WO2019148738A1 - 物联网的下行数据传输方法和下行数据接收方法 - Google Patents

物联网的下行数据传输方法和下行数据接收方法 Download PDF

Info

Publication number
WO2019148738A1
WO2019148738A1 PCT/CN2018/091147 CN2018091147W WO2019148738A1 WO 2019148738 A1 WO2019148738 A1 WO 2019148738A1 CN 2018091147 W CN2018091147 W CN 2018091147W WO 2019148738 A1 WO2019148738 A1 WO 2019148738A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
resource block
scheduling
data
data signal
Prior art date
Application number
PCT/CN2018/091147
Other languages
English (en)
French (fr)
Inventor
张源
王放
Original Assignee
创新维度科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创新维度科技(北京)有限公司 filed Critical 创新维度科技(北京)有限公司
Publication of WO2019148738A1 publication Critical patent/WO2019148738A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of Internet of Things technologies, and in particular, to the field of narrowband Internet of Things technologies, and in particular, to a downlink data transmission method and a downlink data receiving method for an Internet of Things.
  • Narrow Band Internet of Things provides a narrow bandwidth (180 kHz), subcarrier spacing of 3.75 kHz or 15 kHz network access method based on the existing LTE network architecture and protocol stack A series of simplifications and enhancements to achieve enhanced coverage, ultra-high standby time and long battery life (up to ten years), single-cell massive data connection and other purposes.
  • the traditional NB-IoT downlink transmission adopts a scheduling-based transmission method.
  • the base station allocates resources of a narrowband physical downlink control channel (NPDCCH: Narrowband Physical Downlink Control CHannel) and a narrowband physical downlink data channel (NPDSCH) in each scheduling period, and notifies the user equipment (UE) through a specific channel. , or called a mobile station).
  • NPDCCH narrowband physical downlink control channel
  • NPDSCH narrowband physical downlink data channel
  • the base station first transmits an NPDCCH and then transmits an NPDSCH.
  • the NPDCCH includes transmission information of the scheduled NPDSCH, such as a starting position of the NPDSCH, modulation and coding information, and the like.
  • the NPDCCH and NPDSCH need to be repeated multiple times so that the data can be correctly received at the mobile station.
  • the mobile station with enhanced coverage indicates a mobile station with poor channel quality, such as a mobile station at the edge of a cell or a basement.
  • Figure 1 shows an example of the downlink transmission mode of the traditional NB-IoT.
  • the base station In the scheduling period #k, the base station repeatedly transmits the NPDCCH multiple times in the t1 time period, and the NPDCCH schedules the NPDSCH, and the NPDSCH is repeatedly transmitted multiple times in the t2 time period. From the perspective of the mobile station, if it detects the NPDCCH sent to itself, it detects the NPDSCH according to the scheduling information it contains.
  • the detection process of the NPDCCH includes:
  • the complexity required for the detection process is higher, that is, it is more expensive.
  • the base station does not necessarily send a scheduling signal to the mobile station in each scheduling period, that is, the mobile mobile station often detects the NPDCCH after many times. I found that I did not give my own scheduling information. That is, the mobile station is wasting a certain amount of power.
  • the traditional scheduling-based NB-IoT transmission method has the disadvantages of high power consumption and high complexity, which is obviously disadvantageous for the terminal to achieve ultra-high standby time and long battery life. Therefore, There is a need for a more power efficient NB-IoT downlink transmission method.
  • an object of the present invention is to provide a power-saving IoT downlink data transmission method and a downlink data reception method.
  • an Internet of Things downlink data transmission method comprising the following steps:
  • the downlink scheduling period includes: a scheduling hint resource block of a specific length and at least one data signal resource block of a specific length;
  • each sequence has a sequence ID corresponding to the user terminal.
  • the method further comprises: configuring data transmission parameters on the network side.
  • the method further comprises: configuring the sequence ID by the network side.
  • the sequence sent in the scheduling hint resource block is a ZC sequence.
  • the ZC sequence is generated in the following manner:
  • x represents a sequence
  • m is a cyclic shift value of the CZ sequence
  • m is the sequence identifier
  • q is the root of the ZC sequence
  • L is the sequence length.
  • the step of transmitting, by using the scheduling hint resource block in the scheduling period, the at least one sequence, and transmitting, by using the at least one data signal resource block, the at least one narrowband physical downlink data channel NPDSCH data corresponding to the sent sequence includes: The coverage enhanced user terminal repeatedly transmits at least one sequence in the scheduling hint resource block in the adjacent scheduling period, and repeatedly transmits at least one narrowband physical downlink corresponding to the transmitted sequence by using at least one data signal resource block in the adjacent scheduling period Data channel NPDSCH data.
