WO2023207917A1 - 一种自动水刀系统 - Google Patents

一种自动水刀系统 Download PDF

Info

Publication number
WO2023207917A1
WO2023207917A1 PCT/CN2023/090360 CN2023090360W WO2023207917A1 WO 2023207917 A1 WO2023207917 A1 WO 2023207917A1 CN 2023090360 W CN2023090360 W CN 2023090360W WO 2023207917 A1 WO2023207917 A1 WO 2023207917A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
motion
trajectory
jet
water jet
Prior art date
Application number
PCT/CN2023/090360
Other languages
English (en)
French (fr)
Inventor
陈文波
赵静
史轶伦
史策
Original Assignee
北京智愈医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=81628058&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2023207917(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 北京智愈医疗科技有限公司 filed Critical 北京智愈医疗科技有限公司
Publication of WO2023207917A1 publication Critical patent/WO2023207917A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • A61B2034/104Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring

Definitions

  • the present invention relates to the field of medical electronic technology, and in particular to an automatic water jet implementation method and equipment.
  • the motion adjustment of the existing automatic waterjet planning method is relatively rough, and no specific achievable method is provided to establish a precise correspondence between the sagittal and cross-sectional images obtained by a double-sided ultrasound probe or other methods.
  • the ultrasonic image information is segmented (for example, three to four segments) for sagittal and cross-sectional position matching and parameter setting. Each segment is fitted through interpolation simulation, so the accuracy requirements for waterjet motion control are low.
  • the existing automatic water jet system control method there is no unified coordinated control of the mutual influence and dependence of high-pressure jet flow, suction flow and mechanical movement in all directions. The asynchronous control of each movement will lead to The jet position, depth of action, angle and pressure in the motion trajectory planning cannot be well matched due to motion errors during actual execution, resulting in the problem of large errors in the water jet motion trajectory.
  • the invention provides an automatic water jet implementation method and equipment, which solves the existing problems of rough water jet movement boundaries and inability to control the movement of each dimension, resulting in water jet movement trajectory errors.
  • the present invention is implemented as follows:
  • the present invention provides an automatic waterjet implementation system, which includes,
  • Imaging module used to generate navigation images
  • the image planning module is used to generate a motion control position trajectory according to the pre-planned continuous boundary position trajectory on the navigation image; convert the motion control position trajectory into the water jet coordinate system and then calculate and send the water jet jet action Movement position trajectory parameters of each axis corresponding to the point;
  • the motion control module is used to receive the motion position trajectory parameters of each axis, use a multi-axis linkage control method to generate and send the motion position trajectory parameters of the linear motion axis and the rotation motion axis to the water jet head, and send them to the pipeline and hydraulic power module. Send the motion position control parameters of the jet flow axis and the suction flow axis; it is also used to collect the motion position trajectory parameters of each axis of the water jet head for closed-loop control of the motion trajectory;
  • the pipeline and hydraulic power module are used to transfer liquid to the water jet head according to the movement position control parameters of the jet flow axis sent by the motion control module and to perform suction movement according to the movement position control parameters of the suction flow axis;
  • the water jet head is used to perform corresponding movements according to the motion position trajectory parameters of the linear motion axis and the rotation motion axis sent by the motion control module, and the motion position control parameters of the jet flow axis;
  • any one-axis error among the waterjet's jet flow axis, suction flow axis, linear motion axis, and rotational motion axis is related to the errors of the other three axes.
  • the motion control position trajectory includes the effective length of the jet, the position of the long axis of the jet and the angle between the cross-section;
  • the motion position trajectory parameters of each axis include the jet length of the action point in the waterjet coordinate system, and the angle between the cross-section of the action point, Also included is the long axis position of the point of action jet and/or the long axis velocity of the point of action jet.
  • trajectory planning position loop closed-loop control is added to the multi-axis linkage control method.
  • the error value of the trajectory planning position loop is the difference between the boundary position on the continuous boundary position trajectory at the current measurement time and the actual measured action point trajectory position. Difference.
  • the errors of the jet flow axis, suction flow axis, linear motion axis and rotational motion axis of the water jet can be expressed as Formulas 11 to 14.
  • the method further includes: using the key point image positions on the pre-designed navigation image as accurate information when fitting the continuous boundary position trajectory.
  • the method further includes: segmentally fitting the continuous boundary position trajectory to generate each segment of the motion control position trajectory, and combining the motion control position trajectories into the motion control position trajectory.
  • the continuous boundary position trajectory is divided into several motion voxels, and each motion voxel is interpolated according to the motion trajectory when actually operating the water jet to generate the motion control position trajectory; each motion voxel contains a jet Effective length, jet long axis position and cross-sectional angle.
  • the incremental control method is used to convert the motion control position trajectory into a spatial position trajectory in the waterjet coordinate system through coordinate transformation, and then the motion position trajectory parameters of each axis are calculated.
  • the navigation image is a bi-plane ultrasound image or a three-dimensional ultrasound image or a three-dimensional image.
  • the motion position trajectory parameters of the jet flow axis, linear motion axis and rotation motion axis of the water jet are collected in real time, and the corresponding coordinates are subtracted from the position of the continuous boundary position trajectory in the water jet coordinate system to obtain the trajectory planning.
  • the error value of the position loop is the error value of the position loop.
  • the movement position trajectory parameters of the jet flow axis of the water jet are collected with a lag, combined with the movement position trajectory parameters of the water jet's rotational motion axis and linear motion axis collected in real time, and the time lag system adjustment method is used to perform trajectory planning position loop closed-loop control .
  • step-like line segments are used to perform segmental fitting on the continuous boundary position trajectory to obtain the motion control position trajectory of each segment.
  • a straight line segment interpolation fitting method is used to perform segment fitting on the continuous boundary position trajectory to obtain the motion control position trajectory of each segment.
  • the pre-collected cross-sectional image at the same position and the cross-sectional navigation image collected at the current moment are subtracted and filtered to obtain a high-frequency image signal; After the above-mentioned high-frequency graphic signals are enhanced and the boundaries are removed, the motion position trajectory parameters of the jet flow axis of the water jet are measured.
  • the time-delay system adjustment method includes Smith predictive control method and/or fuzzy control method.
  • the present invention adopts an innovative design of unified control of multiple motions, which can optimize the planning process of the automatic water jet, improve the water jet control accuracy, increase the effective volume, reduce the water jet movement error, and improve the water jet. Knife effectiveness and safety.
  • Figure 1(a) is a schematic diagram of the device structure of the system embodiment of the present application.
  • Figure 1(b) is a schematic diagram of a segmented fitting method according to the embodiment of the system of the present application.
  • Figure 1(c) is a schematic diagram of another segmented fitting method according to the embodiment of the system of the present application.
  • Figure 1(d) is a schematic diagram of a key point image according to an embodiment of the system of the present application.
  • Figure 1(e) is a schematic diagram of the waterjet coordinate system of the system embodiment of the present application.
  • Figure 1(f) is a schematic diagram of a bi-plane ultrasound image in the waterjet coordinate system according to the embodiment of the system of the present application;
  • Figure 1(g) is a schematic diagram of bi-plane ultrasound image combination according to the embodiment of the system of the present application.
  • Figure 1(h) is a schematic diagram of the end face of the water jet cavity according to the embodiment of the system of the present application.
  • Figure 2(a) is a method flow chart of an embodiment of the method of the present application.
  • Figure 2(b) is a schematic diagram of the Z-shaped resection trajectory according to the method embodiment of the present application.
  • Figure 2(c) is a schematic diagram of PID linkage control according to the method embodiment of the present application.
  • Figure 2(d) is a schematic diagram of PID time-delay control according to the method embodiment of the present application.
  • the present invention proposes a navigation image motion control position trajectory generation method, which plans the cross-sectional position and cross-sectional angle in the navigation image and the jet effective action distance into the motion control position trajectory. And establish the positional relationship between the motion control position trajectory and the water jet motion coordinate system, so that the deviation between the actual position and the planned position of the water jet can be accurately obtained during the movement of the water jet.
  • the present invention proposes a multi-dimensional motion joint control method to realize automatic linkage control of the jet flow, suction flow, linear motion trajectory and rotational motion trajectory of the water jet, which can reduce operating errors.
  • Figure 1 (a) is a schematic diagram of the device structure of the system embodiment of the present application.
  • Figure 1 (b) is a schematic diagram of a segmented fitting method of the system embodiment of the present application.
  • Figure 1 (c) is another example of the system embodiment of the present application.
  • Figure 1(d) is a schematic diagram of the key point image of the system embodiment of the application.
  • Figure 1(e) is a schematic diagram of the waterjet coordinate system of the system embodiment of the application.
  • Figure 1(f) is A schematic diagram of a bi-plane ultrasonic image in the waterjet coordinate system of an embodiment of the system of the present application.
  • Figure 1(g) is a schematic diagram of the combination of bi-plane ultrasonic images of an embodiment of the system of the present application.
  • Figure 1(h) is a water jet of an embodiment of the system of the present application. Schematic diagram of cavity end face.
  • an automatic medical water jet includes: an imaging module 1, an image planning module 2, a motion control module 3, a water jet head 4, pipelines and a hydraulic power module 5.
  • the imaging module is used to generate navigation images.
  • the image planning module is used to generate a motion control position trajectory according to the continuous boundary position trajectory pre-planned on the navigation image; establish a water jet coordinate system in real time according to the position of the water jet, and convert the motion control position trajectory to the desired After describing the waterjet coordinate system, the motion position trajectory parameters of each axis are calculated, and the motion position trajectory parameters of each axis are sent to the motion control module.
  • the motion position trajectory parameters of each axis include motion position parameters of a linear motion axis, a rotary motion axis, a jet flow axis, and a suction flow axis.
  • the motion position parameter of the linear motion axis is the long axis position of the action point jet in the waterjet coordinate system and or the long axis velocity of the action point jet
  • the motion position parameter of the rotational motion axis is the cross-sectional angle of the action point in the waterjet coordinate system
  • the motion position parameter of the jet flow axis is the jet length of the action point of the waterjet coordinate system.
  • the jet length through the action point can be used to describe the waterjet jet flow rate, and the suction flow rate is related to the jet flow rate.
  • the suction flow rate is equal to the jet flow rate, or the suction flow rate is greater than the jet flow rate at one time, or greater than the jet flow rate at another time.
  • Suction flow rate, etc. that is to say, the suction flow rate can be obtained through the jet flow rate.
  • the corresponding suction flow axis motion control parameters can be obtained through the suction flow rate.
  • the motion control module is used to receive the movement position trajectory parameters of each axis of the water jet jet action point, use the multi-axis linkage PID control method to generate and send linear motion axis and rotation motion to the water jet head motion control element.
  • the motion position control parameters of the axis are sent to the pipeline and the hydraulic power module to the motion position control parameters of the jet flow axis and the suction flow axis; it is also used to collect the motion position trajectory parameters of each axis of the water jet head for closed-loop motion trajectory control.
  • the movement position trajectory parameters of each axis represent the position of the water jet head in the water jet coordinate system
  • the movement position control parameters of each axis are used to control the movement of the water jet head or pipeline and hydraulic power module.
  • the motion control module can control the motor or other mechanisms through the movement of the water jet head to make the water jet move according to the motion position trajectory parameters of each axis.
  • the motion control module can control the pipeline and hydraulic power through the hydraulic pump or other mechanisms of the pipeline and hydraulic power module. The module moves according to the motion position trajectory parameters of each axis.
  • the movement position control parameters of the jet flow axis and the suction flow axis are control parameters converted from the movement position trajectory parameters of the jet flow axis, where the suction flow rate and the jet flow rate can be equal.
  • the motion position control parameters of the linear motion axis are the same as the motion position trajectory parameters, which are the long axis position of the action point jet and/or the long axis velocity of the action point jet in the waterjet coordinate system; the rotation motion axis
  • the motion position control parameters are the same as the motion position trajectory parameters, which are the cross-sectional angles of the action point in the waterjet coordinate system.
  • the movement position trajectory parameter of the jet flow axis is the jet length at the point of action, which needs to be converted into the jet flow movement control parameter (the movement position control parameter of the jet flow axis).
  • the conversion relationship is determined by the water jet head and pipeline and the pipeline of the hydraulic power module. Mechanical design decisions can be made through experimentation.
  • the motion control parameters of the suction flow axis are obtained by the motion control module based on the control parameters of the jet flow axis, which can keep the suction flow and jet flow equal.
  • the pipeline and hydraulic power module are used to transfer liquid to the water jet head according to the movement position control parameters of the jet flow axis sent by the motion control module and to perform suction motion according to the movement position control parameters of the suction flow axis.
  • the waterjet head is used to perform corresponding movements according to the motion position trajectory parameters of the linear motion axis and the rotation motion axis sent by the motion control module, and the motion position control parameters of the jet flow axis.
  • the pipeline and hydraulic power module can be used to suck waste liquid, and the water jet head can be used to remove objects.
  • any one-axis error among the jet flow axis, suction flow axis, linear motion axis and rotational motion axis of the water jet is related to the other three-axis errors; so
  • the motion position parameters of each axis are used to indicate the corresponding actions of the waterjet head, pipeline and hydraulic power module on the jet flow axis, suction flow axis, linear motion axis and rotary motion axis.
  • the motion control module is also used to control the probe movement of the imaging module, control the pipeline and hydraulic power module to deliver high-pressure physiological saline to the waterjet module and discharge waste according to the suction flow rate. liquid.
  • a micro laser range finder or hydroacoustic device that moves synchronously with the nozzle can be installed in the water jet head module to obtain the long axis position of the water jet's action point jet in real time.
