  • the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • n SRS is the count value of the reference signal counter
  • Z is a positive integer
  • ⁇ init is the initial value of the cyclic shift predefined or configured by the network device
  • T is a positive integer
  • c( ⁇ ) is a pseudo-random sequence.
  • the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • the cyclic shift value ⁇ determined according to the pseudo-random sequence satisfies the following formula:
  • Is the time slot number in the current system frame of the time slot where the reference signal is sent; n f is the system frame number; Is the number of time slots in each system frame; l is the symbol number of the symbol sending the reference signal in the current time slot, Where l 0 corresponds to the first symbol in the current time slot; Z is a positive integer; ⁇ init is the initial value of the cyclic shift predefined or configured by the network device; T is a positive integer; S is a positive integer; c ( ⁇ ) is a pseudo-random sequence.
  • Z is Is the maximum cyclic shift value.
  • the device 400 may exist in the form of software or hardware.
  • the apparatus 400 may include: a processing unit 402 and a communication unit 403.
  • the communication unit 403 may include a receiving unit and a sending unit.
  • the processing unit 402 is used to control and manage the actions of the device 400.
  • the communication unit 403 is used to support communication between the device 400 and other network entities.
  • the device 400 may further include a storage unit 401 for storing program codes and data of the device 400.
  • the processing unit 402 may be a processor or a controller, for example, a CPU, a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the storage unit 401 may be a memory.
  • the communication unit 403 is an interface circuit of the device for receiving signals from other devices. For example, when the device is implemented as a chip, the communication unit 403 is an interface circuit used by the chip to receive signals from other chips or devices, or an interface circuit used by the chip to send signals to other chips or devices.
  • the apparatus 400 may be the network device in any of the above-mentioned embodiments, and may also be a chip used for the network device.
  • the processing unit 402 may be, for example, a processor
  • the communication unit 403 may be, for example, a transceiver.
  • the apparatus 400 may be the terminal device in any of the above-mentioned embodiments, and may also be a chip used for the terminal device.
  • the processing unit 402 may be a processor, for example, and the communication unit 403 may be a transceiver, for example.
  • the transceiver may include a radio frequency circuit
  • the storage unit may be, for example, a memory.
  • the processing unit 402 may be a processor, for example, and the communication unit 403 may be an input/output interface, a pin or a circuit, for example.
  • the processing unit 402 can execute computer-executable instructions stored in the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a network device located outside the chip.
  • the storage unit such as ROM or other types of static storage devices that can store static information and instructions, RAM, etc.
  • the apparatus 400 is a terminal device, and the processing unit 402 is configured to determine a cyclic shift value; wherein the cyclic shift value is determined according to a first frequency hopping parameter, and the first frequency hopping parameter To be determined from the first pattern based on the information of the first time unit, the first pattern includes at least two frequency hopping parameters; or, the cyclic shift value is based on the first cyclic shift step size and the The information of the first time unit is determined; or, the cyclic shift value is determined based on the first initial cyclic shift step size, the first cyclic shift step difference, and the information of the first time unit, where The information of the first time unit includes the system frame number where the first time unit is located and/or the time slot number where the first time unit is located; the first time unit is the time unit for sending the reference signal; The reference signal is determined according to the cyclic shift value.
  • the communication unit 403 is configured to send the reference signal to the network device in the first time unit.
  • the apparatus 400 is a network device, and the communication unit 403 is configured to receive a signal from a terminal device.
  • the processing unit 402 is configured to determine the cyclic shift value of the reference signal; wherein the cyclic shift value is determined according to the first frequency hopping parameter, and the first frequency hopping parameter is the first frequency hopping parameter according to the information of the first time unit. Determined in a pattern, the first pattern includes at least two frequency hopping parameters; or, the cyclic shift value is determined according to the first cyclic shift step size and the information of the first time unit; or , The cyclic shift value is determined according to the first initial cyclic shift step, the first cyclic shift step difference, and the information of the first time unit, wherein the information of the first time unit includes the The system frame number where the first time unit is located and/or the time slot number where the first time unit is located; the first time unit is the time unit for sending the reference signal; the cyclic shift value is used to determine the Reference signal; use the reference signal to detect the signal from the terminal device.
  • the apparatus 400 when the apparatus 400 is a terminal device or a network device, it further includes the following implementation methods:
  • the first pattern is determined from X patterns, and X is a positive integer; or,
  • the first cyclic shift step is determined from Z cyclic shift steps, and Z is a positive integer; or,
  • the first initial cyclic shift step size is determined from the Z initial cyclic shift step sizes, and the first cyclic shift step size difference is determined from the Z cyclic shift step size differences.
  • the first pattern is determined from X patterns according to the first indication information, and the first indication information is sent by the network device to the terminal device; or,
  • the first cyclic shift step size is determined from the Z cyclic shift step sizes according to the second indication information, and the second indication information is sent by the network device to the terminal device; or,
  • the first initial cyclic shift step size is determined from the Z initial cyclic shift step sizes according to the third instruction information, the third instruction information is sent by the network device to the terminal device, and the first cyclic shift step size difference is based on
  • the fourth indication information is determined from the Z cyclic shift step difference, and the fourth indication information is sent by the network device to the terminal device.
  • the cyclic shift value is determined according to the first cyclic shift interval
  • the first cyclic shift interval is determined from the first pattern according to the information of the first time unit
  • the first time unit The information includes the system frame number where the first time unit is located and the time slot number of the time slot where the first time unit is located in the current system frame.
  • the cyclic shift value ⁇ is determined according to ⁇ , where ⁇ satisfies the following formula:
  • Is the first cyclic shift interval Is the number of time slots in each system frame
  • n f is the system frame number
  • L is an integer
  • T SRS is the transmission period of the reference signal
  • Z is a positive integer
  • ⁇ init is the initial cyclic shift preset or configured by the network device value.
  • the cyclic shift value is determined according to the first cyclic shift step size and the information of the first time unit, and the information of the first time unit includes the system frame number where the first time unit is located and the first time unit.
  • the time slot number in the current system frame of the time slot in which a time unit is located, the cyclic shift value ⁇ is determined according to ⁇ , where ⁇ satisfies the following formula:
  • the cyclic shift value is determined based on the first initial cyclic shift step, the first cyclic shift step difference, and the information of the first time unit, and the information of the first time unit includes the first time unit.
  • the cyclic shift value ⁇ is determined according to ⁇ , where ⁇ satisfies the following formula:
  • Z is Is the maximum cyclic shift value.
  • the reference signal in the embodiment of the present application is a downlink reference signal, such as the following DMRS, phase tracking signal, and so on.
  • a method for sending a reference signal provided by an embodiment of the present application may be executed by a network device; correspondingly, a method for detecting a signal provided by an embodiment of the present application may be executed by a terminal device.
  • the device 500 includes a processor 502, a communication interface 503, and a memory 501.
  • the apparatus 500 may further include a communication line 504.
  • the communication interface 503, the processor 502, and the memory 501 may be connected to each other through a communication line 504;
  • the communication line 504 may be a peripheral component interconnection standard (peripheral component interconnect, PCI for short) bus or an extended industry standard architecture (extended industry standard architecture) , Referred to as EISA) bus and so on.
  • the communication line 504 can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used to represent in FIG. 5, but it does not mean that there is only one bus or one type of bus.
  • the processor 502 may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the program of the present application.
  • the communication interface 503 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Wired access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Wired access network etc.
  • the memory 501 can be ROM or other types of static storage devices that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, or can be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory, CD-ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • magnetic disks A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory can exist independently and is connected to the processor through the communication line 504. The memory can also be integrated with the processor.
  • the memory 501 is used to store computer-executable instructions for executing the solution of the present application, and the processor 502 controls the execution.
  • the processor 502 is configured to execute computer-executable instructions stored in the memory 501, so as to implement the communication method provided in FIG. 2 or FIG. 3 in the foregoing embodiment of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • At least one refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one (piece, species) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or Multiple.
  • Multiple refers to two or more than two, and other quantifiers are similar.