  • the present invention also provides an Internet of Things downlink data receiving method, the method comprising:
  • the user terminal receives scheduling period configuration information from the network side, where the scheduling period configuration information includes: a length of a scheduling hint resource block included in each scheduling period, a number of data signal resource blocks, and a length of each data signal resource block. ;
  • the user terminal receives the sequence ID information
  • the sequence in the scheduling hint resource block is detected in a scheduling period configured on the network side, and the location of the data signal in the data signal resource block is determined based on the position of the sequence corresponding to the received sequence ID, thereby performing data detection.
  • the present invention further provides a computer storage medium, wherein the computer storage medium stores a computer program, and when the computer program is executed, implementing the method steps as described above .
  • the mobile station does not need to perform traditional complex operations such as channel estimation, soft information calculation, and combining to detect the NPDCCH, so the invention has the advantages of low complexity and low power consumption.
  • FIG. 1 is a schematic diagram of a downlink transmission mode of a conventional NB-IoT.
  • FIG. 2 is a schematic diagram of a NB-IoT downlink transmission mode based on a scheduling period according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a basic flow of a new NB-IoT downlink transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a detailed flow of downlink transmission of NB-IoT according to an embodiment of the present invention.
  • the invention proposes a new transmission mode of the downlink NB-IoT to achieve the purpose of power saving.
  • the network side (such as a base station) configures a scheduling period in which a period occurs, and the scheduling period includes:
  • the base station configures each resource block with a specific length.
  • the length of the scheduling hint resource block and the length of the data signal transmission resource block may be the same or different.
  • the base station does not send the NPDCCH in the scheduling hint resource block, but sends one or more sequences for prompting the scheduled mobile station to have corresponding data transmission in the subsequent data signal resource block.
  • each NB-IoT mobile station in the system is configured with a unique sequence ID, and the mobile station can identify its relative position in all detected sequence IDs based on the sequence ID, the relative position corresponding to The relative position in the data signal resource block of the data signal resource block in which the data is transmitted to the mobile station in the scheduling period.
  • the mobile station detects its own sequence ID in the scheduling hint resource block, the mobile station knows that the base station has sent data to itself in a subsequent data signal resource block.
  • the mobile station determines, according to the relative position of its sequence ID in all detected sequence IDs, in which data signal resource block the base station transmits data to itself, and then the mobile station detects data in the data signal resource block.
  • the complexity of the mobile station detection sequence is very low because the mobile station only needs to perform sequence correlation combining. That is to say, the mobile station does not need to perform the above complicated operations such as channel estimation, soft information calculation, merging, and the like.
  • the sequence used for transmitting in the scheduling hint resource block is a sequence with good correlation, such as a Zadoff-Chu (ZC) sequence.
  • ZC sequence is generated in the following way:
  • x represents a ZC sequence
  • m is a cyclic shift value of the ZC signal, preferably m is the sequence ID
  • q is the root of the ZC sequence
  • L is the sequence length.
  • the above is an example of a sequence sent in a scheduling hint resource block by using a ZC sequence, but the present invention is not limited thereto, and may be other sequences with better correlation, as long as the mobile station can identify based on the ID information carried in the sequence. Its relative position in all detected sequence IDs.
  • Figure 2 shows an example.
  • the base station configures one scheduling hint resource block and five data signal resource blocks in each scheduling period, the lengths of which are R1 and R2, respectively. If the mobile station configured with the sequence ID ID#y detects three sequence IDs in the scheduling hint resource block, ⁇ ID#x, ID#y, ID#z ⁇ , and x ⁇ y ⁇ z, accordingly, move The station will detect the data signal in the second data signal resource block in the sequentially arranged data signal resource blocks.
  • the base station may repeatedly transmit multiple sequences and corresponding data in adjacent scheduling periods.
  • FIG. 3 is a schematic diagram of a basic flow of a new NB-IoT downlink transmission method according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps:
