WO2019061721A1 - 一种数据中心冷却系统以及数据中心 - Google Patents

一种数据中心冷却系统以及数据中心 Download PDF

Info

Publication number
WO2019061721A1
WO2019061721A1 PCT/CN2017/110956 CN2017110956W WO2019061721A1 WO 2019061721 A1 WO2019061721 A1 WO 2019061721A1 CN 2017110956 W CN2017110956 W CN 2017110956W WO 2019061721 A1 WO2019061721 A1 WO 2019061721A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
data center
liquid
coolant
cooling system
Prior art date
Application number
PCT/CN2017/110956
Other languages
English (en)
French (fr)
Inventor
李棒
林�智
廖雄龙
Original Assignee
深圳绿色云图科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳绿色云图科技有限公司 filed Critical 深圳绿色云图科技有限公司
Publication of WO2019061721A1 publication Critical patent/WO2019061721A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds

Definitions

  • the present invention relates to the field of liquid cooling technologies, and in particular, to a data center cooling system and a data center.
  • the specific volume-to-volume heat capacity of air is low, the current way of relying on reducing the supply air temperature and increasing the air volume to meet the heat dissipation requirements of the server has encountered a bottleneck.
  • the air-cooled server racks commonly used in the market can carry 3 to 20 kW of server power in a single rack.
  • the specific volumetric heat capacity of the coolant used in the liquid-cooled data center is 1000 to 1200 times that of air, which allows a single liquid-cooled server rack to accommodate servers with powers of 20 to 100 kW or higher.
  • the prior art cannot provide a data center cooling system and a data center that are widely used, energy efficient, and low cost.
  • the present invention provides a data center cooling system and a data center for solving the problems of the prior art that cannot provide a wide range of applications, energy efficient and low cost data center cooling systems and data centers.
  • An embodiment of the present invention provides a data center cooling system, including: a liquid cooling pool for loading a cooling liquid; a cooling unit, the cooling unit being placed in the liquid cooling pool and alternately arranged with the server; The server is placed in the liquid cooling tank and immersed in the cooling liquid, and the cooling liquid forms a flow channel with the server and the cooling unit, wherein the top and bottom of the server are respectively.
  • the coolants have a first pitch and a second pitch, respectively.
  • first pitch and the second pitch are based on a maximum design circulation amount of the coolant definite.
  • the cooling unit further includes a circulation pump and a heat exchanger, and a configuration ratio of the circulation pump to the heat exchanger is N:1, and N is a natural number greater than zero.
  • the cooling unit further includes a liquid outlet and a liquid return port, wherein the liquid return port is used to pass the coolant in the upper portion of the server into the circulation pump through the liquid return port;
  • the liquid port is for introducing the coolant cooled by the heat exchanger to the bottom of the server through the liquid outlet.
  • the cooling unit further includes a first filter for filtering the coolant, the first filter being located at an upper portion of the circulation pump.
  • the data center cooling system further includes a cooling water supply pipe, a cooling water return pipe, and an outdoor heat dissipation device;
  • cooling water supply pipe One end of the cooling water supply pipe is connected to the water inlet of the heat exchanger of the data center, and the other end is connected to the outlet of the outdoor heat dissipation device; the cooling water supply pipe is used to cool the outdoor heat dissipation device Cooling water is introduced into the heat exchanger;
  • cooling water return pipe One end of the cooling water return pipe is connected to the water outlet of the heat exchanger, and the other end is connected to the inlet of the outdoor heat dissipating device; the cooling water return pipe is used for cooling and cooling in the heat exchanger Liquid cooling water is introduced into the outdoor heat dissipation device;
  • the outdoor heat dissipation device is configured to cool the cooling water.
  • the data center cooling system further includes a micro pump and a draft tube, the micro pump Positioned above the server, a flow guiding tube is further disposed above the server, and the micro pump is used to suck the coolant in the liquid cooling tank through the guiding tube, and output the cooling liquid
  • the liquid cooling tank is such that the cooling liquid is cooled.
  • the data center cooling system further includes:
  • An overflow pipe one end of which is connected to the micropump, and the overflow pipe is used to concentrate the coolant extracted by the micro pump.
  • the data center cooling system further includes:
  • a hot pool having an inlet connected to one end of the overflow pipe for collecting the coolant in the overflow pipe.
  • the data center cooling system further includes:
  • the second filter is located between the hot pool and the overflow pipe for filtering the coolant.
  • the central cooling system further includes: a heat exchanger, an outdoor heat dissipation device;
  • a first inlet of the heat exchanger is connected to an outlet of the heat pool, a first outlet of the heat exchanger is connected to an inlet of the outdoor heat dissipation device; and the outdoor heat dissipation device is used to cool cooling water;
  • a second inlet of the heat exchanger is connected to an outlet of the outdoor heat dissipation device, and a second outlet of the heat exchanger is connected to the liquid cooling pool;
  • the heat exchanger is configured to cool the coolant in the hot pool using cooling water.
  • the data center cooling system further includes:
  • a coolant circulation pump wherein a second outlet of the heat exchanger is connected to the liquid cooling tank through the coolant circulation pump, and the coolant circulation pump is used to input the coolant after the heat exchanger is cooled Return to the liquid cooling tank.
  • micropump operates at a first speed and the coolant circulation pump operates at a second speed.
  • the data center cooling system further includes a coolant temperature detector, the coolant temperature detector is located inside the liquid cooling tank, and is configured to detect the temperature of the coolant, and according to the temperature of the coolant
  • the setting relationship of the rotational speed of the micropump is to send an adjustment rotational speed signal to the micropump.
  • the data center cooling system further includes a cooling water regulating valve located at a cooling water inlet end of the heat exchanger, the cooling water regulating valve for adjusting the cooling water regulating valve The opening degree adjusts the flow rate of the cooling water.
  • Embodiments of the present invention also provide a data center including the data center cooling system described above.
  • the coolant pumped by the circulation pump in the data center cooling system is cooled by the heat exchanger, and the cooling water in the heat exchanger is radiated by the outdoor heat dissipation device.
  • the data center cooling system in the embodiment of the present invention has a simple structure and reduces the construction cost of the cooling system.
  • the data center cooling system in the embodiment of the present invention further includes a micro pump and a coolant circulation pump, and the entire system can be divided into two parts by independently adjusting the rotation speeds of two different pumps, and one part is a liquid cooling pool. - the heat exchanger cycle, the other part is hot Converter - Outdoor cooling device, the two parts can operate independently of each other and will not affect each other.