  • a device means to one or more such devices.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参考信号发送、信号检测方法及装置,其中方法包括:确定伪随机序列的初始种子参数,并根据所述初始种子参数生成所述伪随机序列;所述初始种子参数为根据终端设备的属性信息确定的;根据所述伪随机序列确定循环移位值,并根据所述循环移位值确定参考信号;向网络设备发送所述参考信号。上述方法流程中,用于确定循环移位值的伪随机序列的初始种子参数,是根据终端设备的属性信息确定的,因此不同终端设备用于确定循环移位值的伪随机序列不同。通过这种方法,可以随机化小区内任意两个终端设备确定参考信号时使用的循环移位值之间的差值,可以降低终端设备之间发送的参考信号之间的干扰,实现干扰随机化的作用,提高信道时域滤波性能。

Description

一种参考信号发送、信号检测方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种参考信号发送、信号检测方法及装置。
背景技术
长期演进(long term evolution,LTE)以及新无线(new radio,NR)等系统中,上行参考信号,例如上行解调参考信号(demodulation reference signal,DMRS)和上行探测参考信号(sounding reference signal,SRS)的序列是采用基序列(Base Sequence)生成的序列,基序列可以是ZC(Zadoff-Chu)序列生成的序列,例如是ZC序列本身,或者是ZC序列通过循环移位生成的序列。
对于同一个基序列来说,采用不同的循环移位值,可以获得不同的参考信号。在同一个小区中,基站可以为不同终端设备分配不同的循环移位值来保证不同终端设备发送的参考信号之间的正交性,这样不同终端设备发送的参考信号之间可以不会造成干扰。但是对于不同的基序列来说,无论采用相同还是不同的循环移位值获得的参考信号之间的干扰都不为0。也就是说,不同终端设备在相同的时频资源上发送基于不同基序列得到的参考信号时,这些参考信号之间会互相干扰。
为了随机化小区内在相同时频资源上发送的多个基于不同基序列得到的参考信号之间的干扰,引入了循环移位跳(cyclic shift hopping)技术。
然而目前的技术中,对于一个小区内的所有终端设备,采用循环移位跳技术时,上行循环移位跳图样都是相同的,这就可能会导致任意两个终端设备的参考信号之间的干扰不变,无法起到干扰随机化的作用,导致信道时域滤波性能变差。
发明内容
本申请实施方式的目的在于提供一种参考信号发送、信号检测方法及装置,用以解决如何降低终端设备发送的参考信号之间的干扰的问题。
第一方面,本申请实施例提供一种参考信号发送方法,包括:确定伪随机序列的初始种子参数,并根据该初始种子参数生成上述伪随机序列;该初始种子参数为根据终端设备的属性信息确定的;根据伪随机序列确定循环移位值,并根据循环移位值确定参考信号;向网络设备发送参考信号。
第二方面,本申请实施例提供一种信号检测方法,包括:确定伪随机序列的初始种子参数,并根据该初始种子参数生成伪随机序列;该初始种子参数为根据终端设备的属性信息确定的;根据伪随机序列确定循环移位值,并根据循环移位值确定参考信号;使用参考信号对来自终端设备的信号进行检测。
上述方法流程中,用于确定循环移位值的伪随机序列的初始种子参数,是根据终端设备的属性信息确定的,终端设备的属性信息是终端设备特有的信息,因此不同终端设备用于确定循环移位值的伪随机序列不同。通过这种方法,可以随机化小区内任意两个终端设备确定参考信号时使用的循环移位值之间的差值。进一步的,可以降低终端设备之间发送的参考信号之间的干扰,实现干扰随机化的作用,提高信道时域滤波性能。
基于上述第一方面或第二方面:
在一种可能的实现方法中,属性信息包括确定参考信号所使用的ZC序列的根指标。
在一种可能的实现方法中,属性信息包括参考信号的序列标识。
在一种可能的实现方法中,根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000001
其中,
Figure PCTCN2019105198-appb-000002
是发送参考信号的时隙在当前系统帧中的时隙编号;
Figure PCTCN2019105198-appb-000003
为一个时隙中的正交频分复用OFDM符号的个数;l为发送参考信号的符号在当前时隙中的符号编号,
Figure PCTCN2019105198-appb-000004
其中l=0对应的是当前时隙中的第一个符号;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;c(·)为伪随机序列。
通过上面的方法,可以随机化终端设备在同一个系统帧内发送的参考信号的循环移位值,从而可以随机化任意两个使用不同ZC序列确定参考信号的终端设备在同一个系统帧内的干扰,实现提升参考信号时域滤波的性能,提高信道估计的准确度。
在一种可能的实现方法中,根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000005
其中,
Figure PCTCN2019105198-appb-000006
n SRS为参考信号计数器的计数值;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;c(·)为伪随机序列。
通过上面的方法,可以随机化终端设备连续两次或者多次在相同频域资源上发送的参考信号的循环移位值,从而可以随机化任意两个使用不同ZC序列确定参考信号的终端设备两次或者多次在相同时频资源上所发送的参考信号之间的干扰,从而可以提升参考信号时域滤波的性能,提高信道估计的准确度。
在一种可能的实现方法中,根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000007
其中,
Figure PCTCN2019105198-appb-000008
Figure PCTCN2019105198-appb-000009
是发送参考信号的时隙在当前系统帧中的时隙编号;n f为系统帧编 号;
Figure PCTCN2019105198-appb-000010
为每个系统帧中的时隙数;T SRS为参考信号的发送周期;L为整数;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;c(·)为伪随机序列。
通过上面的方法,可以随机化终端设备在任意两个参考信号发送周期发送的参考信号的循环移位值,从而可以随机化任意两个使用不同ZC序列确定参考信号的终端设备的参考信号之间的干扰,实现提升参考信号时域滤波的性能,提高信道估计的准确度。
在一种可能的实现方法中,根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000011
其中,
Figure PCTCN2019105198-appb-000012
Figure PCTCN2019105198-appb-000013
是发送参考信号的时隙在当前系统帧中的时隙编号;n f为系统帧编号;
Figure PCTCN2019105198-appb-000014
为每个系统帧中的时隙数;l为发送参考信号的符号在当前时隙中的符号编号,
Figure PCTCN2019105198-appb-000015
其中l=0对应的是当前时隙中的第一个符号;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;S为正整数;c(·)为伪随机序列。
通过上面的方法,可以随机化终端设备在任意两个或者多个符号上发送的参考信号的循环移位值,从而可以随机化任意两个使用不同ZC序列确定参考信号的终端设备在任意两个或者多个符号上发送的参考信号之间的干扰,实现提升参考信号时域滤波的性能,提高信道估计的准确度。
在一种可能的实现方法中,Z为
Figure PCTCN2019105198-appb-000016
为最大循环移位值。
第三方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面或第二方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备或网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与第二设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面或第二方面提供的方法中的描述,此处不做赘述。
第四方面,本申请还提供一种参考信号发送方法,包括:确定循环移位值;其中,循环移位值为根据第一跳频参数确定的,第一跳频参数为根据第一时间单元的信息从第一图样中确定的,第一图样中包括至少两个跳频参数;或者,循环移位值为根据第一循环移位步长以及第一时间单元的信息确定的;或者,循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及第一时间单元的信息确定的,其中第一时间单元的信息包括第一时间单元所在的系统帧编号和/或第一时间单元所在的时隙编号;第一时间单元为发送参考信号的时间单元;根据循环移位值确定参考信号,并在第一时间单元向网络设备发送参考信号。
第五方面,本申请还提供一种信号检测方法,包括:确定参考信号的循环移位值;其中,循环移位值为根据第一跳频参数确定的,第一跳频参数为根据第一时间单元的信息从第一图样中确定的,第一图样中包括至少两个跳频参数;或者,循环移位值为根据第一循环移位步长以及第一时间单元的信息确定的;或者,循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及第一时间单元的信息确定的,其中第一时间单元的信息包括第一时间单元所在的系统帧编号和/或第一时间单元所在的时隙编号;第一时间单元为发送参考信号的时间单元;根据循环移位值确定参考信号;使用参考信号对来自终端设备的信号进行检测。
上述方法流程中,循环移位值为根据第一跳频参数等参数确定的,不同终端设备用于确定循环移位值的第一跳频参数等参数不同。通过这种方法,可以随机化小区内任意两个终端设备确定参考信号时使用的循环移位值之间的差值。进一步的,可以降低终端设备之间发送的参考信号之间的干扰,实现干扰随机化的作用,提高信道时域滤波性能。
基于上述第四方面或第五方面:
在一种可能的实现方式中,第一图样是从X个图样中确定的,X为正整数;或者,
第一循环移位步长是从Z个循环移位步长中确定的,Z为正整数;或者,
第一初始循环移位步长是从Z个初始循环移位步长中确定的,第一循环移位步长差是从Z个循环移位步长差中确定的。
在一种可能的实现方法中,第一图样是根据第一指示信息从X个图样中确定的,第一指示信息是网络设备向终端设备发送的;或者,
第一循环移位步长是根据第二指示信息从Z个循环移位步长中确定的,第二指示信息是网络设备向终端设备发送的;或者,
第一初始循环移位步长是根据第三指示信息从Z个初始循环移位步长中确定的,第三指示信息是网络设备向终端设备发送的,第一循环移位步长差是根据第四指示信息从Z个循环移位步长差中确定的,第四指示信息是网络设备向终端设备发送的。
在一种可能的实现方法中,循环移位值为根据第一循环移位间隔确定的,第一循环移位间隔为根据第一时间单元的信息从第一图样中确定的,第一时间单元的信息包括第一时间单元所在的系统帧编号以及第一时间单元所在的时隙在当前系统帧中的时隙编号,循环移位值α是根据λ确定的,其中λ满足以下公式:
Figure PCTCN2019105198-appb-000017
其中,
Figure PCTCN2019105198-appb-000018
为第一循环移位间隔,
Figure PCTCN2019105198-appb-000019
为每个系统帧中的时隙数;n f为系统帧编号;
Figure PCTCN2019105198-appb-000020
是发送参考信号的时隙在当前系统帧中的时隙编号;L为整数;T SRS为参考信号的发送周期;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值。
在一种可能的实现方法中,循环移位值为根据第一循环移位步长以及第一时间单元的信息确定的,第一时间单元的信息包括第一时间单元所在的系统帧编号以及第一时间单元所在的时隙在当前系统帧中的时隙编号,循环移位值α是根据λ确定的,其中λ满足以下公式:
Figure PCTCN2019105198-appb-000021
其中,Δhopping为第一循环移位步长;
Figure PCTCN2019105198-appb-000022
为每个系统帧中的时隙数;n f为系统帧编号;
Figure PCTCN2019105198-appb-000023
是发送参考信号的时隙在当前系统帧中的时隙编号;L为整数;T SRS为参考信号的发送周期;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值。
在一种可能的实现方法中,循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及第一时间单元的信息确定的,第一时间单元的信息包括第一时间单元所在的系统帧编号以及第一时间单元所在的时隙在当前系统帧中的时隙编号,循环移位值α是根据λ确定的,其中λ满足以下公式:
Figure PCTCN2019105198-appb-000024
其中,
Figure PCTCN2019105198-appb-000025
为每个系统帧中的时隙数;n f为系统帧编号;
