WO2023207074A1 - 一种服务器散热控制装置和服务器散热控制方法 - Google Patents

一种服务器散热控制装置和服务器散热控制方法 Download PDF

Info

Publication number
WO2023207074A1
WO2023207074A1 PCT/CN2022/135156 CN2022135156W WO2023207074A1 WO 2023207074 A1 WO2023207074 A1 WO 2023207074A1 CN 2022135156 W CN2022135156 W CN 2022135156W WO 2023207074 A1 WO2023207074 A1 WO 2023207074A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
box
condensation
server
pressure
Prior art date
Application number
PCT/CN2022/135156
Other languages
English (en)
French (fr)
Inventor
朱欢来
Original Assignee
苏州元脑智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州元脑智能科技有限公司 filed Critical 苏州元脑智能科技有限公司
Publication of WO2023207074A1 publication Critical patent/WO2023207074A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/181Enclosures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/202Air convective hinge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the field of server technology, and in particular to a server heat dissipation control device. This application also relates to a server heat dissipation control method applied to the server heat dissipation control device.
  • the two-phase immersion liquid cooling system uses the latent heat of vaporization phase change of the heat dissipation working fluid to quickly remove heat, and undoubtedly has the highest cooling efficiency and highest heat dissipation density.
  • a thermally conductive engineering liquid such as fluorinated liquid
  • the server in the sealed box should be immersed in the engineering liquid to achieve heat dissipation.
  • the cover of the sealed box needs to be opened, which will cause the fluorinated liquid to leak, resulting in economic losses and safety risks caused by a large amount of expensive fluorinated liquid leaking.
  • the purpose of this application is to provide a server heat dissipation control device and a server heat dissipation control method applied to the server heat dissipation control device, which can improve the heat dissipation efficiency and solve the loss and potential safety of fluorinated liquid leakage when the box cover is opened to maintain the server. Risk issues.
  • this application provides a server heat dissipation control device for heat dissipation of the server, including:
  • Cover plate connected to the box, used to close the box
  • the heat dissipation working medium is located in the box and is used for immersing the server;
  • the condensation module is located in the box and includes:
  • the condensation coil is located in the box and is used to assist the phase change of the cooling medium to achieve heat dissipation circulation;
  • the guide driver is arranged toward the condensation coil and is used to provide driving force to control the flow of gaseous heat dissipation working fluid to the condensation coil, so as to prevent the gaseous heat dissipation working fluid from impacting the cover plate when the cover plate is closed and prevent the gaseous heat dissipation working fluid from impacting the cover plate when the cover plate is opened. Prevent gaseous cooling fluid from leaking to the outside of the box;
  • the condensation module also includes a gas-liquid separation component.
  • the gas-liquid separation component is located at the outlet of the guide driving component.
  • the gas-liquid separation component is used to separate air and droplet-shaped heat dissipation working fluid.
  • the flow guide driving member is disposed close to the inlet side of the condensation coil.
  • the condensation coil and the box form an accommodating space
  • the flow guide driving member is disposed in the accommodating space
  • the condensation coil covers the flow guide driving member in the layout direction of the server.
  • the condensation coil is an S-coil.
  • the gas-liquid separation component includes a first baffle and a second baffle.
  • the first baffle is connected to the flow guide driving component, and the second baffle is connected to the first baffle and connected with the first baffle.
  • the flow plate is set at a preset angle.
  • a breathable valve is also included.
  • the breathable valve is provided on the cover plate, and the air separated by the gas-liquid separation component is discharged from the box through the breathable valve.
  • it also includes:
  • the first pressure sensor is located between the cover plate and the box body and is used to detect the status of the cover plate
  • the second pressure sensor is located on the cover plate and is used to detect the pressure in the box;
  • the control component is connected to the first pressure sensor, the second pressure sensor and the flow guide driver, and is used to control the work of the flow guide driver according to the pressure values detected by the first pressure sensor and the second pressure sensor.
  • a pressure regulating valve is also included.
  • the pressure regulating valve is provided on the cover plate and connected to the control component.
  • the pressure regulating valve is used to regulate the pressure in the box.
  • This application also provides a server heat dissipation control method, which is applied to any of the above server heat dissipation control devices, including:
  • the flow guide driving component is controlled to operate. After the heat dissipation working fluid flows toward the condensation coil and is condensed through the condensation coil, the air and droplet-shaped heat dissipation The working fluid flows to the gas-liquid separation component through the outlet of the diversion driving component. The gas-liquid separation component separates the air and the droplet-shaped heat dissipation working fluid. The air is discharged upward from the box to adjust the pressure in the box to the first normal value;
  • the flow guide driver is controlled to operate. After the heat dissipation working fluid flows toward the condensation coil and is condensed through the condensation coil, the air and droplet-shaped heat dissipation The working fluid flows to the gas-liquid separation component through the outlet of the diversion driving component. The gas-liquid separation component separates the air and the droplet-shaped heat dissipation working fluid. The air is discharged upward from the box to adjust the pressure in the box to the second normal value.
  • the server heat dissipation control device is used for heat dissipation of the server.
  • the device specifically includes a box, a cover plate, a heat dissipation working medium and a condensation module, wherein the server is located in the box. , the cover plate is connected to the box, and the cover plate is used to close the box to improve the closed space of the server's heat dissipation cycle; the heat dissipation working medium is located in the box, and the server is immersed in the heat dissipation working medium for heat dissipation of the server; the condensation module is located in inside the box.
  • the condensation module specifically includes a condensation coil, a flow guide driver and a gas-liquid separation component.
  • the condensation coil is located in the box.
  • the condensation coil is used to assist the phase change of the heat dissipation working fluid to achieve the heat dissipation cycle.
  • the so-called phase change is Refers to the process in which the heat dissipation working fluid that evaporates into a gaseous state releases heat on the condensation coil and then condenses into a liquid.
  • the heat dissipation working fluid condensed into a liquid state falls back into the box under the action of gravity, thereby realizing a heat dissipation cycle; diversion drive
  • the guide driver is used to provide driving force to control the flow of steam/gas cooling working fluid to the condensation coil;
  • the gas-liquid separation component is located at the outlet of the guide driver, and the gas-liquid separation component is used to It is used to separate air and droplet-shaped heat dissipation working fluid.
  • the gaseous heat dissipation working fluid is fully condensed on the condensation coil, thereby improving the condensation efficiency;
  • the diversion driving member realizes the diversion and driving of the fluorinated liquid vapor, so that the diverted fluorinated liquid vapor can be discharged in the condensation plate.
  • the tube is completely condensed, and the outlet of the diversion driver is mainly filled with small droplets of fluorinated liquid and a small amount of air.
  • the outlet of the diversion driver is equipped with a gas-liquid separation component. Due to the different densities of gas and liquid, the mixed flow encounters obstacles. When the gas is flowing, the gas will flow away, and the liquid will continue to move forward due to inertia.
  • the forward liquid adheres to the gas-liquid separation part, and gathers together downward due to gravity, and finally drips back to the box.
  • the air will flow upward due to its low density and be discharged to the outside of the box through the top of the box, so that the pressure in the box can always be maintained at a normal value, which is beneficial to ensuring the stability of the system operation.