  • the data center can use the cooling unit in the system to cool the server placed in the system, which reduces the construction cost of the data center and improves the reliability of the data center compared with the traditional data center.
  • the cooling liquid can be more effectively in the cooling unit.
  • the circulation between the server and the server also improves the uniformity of the coolant as it flows through the server.
  • the outdoor cooling device can be used to cool the cooling water without additional treatment of the cooling water, there is no need to use the mounting rack to place the server, and the placement of the cooling unit and the server is less restricted, and the partition is not limited, so the space is High utilization, small changes to the data center, reducing the cost of the data center.
  • the data center includes a data center cooling system, a cooling water supply pipe, a return water pipe, and an outdoor heat dissipation device
  • the cold water supply pipe is used to introduce the cooling water of the outdoor heat dissipation device to the heat exchanger of the data center cooling system.
  • the cooling water return pipe is used to introduce the cooled water in the heat exchanger of the data center cooling system into the outdoor heat dissipating device, and dissipates heat through the outdoor heat dissipating device, thereby ensuring the cooling function of the heat exchanger, thereby ensuring the data center.
  • the cooling effect of the server is used to introduce the cooled water in the heat exchanger of the data center cooling system into the outdoor heat dissipating device, and dissipates heat through the outdoor heat dissipating device, thereby ensuring the cooling function of the heat exchanger, thereby ensuring the data center.
  • FIG. 1 is a schematic structural diagram of a cooling unit according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another cooling unit according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a cooling water passage and a gate-shaped coolant passage of a cooling unit according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a cooling water passage of a cooling unit and a circular arc-shaped coolant passage having an opening according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a cooling water passage of a cooling unit and a zigzag arc-shaped cooling liquid passage according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a gate-shaped cooling water passage and a liquid passage of a cooling unit according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a circular arc cooling water passage having an opening and a coolant passage of a cooling unit according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a partially overlapping cooling water passage and a coolant passage of a cooling unit according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a cooling unit according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another cooling unit according to an embodiment of the present invention.
  • FIG. 11 is a partial cross-sectional structural diagram of a data center cooling system according to an embodiment of the present invention.
  • FIG. 12 is a partial cross-sectional structural diagram of another data center cooling system according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a data center cooling system according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a portion of a data center cooling system according to an embodiment of the present invention.
  • FIG. 15 is a partial structural diagram of a data center cooling system including a hot pool according to an embodiment of the present invention.
  • 16 is a schematic structural diagram of a data center cooling system including a heat exchanger and an outdoor heat dissipation device according to an embodiment of the present invention
  • FIG. 17 is a schematic structural diagram of a data center cooling system including a cooling water regulating valve and a coolant temperature detector according to an embodiment of the present invention
  • FIG. 18 is a schematic structural diagram of a portion of a data center according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of another part of a data center according to an embodiment of the present invention.
  • a data center refers to a complete set of computer systems and related components.
  • the server in the embodiment of the present invention also called a server, is a device that provides a computing service.
  • the present invention provides a cooling unit 100 for a submerged server.
  • the cooling unit 100 includes a circulation pump 101 and a heat exchanger 102, and the cooling unit 100 has a circulating coolant passage and a cooling water passage for cooling.
  • the liquid passage is outside the heat exchanger 102, and the cooling water passage is inside the heat exchanger 102, and the circulation pump 101 is used to drive the circulation behavior of the coolant passage.
  • the coolant is a liquid having a certain dielectric strength, and various types of electronic components on the server 130 can operate normally in the liquid without any modification.
  • the coolant should also be non-flammable, non-toxic, and odor-free.
  • the coolant may be, but not limited to, mineral oil, synthetic oil or hydrofluoroether.
  • the cooling unit 100 in the embodiment of the present invention has two circulation passages, and circulation of the cooling liquid is realized by circulation of the cooling water, so that heat exchange can be performed in the heat exchanger 102 portion, so that the cooling liquid can be cooled.
  • the configuration ratio of the circulation pump 101 and the heat exchanger 102 in the cooling unit 100 in the embodiment of the present invention is N:1, and N is a natural number greater than zero, that is, in the embodiment of the present invention,
  • a cooling unit 100 there may be a plurality of circulation pumps 101 and a heat exchanger 102.
  • each cooling unit 100 includes two circulation pumps 101 and one heat exchanger 102, that is, By the circulation of the two circulation pumps 101, the circulation of the coolant can be accelerated, and the cooling of the coolant is accelerated.
  • the cooling unit 100 further includes a liquid outlet 103 and a liquid return port 104, a liquid outlet 103, a liquid return port 104, and a circulation pump 101. It constitutes a coolant circulation passage.
  • the path of the coolant passage is a gate shape, or an arc shape having an opening or a zigzag shape.
  • the path of the coolant passage is a gate shape, It can be determined that the liquid outlet 103 and the liquid return port 104 are located at the lower portion of the cooling unit 100, and the liquid outlet 103 and the liquid return port 104 are located on both sides of the lower portion of the cooling unit 100, so that the path of the coolant passage can be gate-shaped. .
  • the path of the coolant passage is an arc having an opening
  • the liquid return port 104 may be disposed at an upper portion of the cooling unit 100
  • the liquid outlet 103 is disposed at a lower portion of the cooling unit 100, and is returned to the liquid.
  • the port 104 and the liquid outlet 103 are located on the same side of the cooling unit 100, so that the path of the coolant passage can be curved with an opening.
  • the liquid outlet 103 when the liquid outlet 103 is located at the lower portion of the cooling unit 100, the liquid return port 104 is located at the upper portion of the cooling unit 100, and the liquid outlet 103 and the liquid return port 104 are located at both sides of the cooling unit 100,
  • the path of the coolant channel is similar to a zigzag shape.
  • the coolant when the path of the coolant passage is an arc shape or a zigzag shape having an opening, the coolant can be flowed over a larger area, so that a better cooling effect is obtained.
  • the heat exchanger 102 further includes a water outlet 105 and a water inlet 106.
  • the water outlet 105 and the water inlet 106 and the heat exchanger 102 constitute a circulation passage of the cooling water. and also That is, the coolant passing through the water inlet 106 passes through the heat exchanger 102 and then is output through the water outlet 105, thereby forming an independent cooling water circulation passage.
  • the water outlet 105 and the water inlet 106 are located at different positions of the heat exchanger 102, and different paths of the cooling water circulation passage are determined.