Figure PCTCN2019105198-appb-000026
是发送参考信号的时隙在当前系统帧中的时隙编号;L为整数;Δh init为第一初始循环移位步长,Δh gap为第一循环移位步长差;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T SRS为参考信号的发送周期。
在一种可能的实现方法中,Z为
Figure PCTCN2019105198-appb-000027
为最大循环移位值。
第六方面,本申请还提供一种通信装置,该通信装置具有实现上述第四方面或第五方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。 该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备或网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与第二设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第四方面或第五方面提供的方法中的描述,此处不做赘述。
第七方面,本申请提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述各方面所述的方法。
第八方面,本申请提供一种通信装置,包括:包括用于执行上述各方面的各个步骤的单元或手段(means)。
第九方面,本申请提供一种通信装置,包括处理器和通信接口,所述处理器用于通过通信接口与其它装置通信,并执行上述各方面所述的方法。该处理器包括一个或多个。
第十方面,本申请提供一种通信装置,包括处理器,用于与至少一个存储器相连,用于调用所述至少一个存储器中存储的程序,以执行上述各方面所述的方法。该至少一个存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第十一方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十二方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十三方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述各方面所述的方法。
第十四方面,本申请还提供一种通信系统,包括:用于执行上述第一方面任意所述的方法的终端设备和用于执行上述第二方面任意所述的方法的网络设备。
第十五方面,本申请还提供一种通信系统,包括:用于执行上述第四方面任意所述的方法的终端设备和用于执行上述第五方面任意所述的方法的网络设备。
附图说明
图1为本申请实施例提供的一种参考信号传输方法流程示意图;
图2为本申请实施例提供的一种参考信号传输方法流程示意图;
图3为本申请实施例提供的一种通信装置结构示意图;
图4为本申请实施例提供的一种通信装置结构示意图;
图5为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例可以应用于各种移动通信系统,例如:新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、演进的长期演进(evolved long term evolution,eLTE)系统、未来通信系统等其它通信系统,在此不做限制。
本申请实施例中,终端设备,可以为具有无线收发功能的设备或可设置于任一设备中的芯片,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
网络设备,可以为各种制式下无线接入设备,例如演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)或节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G(NR)系统中的gNB或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元,或在集中式-分布式(central unit-distributed,CU-DU)架构下的DU等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
结合前面的描述,如图1所示,为本申请实施例提供的一种参考信号传输方法流程示意图。参见图1,该方法包括:
步骤101:确定伪随机序列的初始种子参数,并根据所述初始种子参数生成所述伪随机序列。
其中,初始种子参数为根据终端设备的属性信息确定的,进一步的,初始种子参数可以为根据终端设备的属性信息确定的整数。
步骤102:根据所述伪随机序列确定循环移位值,并根据所述循环移位值确定参考信号。
步骤103:向网络设备发送所述参考信号。
其中,参考信号可以为上行探测参考信号(sounding reference signal,SRS),还可以为上行解调参考信号(demodulation reference signal,DMRS),相位跟踪信号等。
步骤101至步骤103可以由终端设备执行。
步骤104:确定伪随机序列的初始种子参数,并根据所述初始种子参数生成所述伪随机序列。
步骤105:根据所述伪随机序列确定循环移位值,并根据所述循环移位值确定参考信号。
步骤106:使用所述参考信号对来自终端设备的信号进行检测。
步骤104至步骤106可以由网络设备执行。
上述方法流程中,用于确定循环移位值的伪随机序列的初始种子参数,是根据终端设备的属性信息确定的,终端设备的属性信息是终端设备特有的信息,因此不同终端设备用于确定循环移位值的伪随机序列不同。通过这种方法,可以随机化小区内任意两个终端设备确定参考信号时使用的循环移位值之间的差值。进一步的,可以降低终端设备之间发送的参考信号之间的干扰,实现干扰随机化的作用,提高信道时域滤波性能。
可以理解的,上述方法流程中,步骤101至步骤103与步骤104至步骤106可以分别实施。即从终端设备的角度,在上述方法流程中,可以只执行步骤101至步骤103,从网络设备的角度,在上述方法流程中,可以只执行步骤104至步骤106。
图1所示的流程中,伪随机序列的具体实现方式可能存在多种,例如可以参考现有标准中用于生成循环移位值的伪随机序列的实现方式。举例来说,伪随机序列c(·)可以满足以下形式:
Figure PCTCN2019105198-appb-000028
其中,N C=1600;x 1(0)=1,x 1(n)=0,n=1,2,...,30;x 2(n),n=0,1,2,...,30为伪随机序列c(·)的初始种子参数c init的二进制表达方式,即
Figure PCTCN2019105198-appb-000029
i=0,1,2,...,30,mod为取模运算。
公式(1)中的伪随机序列c(·)的初始种子参数c init实际上为终端设备所处的小区的小区标识。初始种子参数c init为终端设备所处的小区的小区标识时,小区内的所有终端设备根据该初始种子参数最终确定的参考信号无法实现干扰随机化,导致信道时域滤波性能变差,参考信号之间的干扰较大。
为此,本申请实施例中,可以采用终端设备的属性信息确定伪随机序列的初始种子参数,下面分别进行描述。
终端设备的属性信息具体可以为用于表征一个终端设备区别于其它终端设备的特征,或者用于表征一组终端设备共有的但区别于其它终端设备的特征。下面几种可能的实现方式只是举例说明,并不对本申请中终端设备的属性信息构成限制。
一种可能的实现方式中,终端设备的属性信息包括确定参考信号所使用的ZC序列的根指标(Root Index)q。在该实现方式中,根指标q与初始种子参数c init之间可以满足以下关系:c init=f 1(q)。由不同的根指标q得到的f 1(q)的取值不同。其中,由于不同基序列对应的ZC序列的根指标不同,所以使用同一个ZC序列生成参考信号的终端设备的c init的取值相同,使用不同ZC序列生成参考信号的终端设备的c init的取值不同。
需要说明的是,本申请实施例对c init=f 1(q)的具体实现方式并不限定,可能存在多种 方式。举例来说,c init=q+K,K为预设正整数,例如K=2。再举例来说,c init=q,即初始种子参数c init与根指标q相等。其它情况不再赘述。
在该实现方式中,由于基于相同基序列的不同循环移位生成的参考信号之间是正交的,所以只需要考虑基于不同基序列生成的参考信号之间的干扰。由于不同基序列对应的ZC序列的根指标q的取值不同,因此可以使得基于不同基序列生成的参考信号的循环移位跳的模式不同,从而达到干扰随机化的作用。
一种可能的实现方式中,终端设备的属性信息包括参考信号的序列标识。在该实现方式中,序列标识
Figure PCTCN2019105198-appb-000030
与初始种子参数c init之间可以满足以下关系:
Figure PCTCN2019105198-appb-000031
由不同的序列标识
Figure PCTCN2019105198-appb-000032
得到的
Figure PCTCN2019105198-appb-000033
的取值不同。其中,由于不同参考信号的序列标识不同,所以使用同一个参考信号的终端设备的c init的取值相同,使用不同参考信号的终端设备的c init的取值不同。
需要说明的是,本申请实施例对
Figure PCTCN2019105198-appb-000034
的具体实现方式并不限定,可能存在多种方式。举例来说,
Figure PCTCN2019105198-appb-000035
K为预设正整数,例如K=2。再举例来说,
Figure PCTCN2019105198-appb-000036
即初始种子参数c init与序列标识
Figure PCTCN2019105198-appb-000037
相等。其它情况不再赘述。
在该实现方式中,可以通过给不同的终端设备配置不同的参考信号序列标识
Figure PCTCN2019105198-appb-000038
使得不同终端设备发送的参考信号的循环移位跳的模式不同,从而达到干扰随机化的作用。
一种可能的实现方式中,终端设备的属性信息可以包括终端设备的标识信息。标识信息可以是一个终端设备专用标识信息,例如标识信息可以为终端设备的小区无线网络临时标识(cell radio network temporary identity,C-RNTI),也可以终端设备的国际移动用户识别码(international mobile subscriber identity,IMSI),还可以为终端设备的临时移动台标识符(temporary mobile station identifier,TMSI)等。标识信息还可以是一组终端设备共享的标识信息。本申请不作限制。
在该实现方式中,终端设备的标识信息
Figure PCTCN2019105198-appb-000039
与初始种子参数c init之间可以满足以下关系:
Figure PCTCN2019105198-appb-000040
由不同的标识信息
Figure PCTCN2019105198-appb-000041
得到的
Figure PCTCN2019105198-appb-000042
的取值不同。其中,由于不同终端设备的标识信息不同,所以使用不同标识信息的终端设备的c init的取值不同。
同样的,在该实现方式中,对
Figure PCTCN2019105198-appb-000043
的具体实现方式并不限定,在此不再赘述。
图1所示的流程中,可以通过多种方法确定循环移位值,下面分别进行描述。
第一种方法:根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000044
其中,
Figure PCTCN2019105198-appb-000045
是发送参考信号的时隙在当前系统帧中的时隙编号(slot number),所述时隙编号与子载波间隔有关,例如当子载波间隔为15kHz时,所述时隙编号为为0~9中的一个整数;μ为子载波间隔的配置取值,且与子载波间隔大小一一对应;
Figure PCTCN2019105198-appb-000046
为一个时隙中的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的个数;l为发送参考信号的符号在当前时隙中的符号编号(symbol number),
Figure PCTCN2019105198-appb-000047
其中l=0对应的是当前时隙中的第一个符号,例如,发送参考信号的符号在当前时隙中的第11个符号上发送,则l=10;Z正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为预设正整数,或者是根据预定义的规则和/或网络设备配置信息确定的正整数,例如T=8;c(·)为所述伪随机序列。
进一步的,Z为协议固定的正整数,或者,Z为根据预定义的规则和/或网络设备配置信息确定的正整数。具体的,Z可以为
Figure PCTCN2019105198-appb-000048
为最大循环移位值,即标准中规定的循环移位值的最大取值。在本申请各实施例中,如果没有特殊说明,Z的含义与此处描述相同,不再赘述。
通过上面的方法,可以随机化终端设备在同一个系统帧内发送的参考信号的循环移位值,从而可以随机化任意两个使用不同ZC序列确定参考信号的终端设备在同一个系统帧内的干扰,实现提升参考信号时域滤波的性能,提高信道估计的准确度。
第二种方法:根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000049
其中,
