WO2022083611A1 - 数据传输方法、装置、终端、网络侧设备及存储介质 - Google Patents

数据传输方法、装置、终端、网络侧设备及存储介质 Download PDF

Info

Publication number
WO2022083611A1
WO2022083611A1 PCT/CN2021/124853 CN2021124853W WO2022083611A1 WO 2022083611 A1 WO2022083611 A1 WO 2022083611A1 CN 2021124853 W CN2021124853 W CN 2021124853W WO 2022083611 A1 WO2022083611 A1 WO 2022083611A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
data transmission
information
uplink transmission
configuration
Prior art date
Application number
PCT/CN2021/124853
Other languages
English (en)
French (fr)
Inventor
莫毅韬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023524538A priority Critical patent/JP2023546934A/ja
Priority to KR1020237015226A priority patent/KR20230079275A/ko
Priority to EP21882026.4A priority patent/EP4236529A4/en
Publication of WO2022083611A1 publication Critical patent/WO2022083611A1/zh
Priority to US18/305,225 priority patent/US20230262664A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/347Path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • H04L1/1883Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Definitions

  • the present application belongs to the field of communication technologies, and specifically relates to a data transmission method, apparatus, terminal, network side device and storage medium.
  • the characteristic of efficient small data transmission is that for the terminal (User Equipment, UE) in the non-connected state (for example, the idle (IDLE) state and the inactive (INACTIVE) state), the radio resource control (Radio Resource Control, RRC) caused by this is avoided.
  • the state transition and RRC connection establishment process cause excessive signaling overhead, and the purpose of small data transmission is accomplished through a very simple signaling process.
  • the characteristic of the small data transmission scheme is that the current data radio bearer (DRB) of the UE is in a suspended state instead of a released state. Therefore, the UE can restore the DRB before sending the Resume Request message, and then use the RRC signaling to piggyback small data. At this time, the UE can transmit data on the DRB as in the CONNECTED state. Thus, state transitions are avoided, and the purpose of efficient and small data transmission is achieved with less signaling overhead.
  • DRB current data radio bearer
  • the network side needs to configure the UE with small data transmission resources based on the configured grant.
  • the network side needs to configure the UE with small data transmission resources based on the configured grant.
  • NR New Radio
  • Embodiments of the present application provide a data transmission method, apparatus, terminal, network-side device, and storage medium, which can solve the technical problem of low transmission efficiency of small data.
  • an embodiment of the present application provides a data transmission method, including:
  • the terminal acquires configuration information of data transmission, where the configuration information carries the associated configuration information of downlink signals and uplink transmission resources;
  • the terminal selects the target downlink signal, and determines the target uplink transmission resource according to the associated configuration information of the downlink signal and the uplink transmission resource;
  • the terminal determines HARQ information corresponding to the target uplink transmission resource and/or calculates a downlink path loss estimate, and sends uplink data according to the HARQ information and/or the downlink path loss estimate.
  • an embodiment of the present application provides a data transmission method, including:
  • the network side device sends configuration information of data transmission to the terminal, where the configuration information carries the associated configuration information of the reference signal and the uplink transmission resource;
  • the network side device receives the uplink data sent by the terminal according to the HARQ information and/or the path loss reference signal; the HARQ information and/or the path loss reference signal is determined by the terminal according to the configuration information.
  • an embodiment of the present application provides a data transmission device, including:
  • an acquisition module configured to acquire configuration information of data transmission, where the configuration information carries the associated configuration information of downlink signals and uplink transmission resources;
  • a determining module configured to select a target downlink signal, and determine a target uplink transmission resource according to the associated configuration information of the downlink signal and the uplink transmission resource;
  • a first sending module configured to determine HARQ information corresponding to the target uplink transmission resource and/or calculate a downlink path loss estimate, and send uplink data according to the HARQ information and/or the downlink path loss estimate .
  • an embodiment of the present application provides a data transmission device, including:
  • a second sending module configured to send configuration information of data transmission to the terminal, where the configuration information carries the associated configuration information of the reference signal and the uplink transmission resource;
  • a receiving module configured to receive the terminal to send uplink data according to the HARQ information and/or the path loss reference signal; the HARQ information and/or the path loss reference signal is determined by the terminal according to the configuration information.
  • an embodiment of the present application provides a terminal, the terminal includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being The processor implements the steps of the method as described in the first aspect when executed.
  • an embodiment of the present application provides a network-side device, where the network-side device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or The instructions, when executed by the processor, implement the steps of the method of the second aspect.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the implementation is as described in the first aspect or the second aspect steps of the method.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the first aspect or the method described in the second aspect.
  • a computer program product is provided, the computer program product is stored in a non-transitory storage medium, and when the computer program product is executed by the processor, the method according to the first aspect or the second aspect is implemented .
  • the data transmission method, device, electronic device, and storage medium provided by the embodiments of the present application enable the UE to perform uplink data transmission according to the configuration resources of the network side by configuring resources, thereby improving the efficiency of small data transmission.
  • FIG. 1 is a schematic diagram of a wireless communication system to which an embodiment of the application can be applied;
  • FIG. 2 is one of schematic diagrams of a data transmission method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a sequence rule of uplink transmission occasions provided by an embodiment of the present application.
  • FIG. 4 is one of the schematic diagrams of the association between an uplink transmission opportunity and a first reference signal provided by an embodiment of the present application;
  • FIG. 5 is the second schematic diagram of the association between an uplink transmission opportunity and a first reference signal according to an embodiment of the present application
  • FIG. 6 is a second schematic diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 7 is one of the schematic diagrams of a data transmission apparatus provided by an embodiment of the present application.
  • FIG. 8 is the second schematic diagram of a data transmission apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware structure of a network side device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation, 6G) communication system.
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • FIG. 2 is one of schematic diagrams of a data transmission method provided by an embodiment of the application.
  • an embodiment of the application provides a data transmission method, the execution subject of which may be a terminal, and the method includes:
  • Step 201 The terminal acquires configuration information of data transmission, where the configuration information carries the associated configuration information of downlink signals and uplink transmission resources.
  • Step 202 The terminal selects the target downlink signal, and determines the target uplink transmission resource according to the associated configuration information of the downlink signal and the uplink transmission resource.
  • Step 203 The terminal determines HARQ information corresponding to the target uplink transmission resource and/or calculates a downlink path loss estimate, and sends uplink data according to the HARQ information and/or the downlink path loss estimate.
  • the method further includes, the terminal receiving downlink data according to the target downlink signal.
  • the associated configuration information of the downlink signal and the uplink transmission resource includes at least one of the following:
  • Antenna port information for uplink signals is provided.
  • the configuration information further includes at least one of the following:
  • the resource allocation information of the uplink transmission opportunity in the time domain includes at least one of the following:
  • the resource allocation information of the uplink transmission opportunity in the frequency domain includes at least one of the following:
  • the upstream transmission opportunity starts position information in the frequency domain.
  • the determining the HARQ information corresponding to the target uplink transmission resource comprising:
  • the number corresponding to the HARQ process corresponding to the uplink transmission resource in each configuration grant period is the number corresponding to the HARQ process corresponding to the uplink transmission resource in each configuration grant period.
  • the calculating the downlink path loss estimate includes:
  • the method further includes at least one of the following:
  • the first counter is incremented by 1, and the first counter is used to count the number of data transmission skips;
  • the terminal behavior includes at least one of the following: item:
  • the method further includes, after the data transmission process based on the configuration resource is triggered, the terminal behavior includes at least one of the following:
  • the radio resource control RRC layer instructs the medium access control MAC layer to trigger the data transmission process based on the configured resources
  • the MAC layer After the MAC layer is instructed by the RRC layer to trigger the data transmission process based on the configured resources, it saves the uplink transmission resources and the corresponding HARQ information, and/or initializes or re-initializes the uplink transmission resources;
  • the MAC layer sends an uplink skip indication to the upper layer
  • the first counter is incremented by 1;
  • the terminal behavior includes at least one of the following:
  • RRC instructs the MAC layer to end the data transmission process based on configuration resources
  • the method further includes:
  • the power boost step parameter is set according to the second power boost step size parameter configured by the network side device, the target access identity and/or target access type provided by the higher layer, and the first indication information sent by the network side device; the power boost step size parameter is set;
  • the step size parameter includes a first power boost step size parameter and a second power boost step size parameter; the first indication information is used to instruct the terminal to use the second power boost step size parameter.
  • the method also includes at least one of the following:
  • the selected target downlink signal determine a recently available uplink transmission opportunity
  • the HARQ entity performs uplink skipping according to a predefined rule, and reports an uplink skipping indication to a higher layer.
  • the corresponding HARQ process is instructed to send data.
  • the process of sending uplink data also includes at least one of the following:
  • the data transmission power is determined according to the third counter, the power boost step size parameter, the downlink path loss estimation, and the expected received power.
  • the receiving downlink data includes:
  • the modulation reference signal antenna port of the PDCCH and the target downlink signal have the same quasi-orthogonal characteristic.
  • the terminal behavior includes at least one of the following:
  • the first counter value is set to 0;
  • the terminal behavior includes at least one of the following:
  • the HARQ-NACK indication of HARQ-NACK is reported as a negative acknowledgement of the HARQ.
  • the terminal behavior includes at least one of the following:
  • the terminal behavior includes at least one of the following:
  • the UE receives the dedicated uplink resources (referred to as "uplink transmission resources") configured by the network side to send uplink data.
  • uplink transmission resources referred to as "uplink transmission resources”
  • the embodiments of the present application take the first reference signal as a downlink signal and the second reference signal as an uplink signal as an example for description.
  • the network device side carries the configuration information of the configuration grant (Configured grant) to the INACTIVE state UE in the RRC release (Release) message, and the configuration information includes the physical uplink shared channel (Physical Uplink Shared Channel) dedicated to the INACTIVE UE sending uplink data, PUSCH) resources.
  • the configuration grant Configured grant
  • the configuration information includes the physical uplink shared channel (Physical Uplink Shared Channel) dedicated to the INACTIVE UE sending uplink data, PUSCH) resources.
  • the PUSCH resources may include at least one of the following:
  • the configuration information for configuration authorization may include at least one of the following:
  • the number of frequency division multiplexing (FDMed) (for example, 1, 2, 4, 8) of uplink transmission opportunities at a time.
  • the resource allocation information of the uplink transmission opportunity in the time domain may include at least one of the following:
  • the information on the allocated number of first uplink transmission opportunities indicates the number of uplink transmission opportunities in one time slot.
  • Second uplink transmission occasion allocation number information the second uplink transmission occasion allocation number information is used for information indicating the number of uplink transmission occasions in one CG periodicity.
  • the above-mentioned time slots and/or uplink transmission occasions are consecutive in the time domain.
  • the resource allocation information on the frequency of the uplink transmission occasion may include at least one of the following:
  • the number of physical radio resource blocks (PRBs) per uplink transmission opportunity For example, the number of physical radio resource blocks (PRBs) per uplink transmission opportunity.
  • PRBs physical radio resource blocks
  • the lowest uplink transmission opportunity in the frequency position and the offset (offset) before PRB 0 for another example, the frequency starting position of the lowest uplink transmission opportunity in the frequency position is PRB 0/RBG 0).
  • RBG is a resource block group.
  • the first reference signal configuration information indicates which first reference signals can be used for a data transmission process based on configuration resources (eg, a small data transmission process).
  • the network side indicates through a bitmap (bitmap) which synchronization signal blocks (synchronization signal blocks, SSBs) in the serving cell can be used for small data transmission.
  • bitmap synchronization signal blocks
  • the first reference signal is a downlink path loss reference signal.
  • the first reference signal is one of an SSB or a channel state information reference signal (Channel State Information-Reference Signal, CSI-RS).
  • CSI-RS Channel State Information-Reference Signal
  • the UE considers that the transmitted first reference signal (eg, SSB) indicated in the system message can be used for the data transmission process based on the configuration resource.
  • the transmitted first reference signal eg, SSB
  • the association configuration information between the first reference signal and the uplink transmission opportunity indicates how many first reference signals are associated with one uplink transmission opportunity (for example, 1/8 indicates that 1 SSB is mapped to 8 uplink transmission opportunities, and 8 indicates that 8 SSBs are mapped to the uplink transmission opportunity. 1 uplink transmission opportunity, so that the SSB and the uplink transmission opportunity have an associated relationship).
  • the associated configuration information of the first reference signal and the second reference signal may include at least one of the following:
  • the identification or index value of the first reference signal (eg, SSB-index).
  • CDM group Code division multiplexing group
  • Antenna port information of the second reference signal for example, a demodulation reference signal port index value (DMRS port index)).
  • the DMRS signals constituted by 0 are associated, and examples are not given here.
  • the first reference signal may be at least one of SSB or CSI-RS
  • the second reference signal may be an uplink demodulation reference signal (Demodulation Reference Signal, DMRS).
  • DMRS Downlink demodulation Reference Signal
  • the association configuration information of the first reference signal and the second reference signal includes one or more association relationship information of the first reference signal and the second reference signal.
  • the configuration information may be a list, and each element in the list indicates association information of a first reference signal and a second reference signal.