  • server heat dissipation control method provided by the embodiment of the present application is applied to the above-mentioned server heat dissipation control device, including determining whether the cover on the box is closed. If the cover is closed, then determining whether the pressure inside the box is the first normal value. If the pressure in the box is not the first normal value, the operation of the guide driving member is controlled. After the heat dissipation working fluid flows toward the condensation coil and is condensed through the condensation coil, the air and droplet-shaped heat dissipation working fluid pass through the guide driving member. The outlet flows to the gas-liquid separation part, which separates the air and the droplet-shaped heat dissipation working medium.
  • the air is discharged upward from the box to adjust the pressure in the box to the first normal value; if the cover is opened, the box is judged Whether the pressure in the body is at the second normal value. If the pressure in the box is not at the second normal value, control the operation of the diversion driving part.
  • the cooling fluid flows towards the condensation coil and is condensed through the condensation coil, the air and drop-shaped
  • the heat dissipation working fluid flows to the gas-liquid separation part through the outlet of the diversion driving part.
  • the gas-liquid separation part separates the air and droplet-shaped heat dissipation working fluid.
  • the air is discharged upward from the box to adjust the pressure in the box to the second normal value. .
  • the above setting method can maintain the pressure inside the box at a normal value, thus improving the heat dissipation efficiency of the server.
  • the server heat dissipation control device and method provided by the embodiments of the present application can improve the condensation efficiency, thereby improving the heat dissipation efficiency. At the same time, it can solve the problem of leakage of fluorinated liquid when the box cover is opened to maintain the server. This not only It can reduce the loss of fluorinated liquid and solve the potential safety risks caused by leaking fluorinated liquid, thus improving safety.
  • Figure 1 is a schematic diagram of the overall structure of the server heat dissipation control device without opening the cover in the embodiment of the present application;
  • FIG 2 is a side view of the server heat dissipation control device shown in Figure 1;
  • FIG 3 is a heat dissipation diagram of the server heat dissipation control device shown in Figure 2;
  • Figure 4 is a schematic structural diagram of the condensation module in Figure 2;
  • FIG. 5 is a top view of the server heat dissipation control device shown in Figure 1;
  • Figure 6 is a front view of the server heat dissipation control device shown in Figure 1;
  • Figure 7 is a schematic diagram of the overall structure of the server heat dissipation control device after the cover is opened in the embodiment of the present application;
  • Figure 8 is a flow chart of a server heat dissipation control method in an embodiment of the present application.
  • 102-Condensation module 1021-Condensation coil, 1022-Flow guide driving part, 1023-Gas-liquid separation part, 10231-First baffle, 10232-Second baffle,
  • the core of this application is to provide a server heat dissipation control device and a server heat dissipation control method applied to the server heat dissipation control device, which can improve heat dissipation efficiency and solve the loss and potential safety of fluorinated liquid leakage when the box cover is opened to maintain the server. Risk issues.
  • Figure 1 is a schematic diagram of the overall structure of the server heat dissipation control device without opening the cover in the embodiment of the present application
  • Figure 2 is a side view of the server heat dissipation control device shown in Figure 1
  • Figure 3 is a view of the server heat dissipation control device shown in Figure 2
  • Figure 4 is a structural schematic diagram of the condensation module in Figure 2
  • Figure 5 is a top view of the server heat dissipation control device shown in Figure 1
  • Figure 6 is a front view of the server heat dissipation control device shown in Figure 1
  • FIG. 7 is a schematic diagram of the overall structure of the server heat dissipation control device after opening the cover in the embodiment of the present application
  • FIG. 8 is a flow chart of the server heat dissipation control method in the embodiment of the present application.
  • the server heat dissipation control device 1 provided by the embodiment of the present application is used for heat dissipation of the server 103.
  • the device specifically includes a box 10, a cover 11, a heat dissipation medium 101 and a condensation module 102.
  • the server 103 is located in the box.
  • the cover 11 is connected to the box 10, and the cover 11 is used to close the box 10 to improve the closed space for the heat dissipation circulation of the server 103;
  • the heat dissipation working fluid 101 is located in the box 10, and the server 103 is immersed in the heat dissipation working fluid 101.
  • the condensation module 102 is provided in the box 10, and the condensation module 102 is used to provide a condensation working condition so that the gaseous heat dissipation working fluid 101 releases heat and condenses into a liquid.
  • the heat dissipation fluid 101 may be a fluorinated liquid.
  • the condensation module 102 specifically includes a condensation coil 1021 and a flow guide driver 1022. Among them, the condensation coil 1021 is provided in the box 10. The condensation coil 1021 is used to assist the phase change of the heat dissipation working fluid 101 to achieve the heat dissipation cycle. It should be noted that the so-called phase change refers to the heat dissipation working fluid that evaporates into a gaseous state.
  • the above arrangement can bring many beneficial effects, including: first, the gaseous heat dissipation working fluid 101 can be fully condensed on the condensation coil 1021, thereby greatly improving the condensation efficiency; second, it can be realized on the cover plate When 11 is closed, it prevents the gaseous heat dissipation working fluid 101 from impacting the cover plate 11. Since the heat dissipation working fluid 101 impacts the cover plate 11 and then rebounds to flow to the condensation module 102, the pressure loss will be increased, which is equivalent to increasing the temperature drop of the steam and indirectly reducing the condensation efficiency.
  • the gaseous heat dissipation working fluid 101 can be prevented from impacting the cover plate 11, thereby further improving the condensation efficiency; thirdly, it can prevent the gaseous heat dissipation working fluid 101 from leaking to the outside of the box 10 when the cover plate 11 is opened, and also prevent the gaseous heat dissipation working fluid 101 from leaking to the outside of the box 10. That is to say, the flow direction of the heat dissipation working fluid 101 is changed through the flow guide driving member 1022 to prevent the heat dissipation working fluid 101 from leaking to the outside of the box 10 .
  • the server heat dissipation control device 1 Compared with traditional server 103 heat dissipation, the server heat dissipation control device 1 provided by the embodiment of the present application can improve the condensation efficiency, thereby improving the heat dissipation efficiency. At the same time, it can solve the problem of leakage of fluorinated liquid when the box 10 is opened to maintain the server 103. This can not only reduce the loss of fluorinated liquid, but also solve the potential safety risks caused by leaking fluorinated liquid, thus improving safety.
  • the above-mentioned flow guide driving member 1022 can be specifically configured as a cross-flow fan, an axial flow fan, etc. According to the application scenario of this application, this application uses cross-flow fans in some embodiments.
  • the suction force of the cross-flow fan provides the main driving force for steam flow, preventing the steam from hitting the cover straight upward.
  • the plate 11 rebounds again to reduce the local loss during steam impact and rebound.
  • the pressure in the evaporation area can be reduced, that is, the boiling point of the fluorinated liquid is lowered, and ultimately the temperature of the internal chip of the server 103 is reduced. . If the same chip temperature is maintained, the heat flux density of the chip can be increased, that is, a higher heat dissipation density is achieved.
  • the above setting method can fundamentally solve the problem of large amounts of fluorinated liquid vapor being lost when the box 10 is opened for maintenance. At the same time, it can also greatly improve the condensation efficiency of the condenser, achieve higher dehydration density, and reduce the unit power consumption. The cost of cooling equipment consumed.