Figure PCTCN2019105198-appb-000050
n SRS为参考信号计数器的计数值;Z为预设正整数,或者是根据预定义的规则和/或网络设备配置信息确定的正整数,Z的内容可以参考公式(2)中的描述,在此不再赘述;α init为预定义的或者网络设备配置的循环移位初始值;T为预设正整数,或者是根据预定义的规则和/或网络设备配置信息确定的正整数,例如T=8;c(·)为所述伪随机序列。
举例来说,当参考信号为SRS时,公式(3)中的n SRS可以满足以下公式:
Figure PCTCN2019105198-appb-000051
公式(4)中,
Figure PCTCN2019105198-appb-000052
为每个系统帧中的时隙数,每个系统帧中的时隙数与子载波间隔有关,其中μ为子载波间隔的配置取值,且与子载波间隔大小一一对应,子载波间隔也可称作子载波宽度;n f为系统帧编号;
Figure PCTCN2019105198-appb-000053
是发送所述参考信号的时隙在当前系统帧中的时隙编号,所述时隙编号与子载波间隔有关;
Figure PCTCN2019105198-appb-000054
为发送参考信号的符号在参考信号资源中的符号编号;
Figure PCTCN2019105198-appb-000055
为预定义的或者网络设备配置的可以用于发送参考信号的连续的OFDM符号数;T SRS为参考信号的发送周期,T offset为参考信号的时隙偏移值,T SRS和T offset为根据预定义的规则和/或网络设备配置信息确定的;R为参考信号重复因子(repetition factor),是根据预定义的规则和/或网络设备配置信息确定的。
通过上面的方法,可以随机化终端设备连续两次或者多次在相同频域资源上发送的参考信号的循环移位值,从而可以随机化任意两个使用不同ZC序列确定参考信号的终端设备两次或者多次在相同时频资源上所发送的参考信号之间的干扰,从而可以提升参考信号时域滤波的性能,提高信道估计的准确度。
第三种方法:根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000056
其中,
Figure PCTCN2019105198-appb-000057
Figure PCTCN2019105198-appb-000058
是发送所述参考信号的时隙在当前系统帧中的时隙编号,所述时隙编号与子载波间隔有关,其中μ为子载波间隔的配置取值,且与子载波间隔大小一一对应;n f为系统帧编号;
Figure PCTCN2019105198-appb-000059
为每个系统帧中的时隙数,所述时隙数与子载波间隔有关;T SRS为参考信号的发送周期;L为预设整数,或者是根据预定的方式和/或网络设备的配置信息确定的非负整数,举例来说,L可以为参考信号的时隙偏移值T offset;Z为预设正整数,或者是根据预定义的规则和/或网络设备配置信息确定的正整数,Z的内容可以参考公式(2)中的描述,在此不再赘述;α init为预定义的或者网络设备配置的循环移位初始值;T为预设正整数,或者是根据预定义的规则和/或网络设备配置信息确定的正整数;c(·)为所述伪随机序列。
通过上面的方法,可以随机化终端设备在任意两个参考信号发送周期发送的参考信号的循环移位值,从而可以随机化任意两个使用不同ZC序列确定参考信号的终端设备的参 考信号之间的干扰,实现提升参考信号时域滤波的性能,提高信道估计的准确度。
第四种方法:根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000060
其中,
Figure PCTCN2019105198-appb-000061
Figure PCTCN2019105198-appb-000062
是发送所述参考信号的时隙在当前系统帧中的时隙编号,所述时隙编号与子载波间隔有关,其中μ为子载波间隔的配置取值,且与子载波间隔大小一一对应;n f为系统帧编号;
Figure PCTCN2019105198-appb-000063
为每个系统帧中的时隙数,所述时隙数与子载波间隔有关;l为发送参考信号的符号在当前时隙中的符号编号,
Figure PCTCN2019105198-appb-000064
其中l=0对应的是当前时隙中的第一个符号;Z为预设正整数,或者是根据预定义的规则和/或网络设备的配置信息确定的正整数,Z的内容可以参考公式(2)中的描述,在此不再赘述;α init为预定义的或者网络设备配置的循环移位初始值;T为预设正整数,或者根据预定义的规则和/或网络设备的配置信息确定的正整数;S为正整数,例如,S为一个时隙中的OFDM符号的个数,也就是说
Figure PCTCN2019105198-appb-000065
c(·)为所述伪随机序列。
通过上面的方法,可以随机化终端设备在任意两个或者多个符号上发送的参考信号的循环移位值,从而可以随机化任意两个使用不同ZC序列确定参考信号的终端设备在任意两个或者多个符号上发送的参考信号之间的干扰,实现提升参考信号时域滤波的性能,提高信道估计的准确度。
进一步的,图1所示的流程中,如何根据循环移位值确定参考信号,本申请实施例并不限定。举例来说,参考信号为SRS时,长度为M的SRSs(m)可以由基序列r(m)通过如下公式生成:
s(m)=Aexp(jαm)r(m),m=0,1,2,...,M-1·····(7)
其中,M为大于1的整数;α是循环移位值;j为虚数单位。A是预设的复数。基序列可以是ZC序列生成的序列,例如是ZC序列本身,或者是ZC序列通过循环移位生成的序列。
前面的实施例中,循环移位值是根据伪随机序列确定的,本申请实施例中,循环移位值还可以根据其他方式确定,下面将详细描述。
如图2所示,为本申请实施例提供的一种参考信号传输流程示意图。参见图2,该方法包括:
步骤201:确定参考信号的循环移位值。
其中,所述循环移位值为根据第一循环移位间隔确定的,所述第一循环移位间隔为根据第一时间单元的信息从第一图样中确定的,所述第一图样中包括Y个循环移位间隔,Y为大于1的整数,所述第一图样是从X个图样中确定的,X为正整数;或者,所述循环移 位值为根据第一循环移位步长以及所述第一时间单元的信息确定的,所述第一循环移位步长是从Z个循环移位步长中确定的,Z为正整数;或者,所述循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及所述第一时间单元的信息确定的,所述第一初始循环移位步长是从Z个初始循环移位步长中确定的,所述第一循环移位步长差是从Z个循环移位步长差中确定的,Z为正整数;所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号和/或所述第一时间单元所在的时隙在当前系统帧中的时隙编号和/或作数第一时间单元所在的符号在当前时隙中的符号编号;所述第一时间单元为发送所述参考信号的时间单元。
示例性的,所述第一图样可以是根据第一指示信息从X个图样中确定的;所述第一循环移位步长可以是根据第二指示信息从Z个循环移位步长中确定的;所述第一初始循环移位步长可以是根据第三指示信息从Z个初始循环移位步长中确定的;所述第一循环移位步长差可以是根据第四指示信息从Z个循环移位步长差中确定的。所述第一指示信息至所述第四指示信息可以是所述网络设备向所述终端设备发送的。
本申请实施例中,所述第一时间单元可以为时隙,可以为OFDM符号,还可以为子帧或系统帧等时间单元。需要说明的是,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号,和/或所述第一时间单元所在的时隙在当前系统帧中的时隙编号,和/或所述第一时间单元所在的符号在当前时隙中的符号编号,可以包括以下几种情况:
情况1:所述第一时间单元为子帧,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号;
情况2:所述第一时间单元为时隙,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号,和/或所述第一时间单元(即一个时隙)在当前系统帧中的时隙编号;
情况3:所述第一时间单元为OFDM符号,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号,和/或所述第一时间单元所在的时隙在当前系统帧中时隙编号,和/或所述第一时间单元(即一个符号)在当前时隙中的符号编号。
需要说明的是,本申请实施例中,所述第一时间单元为OFDM符号时,还可能存在情况4。
情况4:所述第一时间单元为OFDM符号,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号,和/或所述第一时间单元所在的时隙在当前系统帧中时隙编号,和/或所述第一时间单元(即一个符号)在当前时隙中的符号编号,和/或所述第一时间单元(即一个符号)在当前参考信号资源中的符号编号。
其中,情况3可以适用于后面描述的公式(8)、公式(10)以及公式(12);情况4可以适用于后面描述的公式(9)、公式(11)以及公式(13)。
当然,以上只是示例,还可能存在其他情况,在此不再赘述。
步骤202:根据所述循环移位值确定参考信号,并在所述第一时间单元向网络设备发送所述参考信号。
其中,参考信号可以为SRS,还可以为DMRS等。
步骤201至步骤202可以由终端设备执行。
步骤203:确定参考信号的循环移位值。
步骤203中确定循环移位值的方法,可以和步骤201相同,在此不再赘述。
步骤204:根据所述循环移位值确定参考信号,使用所述参考信号对来自终端设备的信号进行检测。
步骤203至步骤204可以由网络设备执行。
可以理解的,上述方法流程中,步骤201至步骤202与步骤203至步骤204可以分别实施。即从终端设备的角度,在上述方法流程中,可以只执行步骤201至步骤202,从网络设备的角度,在上述方法流程中,可以只执行步骤203至步骤204。
图2所示的流程中,如何根据循环移位值确定参考信号,本申请实施例对此并不限定,例如可以参考图1所示的流程中的方法,在此不再赘述。
图2所示的流程中,如何确定循环移位值,可以有多种方法,下面分别进行描述。
方法一:所述循环移位值为根据第一循环移位步长以及所述第一时间单元的信息确定的,所述第一时间单元为一个OFDM符号,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号以及发送所述参考信号的所述第一时间单元所在的时隙在当前系统帧中的时隙编号,所述循环移位值α是根据λ确定的,例如α=λ,λ满足以下公式:
Figure PCTCN2019105198-appb-000066
或者,所述循环移位值为根据第一循环移位步长以及所述第一时间单元的信息确定的,所述第一时间单元为一个OFDM符号,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号、发送所述参考信号的所述第一时间单元所在的时隙以及所述第一时间单元在参考信号资源中的符号编号,所述符号编号属于集合
Figure PCTCN2019105198-appb-000067
为预定义的或者网络设备配置的可以用于发送参考信号的连续的OFDM符号数,在当前系统帧中的时隙编号,所述循环移位值α是根据λ确定的,例如α=λ,λ满足以下公式:
Figure PCTCN2019105198-appb-000068
其中,Δhopping为所述第一循环移位步长;
Figure PCTCN2019105198-appb-000069
为每个系统帧中的时隙数,所述时隙数与子载波间隔有关,其中μ为子载波间隔的配置取值,且与子载波间隔大小一一对应;n f为系统帧编号;
Figure PCTCN2019105198-appb-000070
是发送所述参考信号的时隙在当前系统帧中的时隙编号,所述时隙编号与子载波间隔有关;L为预设整数,或者是根据预定的方式和/或网络设备的配置信息确定的非负整数,举例来说,L可以为参考信号的时隙偏移值T offset;T SRS为参考信号的发送周期;Z为预设正整数,或者是根据预定义的规则和/或网络设备配置信息确定的 正整数,Z的内容可以参考公式(2)中的描述,在此不再赘述;α init为预定义的或者网络设备配置的循环移位初始值;R为参考信号重复因子(repetition factor);
Figure PCTCN2019105198-appb-000071
为发送参考信号的符号在参考信号资源中的符号编号;
Figure PCTCN2019105198-appb-000072
为预定义的或者网络设备配置的可以用于发送参考信号的连续的OFDM符号数;B为预设的整数,或者根据预定义的规则和/或网络设备的配置信息确定的整数。
其中,在公式(8)中,n f
Figure PCTCN2019105198-appb-000073
为所述第一时间单元的信息。在公式(9)中,n f
Figure PCTCN2019105198-appb-000074
和l'为所述第一时间单元的信息。
示例性的,第一循环移位步长Δhopping可以为预设集合中的一个值,举例来说,所述预设集合={0,1,2,...,Z-1}。
示例性的,网络设备可以向终端设备发送第二指示信息,第二指示信息用于指示所述第一循环移位步长。终端设备从而可以根据第二指示信息确定所述第一循环移位步长。举例来说,网络设备预先向终端设备配置Z个循环移位步长,第二指示信息用于指示所述Z个循环移位步长中的一个循环移位步长,例如第二指示信息可以为第一循环移位步长在所述Z个循环移位步长中的索引值,终端设备根据所述第二指示信息可以确定第一循环移位步长。