  • Measurement threshold for first reference signal selection (a threshold value, eg, rsrp-ThresholdSSB).
  • the maximum number of CG transmissions (a threshold value).
  • Upstream transmission opportunity mask information is used to explicitly indicate the uplink transmission opportunity that can be used for the data transmission process based on the configured resources.
  • the network side or the protocol predefines any one of the following rules:
  • the sequence rule for uplink transmission occasions may include at least one of the following:
  • FIG. 3 is a schematic diagram of a sequence rule of uplink transmission occasions provided by an embodiment of the present application. Assuming that the number of uplink transmission opportunities in the configuration is 2 in frequency division multiplexing at a time, the number of uplink transmission opportunities allocated is 2, and the number of time slot allocations is 2, the number of uplink transmission opportunities is shown in Figure 3.
  • the HARQ process information available to the UE is pre-defined by the protocol or configured by the network device side.
  • its corresponding HARQ process is predefined by the protocol or configured as 0 by the network side.
  • its corresponding HARQ process is predefined by the protocol or configured as 0 by the network side.
  • the HARQ process information available to the UE is pre-defined in the protocol or configured by the network side.
  • the corresponding HARQ process is agreed to be 0; in the second cycle, for any CG, the HARQ process available to the UE is agreed to be 1 ,And so on. Or it can be understood as: in a CG period, the HARQ process corresponding to any uplink transmission occasion is the HARQ process corresponding to the uplink transmission occasion with the smallest number. Wherein, how to determine the HARQ process corresponding to the uplink transmission opportunity with the smallest number is not limited here.
  • the path loss reference signal (pathloss RS) corresponding to the PUSCH is selected by the UE by itself.
  • the pathloss RS of the PUSCH is the first reference signal associated with the current PUSCH transmission on the currently activated downlink bandwidth part (DL BWP) (for example, the initial DL BWP) of the current serving cell.
  • DL BWP downlink bandwidth part
  • the network configures SSB1/2/3/4, and the UE triggers the data transmission process based on the configured resources, then the UE selects SSB2 (that is, SSB2 as the target downlink) according to the measurement quality threshold used for the first reference signal selection. signal), and perform PUSCH transmission according to the uplink transmission opportunity associated with SSB2 and the second reference signal, then the UE uses SSB2 as the pathloss RS of the PUSCH, thereby calculating the downlink path loss estimate by using SSB2
  • the method before using the uplink transmission resources for data transmission, the method includes:
  • Step 0 If the data transmission process based on the configured resources is not triggered on all uplink transmission occasions within a CG period, perform the following steps:
  • the first counter is incremented by one.
  • the data transmission process based on configuration resources is not triggered on all uplink transmission occasions in N consecutive CG periods, the data transmission process based on configuration resources is terminated, the uplink transmission resources are released, and the configuration information is discarded;
  • the limit value N can be configured by the network side device (NW) or agreed by the protocol or predefined.
  • the process may be performed according to each configuration authorization period (per CG periodicity) in each configuration authorization configuration (per CG configuration).
  • the UE needs to perform the above process for each CG period corresponding to CG configuraton1/2.
  • Step 1 After the data transmission process based on the configuration resource is triggered, at least one of the following can be performed:
  • the RRC layer instructs the MAC layer to trigger the data transmission process based on the configured resources.
  • the MAC layer After the MAC layer is instructed by the RRC layer to trigger the data transmission process based on the configured resources, it saves the dedicated uplink resources and the corresponding HARQ information.
  • the uplink resource can also be understood as an uplink grant UL grant, or a configuration grant CG.
  • the MAC layer initializes/reinitializes dedicated uplink resources.
  • the MAC layer sends an uplink skip indication to the upper layer (RRC layer), and the upper layer adds the first counter to the upper layer. 1 (the first counter is used to count the number of data transmission skips).
  • the terminal behavior includes at least one of the following:
  • the RRC instructs the MAC layer to end the data transmission process based on the configured resources.
  • Step 2 The UE performs initialization before sending uplink data through dedicated uplink resources.
  • the UE sets the high-priority power ramping step parameter.
  • the UE sets the low priority power ramping step parameter.
  • the process is per CG configuration.
  • the UE needs to perform the above process on the CG configuraton1/2 pair.
  • Step 3 The UE selects the transmission resource before sending the uplink data through the dedicated uplink resource.
  • the UE first selects the first reference signal for the data transmission process based on the configured resources.
  • the selection of the first reference signal is performed according to the quality threshold value configured by the network (for example, the threshold value is -80dBm).
  • the UE selects SSB3 if only the L1-RSRP of SSB3 (for example: -70dBm) is higher than the threshold.
  • the selected first reference signal is SSB2
  • the selected first reference signal determines a recently available uplink transmission opportunity (the uplink transmission opportunity and the selected first reference signal have an associated relationship).
  • the UE randomly selects one of the consecutive uplink transmission occasions associated with the selected first reference signal with equal probability.
  • FIG. 4 is one of the schematic diagrams of the association between the uplink transmission timing and the first reference signal provided by this embodiment of the present application.
  • SSB1/2 is configured on the network side
  • the quality threshold value configured by the network (for example, , the threshold value is -80dBm) to select the first reference signal.
  • the UE assumes that only the L1-RSRP of SSB2 (for example: -70dBm) is higher than the threshold value, the UE selects SSB2, and then selects SSB2 from the two uplink transmission opportunities associated with SSB2 (# 3/4) is randomly selected with equal probability (eg #3), it can be understood that the uplink transmission opportunity (#3/4) is the latest available uplink transmission opportunity corresponding to SSB2.
  • L1-RSRP of SSB2 for example: -70dBm
  • the UE selects SSB2, and then selects SSB2 from the two uplink transmission opportunities associated with SSB2 (# 3/4) is randomly selected with equal probability (eg #3), it can be understood that the uplink transmission opportunity (#3/4) is the latest available uplink transmission opportunity corresponding to SSB2.
  • determining a recently available uplink transmission opportunity may also be based on the selected first reference signal and uplink transmission opportunity mask (mask) information.
  • mask uplink transmission opportunity mask
  • FIG. 5 is the second schematic diagram of the association relationship between the uplink transmission timing and the first reference signal provided by this embodiment of the application.
  • SSB1/2 is configured on the network side
  • the quality threshold value configured by the network (for example, , the threshold value is -80dBm) to select the first reference signal.
  • the UE assumes that only the L1-RSRP of SSB2 is higher than the threshold value, for example: -70dBm, then the UE selects SSB2, and assumes that the value indicated by the uplink transmission opportunity mask information is 1 (for example, : 1 is to instruct the UE to use the first one of the uplink transmission opportunities associated with the selected SSB), and then the UE selects the latest available SSB2#0, and the value indicated by the mask information of the assumed uplink transmission opportunity is 0 (for example: 0 That is, the UE is instructed to use the uplink transmission opportunity associated with the selected SSB), then the UE randomly selects one of the two most recent available uplink transmission opportunities (SSB2#0/1) associated with SSB2 (eg # 0).
  • the threshold value for example: -70dBm
  • the UE realizes that according to the selected SSB (for example: SSB2), at the selected uplink transmission opportunity (for example #0), the PUSCH is sent, and the uplink DMRS of the PUSCH is to generate the second reference signal according to the selected SSB.
  • HARQ process ID HARQ process ID
  • new data indicator bit new data indicator bit
  • NDI bit transport block size
  • TBS Transport Block Size
  • the UL grant and the corresponding HARQ information are submitted to the HARQ entity (it can be understood that during the running of the CG response timer, Its corresponding HARQ process cannot be used for new transmission or retransmission).
  • the UL grant and the corresponding NDI bit are toggled (it can be understood that during the running of the CG timer, its corresponding HARQ process cannot be used for new uploads).
  • the HARQ entity performs uplink skipping (UL skipping) according to a predefined rule, does not generate a MAC PDU, and reports an uplink skipping indication to the RRC layer.
  • UL skipping uplink skipping
  • the process may be performed per CG configuration per CG cycle.
  • the UE needs to perform the above process for each CG period corresponding to CG configuraton1/2.
  • Step 4.1 If a MAC PDU is obtained, instruct the corresponding HARQ process to send data.
  • Step 4.2 When the UE sends uplink data through the dedicated uplink resource:
  • the third counter is incremented by 1 . This third counter is used to calculate the cumulative power ramping sum.
  • the MAC layer will accumulate the power ramping sum (eg, (the value of the third counter - 1) * the set power ramping step parameter), and the expected received power indication to the physical layer.
  • the physical layer can determine the uplink transmit power of data transmission according to the accumulated power ramping sum, downlink path loss estimation, and expected received power.
  • the process is performed per CG configuration per CG cycle.
  • the UE needs to perform the above process for each CG period corresponding to CG configuraton1/2.
  • Step 5 The UE receives the response after sending the uplink data through the dedicated uplink resource:
  • a MAC PDU is transmitted at the uplink transmission opportunity (for example, the PUSCH (CG-PUSCH) corresponding to the configuration grant) is sent, regardless of whether there is a potential measurement gap (measurement gap), the UE is the first PDCCH after the CG-PUSCH. Occasionally start the CG response timer. During the operation of this timer, the UE monitors the PDCCH scrambled by a certain RNTI.
  • the UE starts the CG timer (its start time is the same as the CG response timer).
  • the UE assumes that the first reference signal selected in step 3 (which can be understood as the first reference signal associated with the transmission of the CG-PUSCH) and the DM-RS antenna port (which can be understood as the DMRS of the PDCCH) have the same alignment Quasi co-location properties.
  • the CG response timer is maintained per HARQ process.
  • the process is performed per CG configuration per CG cycle. For example, assuming that two CG configurations are configured on the network side, the UE needs to perform the above process for each CG period corresponding to CG configuraton1/2.
  • the UE If the UE receives an indication that the data transmission is correct, it stops the CG response timer and/or CG timer (corresponding to the HARQ process).
  • the indication for confirming that the data is transmitted correctly may be carried on the PDCCH.
  • the indication for confirming that the data is transmitted correctly is indicated by the per HARQ process.
  • one PDCCH may carry an indication of correct data transmission for one or more HARQ processes.
  • the UE If the UE receives a PDCCH for scheduling uplink retransmission, it stops the CG response timer (corresponding to the HARQ process) and/or restarts the CG timer (corresponding to the HARQ process).
  • Retransmission is performed according to the content of the PDCCH. After the PUSCH used for retransmission is sent, regardless of whether there is a potential measurement gap, the UE starts the CG response timer in the first PDCCH occasion after the PUSCH, and starts/restarts the CG timer.
  • the UE If the UE receives a PDCCH for scheduling new uplink transmission, it stops the CG response timer (corresponding to the HARQ process) and/or the CG timer (corresponding to the HARQ process).
  • a new transmission is performed according to the content of the PDCCH.
  • the UE starts the CG response timer in the first PDCCH occasion after the PUSCH, and starts/restarts the CG timer.
  • the UE If the UE receives a PDCCH for scheduling downlink transmission and the corresponding scheduled PDSCH is successfully decoded, it stops the CG response timer (corresponding to the HARQ process) and/or stops the CG timer (corresponding to the HARQ process).
  • the UE disassembles and demultiplexes the MAC PDU.
  • the UE reports the HARQ-ACK indication according to the UCI resource indication information of the PDCCH.
  • the PDCCH carries response indication information, and the response indication information indicates which uplink HARQ process the downlink scheduling responds to (for example, the PDCCH carries response indication information, indicating that the downlink scheduling is an uplink HARQ process whose ID is 0) .
  • the UE If the UE receives a PDCCH for scheduling downlink transmission but the corresponding scheduled PDSCH is not successfully decoded, the UE reports a HARQ-NACK indication according to the UCI resource indication information of the PDCCH.
  • the PDCCH carries response indication information indicating which uplink HARQ process the downlink scheduling responds to (for example, the PDCCH carries response indication information indicating that the downlink scheduling is an uplink HARQ process with ID 0).
  • the UE assumes that the first reference signal selected in step 3 most recently (which can be understood as the first reference signal associated with the transmission of the CG-PUSCH) and the DM-RS antenna port (which can be understood as the DMRS of the PDCCH) have the same Quasi co-location properties.
  • the second counter value the maximum number of CG transmissions threshold+1, that is, when the second counter value is greater than the configured maximum number of authorized transmissions threshold, perform at least one of the following:
  • the MAC clearing step 1 saves the dedicated uplink resource and the corresponding HARQ information.
  • the maximum or minimum value of the counter value is greater than the configured maximum number of authorized transmissions, perform at least one of the following:
  • the MAC clearing step 1 saves the dedicated uplink resource and the corresponding HARQ information.
  • the UE assumes that the first reference signal selected in step 3 most recently (which can be understood as the first reference signal that is associated with the sending of the CG-PUSCH) and the DM-RS antenna port (which can be understood as the DMRS of the PDCCH) have the same Quasi co-location properties.
  • Step A (time T0): The UE receives the dedicated uplink resource through the RRC Release message.
  • the dedicated uplink resource is configured with a CG configuration.
  • Step B After receiving the above configuration, the UE (such as the RRC layer) in each CG period, if the data based on the configured resources on all (valid) uplink transmission opportunities in the CG period If the transmission process is not triggered, the first counter is incremented by 1.
  • Step C (time T1): the UE (eg, the RRC layer) triggers the data transmission process based on the configuration resources to be triggered.
  • the RRC layer instructs the MAC layer to trigger the data transmission process based on the configuration resources, and then the MAC layer saves the dedicated data transmission process.
  • Uplink resources and corresponding HARQ information initialize dedicated uplink resources.
  • Step D (time T2): Set the power ramping step parameter according to step 2.
  • Step E in each CG cycle, perform resource selection according to step 3 (select SSB, determine the DMRS associated with the selection of SSB, determine uplink transmission, and determine UL grant and corresponding HARQ information according to uplink transmission timing) .
  • Step F Uplink data transmission is performed according to steps 4-1 and 4-2.
  • Step G (time T5): Start the CG response timer according to Step 5 and monitor the PDCCH.
  • the UE assumes that the antenna port of the PDCCH and the SSB selected in step E have the same quasi-orthogonal characteristics.
  • Step H-1 (time T6): During the operation of the CG response timer, the UE receives an instruction to confirm that the data transmission is correct, stops the CG response timer, restarts the T319 timer, and (RRC layer) sets the first counter value to 0.
  • Step H-2 (time T6): During the operation of the CG response timer, the UE receives the PDCCH for scheduling downlink transmission and the corresponding scheduled PDSCH is successfully decoded, stops the CG response timer, and reports the HARQ-ACK indication.
  • Step H-1 (time T6): During the operation of the CG response timer, the UE receives an instruction to confirm that the data transmission is correct, stops the CG response timer, restarts the T319 timer, and (RRC layer) sets the first counter value to 0.
  • Step H-3 (time T6): During the operation of the CG response timer, the UE receives the PDCCH used for scheduling downlink transmission and the corresponding scheduled PDSCH is successfully decoded and the PDCCH carries an instruction to confirm the correct data transmission, stop the CG response timer , report the HARQ-ACK indication, and restart the T319 timer.