  • the flow guide driving member 1022 is provided near the inlet side of the condensation coil 1021 .
  • the pressure inside the box 10 is controlled by adjusting the operating speed of the cross-flow fan to achieve a balance of air pressure inside and outside the box 10 , thereby preventing steam from leaking to the outside of the box 10 .
  • the cross-flow fan is arranged at or near the inlet side of the condensation coil 1021. Since the condensation capacity is strongest here, the fluorinated liquid vapor sucked by the cross-flow fan is completely condensed in the condensation module 102, thus Greatly improve condensation efficiency.
  • the condensation coil 1021 and the side wall of the box 10 form an accommodation space
  • the flow guide driving member 1022 is provided in the storage space
  • the condensation coil 1021 covers the flow guide driving member in the layout direction of the server 103 1022.
  • the guide driving member 1022 is provided between the condensation coil 1021 and the side wall of the box 10. Since the server 103 is generally arranged vertically in the box 10, the condensation coil 1021 is vertically arranged in the box 10. Covering the flow guide driving member 1022 can ensure that the condensation area in the box 10 is large enough, and the flow guide driving member 1022 is covered in the condensation area.
  • the condensation coil 1021 is a coil with an S-shaped cross-section.
  • the inlet of the condensation coil 1021 is connected to one end of the condensation pipe located outside the box 10 .
  • the condensation pipe is equipped with refrigeration components such as a pump and a compressor.
  • the outlet of the condensation coil 1021 is connected to the condensation pipe located outside the box 10 .
  • the other end of the pipe in this way, can realize the refrigeration cycle.
  • the structure of the S-shaped coil can increase the condensation area, thereby greatly improving the condensation efficiency in the box 10 .
  • the fluoride liquid absorbs the heat generated by the server 103 and evaporates into fluoride liquid gas when the liquid reaches the saturation temperature.
  • the heat is released on the condensation coil 1021 and condenses into The liquid will fall back to the inside of the box 10 under the action of gravity, thus realizing a heat dissipation cycle.
  • the condensation module 102 can also be arranged on both sides of the server 103 .
  • the condensation module 102 also includes a gas-liquid separation component 1023.
  • the gas-liquid separation component 1023 is located at the outlet of the guide driving component 1022.
  • the gas-liquid separation component 1023 is used to separate air and liquid droplets. Cooling fluid 101.
  • the gas-liquid separation member 1023 includes a first baffle 10231 and a second baffle 10232.
  • the first baffle 10231 is connected to the outlet housing of the flow guide driving member 1022, and the second baffle 10232 is connected to The first baffle 10231 is arranged at a preset angle with the first baffle 10231 .
  • the range of the preset included angle can be adjusted according to the cross-flow fan outlet angle, and the range of the preset included angle is generally greater than 90°.
  • this application realizes gas-liquid separation through the gas-liquid separation component 1023 on the basis of arranging the condensation coil 1021 and the cross-flow fan. Specifically, the fluoride liquid vapor sucked by the cross-flow fan is completely condensed on the condensation module 102. Under the driving action of the cross-flow fan, the small droplets of the fluoride liquid and a small amount of air are moved close to the condensation coil 1021 by the fan. One side of the fan enters the fan, and then small droplets of fluoride liquid and a small amount of air flow out along the outlet at the bottom of the fan under the driving action of the fan blades.
  • the outlet at the bottom of the fan is a through hole, that is, the outlet position of the cross-flow fan is mainly filled with fluorine.
  • the outlet of the cross-flow fan is equipped with a baffle plate at a certain angle.
  • the principle of baffle separation is used. That is, due to the different densities of gas and liquid, when the mixed flow encounters obstacles, the gas will baffle and When moving, the liquid will continue to move forward due to inertia. The forward liquid adheres to the baffle blocking wall and gathers downwards due to gravity, and finally drips back at the bottom of the second baffle 10232.
  • the server heat dissipation control device 1 in order to facilitate the discharge of air, also includes a breather valve 12 .
  • the breather valve 12 is provided at the bottom of the cover 11 .
  • the air separated by the gas-liquid separation part 1023 is discharged from the box 10 through the breather valve 12 . .
  • the server heat dissipation control device 1 also includes a pressure detection component and a control component, wherein the pressure detection component is located in the box 10 and is used to detect the pressure in the box 10; the control component is connected to the pressure detection component.
  • the assembly and the flow guide driving member 1022, the control assembly is used to control the work of the flow guide driving member 1022 according to the pressure value detected by the pressure detection component.
  • the control component can be a PLC.
  • the pressure detection component may include a first pressure sensor 15 and a second pressure sensor 16.
  • the first pressure sensor 15 is provided between the cover 11 and the box 10 or on the cover 11, and is used to detect that the cover 11 is closed.
  • the second pressure sensor 16 is provided at the bottom of the cover 11 and is used to detect the pressure value in the box 10 ; in addition, a liquid level gauge and a temperature sensor 17 are also arranged inside the box 10 .
  • the server heat dissipation control device 1 also includes a pressure regulating valve.
  • the pressure regulating valve is provided on the cover plate 11 and connected to the control component.
  • the pressure regulating valve is used to adjust the pressure in the box 10 .
  • it can be installed on the cover plate 11
  • a solenoid valve 13 is arranged at the bottom, and the solenoid valve 13 is controlled by a control assembly to realize pressure regulation in the box 10 .
  • a mechanical safety valve mechanical pressure relief valve 14
  • server heat dissipation control method provided by the embodiment of the present application is applied to the above-mentioned server heat dissipation control device 1, including:
  • S2 If the cover 11 is closed, determine whether the pressure inside the box 10 is the first normal value. If the pressure inside the box 10 is not the first normal value, control the diversion driving member 1022 to operate, and the cooling medium 101 condenses toward the After the coil 1021 flows and is condensed through the condensation coil 1021, the air and the droplet-shaped heat dissipation working fluid 101 flow to the gas-liquid separation part 1023 through the outlet of the guide driving part 1022, and the gas-liquid separation part 1023 separates the air and droplets.
  • the heat dissipation working medium 101 is used, and the air is discharged upward from the box 10 so that the pressure in the box 10 is adjusted to the first normal value;
  • the above arrangement can maintain the pressure inside the box 10 at a normal value, thereby improving the heat dissipation efficiency of the server 103 .
  • the server heat dissipation control method provided by the embodiments of this application specifically includes:
  • the system starts normally;
  • the data of the second pressure sensor 16 is obtained, and based on the data of the second pressure sensor 16, it is determined whether the pressure inside the box 10 is the first normal value. If the pressure inside the box 10 is not the first normal value, Then, by controlling the flow guide driving member 1022 and/or the pressure regulating valve, the pressure in the box 10 is adjusted to the first normal value;
  • the data of the second pressure sensor 16 is obtained, and based on the data of the second pressure sensor 16, it is determined whether the pressure in the box 10 is the second normal value; if the pressure in the box 10 is not the second normal value, Then, the pressure in the box 10 is adjusted to the second normal value by controlling the flow guide driving member 1022 .
  • first normal value and the second normal value have different absolute values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请公开了一种服务器散热控制装置和服务器散热控制方法,服务器散热控制装置包括箱体、盖板、散热工质和冷凝模组,其中,服务器设于箱体中,盖板用于封闭箱体;散热工质设于箱体内,用于供服务器散热;冷凝模组设于箱体上。冷凝模组包括冷凝盘管和导流驱动件,冷凝盘管设于箱体内,冷凝盘管用于辅助散热工质相变,以实现散热循环;导流驱动件朝向冷凝盘管设置,导流驱动件用于提供驱动力控制蒸汽/气体状的散热工质向冷凝盘管流动。上述服务器散热控制装置能够提高冷凝效率,从而提升散热效率,同时,能解决箱体开盖维护服务器时泄露氟化液,这样不仅可以降低氟化液的损失,还可以解决泄露氟化液带来的潜在安全风险问题,从而提高安全性。