上面的方法中,在相同时频资源上发送参考信号的终端设备可以根据生成参考信号的基序列分成G组,G为基序列个数,属于同一组的终端设备使用相同基序列生成参考信号,属于不同组的终端设备使用不同基序列生成参考信号,当G小于或等于Z时,网络设备可以给这G组终端设备配置不同的Δhopping的取值。也就是说,给使用相同基序列确定参考信号的终端设备配置相同的Δhopping取值,给使用不同基序列确定参考信号的终端设备配置不同的Δhopping的取值。通过这种方式,可以使得这G组终端设备中的任意两个属于不同组的终端设备在任意相邻的两次同频域资源上发送的参考信号的循环移位的差值不同,从而实现随机化任意两个基于不同基序列生成参考信号序列的终端设备之间的参考信号之间的干扰,从而可以提高信道测量准确度。
方法二:所述循环移位值为根据第一循环移位间隔确定的,所述第一时间单元为一个OFDM符号,所述第一循环移位间隔为根据第一时间单元的信息从第一图样中确定的,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号以及所述第一时间单元所在的时隙在当前系统帧中的时隙编号,所述循环移位值α是根据λ确定的,例如α=λ,λ可以满足以下公式:
Figure PCTCN2019105198-appb-000075
或者,所述循环移位值为根据第一循环移位间隔确定的,所述第一时间单元为一个OFDM符号,所述第一循环移位间隔为根据第一时间单元的信息从第一图样中确定的,所 述第一时间单元的信息包括所述第一时间单元所在的系统帧编号、所述第一时间单元所在的时隙在当前系统帧中的时隙编号以及所述第一时间单元在参考信号资源中的符号编号,所述符号编号属于集合
Figure PCTCN2019105198-appb-000076
为预定义的或者网络设备配置的可以用于发送参考信号的连续的OFDM符号数,所述循环移位值α是根据λ确定的,例如α=λ,λ可以满足以下公式:
Figure PCTCN2019105198-appb-000077
其中,
Figure PCTCN2019105198-appb-000078
为每个系统帧中的时隙数,所述时隙数与子载波间隔有关,其中μ为子载波间隔的配置取值,且与子载波间隔大小一一对应;n f为系统帧编号;
Figure PCTCN2019105198-appb-000079
是发送所述参考信号的时隙在当前系统帧中的时隙编号,所述时隙编号与子载波间隔有关;L为预设整数,或者是根据预定的方式和/或网络设备的配置信息确定的非负整数,举例来说,L可以为参考信号的时隙偏移值T offset;T SRS为参考信号的发送周期;Z为预设正整数,或者是根据预定义的规则和/或网络设备配置信息确定的正整数,Z的内容可以参考公式(2)中的描述,在此不再赘述;α init为预定义的或者网络设备配置的循环移位初始值;R为参考信号重复因子(repetition factor);
Figure PCTCN2019105198-appb-000080
为发送参考信号的符号在参考信号资源中的符号编号;
Figure PCTCN2019105198-appb-000081
为预定义的或者网络设备配置的可以用于发送参考信号的连续的OFDM符号数;B为预设的整数,或者根据预定义的规则和/或网络设备的配置信息确定的整数。
Figure PCTCN2019105198-appb-000082
为所述第一循环移位间隔,第一图样为包括Y个循环移位间隔的集合,所述第一图样为[β 012,...,β Y-1],Y为大于1的整数,第一图样包括的每个循环移位间隔均为整数。
其中,在公式(10)中,n f
Figure PCTCN2019105198-appb-000083
为所述第一时间单元的信息。在公式(11)中,n f
Figure PCTCN2019105198-appb-000084
和l'为所述第一时间单元的信息。
本申请实施例中,第一图样包括的Y个循环移位间隔可以为预定义的整数。在一种可能的实现方式中,可以预先定义X个图样,X为正整数,X个图样中的每个图样包括Y个 循环移位间隔,网络设备可以向终端设备发送第一指示信息,第一指示信息用于指示所述X个图样中的一个图样,终端设备可以根据第一指示信息从X个图样中确定第一图样。
X个图样具体如何实现,本申请实施例对此并不限定。举例来说,预先定义的X个图样中的第x个图样包括的Y个循环移位间隔为:
Figure PCTCN2019105198-appb-000085
当第二指示信息指示第一图样为所述X个图样中的第x个图样时,所述第一图样的第y个循环移位间隔
Figure PCTCN2019105198-appb-000086
其中,所述X个图样可以为满足以下条件的任意X个图样:
条件一:对于所有的非负整数i和j,
Figure PCTCN2019105198-appb-000087
为集合{0,1,...,Z-1}中的任意取值。
条件二:对于
Figure PCTCN2019105198-appb-000088
和y∈{1,2,...,Y-1},如果j 1≠j 2,则
Figure PCTCN2019105198-appb-000089
其中,
Figure PCTCN2019105198-appb-000090
条件三:对于
Figure PCTCN2019105198-appb-000091
j∈{0,1,...,Z-1}和y∈{1,2,...,Y-1},
Figure PCTCN2019105198-appb-000092
可选的,
Figure PCTCN2019105198-appb-000093
的取值和
Figure PCTCN2019105198-appb-000094
的取值可以是终端设备根据预定义的规则和/或网络设备配置信息确定的,其中
Figure PCTCN2019105198-appb-000095
可以为集合{0,1,...,Z-1}中的任意取值,不同的x对应的
Figure PCTCN2019105198-appb-000096
的取值可以相同也可以不同,本申请实施例并不限定。示例性的,
Figure PCTCN2019105198-appb-000097
Figure PCTCN2019105198-appb-000098
的取值为满足条件二且属于集合{0,1,...,Z-1}的整数。例如,
Figure PCTCN2019105198-appb-000099
终端设备可以根据
Figure PCTCN2019105198-appb-000100
的取值,以及根据条件三来确定
Figure PCTCN2019105198-appb-000101
的取值。
进一步的,终端设备可以根据
Figure PCTCN2019105198-appb-000102
的取值和
Figure PCTCN2019105198-appb-000103
的取值来确定
Figure PCTCN2019105198-appb-000104
的取值。具体的,
Figure PCTCN2019105198-appb-000105
的取值满足 如下公式:
Figure PCTCN2019105198-appb-000106
示例性的,所述X个图样可以为:
Figure PCTCN2019105198-appb-000107
Figure PCTCN2019105198-appb-000108
其中D可以为任意整数,例如D=0。
上面的方法中,在相同时频资源上发送参考信号的终端设备可以根据生成参考信号的基序列分成G组,G为基序列个数,属于同一组的终端设备使用相同基序列生成参考信号,属于不同组的终端设备使用不同基序列生成参考信号,网络设备可以给这G组终端设备配置不同的循环移位跳的图样,即不同的x的取值。也就是说,给使用相同基序列确定参考信号的终端设备配置相同的循环移位跳的图样,即相同的x的取值,给使用不同基序列确定参考信号的终端设备配置不同的循环移位的图样,即不同的x的取值。当G小于等于Z时,这G组终端设备中的任意两个属于不同组的终端设备在任意相邻的两次同频域资源上发送的参考信号的循环移位的差值不同。也就是说可以随机化任意两个基于不同基序列生成参考信号序列的终端设备之间的参考信号之间的干扰,从而可以提高信道测量准确度。当G大于Z时且小于Z 2时,这G组终端设备中的任意两个属于不同组的终端设备在任意相邻的三次同频与资源上发送的参考信号的循环移位的差值不完全相同。也就是说当相干带宽大于等于两倍的参考信号发送周期时,可以通过时域滤波来提高信道测量的准确度。
方法三:所述循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及所述第一时间单元的信息确定的,所述第一时间单元为一个OFDM符号,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号以及所述第一时间单元所在的时隙在当前系统帧中的时隙编号,所述循环移位值α是根据λ确定的,例如α=λ,λ满足以下公式:
Figure PCTCN2019105198-appb-000109
或者,所述循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及所述第一时间单元的信息确定的,所述第一时间单元为一个OFDM符号,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号、所述第一时间单元所在的时隙在当前系统帧中的时隙编号以及所述第一时间单元在参考信号资源中的符号编号,所述符号编号属于集合
Figure PCTCN2019105198-appb-000110
为预定义的或者网络设备配置的可以用于发送参考信号的连续的OFDM符号数,所述循环移位值α是根据λ确定的,例如α=λ,λ满足以下公式:
Figure PCTCN2019105198-appb-000111
其中,
Figure PCTCN2019105198-appb-000112
为每个系统帧中的时隙数,所述时隙数与子载波间隔有关,其中μ为子载波间隔的配置取值,且与子载波间隔大小一一对应;n f为系统帧编号;
Figure PCTCN2019105198-appb-000113
是发送所述参考信号的时隙在当前系统帧中的时隙编号,所述时隙编号与子载波间隔有关;L为预设整数,或者是根据预定的方式和/或网络设备的配置信息确定的整数,举例来说,L可以为参考信号的时隙偏移值T offset;T SRS为参考信号的发送周期;Z为预设正整数,或者是根据预定义的规则和/或网络设备配置信息确定的正整数,Z的内容可以参考公式(2)中的描述,在此不再赘述;Δh init为所述第一初始循环移位步长,Δh gap为所述第一循环移位步长差;α init为预定义的或者网络设备配置的循环移位初始值;R为参考信号重复因子(repetition factor);
Figure PCTCN2019105198-appb-000114
为发送参考信号的符号在参考信号资源中的符号编号;
Figure PCTCN2019105198-appb-000115
为预定义的或者网络设备配置的可以用于发送参考信号的连续的OFDM符号数;B为预设的整数,或者根据预定义的规则和/或网络设备的配置信息确定的整数。
示例性的,第一初始循环移位步长Δh init可以为第一预设集合中的一个值,举例来说,所述第一预设集合={0,1,2,...,Z-1}。第一循环移位步长差Δh gap可以为第二预设集合中的一个值,举例来说,所述第二预设集合={0,1,2,...,Z-1}。
其中,在公式(12)中,n f
Figure PCTCN2019105198-appb-000116
为所述第一时间单元的信息。在公式(13)中,n f
Figure PCTCN2019105198-appb-000117
和l'为所述第一时间单元的信息。
在一种可能的实现方式中,网络设备向终端设备发送第三指示信息,通过第三指示信息,向终端设备指示第一初始循环移位步长。举例来说,网络设备预先配置Z个初始循环移位步长,第三指示信息用于指示Z个初始循环移位步长中的一个初始循环移位步长,终端设备从而可以根据第三指示信息从Z个初始循环移位步长中确定第一初始循环移位步长。
相应的,网络设备还可以向终端设备发送第四指示信息,通过第四指示信息,向终端设备指示第一循环移位步长差。举例来说,网络设备预先配置Z个第一循环移位步长差,第四指示信息用于指示Z个第一循环移位步长差中的一个第一循环移位步长差,终端设备从而可以根据第四指示信息从Z个第一循环移位步长差中确定第一循环移位步长差。
通过上面的方法,在相同时频资源上发送参考信号的终端设备可以根据生成参考信号的基序列分成G组,G为基序列个数,属于同一组的终端设备使用相同基序列生成参考信号, 属于不同组的终端设备使用不同基序列生成参考信号,网络设备可以给这G组终端设备配置不同的初始循环移位步长和/或不同的循环移位步长差。也就是说,给使用相同基序列确定参考信号的终端设备配置相同的初始循环移位步长和循环移位步长差,给使用不同基序列确定参考信号的终端设备配置不同的初始循环移位步长和/或不同的循环移位步长差。当G小于等于Z时,这G组终端设备中的任意两个属于不同组的终端设备在任意相邻的两次同频域资源上发送的参考信号的循环移位的差值不同。也就是说可以随机化任意两个基于不同基序列生成参考信号序列的终端设备之间的参考信号之间的干扰,从而可以提高信道测量准确度。当G大于Z时且小于Z 2时,这G组终端设备中的任意两个属于不同组的终端设备在任意相邻的三次同频与资源上发送的参考信号的循环移位的差值不完全相同。也就是说当相干带宽大于等于两倍的参考信号发送周期时,可以通过时域滤波来提高信道测量的准确度。
前面描述的实施例中,在生成参考信号之前,需要先确定循环移位值,本申请实施例还提供一种方法,循环移位值是根据预定义的规则和/或网络设备的配置信息确定的,在这种情况下,通过为参考信号添加正交覆盖码以达到参考信号之间干扰随机化的目的,下面详细描述。