  • Step S100 Configure a periodic downlink scheduling period on the network side (such as a base station), and notify the user terminal of the configured downlink scheduling period information.
  • the downlink scheduling period preferably includes: one scheduling hint resource block of a specific length and at least one data signal resource block of a specific length.
  • the base station After the downlink scheduling period is configured, the base station notifies the user terminal of the configured downlink scheduling period information, where the information includes, for example, the number of data signal resource blocks included in each scheduling period and the length information of each resource block.
  • Step S120 The base station sends at least one sequence by using the scheduling hint resource block in the scheduling period, and transmits at least one NPDSCH data corresponding to the transmitted sequence by using the data signal resource block.
  • each sequence has a unique sequence ID, which is the sequence ID configured for the mobile station of NB-IoT as described above.
  • the sequence ID configured for the user may be notified to the user in advance.
  • the mobile station when the mobile station detects its own sequence ID in the scheduling hint resource block, the mobile station knows that the base station sends data to itself in a subsequent data signal resource block, so that the location based on the sequence ID can be in the corresponding data.
  • the data is detected in the signal resource block.
  • FIG. 4 is a more detailed schematic flowchart of a NB-IoT downlink transmission method according to an embodiment of the present invention.
  • the base station separately transmits the configured scheduling period information (parameters), data transmission parameters (such as modulation and coding mode, code block length, and the like) and the sequence ID corresponding to the mobile station.
  • these parameters can be notified by higher layer RRC (radio resource control) signaling or physical layer signaling.
  • the scheduling hint resource block in the scheduling period in process 4-4 transmits at least one sequence, and transmits data in the data signal resource block corresponding to the at least one sequence in the process 4-5.
  • the mobile station side detects the sequence ID, performs sequence correlation combining, determines the position of the data signal resource block based on the detected relative position of the sequence ID corresponding sequence in all sequences, and detects the data signal and decodes and decodes accordingly. After successful, the decoding success signal is fed back to the base station.
  • the base station preferably repeats the transmission sequence in the scheduling hint resource block in the adjacent scheduling period, and repeatedly transmits the data corresponding to the sequence in the corresponding data signal resource block, thereby ensuring that the mobile station is in the channel quality. Data can still be received in the case of poor conditions.
  • the detection complexity of the mobile station in the proposed new downlink transmission mode is very low, because the mobile station only needs to perform sequence correlation combining. There is no need to perform traditional complex operations such as channel estimation, soft information calculation, and merging to detect the NPDCCH, so the invention has the advantages of low complexity and low power consumption.
  • the embodiments of the present invention are applicable not only to narrowband Internet of Things, but also to other non-narrowband Internet of Things.
  • Portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented using any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals A discrete logic circuit of a circuit, an application specific integrated circuit with a suitable combination of logic gates, a programmable gate array (PGA), a field programmable gate array (FPGA), and the like.
  • the logic and/or steps represented in the flowchart or otherwise described herein, for example, may be considered as an ordered list of executable instructions for implementing logical functions, and may be embodied in any computer readable medium, Used in conjunction with, or in conjunction with, an instruction execution system, apparatus, or device (eg, a computer-based system, a system including a processor, or other system that can fetch instructions and execute instructions from an instruction execution system, apparatus, or device) Or use with equipment.
  • an instruction execution system, apparatus, or device eg, a computer-based system, a system including a processor, or other system that can fetch instructions and execute instructions from an instruction execution system, apparatus, or device
  • Or use with equipment e.g, a computer-based system, a system including a processor, or other system that can fetch instructions and execute instructions from an instruction execution system, apparatus, or device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种物联网的下行数据传输方法和下行数据接收方法,所述下行数据传输方法包括以下步骤:在网络侧配置周期性的下行调度周期,并向用户终端通知所配置的下行调度周期,所述下行调度周期包含:特定长度的调度提示资源块和特定长度的数据信号资源块;用所述调度周期的调度提示资源块发送至少一个序列,用所述数据信号资源块发送与所述至少一个序列对应的至少一条窄带物理下行数据信道 NPDSCH 数据;其中,每个序列具有与用户终端关联的序列 ID。在本发明实施例中,移动台不需要做传统的如信道估计,软信息计算,合并等的复杂操作来检测 NPDCCH,所以此发明有复杂度低,耗电量低的优点。