Description

一种服务器散热控制装置和服务器散热控制方法
相关申请的交叉引用
本申请要求于2022年04月29日提交中国专利局,申请号为202210462562.2,申请名称为“一种服务器散热控制装置和服务器散热控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及服务器技术领域,特别涉及一种服务器散热控制装置。本申请还涉及一种应用于该服务器散热控制装置的服务器散热控制方法。
背景技术
目前,为了满足数据中心不断增长的算力需求,单机柜功率密度越来越高。此背景下,低PUE(Power Usage Effectiveness的缩写,是评价数据中心能源效率的指标)、高解热密度的液冷数据中心散热技术应运而生。
现有技术中,两相浸没液冷系统利用散热工质的汽化相变潜热快速带走热量,无疑具有最高的冷却效率和最高的解热密度。在两相浸没液冷系统中,需要在密封箱体中设置导热的工程液体(散热工质),比如氟化液,并将密封箱体中的服务器浸没于工程液体实现散热。然而,当需要维护服务器时,需要打开密封箱体的盖板,这样会导致氟化液泄露,以致承受昂贵氟化液大量泄露的经济损失和安全风险。
发明内容
本申请的目的是提供一种服务器散热控制装置以及应用于该服务器散热控制装置的服务器散热控制方法,能够提高散热效率,并解决箱体开盖维护服务器时泄露氟化液的损失和潜在的安全风险问题。
为实现上述目的,本申请提供一种服务器散热控制装置,用于供服务器散热,包括:
箱体;
盖板,连接箱体,用于封闭箱体;
散热工质,设于箱体内,用于供服务器浸没;
冷凝模组,设于箱体内,包括:
冷凝盘管,设于箱体内,用于辅助散热工质相变,以实现散热循环;
导流驱动件,朝向冷凝盘管设置,用于提供驱动力控制气态的散热工质向冷凝盘管流动,以实现在盖板关闭时防止气态的散热工质冲击盖板、在盖板打开时防止气态的散热工质泄露至箱体的外部;
冷凝模组还包括气液分离件,气液分离件设于导流驱动件的出口处,气液分离件用于分离空气和液滴状的散热工质。
在一些实施例中,导流驱动件设于靠近冷凝盘管的入口一侧。
在一些实施例中,冷凝盘管与箱体二者形成有容纳空间,导流驱动件设于容纳空间内,且冷凝盘管在服务器的布设方向上覆盖导流驱动件。
在一些实施例中,冷凝盘管为S型盘管。
在一些实施例中,气液分离件包括第一折流板和第二折流板,第一折流板连接导流驱动件,第二折流板连接第一折流板并与第一折流板呈预设夹角设置。
在一些实施例中,还包括透气阀,透气阀设于盖板上,气液分离件分离出的空气经透气阀排出箱体。
在一些实施例中,还包括:
第一压力传感器,设于盖板和箱体之间,用于检测盖板的状态;
第二压力传感器,设于盖板上,用于检测箱体内的压力;
控制组件,连接第一压力传感器、第二压力传感器和导流驱动件,用于根据第一压力传感器和第二压力传感器检测的压力值控制导流驱动件工作。
在一些实施例中,还包括调压阀,调压阀设于盖板上并连接控制组件,调压阀用于调节箱体内的压力。
本申请还提供一种服务器散热控制方法,应用于上述任意一项的服务器散热控制装置,包括:
判断箱体上的盖板是否关闭;
若盖板关闭,则判断箱体内压力是否为第一正常值;
若判定所述箱体(10)内压力不为第一正常值,则控制导流驱动件运转,在散热工质朝冷凝盘管流动并通过冷凝盘管冷凝后,空气和液滴状的散热工质经导流驱动件的出口流至气液分离件,气液分离件分离空气和液滴状的散热工质,空气向上排出箱体,以使箱体内的压力调整至第一正常值;
若盖板打开,则判断箱体内压力是否为第二正常值;
若判定所述箱体(10)内压力不为第二正常值,则控制导流驱动件运转,在散热工质朝冷凝盘管流动并通过冷凝盘管冷凝后,空气和液滴状的散热工质经导流驱动件的出口流至气液分离件,气液分离件分离空气和液滴状的散热工质,空气向上排出箱体,以使箱体内的压力调整至第二正常值。
相对于上述背景技术,本申请实施例所提供的服务器散热控制装置,用于供服务器散热,该装置具体包括箱体、盖板、散热工质和冷凝模组,其中,服务器设于箱体中,盖板连接箱体,盖板用于封闭箱体,以提高服务器散热循环的密闭空间;散热工质设于箱体内,服务器浸没于散热工质中,以供服务器散热;冷凝模组设于箱体内。进一步地,冷凝模组具体包括冷凝盘管、导流驱动件和气液分离件,冷凝盘管设于箱体内,冷凝盘管用于辅助散热工质相变,以实现散热循环,所谓相变是指蒸发成气体状态的散热工质在冷凝盘管上释放热量后冷凝成液体的过程,冷凝成液体状态的散热工质,在重力作用下,回落至箱体内,从而实现散热循环;导流驱动件朝向冷凝盘管设置,导流驱动件用于提供驱动力控制蒸汽/气体状的散热工质向冷凝盘管流动;气液分离件设于导流驱动件的出口处,气液分离件用于分离空气和液滴状的散热工质。这样可以带来以下有益效果:
其一,气态的散热工质在冷凝盘管上充分冷凝,从而提高冷凝效率;
其二,可实现在盖板关闭时防止气态的散热工质冲击盖板,由于散热工质冲击盖板再反弹流向冷凝模组会增加压损,相当于增加蒸汽的温降,间接的降低了冷凝效率,因此,可防止气态的散热工质冲击盖板,从而可进一步提高冷凝效率;
其三,可实现在盖板打开时防止气态的散热工质泄露至箱体的外部,也就是说,通过导流驱动件改变散热工质的流动方向,以防止散热工质泄露至箱体的外部;
其四,本申请实施例在设置冷凝盘管和导流驱动件的基础上,通过导流驱动件实现对于氟化液蒸汽的导流驱动,从而使导流过来的氟化液蒸汽在冷凝盘管上完全冷凝,导流驱动件出口位置主要为氟化液小颗粒液滴和少量的空气,导流驱动件的出口设置有气液分离件,由于气体和液体的密度不同,混流遇到阻碍时,气体会折流而走,液体由于惯性会有一个继续向前的速度,向前的液体附着在气液分离件上,并因重力的作用向下汇集到一起,最后滴回至箱体内部;而空气由于密度小会折流向上,通过箱体顶部排向箱体外部,从而可以使箱体内的压力始终维持在正常值,有利于保证系统运行的稳定性。
此外,本申请实施例所提供的服务器散热控制方法,应用于上述服务器散热控制装置,包括判断箱体上的盖板是否关闭,若盖板关闭,则判断箱体内压力是否为第一正常值,若箱体内压力不是第一正常值,则控制导流驱动件运转,在散热工质朝冷凝盘管流动并通过冷凝 盘管冷凝后,空气和液滴状的散热工质经导流驱动件的出口流至气液分离件,气液分离件分离空气和液滴状的散热工质,空气向上排出箱体,以使箱体内的压力调整至第一正常值;若盖板打开,则判断箱体内压力是否为第二正常值,若箱体内压力不是第二正常值,则控制导流驱动件运转,在散热工质朝冷凝盘管流动并通过冷凝盘管冷凝后,空气和液滴状的散热工质经导流驱动件的出口流至气液分离件,气液分离件分离空气和液滴状的散热工质,空气向上排出箱体,以使箱体内的压力调整至第二正常值。上述设置方式可以维持箱体内压力为正常值,从而提升服务器的散热效率。