步骤一:终端设备生成参考信号;
步骤二:终端设备发送所述参考信号。
步骤三:网络设备生成参考信号;
步骤四:网络设备使用所述参考信号对来自终端设备的信号进行检测。
其中,终端设备或网络设备生成的所述参考信号可以满足以下公式:
s(m)=Aexp(jαm)r(m)×B x,y,m=0,1,2,...,M-1·····(14)
其中,r(m)为用于生成该参考信号的基序列;M为大于1的整数,为参考信号的长度;α是循环移位值,循环移位值是预定义的或者由网络设备配置的;j为虚数单位;A是预设的复数;B x,y是正交覆盖码(orthogonal cover code),可以满足以下公式:
Figure PCTCN2019105198-appb-000118
其中,
Figure PCTCN2019105198-appb-000119
为正交变量扩散因子(Orthogonal Variable Spreading Factor,OVSF)序列,L为通过预定义的规则确定的或者根据网络设备的配置信息确定的,示例性的,L为参考信号的时序偏移T offset;x为大于等于0且小于Z root的整数,其中x=0对应的是序列
Figure PCTCN2019105198-appb-000120
中的第一个取值;y为大于等于0且小于Z root的整数,是根据预定义的规则和/或网络设备的配置信息确定的,可选的,网络设备可以给使用相同基序列确定参考信号的终端设备配置相同的y的取值;Z root为正整数,是根据预定义的规则和/或网络设备的配 置信息确定的。
可选的,正交变量扩散因子序列
Figure PCTCN2019105198-appb-000121
满足以下公式:
Figure PCTCN2019105198-appb-000122
通过上述方法,在相同时频资源上发送参考信号的终端设备可以根据生成参考信号的基序列分成G组,G为基序列个数,属于同一组的终端设备使用相同基序列生成参考信号,属于不同组的终端设备使用不同基序列生成参考信号,当G小于等于Z root时,网络设备可以为属于不同组的终端设备分配不同的y取值,然后通过在连续的Z root个参考信号发送周期上进行时域滤波,以达到消除这G组终端设备中的任意一个终端设备发送的参考信号受到的来自这G组终端设备中的其他终端设备发送的参考信号的干扰。也就是说当相干时间大于等于Z root倍的参考信号发送周期时,可以通过时域滤波来提高信道测量的准确度。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
如图3所示,为本申请所涉及的通信装置的一种可能的示例性框图,该装置300可以以软件或硬件的形式存在。装置300可以包括:处理单元302和通信单元303。作为一种实现方式,该通信单元303可以包括接收单元和发送单元。处理单元302用于对装置300的动作进行控制管理。通信单元303用于支持装置300与其他网络实体的通信。装置300还可以包括存储单元301,用于存储装置300的程序代码和数据。
其中,处理单元302可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。存储单元301可以是存储器。通信单元303是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信 单元303是该芯片用于从其它芯片或装置接收信号的接口电路,或者,是该芯片用于向其它芯片或装置发送信号的接口电路。
该装置300可以为上述任一实施例中的终端设备,还可以为用于终端设备的芯片。例如,当装置300为终端设备时,该处理单元302例如可以是处理器,该通信单元303例如可以是收发器。可选的,该收发器可以包括射频电路,该存储单元例如可以是存储器。例如,当装置300为用于终端设备的芯片时,该处理单元302例如可以是处理器,该通信单元303例如可以是输入/输出接口、管脚或电路等。该处理单元302可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端设备内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在一个实施例中,该装置300可以为上述任一实施例中的网络设备,还可以为用于网络设备的芯片。例如,当装置300为网络设备时,该处理单元302例如可以是处理器,该通信单元303例如可以是收发器。
在一个实施例中,该装置300为终端设备,处理单元302,用于确定伪随机序列的初始种子参数,并根据所述初始种子参数生成所述伪随机序列;所述初始种子参数为根据终端设备的属性信息确定的;根据所述伪随机序列确定循环移位值,并根据所述循环移位值确定参考信号;
通信单元303,用于向网络设备发送所述参考信号。
在一个实施例中,该装置300为网络设备,通信单元303,用于接收来自终端设备的信号;
处理单元302,用于确定伪随机序列的初始种子参数,并根据所述初始种子参数生成所述伪随机序列;所述初始种子参数为根据终端设备的属性信息确定的;根据所述伪随机序列确定循环移位值,并根据所述循环移位值确定参考信号;使用所述参考信号对来自所述终端设备的信号进行检测。
在一个实施例中,该装置300为终端设备或者网络设备时,还包括以下实现方法:
在一种可能的实现方法中,属性信息包括确定参考信号所使用的ZC序列的根指标。
在一种可能的实现方法中,属性信息包括参考信号的序列标识。
在一种可能的实现方法中,根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000123
其中,
Figure PCTCN2019105198-appb-000124
是发送参考信号的时隙在当前系统帧中的时隙编号;
Figure PCTCN2019105198-appb-000125
为一个时隙中的正交频分复用OFDM符号的个数;l为发送参考信号的符号在当前时隙中的符号编号,
Figure PCTCN2019105198-appb-000126
其中l=0对应的是当前时隙中的第一个符号;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;c(·)为伪随机序列。
在一种可能的实现方法中,根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000127
其中,
Figure PCTCN2019105198-appb-000128
n SRS为参考信号计数器的计数值;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;c(·)为伪随机序列。
在一种可能的实现方法中,根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000129
其中,
Figure PCTCN2019105198-appb-000130
Figure PCTCN2019105198-appb-000131
是发送参考信号的时隙在当前系统帧中的时隙编号;n f为系统帧编号;
Figure PCTCN2019105198-appb-000132
为每个系统帧中的时隙数;T SRS为参考信号的发送周期;L为整数;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;c(·)为伪随机序列。
在一种可能的实现方法中,根据伪随机序列确定的循环移位值α满足以下公式:
Figure PCTCN2019105198-appb-000133
其中,
Figure PCTCN2019105198-appb-000134
Figure PCTCN2019105198-appb-000135
是发送参考信号的时隙在当前系统帧中的时隙编号;n f为系统帧编号;
Figure PCTCN2019105198-appb-000136
为每个系统帧中的时隙数;l为发送参考信号的符号在当前时隙中的符号编号,
Figure PCTCN2019105198-appb-000137
其中l=0对应的是当前时隙中的第一个符号;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;S为正整数;c(·)为伪随机序列。
在一种可能的实现方法中,Z为
Figure PCTCN2019105198-appb-000138
为最大循环移位值。
可以理解的是,该装置用于上述通信方法时的具体实现过程以及相应的有益效果,可以参考前述方法实施例中的相关描述,这里不再赘述。
如图4所示,为本申请所涉及的通信装置的一种可能的示例性框图,该装置400可以以软件或硬件的形式存在。装置400可以包括:处理单元402和通信单元403。作为一种 实现方式,该通信单元403可以包括接收单元和发送单元。处理单元402用于对装置400的动作进行控制管理。通信单元403用于支持装置400与其他网络实体的通信。装置400还可以包括存储单元401,用于存储装置400的程序代码和数据。
其中,处理单元402可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。存储单元401可以是存储器。通信单元403是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信单元403是该芯片用于从其它芯片或装置接收信号的接口电路,或者,是该芯片用于向其它芯片或装置发送信号的接口电路。
该装置400可以为上述任一实施例中的网络设备,还可以为用于网络设备的芯片。例如,当装置400为网络设备时,该处理单元402例如可以是处理器,该通信单元403例如可以是收发器。
该装置400可以为上述任一实施例中的终端设备,还可以为用于终端设备的芯片。例如,当装置400为终端设备时,该处理单元402例如可以是处理器,该通信单元403例如可以是收发器。
可选的,该收发器可以包括射频电路,该存储单元例如可以是存储器。例如,当装置400为用于网络设备的芯片时,该处理单元402例如可以是处理器,该通信单元403例如可以是输入/输出接口、管脚或电路等。该处理单元402可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该网络设备内的位于该芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
在一个实施例中,该装置400为终端设备,处理单元402,用于确定循环移位值;其中,所述循环移位值为根据第一跳频参数确定的,所述第一跳频参数为根据第一时间单元的信息从第一图样中确定的,所述第一图样中包括至少两个跳频参数;或者,所述循环移位值为根据第一循环移位步长以及所述第一时间单元的信息确定的;或者,所述循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及所述第一时间单元的信息确定的,其中所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号和/或所述第一时间单元所在的时隙编号;所述第一时间单元为发送所述参考信号的时间单元;根据所述循环移位值确定所述参考信号。
通信单元403,用于在所述第一时间单元向网络设备发送所述参考信号。
在一个实施例中,该装置400为网络设备,通信单元403,用于接收来自终端设备的信号。
处理单元402,用于确定参考信号的循环移位值;其中,所述循环移位值为根据第一跳频参数确定的,所述第一跳频参数为根据第一时间单元的信息从第一图样中确定的,所述第一图样中包括至少两个跳频参数;或者,所述循环移位值为根据第一循环移位步长以及所述第一时间单元的信息确定的;或者,所述循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及所述第一时间单元的信息确定的,其中所述第一时间单元的信息 包括所述第一时间单元所在的系统帧编号和/或所述第一时间单元所在的时隙编号;所述第一时间单元为发送所述参考信号的时间单元;根据所述循环移位值确定所述参考信号;使用所述参考信号对来自终端设备的信号进行检测。
在一个实施例中,该装置400为终端设备或者网络设备时,还包括以下实现方法:
在一种可能的实现方式中,在一种可能的实现方式中,第一图样是从X个图样中确定的,X为正整数;或者,
第一循环移位步长是从Z个循环移位步长中确定的,Z为正整数;或者,
第一初始循环移位步长是从Z个初始循环移位步长中确定的,第一循环移位步长差是从Z个循环移位步长差中确定的。
在一种可能的实现方法中,第一图样是根据第一指示信息从X个图样中确定的,第一指示信息是网络设备向终端设备发送的;或者,
第一循环移位步长是根据第二指示信息从Z个循环移位步长中确定的,第二指示信息是网络设备向终端设备发送的;或者,
第一初始循环移位步长是根据第三指示信息从Z个初始循环移位步长中确定的,第三指示信息是网络设备向终端设备发送的,第一循环移位步长差是根据第四指示信息从Z个循环移位步长差中确定的,第四指示信息是网络设备向终端设备发送的。
在一种可能的实现方法中,循环移位值为根据第一循环移位间隔确定的,第一循环移位间隔为根据第一时间单元的信息从第一图样中确定的,第一时间单元的信息包括第一时间单元所在的系统帧编号以及第一时间单元所在的时隙在当前系统帧中的时隙编号,循环移位值α是根据λ确定的,其中λ满足以下公式:
Figure PCTCN2019105198-appb-000139
其中,
Figure PCTCN2019105198-appb-000140
为第一循环移位间隔,
Figure PCTCN2019105198-appb-000141