Description

物联网的下行数据传输方法和下行数据接收方法 技术领域
本发明涉及物联网技术领域,尤其涉及窄带物联网技术领域,特别涉及一种物联网的下行数据传输方法和下行数据接收方法。
背景技术
窄带物联网(NB-IoT:Narrow Band Internet of Things)提供了一种窄带宽(180kHz)、子载波间隔3.75kHz或15kHz的网络接入方法,其基于现有LTE的网络架构和协议栈,进行了一系列的简化和增强,达到增强覆盖,超高待机时间及超长时间电池使用寿命(可达十年),单小区海量数据连接等目的。
传统的NB-IoT下行传输采用基于调度的传输方式。基站在每个调度周期内分配窄带物理下行控制信道(NPDCCH:Narrowband Physical Downlink Control CHannel)以及窄带物理下行数据信道(NPDSCH:Narrowband Physical Downlink Data CHannel)的资源,并通过特定的信道通知用户设备(UE,或称为移动台)。基站先发送NPDCCH,然后发送NPDSCH。NPDCCH中包含所调度的NPDSCH的传输信息,如NPDSCH的起始位置,调制编码信息等。
如果给覆盖增强的移动台发送数据,NPDCCH和NPDSCH需要重复多次,以使数据在移动台测能够被正确接收。此处,覆盖增强的移动台表示信道质量较差的移动台,比如在小区边缘或者地下室的移动台等。
图1给出了传统的NB-IoT的下行传输方式示例。其中在调度周期#k,基站在t1时间段内重复发送多次NPDCCH,此NPDCCH调度NPDSCH,NPDSCH在t2时间段内重复发送多次。从移动台的角度,如果其检测到了发给自己的NPDCCH,那么就根据其所包含的调度信息去检测NPDSCH。
从上述的NB-IoT的传输方式可以看出,对于覆盖增强的移动台,在每个调度周期,移动台都需要在多个时间子帧去检测NPDCCH。NPDCCH的检测过程包括:
1)基于导频信道进行信道估计;
2)根据信道估计结果,计算每个发送比特的软信息;
3)合并在每个事件子帧检测到的比特软信息;
4)进行信道译码。
可以看出其检测过程所需的复杂度较高,也即较为费电。另外特别重要的是,由于典型的NB-IoT的UE的业务都是断断续续的,所以基站并不一定在每个调度周期给移动台发送调度信号,即移动移动台在检测NPDCCH后,很多时候会发现并没有给自己的调度信息。也就是移动台浪费了一定的电量。
上述可知,传统的基于调度的NB-IoT的传输方式有耗电量高,复杂度高的缺点,这对于终端实现超高待机时间及超长时间电池使用寿命来说显然是不利的,因此,需要一种更省电的NB-IoT下行传输方法。
发明内容
有鉴于此,本发明的目的在于提供一种省电的物联网下行数据传输方法和下行数据接收方法。
根据一方面,提供了一种物联网下行数据传输方法,该方法包括以下步骤:
在网络侧配置下行调度周期,并向用户终端通知所配置的下行调度周期信息,所述下行调度周期包含:特定长度的调度提示资源块和至少一个特定长度的数据信号资源块;
用所述调度周期中的调度提示资源块发送至少一个序列,用所述至少一个数据信号资源块发送与所发送的序列对应的至少一条窄带物理下行数据信道NPDSCH数据;
其中,每个序列具有与用户终端对应的序列ID。
优选地,所述方法还包括:网络侧配置数据发送参数。
优选地,所述方法还包括:网络侧配置所述序列ID。
优选地,在所述调度提示资源块中发送的序列为ZC序列。所述ZC序列的产生方式为:
Figure PCTCN2018091147-appb-000001
其中,x表示序列,m为CZ序列的循环移位值,以m作为所述序列标识,q为ZC序列的根,L为序列长度。
优选地,用所述调度周期中的调度提示资源块发送至少一个序列,用所述至少一个数据信号资源块发送与所发送的序列对应的至少一条窄带物理下行数据信道NPDSCH数据的步骤包括:针对覆盖增强的用户终端,在相邻调度周期中的调度提示 资源块重复发送至少一个序列,用相邻调度周期中的至少一个数据信号资源块重复发送与所发送的序列对应的至少一条窄带物理下行数据信道NPDSCH数据。