相较于传统服务器散热,本申请实施例提供的服务器散热控制装置和方法,能够提高冷凝效率,从而提升散热效率,与此同时,能解决箱体开盖维护服务器时泄露氟化液,这样不仅可以降低氟化液的损失,还可以解决泄露氟化液带来的潜在安全风险问题,从而提高安全性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例中服务器散热控制装置未开盖的整体结构示意图;
图2为图1所示服务器散热控制装置的侧视图;
图3为图2所示服务器散热控制装置的散热示意图;
图4为图2中冷凝模组的结构示意图;
图5为图1所示服务器散热控制装置的俯视图;
图6为图1所示服务器散热控制装置的正视图;
图7为本申请实施例中服务器散热控制装置开盖后的整体结构示意图;
图8为本申请实施例中服务器散热控制方法的流程图。
其中:
1-服务器散热控制装置、
10-箱体、11-盖板、12-透气阀、13-电磁阀、14-机械泄压阀、15-第一压力传感器、16-第二压力传感器、17-液位计及温度传感器、
101-散热工质、
102-冷凝模组、1021-冷凝盘管、1022-导流驱动件、1023-气液分离件、10231-第一折 流板、10232-第二折流板、
103-服务器。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其他实施例,属于本申请保护的范围。
本申请的核心是提供一种服务器散热控制装置以及应用于该服务器散热控制装置的服务器散热控制方法,能够提高散热效率,并解决箱体开盖维护服务器时泄露氟化液的损失和潜在的安全风险问题。
为了使本技术领域的技术人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
需要说明的是,下文所述的“上端、下端、左侧、右侧”等方位词都是基于说明书附图所定义的。
请参考图1至图8,图1为本申请实施例中服务器散热控制装置未开盖的整体结构示意图;图2为图1所示服务器散热控制装置的侧视图;图3为图2所示服务器散热控制装置的散热示意图;图4为图2中冷凝模组的结构示意图;图5为图1所示服务器散热控制装置的俯视图;图6为图1所示服务器散热控制装置的正视图;图7为本申请实施例中服务器散热控制装置开盖后的整体结构示意图;图8为本申请实施例中服务器散热控制方法的流程图。
本申请实施例所提供的服务器散热控制装置1,用于供服务器103散热,该装置具体包括箱体10、盖板11、散热工质101和冷凝模组102,其中,服务器103设于箱体10中,盖板11连接箱体10,盖板11用于封闭箱体10,以提高服务器103散热循环的密闭空间;散热工质101设于箱体10内,服务器103浸没于散热工质101中,以供服务器103散热;冷凝模组102设于箱体10内,冷凝模组102用于提供冷凝工况,以便气体状态的散热工质101释放热量后冷凝成液体。
在一些实施例中,上述散热工质101可以采用氟化液。
进一步地,冷凝模组102具体包括冷凝盘管1021和导流驱动件1022。其中,冷凝盘管1021设于箱体10内,冷凝盘管1021用于辅助散热工质101相变,以实现散热循环,需要说明的是,所谓相变是指蒸发成气体状态的散热工质101在冷凝盘管1021上释放热量后冷 凝成液体的过程;冷凝成液体状态的散热工质101,在重力作用下,回落至箱体10内,从而实现散热循环;导流驱动件1022朝向冷凝盘管1021设置,导流驱动件1022用于提供驱动力控制蒸汽/气体状的散热工质101向冷凝盘管1021流动。
这样一来,上述设置方式可带来诸多有益效果,具体包括:其一,气态的散热工质101可以在冷凝盘管1021上充分冷凝,从而大大提高冷凝效率;其二,可实现在盖板11关闭时防止气态的散热工质101冲击盖板11,由于散热工质101冲击盖板11再反弹流向冷凝模组102会增加压损,相当于增加蒸汽的温降,间接的降低了冷凝效率,因此,可防止气态的散热工质101冲击盖板11,从而可进一步提高冷凝效率;其三,可实现在盖板11打开时防止气态的散热工质101泄露至箱体10的外部,也就是说,通过导流驱动件1022改变散热工质101的流动方向,以防止散热工质101泄露至箱体10的外部。
相较于传统服务器103散热,本申请实施例提供的服务器散热控制装置1,能够提高冷凝效率,从而提升散热效率,与此同时,能解决箱体10开盖维护服务器103时泄露氟化液,这样不仅可以降低氟化液的损失,还可以解决泄露氟化液带来的潜在安全风险问题,从而提高安全性。
当然,根据实际需要,上述导流驱动件1022具体可以设置为贯流风扇、轴流风扇等。根据本申请的应用场景,本申请在一些实施例中采用贯流风扇。
可以理解的是,在不设置贯流风扇的情况下,氟化液气体流动的驱动力来源于服务器103上部蒸发区正压和冷凝区负压的压差,考虑到泄露问题,箱体10内部为常压控制,压差不能太大,如此一来,蒸汽在箱体10内部上升过程中大部分会冲击盖板11,然后再反弹流向冷凝模组102,这样会增加压损,相当于增加了蒸汽的温降,间接的降低了冷凝效率。当箱体10需要开盖维护时这个问题会导致氟化液气体径直流向箱体10外部,进而导致价格昂贵的氟化液的大量流失,不仅造成经济损失还造成安全隐患。
通过本申请提出的两相浸没液冷服务器散热控制装置1,在冷凝模组102的设置下,正常运行时,通过贯流风扇的抽力提供蒸汽流动的主要驱动力,避免蒸汽径直向上冲击盖板11再反弹降低蒸汽冲击和反弹时的局部损失,同时在冷凝区维持相同压力的情况下,可以降低蒸发区的压力,也即降低了氟化液的沸点,最终降低服务器103内部芯片的温度。如果维持相同的芯片温度,则可以提高芯片的热流密度,即实现了更高的解热密度。
也就是说,上述设置方式可以从根本上解决箱体10开盖维护时氟化液蒸汽大量流失的问题,同时还可以大幅提升冷凝器的冷凝效率,实现更高解热密度,降低了单位功耗的散热设备成本。
在一些实施例中,导流驱动件1022设于靠近冷凝盘管1021的入口一侧。
当箱体10处于开盖维护时,通过调整贯流风扇的运转速度控制箱体10内的压力,达到箱体10内外气压平衡,从而避免蒸汽泄露到箱体10外部。此时,贯流风扇布置在冷凝盘管1021的入口一侧或附近,由于此处冷凝能力最强,因此,贯流风扇抽吸过来的氟化液蒸汽在冷凝模组102内完全冷凝,从而大大提高冷凝效率。