  • Step I time T7: The UE may perform a resource selection process in the most recent available CG period, and then perform steps E->F->G->H->I to implement new data transmission.
  • the data transmission method proposed in the embodiments of the present application includes a method for configuring resources, a method for how to associate a downlink first reference signal and a configuration resource, a method for selecting configuration resources, and a method for sending/receiving data based on configuration resources, so that the UE can Uplink data transmission can be performed according to the resources configured on the network side, thereby improving the efficiency of small data transmission.
  • FIG. 6 is a second schematic diagram of a data transmission method provided by an embodiment of the present application.
  • an embodiment of the present application provides a data transmission method, the execution subject of which may be a network side device, and the method includes:
  • Step 601 The network side device sends configuration information of data transmission to the terminal, where the configuration information carries the associated configuration information of the reference signal and the uplink transmission resource.
  • Step 602 The network side device receives the terminal sending uplink data according to the HARQ information and/or the path loss reference signal; the HARQ information and/or the path loss reference signal is determined by the terminal according to the configuration information.
  • the method further includes:
  • the sending downlink data includes:
  • the modulation reference signal antenna port of the PDCCH and the target downlink signal have the same quasi-orthogonal characteristic.
  • a data transmission method provided in this embodiment of the present application is the same as the method described in the above-mentioned corresponding embodiment, and can achieve the same technical effect.
  • the same parts and beneficial effects as those in the above-mentioned corresponding method embodiments will be described in detail.
  • the execution body may be a data transmission device, or a control module in the data transmission device for executing the data transmission method.
  • a method for performing data transmission by a data transmission device is used as an example to describe the data transmission device provided by the embodiments of the present application.
  • FIG. 7 is one of the schematic diagrams of the data transmission device provided by the embodiment of the present application. As shown in FIG. 7 , the embodiment of the present application provides a data transmission device, including an acquisition module 701, a determination module 702, and a first transmission module 703, wherein:
  • the acquisition module 701 is used to acquire configuration information of data transmission, the configuration information carries the associated configuration information of the downlink signal and the uplink transmission resource; the determination module 702 is used to select the target downlink signal, according to the associated configuration of the downlink signal and the uplink transmission resource information, determine the target uplink transmission resource; the first sending module 703 is configured to determine the HARQ information corresponding to the target uplink transmission resource and/or calculate the downlink path loss estimate, according to the HARQ information and/or the Downlink path loss estimation, sending uplink data.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • it further includes a receiving module, configured to receive downlink data according to the target downlink signal.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the associated configuration information of the downlink signal and the uplink transmission resource includes at least one of the following:
  • Antenna port information for uplink signals is provided.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the configuration information further includes at least one of the following:
  • the resource allocation information of the uplink transmission opportunity in the time domain includes at least one of the following:
  • the resource allocation information of the uplink transmission opportunity in the frequency domain includes at least one of the following:
  • the upstream transmission opportunity starts position information in the frequency domain.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the determining the HARQ information corresponding to the target uplink transmission resource comprising:
  • the number corresponding to the HARQ process corresponding to the uplink transmission resource in each configuration grant period is the number corresponding to the HARQ process corresponding to the uplink transmission resource in each configuration grant period.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the calculating the downlink path loss estimate includes:
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • it also includes at least one of the following:
  • the first counter is incremented by 1, and the first counter is used to count the number of data transmission skips;
  • the terminal behavior includes at least one of the following: item:
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the terminal behavior includes at least one of the following:
  • the RRC layer instructs the MAC layer to trigger the data transmission process based on the configured resources
  • the MAC layer After the MAC layer is instructed by the RRC layer to trigger the data transmission process based on the configured resources, it saves the uplink transmission resources and the corresponding HARQ information, and/or initializes or re-initializes the uplink transmission resources;
  • the MAC layer sends an uplink skip indication to the upper layer
  • the first counter is incremented by 1;
  • the terminal behavior includes at least one of the following:
  • RRC instructs the MAC layer to end the data transmission process based on configuration resources
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects will be described in detail.
  • the power boost step parameter is set according to the second power boost step size parameter configured by the network side device, the target access identity and/or target access type provided by the higher layer, and the first indication information sent by the network side device; the power boost step size parameter is set;
  • the step size parameter includes a first power boost step size parameter and a second power boost step size parameter; the first indication information is used to instruct the terminal to use the second power boost step size parameter.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • it also includes at least one of the following:
  • the selected target downlink signal determine a recently available uplink transmission opportunity
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the HARQ entity performs uplink skipping according to a predefined rule, and reports an uplink skipping indication to a higher layer.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the corresponding HARQ process is instructed to send data.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the process of sending uplink data also includes at least one of the following:
  • the data transmission power is determined according to the third counter, the power boost step size parameter, the downlink path loss estimation, and the expected received power.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the receiving downlink data includes:
  • the modulation reference signal antenna port of the PDCCH and the target downlink signal have the same quasi-orthogonal characteristic.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the terminal behavior includes at least one of the following:
  • the first counter value is set to 0;
  • the terminal behavior includes at least one of the following:
  • a HARQ-NACK indication is reported.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the terminal behavior includes at least one of the following:
  • the terminal behavior includes at least one of the following:
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • FIG. 8 is the second schematic diagram of a data transmission device provided by an embodiment of the present application. As shown in FIG. 8 , an embodiment of the present application provides a data transmission device, including a second sending module 801 and a receiving module 802, wherein:
  • the second sending module 801 is configured to send configuration information of data transmission to the terminal, where the configuration information carries the associated configuration information of the reference signal and the uplink transmission resource; the receiving module 802 is configured to receive the data sent by the terminal according to the HARQ information and/or the path loss reference signal Uplink data; the HARQ information and/or the path loss reference signal are determined by the terminal according to the configuration information.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • a third sending module is further included, configured to send downlink data to the terminal according to the target downlink signal selected by the terminal.
  • the above-mentioned data transmission device provided in the embodiment of the present application can realize all the method steps realized by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment is not repeated here. Parts and beneficial effects are described in detail.
  • the sending downlink data includes:
  • the modulation reference signal antenna port of the PDCCH and the target downlink signal have the same quasi-orthogonal characteristic.
  • the data transmission device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the data transmission device in this embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the data transmission apparatus provided by the embodiments of the present application can implement the various processes implemented by the above-mentioned embodiments, and achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the application.
  • the terminal 900 includes but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display Unit 906, user input unit 907, interface unit 908, memory 909, processor 910 and other components.
  • the terminal 900 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 910 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 904 may include a graphics processor (Graphics Processing Unit, GPU) 9041 and a microphone 9042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 906 may include a display panel 9061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072 .
  • the touch panel 9071 is also called a touch screen.
  • the touch panel 9071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 9072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 901 receives the downlink data from the network side device, and then processes it to the processor 910; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 909 may be used to store software programs or instructions as well as various data.
  • the memory 909 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 909 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that the above-mentioned modulation and demodulation processor may not be integrated into the processor 910.
  • the radio frequency unit 901 is configured to acquire configuration information of data transmission, where the configuration information carries the associated configuration information of downlink signals and uplink transmission resources.
  • the processor 910 is configured to select a target downlink signal, and determine the target uplink transmission resource according to the associated configuration information of the downlink signal and the uplink transmission resource.
  • the radio frequency unit 901 is further configured to determine HARQ information corresponding to the target uplink transmission resource and/or calculate a downlink path loss estimate, and send uplink data according to the HARQ information and/or the downlink path loss estimate .
  • the method further includes, the terminal receiving downlink data according to the target downlink signal.
  • the associated configuration information of the downlink signal and the uplink transmission resource includes at least one of the following:
  • Antenna port information for uplink signals is provided.
  • the configuration information further includes at least one of the following:
  • the resource allocation information of the uplink transmission opportunity in the time domain includes at least one of the following:
  • the resource allocation information of the uplink transmission opportunity in the frequency domain includes at least one of the following:
  • the upstream transmission opportunity starts position information in the frequency domain.
  • the determining the HARQ information corresponding to the target uplink transmission resource comprising:
  • the number corresponding to the HARQ process corresponding to the uplink transmission resource in each configuration grant period is the number corresponding to the HARQ process corresponding to the uplink transmission resource in each configuration grant period.
  • the calculating the downlink path loss estimate includes:
  • the method further includes at least one of the following:
  • the first counter is incremented by 1, and the first counter is used to count the number of data transmission skips;
  • the terminal behavior includes at least one of the following: item:
  • the method further includes, after the data transmission process based on the configuration resource is triggered, the terminal behavior includes at least one of the following:
  • the RRC layer instructs the MAC layer to trigger the data transmission process based on the configured resources
  • the MAC layer After the MAC layer is instructed by the RRC layer to trigger the data transmission process based on the configured resources, it saves the uplink transmission resources and the corresponding HARQ information, and/or initializes or re-initializes the uplink transmission resources;
  • the MAC layer sends an uplink skip indication to the upper layer
  • the first counter is incremented by 1;
  • the terminal behavior includes at least one of the following:
  • RRC instructs the MAC layer to end the data transmission process based on configuration resources
  • the method further includes:
  • the power boost step parameter is set according to the second power boost step size parameter configured by the network side device, the target access identity and/or target access type provided by the higher layer, and the first indication information sent by the network side device; the power boost step size parameter is set;
  • the step size parameter includes a first power boost step size parameter and a second power boost step size parameter; the first indication information is used to instruct the terminal to use the second power boost step size parameter.
  • the method further includes at least one of the following:
  • the selected target downlink signal determine a recently available uplink transmission opportunity
  • the HARQ entity performs uplink skipping according to a predefined rule, and reports an uplink skipping indication to a higher layer.
  • the corresponding HARQ process is instructed to send data.
  • the process of sending uplink data also includes at least one of the following:
  • the data transmission power is determined according to the third counter, the power boost step size parameter, the downlink path loss estimation, and the expected received power.
  • the receiving downlink data includes:
  • the modulation reference signal antenna port of the PDCCH and the target downlink signal have the same quasi-orthogonal characteristic.
  • the terminal behavior includes at least one of the following:
  • the first counter value is set to 0;
  • the terminal behavior includes at least one of the following:
  • a HARQ-NACK indication is reported.
  • the terminal behavior includes at least one of the following:
  • the terminal behavior includes at least one of the following:
  • FIG. 10 is a schematic diagram of a hardware structure of a network side device provided by an embodiment of the application.
  • the network device 1000 includes an antenna 1001 , a radio frequency device 1002 , and a baseband device 1003 .
  • the antenna 1001 is connected to the radio frequency device 1002 .
  • the radio frequency device 1002 receives information through the antenna 1001, and sends the received information to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information to be sent and sends it to the radio frequency device 1002
  • the radio frequency device 1002 processes the received information and sends it out through the antenna 1001 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 1003 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 1003 .
  • the baseband apparatus 1003 includes a processor 1004 and a memory 1005 .
  • the baseband device 1003 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 10 , one of the chips is, for example, the processor 1004 , which is connected to the memory 1005 to call a program in the memory 1005 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 1003 may further include a network interface 1006 for exchanging information with the radio frequency device 1002, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: instructions or programs stored in the memory 1005 and executable on the processor 1004, and the processor 1004 invokes the instructions or programs in the memory 1005 to execute the modules shown in FIG. 8 .
  • the embodiments of the present application further provide a readable storage medium, the readable storage medium may be volatile or non-volatile, and a program or an instruction is stored on the readable storage medium, the program or When the instruction is executed by the processor, each process of the above data transmission method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above data transmission method embodiments.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the above data transmission method embodiments.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法、装置、终端、网络侧设备及存储介质,所述方法包括:获取数据传输的配置信息,配置信息携带下行信号和上行传输资源的关联配置信息;选择目标下行信号,根据下行信号和上行传输资源的关联配置信息,确定目标上行传输资源;确定目标上行传输资源对应的HARQ信息和/或计算下行路径损耗估计,根据HARQ信息和/或下行路径损耗估计,发送上行数据。