  • the water outlet 105 and the water inlet 106 are both located at the bottom of the heat exchanger 102, and the path of the cooling water passage formed is similar to a gate shape; as shown in FIG. 7, when the water outlet 105 is located in the heat exchange At the bottom of the device 102, the water inlet 106 is located at the upper portion of the heat exchanger 102, and the path of the cooling water passage formed is an arc shape having an opening.
  • the circulation passage path of the coolant is changed, and the positions of the water outlet 105 and the water inlet 106 are different, and the cooling water is changed.
  • the circulation path is so that there may be a partial overlap between the circulation passage path of the coolant and the circulation passage path of the cooling water.
  • the liquid return port 104 when the liquid return port 104 is located at the upper portion of the cooling unit 100, the liquid outlet 103 is located at the cooling unit.
  • the lower part of 100, and the liquid return port 104 and the liquid outlet 103 are located on the same side of the cooling unit 100.
  • the cooling water is formed. There is a partial overlap between the channel and the path of the coolant channel.
  • the cooling water pipes in the heat exchanger 102 can be folded and arranged closely, which increases the transmission volume of the cooling water and also increases the cooling liquid.
  • the cooling efficiency for example, as shown in Fig. 9, the cooling water pipes in the heat exchanger 102 are closely arranged in the heat exchanger 102, which can increase the volume of the cooling water and more effectively improve the heat exchange efficiency.
  • the heat exchanger 102 may be a shell and tube heat exchanger or a plate heat exchanger.
  • the cooling center 100 further includes a shroud 107, the shroud 107 is located in the coolant passage, and the shroud 107 user fixes the circulation pump 101, and the shroud 107 has a flow guiding Acting, the coolant sucked by the circulation pump 101 is conducted into the heat exchanger 102.
  • the shape of the shroud 107 may be a funnel type to facilitate introduction of the coolant into the heat exchanger 102.
  • the cooling unit 100 further includes a filter net 108 located in the coolant passage to filter the coolant ready to be sucked into the heat exchanger 102 to prevent impurities in the coolant from affecting the cooling effect.
  • the filter 108 is located at the upper portion of the shroud 107 to filter the coolant that does not enter the shroud 107.
  • the cooling unit 100 shown in FIG. 10 includes a circulation pump 101, a heat exchanger 102, a liquid outlet 103, a liquid return port 104, a water outlet 105, a water inlet 106, a shroud 107, and a filter screen.
  • the ratio of the circulation pump 101 to the heat exchanger 102 is 2:1
  • the filter 108 is located at the upper portion of the cooling unit 100
  • the liquid return port 104 is located at the upper portion of the cooling unit 100
  • the shroud 107 is used.
  • the circulation pump 101 is located at the upper portion of the heat exchanger 102, the liquid outlet 103 is located at the lower portion of the cooling unit 100, and the liquid return port 104 and the liquid outlet 103 are both on the same side of the cooling unit 100.
  • the water outlet 105 is located at a lower portion of the cooling unit 100, the water inlet 106 is located at an upper portion of the cooling unit 100, and the water outlet 105 and the water inlet 106 are located on the same side of the cooling unit 100.
  • the coolant channel is a liquid return port 104, a shroud 107, a filter net 108,
  • the path formed by the circulation pump 101 and the liquid outlet 103 is such that the path of the coolant passage is an arc having an opening, and the cooling water passage is a path formed by the water inlet 106, the heat exchanger 102, and the water outlet 105.
  • the path of the cooling water passage is An arc with an opening.
  • the embodiment of the present invention further provides a data center cooling system 200 having the cooling unit 100 in any of the above embodiments of FIGS. 1 to 10.
  • the cooling unit 100 is configured to cool the data center.
  • the server 201 in the system 200 performs cooling, so the data center cooling system 200 in the embodiment of the present invention includes at least the liquid cooling pool 202, the cooling unit 100, and the server 201 as shown in FIG.
  • the liquid cooling pool 202 is an upper open structure surrounded by four walls and a bottom surface having a certain internal volume, and the internal volume of the liquid cooling tank 202 is filled with the cooling liquid.
  • the coolant is a liquid having a certain dielectric strength, and various types of electronic components on the server 130 can operate normally in the liquid without any modification.
  • the coolant should also be non-flammable, non-toxic, and odor-free.
  • the coolant may be, but not limited to, mineral oil, synthetic oil or hydrofluoroether.
  • the liquid cooling tank 202 is loaded with the cooling liquid
  • the server 201 is vertically immersed in the liquid cooling pool 202
  • the liquid level of the liquid cooling tank 202 is higher than the top of the server 201
  • the cooling unit 100 is also immersed in the liquid.
  • the cooling unit 100 and the server 201 are alternately placed.
  • the server 201 can freely be lifted up vertically to the liquid cooling pool 100, or vertically downward into the liquid cooling pool 100, and the process of placing or extracting does not affect the working state of the other servers 201.
  • the server 201 is vertically placed in the liquid cooling pool 202, and each server 201 is closely adjacent to the liquid cooling pool 202 so that the liquid cooling pool 202 can be in the unit area. Place the server 201 as much as possible.
  • the ratio of the cooling unit 100 to the server 201 may be a 1:1 setting, or may be an N:1 setting, and N is a natural number greater than zero.
  • each of the cooling units 100 has a server 201 on each side thereof, that is, any one of the cooling units 100 and the adjacent cooling unit 100 may form a redundant configuration, which occurs in one cooling unit 100. In the event of a failure, the adjacent cooling unit 100 can continue to dissipate heat to the surrounding server 201.
  • the circulating process of the cooling liquid and the cooling water in the data center cooling system 200 is as shown in FIG. 12, and in the embodiment of the present invention, the cooling unit 100 includes the circulating pump 101 and the heat.
  • the exchanger 102 includes a liquid outlet 103 and a liquid return port 104, and includes a water outlet 105 and a water inlet 106, including a flow guide 107.
  • the data center cooling system 200 further includes an adjacently disposed server 201, and the cooling center 100 and The servers 201 are all immersed in the liquid cooling bath 202.
  • the circulation pump 101 draws the coolant on both sides of the cooling unit 100 into the cooling unit 100, and the heat exchanger 102 serves to cool the sucked coolant, and after cooling, re-releases the coolant in the liquid cooling bath 202.