  • Other rangefinders synchronized with the nozzle can also be installed in the waterjet head, and there are no special restrictions here.
  • the imaging module includes: an electric stepper for driving the bi-plane ultrasound probe to move to acquire ultrasound images at each position.
  • the imaging module further includes a bi-plane ultrasonic probe and/or a three-dimensional ultrasonic probe.
  • the bi-plane probe is used to generate a bi-plane ultrasonic image
  • the three-dimensional ultrasonic probe is used to generate a three-dimensional ultrasonic image. It should be noted that the biplane probe is driven by an electric stepper to move to acquire multiple end-face voxel images with position index information, and a three-dimensional ultrasound image can also be generated through three-dimensional image generation software.
  • the imaging module also includes: a nuclear magnetic resonance image module, used to obtain three-dimensional images.
  • a nuclear magnetic resonance image module used to obtain three-dimensional images.
  • navigation three-dimensional images can be obtained from nuclear magnetic resonance and other equipment.
  • modules are divided according to module functions. In terms of specific implementation, they can be configured and implemented as needed in terms of physical location, hardware and software/firmware architecture.
  • the continuous boundary position trajectory can be pre-planned on a three-dimensional ultrasound image or a bi-plane ultrasound image, and the continuous boundary position trajectory is a resection trajectory planned in advance as needed.
  • the continuous boundary position trajectory is planned under a basic coordinate system, which is an artificially defined stationary coordinate system.
  • the first position when the ultrasonic probe is used can be One point is defined as the origin of the coordinates
  • the forward direction of the ultrasonic probe is defined as the positive direction of the z-axis
  • the corresponding cross-sectional graphic of the ultrasonic probe is the xy plane. According to the right-hand theorem, the positive directions of the x-axis and y-axis can be uniquely determined.
  • the basic coordinate system can also be defined in other ways, and there is no special limitation here.
  • a projection of a pre-planned continuous position trajectory on the yoz plane is provided.
  • the planned trajectory that conforms to manual habits is a continuous curve, as shown in Figure 1(b).
  • the shaded area is the target resection area, and the lower curve is the manually planned resection trajectory.
  • the continuous boundary position trajectory is composed of several moving voxels, and each of the moving voxels includes the jet effective length r, the jet long axis position z and the cross-sectional angle ⁇ .
  • the motion control position trajectory is a trajectory generated by fitting the continuous boundary position trajectory, and is also a trajectory in the basic coordinate system. Considering that during the actual resection process, the user will have operational errors, the continuous boundary position trajectory needs to be fitted.
  • the image planning module is also used to interpolate each of the moving voxels according to the movement trajectory when the water jet is actually operated, and generate the motion control position trajectory.
  • a fusion bi-plane ultrasound image key point information minimization error interpolation trajectory fitting method can be used, that is, pre-planned key point images are used as accurate information.
  • ⁇ k1 , ⁇ k2 , ⁇ k3 , and ⁇ k4 are the cross-sectional angles of the first to fourth key point images.
  • the angle of each cross-section corresponds to the yz plane position of the key point image.
  • the overall fitting or segmented fitting method can be used to perform curve fitting on the continuous position trajectory.
  • polynomial or least squares approximation and other fitting methods can be used to fit the continuous position trajectory.
  • Other methods can also be used.
  • the method realizes curve fitting of continuous position trajectories, and there are no special limitations here.
  • motion control position trajectories of each segment are generated, and the motion control position trajectory is obtained by combining the motion control trajectories of each segment segment by segment.
  • the pre-planned continuous position trajectory can be fitted piecewise by using stepped line segments to obtain the motion control position trajectories of each segment.
  • the motor can alternately perform curve fitting by moving one axis of the motor in one step and calculating the error of the other axis of the motor at the same time.
  • the continuous position trajectory can also be fitted segmentally using a straight line segment interpolation fitting method to obtain the motion control position trajectory of each segment.
  • the control can be realized by using the synchronous movement of two-axis brushless DC motors to generate a straight line segment with any slope. Compared with the stepped fitting method, it can effectively reduce the fitting error and is smooth and supple at the same time. Motor movement trajectory.
  • the motion position trajectory parameters of each axis are used to indicate the movement of the motor on the water jet head and pipeline and the hydraulic power module on the jet flow axis, suction flow axis, linear motion axis and rotational motion axis. Take appropriate action.
  • the motion position trajectory parameters of each axis include the jet length r 1 of the action point in the waterjet coordinate system, the cross-sectional angle ⁇ 1 of the action point, and also include the long axis position z 1 of the action point jet and or the long axis velocity v z1 of the action point jet. .
  • the water jet coordinate system is a motion coordinate system. According to the real-time transformation of the water jet position, the water jet coordinate system is established with the action point of the water jet head and the resection position as the origin.
  • the water jet coordinate system at any time is the XYZ coordinate system in the figure.
  • the water jet moves in the positive direction of the Z axis of the long axis of the blade.
  • the jet moves in the XY plane perpendicular to the long axis of the blade according to the given
  • the reciprocating rotation is performed within the range of the cross-sectional angle of a certain action point ( ⁇ 1 in the figure), and the effective distance of the jet on the tissue is r 1 in the figure.
  • the speed of movement in the Z direction, the size and direction of the cross-sectional angle of the point of action, and the size of the jet action distance all change according to the trajectory planning.
  • Figure 1(f) is a schematic diagram of two array images of a double-sided ultrasonic probe. It can be seen from the figure that in the water jet coordinate system, the direction of linear motion of the water jet head is the +Z direction. According to the placement of the ultrasonic probe, The plane XY perpendicular to the +Z direction is the transverse plane under the water jet coordinate system, and the YZ water jet coordinate system is the sagittal plane.
  • Figure 1(g) is a schematic diagram of the combination of the sagittal plane and the cross-sectional position in trajectory planning.
  • the sagittal plane and the transverse plane are two mutually perpendicular planes. According to the sagittal plane and the transverse plane, The overlapping part can obtain the cross-sectional position and cross-sectional angle.
  • Figure 1(h) provides a three-dimensional view of the end face of the cavity after water jet action.
  • the linear motion of the cutter head in the +Z direction, the reciprocating rotational motion in the XY plane, the action motion of the jet on the object, and the waste liquid suction motion constitute four interrelated simultaneous motions. Only by unified and coordinated control of the four movements can the water jet accurately cut off objects along the planned path to form irregularly shaped cavities.
  • the point of action of the water jet resection on the target can be used as the origin of the tool coordinate system of the execution tool.
  • the origin of the tool coordinate system can be drawn through its motion trajectory line during the movement.
  • the required cavity end face is shown in Figure 1(h).
  • the two sides of the cavity are determined by the angle boundary between the cross-section angle of the waterjet coordinate system of the jet in the XY plane, and the width of the jet beam is used as the precession interval of the drawing action. That is to say, the jet resection action is converted into a trajectory control problem in which the origin of the tool coordinate system is used to draw the end face (and side face) of the cavity through the motion trajectory.
  • the trajectory planning position loop closed-loop control is added to the multi-axis linkage PID control method adopted by the motion control module.
  • the error value of the trajectory planning position loop is the boundary of the current measurement time on the continuous boundary position trajectory. The difference between the position and the actual measured trajectory position of the action point.
  • the motion control module can collect the movement position trajectory parameters of the water jet's jet flow axis in real time, and can also collect the movement position trajectory parameters of the water jet's jet flow axis with a lag.
  • the motion control module is used to collect the motion position trajectory parameters of the water jet's jet flow axis, linear motion axis, and rotational motion axis in real time, and transform the continuous boundary position trajectory into the water jet coordinate system through coordinate transformation, The corresponding coordinates are subtracted to obtain the error value of the trajectory planning position loop.
  • the motion control module is used to collect the position parameters of the jet flow axis of the water jet through cross-sectional image lag, and combines the real-time collected position parameters of the rotary motion axis and linear motion axis of the water jet to convert all the parameters through coordinate transformation.
  • the continuous boundary position trajectory is transformed into the waterjet coordinate system, and the time-delay system PID adjustment method is used for trajectory planning position loop closed-loop control.
  • the position parameter of the jet flow axis of the water jet refers to the jet length of the point of action in the water jet coordinate system
  • the position parameter of the linear motion axis of the water jet is the long axis position and or point of action of the point jet in the water jet coordinate system.
  • the velocity of the long axis of the jet and the position parameter of the axis of rotation of the water jet are the angles between the cross-sections of the action point under the coordinates of the water jet.
  • the motion control module is used to subtract and filter the cross-sectional image of the same jet long axis position obtained in the planning stage and the cross-sectional navigation image at the current moment to obtain the high-frequency Image signal; after enhancing the high-frequency graphic signal and cutting off the boundary, the position parameters of the jet flow axis of the water jet are measured to obtain.
  • Embodiments of the present invention provide a high-precision medical automatic water jet and a water jet head that can be used to inject high-pressure jets.
  • the pipeline and hydraulic power module include high-pressure pipelines that transmit high-pressure saline water from the water jet and suction pipelines that discharge waste liquid to maintain pressure balance in the body.
  • the motion control module includes a cutter head motion control unit, a high-pressure jet pressure control unit, a waste liquid suction control unit and a control host; the cutter head motion control unit is used to send a linear motion axis and a linear motion axis to the water jet cutter head position control element.
  • the position parameters of the rotary motion axis; the high-pressure jet pressure control unit is used to send the position parameters of the jet flow axis to the jet flow control element of the water jet head; the waste liquid suction control unit is used to send the position parameters of the jet flow axis to the pipeline and hydraulic power
  • the module sends the position parameters of the suction flow axis; the control host is used to receive the motion position trajectory parameters of each axis, convert them into motion position control parameters, and communicate with the cutter head motion control unit, high-pressure jet pressure control unit and Waste aspiration control unit communication.
  • the imaging module includes an ultrasound probe and an electric stepper, which is used to insert into the cavity to be inspected and obtain ultrasound images;
  • the image planning module includes an image planning host, which plans the waterjet action process based on the navigation image and sends the plan to the control host parameter.
  • the high-precision automatic waterjet involved in the present invention carries a bi-plane ultrasonic probe or a three-dimensional ultrasonic probe through an electric stepper with precise position feedback.
  • the continuous cross-sectional images obtained when the probe moves with the stepper are stored with the position in the direction of movement as an index. .
  • the linear array images of the sagittal plane and the transverse plane are accurately matched, avoiding planning errors caused by manual acquisition of limited ultrasound images.
  • the waterjet system in the embodiment of the present invention uses high-precision trajectory planning such as an electric stepper to drive a bi-plane ultrasonic probe to automatically move to scan the target and obtain continuous images of each cross-section of the target that accurately correspond to each position in the sagittal plane, or based on The three-dimensional image automatically generates the target envelope and generates resection parameters.
  • the accuracy requirements for motion execution are correspondingly increased. Therefore, the present invention provides a method for unified motion control including high-pressure jet flow, suction flow and mechanical motion in all directions, coordinately eliminating errors caused by the mutual influence of each motion axis, and based on actual measurements
  • the result serves as motion feedback to form a closed-loop control to improve control accuracy. This enables high-precision automatic waterjet work to perform fine resection along the actual boundary of the target, achieving ideal results.
  • Figure 2(a) is a method flow chart of the method embodiment of the present application
  • Figure 2(b) is a schematic diagram of the Z-shaped resection trajectory of the method embodiment of the present application
  • Figure 2(c) is the PID linkage control of the method embodiment of the present application.
  • Figure 2(d) is a schematic diagram of PID time-delay control according to the method embodiment of the present application.
  • Embodiments of the invention can be used to realize linkage control of the four axes of the water jet: the jet flow axis, the suction flow axis, the linear motion axis, and the rotary motion axis.
  • An automatic control method for the water jet specifically includes the following steps 101 to 103:
  • Step 101 Fit the pre-planned continuous boundary position trajectory on the navigation image to generate a motion control position trajectory.
  • the navigation image can be obtained through an ultrasound probe, and the navigation image includes a two-dimensional ultrasound image or a three-dimensional ultrasound image.
  • the navigation image can also be obtained through a nuclear magnetic equipment.
  • the navigation image also includes a three-dimensional image. The invention does not limit the specific form of the navigation image.
  • step 101 the motion control position trajectory is generated by fitting the continuous boundary position trajectory.
  • the pre-planned key point image information can be used as accurate information during fitting, which specifically includes the following steps 101A to 101C:
  • Step 101A Calculate the sagittal plane trajectory for the continuous boundary position trajectory.
  • a fast multi-axis synchronous minimum error interpolation trajectory fitting method can be used to calculate the sagittal plane position. This method can minimize the trajectory curve error planned by the doctor and smooth and compliant motor movement process. Improve computational efficiency.
  • step 101A the sagittal plane trajectory obtained through piecewise fitting can be expressed as:
  • y0_start ⁇ yp_start respectively represent the y-axis starting coordinates of the motion control position trajectory of the 0th segment to the pth segment obtained by segmental fitting
  • y0_end ⁇ yp_end respectively represent the 0th segment to pth segment obtained by segmental fitting.
  • z0_start ⁇ zp_start respectively represent the z-axis starting coordinates of the motion control position trajectory of the 0th segment to the pth segment obtained through segmented fitting
  • z0_end ⁇ zp_end respectively represent the motion of the 0th segment to the pth segment obtained through segmented fitting. Controls the z-axis end coordinate of the position trajectory.
  • p+1 is the total number of segments of segmented fitting
  • p is the termination segment number of segmented fitting.
  • Step 101B Obtain the motion control position trajectory according to the sagittal plane trajectory and pre-planned key point image interpolation calculation.
  • step 101B considering that the trajectory of each planned cross-section is accurate information confirmed by the doctor, and the trajectory between the two planned cross-sections is generated by a fitting algorithm such as interpolation, the key point image shall prevail.
  • step 101A When any of the cross-sections occurs within one step of the sagittal trajectory generated in step 101A, the step is disassembled and the surrounding affected interpolation line segments are recalculated.
  • [(y0_start, z0_start), (y0_end, z0_end), ( ⁇ 0_end, ⁇ 0_end)] represents a motion voxel
  • S img is the motion control position trajectory