Description

数据传输方法、装置、终端、网络侧设备及存储介质
相关申请的交叉引用
本申请主张在2020年10月22日在中国提交的中国专利申请号No.202011141197.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种数据传输方法、装置、终端、网络侧设备及存储介质。
背景技术
高效小数据传输的特点是对于非连接态(例如,空闲(IDLE)态和非激活(INACTIVE)态)的终端(User Equipment,UE),避免因此引起的无线资源控制(Radio Resource Control,RRC)状态转换和RRC连接建立过程的造成过多信令开销,通过极简单的信令过程即完成小数据传输的目的。
小数据传输方案的特点是UE当前数据无线承载(Data Radio Bearer,DRB)都是处于挂起的状态,而不是释放的状态。因而,UE在发送恢复请求(Resume Request)消息前可以先恢复DRB,然后再用RRC信令来捎带小数据,这时和连接(CONNECTED)态UE一样可以在DRB上传输数据。从而避免进行状态转换,以较小的信令开销达到高效小数据传输的目的。
针对INACTIVE态的UE进行小数据传输的场景,网络侧需要给UE配置基于配置授权(configured grant)的小数据传输资源,但是,目前还没有涉及新空口(New Radio,NR)UE的配置资源,以及如何利用配置资源进行上行数据传输的相关方案,小数据传输效率低,因此,如何进行基于配置资源的数据传输,以提高小数据传输的效率是一个迫切需要解决的问题。
发明内容
本申请实施例提供一种数据传输方法、装置、终端、网络侧设备及存储介质,能够解决小数据传输效率低的技术问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种数据传输方法,包括:
终端获取数据传输的配置信息,所述配置信息携带下行信号和上行传输资源的关联配置信息;
终端选择目标下行信号,根据所述下行信号和上行传输资源的关联配置信息,确定目标上行传输资源;
终端确定所述目标上行传输资源对应的混合自动重传请求HARQ信息和/或计算下行路径损耗估计,根据所述HARQ信息和/或所述下行路径损耗估计,发送上行数据。
第二方面,本申请实施例提供了一种数据传输方法,包括:
网络侧设备向终端发送数据传输的配置信息,所述配置信息携带参考信号和上行传输资源的关联配置信息;
网络侧设备接收终端根据HARQ信息和/或路径损耗参考信号发送上行数据;所述HARQ信息和/或路径损耗参考信号是终端根据所述配置信息确定的。
第三方面,本申请实施例提供了一种数据传输装置,包括:
获取模块,用于获取数据传输的配置信息,所述配置信息携带下行信号和上行传输资源的关联配置信息;
确定模块,用于选择目标下行信号,根据所述下行信号和上行传输资源的关联配置信息,确定目标上行传输资源;
第一发送模块,用于确定所述目标上行传输资源对应的混合自动重传请求HARQ信息和/或计算下行路径损耗估计,根据所述HARQ信息和/或所述下行路径损耗估计,发送上行数据。
第四方面,本申请实施例提供了一种数据传输装置,包括:
第二发送模块,用于向终端发送数据传输的配置信息,所述配置信息携带参考信号和上行传输资源的关联配置信息;
接收模块,用于接收终端根据HARQ信息和/或路径损耗参考信号发送上行数据;所述HARQ信息和/或路径损耗参考信号是终端根据所述配置信息确定的。
第五方面,本申请实施例提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,本申请实施例提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第八方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的方法。
第九方面,提供了一种计算机程序产品,该计算机程序产品存储在非瞬态的存储介质,所述计算机程序产品被所述处理器执行时实现如第一方面或第二方面所述的方法。
本申请实施例提供的数据传输方法、装置、电子设备及存储介质,通过配置资源,使得UE可以根据网络侧的配置资源来进行上行数据的传输,提高小数据传输的效率。
附图说明
图1为本申请实施例可应用的一种无线通信系统示意图;
图2为本申请实施例提供的数据传输方法示意图之一;
图3为本申请实施例提供的上行传输时机的次序规则示意图;
图4为本申请实施例提供的上行传输时机和第一参考信号的关联关系示意图之一;
图5为本申请实施例提供的上行传输时机和第一参考信号的关联关系示意图之二;
图6为本申请实施例提供的数据传输方法示意图之二;
图7为本申请实施例提供的数据传输装置示意图之一;
图8为本申请实施例提供的数据传输装置示意图之二;
图9为本申请实施例提供的终端的硬件结构示意图;
图10为本申请实施例提供的网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的数据传输方法、装置、终端、网络侧设备及存储介质进行详细地说明。
图2为本申请实施例提供的数据传输方法示意图之一,如图2所示,申请实施例提供一种数据传输方法,其执行主体可以为终端,该方法包括:
步骤201、终端获取数据传输的配置信息,所述配置信息携带下行信号和上行传输资源的关联配置信息。
步骤202、终端选择目标下行信号,根据所述下行信号和上行传输资源的关联配置信息,确定目标上行传输资源。
步骤203、终端确定所述目标上行传输资源对应的混合自动重传请求HARQ信息和/ 或计算下行路径损耗估计,根据所述HARQ信息和/或所述下行路径损耗估计,发送上行数据。
可选地,所述方法还包括,终端根据所述目标下行信号,接收下行数据。
可选地,所述下行信号和上行传输资源的关联配置信息包括如下至少一项:
下行信号和上行传输时机的关联配置信息;
下行信号的标识;
上行信号的第一扰码标识信息;
上行信号的第二扰码标识信息;
上行信号的码分复用组信息;
上行信号的天线端口信息。
可选地,所述配置信息还包括以下至少一项:
上行传输时机在一个时刻上频分复用的个数;
上行传输时机在时域上的资源分配信息;
上行传输时机在频域上的资源分配信息;
下行信号配置信息;
配置授权响应定时器的时长信息;
用于下行信号选择的测量门限;
第一功率提升步长参数;
第二功率提升步长参数;
配置授权传输最大次数;
期望接收功率;
上行传输时机掩码信息;
配置授权周期;
配置授权定时器的时长信息;
最大上行跳过次数;
所述上行传输时机在时域上的资源分配信息包括以下至少一项:
每一配置授权周期内的时隙的个数;
每一时隙包含的上行传输时机的个数;
每一配置授权周期内的上行传输时机的个数;
所述上行传输时机在频域上的资源分配信息包括以下至少一项:
带宽信息;
上行传输时机在频域上起始位置信息。
可选地,所述确定所述目标上行传输资源对应的混合自动重传请求HARQ信息,包括
根据以下至少一项确定所述目标上行传输资源对应的HARQ信息:
可以使用的HARQ进程的总数量;
可以使用的HARQ进程对应的编号;
每个配置授权周期内可以使用的HARQ进程的总数量;
每个配置授权周期内可以使用的HARQ进程对应的编号;
每个配置授权周期内上行传输资源对应的HARQ进程对应的编号。
可选地,所述计算下行路径损耗估计,包括:
根据目标下行信号,计算下行路径损耗估计。
可选地,所述方法还包括以下至少一项:
若在一个配置授权周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则第一计数器加1,所述第一计数器用于统计数据传输跳过次数;
若第一计数器的值大于或等于最大上行跳过次数,或者,若在N个连续的配置周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则终端行为包括如下至少一项:
终止基于配置资源的数据传输过程;
释放上行传输资源;
丢弃配置信息。
可选地,所述方法还包括,在基于配置资源的数据传输过程被触发后,终端行为包括如下至少一项:
无线资源控制RRC层指示媒体接入控制MAC层基于配置资源的数据传输过程被触发;
MAC层被RRC层指示基于配置资源的数据传输过程被触发后,保存上行传输资源以及对应的HARQ信息,和/或初始化或重新初始化上行传输资源;
若在一个配置周期内所有上行传输时机上都没有生成对应媒体接入控制协议数据单元MAC PDU,则MAC层向高层发送一个上行跳过指示;
若高层收到上行跳过指示,则第一计数器加1;
若第一计数器的值大于最大或等于上行跳过次数,则终端行为包括如下至少一项:
终止基于配置资源的数据传输过程;
RRC向MAC层指示结束基于配置资源的数据传输过程;
清除上行传输资源和/或对应的HARQ信息;
释放上行传输资源;
丢弃配置信息。
可选地,所述方法还包括:
根据网络侧设备配置的第二功率提升步长参数、高层提供的目标接入身份和/或目标接入类型和网络侧设备发送的第一指示信息,设置功率提升步长参数;所述功率提升步长参数包括第一功率提升步长参数和第二功率提升步长参数;所述第一指示信息用于指示终端使用第二功率提升步长参数。
可选地,所述方法还包括以下至少一项:
根据用于下行信号选择的测量门限,选择目标下行信号;
根据选择的目标下行信号和/或下行信号和上行信号的关联配置信息,产生上行信号;
根据选择的目标下行信号,确定一个最近可用的上行传输时机;
根据选择的上行传输时机,确定上行授权和对应的HARQ信息;
将所述上行授权以及对应的HARQ信息递交给HARQ实体。
可选地,所述HARQ实体按照预定义规则,进行上行跳过,并向高层上报一个上行跳过指示。
可选地,若获得了一个MAC PDU,指示对应的HARQ进程进行数据发送。
可选地,发送上行数据的过程中,还包括以下至少一项:
根据第二计数器、暂停功率提升计数器的指示、先听后传LBT失败指示、上行跳过指示和所选择的目标下行信号,对第三计数器加1;
根据第三计数器、功率提升步长参数,下行路径损耗估计,期望接收功率,确定数据传输功率。
可选地,所述接收下行数据,包括:
根据一个MAC PDU在上行传输时机传输后,启动或重启配置授权响应定时器和/或启动或重启配置授权定时器,监听物理下行控制信道PDCCH;
所述PDCCH的调制参考信号天线端口和目标下行信号具有相同的准正交特性。
可选地,所述配置授权响应定时器运行期间,终端行为包括如下至少一项:
若收到确认数据传输正确的指示,则停止配置授权响应定时器和/或配置授权定时器;
若收到一个确认数据传输正确的指示,则重启T319定时器;
若收到一个确认数据传输正确的指示,则设置第一计数器值为0;
若收到一个用于调度上行重传的PDCCH,则停止配置授权响应定时器和/或重启配置授权定时器;
若收到一个用于调度上行新传的PDCCH,则停止配置授权响应定时器和/或配置授权定时器;
若收到一个用于调度下行传输的PDCCH且对应调度的MAC PDU被成功解码,则终端行为包括如下至少一项:
停止配置授权响应定时器和/或配置授权定时器;
解组装和/或解复用MAC PDU;
上报混合自动重传请求确认HARQ-ACK指示;
若收到一个用于调度下行传输的PDCCH且对应调度的MAC PDU没有被成功解码,上报混合自动重传请求否定确认HARQ-NACK指示。
可选地,所述配置授权响应定时器超时后,终端行为包括如下至少一项:
对第二计数器加1;
若第二计数器数值等于配置授权传输最大次数门限加1时,则终端行为包括如下至少一项:
向高层上报一个失败或回退指示;
终止基于配置资源的数据传输过程;
释放上行传输资源;
丢弃配置信息;
清除上行传输资源以及对应的HARQ信息。
具体来说,UE接收网络侧配置专属上行资源(简称“上行传输资源”)发送上行数据。本申请实施例以第一参考信号为下行信号,以第二参考信号为上行信号为例进行说明。
例如,网络设备侧在RRC释放(Release)消息中给INACTIVE状态UE携带配置授权(Configured grant)的配置信息,该配置信息包括了INACTIVE UE发送上行数据专属的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源。
可选的,所述PUSCH资源可以包括以下至少一项:
1.上行传输时机;
2.第二参考信号资源;
可选的,配置授权的配置信息可以包括以下至少一项:
1.上行传输时机在一个时刻上频分复用(Frequency division multiplexing,FDMed)的个数(例如,1,2,4,8)。
2.上行传输时机在时域上的资源分配信息。
可选的,上行传输时机在时域上的资源分配信息可以包括以下至少一项:
(1)时隙分配数目和第一上行传输时机分配数目信息,其中时隙分配数目信息指示一个CG周期(periodicity)内时隙的个数,该时隙包含一个或多个上行传输时机。第一上行传输时机分配数目信息指示一个时隙内上行传输时机的个数。
(2)第二上行传输时机分配数目信息,第二上行传输时机分配数目信用于息指示一个CG periodicity内上行传输时机的个数。
可选地,上述提及的时隙和/或上行传输时机在时域上是连续的。
3.上行传输时机在频率上的资源分配信息。
可选的,上行传输时机在频率上的资源分配信息可以包括以下至少一项:
(1)带宽信息。
例如,每个上行传输时机物理无线资源块(physical resource block,PRB)的数目。
(2)上行传输时机在频域上起始位置信息。
例如,在频率位置上最低的上行传输时机和PRB 0之前的偏置(offset),又例如,在频率位置上最低的上行传输时机的频率起点位置是PRB 0/RBG 0)。RBG为资源块组(resource block group)。
4.第一参考信号配置信息。
第一参考信号配置信息指示哪些第一参考信号可以用于基于配置资源的数据传输过程(例如:小数据传输过程(small data transmission))。
例如,网络侧通过比特图(bitmap)指示服务小区中哪些同步信号块(synchronization signal block,SSB)可以用于小数据传输。
可选地,该第一参考信号为下行路损参考信号。
例如,第一参考信号为SSB或者信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)中的一种。
可选地,如果第一参考信号配置信息没有被配置,则UE认为系统消息中所指示的传输的第一参考信号(例如SSB)都可以用于基于配置资源的数据传输过程。
5.第一参考信号和上行传输时机的关联配置信息。
第一参考信号和上行传输时机的关联配置信息指示多少个第一参考信号关联到一个上行传输时机(例如,1/8表示1个SSB映射到8个上行传输时机,8表示8个SSB映射到1个上行传输时机,从而使得SSB和上行传输时机具有关联关系)。
6.第一参考信号和第二参考信号的关联配置信息。
可选地,第一参考信号和第二参考信号的关联配置信息可以包括以下至少一项:
(1)第一参考信号的标识或索引值(例如,SSB-index)。
(2)第二参考信号的第一扰码标识信息(例如,ScramblingID0=0),第一扰码标识信息用于第一参考信号的扰码初始化。
(3)第二参考信号的第二扰码标识信息(例如,ScramblingID1=1),第二扰码标识信息用于第二参考信号的扰码初始化。
(4)第二参考信号的码分复用组(CDM group)信息(例如,λ=0)。
(5)第二参考信号的天线端口(antenna port)信息(例如,解调参考信号端口索引值(DMRS port index))。
例如,第一参考信号和第二参考信号的关联配置信息中SSB-index为1,ScramblingID0=0,ScramblingID1=1,λ=0,DMRS port index=0,则表示SSB1和根据ScramblingID0=0,ScramblingID1=1,λ=0,DMRS port index=0构成的DMRS信号存在关联关联。又例如,第一参考信号和第二参考信号的关联配置信息中SSB-index为2,ScramblingID0=11,ScramblingID1=20,λ=0,则表示SSB2和根据ScramblingID0=11,ScramblingID1=20,λ=0构成的DMRS信号存在关联关联,在此不一一举例。
可选地,该第一参考信号至少可以是SSB或者CSI-RS中的一种,第二参考信号可以是上行解调参考信号(Demodulation Reference Signal,DMRS)。
可选地,第一参考信号和第二参考信号的关联配置信息包括一个或多个第一参考信号和第二参考信号关联关系信息。该配置信息可以是一个列表,列表中的每个元素指示一个第一参考信号和一个第二参考信号的关联信息。
7.配置授权响应定时器(CG response timer)的时长信息。
8.用于第一参考信号选择的测量门限。(一个门限值,例如,rsrp-ThresholdSSB)。
9.第一(低优先级)功率提升步长(power ramping step)参数。
10.第二(高优先级)power ramping step参数。
11.CG传输最大次数(一个门限值)。
12.期望接收功率。
13.上行传输时机掩码(mask)信息。上行传输时机mask信息用于显式指示可用于基于配置资源的数据传输过程的上行传输时机。
14.CG周期。
15.配置授权定时器(CG timer)的时长信息。
16.最大上行跳过次数(一个门限值)。
网络侧或者协议预定义以下任意一项规则:
1.上行传输时机的次序规则。
上行传输时机的次序规则可以包括以下至少一项:
(1)先根据FDMed上行传输时机的个数在频率域上依次递增;
(2)随后再根据TDMed上行传输时机分配数目在一个时隙内依次递增;
(3)随后再根据TDMed上行传输时机分配数目依次递增;
(4)最后按照时隙分配数目依次递增。
图3为本申请实施例提供的上行传输时机的次序规则示意图。假设配置中上行传输时机在一个时刻上频分复用的个数是2,一上行传输时机分配数目是2,时隙分配数目是2,则上行传输时机的编号如图3所示。
2.第一参考信号和上行传输时机的关联。
例如,UE先验证所有配置的上行传输机会是否有效,然后对于每个CG配置,根据一个CG周期内所有有效的上行传输时机和配置SSB的个数用于确定映射回合数(mapping cycle),进行SSB和上行传输机会的映射。假设网络配置了SSB1/2/3/4,一个CG周期内有上行传输时机#1/2/3/4/5/6/7/8都是有效的,则此时进行两轮映射(即,floor(8/4)=2),最后将SSB1关联到上行传输时机#1和5,SSB2关联到上行传输时机#2和6,如此类推。
3.用于新传的混合自动重传请求HARQ进程信息。
(1)协议预定义或网络设备侧配置UE可用的HARQ进程信息。
例如,对于一个CG配置,在一个CG周期内,对于任一个上行传输时机,其相应的HARQ进程被协议预定义或网络侧配置为0。同样地,在其后的CG周期内,对于任一个上行传输时机,其相应的HARQ进程被协议预定义或网络侧配置为0。
(2)协议预定义或网络侧配置UE可用的HARQ进程信息。
例如,对于一个CG configuration,在第一个周期内,对于任一个上行传输时机,其相应的HARQ进程约定为0;在第二个周期内,对于任一个CG,UE可用的HARQ进程约定为1,如此类推。或者理解为:一个CG周期内,任一个上行传输时机对应的HARQ进程都是编号为最小的上行传输时机对应的HARQ进程。其中,如何确定编号为最小的上行传输时机对应的HARQ进程在此不限制。