  • the data center cooling system 200 in the embodiment of the present invention in order to reduce the modification of the existing data center cooling system, and to fully utilize the natural heat dissipation and reduce the energy waste, the data center cooling system 200 in the embodiment of the present invention further includes The outdoor heat dissipation device 203 and the outdoor heat dissipation device 203 are used for The cooling water is cooled, and the temperature of the cooling water is increased after the heat exchange in the heat exchanger 102. In order to continuously cool the cooling liquid, the cooling water after the heating needs to be cooled, and the outdoor heat dissipating device 203 is used in the embodiment of the present invention. Cool down.
  • the data center cooling system 200 further includes a cooling water supply pipe 204 and a cooling water return pipe 205 , and one end of the cooling water supply pipe 204 and the water outlet of the cooling unit 100 .
  • 105 is connected, the other end of the cooling water supply pipe 204 is connected to the outdoor heat dissipating device 203, one end of the cooling water return pipe 205 is connected to the water inlet 106 of the cooling unit 100, and the other end of the cooling water return pipe 205 is connected to the outdoor heat dissipating device 203.
  • the outdoor heat dissipation device 203 further includes a cooling module 2031 and a cold water circulation pump 2032, wherein the cooling module 2031 can be of various types, including: a natural cooling module (generally referred to as open or closed cooling) Towers, dry coolers, etc.), mechanical refrigeration (refers to a variety of equipment using vapor compression refrigeration, such as: chillers, direct evaporative refrigeration units, etc.) and heat recovery equipment (can be various types of heat exchangers, can also It is a water source heat pump, etc.).
  • the cooling module 2031 may be one or a combination of the above.
  • the cooling water circulation pump 2032 is for driving the cooling water to circulate between the respective cooling units 100 and the cooling module 2031.
  • the cooling water exchanges heat with the coolant in the heat exchanger 102 in the cooling unit 100 to absorb the heat in the coolant.
  • the heat-absorbing cooling water enters the cooling water supply pipe 204 through the water outlet 105 and enters the cooling module 2301, and the cooling module 2301 collects and reuses the residual heat in the natural environment in which the heat is discharged.
  • the recooled cooling water is sent to each through the cooling water return pipe 205. In the heat exchanger 102 in the cooling unit 100.
  • the higher temperature coolant in the upper portion of the liquid cooling bath 202 is maintained within a specific temperature range, in which the plurality of servers 201 are sufficiently cooled while minimizing the cooling server.
  • the energy consumed Generally, this temperature range is generally from 35 to 48 °C. Because this temperature is higher than the ambient temperature in most areas, the use of natural heat dissipation in most areas can meet the heat dissipation of the liquid-cooled data center without the need for additional mechanical cooling.
  • the data center cooling system 200 further includes a cover plate 206 for preventing dust or debris from falling into the liquid cooling pool 202.
  • the cover plate 206 is designed to be able to withstand a certain weight.
  • the person on the cover 206 can operate or transport the server 201, and the operation and maintenance equipment can be moved on the cover plate.
  • the cover plate 206 divides the upper area of the liquid cooling pool 202 into an operation and maintenance space while shielding the liquid cooling pool 202, and fully utilizes the space in the vertical direction, thereby improving the space utilization rate of the data center.
  • the data center cooling system 300 does not use the cooling unit 100, but includes full cooling.
  • the liquid cooling tank 301 is a structure having an upper portion open and surrounded by four walls and a bottom surface, and the internal volume of the liquid cooling tank 301 is filled with the cooling liquid.
  • the coolant is a liquid having a certain dielectric strength, and various types of electronic components on the server 302 can operate normally in the liquid without any modification.
  • the coolant should also be non-flammable, non-toxic, and odor-free.
  • the coolant may be, but not limited to, mineral oil, synthetic oil or hydrofluoroether.
  • the micropump 303 is located above the server 302, and the configuration between the micropump 303 and the server 302 may be N:1, N is a natural number not 0; the circulation pump 303 is arranged in the same row as the server 302.
  • a plurality of circulation pumps 303 can be arranged in a liquid cooling bath 301.
  • the arbitrary circulation pump 303 and its nearby circulation pump 303 can form a redundant configuration, that is, when a circulation pump 303 fails, the coolant flow drawn by the circulation pump 303 in the vicinity thereof can maintain the heat dissipation requirement of the server 302 in this area.
  • the function of the draft tube 304 is to restrict the flow of the coolant, and to ensure that the circulation pump 303 can uniformly suck the coolant in the upper portion of the server 302.
  • the suction port of the circulation pump 303 has only one small hole.
  • the draft tube 304 is used to restrict the flow of the coolant, and the circulation pump 303 is uniformly sucked into the coolant in the upper portion of the server 302.
  • the air guiding tube 304 may be a square tube closed at both ends, and the square shape The upper portion of the tube is connected to the suction port of the circulation pump 303, and the square tube has a plurality of small holes on the side facing the server 302.
  • the data center cooling system 300 in order to facilitate the collection of the coolant extracted by the plurality of circulating pumps 303, the data center cooling system 300 further includes an overflow pipe 305;
  • the overflow pipe 305 is used to concentrate the coolant extracted from the circulation pump 305 of one row or one column.
  • the collected cooling liquid is also convenient to be processed, and the data center cooling system 300 further includes a heat pool 306, a hot pool.
  • the 306 is connected to the plurality of overflow pipes 305, and the coolant concentrated by the overflow pipe 305 is concentrated without affecting the working state of the circulation pump 305.
  • the effective volume of the hot pool 306 is generally capable of accommodating a circulating amount of the coolant for 10 to 15 minutes.
  • the data center cooling system 300 further includes a filter net 307 located between the hot pool 306 and the overflow pipe 305, and the filter net 307 is used to enter the hot pool 306.
  • the coolant is filtered to prevent impurities in the coolant from affecting the normal operation of the data center cooling system 300.
  • the data center cooling system 300 further includes a heat exchanger 308 that cools the coolant in the hot pool 306 with cooling water, and the cooled coolant is Returning to the liquid cooling bath 301 to maintain the temperature of the coolant in the liquid cooling bath 301 Within a stable temperature, and capable of constituting a circulation of the cooling liquid, the server 302 immersed in the liquid cooling bath 301 serves as a cooling function.
  • the heat exchanger 308 uses cooling water to cool the cooling liquid, the cooling water needs to be dissipated after the temperature rises, in order to reduce the modification of the existing data center cooling system, and make full use of Natural heat dissipation reduces energy waste.
  • the data center cooling system 300 also includes an outdoor heat sink 309 for cooling the cooling water.