根据另一方面,本发明还提供一种物联网下行数据接收方法,该方法包括:
用户终端接收来自网络侧的调度周期配置信息,所述调度周期配置信息包括:每个调度周期中包含的调度提示资源块的长度、数据信号资源块的个数以及每个数据信号资源块的长度;
用户终端接收序列ID信息;
在网络侧配置的调度周期中检测调度提示资源块中的序列,基于接收到的序列ID所对应的序列的位置确定所述数据信号资源块中数据信号的位置,从而进行数据检测。
根据本发明的第三方面,本发明还提供一种计算机存储介质,其特征在于,所述计算机存储介质中存储有计算机程序,在所述计算机程序被执行时,实现如前所述的方法步骤。
本发明实施例中,移动台不需要做传统的如信道估计,软信息计算,合并等的复杂操作来检测NPDCCH,所以此发明有复杂度低,耗电量低的优点。
本领域技术人员应当理解的是,能够用本发明实现的目的和优点不限于以上具体所述,并且根据以下详细说明将更清楚地理解本发明能够实现的上述和其他目的。
并且,应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1为传统的NB-IoT的下行传输方式示意图。
图2为本发明一实施例中基于调度周期的NB-IoT下行传输方式示意图。
图3为本发明一实施例的新的NB-IoT下行传输方法的基本流程示意图。
图4为本发明一实施例中NB-IoT下行传输详细流程示意图。
具体实施方式
通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同 形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。
应该强调,术语“包括/包含/具有”在本文使用时指特征、步骤或组件的存在,但并不排除一个或更多个其它特征、步骤、组件或其组合的存在或附加。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
本发明提出了新的下行NB-IoT的传输方式,以达到省电的目的。如图2所示,网络侧(如基站)配置一个周期发生的调度周期,此调度周期包括:
1)一个调度提示资源块;以及
2)一个或多个数据信号传输资源块。
基站为每种资源块配置一个特定的长度。调度提示资源块的长度和数据信号传输资源块的长度可以相同,也可以不同。
与传统方式不同,基站在调度提示资源块中并不发送NPDCCH,而是发送一个或多个序列,用于提示所调度的移动台在后续的数据信号资源块中有对应的数据发送。
从移动台的角度,系统中每个NB-IoT移动台会被配置一个唯一的序列ID,移动台可基于该序列ID识别其在所有检测到的序列ID中的相对位置,该相对位置对应于给该移动台发送了数据的数据信号资源块在该调度周期中所有数据信号资源块中的相对位置。当移动台在调度提示资源块检测到自己的序列ID,移动台就知道了基站在后续的某个数据信号资源块中给自己发送了数据。此时,移动台根据其序列ID在所有检测到的序列ID中的相对位置,来确定基站在哪个数据信号资源块中给自己发送了数据,随后移动台在此数据信号资源块中检测数据。
相比于检测NPDCCH,移动台检测序列的复杂度非常低,因为移动台只需要进行序列相关合并。也就是说移动台不需要做上述如信道估计,软信息计算,合并等的复杂操作。
在本发明一实施例中,用于在调度提示资源块中发送的序列为相关性较好的序列,如Zadoff-Chu(ZC)序列等。ZC序列的产生方式为:
Figure PCTCN2018091147-appb-000002
其中,x表示ZC序列;m为ZC信号的循环移位值,优选地,m可作为序列ID;q为ZC序列的根;L为序列长度。
以上是以ZC序列作为调度提示资源块中发送的序列示例,但本发明并不限于此,还可以是相关性较好的其他序列,只要能使得移动台能够基于该序列中携带的ID信息识别出其在所有检测到的序列ID中的相对位置。