为每个系统帧中的时隙数;n f为系统帧编号;
Figure PCTCN2019105198-appb-000142
是发送参考信号的时隙在当前系统帧中的时隙编号;L为整数;T SRS为参考信号的发送周期;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值。
在一种可能的实现方法中,循环移位值为根据第一循环移位步长以及第一时间单元的信息确定的,第一时间单元的信息包括第一时间单元所在的系统帧编号以及第一时间单元所在的时隙在当前系统帧中的时隙编号,循环移位值α是根据λ确定的,其中λ满足以下公式:
Figure PCTCN2019105198-appb-000143
其中,Δhopping为第一循环移位步长;
Figure PCTCN2019105198-appb-000144
为每个系统帧中的时隙数;n f为系统帧编号;
Figure PCTCN2019105198-appb-000145
是发送参考信号的时隙在当前系统帧中的时隙编号;L为整数;T SRS为参考信号的发送周期;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值。
在一种可能的实现方法中,循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及第一时间单元的信息确定的,第一时间单元的信息包括第一时间单元所在的系统帧编号以及第一时间单元所在的时隙在当前系统帧中的时隙编号,循环移位值α是根据λ确定的,其中λ满足以下公式:
Figure PCTCN2019105198-appb-000146
其中,
Figure PCTCN2019105198-appb-000147
为每个系统帧中的时隙数;n f为系统帧编号;
Figure PCTCN2019105198-appb-000148
是发送参考信号的时隙在当前系统帧中的时隙编号;L为整数;Δh init为第一初始循环移位步长,Δh gap为第一循环移位步长差;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T SRS为参考信号的发送周期。
在一种可能的实现方法中,Z为
Figure PCTCN2019105198-appb-000149
为最大循环移位值。
可以理解的,本申请实施例的中的参考信号是下行参考信号,如下行DMRS,相位跟踪信号等。此时,本申请实施例提供的一种参考信号发送方法可以由网络设备执行;相应的,本申请实施例提供的一种信号检测方法可以由终端设备执行。
如图5所示,为本申请提供的一种通信装置示意图,该装置可以是上述实施例中的终端设备或网络设备。该装置500包括:处理器502、通信接口503、存储器501。可选的,装置500还可以包括通信线路504。其中,通信接口503、处理器502以及存储器501可以通过通信线路504相互连接;通信线路504可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路504可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器502可以是一个CPU,微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口503,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器501可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路504与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器501用于存储执行本申请方案的计算机执行指令,并由处理器502来控制执行。处理器502用于执行存储器501中存储的计算机执行指令,从而实现本申请上述实施例图2或图3提供的通信方法。可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本 申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种参考信号发送方法,其特征在于,包括:
    确定伪随机序列的初始种子参数,并根据所述初始种子参数生成所述伪随机序列;所述初始种子参数为根据终端设备的属性信息确定的;
    根据所述伪随机序列确定循环移位值,并根据所述循环移位值确定参考信号;
    向网络设备发送所述参考信号。
  2. 一种信号检测方法,其特征在于,包括:
    确定伪随机序列的初始种子参数,并根据所述初始种子参数生成所述伪随机序列;所述初始种子参数为根据终端设备的属性信息确定的;
    根据所述伪随机序列确定循环移位值,并根据所述循环移位值确定参考信号;
    使用所述参考信号对来自所述终端设备的信号进行检测。
  3. 根据权利要求1或2所述的方法,其特征在于,所述属性信息包括确定所述参考信号所使用的ZC序列的根指标。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述属性信息包括所述参考信号的序列标识。
  5. 根据权利要求1至4任一所述的方法,其特征在于,根据所述伪随机序列确定的循环移位值α满足以下公式:
    Figure PCTCN2019105198-appb-100001
    其中,
    Figure PCTCN2019105198-appb-100002
    是发送所述参考信号的时隙在当前系统帧中的时隙编号;
    Figure PCTCN2019105198-appb-100003
    为一个时隙中的正交频分复用OFDM符号的个数;l为发送参考信号的符号在当前时隙中的符号编号,
    Figure PCTCN2019105198-appb-100004
    其中l=0对应的是当前时隙中的第一个符号;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;c(·)为所述伪随机序列。
  6. 根据权利要求1至4任一所述的方法,其特征在于,根据所述伪随机序列确定的循环移位值α满足以下公式:
    Figure PCTCN2019105198-appb-100005
    其中,
    Figure PCTCN2019105198-appb-100006
    n SRS为参考信号计数器的计数值;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;c(·)为所述伪随机序列。
  7. 根据权利要求1至4任一所述的方法,其特征在于,根据所述伪随机序列确定的循环移位值α满足以下公式:
    Figure PCTCN2019105198-appb-100007
    其中,
    Figure PCTCN2019105198-appb-100008
    Figure PCTCN2019105198-appb-100009
    是发送所述参考信号的时隙在当前系统帧中的时隙编号;n f为系统帧编号;
    Figure PCTCN2019105198-appb-100010
    为每个系统帧中的时隙数;T SRS为参考信号的发送周期;L为整数;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;c(·)为所述伪随机序列。
  8. 根据权利要求1至4任一所述的方法,其特征在于,根据所述伪随机序列确定的循环移位值α满足以下公式:
    Figure PCTCN2019105198-appb-100011
    其中,
    Figure PCTCN2019105198-appb-100012
    Figure PCTCN2019105198-appb-100013
    是发送所述参考信号的时隙在当前系统帧中的时隙编号;n f为系统帧编号;
    Figure PCTCN2019105198-appb-100014
    为每个系统帧中的时隙数;l为发送参考信号的符号在当前时隙中的符号编号,
    Figure PCTCN2019105198-appb-100015
    其中l=0对应的是当前时隙中的第一个符号;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T为正整数;S为正整数;c(·)为所述伪随机序列。
  9. 根据权利要求4至7任一所述的方法,其特征在于,所述Z为
    Figure PCTCN2019105198-appb-100016
    为最大循环移位值。
  10. 一种参考信号发送方法,其特征在于,包括:
    确定参考信号的循环移位值;其中,所述循环移位值为根据第一循环移位间隔确定的,所述第一循环移位间隔为根据第一时间单元的信息从第一图样中确定的,所述第一图样中包括Y个循环移位间隔,Y为大于1的整数;
    或者,所述循环移位值为根据第一循环移位步长以及所述第一时间单元的信息确定的;
    或者,所述循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及所述第一时间单元的信息确定的;
    所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号,和/或所述第一时间单元所在的时隙在当前系统帧中的时隙编号,和/或所述第一时间单元所在的符号在当前时隙中的符号编号;所述第一时间单元为发送所述参考信号的时间单元;
    根据所述循环移位值确定所述参考信号,并在所述第一时间单元向网络设备发送所述 参考信号。
  11. 一种信号检测方法,其特征在于,包括:
    确定参考信号的循环移位值;其中,所述循环移位值为根据第一循环移位间隔确定的,所述第一循环移位间隔为根据第一时间单元的信息从第一图样中确定的,所述第一图样中包括Y个循环移位间隔,Y为大于1的整数;
    或者,所述循环移位值为根据第一循环移位步长以及所述第一时间单元的信息确定的;
    或者,所述循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及所述第一时间单元的信息确定的;
    所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号,和/或所述第一时间单元所在的时隙在当前系统帧中的时隙编号,和/或作数第一时间单元所在的符号在当前时隙中的符号编号;所述第一时间单元为发送所述参考信号的时间单元;
    根据所述循环移位值确定所述参考信号;
    使用所述参考信号对来自终端设备的信号进行检测。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一图样是从X个图样中确定的,X为正整数;或者,
    所述第一循环移位步长是从Z个循环移位步长中确定的,Z为正整数;或者,
    所述第一初始循环移位步长是从Z个初始循环移位步长中确定的,所述第一循环移位步长差是从Z个循环移位步长差中确定的。
  13. 根据权利要求12所述的方法,其特征在于,所述第一图样是根据第一指示信息从X个图样中确定的,所述第一指示信息是所述网络设备向所述终端设备发送的;或者,
    所述第一循环移位步长是根据第二指示信息从Z个循环移位步长中确定的,所述第二指示信息是所述网络设备向所述终端设备发送的;或者,
    所述第一初始循环移位步长是根据第三指示信息从Z个初始循环移位步长中确定的,所述第三指示信息是所述网络设备向所述终端设备发送的,所述第一循环移位步长差是根据第四指示信息从Z个循环移位步长差中确定的,所述第四指示信息是所述网络设备向所述终端设备发送的。
  14. 根据权利要求10至13任一所述的方法,所述循环移位值为根据第一循环移位间隔确定的,所述第一循环移位间隔为根据第一时间单元的信息从第一图样中确定的,其特征在于,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号以及所述第一时间单元所在的时隙在当前系统帧中的时隙编号,所述循环移位值α是根据λ确定的,其中λ满足以下公式:
    Figure PCTCN2019105198-appb-100017
    其中,
    Figure PCTCN2019105198-appb-100018
    为所述第一循环移位间隔,
    Figure PCTCN2019105198-appb-100019
    为每个系统帧中的时隙数;n f为系统帧编号;
    Figure PCTCN2019105198-appb-100020
    是发送所述参考信号的时隙在当前系统帧中的时隙编号;L 为整数;T SRS为参考信号的发送周期;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值。
  15. 根据权利要求10至13任一所述的方法,所述循环移位值为根据第一循环移位步长以及所述第一时间单元的信息确定的,其特征在于,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号以及所述第一时间单元所在的时隙在当前系统帧中的时隙编号,所述循环移位值α是根据λ确定的,其中λ满足以下公式:
    Figure PCTCN2019105198-appb-100021
    其中,Δhopping为所述第一循环移位步长;
    Figure PCTCN2019105198-appb-100022