  • the outdoor heat dissipation device 309 further includes a cooling module 3091 and a cold water circulation pump 3092, wherein the cooling module 3091 can be of various types, including: a natural cooling module (generally referred to as an open or closed cooling tower) , dry coolers, etc.), mechanical refrigeration (refers to a variety of equipment using vapor compression refrigeration, such as: chillers, direct evaporative refrigeration units, etc.) and heat recovery equipment (can be various types of heat exchangers, can also be Water source heat pump, etc.).
  • the cooling module 3091 may be one or a combination of the above.
  • the cooling water circulation pump 3092 is for driving the cooled cooling water back into the heat exchanger 308 such that the cooling water in the heat exchanger 308 is maintained at the set temperature.
  • the first inlet 3081 of the heat exchanger 308 is connected to the outlet of the hot pool 306, and the first outlet 3082 of the heat exchanger 308 is connected to the cooling module 3091 of the outdoor heat sink 309, and the cooling water passes through.
  • the cooling module 3091 is cooled, it is driven back to the heat exchanger 308 by the cold water circulation pump 3092, and one end of the cold water circulation pump 3092 is connected to the cooling module 3091, and the other end of the cold water circulation pump 3092 is connected to the second inlet 3083 of the heat exchanger 308.
  • the cooling water in the heat exchanger 308 is cycled Cheng.
  • the data center cooling system 300 in the embodiment of the present invention further includes a coolant circulating pump 310, and the cooling liquid circulation One end of the pump 310 is connected to the second outlet 3084 of the heat exchanger 308, and the other end of the coolant circulation pump 310 is connected to the liquid cooling tank 301, and is cooled by the heat exchanger 308 under the driving of the coolant circulation pump 310.
  • the coolant is reinjected into the liquid cooling bath 301, and the circulation of the coolant is achieved.
  • the two circulation systems do not affect each other, so alternatively, the micro is located above the server 301.
  • the pump 303 is operated at a first speed
  • the coolant circulation pump 310 is operated at a second speed, and the first speed and the second speed may be the same or different.
  • the factor determining the first speed is determined according to the capacity of the cooling liquid that needs to be dissipated, in order to more accurately adjust the operating speed of the micropump 303, in the data.
  • the central cooling system 300 further includes a coolant temperature detector 311.
  • the coolant temperature detector 311 is located in the liquid cooling bath 301 for detecting the temperature of the coolant.
  • the coolant temperature detector 311 stores the adjustment relationship between the temperature and the rotation speed.
  • the table when it is determined that the temperature of the detected coolant needs to be adjusted, sends an adjustment signal to the micropump 303 so that the micropump 303 adjusts the first speed.
  • the coolant temperature detector 311 is located at the inlet of the liquid cooling bath 301, and detects the coolant that is driven back to the liquid cooling tank 301 by the coolant circulation pump 310. temperature.
  • the heat pool 306 since the heat pool 306 has a volume limitation, after adjusting the first speed of the micropump 303, it is also necessary to adjust the flow rate of the coolant entering the hot pool 306, and the data center cooling system 300 further includes cooling water.
  • the regulating valve 312, the cooling water regulating valve 312 is located at the inlet of the heat exchanger 306, and the cooling water regulating valve 312 adjusts the flow rate of the cooling water passing through the heat exchanger by the opening degree adjustment.
  • the data center cooling system 300 further includes a cover plate 313 for preventing dust or debris from falling into the liquid cooling pool 301.
  • the cover 313 is designed to be able to withstand a certain weight.
  • the person on the cover 313 can operate or transport the server 302, and the operation and maintenance equipment can be moved on the cover.
  • the cover plate 313 divides the upper area of the liquid cooling pool 301 into an operation and maintenance space while shielding the liquid cooling pool 301, and fully utilizes the space in the vertical direction, thereby improving the space utilization rate of the data center.
  • the above describes two data center cooling systems, namely a data center cooling system 200 and a data center cooling system 300, based on the above two data center cooling systems, in order to better dissipate heat for servers in each data center cooling system, It is specified that in the data center cooling system, the server is completely immersed in the liquid cooling tank, and the top and bottom of the server have a first pitch and a second pitch respectively with the liquid surface and the bottom surface of the coolant in the liquid cooling pool.
  • the circulation pump is located at the upper part of the server, the first distance between the top of the server and the liquid level of the coolant can ensure that the circulation pump sufficiently draws in the coolant without inhaling the air, and the distance between the first spacing is generally 50-100 mm.
  • the bottom of the server has a second spacing from the bottom of the liquid cooling bath, which stores a volume of cooler liquid at a lower temperature. Since the unit volume of the coolant is higher than the heat capacity, that is, the temperature of the coolant rises once and absorbs more heat. Therefore, even if the heat exchanger fails, the temperature of the entire liquid cooling tank will only rise slowly, and the server can be maintained for a period of time.
  • the first pitch and the second pitch are determined according to the maximum design circulation amount of the coolant, for example, when the cooling unit is operated at the maximum design cycle amount, the server top and the cooling
  • the flow rate in the flow cross-sectional area enclosed by the first interval of the liquid level and the liquid return port should be kept in the range of 0.2 to 0.4 m/s, and the flow cross-sectional area which is too small may cause the circulation pump to not inhale a sufficient amount of the coolant.
  • the flow rate in the flow cross-sectional area enclosed by the second distance between the bottom of the server and the bottom of the liquid cooling tank and the liquid outlet should be kept within the range of 0.5-0.8 m/s, and the cooling liquid can be relatively uniform in the flow rate range. Flow through every server.
  • FIG. 12 in a partial cross-sectional view of the data center cooling system 200, there is a first spacing between the top of the server 201 and the coolant level, and a second spacing between the bottom of the server 201 and the bottom of the liquid cooling bath 202.
  • FIG. 16 in a partial cross-sectional view of the data center cooling system 300, there is a first spacing between the top of the server 302 immersed in the liquid cooling bath 301 and the liquid level of the coolant, and the bottom of the server 302 and the bottom of the liquid cooling tank 202 are present. Two spacing.
  • a mounting bracket is disposed in the liquid cooling pool, and the position of the mounting bracket is determined according to the first spacing and the second spacing, so that when the server is placed in the liquid cooling pool
  • the mounting bracket will support the server such that the top and bottom of the server have a first pitch and a second spacing respectively from the liquid and bottom surfaces of the coolant in the liquid cooling bath.