图2给出了一个例子,基站在每个调度周期配置了1个调度提示资源块和5个数据信号资源块,其长度分别是R1和R2。如果配置了序列ID为ID#y的移动台在调度提示资源块中检测到3个序列ID,{ID#x,ID#y,ID#z},并且x<y<z,据此,移动台将在按顺序排列的数据信号资源块中的第二个数据信号资源块中检测数据信号。
对于覆盖增强的移动台,基站可以在相邻调度周期重复发送多次序列和对应的数据。
图3为本发明一实施例中新的NB-IoT下行传输方法的基本流程示意图。如图3所示,该方法包括以下步骤:
步骤S100,在网络侧(如基站)配置周期性的下行调度周期,并向用户终端通知所配置的下行调度周期信息。
该下行调度周期中优选地包含:特定长度的一个调度提示资源块和特定长度的至少一个数据信号资源块。
在配置了下行调度周期后,基站将所配置的下行调度周期信息通知给用户终端,该信息例如包括:每个调度周期包括的数据信号资源块个数以及每种资源块的长度信息等。
步骤S120,基站用调度周期中的调度提示资源块发送至少一个序列,用数据信号资源块发送与所发送的序列对应的至少一个NPDSCH数据。
在调度提示资源块中发送的数据中,每个序列具有一个唯一的序列ID,该序列ID是如前所述的为NB-IoT的移动台配置的序列ID。
在本发明实施例中,在基站用上述下行调度周期发送序列和数据前,可以预先将为用户配置的序列ID通知给用户。
这样,当移动台在调度提示资源块检测到自己的序列ID,移动台就知道了基站在后续的某个数据信号资源块中给自己发送了数据,从而基于序列ID的位置可以在相应的数据信号资源块中检测数据。
图4为本发明一实施例中NB-IoT下行传输方法地更详细的流程示意图。如图4 所示,在流程4-1至4-3,基站分别将配置的调度周期信息(参数)、数据发送参数(如调制编码方式、码块长度等)和移动台对应的序列ID传输给移动台,这些参数可以通过高层RRC(radio resource control)信令或物理层信令进行通知。
在基站检测到有数据到达后,在流程4-4在调度周期中的调度提示资源块发送至少一个序列,并在流程4-5在与至少一个序列对应的数据信号资源块中发送数据。
移动台侧检测序列ID,进行序列相关合并,基于检测到的为自己配置的序列ID对应序列在所有序列中的相对位置来确定数据信号资源块的位置,并相应地检测数据信号并解码,解码成功后向基站反馈解码成功信号。
对于覆盖增强的移动台,基站优选地在相邻的调度周期中的调度提示资源块重复发送序列,并在对应的数据信号资源块重复发送与序列对应的数据,从而保证移动台在信道质量较差的情况下仍能接收到数据。
相比于传统的先检测NPDCCH,然后检测NPDSCH的方式,基于本发明的技术方案,移动台在所提出的新的下行传输方式下检测复杂度会非常低,因为移动台只需要进行序列相关合并,不需要做传统的如信道估计,软信息计算,合并等的复杂操作来检测NPDCCH,所以此发明有复杂度低,耗电量低的优点。
本发明实施例不仅适用于窄带物联网,同样适用于其他非窄带物联网。
如上描述的流程并非限于图中示意的顺序来实现,一些步骤的顺序也可以变化或并行进行,这些在不改变本发明的构思所做的调整均在本发明的保护范围内。
本发明的各部分可以用硬件、软件、固件或者它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可以用本领域共知的下列技术中的任一项或者他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在流程图中表示或者在此以其它方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。
如上针对一个实施例描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施例中使用,和/或与其它实施例中的特征相结合或替代其它实施例中的特征使用。
结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。