    为每个系统帧中的时隙数;n f为系统帧编号;
    Figure PCTCN2019105198-appb-100023
    是发送所述参考信号的时隙在当前系统帧中的时隙编号;L为整数;T SRS为所述参考信号的发送周期;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值。
  16. 根据权利要求10至13任一所述的方法,所述循环移位值为根据第一初始循环移位步长、第一循环移位步长差以及所述第一时间单元的信息确定的,其特征在于,所述第一时间单元的信息包括所述第一时间单元所在的系统帧编号以及所述第一时间单元所在的时隙在当前系统帧中的时隙编号,所述循环移位值α是根据λ确定的,其中λ满足以下公式:
    Figure PCTCN2019105198-appb-100024
    其中,
    Figure PCTCN2019105198-appb-100025
    为每个系统帧中的时隙数;n f为系统帧编号;
    Figure PCTCN2019105198-appb-100026
    是发送所述参考信号的时隙在当前系统帧中的时隙编号;L为整数;Δh init为所述第一初始循环移位步长,Δh gap为所述第一循环移位步长差;Z为正整数;α init为预定义的或者网络设备配置的循环移位初始值;T SRS为所述参考信号的发送周期。
  17. 根据权利要求14至16任一所述的方法,其特征在于,所述Z为
    Figure PCTCN2019105198-appb-100027
    为最大循环移位值。
  18. 一种通信装置,其特征在于,包括处理器,收发器,和存储器;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,当所述计算机程序或 指令被执行时,使得所述通信装置实现权利要求1、3至9中任意一项所述的方法被执行,或2至9中任意一项所述的方法被执行,或10、12至17中任意一项所述的方法被执行,或11至17中任意一项所述的方法。
  19. 一种通信装置,其特征在于,包括处理器,所述处理器与至少一个存储器耦合:
    所述处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,如权利要求1、3至9中任意一项所述的方法被执行,或2至9中任意一项所述的方法被执行,或10、12至17中任意一项所述的方法被执行,或11至17中任意一项所述的方法被执行。
  20. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1、3至9中任意一项所述的方法被执行,或2至9中任意一项所述的方法被执行,或10、12至17中任意一项所述的方法被执行,或11至17中任意一项所述的方法被执行。
  21. 一种芯片,其特征在于,所述芯片与存储器相连,用于读取并执行所述存储器中存储的计算机程序或指令,当所述计算机程序或指令被执行时,如权利要求1、3至9中任意一项所述的方法被执行,或2至9中任意一项所述的方法被执行,或10、12至17中任意一项所述的方法被执行,或11至17中任意一项所述的方法被执行。
PCT/CN2019/105198 2019-09-10 2019-09-10 一种参考信号发送、信号检测方法及装置 WO2021046724A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19944848.1A EP4068714B1 (en) 2019-09-10 2019-09-10 Reference signal sending and signal detection method and apparatus
CN201980099949.2A CN114365458B (zh) 2019-09-10 2019-09-10 一种参考信号发送、信号检测方法及装置
PCT/CN2019/105198 WO2021046724A1 (zh) 2019-09-10 2019-09-10 一种参考信号发送、信号检测方法及装置
US17/690,738 US11882071B2 (en) 2019-09-10 2022-03-09 Reference signal sending method, signal detection method, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105198 WO2021046724A1 (zh) 2019-09-10 2019-09-10 一种参考信号发送、信号检测方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/690,738 Continuation US11882071B2 (en) 2019-09-10 2022-03-09 Reference signal sending method, signal detection method, and apparatus

Publications (1)

Publication Number Publication Date
WO2021046724A1 true WO2021046724A1 (zh) 2021-03-18

Family

ID=74866689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105198 WO2021046724A1 (zh) 2019-09-10 2019-09-10 一种参考信号发送、信号检测方法及装置

Country Status (4)

Country Link
US (1) US11882071B2 (zh)
EP (1) EP4068714B1 (zh)
CN (1) CN114365458B (zh)
WO (1) WO2021046724A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104618985A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 设备发现信号的发送方法、装置、设备及系统
CN104853339A (zh) * 2014-02-19 2015-08-19 中兴通讯股份有限公司 一种信号处理的方法及装置
WO2019096217A1 (en) * 2017-11-15 2019-05-23 Mediatek Inc. Reference signals with improved cross-correlation properties in wireless communications
WO2019148738A1 (zh) * 2018-01-30 2019-08-08 创新维度科技(北京)有限公司 物联网的下行数据传输方法和下行数据接收方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2427617T3 (es) * 2008-08-19 2013-10-31 Electronics And Telecommunications Research Institute Método y aparato para transmitir acuse de recibo y acuse de recibo negativo
WO2013025140A1 (en) * 2011-08-12 2013-02-21 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for handling reference signals in a cellular network
WO2013125840A1 (en) * 2012-02-20 2013-08-29 Lg Electronics Inc. Method and apparatus for transmitting uplink signal in wireless communication system
CN108631976B (zh) * 2017-03-23 2021-07-16 华为技术有限公司 一种通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104618985A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 设备发现信号的发送方法、装置、设备及系统
CN104853339A (zh) * 2014-02-19 2015-08-19 中兴通讯股份有限公司 一种信号处理的方法及装置
WO2019096217A1 (en) * 2017-11-15 2019-05-23 Mediatek Inc. Reference signals with improved cross-correlation properties in wireless communications
WO2019148738A1 (zh) * 2018-01-30 2019-08-08 创新维度科技(北京)有限公司 物联网的下行数据传输方法和下行数据接收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Interference management in NR", 3GPP DRAFT; R1-1704450 INTERFERENCE MANAGEMENT IN NR V1 FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 2 April 2017 (2017-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051242595 *

Also Published As

Publication number Publication date
CN114365458B (zh) 2023-09-29
US11882071B2 (en) 2024-01-23
EP4068714A4 (en) 2022-10-05
EP4068714A1 (en) 2022-10-05
EP4068714B1 (en) 2023-11-08
US20220200760A1 (en) 2022-06-23
CN114365458A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
US11323973B2 (en) Information sending and receiving method and related device
US11777683B2 (en) Method and apparatus for transmitting DMRS
US20190296946A1 (en) Reference signal transmission method and transmission apparatus
US10951373B2 (en) Method for obtaining quantity of resource elements in communication process and related apparatus
US20190342052A1 (en) Reference signal transmission method and apparatus
WO2022022579A1 (zh) 一种通信方法及装置
US11469936B2 (en) Data transmission method and apparatus
CN108282305A (zh) 参考信号的传输方法和设备
CN109150464A (zh) 无线通信方法和无线通信装置
US20210014023A1 (en) Data transmission method, terminal device, and network device
WO2020187064A1 (zh) 干扰随机化的方法和装置
WO2020143689A1 (zh) 一种参考信号传输方法及装置
US20210195645A1 (en) Communication method and communications apparatus for using unlicensed frequency band
US20230261827A1 (en) Signal sending method, signal detection method, and apparatus
EP3422762A1 (en) Signal transmission method and base station
WO2021046724A1 (zh) 一种参考信号发送、信号检测方法及装置
WO2024087223A1 (zh) 通信方法及装置
CN111585731B (zh) 一种通信方法及装置
WO2024065196A1 (zh) 数据传输方法及装置
CN111294154A (zh) 信息传输方法和设备
WO2020220176A1 (zh) 通信方法和装置
KR20200112018A (ko) 통신 시스템에서 제어 채널의 송수신 방법 및 장치
CN117811713A (zh) 一种通信方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019944848

Country of ref document: EP

Effective date: 20220330