  • the width between the two mounts is set to match the regular server, so the regular server can be placed directly into the liquid cooling tank without additional structural modifications.
  • the present invention provides a data center, such as a partial structural cross-sectional view of the data center as shown in FIG. 18 and FIG. 19, including any of the cooling described in the data center.
  • Center 100, any of the described data center cooling systems 200, and any of the described data center cooling systems 300 are included in the data center.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种数据中心冷却系统以及数据中心,用于解决现有技术中不能提供一种广泛应用、高效节能且低成本的数据中心冷却系统以及数据中心的问题。数据中心冷却系统(200)包括液冷池(202),用于装载冷却液;冷却单元(100),放置在液冷池(202)中并与服务器(201)交替布置;服务器(201)放置在液冷池(202)中并浸入冷却液中,冷却液与服务器(201)、冷却单元(100)之间形成流动通道,其中,服务器(201)的顶部、底部与冷却液分别具有第一间距和第二间距。服务器(201)底部、顶部与冷却液之间均存在间距,由此产生的高度差能够围绕服务器(201)形成全方位冷却的冷却液流动的通道,使得冷却液能够更有效地在冷却单元(100)和服务器(201)之间循环流动,也改善了冷却液在穿过服务器(201)流动时的均匀性。

Description

一种数据中心冷却系统以及数据中心 技术领域
本发明涉及液体冷却技术领域,尤其涉及一种数据中心冷却系统以及数据中心。
背景技术
随着全球对计算、数据存储和通信技术需求的增长快速上升,近几年数据中心的需求量越来越大,总量已超过40万个,年耗电量约为8325亿千瓦时,已超过全社会用电量的1.5%。这其中有四成左右为数据中心制冷系统所消耗。随着数据中心机房规模扩大,制冷成本及维护费用更是逐年大幅飙升。如何解决数据中心设备冷却消耗日渐趋高的问题开始受到了各界强烈关注。
由于空气的比体积比热容较低,目前单纯依靠降低送风温度以及加大风量来满足服务器散热需求的方式已经遇到了瓶颈。目前市面上常见的空冷服务器机架,其单个机架所能承载的服务器功率为3~20kW。液冷数据中心中所使用的冷却液的比体积比热容是空气的1000~1200倍,这使得单个液冷服务器机架所能容纳的服务器功率可以达到20~100kW甚至更高。
现有技术中,已有厂商尝试将整个服务器内的电子组件封装在一个密封的 外壳内,封装内部充满冷却液进行散热,此方案同样存在封装成本较高、密封工艺复杂、通用性差的问题。也有厂家尝试使用一种低沸点的冷却介质浸泡服务器,通过冷却介质不断地蒸发来移除服务器产生的热量,再经过通有冷却水的冷凝盘管重新冷凝成液体。但此类低沸点的冷却介质价格非常昂贵,而且实施工艺较复杂,因此这类技术尚未被大规模地应用。
综上所述,现有技术中不能提供一种广泛应用、高效节能且低成本的一种数据中心冷却系统以及数据中心。
发明内容
本发明提供一种数据中心冷却系统以及数据中心,用于解决现有技术中不能提供一种广泛应用、高效节能且低成本的数据中心冷却系统以及数据中心的问题。
本发明实施例提供了一种数据中心冷却系统,包括:液冷池,用于装载冷却液;冷却单元,所述冷却单元放置在所述液冷池中并与所述服务器交替布置;服务器,所述服务器放置在所述液冷池中并浸入所述冷却液中,所述冷却液与所述服务器、所述冷却单元之间形成流动通道,其中,所述服务器的顶部、底部分别与所述冷却液分别具有第一间距和第二间距。
进一步地,所述第一间距和第二间距是根据所述冷却液的最大设计循环量 确定的。
进一步地,所述冷却单元还包括循环泵和热交换器,所述循环泵与所述热交换器的配置比为N:1,N为大于零的自然数。
进一步地,所述冷却单元还包括出液口以及回液口,所述回液口用于将所述服务器上部的所述冷却液通过所述回液口进入所述循环泵中;所述出液口用于将经过所述热交换器冷却后的冷却液通过所述出液口导入所述服务器的底部。
进一步地,所述冷却单元还包括用于过滤所述冷却液的第一过滤网,所述第一过滤网位于所述循环泵的上部。
进一步地,所述数据中心冷却系统还包括冷却水供水管、冷却水回水管以及室外散热设备;
所述冷却水供水管的一端与所述数据中心的热交换器的进水口连接,另一端与所述室外散热设备的出口连接;所述冷却水供水管用于将所述室外散热设备冷却后的冷却水导入所述热交换器;
所述冷却水回水管的一端与所述热交换器的出水口连接,另一端与所述室外散热设备的入口连接;所述冷却水回水管用于将所述热交换器中用于冷却冷却液的冷却水导入所述室外散热设备;
所述室外散热设备,用于冷却所述冷却水。
进一步地,所述数据中心冷却系统还包括微型泵以及导流管,所述微型泵 放置在所述服务器的上方,所述服务器的上方还设置有导流管,所述微型泵用于通过所述导流管吸入所述液冷池中的冷却液,并将所述冷却液输出所述液冷池,以使所述冷却液被冷却。
进一步地,所述数据中心冷却系统还包括:
溢流管,所述溢流管的一端与所述微型泵连接,所述溢流管用于将所述微型泵抽出的所述冷却液进行汇聚。
进一步地,所述数据中心冷却系统还包括:
热池,所述热池的入口与所述溢流管的一端连接,所述热池用于将所述溢流管中的冷却液进行汇聚。
进一步地,所述数据中心冷却系统还包括:
第二过滤网,所述第二过滤网位于所述热池与所述溢流管之间,用于过滤所述冷却液。
进一步地,所述中心冷却系统还包括:热交换器,室外散热设备;
所述热交换器的第一入口与所述热池的出口连接,所述热交换器的第一出口与所述室外散热设备的入口连接;所述室外散热设备用于冷却冷却水;
所述热交换器的第二入口与所述室外散热设备的出口连接,所述热交换器的第二出口与所述液冷池连接;