4.第一参考信号和路径损耗参考信号的关联。
进行基于配置资源的数据传输时,PUSCH对应的路径损耗参考信号(pathloss RS)是由UE自助选择的。
可选地,PUSCH的pathloss RS是当前服务小区当前激活下行带宽部分(DL BWP)(例如,初始DL BWP)上和此次PUSCH传输关联的第一参考信号。
例如,网络配置了SSB1/2/3/4,UE触发了基于配置资源的数据传输过程,那么UE根据用于第一参考信号选择的测量质量门限,选择了SSB2(也即是SSB2为目标下行信号),并且根据SSB2关联的上行传输时机和第二参考信号进行PUSCH发送,那么UE就将SSB2 作为PUSCH的pathloss RS,从而通过使用SSB2计算出下行路径损耗估计
可选地,在使用上行传输资源进行数据传输之前,包括:
步骤0:如果在一个CG周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则执行如下步骤:
可选地,第一计数器加1。
该第一计数器用于统计数据传输跳过次数,如果第一计数器的值=最大上行跳过次数,即第一计数器的值大于最大上行跳过次数时,则终止(结束)基于配置资源的数据传输过程,释放上行传输资源,丢弃配置信息。
可选地,如果在N个连续的CG周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则结束基于配置资源的数据传输过程,释放上行传输资源,丢弃配置信息;门限值N可以由网络侧设备(NW)配置或协议约定或者预定义。
可选地,该过程可以是按照每一配置授权配置(per CG configuration)中的每一配置授权周期(per CG periodicity)进行的。
例如,假设网络侧配置了两个CG configuration,则UE需要对CG configuraton1/2对应的每个CG周期进行上述过程。
步骤1:基于配置资源的数据传输过程被触发后,可以执行以下至少一项:
1.RRC层指示MAC层基于配置资源的数据传输过程被触发。
2.MAC层被RRC层指示基于配置资源的数据传输过程被触发后,保存专属上行资源以及对应的HARQ信息。
可选地,上行资源也可以理解成上行授权UL grant,或者配置授权CG。
3.MAC层初始化/重新初始化专属上行资源。
4.如果在一个CG周期内所有上行传输时机上都没有生成对应MAC PDU(可以理解成没有进行PUSCH发送),MAC层向高层(RRC层)发送一个上行跳过指示,高层对第一计数器加1(该第一计数器用于统计数据传输跳过次数)。
如果第一计数器的值=最大上行跳过次数,即第一计数器的值大于最大上行跳过次数时,则终端行为包括以下至少一项:
(1)结束基于配置资源的数据传输过程。
(2)RRC向MAC层指示结束基于配置资源的数据传输过程。
(3)MAC清除步骤1保存专属上行资源以及对应的HARQ信息。
(4)RRC丢弃步骤0的所有保存的配置信息。
步骤2:UE通过专属上行资源发送上行数据前先进行初始化。
如果网络侧配置了高优先级power ramping step参数,而且如果高层提供了接入ID1或者2,而且如果网络侧指示UE使用高优先级power ramping step参数,则UE设置高优先级power ramping step参数。
否则,UE设置低优先级power ramping step参数。
可选地,该过程是per CG configuration进行的。
例如,假设网络侧配置了两个CG configuration,则UE需要对CG configuraton1/2对进行上述过程。
步骤3:UE通过专属上行资源发送上行数据前先进行发送资源的选择。
1.根据用于第一参考信号选择的测量门限,UE先选择第一参考信号用于基于配置资源的数据传输过程。
例如,假设网络侧配置SSB1/2/3/4,根据网络配置的质量门限值(例如,门限值为-80dBm)进行第一参考信号的选择。UE根据最新测量到的SSB1/2/3/4的L1-RSRP,假设只有SSB3的L1-RSRP(例如:-70dBm)高于门限值,则UE选择SSB3。
2.根据选择的第一参考信号和/或第一参考信号和第二参考信号的关联配置信息,产生(generate)第二参考信号。
例如,第一参考信号和第二参考信号的关联配置信息配置SSB-index为2,ScramblingID0=11,ScramblingID1=20,λ=0根据选择的第一参考信号是SSB2,则根据ScramblingID0=11,ScramblingID1=20,λ=0构成第二参考信号(DMRS)。
3.根据选择的第一参考信号,确定一个最近可用的上行传输时机(上行传输时机和选择的第一参考信号存在关联关系)。
4.可选地,UE从根据选择的第一参考信号所关联的连续的上行传输时机中随机等概率地选择一个。
例如,图4为本申请实施例提供的上行传输时机和第一参考信号的关联关系示意图之一,如图4所示,假设网络侧配置SSB1/2,根据网络配置的质量门限值(例如,门限值为-80dBm)进行第一参考信号的选择。UE根据最新测量到的SSB1/2的L1-RSRP,假设只有SSB2的L1-RSRP(例如:-70dBm)高于门限值,则UE选择SSB2,然后从SSB2关联的两个上行传输时机(#3/4)中随机等概率地选择一个(例如#3),可以理解上行传输时机(#3/4)是对应SSB2最近可用的上行传输时机。
可选地,确定一个最近可用的上行传输时机还可以根据根据选择的第一参考信号和上行传输时机掩码(mask)信息。
例如,图5为本申请实施例提供的上行传输时机和第一参考信号的关联关系示意图之二,如图5所示,假设网络侧配置SSB1/2,根据网络配置的质量门限值(例如,门限值为-80dBm)进行第一参考信号的选择。UE根据最新测量到的SSB1/2的L1-RSRP,假设只有SSB2的L1-RSRP例如:-70dBm)高于门限值,则UE选择SSB2,假设上行传输时机mask信息指示的值为1(例如:1即是指示UE使用选择的SSB所关联的上行传输时机中第一个),然后UE则选择最近可用的SSB2#0,由例如假设上行传输时机mask信息指示的值为0(例如:0即是指示UE使用选择的SSB所关联的上行传输时机都可使用),则UE从SSB2关联的最近可用的两个上行传输时机(SSB2#0/1)中随机等概率地选择一个(例如#0)。最终UE实现了根据选择的SSB(例如:SSB2),在选择的上行传输时机上(例如#0),发送PUSCH,所述PUSCH的上行DMRS即是根据选择的SSB产生(generate)第二参考信号(根据ScramblingID0=11,ScramblingID1=20,λ=0构成的上行DMRS)。
5.根据选择上行传输时机,确定上行授权(UL grant)和对应的HARQ信息。例如,HARQ进程识别码(HARQ process ID),新数据指示比特(new data indicator bit,NDI bit),传输块大小(Transport Block Size,TBS)。
6.将UL grant以及对应的HARQ信息递交给HARQ实体。
可选地,只有在UL grant对应HARQ process ID对应的CG response timer和/或CG timer没有运行时,才将UL grant以及对应的HARQ信息递交给HARQ实体(可以理解成在CG response timer运行期间,其相应的HARQ process不能用于进行新传或者重传)。
可选地,只有在UL grant对应HARQ process ID对应的CG timer没有运行时,才将UL grant以及对应的NDI bit进行反转(toggle)(可以理解成在CG timer运行期间,其相应的HARQ process不能用于进行新传)。
7.可选地,HARQ实体按照预定义规则,进行上行跳过(UL skipping),不产生MAC PDU,并向RRC层上报一个上行跳过指示。
8.可选地,该过程可以是per CG configuration per CG周期进行的。
例如,假设网络侧配置了两个CG configuration,则UE需要对CG configuraton1/2对应的每个CG周期进行上述过程。
步骤4.1:如果获得了一个MAC PDU,则指示对应的HARQ进程进行数据发送。
步骤4.2:UE通过和专属上行资源发送上行数据时:
1.根据第二计数器,暂停功率提升计数器(suspending poewer ramping counter)的指示,先听后传(listen before talk,LBT)失败指示,上行跳过指示,此次发送所选择的第一参考信号,对第三计数器加1。
例如,如果第二计数器的值大于1,而且没有从物理层收到一个suspending poewer ramping counter的指示,而且没有从物理层收到一个LBT失败指示,而且没有MAC层没有产生一个上行跳过指示,而且,此次发送所选择的第一参考信号没有发生变化(理解为此次发送所选择的第一参考信号和上次发送选择的第一参考信号是同一个),则对第三计数器加1。该第三计数器用于计算累计power ramping总和。
2.MAC层将累计power ramping总和(例如,(第三计数器的值-1)*设置的power ramping step参数),以及期望接收功率指示给物理层。
3.物理层可以根据累计power ramping总和,下行路径损耗估计,期望接收功率,确定数据传输的上行发送功率。
4.可选地,该过程是per CG configuration per CG周期进行的。
例如,假设网络侧配置了两个CG configuration,则UE需要对CG configuraton1/2对应的每个CG周期进行上述过程。
步骤5:UE通过专属上行资源发送上行数据后接收响应:
1.当一个MAC PDU在上行传输时机传输(例如:配置授权对应的PUSCH(CG-PUSCH))发送后,不管有没有潜在的测量间隔(measurement gap),UE在CG-PUSCH后第一个PDCCH occasion启动CG response timer,在该timer运行期间,UE监听某一RNTI加扰的PDCCH。
可选地,UE启动CG timer(其启动时刻和CG response timer一致)。
2.UE假设步骤3中选择的第一参考信号(可以理解成和发送CG-PUSCH存在关联关系的第一参考信号)和DM-RS天线端口(可以理解成PDCCH的DMRS)具有相同的准正交特性(quasi co-location properties)。
3.可选地,CG response timer是per HARQ process进行维护的。
4.可选地,该过程是per CG configuration per CG周期进行的。例如,假设网络侧配置了两个CG configuration,则UE需要对CG configuraton1/2对应的每个CG周期进行上述过程。
可选地,在CG response timer运行期间:
1.如果UE收到确认数据传输正确的指示,则停止(HARQ process对应的)CG response timer和/或CG timer。可选地,该确认数据传输正确的指示可以在PDCCH上承载。可选地,该确认数据传输正确的指示是per HARQ process进行指示的,可选地,一个PDCCH上可以携带一个或多个HARQ process的确认数据传输正确的指示。
2.可选地,如果UE收到一个确认数据传输正确的指示,重启T319定时器。
3.可选地,如果UE收到一个确认数据传输正确的指示,设置第一计数器值为0。
4.如果UE收到一个用于调度上行重传的PDCCH,则停止(HARQ process对应的)CG response timer和/或重启(HARQ process对应的)CG timer。
根据PDCCH的内容进行重传,在用于重传的PUSCH发送后,不管有没有潜在的measurement gap,UE在PUSCH后第一个PDCCH occasion启动CG response timer,启动/重启CG timer。
5.如果UE收到一个用于调度上行新传的PDCCH,则停止(HARQ process对应的)CG response timer和/或(HARQ process对应的)CG timer。
根据PDCCH的内容进行新传,在用于新传的PUSCH发送后,不管有没有潜在的 measurement gap,UE在PUSCH后第一个PDCCH occasion启动CG response timer,启动/重启CG timer。
6.如果UE收到一个用于调度下行传输的PDCCH而且对应调度的PDSCH被成功解码,则停止(HARQ process对应的)CG response timer和/或停止(HARQ process对应的)CG timer。
然后,UE解组装(disassemble)和解复用(demultiplex)MAC PDU。UE根据PDCCH的UCI资源指示信息,上报HARQ-ACK指示。
可选地,所述PDCCH携带了响应指示信息,所述响应指示信息指示该下行调度是响应哪个上行HARQ进程(例如,PDCCH携带响应指示信息,指示该下行调度是ID是0的上行HARQ进程)。
7.如果UE收到一个用于调度下行传输的PDCCH但对应调度的PDSCH没有被成功解码,UE根据PDCCH的UCI资源指示信息,上报HARQ-NACK指示。
可选地,PDCCH携带了响应指示信息,响应指示信息指示该下行调度是响应哪个上行HARQ进程(例如,PDCCH携带响应指示信息,指示该下行调度是ID是0的上行HARQ进程)。
8.UE假设最近一次步骤3中选择的第一参考信号(可以理解成和发送CG-PUSCH存在关联关系的第一参考信号)和DM-RS天线端口(可以理解成PDCCH的DMRS)具有相同的准正交特性(quasi co-location properties)。
可选地,在CG response timer超时后:
1.在该CG response timer超时后,对第二计数器加1;
2.如果第二计数器数值=CG传输最大次数门限+1,即第二计数器数值大于配置授权传输最大次数门限时,则执行以下至少一项:
(1)向高层(RRC)上报一个失败/回退指示。
(2)结束基于配置资源的数据传输过程。
(3)MAC清除步骤1所述保存所述专属上行资源以及对应的HARQ信息。
(4)RRC清除步骤0所述的所有保存的资源和信息。
否则,执行步骤3资源选择过程。
3.可选地,CG传输计数器是per HARQ process进行维护的;如果所有HARQ process对应第二计数器数值中的最大值/最小值=CG传输最大次数门限+1,即所有HARQ进程对应的第二计数器数值中的最大值或最小值大于配置授权传输最大次数门限时,则执行以下至少一项:
(1)向高层(RRC)上报一个失败/回退指示。
(2)结束基于配置资源的数据传输过程。
(3)MAC清除步骤1所述保存所述专属上行资源以及对应的HARQ信息。
(4)RRC清除步骤0所述的所有保存的资源和信息。
否则,执行步骤3资源选择过程。
4.UE假设最近一次步骤3中选择的第一参考信号(可以理解成和发送CG-PUSCH存在关联关系的第一参考信号)和DM-RS天线端口(可以理解成PDCCH的DMRS)具有相同的准正交特性(quasi co-location properties)。
下面以只有一个CG配置时且采用第一种HARQ进程规则的基于配置资源的数据传输为例,对上述实施例中的方法进行说明。
步骤A(T0时刻):UE通过RRC Release消息收到了专属上行资源。所述专属上行资源配置了一个CG configuration。
步骤B(T0-T1时段):在收到上述配置后,UE(如:RRC层)在每个CG周期内, 如果在该CG周期内所有(有效的)上行传输时机上基于配置资源的数据传输过程都没有被触发,则第一计数器加1。
步骤C(T1时刻):UE(如:RRC层)触发基于配置资源的数据传输过程被触发,此时RRC层指示MAC层基于配置资源的数据传输过程被触发,然后MAC层保存保存所述专属上行资源以及对应的HARQ信息,初始化专属上行资源。
步骤D(T2时刻):根据步骤2进行power ramping step参数的设置。
步骤E(T3时刻):在每一个CG周期,根据步骤3进行资源选择(选择SSB,确定选择SSB所关联的DMRS,确定上行传输,并根据上行传输时机,确定UL grant和对应的HARQ信息)。
步骤F(T4时刻):根据步骤4-1和4-2进行上行数据发送。
步骤G(T5时刻):根据步骤5启动CG response timer,监听PDCCH。UE假设PDCCH的天线端口和步骤E中选择的SSB具有相同的准正交特性。
步骤H-1(T6时刻):在CG response timer运行期间,UE收到了确认数据传输正确的指示,停止CG response timer,重启T319定时器,(RRC层)设置第一计数器值为0。
步骤H-2(T6时刻):在CG response timer运行期间,UE收到了用于调度下行传输的PDCCH并且对应调度的PDSCH被成功解码,停止CG response timer,上报HARQ-ACK指示。
步骤H-1(T6时刻):在CG response timer运行期间,UE收到了确认数据传输正确的指示,停止CG response timer,重启T319定时器,(RRC层)设置第一计数器值为0。
步骤H-3(T6时刻):在CG response timer运行期间,UE收到了用于调度下行传输的PDCCH并且对应调度的PDSCH被成功解码且PDCCH中携带了确认数据传输正确的指示,停止CG response timer,上报HARQ-ACK指示,重启T319定时器。
步骤I(T7时刻):UE可以在最近可用的CG周期内进行资源选择过程,再执行步骤E->F->G->H->I,实现进行新数据的传输。
本申请实施例提出的数据传输方法,包括配置资源的方法、下行第一参考信号和配置资源的如何进行关联的方法、配置资源选择的方法、基于配置资源数据发送/响应接收的方法,使得UE可以根据网络侧的配置资源来进行上行数据的传输,提高小数据传输的效率。
图6为本申请实施例提供的数据传输方法示意图之二,如图6所示,本申请实施例提供一种数据传输方法,其执行主体可以为网络侧设备,该方法包括:
步骤601、网络侧设备向终端发送数据传输的配置信息,所述配置信息携带参考信号和上行传输资源的关联配置信息。
步骤602、网络侧设备接收终端根据HARQ信息和/或路径损耗参考信号发送上行数据;所述HARQ信息和/或路径损耗参考信号是终端根据所述配置信息确定的。
可选地,所述方法还包括:
根据终端选择的目标下行信号向终端发送下行数据。
可选地,所述发送下行数据,包括:
根据一个MAC PDU在上行传输时机传输后,发送PDCCH;
所述PDCCH的调制参考信号天线端口和目标下行信号具有相同的准正交特性。
具体来说,本申请实施例提供的一种数据传输方法,与上述相应实施例中所述的方法相同,且能够达到相同的技术效果,区别仅在于执行主体不同,在此不再对本实施例中与上述相应方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本申请实施例提供的数据传输方法,执行主体可以为数据传输装置,或者,该数据传输装置中的用于执行数据传输的方法的控制模块。本申请实施例中以数据传输装置执行数据传输的方法为例,说明本申请实施例提供的数据传输的装置。
图7为本申请实施例提供的数据传输装置示意图之一,如图7所示,本申请实施例提供一种数据传输装置,包括获取模块701、确定模块702和第一发送模块703,其中:
获取模块701用于获取数据传输的配置信息,所述配置信息携带下行信号和上行传输资源的关联配置信息;确定模块702用于选择目标下行信号,根据所述下行信号和上行传输资源的关联配置信息,确定目标上行传输资源;第一发送模块703用于确定所述目标上行传输资源对应的混合自动重传请求HARQ信息和/或计算下行路径损耗估计,根据所述HARQ信息和/或所述下行路径损耗估计,发送上行数据。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,还包括接收模块,用于根据所述目标下行信号,接收下行数据。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述下行信号和上行传输资源的关联配置信息包括如下至少一项:
下行信号和上行传输时机的关联配置信息;
下行信号的标识;
上行信号的第一扰码标识信息;
上行信号的第二扰码标识信息;
上行信号的码分复用组信息;
上行信号的天线端口信息。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述配置信息还包括以下至少一项:
上行传输时机在一个时刻上频分复用的个数;
上行传输时机在时域上的资源分配信息;
上行传输时机在频域上的资源分配信息;
下行信号配置信息;
配置授权响应定时器的时长信息;
用于下行信号选择的测量门限;
第一功率提升步长参数;
第二功率提升步长参数;
配置授权传输最大次数;
期望接收功率;
上行传输时机掩码信息;
配置授权周期;
配置授权定时器的时长信息;
最大上行跳过次数;
所述上行传输时机在时域上的资源分配信息包括以下至少一项:
每一配置授权周期内的时隙的个数;
每一时隙包含的上行传输时机的个数;
每一配置授权周期内的上行传输时机的个数;
所述上行传输时机在频域上的资源分配信息包括以下至少一项:
带宽信息;
上行传输时机在频域上起始位置信息。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述确定所述目标上行传输资源对应的混合自动重传请求HARQ信息,包括
根据以下至少一项确定所述目标上行传输资源对应的HARQ信息:
可以使用的HARQ进程的总数量;
可以使用的HARQ进程对应的编号;
每个配置授权周期内可以使用的HARQ进程的总数量;
每个配置授权周期内可以使用的HARQ进程对应的编号;
每个配置授权周期内上行传输资源对应的HARQ进程对应的编号。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述计算下行路径损耗估计,包括:
根据目标下行信号,计算下行路径损耗估计。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,还包括以下至少一项:
若在一个配置授权周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则第一计数器加1,所述第一计数器用于统计数据传输跳过次数;
若第一计数器的值大于或等于最大上行跳过次数,或者,若在N个连续的配置周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则终端行为包括如下至少一项:
终止基于配置资源的数据传输过程;
释放上行传输资源;
丢弃配置信息。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,还包括,在基于配置资源的数据传输过程被触发后,终端行为包括如下至少一项:
RRC层指示MAC层基于配置资源的数据传输过程被触发;
MAC层被RRC层指示基于配置资源的数据传输过程被触发后,保存上行传输资源以及对应的HARQ信息,和/或初始化或重新初始化上行传输资源;
若在一个配置周期内所有上行传输时机上都没有生成对应MAC PDU,则MAC层向高层发送一个上行跳过指示;
若高层收到上行跳过指示,则第一计数器加1;
若第一计数器的值大于最大或等于上行跳过次数,则终端行为包括如下至少一项:
终止基于配置资源的数据传输过程;
RRC向MAC层指示结束基于配置资源的数据传输过程;
清除上行传输资源和/或对应的HARQ信息;
释放上行传输资源;
丢弃配置信息。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,还包括:
根据网络侧设备配置的第二功率提升步长参数、高层提供的目标接入身份和/或目标接入类型和网络侧设备发送的第一指示信息,设置功率提升步长参数;所述功率提升步长参数包括第一功率提升步长参数和第二功率提升步长参数;所述第一指示信息用于指示终端使用第二功率提升步长参数。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,还包括以下至少一项:
根据用于下行信号选择的测量门限,选择目标下行信号;
根据选择的目标下行信号和/或下行信号和上行信号的关联配置信息,产生上行信号;
根据选择的目标下行信号,确定一个最近可用的上行传输时机;
根据选择的上行传输时机,确定上行授权和对应的HARQ信息;
将所述上行授权以及对应的HARQ信息递交给HARQ实体。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述HARQ实体按照预定义规则,进行上行跳过,并向高层上报一个上行跳过指示。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,若获得了一个MAC PDU,指示对应的HARQ进程进行数据发送。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,发送上行数据的过程中,还包括以下至少一项:
根据第二计数器、暂停功率提升计数器的指示、先听后传LBT失败指示、上行跳过指示和所选择的目标下行信号,对第三计数器加1;
根据第三计数器、功率提升步长参数,下行路径损耗估计,期望接收功率,确定数据传输功率。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述接收下行数据,包括:
根据一个MAC PDU在上行传输时机传输后,启动或重启配置授权响应定时器和/或启动或重启配置授权定时器,监听PDCCH;
所述PDCCH的调制参考信号天线端口和目标下行信号具有相同的准正交特性。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现 的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述配置授权响应定时器运行期间,终端行为包括如下至少一项:
若收到确认数据传输正确的指示,则停止配置授权响应定时器和/或配置授权定时器;
若收到一个确认数据传输正确的指示,则重启T319定时器;
若收到一个确认数据传输正确的指示,则设置第一计数器值为0;
若收到一个用于调度上行重传的PDCCH,则停止配置授权响应定时器和/或重启配置授权定时器;
若收到一个用于调度上行新传的PDCCH,则停止配置授权响应定时器和/或配置授权定时器;
若收到一个用于调度下行传输的PDCCH且对应调度的MAC PDU被成功解码,则终端行为包括如下至少一项:
停止配置授权响应定时器和/或配置授权定时器;
解组装和/或解复用MAC PDU;
上报HARQ-ACK指示;
若收到一个用于调度下行传输的PDCCH且对应调度的MAC PDU没有被成功解码,上报HARQ-NACK指示。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述配置授权响应定时器超时后,终端行为包括如下至少一项:
对第二计数器加1;
若第二计数器数值等于配置授权传输最大次数门限加1时,则终端行为包括如下至少一项:
向高层上报一个失败或回退指示;
终止基于配置资源的数据传输过程;
释放上行传输资源;
丢弃配置信息;
清除上行传输资源以及对应的HARQ信息。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图8为本申请实施例提供的数据传输装置示意图之二,如图8所示,本申请实施例提供一种数据传输装置,包括第二发送模块801和接收模块802,其中:
第二发送模块801用于向终端发送数据传输的配置信息,所述配置信息携带参考信号和上行传输资源的关联配置信息;接收模块802用于接收终端根据HARQ信息和/或路径损耗参考信号发送上行数据;所述HARQ信息和/或路径损耗参考信号是终端根据所述配置信息确定的。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,还包括第三发送模块,用于根据终端选择的目标下行信号向终端发送下行数据。
具体来说,本申请实施例提供的上述数据传输装置,能够实现上述方法实施例所实现 的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
可选地,所述发送下行数据,包括:
根据一个MAC PDU在上行传输时机传输后,发送PDCCH;
所述PDCCH的调制参考信号天线端口和目标下行信号具有相同的准正交特性。
本申请实施例中的数据传输装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的数据传输装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的数据传输装置能够实现上述各实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图9为本申请实施例提供的终端的硬件结构示意图,如图9所示,该终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、以及处理器910等部件。
本领域技术人员可以理解,终端900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元904可以包括图形处理器(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元906可包括显示面板9061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板9061。用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元901将来自网络侧设备的下行数据接收后,给处理器910处理;另外,将上行的数据发送给网络侧设备。通常,射频单元901包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器909可用于存储软件程序或指令以及各种数据。存储器909可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器909可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器910可包括一个或多个处理单元;可选的,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也 可以不集成到处理器910中。
其中,射频单元901,用于获取数据传输的配置信息,所述配置信息携带下行信号和上行传输资源的关联配置信息。
处理器910,用于选择目标下行信号,根据所述下行信号和上行传输资源的关联配置信息,确定目标上行传输资源。
射频单元901,还用于确定所述目标上行传输资源对应的混合自动重传请求HARQ信息和/或计算下行路径损耗估计,根据所述HARQ信息和/或所述下行路径损耗估计,发送上行数据。
可选地,所述方法还包括,终端根据所述目标下行信号,接收下行数据。
可选地,所述下行信号和上行传输资源的关联配置信息包括如下至少一项:
下行信号和上行传输时机的关联配置信息;
下行信号的标识;
上行信号的第一扰码标识信息;
上行信号的第二扰码标识信息;
上行信号的码分复用组信息;
上行信号的天线端口信息。
可选地,所述配置信息还包括以下至少一项:
上行传输时机在一个时刻上频分复用的个数;
上行传输时机在时域上的资源分配信息;
上行传输时机在频域上的资源分配信息;
下行信号配置信息;
配置授权响应定时器的时长信息;
用于下行信号选择的测量门限;
第一功率提升步长参数;
第二功率提升步长参数;
配置授权传输最大次数;
期望接收功率;
上行传输时机掩码信息;
配置授权周期;
配置授权定时器的时长信息;
最大上行跳过次数;
所述上行传输时机在时域上的资源分配信息包括以下至少一项:
每一配置授权周期内的时隙的个数;
每一时隙包含的上行传输时机的个数;
每一配置授权周期内的上行传输时机的个数;
所述上行传输时机在频域上的资源分配信息包括以下至少一项:
带宽信息;
上行传输时机在频域上起始位置信息。
可选地,所述确定所述目标上行传输资源对应的混合自动重传请求HARQ信息,包括
根据以下至少一项确定所述目标上行传输资源对应的HARQ信息:
可以使用的HARQ进程的总数量;
可以使用的HARQ进程对应的编号;
每个配置授权周期内可以使用的HARQ进程的总数量;
每个配置授权周期内可以使用的HARQ进程对应的编号;
每个配置授权周期内上行传输资源对应的HARQ进程对应的编号。
可选地,所述计算下行路径损耗估计,包括:
根据目标下行信号,计算下行路径损耗估计。
可选地,所述方法还包括以下至少一项:
若在一个配置授权周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则第一计数器加1,所述第一计数器用于统计数据传输跳过次数;
若第一计数器的值大于或等于最大上行跳过次数,或者,若在N个连续的配置周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则终端行为包括如下至少一项:
终止基于配置资源的数据传输过程;
释放上行传输资源;
丢弃配置信息。
可选地,所述方法还包括,在基于配置资源的数据传输过程被触发后,终端行为包括如下至少一项:
RRC层指示MAC层基于配置资源的数据传输过程被触发;
MAC层被RRC层指示基于配置资源的数据传输过程被触发后,保存上行传输资源以及对应的HARQ信息,和/或初始化或重新初始化上行传输资源;
若在一个配置周期内所有上行传输时机上都没有生成对应MAC PDU,则MAC层向高层发送一个上行跳过指示;
若高层收到上行跳过指示,则第一计数器加1;
若第一计数器的值大于最大或等于上行跳过次数,则终端行为包括如下至少一项:
终止基于配置资源的数据传输过程;
RRC向MAC层指示结束基于配置资源的数据传输过程;
清除上行传输资源和/或对应的HARQ信息;
释放上行传输资源;
丢弃配置信息。
可选地,所述方法还包括:
根据网络侧设备配置的第二功率提升步长参数、高层提供的目标接入身份和/或目标接入类型和网络侧设备发送的第一指示信息,设置功率提升步长参数;所述功率提升步长参数包括第一功率提升步长参数和第二功率提升步长参数;所述第一指示信息用于指示终端使用第二功率提升步长参数。
可选地,所述方法还包括以下至少一项:
根据用于下行信号选择的测量门限,选择目标下行信号;
根据选择的目标下行信号和/或下行信号和上行信号的关联配置信息,产生上行信号;
根据选择的目标下行信号,确定一个最近可用的上行传输时机;
根据选择的上行传输时机,确定上行授权和对应的HARQ信息;
将所述上行授权以及对应的HARQ信息递交给HARQ实体。
可选地,所述HARQ实体按照预定义规则,进行上行跳过,并向高层上报一个上行跳过指示。
可选地,若获得了一个MAC PDU,指示对应的HARQ进程进行数据发送。
可选地,发送上行数据的过程中,还包括以下至少一项:
根据第二计数器、暂停功率提升计数器的指示、先听后传LBT失败指示、上行跳过指示和所选择的目标下行信号,对第三计数器加1;
根据第三计数器、功率提升步长参数,下行路径损耗估计,期望接收功率,确定数据 传输功率。
可选地,所述接收下行数据,包括:
根据一个MAC PDU在上行传输时机传输后,启动或重启配置授权响应定时器和/或启动或重启配置授权定时器,监听PDCCH;
所述PDCCH的调制参考信号天线端口和目标下行信号具有相同的准正交特性。
可选地,所述配置授权响应定时器运行期间,终端行为包括如下至少一项:
若收到确认数据传输正确的指示,则停止配置授权响应定时器和/或配置授权定时器;
若收到一个确认数据传输正确的指示,则重启T319定时器;
若收到一个确认数据传输正确的指示,则设置第一计数器值为0;
若收到一个用于调度上行重传的PDCCH,则停止配置授权响应定时器和/或重启配置授权定时器;
若收到一个用于调度上行新传的PDCCH,则停止配置授权响应定时器和/或配置授权定时器;
若收到一个用于调度下行传输的PDCCH且对应调度的MAC PDU被成功解码,则终端行为包括如下至少一项:
停止配置授权响应定时器和/或配置授权定时器;
解组装和/或解复用MAC PDU;
上报HARQ-ACK指示;
若收到一个用于调度下行传输的PDCCH且对应调度的MAC PDU没有被成功解码,上报HARQ-NACK指示。
可选地,所述配置授权响应定时器超时后,终端行为包括如下至少一项:
对第二计数器加1;
若第二计数器数值等于配置授权传输最大次数门限加1时,则终端行为包括如下至少一项:
向高层上报一个失败或回退指示;
终止基于配置资源的数据传输过程;
释放上行传输资源;
丢弃配置信息;
清除上行传输资源以及对应的HARQ信息。
图10为本申请实施例提供的网络侧设备的硬件结构示意图,如图10所示,该网络设备1000包括:天线1001、射频装置1002、基带装置1003。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收信息,将接收的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对要发送的信息进行处理,并发送给射频装置1002,射频装置1002对收到的信息进行处理后经过天线1001发送出去。
上述频带处理装置可以位于基带装置1003中,以上实施例中网络侧设备执行的方法可以在基带装置1003中实现,该基带装置1003包括处理器1004和存储器1005。
基带装置1003例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理器1004,与存储器1005连接,以调用存储器1005中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1003还可以包括网络接口1006,用于与射频装置1002交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1005上并可在处理器1004上运行的指令或程序,处理器1004调用存储器1005中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质可以是易失性的,也可以是非易失性的,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述数据传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (44)