在一些实施例中,冷凝盘管1021与箱体10的侧壁形成有容纳空间,导流驱动件1022设于容纳空间内,且冷凝盘管1021在服务器103的布设方向上覆盖导流驱动件1022。
也就是说,导流驱动件1022设于冷凝盘管1021与箱体10的侧壁之间,由于服务器103一般沿竖向布设于箱体10中,因此,冷凝盘管1021在竖直方向上覆盖导流驱动件1022,这样可以保证箱体10内的冷凝区域足够大,且导流驱动件1022被覆盖在冷凝区域内。
在一些实施例中,冷凝盘管1021具体为截面形状为S型的盘管。
具体地说,该冷凝盘管1021的入口连接位于箱体10外部的冷凝管道的一端,该冷凝管道设有泵、压缩机等制冷组件,冷凝盘管1021的出口连接位于箱体10外部的冷凝管道的另一端,如此一来,即可实现制冷循环。S型盘管的结构可以增加冷凝的面积,从而大大提高箱体10内的冷凝效率。
以冷凝模组102布置在单侧为例,系统投入后,氟化液吸收服务器103的发热量,并在液体达到饱和温度时蒸发成氟化液气体,在冷凝盘管1021上释放热量冷凝成液体,并在重力作用下回落至箱体10内部,如此实现散热循环。当然,根据实际需要,冷凝模组102布置也可以布设于服务器103的两侧。
为了保证保证系统运行的稳定性,冷凝模组102还包括气液分离件1023,气液分离件1023设于导流驱动件1022的出口处,气液分离件1023用于分离空气和液滴状的散热工质101。在一些实施例中,气液分离件1023包括第一折流板10231和第二折流板10232,第一折流板10231连接导流驱动件1022的出口壳体,第二折流板10232连接第一折流板10231并与第一折流板10231呈预设夹角设置。该预设夹角的范围可以根据贯流风扇出口角度进行调整,预设夹角的范围一般为大于90°。
这样一来,本申请在设置冷凝盘管1021和贯流风扇的基础上,通过气液分离件1023实现气液分离。具体地,贯流风扇抽吸过来的氟化液蒸汽在冷凝模组102上完全冷凝,在贯流风扇的驱动作用下,氟化液小颗粒液滴和少量的空气由风扇靠近冷凝盘管1021的一侧进入风扇,然后氟化液小颗粒液滴和少量的空气在风扇叶片的驱动作用下沿风扇底部的出口流 出,风扇底部的出口为贯通孔,也即贯流风扇出口位置主要为氟化液小颗粒液滴和少量的空气,贯流风扇出口设置有一定角度的折流板,利用折流分离原理,即由于气体和液体的密度不同,混流遇到阻碍时,气体会折流而走,液体由于惯性会有一个继续向前的速度,向前的液体附着在折流板阻挡壁面上,并因重力的作用向下汇集到一起,最后在第二折流板10232的底部滴回至箱体10内部;而空气由于密度小会折流向上,通过箱体10顶部排向箱体10外部,从而可以使箱体10内的压力始终维持在正常值,有利于保证系统运行的稳定性。
在一些实施例中,为了便于排出空气,服务器散热控制装置1还包括透气阀12,透气阀12设于盖板11的底部,气液分离件1023分离出的空气经透气阀12排出箱体10。
在一些实施例中,服务器散热控制装置1还包括压力检测组件和控制组件,其中,压力检测组件设于箱体10内,压力检测组件用于检测箱体10内的压力;控制组件连接压力检测组件和导流驱动件1022,控制组件用于根据压力检测组件检测的压力值控制导流驱动件1022工作。该控制组件可以为PLC。
具体地,压力检测组件可以包括第一压力传感器15和第二压力传感器16,第一压力传感器15设于盖板11和箱体10之间或者盖板11上,并用于检测盖板11处于闭合还是开启状态,第二压力传感器16设于盖板11的底部,并用于检测箱体10内压力值;此外,箱体10内部还布置有液位计及温度传感器17。
在一些实施例中,服务器散热控制装置1还包括调压阀,调压阀设于盖板11上并连接控制组件,调压阀用于调节箱体10内的压力,比如可以在盖板11底部布置电磁阀13,通过控制组件控制电磁阀13实现箱体10内的压力调节。当然,还可以在盖板11底部布置机械式安全阀(机械泄压阀14)。
此外,本申请实施例所提供的服务器散热控制方法,应用于上述服务器散热控制装置1,包括:
S1:判断箱体10上的盖板11是否关闭;
S2:若盖板11关闭,则判断箱体10内压力是否为第一正常值,若箱体10内压力不是第一正常值,则控制导流驱动件1022运转,在散热工质101朝冷凝盘管1021流动并通过冷凝盘管1021冷凝后,空气和液滴状的散热工质101经导流驱动件1022的出口流至气液分离件1023,气液分离件1023分离空气和液滴状的散热工质101,空气向上排出箱体10,以使箱体10内的压力调整至第一正常值;
S3:若盖板11打开,则判断箱体10内压力是否为第二正常值,若箱体10内压力不是第二正常值,则控制导流驱动件1022运转,在散热工质101朝冷凝盘管1021流动并通过冷 凝盘管1021冷凝后,空气和液滴状的散热工质101经导流驱动件1022的出口流至气液分离件1023,气液分离件1023分离空气和液滴状的散热工质101,空气向上排出箱体10,以使箱体10内的压力调整至第二正常值。
上述设置方式可以维持箱体10内压力为正常值,从而提升服务器103的散热效率。
在一些实施例中,本申请实施例所提供的服务器散热控制方法具体包括:
系统正常启动;
获取第一压力传感器15的数据;
根据第一压力传感器15检测到的数据判断盖板11是否关闭;
若盖板11关闭,则获取第二压力传感器16的数据,并根据第二压力传感器16的数据判断箱体10内压力是否为第一正常值,若箱体10内压力不是第一正常值,则通过控制导流驱动件1022,和/或调压阀以使箱体10内的压力调整至第一正常值;
若盖板11打开,则获取第二压力传感器16的数据,并根据第二压力传感器16的数据判断箱体10内压力是否为第二正常值;若箱体10内压力不是第二正常值,则通过控制导流驱动件1022以使箱体10内的压力调整至第二正常值。
需要注意的是,上述第一正常值和第二正常值的绝对值不同。
当然,在上述系统正常启动的步骤之前,还包括检测箱体10内的液位计、温度传感器的数值是否正常,若否,则需要进行调整,直至液位计、温度传感器的数值均处于正常值。
需要说明的是,在本说明书中,诸如第一和第二之类的关系术语仅仅用来将一个实体与另外几个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。
以上对本申请所提供的服务器散热控制装置及方法进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方案及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (20)