所述热交换器,用于使用冷却水冷却所述热池中的冷却液。
进一步地,所述数据中心冷却系统还包括:
冷却液循环泵,所述热交换器的第二出口与所述液冷池之间通过所述冷却液循环泵连接,所述冷却液循环泵用于将所述热交换器冷却后的冷却液输入回所述液冷池。
进一步地,所述微型泵以第一速度运转,所述冷却液循环泵以第二速度运转。
进一步地,所述数据中心冷却系统还包括冷却液温度检测器,所述冷却液温度检测器位于所述液冷池内部,用于检测所述冷却液温度,并根据所述冷却液温度与所述微型泵的转速的设定关系,向所述微型泵发送调节转速信号。
进一步地,所述数据中心冷却系统还包括冷却水调节阀,所述冷却水调节阀位于所述热交换器的冷却水入口端,所述冷却水调节阀用于通过调节所述冷却水调节阀的开度调节所述冷却水的流量。
本发明实施例还提供了一种数据中心,所述数据中心包括上述的数据中心冷却系统。
本发明实施例中,通过数据中心冷却系统中的循环泵抽出的冷却液通过热交换器进行冷却,而热交换器中的冷却水是通过室外散热设备进行散热的。本发明实施例中的数据中心冷却系统与传统的冷却系统相比,结构简单,降低了冷却系统的建设成本。另外,在本发明实施例中的数据中心冷却系统还包括微型泵以及冷却液循环泵,可以通过独立调整两个不同的泵的转速使得整个系统可以分为两个部分,一个部分是液冷池-热交换器的循环,另一个部分是热交 换器-室外散热设备,两个部分可以相互独立的运行,不会相互影响。
本发明实施例中,数据中心能够利用系统中的冷却单元对在系统中放置的服务器进行冷却,相比传统的数据中心,减少了数据中心的建设成本、提高了数据中心的可靠性。
本发明实施例中,在服务器底部、顶部与冷却液之间均存在间距,由此产生的高度差能够围绕服务器形成全方位冷却的冷却液流动的通道,使得冷却液能够更有效地在冷却单元和服务器之间循环流动,也改善了冷却液在穿过服务器流动时的均匀性。并且,由于通过室外散热设备,无需对冷却水进行其它处理,就可以对冷却水进行冷却,无需使用安装机架放置服务器,对冷却单元和服务器的放置位置限制较少,不限定分区,因此空间利用率高,对数据中心的改动较小,降低了数据中心的成本。
本发明实施例中,数据中心包括了数据中心冷却系统,冷却水供水管、回水管以及室外散热设备,冷水供水管用于向数据中心冷却系统的热交换器导入室外散热设备散热后的冷却水,冷却水回水管用于将数据中心冷却系统的热交换器中升温后的冷却水导入到室外散热设备,通过室外散热设备进行散热,保证了热交换器的冷却功能,进而保证了在数据中心的服务器的冷却效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的 一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种冷却单元的结构示意图;
图2为本发明实施例提供的另一种冷却单元的结构示意图;
图3为本发明实施例提供的一种冷却单元的冷却水通道以及门字形冷却液通道的示意图;
图4为本发明实施例提供的一种冷却单元的冷却水通道以及具有开口的圆弧形冷却液通道的示意图;
图5为本发明实施例提供的一种冷却单元的冷却水通道以及Z字形的圆弧形冷却液通道的示意图;
图6为本发明实施例提供的一种冷却单元的门字形冷却水通道以及却液通道的示意图;
图7为本发明实施例提供的一种冷却单元的具有开口的圆弧形冷却水通道以及冷却液通道的示意图;
图8为本发明实施例提供的一种冷却单元的部分重叠的冷却水通道以及冷却液通道的示意图;
图9为本发明实施例提供的一种冷却单元的结构示意图;
图10为本发明实施例提供的另一种冷却单元的结构示意图;
图11为本发明实施例提供的一种数据中心冷却系统的部分剖面结构示意 图;
图12为本发明实施例提供的另一种数据中心冷却系统的部分剖面结构示意图;
图13为本发明实施例提供的一种数据中心冷却系统的结构示意图;
图14为本发明实施例提供的一种数据中心冷却系统的部分结构示意图;
图15为本发明实施例提供的包括热池的一种数据中心冷却系统的部分结构示意图;
图16为本发明实施例提供的包括热交换器以及室外散热设备的一种数据中心冷却系统的结构示意图;
图17为本发明实施例提供的包括冷却水调节阀以及冷却液温度检测器的一种数据中心冷却系统的结构示意图;
图18为本发明实施例提供的一种数据中心的部分结构示意图;
图19为本发明实施例提供的另一种数据中心的部分结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中,数据中心指用于安置计算机系统及相关部件的一整套 设施,能够容纳多个服务器及其配套设备。本发明实施例中的服务器,也称伺服器,是提供计算服务的设备。
本发明提供一种用于浸没式服务器的冷却单元100,如图1所示,冷却单元100包括循环泵101以及热交换器102,并且冷却单元100具有循环的冷却液通道以及冷却水通道,冷却液通道在热交换器102的外部,冷却水通道在热交换器102的内部,循环泵101用于驱动冷却液通道的循环行为。
在本发明实施例中,冷却液是一种具备一定介电强度的液体,服务器130上的各类电子组件可以在该液体内正常运行且不需要进行任何改造。此外,冷却液还应具有不易燃、无毒、无异味等特性。可选的,冷却液可以是但不限于是矿物油、合成油或氢氟醚等。
在本发明实施例中的冷却单元100具有两个循环通道,通过冷却水的循环实现冷却液的循环,从而能够在热交换器102部分进行热交换,从而能够对冷却液进行冷却。
可选的,在本发明实施例中的冷却单元100中的循环泵101与热交换器102的配置比例为N:1,N为大于零的自然数,也就是说,在本发明实施例中,一个冷却单元100中,可以存在多个循环泵101以及一个热交换器102,例如如图2所示,每个冷却单元100中包括两个循环泵101以及一个热交换器102,也就是说,通过两个循环泵101的循环作用,能够加快冷却液的循环,也就加快了冷却液的冷却。
可选的,在本发明实施例中,为了能够有两个独立的循环通道,冷却单元100中还包括出液口103以及回液口104,出液口103、回液口104以及循环泵101构成了冷却液循环通道。
可选的,在本发明实施例中,冷却液通道的路径为门字形、或者具有开口的圆弧形或者是Z字形,例如,如图3所示,冷却液通道的路径为门字形,则可以确定出液口103以及回液口104位于冷却单元100的下部,且出液口103与回液口104的位于冷却单元100的下部的两侧,从而能够使冷却液通道的路径为门字形。