  1. 一种数据传输方法,包括:
    终端获取数据传输的配置信息,所述配置信息携带下行信号和上行传输资源的关联配置信息;
    终端选择目标下行信号,根据所述下行信号和上行传输资源的关联配置信息,确定目标上行传输资源;
    终端确定所述目标上行传输资源对应的混合自动重传请求HARQ信息和/或计算下行路径损耗估计,根据所述HARQ信息和/或所述下行路径损耗估计,发送上行数据。
  2. 根据权利要求1所述的数据传输方法,其中,所述方法还包括,终端根据所述目标下行信号,接收下行数据。
  3. 根据权利要求1所述的数据传输方法,其中,所述下行信号和上行传输资源的关联配置信息包括如下至少一项:
    下行信号和上行传输时机的关联配置信息;
    下行信号的标识;
    上行信号的第一扰码标识信息;
    上行信号的第二扰码标识信息;
    上行信号的码分复用组信息;
    上行信号的天线端口信息。
  4. 根据权利要求1所述的数据传输方法,其中,所述配置信息还包括以下至少一项:
    上行传输时机在一个时刻上频分复用的个数;
    上行传输时机在时域上的资源分配信息;
    上行传输时机在频域上的资源分配信息;
    下行信号配置信息;
    配置授权响应定时器的时长信息;
    用于下行信号选择的测量门限;
    第一功率提升步长参数;
    第二功率提升步长参数;
    配置授权传输最大次数;
    期望接收功率;
    上行传输时机掩码信息;
    配置授权周期;
    配置授权定时器的时长信息;
    最大上行跳过次数;
    所述上行传输时机在时域上的资源分配信息包括以下至少一项:
    每一配置授权周期内的时隙的个数;
    每一时隙包含的上行传输时机的个数;
    每一配置授权周期内的上行传输时机的个数;
    所述上行传输时机在频域上的资源分配信息包括以下至少一项:
    带宽信息;
    上行传输时机在频域上起始位置信息。
  5. 根据权利要求1所述的数据传输方法,其中,所述确定所述目标上行传输资源对应的混合自动重传请求HARQ信息,包括
    根据以下至少一项确定所述目标上行传输资源对应的HARQ信息:
    可以使用的HARQ进程的总数量;
    可以使用的HARQ进程对应的编号;
    每个配置授权周期内可以使用的HARQ进程的总数量;
    每个配置授权周期内可以使用的HARQ进程对应的编号;
    每个配置授权周期内上行传输资源对应的HARQ进程对应的编号。
  6. 根据权利要求1所述的数据传输方法,其中,所述计算下行路径损耗估计,包括:
    根据目标下行信号,计算下行路径损耗估计。
  7. 根据权利要求1所述的数据传输方法,其中,所述方法还包括以下至少一项:
    若在一个配置授权周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则第一计数器加1,所述第一计数器用于统计数据传输跳过次数;
    若第一计数器的值大于或等于最大上行跳过次数,或者,若在N个连续的配置周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则终端行为包括如下至少一项:
    终止基于配置资源的数据传输过程;
    释放上行传输资源;
    丢弃配置信息。
  8. 根据权利要求1所述的数据传输方法,其中,所述方法还包括,在基于配置资源的数据传输过程被触发后,终端行为包括如下至少一项:
    无线资源控制RRC层指示媒体接入控制MAC层基于配置资源的数据传输过程被触发;
    MAC层被RRC层指示基于配置资源的数据传输过程被触发后,保存上行传输资源以及对应的HARQ信息,和/或初始化或重新初始化上行传输资源;
    若在一个配置周期内所有上行传输时机上都没有生成对应媒体接入控制协议数据单元MAC PDU,则MAC层向高层发送一个上行跳过指示;
    若高层收到上行跳过指示,则第一计数器加1;
    若第一计数器的值大于最大或等于上行跳过次数,则终端行为包括如下至少一项:
    终止基于配置资源的数据传输过程;
    RRC向MAC层指示结束基于配置资源的数据传输过程;
    清除上行传输资源和/或对应的HARQ信息;
    释放上行传输资源;
    丢弃配置信息。
  9. 根据权利要求1所述的数据传输方法,其中,所述方法还包括:
    根据网络侧设备配置的第二功率提升步长参数、高层提供的目标接入身份和/或目标接入类型和网络侧设备发送的第一指示信息,设置功率提升步长参数;所述功率提升步长参数包括第一功率提升步长参数和第二功率提升步长参数;所述第一指示信息用于指示终端使用第二功率提升步长参数。
  10. 根据权利要求1所述的数据传输方法,其中,所述方法还包括以下至少一项:
    根据用于下行信号选择的测量门限,选择目标下行信号;
    根据选择的目标下行信号和/或下行信号和上行信号的关联配置信息,产生上行信号;
    根据选择的目标下行信号,确定一个最近可用的上行传输时机;
    根据选择的上行传输时机,确定上行授权和对应的HARQ信息;
    将所述上行授权以及对应的HARQ信息递交给HARQ实体。
  11. 根据权利要求10所述的数据传输方法,其中,所述HARQ实体按照预定义规则,进行上行跳过,并向高层上报一个上行跳过指示。
  12. 根据权利要求11所述的数据传输方法,其中,若获得了一个MAC PDU,指示对应的HARQ进程进行数据发送。
  13. 根据权利要求1所述的数据传输方法,其中,发送上行数据的过程中,还包括以下至少一项:
    根据第二计数器、暂停功率提升计数器的指示、先听后传LBT失败指示、上行跳过指示和所选择的目标下行信号,对第三计数器加1;
    根据第三计数器、功率提升步长参数、下行路径损耗估计和期望接收功率,确定数据传输功率。
  14. 根据权利要求2所述的数据传输方法,其中,所述接收下行数据,包括:
    根据一个MAC PDU在上行传输时机传输后,启动或重启配置授权响应定时器和/或启动或重启配置授权定时器,监听物理下行控制信道PDCCH;
    所述PDCCH的调制参考信号天线端口和目标下行信号具有相同的准正交特性。
  15. 根据权利要求14所述的数据传输方法,其中,所述配置授权响应定时器运行期间,终端行为包括如下至少一项:
    若收到确认数据传输正确的指示,则停止配置授权响应定时器和/或配置授权定时器;
    若收到一个确认数据传输正确的指示,则重启T319定时器;
    若收到一个确认数据传输正确的指示,则设置第一计数器值为0;
    若收到一个用于调度上行重传的PDCCH,则停止配置授权响应定时器和/或重启配置授权定时器;
    若收到一个用于调度上行新传的PDCCH,则停止配置授权响应定时器和/或配置授权定时器;
    若收到一个用于调度下行传输的PDCCH且对应调度的MAC PDU被成功解码,则终端行为包括如下至少一项:
    停止配置授权响应定时器和/或配置授权定时器;
    解组装和/或解复用MAC PDU;
    上报混合自动重传请求确认HARQ-ACK指示;
    若收到一个用于调度下行传输的PDCCH且对应调度的MAC PDU没有被成功解码,上报混合自动重传请求否定确认HARQ-NACK指示。
  16. 根据权利要求14所述的数据传输方法,其中,所述配置授权响应定时器超时后,终端行为包括如下至少一项:
    对第二计数器加1;
    若第二计数器数值等于配置授权传输最大次数门限加1时,则终端行为包括如下至少一项:
    向高层上报一个失败或回退指示;
    终止基于配置资源的数据传输过程;
    释放上行传输资源;
    丢弃配置信息;
    清除上行传输资源以及对应的HARQ信息。
  17. 一种数据传输方法,包括:
    网络侧设备向终端发送数据传输的配置信息,所述配置信息携带参考信号和上行 传输资源的关联配置信息;
    网络侧设备接收终端根据混合自动重传请求HARQ信息和/或路径损耗参考信号发送上行数据;所述HARQ信息和/或路径损耗参考信号是终端根据所述配置信息确定的。
  18. 根据权利要求17所述的数据传输方法,其中,所述方法还包括:
    根据终端选择的目标下行信号向终端发送下行数据。
  19. 根据权利要求18所述的数据传输方法,其中,所述发送下行数据,包括:
    根据一个媒体接入控制协议数据单元MAC PDU在上行传输时机传输后,发送物理下行控制信道PDCCH;
    所述PDCCH的调制参考信号天线端口和目标下行信号具有相同的准正交特性。
  20. 一种数据传输装置,包括:
    获取模块,用于获取数据传输的配置信息,所述配置信息携带下行信号和上行传输资源的关联配置信息;
    确定模块,用于选择目标下行信号,根据所述下行信号和上行传输资源的关联配置信息,确定目标上行传输资源;
    第一发送模块,用于确定所述目标上行传输资源对应的混合自动重传请求HARQ信息和/或计算下行路径损耗估计,根据所述HARQ信息和/或所述下行路径损耗估计,发送上行数据。
  21. 根据权利要求20所述的数据传输装置,其中,还包括接收模块,用于根据所述目标下行信号,接收下行数据。
  22. 根据权利要求20所述的数据传输装置,其中,所述下行信号和上行传输资源的关联配置信息包括如下至少一项:
    下行信号和上行传输时机的关联配置信息;
    下行信号的标识;
    上行信号的第一扰码标识信息;
    上行信号的第二扰码标识信息;
    上行信号的码分复用组信息;
    上行信号的天线端口信息。
  23. 根据权利要求20所述的数据传输装置,其中,所述配置信息还包括以下至少一项:
    上行传输时机在一个时刻上频分复用的个数;
    上行传输时机在时域上的资源分配信息;
    上行传输时机在频域上的资源分配信息;
    下行信号配置信息;
    配置授权响应定时器的时长信息;
    用于下行信号选择的测量门限;
    第一功率提升步长参数;
    第二功率提升步长参数;
    配置授权传输最大次数;
    期望接收功率;
    上行传输时机掩码信息;
    配置授权周期;
    配置授权定时器的时长信息;
    最大上行跳过次数;
    所述上行传输时机在时域上的资源分配信息包括以下至少一项:
    每一配置授权周期内的时隙的个数;
    每一时隙包含的上行传输时机的个数;
    每一配置授权周期内的上行传输时机的个数;
    所述上行传输时机在频域上的资源分配信息包括以下至少一项:
    带宽信息;
    上行传输时机在频域上起始位置信息。
  24. 根据权利要求20所述的数据传输装置,其中,所述确定所述目标上行传输资源对应的混合自动重传请求HARQ信息,包括
    根据以下至少一项确定所述目标上行传输资源对应的HARQ信息:
    可以使用的HARQ进程的总数量;
    可以使用的HARQ进程对应的编号;
    每个配置授权周期内可以使用的HARQ进程的总数量;
    每个配置授权周期内可以使用的HARQ进程对应的编号;
    每个配置授权周期内上行传输资源对应的HARQ进程对应的编号。
  25. 根据权利要求20所述的数据传输装置,其中,所述计算下行路径损耗估计,包括:
    根据目标下行信号,计算下行路径损耗估计。
  26. 根据权利要求20所述的数据传输装置,其中,还包括以下至少一项:
    若在一个配置授权周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则第一计数器加1,所述第一计数器用于统计数据传输跳过次数;
    若第一计数器的值大于或等于最大上行跳过次数,或者,若在N个连续的配置周期内所有上行传输时机上基于配置资源的数据传输过程都没有被触发,则终端行为包括如下至少一项:
    终止基于配置资源的数据传输过程;
    释放上行传输资源;
    丢弃配置信息。
  27. 根据权利要求20所述的数据传输装置,其中,还包括,在基于配置资源的数据传输过程被触发后,终端行为包括如下至少一项:
    无线资源控制RRC层指示媒体接入控制MAC层基于配置资源的数据传输过程被触发;
    MAC层被RRC层指示基于配置资源的数据传输过程被触发后,保存上行传输资源以及对应的HARQ信息,和/或初始化或重新初始化上行传输资源;
    若在一个配置周期内所有上行传输时机上都没有生成对应媒体接入控制协议数据单元MAC PDU,则MAC层向高层发送一个上行跳过指示;
    若高层收到上行跳过指示,则第一计数器加1;
    若第一计数器的值大于最大或等于上行跳过次数,则终端行为包括如下至少一项:
    终止基于配置资源的数据传输过程;
    RRC向MAC层指示结束基于配置资源的数据传输过程;
    清除上行传输资源和/或对应的HARQ信息;
    释放上行传输资源;
    丢弃配置信息。
  28. 根据权利要求20所述的数据传输装置,其中,还包括:
    根据网络侧设备配置的第二功率提升步长参数、高层提供的目标接入身份和/或目 标接入类型和网络侧设备发送的第一指示信息,设置功率提升步长参数;所述功率提升步长参数包括第一功率提升步长参数和第二功率提升步长参数;所述第一指示信息用于指示终端使用第二功率提升步长参数。
  29. 根据权利要求20所述的数据传输装置,其中,还包括以下至少一项:
    根据用于下行信号选择的测量门限,选择目标下行信号;
    根据选择的目标下行信号和/或下行信号和上行信号的关联配置信息,产生上行信号;
    根据选择的目标下行信号,确定一个最近可用的上行传输时机;
    根据选择的上行传输时机,确定上行授权和对应的HARQ信息;
    将所述上行授权以及对应的HARQ信息递交给HARQ实体。
  30. 根据权利要求29所述的数据传输装置,其中,所述HARQ实体按照预定义规则,进行上行跳过,并向高层上报一个上行跳过指示。
  31. 根据权利要求30所述的数据传输装置,其中,若获得了一个MAC PDU,指示对应的HARQ进程进行数据发送。
  32. 根据权利要求20所述的数据传输装置,其中,发送上行数据的过程中,还包括以下至少一项:
    根据第二计数器、暂停功率提升计数器的指示、先听后传LBT失败指示、上行跳过指示和所选择的目标下行信号,对第三计数器加1;
    根据第三计数器、功率提升步长参数、下行路径损耗估计和期望接收功率,确定数据传输功率。
  33. 根据权利要求21所述的数据传输装置,其中,所述接收下行数据,包括:
    根据一个MAC PDU在上行传输时机传输后,启动或重启配置授权响应定时器和/或启动或重启配置授权定时器,监听物理下行控制信道PDCCH;
    所述PDCCH的调制参考信号天线端口和目标下行信号具有相同的准正交特性。
  34. 根据权利要求33所述的数据传输装置,其中,所述配置授权响应定时器运行期间,终端行为包括如下至少一项:
    若收到确认数据传输正确的指示,则停止配置授权响应定时器和/或配置授权定时器;
    若收到一个确认数据传输正确的指示,则重启T319定时器;
    若收到一个确认数据传输正确的指示,则设置第一计数器值为0;
    若收到一个用于调度上行重传的PDCCH,则停止配置授权响应定时器和/或重启配置授权定时器;
    若收到一个用于调度上行新传的PDCCH,则停止配置授权响应定时器和/或配置授权定时器;
    若收到一个用于调度下行传输的PDCCH且对应调度的MAC PDU被成功解码,则终端行为包括如下至少一项:
    停止配置授权响应定时器和/或配置授权定时器;
    解组装和/或解复用MAC PDU;
    上报混合自动重传请求确认HARQ-ACK指示;
    若收到一个用于调度下行传输的PDCCH且对应调度的MAC PDU没有被成功解码,上报混合自动重传请求否定确认HARQ-NACK指示。
  35. 根据权利要求33所述的数据传输装置,其中,所述配置授权响应定时器超时后,终端行为包括如下至少一项:
    对第二计数器加1;
    若第二计数器数值等于配置授权传输最大次数门限加1时,则终端行为包括如下至少一项:
    向高层上报一个失败或回退指示;
    终止基于配置资源的数据传输过程;
    释放上行传输资源;
    丢弃配置信息;
    清除上行传输资源以及对应的HARQ信息。
  36. 一种数据传输装置,包括:
    第二发送模块,用于向终端发送数据传输的配置信息,所述配置信息携带参考信号和上行传输资源的关联配置信息;
    接收模块,用于接收终端根据混合自动重传请求HARQ信息和/或路径损耗参考信号发送上行数据;所述HARQ信息和/或路径损耗参考信号是终端根据所述配置信息确定的。
  37. 根据权利要求36所述的数据传输装置,其中,还包括第三发送模块,用于根据终端选择的目标下行信号向终端发送下行数据。
  38. 根据权利要求37所述的数据传输装置,其中,所述发送下行数据,包括:
    根据一个媒体接入控制协议数据单元MAC PDU在上行传输时机传输后,发送物理下行控制信道PDCCH;
    所述PDCCH的调制参考信号天线端口和目标下行信号具有相同的准正交特性。
  39. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的数据传输方法的步骤。
  40. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求17至19任一项所述的数据传输方法的步骤。
  41. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至16任一项所述的数据传输方法,或者实现如权利要求17至19任一项所述的数据传输方法的步骤。
  42. 一种数据传输装置,其特征在于,包括所述装置被配置成用于执行如权利要求1至16任一项所述的数据传输方法,或者执行如权利要求17至19任一项所述的数据传输方法。
  43. 一种芯片,其特征在于,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至16任一项所述的数据传输方法,或者实现如权利要求17至19任一项所述的数据传输方法。
  44. 一种计算机程序产品,所述计算机程序产品存储在非瞬态的存储介质,所述计算机程序产品被所述处理器执行时实现如权利要求1至16任一项所述的数据传输方法,或者实现如权利要求17至19任一项所述的数据传输方法。
PCT/CN2021/124853 2020-10-22 2021-10-20 数据传输方法、装置、终端、网络侧设备及存储介质 WO2022083611A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023524538A JP2023546934A (ja) 2020-10-22 2021-10-20 データ伝送方法、装置、端末、ネットワーク側機器及び記憶媒体
KR1020237015226A KR20230079275A (ko) 2020-10-22 2021-10-20 데이터 전송 방법, 장치, 단말, 네트워크 측 기기 및 저장 매체
EP21882026.4A EP4236529A4 (en) 2020-10-22 2021-10-20 DATA TRANSMISSION METHOD AND APPARATUS, USER EQUIPMENT, NETWORK SIDE DEVICE AND STORAGE MEDIUM
US18/305,225 US20230262664A1 (en) 2020-10-22 2023-04-21 Data transmission method and apparatus, terminal, network-side device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011141197.2A CN114390694A (zh) 2020-10-22 2020-10-22 数据传输方法、装置、终端、网络侧设备及存储介质
CN202011141197.2 2020-10-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/305,225 Continuation US20230262664A1 (en) 2020-10-22 2023-04-21 Data transmission method and apparatus, terminal, network-side device, and storage medium