  • ⁇ 0_start ⁇ ⁇ q_start are obtained by piecewise fitting
  • the starting value of the cross-sectional angle of the motion control position trajectory of the 0th segment to the qth segment, ⁇ 0_end to ⁇ q_end are the end values of the cross-sectional angle of the motion control position trajectory of the 0th segment to the qth segment obtained by segment fitting.
  • q is the segment termination sequence number after interpolation.
  • Step 101C Interpolate the moving voxels according to the movement trajectory when the water jet is actually operated.
  • the distance between adjacent two sides of the Z-shaped trajectory is obtained based on the experimental resection effect, which is defined as the pitch c of the Z-shaped trajectory.
  • each motion voxel can be subdivided using the same pitch or different pitches.
  • the trajectory generated by fitting the subdivided trajectory is used as the motion control position trajectory.
  • step 101C is an optional step.
  • Step 102 Establish a waterjet coordinate system in real time according to the position parameters of the waterjet, convert the motion control position trajectory to the waterjet coordinate system, and then calculate the motion position trajectory parameters of each axis.
  • the motion position trajectory parameters of each axis include the length of the jet of action point in the waterjet coordinate system, the cross-sectional angle of the point of action, and also include the long axis position of the jet of action point and/or the long axis velocity of the jet of action point.
  • the major axis velocity of the point of action jet is the time derivative of the position of the long axis of the point of action jet.
  • step 102 the parameters obtained from the trajectory planning are sent to the motion control module according to the time interval ⁇ t, including the cross-sectional angle of the action point in the water jet coordinate system of the XY plane, so that the angle vertically downward along the Y axis is 0, and the water jet In the tool coordinate system, the two sides of the angle between the action point and the cross-section constitute the first and second angles ⁇ a and ⁇ b respectively.
  • the direction of rotation can be defined by yourself, such as clockwise or counterclockwise when viewed from the end of the instrument toward the target direction.
  • the Z-direction linear motion feed speed at any time that is, the long axis velocity of the water jet at the point of action, and the length of the water jet at the point of action at any time.
  • the above parameters determine the required cavity geometry based on the target boundary.
  • the system uses three-dimensional high-precision planning to make the waterjet action end surface of the cavity fit as closely as possible to the organ boundary.
  • the time interval ⁇ t is the time required for the origin of the tool coordinate system to rotate ⁇ 1 in one direction on the XY plane, and ⁇ 1 is the cross-sectional angle of any action point in the water jet coordinate system.
  • ⁇ t can be a fixed value. In this case, the time required to complete rotation in one direction is equal for different angle sizes.
  • the average angular velocity corresponding to each point on the rotation trajectory is proportional to the angle size.
  • ⁇ t can also be a variable variable. When tissue characteristics require the jet to act on moving voxel points on the trajectory for a specific length of time, the average linear velocity of each point on the trajectory should meet specific requirements.
  • ⁇ t ⁇ 1 ⁇ r 1 /v r
  • r 1 also represents the distance between the jet resection action point and the waterjet nozzle, that is, the resection jet length
  • v r is the average linear velocity on the trajectory.
  • the incremental control method can also be used to convert the navigation image trajectory into a spatial position trajectory in the waterjet coordinate system through coordinate transformation, that is, each time interval ⁇ t
  • the displacement of the origin of the internal tool coordinate system is the displacement relative to the position of the previous ⁇ t internal coordinate origin when it was at an angle of 0 vertically downward.
  • the steps for calculating the motion position trajectory parameters of each axis further include:
  • Step 102A Transform the motion control position trajectory coordinates into the waterjet coordinate system to obtain the initial value of the spatial position trajectory in the waterjet coordinate system:
  • S 0 is the initial value of the spatial position trajectory under the waterjet coordinate system
  • x 0 , y 0 , z 0 are respectively the x-axis, y-axis, and z-axis coordinates corresponding to S 0
  • y img , z img , ⁇ img are the y-axis, z-axis, and ⁇ -axis coordinates corresponding to S img respectively.
  • y img corresponds to y0_start ⁇ yq_start, y0_end ⁇ yq_end in Formula 2, and so on.
  • Step 102B Collect the length of the resection waterjet jet, the cross-sectional angle of the resection waterjet and the long axis velocity of the resection waterjet jet at each moment in real time, and generate the first to third transformation matrices:
  • T The difference in point jet length
  • is the increment of the cross-sectional angle of the point of action at the current moment, is the difference in the angle of the cross-section of the point of action at the current acquisition moment and the previous acquisition moment
  • v z1 is the long axis velocity of the point of action jet at the current moment
  • ⁇ t is the time interval, which is the time difference between the current collection time and the previous collection time.
  • the long axis position of the impact point jet should be less than or equal to the width of the waterjet jet to avoid cutting off parts of the target that are too large in motion and cannot be covered by the jet.
  • v z1 z 1 ⁇ v r1 /( ⁇ 1 ⁇ r 1 ) is obtained.
  • v r1 is the reference standard for resection speed obtained through experiments.
  • v r1 can also be in the form of a sub-regional lookup table, and different coefficients are experimentally calibrated according to the resection effect at different ⁇ 1 .
  • S 1 is the updated value of the spatial position trajectory in the waterjet coordinate system at the current acquisition time
  • x 1 , y 1 , and z 1 are the x-axis, y-axis, and z-axis coordinates corresponding to S 1 respectively.
  • Formula 7 represents the relationship between the updated value of the spatial position trajectory and the initial value of the spatial position trajectory when the spatial position trajectory is updated for the first time.
  • the spatial position trajectory update value at the current moment is equal to T x ⁇ T y ⁇ T z multiplied by the spatial position trajectory update value at the previous moment.
  • the motor motion position parameters may be any of the following: First, the motion position trajectory parameters of each axis include the jet length r 1 of the action point in the waterjet coordinate system. The angle ⁇ 1 between the point cross section and the long axis position z1 of the resection jet; the second type, the various motion position parameters include the jet length r 1 of the action point in the waterjet coordinate system, the angle ⁇ 1 between the cross section of the action point and the action point The long axis velocity of the point jet v z1 ; the third type, the movement position parameters of each axis include the jet length of the point of action r 1 in the waterjet coordinate system, the cross-sectional angle of the point of action ⁇ 1 , and the long axis position of the point of action jet z 1 and the jet major axis velocity v z1 at the point of action.
  • Step 103 Use the multi-axis linkage PID control method to control the jet flow, suction flow, linear motion trajectory and rotational motion trajectory of the water jet according to the movement position trajectory parameters of each axis.
  • the suction flow rate is equal to the jet flow rate.
  • step 103 while the waterjet jet is working, the suction pump adopts the strategy of following the jet high-pressure pump to perform suction movement, keeping the suction flow rate and the jet flow rate dynamically equal.
  • step 103 in order to ensure that the motion position trajectory parameters of each axis generated in step 102 can be quickly and smoothly realized in the motor, the control of the four motion axes adopts linkage PID control, and control methods such as neural network prediction can be added as needed. Further optimization is carried out to make the position error of each axis and the synchronous position error of all axes approach zero as soon as possible. At the same time, the interaction between each axis and all other axes is considered, and the position error of each axis is cross-coupled and controlled.
  • the position loop feedback of the jet flow rate axis, the suction flow rate axis, the linear motion axis, and the rotation motion axis are crossed.
  • PID closed-loop control feedback is used in the water jet action distance position loop to realize the control of the jet flow axis.
  • current feedback, speed feedback and encoding position are performed through the motor. feedback.
  • PID closed-loop control feedback is used for the water jet's rotary motion axis in the angle position loop of the water jet cross section to realize the control of the rotary motion axis.
  • Cross-coupling control is also carried out on the jet flow axis, suction flow axis, linear motion axis and rotary motion axis, that is, the error of the jet flow axis is synchronously fed back to the jet flow axis, suction flow axis, linear motion axis and rotary motion axis;
  • the error of the suction flow axis is synchronously fed back to the jet flow axis, suction flow axis, linear motion axis and rotary motion axis;
  • the error of the linear motion axis is synchronously fed back to the jet flow axis, suction flow axis, linear motion axis and rotary motion axis;
  • the error of the rotary motion axis is synchronously fed back to the jet flow axis, suction flow axis, linear motion axis and rotary motion axis.
  • parameter transformation refers to converting the motion position trajectory parameters of each axis into motion position control parameters.
  • the water jet jet flow rate refers to the jet length of the action point in the water jet coordinate system.
  • the water jet cross-sectional angle refers to the water jet The angle between the cross section of the action point in the knife coordinate system, the position of the water jet along the long axis refers to the long axis position of the jet at the action point and/or the long axis velocity of the jet at the action point in the water jet coordinate system, and the suction flow rate refers to the action point in the water jet coordinate system Point jet length.
  • the error value of each axis mentioned above refers to the error value of the motion position trajectory parameter of each axis.
  • step 103 the trajectory planning position loop closed-loop control is added to the multi-dimensional linkage PID control method.
  • the error of the trajectory planning loop is the difference between the current moment position on the pre-planned continuous position trajectory and the measured action point trajectory position at the current moment.
  • trajectory position of the action point refers to the motion position trajectory parameters of the linear motion axis, the rotary motion axis, the jet flow axis and the suction flow axis.
  • trajectory planning position loop In addition to the motion control position loop of each axis, a trajectory planning position loop is added.
  • the error of the trajectory planning position loop is the difference between the planned trajectory position and the measured action point trajectory position.
  • step 103 the calculation method of the trajectory position of the action point measured at the current moment may be real-time or delayed.
  • the long axis position of the action point jet and/or the long axis velocity of the action point jet in the waterjet coordinate system, the angle between the cross section of the action point, and the length of the action point jet are collected in real time to obtain the trajectory position of the action point.
  • a micro-laser rangefinder installed on the waterjet head and moving synchronously with the nozzle such as a WeChat laser rangefinder module with a millimeter-scale outer diameter using TOF (time of flight or femtosecond) technology, is used while the waterjet jet is working.
  • the distance from the water jet to the boundary of the target cavity after resection is measured, and the trajectory coordinates of the action point are obtained through the first to third transformation matrices of the coordinate system.
  • r 1 is the distance actually measured by the rangefinder, and ⁇ 1 , z 1 , v z1 , etc. are obtained from the feedback of each motor.
  • the distance from the water jet to the boundary of the resected target cavity can also be obtained through technical methods such as micro-ultrasonic hydrophones and binocular three-dimensional endoscopic images.
  • the jet action distance of the water jet action point under the water jet coordinate system is collected through the cross-sectional image lag, combined with the real-time collected cross-sectional angle of the water jet action point and the jet length of the water jet action point, using the time lag
  • the system PID adjustment method performs trajectory planning position loop closed-loop control.
  • the double-sided ultrasonic probe carried by the electric stepper is synchronized with the Z-direction linear motion of the water jet along the long axis z' of the probe. movement while the probe continues to collect cross-sectional images.
  • the probe cross-sectional linear array is located at a fixed distance in the -Z direction of the water jet nozzle, the resection depth r 1 measured from the cross-sectional image is a linear delay measurement feedback that lags behind the real-time trajectory planning input ⁇ t, that is, the feedback sampling and control quantity Sampling asynchronously.
  • the time-delay system PID adjustment method can be used to optimize the existing control process, such as Smith predictive control, fuzzy control, etc.
  • the motor characteristic transmission equation is represented by G 0 (s)e - ⁇ s after Laplace transformation, in which the delay time is transformed into e - ⁇ s .
  • the transmission equation is added to the controller in reverse parallel to form a new Smith predictive control process.
  • step 103 if time-delay PID control is used, an algorithm can be used to automatically measure the depth of resection for cross-sectional images: subtract and filter the pre-planned cross-sectional navigation image at the same position and the cross-sectional navigation image at the current moment, A high-frequency image signal is obtained; the high-frequency graphic signal is enhanced to obtain the resection boundary, and then the water jet jet action distance in the water jet coordinate system is measured to obtain.
  • the cross-sectional images collected at this time and the cross-sectional images collected before the aforementioned trajectory planning are both accurately positioned images with position indexes.
  • the automatic measurement algorithm for resection depth can use the subtraction of images before planning and after waterjet resection at the same position as image preprocessing.
  • the high-frequency image signal obtained after filtering the subtraction result reflects the cross-sectional image changes caused by the waterjet resection. .
  • the measurement value is obtained by measuring the resection boundary obtained by enhancing the image at this time.
  • the waterjet system in the embodiment of the present invention adopts unified linkage control of multiple movements to improve control accuracy.
  • This waterjet system is used to remove irregularly shaped targets. It requires the cutter head to move linearly along the direction of the blade and at the same time make reciprocating rotational motion at a given angle in a plane perpendicular to the blade. It also adjusts the high-pressure jet flow and flow rate according to changes in the boundary shape of the target. Pressure to control resection distance. At the same time, the suction flow rate of the suction unit is adjusted according to the pressure change caused by the change in high-pressure jet flow rate, waste liquid is discharged, and the pressure balance is maintained.
  • the embodiment of the present invention uses the motion trajectory of the origin of the jet tool coordinate system to uniformly represent the motion of each axis.
  • the control program performs linkage control on the position loop of each axis through this motion trajectory, and at the same time provides The actual motion trajectory measurement is used as feedback to form a closed-loop control method, which improves the working accuracy of the water jet.
  • the device of the present application includes one or more processors (one of CPU, FGAP, MUC), input/output user interface, network interface and memory.
  • this application also proposes an electronic device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program When the computer program is executed by the processor, the following is implemented: The method described in any embodiment of the first aspect of this application.
  • the invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • this application also proposes a computer-readable medium.
  • a computer program is stored on the computer-readable medium.
  • the steps of the method described in any embodiment of the application are implemented.
  • the memory of the present invention may include non-permanent memory in a computer-readable medium, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). .
  • Computer-readable media includes both persistent and non-volatile, removable and non-removable media that can be implemented by any method or technology for storage of information.
  • Information may be computer-readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), and read-only memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • compact disc read-only memory CD-ROM
  • DVD digital versatile disc
  • Magnetic tape cassettes tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory media, such as modulated data signals and carrier waves.