  1. 一种服务器散热控制装置(1),用于供服务器(103)散热,其特征在于,包括:
    箱体(10);
    盖板(11),连接所述箱体(10),用于封闭所述箱体(10);
    散热工质(101),设于所述箱体(10)内,用于供所述服务器(103)浸没;
    冷凝模组(102),设于所述箱体(10)内,包括:
    冷凝盘管(1021),设于所述箱体(10)内,用于辅助所述散热工质(101)相变,以实现散热循环;
    导流驱动件(1022),朝向所述冷凝盘管(1021)设置,用于提供驱动力控制气态的所述散热工质(101)向所述冷凝盘管(1021)流动,以实现在所述盖板(11)关闭时防止气态的所述散热工质(101)冲击所述盖板(11)、在所述盖板(11)打开时防止气态的所述散热工质(101)泄露至所述箱体(10)的外部;
    所述冷凝模组(102)还包括气液分离件(1023),所述气液分离件(1023)设于所述导流驱动件(1022)的出口处,所述气液分离件(1023)用于分离空气和液滴状的所述散热工质(101)。
  2. 如权利要求1所述的服务器散热控制装置(1),其特征在于,所述导流驱动件(1022)设于靠近所述冷凝盘管(1021)的入口一侧。
  3. 如权利要求2所述的服务器散热控制装置(1),其特征在于,所述冷凝盘管(1021)与所述箱体(10)二者形成有容纳空间,所述导流驱动件(1022)设于所述容纳空间内,且所述冷凝盘管(1021)在所述服务器(103)的布设方向上覆盖所述导流驱动件(1022)。
  4. 如权利要求1所述的服务器散热控制装置(1),其特征在于,所述冷凝盘管(1021)为S型盘管。
  5. 如权利要求1所述的服务器散热控制装置(1),其特征在于,所述气液分离件(1023)包括第一折流板(10231)和第二折流板(10232),所述第一折流板(10231) 连接所述导流驱动件(1022),所述第二折流板(10232)连接所述第一折流板(10231)并与所述第一折流板(10231)呈预设夹角设置。
  6. 如权利要求1所述的服务器散热控制装置(1),其特征在于,还包括透气阀(12),所述透气阀(12)设于所述盖板(11)上,所述气液分离件(1023)分离出的空气经所述透气阀(12)排出所述箱体(10)。
  7. 如权利要求1-4任意一项所述的服务器散热控制装置(1),其特征在于,还包括:
    第一压力传感器(15),设于所述盖板(11)和所述箱体(10)之间,用于检测所述盖板(11)的状态;
    第二压力传感器(16),设于所述盖板(11)上,用于检测所述箱体(10)内的压力;
    控制组件,连接所述第一压力传感器(15)、所述第二压力传感器(16)和所述导流驱动件(1022),用于根据所述第一压力传感器(15)和所述第二压力传感器(16)检测的压力值控制所述导流驱动件(1022)工作。
  8. 如权利要求7所述的服务器散热控制装置(1),其特征在于,还包括调压阀,所述调压阀设于所述盖板(11)上并连接所述控制组件,所述调压阀用于调节所述箱体(10)内的压力。
  9. 如权利要求4所述的服务器散热控制装置(1),其特征在于,所述冷凝盘管(1021)的入口连接位于箱体(10)外部的冷凝管道的一端,所述冷凝管道设对应的制冷组件,冷凝盘管(1021)的出口连接位于箱体(10)外部的冷凝管道的另一端。
  10. 如权利要求5所述的服务器散热控制装置(1),其特征在于,所述冷凝模组(102)布设于所述服务器(103)的两侧,所述预设夹角的范围大于90°。
  11. 一种服务器散热控制方法,其特征在于,应用于如权利要求1所述的服务器散热控制装置(1),包括:
    判断箱体(10)上的盖板(11)是否关闭;
    若所述盖板(11)关闭,则判断所述箱体(10)内压力是否为第一正常值;
    若判定所述箱体(10)内压力不为第一正常值,则控制导流驱动件(1022)运转,在散热工质(101)朝冷凝盘管(1021)流动并通过所述冷凝盘管(1021)冷凝后,空气和液滴状的所述散热工质(101)经所述导流驱动件(1022)的出口流至气液分离件(1023),所述气液分离件(1023)分离空气和液滴状的所述散热工质(101),空气向上排出所述箱体(10),以使所述箱体(10)内的压力调整至所述第一正常值;
    若所述盖板(11)打开,则判断所述箱体(10)内压力是否为第二正常值;
    若判定所述箱体(10)内压力不为第二正常值,则控制所述导流驱动件(1022)运转,在所述散热工质(101)朝所述冷凝盘管(1021)流动并通过所述冷凝盘管(1021)冷凝后,空气和液滴状的所述散热工质(101)经所述导流驱动件(1022)的出口流至气液分离件(1023),所述气液分离件(1023)分离空气和液滴状的所述散热工质(101),空气向上排出所述箱体(10),以使所述箱体(10)内的压力调整至所述第二正常值。
  12. 如权利要求11所述的方法,其特征在于,所述导流驱动件(1022)设于靠近所述冷凝盘管(1021)的入口一侧。
  13. 如权利要求12所述的方法,其特征在于,所述冷凝盘管(1021)与所述箱体(10)二者形成有容纳空间,所述导流驱动件(1022)设于所述容纳空间内,且所述冷凝盘管(1021)在所述服务器(103)的布设方向上覆盖所述导流驱动件(1022)。
  14. 如权利要求11所述的方法,其特征在于,所述冷凝盘管(1021)为S型盘管。
  15. 如权利要求11所述的方法,其特征在于,所述气液分离件(1023)包括第一折流板(10231)和第二折流板(10232),所述第一折流板(10231)连接所述导流驱动件(1022),所述第二折流板(10232)连接所述第一折流板(10231)并与所述第一折流板(10231)呈预设夹角设置。
  16. 如权利要求11所述的方法,其特征在于,还包括透气阀(12),所述透气阀(12)设于所述盖板(11)上,所述气液分离件(1023)分离出的空气经所述透气阀(12)排出所述箱体(10)。
  17. 如权利要求11-14任意一项所述的方法,其特征在于,还包括:
    第一压力传感器(15),设于所述盖板(11)和所述箱体(10)之间,用于检测所述盖板(11)的状态;
    第二压力传感器(16),设于所述盖板(11)上,用于检测所述箱体(10)内的压力;
    控制组件,连接所述第一压力传感器(15)、所述第二压力传感器(16)和所述导流驱动件(1022),用于根据所述第一压力传感器(15)和所述第二压力传感器(16)检测的压力值控制所述导流驱动件(1022)工作。
  18. 如权利要求17所述的方法,其特征在于,还包括调压阀,所述调压阀设于所述盖板(11)上并连接所述控制组件,所述调压阀用于调节所述箱体(10)内的压力。
  19. 如权利要求14所述的方法,其特征在于,所述冷凝盘管(1021)的入口连接位于箱体(10)外部的冷凝管道的一端,所述冷凝管道设对应的制冷组件,冷凝盘管(1021)的出口连接位于箱体(10)外部的冷凝管道的另一端。
  20. 如权利要求15所述的方法,其特征在于,所述冷凝模组(102)布设于所述服务器(103)的两侧,所述预设夹角的范围大于90°。
PCT/CN2022/135156 2022-04-29 2022-11-29 一种服务器散热控制装置和服务器散热控制方法 WO2023207074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210462562.2 2022-04-29
CN202210462562.2A CN114578934B (zh) 2022-04-29 2022-04-29 一种服务器散热控制装置和服务器散热控制方法