Publications (1)

Publication Number Publication Date
WO2022083611A1 true WO2022083611A1 (zh) 2022-04-28

Family

ID=81194900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124853 WO2022083611A1 (zh) 2020-10-22 2021-10-20 数据传输方法、装置、终端、网络侧设备及存储介质

Country Status (6)

Country Link
US (1) US20230262664A1 (zh)
EP (1) EP4236529A4 (zh)
JP (1) JP2023546934A (zh)
KR (1) KR20230079275A (zh)
CN (1) CN114390694A (zh)
WO (1) WO2022083611A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216970A1 (zh) * 2022-05-07 2023-11-16 维沃移动通信有限公司 信息上报方法、装置、通信设备及存储介质
WO2024032274A1 (zh) * 2022-08-10 2024-02-15 大唐移动通信设备有限公司 确定harq进程标识的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431910A (zh) * 2017-01-09 2019-11-08 华为技术有限公司 用于免授权上行链路传输的半静态配置的信令的系统和方法
US20200007294A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Reference signal and uplink control channel association design
US20200037347A1 (en) * 2018-07-30 2020-01-30 Qualcomm Incorporated Demodulation reference signal port hopping for grant-free physical uplink shared channel communication
CN111436136A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 免授权传输的方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050838A1 (en) * 2010-09-28 2012-04-19 Neocific, Inc. Methods and apparatus for flexible use of frequency bands
ES2694648T3 (es) * 2011-07-13 2018-12-26 Sun Patent Trust Aparato de estación base y procedimiento de transmisión
WO2015024215A1 (en) * 2013-08-21 2015-02-26 Qualcomm Incorporated Pucch resource mapping an harq-ack feedback
CN108633042B (zh) * 2017-03-24 2021-03-30 华为技术有限公司 一种通信方法、终端及网络设备
EP3606182B1 (en) * 2017-04-12 2022-02-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink power control method, device and system
KR102450969B1 (ko) * 2018-08-09 2022-10-05 삼성전자 주식회사 무선 통신 시스템에서 경로감쇄 결정 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431910A (zh) * 2017-01-09 2019-11-08 华为技术有限公司 用于免授权上行链路传输的半静态配置的信令的系统和方法
US20200007294A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Reference signal and uplink control channel association design
US20200037347A1 (en) * 2018-07-30 2020-01-30 Qualcomm Incorporated Demodulation reference signal port hopping for grant-free physical uplink shared channel communication
CN111436136A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 免授权传输的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4236529A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216970A1 (zh) * 2022-05-07 2023-11-16 维沃移动通信有限公司 信息上报方法、装置、通信设备及存储介质
WO2024032274A1 (zh) * 2022-08-10 2024-02-15 大唐移动通信设备有限公司 确定harq进程标识的方法及装置

Also Published As

Publication number Publication date
EP4236529A4 (en) 2024-04-03
US20230262664A1 (en) 2023-08-17
JP2023546934A (ja) 2023-11-08
EP4236529A1 (en) 2023-08-30
KR20230079275A (ko) 2023-06-05
CN114390694A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
US9107190B2 (en) Discontinuous reception for multi-component carrier system
CN111699721A (zh) 用于非许可无线电频带场景的临时浮动下行链路定时方法
WO2022083611A1 (zh) 数据传输方法、装置、终端、网络侧设备及存储介质
WO2022042689A1 (zh) 传输方法、装置、通信设备及终端
WO2022152275A1 (zh) Msg3传输方法、装置、设备及存储介质
WO2023046196A1 (zh) 辅助信息上报方法、业务配置方法、终端及网络侧设备
WO2018196746A1 (zh) 下行控制信道检测接收方法、终端和网络侧设备
CN109996334B (zh) 信息指示方法、终端设备及网络设备
JP2024516949A (ja) サイドリンクフィードバックリソースの決定方法、端末及びネットワーク側機器
WO2022001815A1 (zh) 信道监听、传输方法、终端及网络侧设备
WO2022002259A1 (zh) 旁链路传输方法、传输装置和终端
WO2022002050A1 (zh) 传输处理方法、装置及终端
CN113972967B (zh) 辅助信息发送方法、接收方法、装置、终端及网络侧设备
CN108243503B (zh) 在未授权频谱中的无线电资源调度方法及使用其的基站
WO2023011588A1 (zh) Pdcch监测方法、相关设备及可读存储介质
WO2023011452A1 (zh) 旁链路反馈信息的信道接入方法、处理方法及相关设备
WO2022012592A1 (zh) 反馈信息传输方法、装置、终端及网络侧设备
WO2022143742A1 (zh) 数据传输方法、装置及通信设备
WO2022143654A1 (zh) Pdcch监测能力的处理方法、终端及网络侧设备
WO2022152254A1 (zh) 上行传输的方法、终端及网络侧设备
WO2022028521A1 (zh) Sps pdsch的类型指示方法、装置、终端及网络侧设备
WO2022012433A1 (zh) Harq-ack的反馈方法和设备
WO2022007715A1 (zh) 信道监听、传输方法、装置、终端及网络侧设备
WO2022002248A1 (zh) 旁链路传输方法、传输装置和通信设备
WO2022207000A1 (zh) 物理下行控制信道重复传输方法、装置及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882026

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524538

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237015226

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021882026

Country of ref document: EP

Effective date: 20230522