Abstract

本发明提供一种自动水刀系统,其中:对导航图像上预先规划的连续边界位置轨迹拟合生成运动控制位置轨迹;建立水刀坐标系,将所述运动控制位置轨迹转换到所述水刀坐标系后再计算各轴运动位置轨迹参数;根据所述各轴运动位置轨迹参数,采用多轴联动控制方法控制水刀在射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴做相应运动;在多轴联动控制方法中,水刀的射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴中的任意一轴误差均与其他三轴误差相关。本申请还包含用于实现所述方法的设备。本发明解决现有水刀运动边界粗糙和各维运动无法联动控制的问题

Description

[根据细则26改正 17.05.2023]一种自动水刀系统
本申请以2022年4月24日提交的申请号为202210433774.8的中国专利申请为优先权,其全部内容援引于此。
技术领域
本发明涉及医疗电子技术领域,尤其涉及一种自动水刀实现方法和设备。
背景技术
现有自动水刀规划方式的运动调整较为粗糙,未提供具体可实现方法将双面超声探头或其它方式获得的矢状面和横断面图像建立精确对应关系,实际上需要操作者手动获取有限的超声图像信息,分段(例如三到四段)进行矢状面和横断面位置匹配和参数设置,各段中间通过插值模拟的方式进行拟合,因而对水刀运动控制的精度要求较低。另外,在现有的自动水刀系统控制方式中,未见对包括高压射流流量,抽吸流量和各方向机械的运动相互间的影响和依赖关系统一进行协调控制,各运动的不同步将导致运动轨迹规划中的射流位置和作用深度,角度及压力等在实际执行时因运动误差不能良好匹配,导致水刀运动轨迹误差大的问题。
发明内容
本发明提供一种自动水刀实现方法和设备,解决现有水刀运动边界粗糙和各维运动无法联动控制导致水刀运动轨迹误差的问题。
为解决上述问题,本发明是这样实现的:
第一方面,本发明提供一种自动水刀实现系统,其包含,
成像模块,用于生成导航图像;
影像规划模块,用于根据在所述导航图像上预先规划的连续边界位置轨迹拟合生成运动控制位置轨迹;将所述运动控制位置轨迹转换到水刀坐标系后再计算并发送水刀射流作用点对应的各轴运动位置轨迹参数;
运动控制模块,用于接收所述各轴运动位置轨迹参数,采用多轴联动控制方法生成并向水刀刀头发送直线运动轴和旋转运动轴的运动位置轨迹参数,向管路及液压动力模块发送射流流量轴和抽吸流量轴的运动位置控制参数;还用于采集水刀刀头的各轴运动位置轨迹参数进行运动轨迹闭环控制;
管路及液压动力模块,用于根据所述运动控制模块发送的射流流量轴运动位置控制参数向水刀刀头传递液体和根据抽吸流量轴运动位置控制参数进行抽吸运动;
水刀刀头,用于根据所述运动控制模块发送的所述直线运动轴和旋转运动轴的运动位置轨迹参数,和射流流量轴的运动位置控制参数,进行相应运动;
在多轴联动控制方法中,水刀的射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴中的任意一轴误差均与其他三轴误差相关。
进一步地,所述运动控制位置轨迹包含射流有效长度,射流长轴位置和横断面夹角;所述各轴运动位置轨迹参数包含水刀坐标系下作用点射流长度,作用点横断面夹角,还包含作用点射流长轴位置和或作用点射流长轴速度。
进一步地,在多轴联动控制方法中增加轨迹规划位置环闭环控制,轨迹规划位置环的误差值是当前测量时刻的所述连续边界位置轨迹上的边界位置和实际测量得到的作用点轨迹位置的差。
进一步地,在多轴联动控制方法中,水刀的射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴的误差可表示为公式11~公式14。
优选地,所述方法进一步包含:对所述连续边界位置轨迹进行拟合时,将预先设计的导航图像上的关键点图像位置作为准确信息。
优选地,所述方法进一步包含:对所述连续边界位置轨迹分段拟合生成各段运动控制位置轨迹,组合成所述运动控制位置轨迹。
优选地,将所述连续边界位置轨迹分成若干个运动体素,对各所述运动体素按照实际操作水刀时的运动轨迹插值,生成所述运动控制位置轨迹;每个运动体素包含射流有效长度,射流长轴位置和横断面夹角。
优选地,采用增量控制法将所述运动控制位置轨迹经坐标变换转换为水刀坐标系下的空间位置轨迹,再计算各轴运动位置轨迹参数。
优选地,所述导航图像为双平面超声图像或三维超声图像或三维图像。
进一步地,实时采集水刀的射流流量轴、直线运动轴和旋转运动轴的运动位置轨迹参数,与所述连续边界位置轨迹在水刀坐标系中的位置,对应坐标相减得到所述轨迹规划位置环的误差值。
进一步地,滞后采集水刀的射流流量轴的运动位置轨迹参数,结合实时采集的水刀的旋转运动轴和直线运动轴的运动位置轨迹参数,采用时滞系统调节方式进行轨迹规划位置环闭环控制。
进一步地,采用台阶式线段对所述连续边界位置轨迹进行分段拟合,得到所述各段运动控制位置轨迹。
进一步地,采用直线段插补拟合方式对所述连续边界位置轨迹进行分段拟合,得到所述各段运动控制位置轨迹。
优选地,滞后采集水刀的射流流量轴的运动位置轨迹参数时,将相同位置的预先采集的横断面图像和当前时刻采集的横断面导航图像相减和滤波、得到高频图像信号;对所述高频图形信号进行增强处理和切除边界后、测量得到水刀的射流流量轴的运动位置轨迹参数。
优选地,所述时滞系统调节方式包含Smith预估控制方式和或模糊控制方式。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
本发明基于高精度轨迹规划的需要采用了多个运动统一控制的创新设计可以优化自动水刀的规划过程,提高水刀控制精度,有利于增加有效作用体积,减小水刀运动误差,提升水刀使用效果和安全性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1(a)为本申请系统实施例的装置结构示意图;
图1(b)为本申请系统实施例的一种分段拟合方式示意图;
图1(c)为本申请系统实施例的另一种分段拟合方式示意图;
图1(d)为本申请系统实施例的关键点图像示意图;
图1(e)为本申请系统实施例的水刀坐标系示意图;
图1(f)为本申请系统实施例的水刀坐标系下双平面超声图像示意图;
图1(g)为本申请系统实施例的双平面超声图像结合示意图;
图1(h)为本申请系统实施例的水刀空腔端面示意图;
图2(a)为本申请方法实施例的方法流程图;
图2(b)为本申请方法实施例的Z字型切除轨迹示意图;
图2(c)为本申请方法实施例的PID联动控制示意图;
图2(d)为本申请方法实施例的PID时滞控制示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的创新点在于:第一、本发明提出一种导航图像运动控制位置轨迹生成方法,将导航图像中的横断面位置和横断面夹角及射流有效作用距离规划到运动控制位置轨迹中,并建立该运动控制位置轨迹和水刀运动坐标系的位置关系,从而使水刀运动过程中能准确获取水刀实际位置和规划位置的偏差。第二、本发明提出一种多维运动联合控制方法,对水刀的射流流量、抽吸流量、直线运动轨迹和旋转运动轨迹实现自动联动控制,可减小操作误差。
以下结合附图,详细说明本发明各实施例提供的技术方案。
图1(a)为本申请系统实施例的装置结构示意图,图1(b)为本申请系统实施例的一种分段拟合方式示意图,图1(c)为本申请系统实施例的另一种分段拟合方式示意图,图1(d)为本申请系统实施例的关键点图像示意图,图1(e)为本申请系统实施例的水刀坐标系示意图,图1(f)为本申请系统实施例的水刀坐标系下双平面超声图像示意图,图1(g)为本申请系统实施例的双平面超声图像结合示意图,图1(h)为本申请系统实施例的水刀空腔端面示意图。
作为本发明实施例,一种医用自动水刀,包含:成像模块1、影像规划模块2、运动控制模块3、水刀刀头4、管路及液压动力模块5。
所述成像模块,用于生成导航图像。
所述影像规划模块,用于根据在所述导航图像上预先规划的连续边界位置轨迹拟合生成运动控制位置轨迹;根据水刀的位置实时建立水刀坐标系,将运动控制位置轨迹转换到所述水刀坐标系后再计算各轴运动位置轨迹参数,并将所述各轴运动位置轨迹参数发送给所述运动控制模块。
所述各轴运动位置轨迹参数包含直线运动轴、旋转运动轴、射流流量轴和抽吸流量轴的运动位置参数。所述直线运动轴的运动位置参数是水刀坐标系的作用点射流长轴位置和或作用点射流长轴速度,旋转运动轴的运动位置参数是水刀坐标系的作用点横断面夹角,射流流量轴的运动位置参数是水刀坐标系的作用点射流长度。
需要说明的是,通过所述作用点射流长度可用来说明水刀射流流量,抽吸流量与射流流量相关,例如抽吸流量等于射流流量,或者某一时刻抽吸流量大于射流流量、另一时刻抽吸流量等,也就是说通过射流流量可以得到抽吸流量。通过抽吸流量可以得到相应的抽吸流量轴运动控制参数。
所述运动控制模块,用于接收所述水刀射流作用点的各轴运动位置轨迹参数,采用多轴联动PID控制方法生成并向所述水刀刀头运动控制元件发送直线运动轴、旋转运动轴的运动位置控制参数,向所述管路及液压动力模块发送射流流量轴和抽吸流量轴的运动位置控制参数;还用于采集水刀刀头的各轴运动位置轨迹参数进行运动轨迹闭环控制。
需要说明的是,各轴运动位置轨迹参数表示水刀坐标系下水刀刀头的位置,各轴运动位置控制参数用于控制水刀刀头或者管路及液压动力模块进行运动。运动控制模块可通过水刀刀头运动控制电机或其他机构使水刀按照各轴运动位置轨迹参数运动,运动控制模块可通过管路及液压动力模块的液压泵或其他机构使管路及液压动力模块按照各轴运动位置轨迹参数运动。
优选地,射流流量轴和抽吸流量轴的运动位置控制参数是经射流流量轴的运动位置轨迹参数转换而成的控制参数,其中抽吸流量和射流流量可以相等。
在各轴运动位置控制参数中,直线运动轴的运动位置控制参数与运动位置轨迹参数相同,都是水刀坐标系下作用点射流长轴位置和或作用点射流长轴速度;旋转运动轴的运动位置控制参数与运动位置轨迹参数相同,都是水刀坐标系下作用点横断面夹角。
射流流量轴的运动位置轨迹参数是作用点射流长度,需转换为射流流量运动控制参数(射流流量轴的运动位置控制参数),转化关系由水刀刀头和管路及液压动力模块的管路机械设计决定,可以通过试验得到。
抽吸流量轴运动控制参数由运动控制模块根据射流流量轴控制参数得到,可保持抽吸流量和射流流量相等。
所述管路及液压动力模块,用于根据所述运动控制模块发送的射流流量轴运动位置控制参数向水刀刀头传递液体和根据抽吸流量轴运动位置控制参数进行抽吸运动。
所述水刀刀头,用于根据所述运动控制模块发送的所述直线运动轴和旋转运动轴的运动位置轨迹参数,和射流流量轴的运动位置控制参数,进行相应运动。
在本发明实施例中,所述管路及液压动力模块可用于抽吸废液,所述水刀刀头可用于切除物体。
在本发明实施例中,在多轴联动PID控制方法中,水刀的射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴中的任意一轴误差均与其他三轴误差相关;所述各轴运动位置参数用于指示所述水刀刀头和管路及液压动力模块在射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴的相应动作。
在本发明实施例中,所述运动控制模块还用于控制所述成像模块的探头运动,控制所述管路及液压动力模块向水刀模块传递高压生理盐水和根据所述抽吸流量排出废液。
在本发明实施例中,可以在所述水刀刀头模块中安装和喷嘴同步运动的微型激光测距仪或水声器等,用于实时获取水刀的作用点射流长轴位置。还可以在水刀刀头中安装和喷嘴同步的其他测距仪,这里不做特别限定。
在本发明实施例中,所述成像模块包含:电动步进器,用于带动所述双平面超声探头运动获取各个位置的超声图像。
在本发明实施例中,所述成像模块还包含双平面超声探头和或三维超声探头,所述双平面探头用于生成双平面超声图像,所述三维超声探头用于生成三维超声图像。需要说明的是,所述双平面探头在电动步进器带动下运动获取带有位置索引信息的多个端面体素图像通过三维图像生成软件也可生成三维超声图像。
所述成像模块还包含:核磁共振图像模块,用于获取三维图像,例如导航三维图像可从核磁共振等设备获得。
需要说明的是,以上各模块按照模块功能进行划分,在具体实现上可在物理位置,硬件和软件/固件架构上根据需要配置实现。