Claims (10)

  1. 一种物联网的下行传输方法,其特征在于,该方法包括以下步骤:
    在网络侧配置下行调度周期,并向用户终端通知所配置的下行调度周期信息,所述下行调度周期包含:特定长度的调度提示资源块和至少一个特定长度的数据信号资源块;
    用所述调度周期中的调度提示资源块发送至少一个序列,用所述至少一个数据信号资源块发送与所发送的序列对应的至少一条窄带物理下行数据信道NPDSCH数据;
    其中,每个序列具有与用户终端对应的序列ID。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    网络侧配置数据发送参数。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    网络侧配置所述序列ID。
  4. 根据权利要求1所述的方法,其特征在于,
    在所述调度提示资源块中发送的序列为ZC序列。
  5. 根据权利要求4所述的方法,其特征在于,所述ZC序列的产生方式为:
    Figure PCTCN2018091147-appb-100001
    其中,x表示序列,m为CZ序列的循环移位值,以m作为所述序列标识,q为ZC序列的根,L为序列长度。
  6. 根据权利要求1所述的方法,其特征在于,其特征在于,用所述调度周期中的调度提示资源块发送至少一个序列,用所述至少一个数据信号资源块发送与所发送的序列对应的至少一条窄带物理下行数据信道NPDSCH数据的步骤包括:
    针对覆盖增强的用户终端,在相邻调度周期中的调度提示资源块重复发送至少一个序列,用相邻调度周期中的至少一个数据信号资源块重复发送与所发送的序列对应的至少一条窄带物理下行数据信道NPDSCH数据。
  7. 一种物联网下行数据接收方法,其特征在于,该方法包括如下步骤:
    用户终端接收来自网络侧的调度周期配置信息,所述调度周期配置信息包括:每个调度周期中包含的调度提示资源块的长度、数据信号资源块的个数以及每个数据信号资源块的长度;
    用户终端接收序列ID信息;
    在网络侧配置的调度周期中检测调度提示资源块中的序列,基于接收到的序列ID所对应的序列的位置确定所述数据信号资源块中数据信号的位置,从而进行数据检测。
  8. 根据权利要求7所述的方法,其特征在于,
    在所述调度提示资源块中发送的序列为ZC序列。
  9. 根据权利要求8所述的方法,其特征在于,
    所述ZC序列的产生方式为:
    Figure PCTCN2018091147-appb-100002
    其中,x表示序列,m为CZ序列的循环移位值,q为ZC序列的根,L为序列长度。
  10. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有计算机程序,在所述计算机程序被执行时,实现如权利要求1-9中所述的方法步骤。
PCT/CN2018/091147 2018-01-30 2018-06-13 物联网的下行数据传输方法和下行数据接收方法 WO2019148738A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810087474.2 2018-01-30
CN201810087474.2A CN107995679B (zh) 2018-01-30 2018-01-30 一种物联网的下行数据传输和下行数据接收方法

Publications (1)

Publication Number Publication Date
WO2019148738A1 true WO2019148738A1 (zh) 2019-08-08

Family

ID=62039925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091147 WO2019148738A1 (zh) 2018-01-30 2018-06-13 物联网的下行数据传输方法和下行数据接收方法

Country Status (2)