Publications (1)

Publication Number Publication Date
WO2023207074A1 true WO2023207074A1 (zh) 2023-11-02

Family

ID=81778196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135156 WO2023207074A1 (zh) 2022-04-29 2022-11-29 一种服务器散热控制装置和服务器散热控制方法

Country Status (2)

Country Link
CN (1) CN114578934B (zh)
WO (1) WO2023207074A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114578934B (zh) * 2022-04-29 2022-07-08 苏州浪潮智能科技有限公司 一种服务器散热控制装置和服务器散热控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229493A (ja) * 1990-02-05 1991-10-11 Fujitsu Ltd 浸漬冷却構造
US20200393206A1 (en) * 2019-06-17 2020-12-17 Wiwynn Corporation Immersion cooling module and electronic apparatus having the same
CN113056167A (zh) * 2021-03-05 2021-06-29 上海菡威装备有限公司 一种基于分离式热管换热器的液冷服务器换热设备
CN113675497A (zh) * 2021-07-20 2021-11-19 哈尔滨工业大学 一种浸没式液冷储能电池箱
CN114578934A (zh) * 2022-04-29 2022-06-03 苏州浪潮智能科技有限公司 一种服务器散热控制装置和服务器散热控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102458084B (zh) * 2010-10-29 2016-05-11 鸿富锦精密工业(深圳)有限公司 数据中心及其散热系统
CN108601286B (zh) * 2018-01-02 2020-09-25 联想(北京)有限公司 电子设备
CN111863740A (zh) * 2020-04-10 2020-10-30 上海交通大学 用于浸没式液冷系统的自诱导射流无源沸腾散热强化方法及装置
CN214413364U (zh) * 2021-03-05 2021-10-15 上海菡威装备有限公司 一种基于分离式热管换热器的液冷服务器换热设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229493A (ja) * 1990-02-05 1991-10-11 Fujitsu Ltd 浸漬冷却構造
US20200393206A1 (en) * 2019-06-17 2020-12-17 Wiwynn Corporation Immersion cooling module and electronic apparatus having the same
CN113056167A (zh) * 2021-03-05 2021-06-29 上海菡威装备有限公司 一种基于分离式热管换热器的液冷服务器换热设备
CN113675497A (zh) * 2021-07-20 2021-11-19 哈尔滨工业大学 一种浸没式液冷储能电池箱
CN114578934A (zh) * 2022-04-29 2022-06-03 苏州浪潮智能科技有限公司 一种服务器散热控制装置和服务器散热控制方法

Also Published As

Publication number Publication date
CN114578934A (zh) 2022-06-03
CN114578934B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US10863650B2 (en) Air-vapor separation method for immersed liquid cooling system and device thereof
WO2023207074A1 (zh) 一种服务器散热控制装置和服务器散热控制方法
WO2019061721A1 (zh) 一种数据中心冷却系统以及数据中心
CN207096908U (zh) 一种计算机主机防潮散热装置
TWI521140B (zh) 數據機房之無油離心式冷卻系統
US20220248559A1 (en) Systems and methods for immersion cooling with subcooled spray
US11991858B2 (en) Two phase coolant management
US20240138112A1 (en) Systems and methods for immersion cooling with subcooled spray
WO2023169116A1 (zh) 机箱、电子设备和机箱排气方法
TWM628465U (zh) 一種帶有可移動第二冷凝器的兩相浸沒式冷卻裝置
CN108549475A (zh) 一种液冷服务器
WO2023206783A1 (zh) 一种服务器及其除湿节能型负压液冷系统
CN208314710U (zh) 一种液冷服务器
TWI831133B (zh) 浸入式冷卻系統及浸入式冷卻方法
CN206339921U (zh) 一种一体式压缩机散热机箱
WO2022177715A1 (en) Two phase coolant management
TWI828565B (zh) 兩相浸沒式冷卻系統、工作流體回收裝置及方法
US11740669B2 (en) Electronic apparatus having immersion cooling system and operating method thereof
CN217685541U (zh) 一种防溢水结构以及机房恒湿机
JPS6032529Y2 (ja) 冷凍機
CN106708223A (zh) 一种一体式压缩机散热机箱
CN218993741U (zh) 一种带有温度补偿的冷凝器
EP4336982A1 (en) Two-phase immersion cooling system, working fluid recovery device and method
CN218544670U (zh) 一种蒸发温度控制装置
TW202412592A (zh) 兩相浸沒式冷卻系統、工作流體回收裝置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939888

Country of ref document: EP

Kind code of ref document: A1