在本发明实施例中,可以在三维超声图像或双平面超声图像上预先规划所述连续边界位置轨迹,所述连续边界位置轨迹是根据需要提前规划好的切除轨迹。
需要说明的是,所述连续边界位置轨迹是在基础坐标系下规划的,所述基础坐标系为人为定义的静止坐标系,如图1(f)所示,可以将超声探头使用时的第一点定义为坐标原点,超声探头前进方向定义为z轴正方向,超声探头对应的横断面图形为xy平面,根据右旋定理可唯一确定x轴和y轴正方向。还需说明的是,基础坐标系还可以采用其他定义方式,这里不做特别限定。
例如,如图1(b),提供了一种预先规划的连续位置轨迹在yoz平面的投影。一般符合人工习惯的规划的轨迹为连续曲线,如图1(b)阴影区域为目标切除区域,下方曲线位人工规划的切除轨迹。
进一步地,所述连续边界位置轨迹由若干运动体素组成,每个所述运动体素包含射流有效长度r,射流长轴位置z和横断面夹角θ。
在本发明实施例中,所述运动控制位置轨迹,是根据所述连续边界位置轨迹拟合生成的轨迹,也是基础坐标系下的轨迹。考虑到实际切除过程中,使用人员会有操作误差,需对所述连续边界位置轨迹进行拟合。
在本发明实施例中,所述影像规划模块,还用于对各所述运动体素按照实际操作水刀时的运动轨迹插值,生成所述运动控制位置轨迹。
进一步地,对所述连续边界位置轨迹进行轨迹规划时可采用一种融合双平面超声图像关键点信息最小化误差插补轨迹拟合方法,即将预先规划的关键点图像作为准确信息。
例如,如图1(d)所示,标注了曲线拟合时四个关键点图像,其中θk1、θk2、θk3、θk4为第一~第四关键点图像的横断面夹角,每个横断面夹角处对应关键点图像的yz平面位置,拟合时将这四个关键点图像作为准确信息。需要说明的是,本发明对关键点图像的数量不做具体限定。
进一步地,可采用整体拟合或者分段拟合方法对连续位置轨迹进行曲线拟合,拟合时可以采用多项式或者最小二乘逼近等拟合方法对连续位置轨迹进行拟合,还可采用其他方法实现连续位置轨迹的曲线拟合,这里均不做特别限定。
需说明的是,若采用多项式拟合,考虑到拟合复杂曲线需要较高的多项式方程,一般采用直线段逼近曲线的方式生成轨迹,逼近时一般要根据拟合的误差确定步长。
进一步地,对所述连续位置轨迹进行分段拟合时,生成各段运动控制位置轨迹,由各段运动控制轨迹按分段组合得到所述运动控制位置轨迹。
例如,如图1(b)所示,可采用台阶式线段对所述预先规划的连续位置轨迹进行分段拟合,得到所述各段运动控制位置轨迹。方便控制时电机可以采用一轴电机运动一个步长,同时计算另一轴电机的误差的方式交替进行曲线拟合。
再例如,如图1(c)所示,还可采用直线段插补拟合方式对所述连续位置轨迹进行分段拟合,得到所述各段运动控制位置轨迹。采用直线段插补拟合方式,控制时可采用两轴直流无刷电机同步运动生成任意斜率直线段的方式实现,相比台阶式的拟合方式,可以有效的降低拟合误差,同时平滑柔顺电机运动轨迹。
在本发明实施例中,所述各轴运动位置轨迹参数用于指示电机在所述水刀刀头和管路及液压动力模块在射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴进行相应动作。所述各轴运动位置轨迹参数包含水刀坐标系下作用点射流长度r1,作用点横断面夹角θ1,还包含作用点射流长轴位置z1和或作用点射流长轴速度vz1
需要说明的是,所述水刀坐标系是运动坐标系,根据水刀实时位置实时变换,以水刀刀头与切除位置作用点为原点建立水刀坐标系。
如图1(e)所示,任一时刻水刀坐标系为图中XYZ坐标系,运动中水刀沿刀身长轴Z轴正方向运动,同时射流在与刀身长轴垂直的XY平面按照给定的作用点横断面夹角(图中θ1)的范围做往复旋转,射流对组织的作用有效距离如图中r1。在运动过程中因作用目标物形状的变化,Z方向运动速度,作用点横断面夹角大小方向,射流作用距离的大小都根据轨迹规划变化。
图1(f)为双面超声探头两个阵列图像的示意图,从图中看出,在水刀坐标系中,水刀刀头直线运动的方向为+Z方向,根据超声探头摆放位置,与+Z方向垂直的平面XY为水刀坐标系下的横断面,YZ水刀坐标系下的矢状面。
图1(g)为轨迹规划中矢状面与横断面位置结合的示意图,在水刀坐标系XYZ下,矢状面与横断面为两个相互垂直的平面,根据矢状面与横断面二者的重合部分可以得到所述横断面位置和横断面夹角。
图1(h)提供了一种水刀作用后的空腔端面立体图。
例如,在水刀工作过程中,刀头的沿+Z方向直线运动,XY平面往复旋转运动,射流对物体作用运动和废液抽吸运动构成4个互相关联的同时运动动作。只有对4个运动统一协调控制,才能保证水射流精确地沿规划路径切除物体形成形状不规则的空腔。
此时可以以水射流切除对目标物的作用点为执行工具的工具坐标系原点,通过对上述4个轴运动的4轴联动控制使工具坐标系原点在运动过程中通过其运动轨迹线描画出需要的空腔端面,如图1(h)所示。此时空腔的两个侧面由射流在XY平面的水刀坐标系横断面夹角的夹角边界决定,以射流束的宽度为描画动作的进动间隔。也就是,把射流切除动作转化为工具坐标系原点通过运动轨迹描画空腔端面(及侧面)的轨迹控制问题。
在本发明实施例中,在所述运动控制模块采用的多轴联动PID控制方法中增加轨迹规划位置环闭环控制,轨迹规划位置环的误差值是所述连续边界位置轨迹上当前测量时刻的边界位置和实际测量得到的作用点轨迹位置的差。
所述运动控制模块,可以实时采集水刀的射流流量轴的运动位置轨迹参数,还可以滞后采集水刀的射流流量轴运动位置轨迹参数。
例如,所述运动控制模块,用于实时采集水刀的射流流量轴、直线运动轴和旋转运动轴的运动位置轨迹参数,通过坐标变换将所述连续边界位置轨迹变换到水刀坐标系中,对应坐标相减得到所述轨迹规划位置环的误差值。
再例如,所述运动控制模块,用于通过横断面图像滞后采集水刀的射流流量轴的位置参数,结合实时采集的水刀的旋转运动轴和直线运动轴的位置参数,通过坐标变换将所述连续边界位置轨迹变换到水刀坐标系中,采用时滞系统PID调节方式进行轨迹规划位置环闭环控制。
需要说明的是,水刀的射流流量轴的位置参数是指水刀坐标系下的作用点射流长度,水刀的直线运动轴位置参数是水刀坐标下作用点射流长轴位置和或作用点射流长轴速度,水刀旋转运动轴的位置参数是水刀坐标下作用点横断面夹角。
若滞后采集水刀的射流流量轴位置参数,所述运动控制模块,用于,将规划阶段得到的相同射流长轴位置的横断面图像和当前时刻横断面导航图像相减和滤波、得到高频图像信号;对所述高频图形信号进行增强处理和切除边界后、测量得到水刀的射流流量轴的位置参数。
本发明实施例提供了一种高精度医用自动水刀,水刀刀头,可用于喷射高压射流。管路及液压动力模块,包括传递水刀高压盐水的高压管路和排出废液维持体内压力平衡的抽吸管路。运动控制模块,包括刀头运动控制单元,高压射流压力控制单元,废液抽吸控制单元以及控制主机;所述刀头运动控制单元,用于向水刀刀头位置控制元件发送直线运动轴和旋转运动轴的位置参数;所述高压射流压力控制单元,用于向水刀刀头射流流量控制元件发送射流流量轴的位置参数;所述废液抽吸控制单元用于向管路及液压动力模块,发送抽吸流量轴的位置参数;所述控制主机,用于接收所述各轴运动位置轨迹参数,转化为运动位置控制参数,与所述刀头运动控制单元、高压射流压力控制单元和废液抽吸控制单元通信。成像模块,包括超声探头及电动步进器,用于插入待检查腔道,并获取超声图像;影像规划模块,包括影像规划主机,基于导航图像进行水刀作用过程的规划并向控制主机发送规划参数。
本发明涉及的高精度自动水刀通过带有精确位置反馈的电动步进器承载双平面超声探头或三维超声探头,探头随步进器运动时获得的连续横断面图像以运动方向位置为索引保存。在运动轨迹规划时,矢状面和横断面的线阵图像实现精确对应,避免了手动获取有限超声图像带来规划误差。
本发明实施例的水刀系统采用高精度轨迹规划如电动步进器带动双平面超声探头自动运动对目标进行扫查并获取目标各个横断面的连续图像与矢状面各位置精确对应,或基于三维图像自动生成目标包络线产生切除参数。对运动执行的精度要求相应提高,因此本发明提供对包括高压射流流量,抽吸流量和各方向机械的运动进行统一运动控制的方法,协调消除各运动轴相互影响造成的误差,并根据实际测量结果作为运动反馈形成闭环控制以提高控制精度。从而实现了高精度的自动水刀工作,沿目标实际边界进行精细切除,达到较理想的效果。
图2(a)为本申请方法实施例的方法流程图,图2(b)为本申请方法实施例的Z字型切除轨迹示意图,图2(c)为本申请方法实施例的PID联动控制示意图,图2(d)为本申请方法实施例的PID时滞控制示意图。
发明实施例可用于对水刀的射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴这4个轴实现联动控制,一种水刀自动控制方法,具体包含以下步骤101~103:
步骤101、对导航图像上预先规划的连续边界位置轨迹拟合生成运动控制位置轨迹。
需要说明的是,所述导航图像可以通过超声探头获取,所述导航图像包含二维超声图像或三维超声图像,所述导航图像还可通过核磁设备获取,所述导航图像还包含三维图像,本发明对导航图像具体形式不做限定。
在步骤101中,对连续边界位置轨迹拟合生成运动控制位置轨迹,拟合时可将预先规划的关键点图像信息作为准确信息,具体包含以下步骤101A~101C:
步骤101A、对连续边界位置轨迹计算矢状面轨迹。
在步骤101A中,可采用一种快速多轴同步最小误差插补的轨迹拟合方法计算矢状面位置,该方法起到尽可能减少与医生规划的轨迹曲线误差及平滑柔顺电机运动过程,同时提高计算效率的作用。
在步骤101A中,经过分段拟合得到的所述矢状面轨迹可表示为:
其中,y0_start~yp_start分别表示经分段拟合得到的第0段~第p段运动控制位置轨迹的y轴起始坐标,y0_end~yp_end分别表示经分段拟合得到的第0段~第p段运动控制位置轨迹的y轴终止坐标。z0_start~zp_start分别表示经分段拟合得到的第0段~第p段运动控制位置轨迹的z轴起始坐标,z0_end~zp_end分别表示经分段拟合得到的第0段~第p段运动控制位置轨迹的z轴终止坐标。p+1为分段拟合的总段数,p为分段拟合的终止段序号。
步骤101B、根据所述矢状面轨迹和预先规划的关键点图像插补计算得到所述运动控制位置轨迹。
在步骤101B中,考虑到规划的各横断面的轨迹为经医生确认的准确信息,而两个规划的横断面之间的轨迹为插值等拟合算法产生,故以关键点图像为准。
当其中任意一个横断面发生在步骤101A中生成的矢状面轨迹一个步长内时,对该步长进行拆解并重新计算周围受到影响的插值线段,最终生成的轨迹为:Simg={[(y0_start,z0_start),(y0_end,z0_end),(θ0_start,θ0_end)],......[(yq_start,zq_start),(yq_end,zq_end),(θq_start,θq_end)]}     (2)
在公式2中,[(y0_start,z0_start),(y0_end,z0_end),(θ0_end,θ0_end)]表示一个运动体素,Simg为所述运动控制位置轨迹,θ0_start~θq_start为经分段拟合得到的第0段~第q段运动控制位置轨迹的横断面夹角起始值,θ0_end~θq_end为经分段拟合得到的第0段~第q段运动控制位置轨迹的横断面夹角终止值。q为插值后的分段终止序号。
需要说明的是,公式2给出了的其中一种Simg的写法,Simg还可以按照其他排序定义,这里不做特别限定。
步骤101C、对所述运动体素按照实际操作水刀时的运动轨迹进行插值。
获得S_img后,考虑到水刀需要成Z字型的密集切除轨迹才能启动良好的切除效果,如图2(b)中①~③,故需对每个运动体素内进行真实运动轨迹的插值和计算。
具体为:首先、根据实验切除效果获得Z字型轨迹相邻两边的距离,定义为Z型轨迹的螺距c。
第二、对S_img内每个运动体素按螺距c进行细分,设每个运动体素细分长度为L0,则需细分为L0/c段轨迹。
需要说明的是,可以对每个运动体素采用相同的螺距或不同的螺距进行细分。
第三、将细分后的轨迹拟合生成的轨迹作为所述运动控制位置轨迹。
需要说明的是,步骤101C为可选步骤。
步骤102、根据水刀的位置参数位置实时建立水刀坐标系,将所述运动控制位置轨迹转换到所述水刀坐标系后再计算各轴运动位置轨迹参数。
在步骤102中,所述各轴运动位置轨迹参数包含水刀坐标系下作用点射流长度,作用点横断面夹角,还包含作用点射流长轴位置和或作用点射流长轴速度。所述作用点射流长轴速度是所述作用点射流长轴位置的时间微分。