Country Link
CN (1) CN107995679B (zh)
WO (1) WO2019148738A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021046724A1 (zh) * 2019-09-10 2021-03-18 华为技术有限公司 一种参考信号发送、信号检测方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107995679B (zh) * 2018-01-30 2019-05-17 创新维度科技(北京)有限公司 一种物联网的下行数据传输和下行数据接收方法
WO2021159436A1 (en) * 2020-02-14 2021-08-19 Lenovo (Beijing) Limited Nbiot harq related enhancement in ntn
WO2021159512A1 (zh) * 2020-02-14 2021-08-19 华为技术有限公司 一种控制信息传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506133A (zh) * 2016-11-08 2017-03-15 东南大学 宽带大规模mimo系统导频池及信道信息获取方法和装置
EP3182634A1 (en) * 2015-12-17 2017-06-21 MediaTek Inc. Physical downlink control channel design for narrow band internet of things
CN106921478A (zh) * 2015-12-28 2017-07-04 夏普株式会社 窄带物联网物理下行信道的复用方法、基站和用户设备
CN107276723A (zh) * 2017-06-23 2017-10-20 上海华为技术有限公司 资源分配方法、基站以及终端
CN107995679A (zh) * 2018-01-30 2018-05-04 创新维度科技(北京)有限公司 一种物联网的下行数据传输和下行数据接收方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873165A (zh) * 2010-03-05 2010-10-27 北京创毅视讯科技有限公司 一种物联网系统的下行传输方法、装置及一种物联网基站
CN102238746B (zh) * 2010-04-21 2015-04-08 华为技术有限公司 资源调度的方法、装置及系统
CN103458506B (zh) * 2012-05-30 2016-12-14 京信通信系统(中国)有限公司 基于家庭基站系统架构的寻呼方法及装置
CN104125610B (zh) * 2013-04-28 2017-11-10 电信科学技术研究院 D2d通信中的数据发送方法和设备
CN103986566B (zh) * 2014-05-29 2017-11-24 上海华为技术有限公司 一种上行数据的发送方法、基站、用户设备及通信网络
CN106686740A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 一种下行控制信息的发送/检测方法、基站及用户设备
CN107370573B (zh) * 2016-05-12 2022-10-11 大唐移动通信设备有限公司 一种下行数据传输的方法及设备
CN107371248B (zh) * 2016-05-13 2020-04-24 中国移动通信有限公司研究院 一种物联网中指示信息的传输方法及装置
CN106793138B (zh) * 2016-08-26 2019-11-05 北京展讯高科通信技术有限公司 基站、用户设备及多用户设备下行数据的传输、接收方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3182634A1 (en) * 2015-12-17 2017-06-21 MediaTek Inc. Physical downlink control channel design for narrow band internet of things
CN106921478A (zh) * 2015-12-28 2017-07-04 夏普株式会社 窄带物联网物理下行信道的复用方法、基站和用户设备
CN106506133A (zh) * 2016-11-08 2017-03-15 东南大学 宽带大规模mimo系统导频池及信道信息获取方法和装置
CN107276723A (zh) * 2017-06-23 2017-10-20 上海华为技术有限公司 资源分配方法、基站以及终端
CN107995679A (zh) * 2018-01-30 2018-05-04 创新维度科技(北京)有限公司 一种物联网的下行数据传输和下行数据接收方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021046724A1 (zh) * 2019-09-10 2021-03-18 华为技术有限公司 一种参考信号发送、信号检测方法及装置
US11882071B2 (en) 2019-09-10 2024-01-23 Huawei Technologies Co., Ltd. Reference signal sending method, signal detection method, and apparatus

Also Published As

Publication number Publication date
CN107995679B (zh) 2019-05-17
CN107995679A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
WO2019148738A1 (zh) 物联网的下行数据传输方法和下行数据接收方法
CN110536387B (zh) 一种数据传输方法、装置及计算机可读存储介质
US10856224B2 (en) Method and system for enabling discontinuous reception (DRX) over an unlicensed band in cellular networks
WO2020088257A1 (zh) 唤醒信号的资源确定、配置方法及装置、终端、基站
TWI569663B (zh) D2D signal transmission method and apparatus
EP3414859B1 (en) Apparatus and method for drx mechanisms for single harq process operation in nb-iot
WO2019128580A1 (zh) 控制信道配置及检测方法和装置、程序及介质
WO2018218687A1 (zh) 传输信号的方法、网络设备和终端设备
CN111294902B (zh) 唤醒方法及装置、存储介质、终端
JP2020519196A5 (zh)
WO2012149848A1 (zh) 一种数据传输的方法、系统和设备
US11997597B2 (en) Method of monitoring physical downlink control channel for power saving signal and related device
US20180124701A1 (en) Scheduling request (sr) period extension for low power enhancement in a wireless communication device
HUE032716T2 (en) Signal Control Techniques for Wired Devices
CN111294901B (zh) 进入睡眠的方法及装置、存储介质、用户设备
JP7369845B2 (ja) 集積回路
WO2015081561A1 (zh) D2d发现信号的发送方法、装置以及通信系统
WO2020144350A1 (en) User equipment receiver for wake up signal reception
WO2016179783A1 (en) Method and apparatus for discontinuous reception
JP2022531942A (ja) ウェイクアップ信号監視指示
CN113890699A (zh) Pdcch监听方法、发送方法及相关设备
WO2022083611A1 (zh) 数据传输方法、装置、终端、网络侧设备及存储介质
WO2019183942A1 (zh) 上行控制信息传输方法及装置
WO2020143806A1 (zh) 一种通信方法及装置
WO2017012090A1 (zh) 一种配置下行解调参考信号dmrs端口的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904423

Country of ref document: EP

Kind code of ref document: A1