在步骤102中,按时间间隔Δt把轨迹规划得到的各参数发给运动控制模块,包括XY平面的水刀坐标系下作用点横断面夹角,以沿Y轴垂直向下为0角度,水刀坐标系下作用点横断面夹角的两侧范围分别构成第一、第二夹角θa、θb,旋转方向可自行定义,例如从器械端向目标方向观察的顺时针或逆时针方向,任意时刻的Z方向直线运动进给速度、即作用点水刀射流长轴速度,任意时刻的作用点水刀射流长度,以上参数决定了根据目标边界得到所需空腔几何形状。系统通过三维高精度规划使空腔的水刀作用端面尽量贴合器官边界。
时间间隔Δt为工具坐标系原点在XY平面作一个方向的旋转θ1所需时间,θ1为水刀坐标系下任意一个作用点横断面夹角。Δt可以为固定值,此时不同角度大小完成一个方向的旋转所需时间相等,在旋转轨迹上各点对应的平均角速度与角度大小成正比。Δt也可以为可变量,当组织特性需要射流对轨迹上的运动体素点作用时间达到特定时长时,轨迹上各点的平均线速度应达到特定要求,此时△t=θ1×r1/vr,其中r1也表示射流切除作用点与水刀喷嘴的距离,即切除射流长度,vr为轨迹上的平均线速度。
在步骤102中,为避免过多的历史数据和计算量,还可以采用增量控制法将所述导航图像轨迹经坐标变换转换为水刀坐标系下的空间位置轨迹,即每个时间间隔Δt内工具坐标系原点的位移是相对于上一个Δt内坐标原点位于垂直向下的0角度时的位置的位移,则计算各轴运动位置轨迹参数的步骤进一步包含:
步骤102A、将所述运动控制位置轨迹坐标变换到水刀坐标系下,得到水刀坐标系下空间位置轨迹初值:S0=[x0,y0,z0,1]=[yimgsinθimg,yimg,zimg,1](3)
其中,S0为所述水刀坐标系下空间位置轨迹初值,x0、y0、z0分别为S0对应的x轴、y轴、z轴坐标,yimg、zimg、θimg分别为Simg对应的y轴、z轴、θ轴坐标,yimg与公式2中的y0_start~yq_start、y0_end~yq_end对应,以此类推。
步骤102B、实时采集每一时刻的切除水刀射流长度、切除水刀横断面夹角和切除水刀射流长轴速度,生成第一~第三变换矩阵:
其中,Tx、Ty、Tz分别为当前时刻的所述第一、第二、第三变换矩阵,△r为当前时刻作用点射流长度增量,为当前采集时刻和上一采集时刻作用点射流长度的差,△θ为当前时刻作用点横断面夹角增量,为当前采集时刻和上一采集时刻作用点横断面夹角的差,vz1为当前时刻作用点射流长轴速度,△t为所述时间间隔,为当前采集时刻和上一采集时刻的时间差。
在步骤102B中,作用点射流长轴位置应小于等于水刀射流的宽度以避免切除运动螺距过大有未能被射流覆盖的部分目标。由t1=z1/vz1且t1=θ1×r1/vr1,得到vz1=z1×vr1/(θ1×r1)。考虑到水刀切除时,需要射流对轨迹上的体素点作用时间达到特定时长才能达到理想的切除效果,vr1为经过实验得到的切除速度参考标准。考虑到在不同θ1时,切除效果的变化可能不是一个线性的关系,故vr1也可为一个分区域的查找表形式,根据不同θ1下的切除效果实验标定不同的系数。
步骤102C、计算所述水刀坐标系下的空间位置轨迹更新值:
S1=Tx×Ty×Tz×S0                (7)
S1=[x1,y1,z1,1]                (8)
其中,S1为当前采集时刻水刀坐标系下空间位置轨迹更新值,x1、y1、z1分别为S1对应的x轴、y轴、z轴坐标。
需要说明的是,公式7表示空间位置轨迹第一次更新时,空间位置轨迹更新值与空间位置轨迹初值存在的关系。当空间位置轨迹更新值不断迭代时,当前时刻的空间位置轨迹更新值等于Tx×Ty×Tz再乘以上一时刻空间位置轨迹更新值。
步骤102D、根据所述水刀坐标系下的空间位置轨迹,计算各轴运动位置轨迹参数:
r1=y1                       (9)
θ1=arcsin(x1/y1)            (10)
在步骤102中,所述电机运动位置参数的可以是以下几种中的任意一种:第一种、所述各轴运动位置轨迹参数包含水刀坐标系下的作用点射流长度r1,作用点横断面夹角θ1和切除射流长轴位置z1;第二种、所述各种运动位置参数包含水刀坐标系下的作用点射流长度r1,作用点横断面夹角θ1和作用点射流长轴速度vz1;第三种、所述各轴运动位置参数包含水刀坐标系下的作用点射流长度r1,作用点横断面夹角θ1、作用点射流长轴位置z1和作用点射流长轴速度vz1
步骤103、根据所述各轴运动位置轨迹参数采用多轴联动PID控制方法控制水刀的射流流量、抽吸流量、直线运动轨迹和旋转运动轨迹,所述抽吸流量与射流流量相等。
在步骤103中,在水刀射流工作的同时,抽吸泵采用跟随射流高压泵的策略进行抽吸运动,保持抽吸流量与射流流量动态相等。
在步骤103中,为保证步骤102中产生的各轴运动位置轨迹参数能在电机中快速平滑的实现,4个运动轴的控制采用联动PID控制,并可根据需要加入例如神经网络预测等控制方法进一步优化,使各个轴的位置误差和所有轴的同步位置误差都尽快趋近于零,同时考虑每一轴与其他所有轴的相互影响,对各轴位置误差交叉耦合控制。
具体地,如图2(c)所示,把射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴的位置环反馈交叉。对于水刀的射流流量轴在水刀射流作用距离位置环采用PID闭环控制反馈,实现对射流流量轴的控制,在射流流量轴的独立PID控制中,通过电机进行电流反馈、速度反馈和编码位置反馈。相应地,对于水刀的旋转运动轴在水刀横断面夹角位置环采用PID闭环控制反馈,实现对旋转运动轴的控制,在旋转运动轴的独立PID控制中,通过电机进行电流反馈、速度反馈和编码位置反馈。相应地,对于水刀的直线运动轴在水刀射流长度位置环采用PID闭环控制反馈,实现对直线运动轴的控制,在直线运动轴的独立PID控制中,通过电机进行电流反馈、速度反馈和编码位置反馈。在水刀抽吸流量轴,抽吸流量与射流流量动态相等。
在射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴还进行交叉耦合控制,即射流流量轴的误差同步反馈给射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴;抽吸流量轴的误差同步反馈给射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴;直线运动轴的误差同步反馈给射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴;旋转运动轴的误差同步反馈给射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴。
如图2(c),参数变换是指将各轴运动位置轨迹参数转换为运动位置控制参数,水刀射流流量是指水刀坐标系下作用点射流长度,水刀横断面夹角是指水刀坐标系下作用点横断面夹角,水刀沿长轴位置是指水刀坐标系下作用点射流长轴位置和或作用点射流长轴速度,抽吸流量是指水刀坐标系下作用点射流长度。
一种射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴交叉耦合控制的模型举例如下:
其中,分别为水刀的旋转运动轴、直线运动轴、射流流量轴、抽吸流量轴的误差更新值,分别为水刀的旋转运动轴、直线运动轴、射流流量轴、抽吸流量轴的上一时刻的误差值。
需要说明的是,上述各轴误差值是指各轴运动位置轨迹参数的误差值。
在步骤103中,在多维联动PID控制方法中增加轨迹规划位置环闭环控制,轨迹规划环的误差是预先规划的连续位置轨迹上当前时刻位置和当前时刻测量得到的作用点轨迹位置的差。
需要说明的是,作用点轨迹位置指直线运动轴、旋转运动轴、射流流量轴和抽吸流量轴的运动位置轨迹参数。
在各轴的运动控制位置环之外,增加一个轨迹规划位置环。轨迹规划位置环的误差是规划轨迹位置和测量得到的作用点轨迹位置的差。
在步骤103中,当前时刻测量得到的作用点轨迹位置的计算方式可以是实时的或滞后的。
优选地,当采用实时计算时,实时采集水刀坐标系下作用点射流长轴位置和或作用点射流长轴速度和作用点横断面夹角和作用点射流长度,得到所述作用点轨迹位置。
具体地,在水刀刀头安装和喷嘴同步运动的微型激光测距仪,如采用TOF(飞行时间或飞秒)技术的毫米尺度外径的微信激光测距模块,在水刀射流工作的同时测量水刀到切除后的目标物腔体边界的距离,并通过坐标系转换矩阵第一~第三变换矩阵得到作用点的轨迹坐标。在坐标转换中,r1就是测距仪实际测定的距离,θ1、z1、vz1等从各电机反馈得到。水刀到切除后的目标物腔体边界的距离还可以通过微型超声波水声器,双目三维立体内窥镜图像等技术方式获得。
优选地,当采用滞后计算时,通过横断面图像滞后采集水刀坐标系下水刀作用点射流作用距离,结合实时采集的水刀作用点横断面夹角和水刀作用点射流长度,采用时滞系统PID调节方式进行轨迹规划位置环闭环控制。
具体地,基于电动步进器承载的双面超声探头,水刀切除工作进行的同时,双面超声探头由电动步进器携载与水刀的Z方向直线运动同步沿探头长轴z'方向运动,同时探头进行横断面图像的持续采集。因为探头横断面线阵位于水刀喷嘴的-Z方向的固定距离处,从横断面图像测出的切除深度r1为滞后于实时轨迹规划输入Δt的线性延迟测量反馈,即反馈采样与控制量采样异步。此时可以采用时滞系统PID调节方式来优化现有控制流程,例如采用Smith预估控制,模糊控制等。
如图2(d),以采用Smith预估控制方式为例,电机特性传输方程经拉普拉斯变换以G0(s)e-τs表示,其中延迟时间变换为e-τs,该传输方程被反向并行加在控制器上形成新的Smith预估控制流程。
在步骤103中,若采用时滞PID控制,对于横断面图像可以采用算法自动进行切除深度的测量:将相同位置的预先规划的横断面导航图像和当前时刻的横断面导航图像相减并滤波,得到高频图像信号;对所述高频图形信号进行增强处理得到切除边界,再测量得到水刀坐标系下水刀射流作用距离。
具体地,由于超声探头在电动步进器承载下运动,此时采集的横断面图像和前述轨迹规划前采集的横断面图像均为带有位置索引的精确定位的图像。切除深度自动测量算法可以采用相同位置规划前和水刀切除后的图像相减作为图像预处理,相减结果滤波处理后得到的高频图像信号体现了水刀的切除作用引起的横断面图像变化。对此时的图像进行增强处理得到的切除边界进行测量即得到测量值。
为实现高精度轨迹规划的参数设置,本发明实施例中的水刀系统采用了多个运动统一联动控制以提高控制精度。本水刀系统用于对不规则形状目标物切除,需要刀头沿刀身方向直线运动的同时在与刀身垂直平面按给定角度作往复旋转运动,并根据目标物边界形状变化调节高压射流流量和压力以控制切除作用距离。同时根据高压射流流量变化引起的压力变化调节抽吸单元抽吸流量,排出废液,维持压力平衡。从运动控制的角度可以把以上刀身方向直线运动,与刀身垂直平面旋转运动,高压射流流量压力调整运动和抽吸流量变化调整运动视为4个运动轴向。4个轴向运动的不同步会导致切除精度降低,压力失衡等问题。为了保证各轴向运动的同步,本发明实施例将各轴运动用射流作用工具坐标系原点的运动轨迹统一表示,控制程序通过该运动轨迹对各轴的位置环进行联动控制,同时提供了对实际运动轨迹测量作为反馈形成闭环控制的方法,提高了水刀工作精度。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。在一个典型的配置中,本申请的设备包括一个或多个处理器(CPU、FGAP、MUC中的一个)、输入/输出用户接口、网络接口和存储器。
因此,本申请还提出一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如本申请第一方面任意一项实施例所述方法。
此外,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
因此,本申请还提出一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现本申请任意一项实施例所述的方法的步骤。例如,本发明的存储器可包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (17)

  1. 一种自动水刀系统,其特征在于,包含:
    成像模块,用于生成导航图像;
    影像规划模块,用于根据在所述导航图像上预先规划的连续边界位置轨迹拟合生成运动控制位置轨迹;将所述运动控制位置轨迹转换到水刀坐标系后再计算并发送水刀射流作用点对应的各轴运动位置轨迹参数;
    运动控制模块,用于接收所述各轴运动位置轨迹参数,采用多轴联动控制方法生成并向水刀刀头发送直线运动轴和旋转运动轴的运动位置轨迹参数,向管路及液压动力模块发送射流流量轴和抽吸流量轴的运动位置控制参数;还用于采集水刀刀头的各轴运动位置轨迹参数进行运动轨迹闭环控制;
    管路及液压动力模块,用于根据所述运动控制模块发送的射流流量轴运动位置控制参数向水刀刀头传递液体和根据抽吸流量轴运动位置控制参数进行抽吸运动;
    水刀刀头,用于根据所述运动控制模块发送的所述直线运动轴和旋转运动轴的运动位置轨迹参数,和射流流量轴的运动位置控制参数,进行相应运动;
    在多轴联动控制方法中,水刀的射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴中的任意一轴误差均与其他三轴误差相关。
  2. 如权利要求1所述自动水刀系统,其特征在于,所述运动控制位置轨迹包含射流有效长度,射流长轴位置和横断面夹角;所述各轴运动位置轨迹参数包含水刀坐标系下作用点射流长度,作用点横断面夹角,还包含作用点射流长轴位置和或作用点射流长轴速度。
  3. 如权利要求1所述自动水刀系统,其特征在于,在多轴联动控制方法中增加轨迹规划位置环闭环控制,轨迹规划位置环的误差值是当前测量时刻的所述连续边界位置轨迹上的边界位置和实际测量得到的作用点轨迹位置的差。
  4. 如权利要求1所述自动水刀系统,其特征在于,在多轴联动控制方法中,水刀的射流流量轴、抽吸流量轴、直线运动轴和旋转运动轴的误差可表示为:



    其中,分别为水刀的旋转运动轴、直线运动轴、射流流量轴、抽吸流量轴的误差更新值,分别为水刀的旋转运动轴、直线运动轴、射流流量轴、抽吸流量轴的上一时刻的误差值。
  5. 如权利要求1所述自动水刀系统,其特征在于,在所述水刀刀头中安装和喷嘴同步运动的微型激光测距仪或水声器,用于实时获取水刀的作用点射流长轴位置。
  6. 如权利要求1所述自动水刀系统,其特征在于,所述成像模块还包含:电动步进器和成像探头;所述电动步进器,用于带动所述成像探头运动、获取各个位置的导航图像。
  7. 如权利要求1所述自动水刀系统,其特征在于,所述成像模块还包含:双平面超声探头或三维超声探头;
    所述双平面超声探头或三维超声探头,用于获取超声图像;所述双平面超声探头用于获取双平面超声图像,所述三维超声探头,用于获取三维超声图像。
  8. 如权利要求1所述自动水刀系统,其特征在于,所述成像模块还包含:核磁共振图像模块,用于获取三维图像。
  9. 如权利要求1所述的自动水刀系统,其特征在于,所述影像规划模块,用于根据所述连续边界位置轨迹分段拟合生成各段运动控制位置轨迹,组合成所述运动控制位置轨迹。
  10. 如权利要求1所述的自动水刀系统,其特征在于,所述影像规划模块,还用于采用增量控制法将所述运动控制位置轨迹经坐标变换转换为水刀坐标系下的空间位置轨迹,再计算各轴运动位置轨迹参数。
  11. 如权利要求1所述的自动水刀系统,其特征在于,所述影像规划模块在进行拟合时,将预先设计的导航图像上的关键点图像位置作为准确信息。
  12. 如权利要求1所述的自动水刀系统,其特征在于,所述影像规划模块,还用于对各运动体素按照实际操作水刀时的运动轨迹插值,生成所述运动控制位置轨迹。
  13. 如权利要求3所述的自动水刀系统,其特征在于,所述运动控制模块,用于实时采集水刀的射流流量轴、直线运动轴和旋转运动轴的运动位置参数,与所述连续边界位置轨迹在水刀坐标系中的位置,对应坐标相减得到所述轨迹规划位置环的误差值。
  14. 如权利要求3所述的自动水刀系统,其特征在于,所述运动控制模块,用于通过横断面图像滞后采集水刀的射流流量轴的运动位置轨迹参数,结合实时采集的水刀的旋转运动轴和直线运动轴的运动位置轨迹参数,采用时滞系统调节方式进行轨迹规划位置环闭环控制。
  15. 如权利要求9所述的自动水刀系统,其特征在于,所述影像规划模块,还用于采用台阶式线段对所述连续边界位置轨迹进行分段拟合,得到所述各段运动控制位置轨迹。
  16. 如权利要求9所述的自动水刀系统,其特征在于,所述影像规划模块,还用于采用直线段插补拟合方式对所述连续边界位置轨迹进行分段拟合,得到所述各段运动控制位置轨迹。
  17. 如权利要求14所述的自动水刀系统,其特征在于,所述运动控制模块,用于,将相同位置的预先采集的横断面图像和当前时刻采集的横断面导航图像相减和滤波、得到高频图像信号;对所述高频图形信号进行增强处理和切除边界后、测量得到水刀的射流流量轴的运动位置轨迹参数。
PCT/CN2023/090360 2022-04-24 2023-04-24 一种自动水刀系统 WO2023207917A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210433774.8A CN114521939B (zh) 2022-04-24 2022-04-24 一种自动水刀实现方法及系统
CN202210433774.8 2022-04-24

Publications (1)

Publication Number Publication Date
WO2023207917A1 true WO2023207917A1 (zh) 2023-11-02

Family

ID=81628058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090360 WO2023207917A1 (zh) 2022-04-24 2023-04-24 一种自动水刀系统

Country Status (2)

Country Link
CN (2) CN115444513A (zh)
WO (1) WO2023207917A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115444513A (zh) * 2022-04-24 2022-12-09 北京智愈医疗科技有限公司 一种自动水刀实现方法和设备
CN115607282B (zh) * 2022-12-02 2023-04-07 北京智愈医疗科技有限公司 一种水刀轨迹预设方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060156875A1 (en) * 2005-01-19 2006-07-20 Depuy Mitek, Inc. Fluid cutting device and method of use
CN103809520A (zh) * 2012-11-12 2014-05-21 中国科学院沈阳计算技术研究所有限公司 用于多轴联动动态修正插补位置的全闭环运动控制方法
CN105764436A (zh) * 2013-09-06 2016-07-13 普罗赛普特生物机器人公司 自动化图像引导组织切除和处理
CN109782815A (zh) * 2018-12-27 2019-05-21 西安交通大学 基于多轴联动系统的复杂型面自适应测量路径规划方法
US20190282245A1 (en) * 2018-03-15 2019-09-19 Mako Surgical Corp. Robotically Controlled Water Jet Cutting
CN114376610A (zh) * 2022-03-24 2022-04-22 北京智愈医疗科技有限公司 一种双平面超声图像规划方法和装置
CN114521939A (zh) * 2022-04-24 2022-05-24 北京智愈医疗科技有限公司 一种自动水刀实现方法及系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9848904B2 (en) * 2009-03-06 2017-12-26 Procept Biorobotics Corporation Tissue resection and treatment with shedding pulses
US10016620B2 (en) * 2010-02-04 2018-07-10 Procept Biorobotics Incorporation Tissue sampling and cancer treatment apparatus
US10588609B2 (en) * 2010-02-04 2020-03-17 Procept Biorobotics Corporation Gene analysis and generation of stem cell methods and apparatus
EP2680778B1 (en) * 2011-03-03 2019-07-31 Koninklijke Philips N.V. System and method for automated initialization and registration of navigation system
EP3351196A1 (en) * 2012-02-29 2018-07-25 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
CN105263426B (zh) * 2013-04-03 2018-08-28 普罗赛普特生物机器人公司 前列腺水摘除术
US9592095B2 (en) * 2013-05-16 2017-03-14 Intuitive Surgical Operations, Inc. Systems and methods for robotic medical system integration with external imaging
US10188419B2 (en) * 2014-03-24 2019-01-29 Intervene, Inc. Visualization devices for use during percutaneous tissue dissection and associated systems and methods
US20160180544A1 (en) * 2014-12-19 2016-06-23 Sstatzz Oy Apparatus for camera-assisted trajectory estimation of a sensorized sports projectile
US20160210882A1 (en) * 2014-12-29 2016-07-21 Help Me See Inc. Surgical Simulator System and Method
US10561440B2 (en) * 2015-09-03 2020-02-18 Vesatek, Llc Systems and methods for manipulating medical devices
WO2019104686A1 (zh) * 2017-11-29 2019-06-06 惠州海卓科赛医疗有限公司 水刀关节镜
CN108523988B (zh) * 2018-01-30 2020-07-07 尹丽丽 一种高频电刀治疗装置
CN109571480A (zh) * 2018-12-28 2019-04-05 芜湖哈特机器人产业技术研究院有限公司 一种汽车清洗机器人轨迹规划系统和方法
CN110126101B (zh) * 2019-05-25 2021-05-04 天津大学 一种离轴多反成像系统加工方法
CN111904795B (zh) * 2020-08-28 2022-08-26 中山大学 一种结合轨迹规划的康复机器人变阻抗控制方法
CN113081265B (zh) * 2021-03-24 2022-11-15 重庆博仕康科技有限公司 手术导航空间配准方法、装置以及手术导航系统
CN113796952B (zh) * 2021-11-18 2022-03-18 北京智愈医疗科技有限公司 一种组织切除系统及其切割参数确定方法
CN114089763B (zh) * 2021-11-19 2024-03-08 江苏科技大学 用于海底光缆铺设的多水下机器人编队与避碰控制方法
CN114176726B (zh) * 2021-12-10 2023-08-04 佗道医疗科技有限公司 一种基于相位配准的穿刺方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060156875A1 (en) * 2005-01-19 2006-07-20 Depuy Mitek, Inc. Fluid cutting device and method of use
CN103809520A (zh) * 2012-11-12 2014-05-21 中国科学院沈阳计算技术研究所有限公司 用于多轴联动动态修正插补位置的全闭环运动控制方法
CN105764436A (zh) * 2013-09-06 2016-07-13 普罗赛普特生物机器人公司 自动化图像引导组织切除和处理
US20190282245A1 (en) * 2018-03-15 2019-09-19 Mako Surgical Corp. Robotically Controlled Water Jet Cutting
CN109782815A (zh) * 2018-12-27 2019-05-21 西安交通大学 基于多轴联动系统的复杂型面自适应测量路径规划方法
CN114376610A (zh) * 2022-03-24 2022-04-22 北京智愈医疗科技有限公司 一种双平面超声图像规划方法和装置
CN114521939A (zh) * 2022-04-24 2022-05-24 北京智愈医疗科技有限公司 一种自动水刀实现方法及系统
CN115444513A (zh) * 2022-04-24 2022-12-09 北京智愈医疗科技有限公司 一种自动水刀实现方法和设备

Also Published As

Publication number Publication date
CN114521939B (zh) 2022-09-06
CN115444513A (zh) 2022-12-09
CN114521939A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2023207917A1 (zh) 一种自动水刀系统
CN108534679B (zh) 一种筒形件轴线位姿的无靶标自动测量装置及方法
CN105180834B (zh) 一种叶片进排气边三维非接触式测量装置
US20230114040A1 (en) Techniques For Patient-Specific Milling Path Generation
CN102184563B (zh) 植物器官形态的三维扫描方法及扫描系统和装置
CN102091814B (zh) 将激光跟踪技术与cad/cam技术结合实现曲面精确加工的方法
CN103934528A (zh) 一种用于电火花加工的六轴联动插补方法
WO2023179756A1 (zh) 一种双平面超声图像规划方法和装置
CN109783930B (zh) 一种基于全旋转指向式钻井工具提高破岩效率的方法
CN109343468A (zh) 一种基于投影偏置的叶片多轴轨迹生成方法
CN103176428A (zh) 基于球坐标的cnc系统插补算法及实现该算法的装置
CN111121619A (zh) 一种基于激光测距的空间几何自动测量方法
CN114543787B (zh) 基于条纹投影轮廓术的毫米级室内建图定位方法
CN104741794B (zh) 基于曲面工件外形的表面阵列微结构激光刻蚀制备方法
Lu et al. Geometric deviation evaluation for a five-axis flank milling tool path using the tool swept envelope
Wu et al. Optimization of cutter orientation for multi-axis NC machining based on minimum energy consumption of motion axes
CN104536381A (zh) 一种用于对多轴运动控制系统测量轮廓误差的系统及方法
CN209279914U (zh) 一种提高3d扫描精准度的装置
Xue et al. An improved method of depth measurement based on line laser
CN208974046U (zh) Ct定位穿刺智能角度引导机器人
CN111369432A (zh) 一种3d打印单点激光扫描路径规划方法
JP2923713B2 (ja) 円筒座標ロボットの駆動制御方法
CN105758299A (zh) 新型二维激光扫描设备
JPH07113640A (ja) レーザ測距による掘削機の姿勢測定方法及びその装置
CN113804121B (zh) 一种多工件轮廓实时测量方法及测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795350

Country of ref document: EP

Kind code of ref document: A1