例如,如图4所示,冷却液通道的路径为具有开口的弧形,则可以将回液口104设置于冷却单元100的上部,出液口103设置于冷却单元100的下部,且回液口104以及出液口103位于冷却单元100的同侧,从而能够使冷却液通道的路径为具有开口的弧形。
例如,如图5所示,当出液口103位于冷却单元100的下部,回液口104位于冷却单元100的上部,且出液口103与回液口104位于冷却单元100的两侧,则冷却液通道的路径为类似Z字形。
在上述实施例中,当冷却液通道的路径为具有开口的弧形或者Z字形时,能够更大面积的使冷却液进行流动,所以具有更好的冷却效果。
可选的,在本发明实施例中,热交换器102还包括出水口105以及入水口106,出水口105以及入水口106、热交换器102构成了冷却水的循环通道。也 就是说,通过入水口106的冷却液经过热交换器102然后经出水口105输出,构成了独立的冷却水循环通道。
可选的,在本发明实施例中,出水口105与入水口106位于热交换器102的位置不同,决定了冷却水循环通道的不同路径。例如,如图6所示,出水口105与入水口106均位于热交换器102的底部,则构成的冷却水通道的路径为类似门字形;如图7所示,当出水口105位于热交换器102的底部,入水口106位于热交换器102的上部,则构成的冷却水通道的路径为具有开口的圆弧形。
可选的,在本发明实施例中,由于出液口103以及回液口104位置不同,会改变冷却液的循环通道路径,而出水口105以及入水口106的位置不同,会改变冷却水的循环通道路径,所以冷却液的循环通道路径与冷却水的循环通道路径之间可以存在部分重叠,例如图8所示,当回液口104位于冷却单元100的上部,出液口103位于冷却单元100的下部,且回液口104与出液口103位于冷却单元100的同侧,当出水口105位于热交换器102的底部,入水口106位于热交换器102的上部,则构成的冷却水通道以及冷却液通道的路径之间存在部分重叠。
可选的,在本发明实施例中,为了能够加大对冷却液的冷却面积,热交换器102中的冷却水管道可以折叠紧密排列,增加了冷却水的传输体积,也提高了冷却液的冷却效率,例如,如图9所示,热交换器102中的冷却水管折叠紧密排列在热交换器102中,能够增加冷却水的体积,更有效的提高换热效率。
可选的,在本发明实施例中,热交换器102可以为壳管式换热器或者板式热交换器。
可选的,如图10所示,冷却中心100还包括导流罩107,导流罩107位于冷却液通道中,并且导流罩107用户固定循环泵101,且导流罩107具有导流的作用,将循环泵101吸入的冷却液导流到热交换器102中。导流罩107的形状可以为漏斗型,便于将冷却液导入到热交换器102中。
可选的,冷却单元100还包括过滤网108,过滤网108位于冷却液通道中,将准备吸入进热交换器102的冷却液进行过滤,防止冷却液中的杂质影响到冷却效果。为了更好的过滤效果,可选的,过滤网108位于导流罩107的上部,能够过滤未进入到导流罩107中的冷却液。
在可选的,如图10所示的冷却单元100,包括循环泵101、热交换器102、出液口103、回液口104、出水口105、入水口106、导流罩107以及过滤网108;在本发明实施例中,循环泵101与热交换器102的比例为2:1,过滤网108位于冷却单元100的上部,回液口104位于冷却单元100的上部,导流罩107用于固定循环泵101,循环泵101位于热交换器102的上部,出液口103位于冷却单元100的下部,且回液口104与出液口103均在冷却单元100的同侧。
出水口105位于冷却单元100的下部,入水口106位于冷却单元100的上部,且出水口105与入水口106位于冷却单元100的同侧。
在本发明实施例中,冷却液通道为回液口104、导流罩107、过滤网108、 循环泵101以及出液口103形成的路径,冷却液通道的路径为具有开口的弧形,冷却水通道为入水口106、热交换器102以及出水口105形成的路径,冷却水通道的路径为具有开口的弧形。
本发明实施例还提供了一种具有上述图1~图10任一种实施例中的冷却单元100的数据中心冷却系统200,在数据中心冷却系统200中,冷却单元100用于对数据中心冷却系统200中的服务器201进行冷却,所以在本发明实施例中的数据中心冷却系统200至少包括如图11所示的液冷池202、冷却单元100以及服务器201。
可选的,在本发明实施例中,液冷池202是一个上部敞开,由四壁和底面围成的具有一定内部容积的结构,液冷池202的内部容积充满冷却液。
在本发明实施例中,冷却液是一种具备一定介电强度的液体,服务器130上的各类电子组件可以在该液体内正常运行且不需要进行任何改造。此外,冷却液还应具有不易燃、无毒、无异味等特性。可选的,冷却液可以是但不限于是矿物油、合成油或氢氟醚等。
在本发明实施例中,液冷池202中装载了冷却液,服务器201垂直浸入在液冷池202中,且液冷池202的液面高于服务器201的顶部,冷却单元100也浸入在液冷池202中,冷却单元100与服务器201交替放置。
服务器201可以自由地被垂直向上提出液冷池100,或者垂直向下放置进液冷池100,在放置或者提取的过程不会影响其它服务器201的工作状态。
可选的,在本发明实施例中,服务器201是垂直放置在液冷池202中的,每个服务器201紧密相邻的在液冷池202中排列,使得单位面积内可以在液冷池202中尽可能的多放置服务器201。
在本发明实施例中,冷却单元100与服务器201的比例可以是1:1设置,也可以是N:1设置,N为大于零的自然数。可选的,在本发明实施例中,每个冷却单元100的两侧各有一个服务器201,即任一个冷却单元100与其相邻的冷却单元100可以形成冗余配置,在一个冷却单元100发生故障时,相邻的冷却单元100可以继续为周边的服务器201进行散热。
可选的,在本发明实施例中,在数据中心冷却系统200中的冷却液以及冷却水的循环过程如图12所示,在本发明实施例中,冷却单元100中包括循环泵101与热交换器102,包括出液口103以及回液口104,包括出水口105与入水口106,包括导流罩107,在数据中心冷却系统200中还包括相邻布设的服务器201,冷却中心100与服务器201均浸没在液冷池202中。
循环泵101将冷却单元100两侧的冷却液吸入冷却单元100中,热交换器102用于将吸入的冷却液进行冷却,并在冷却后将冷却液重新释放进行液冷池202中。
在本发明实施例中的数据中心冷却系统200中,为了减少对现有的数据中心冷却系统的改造,并且充分利用自然散热,减少能源浪费,本发明实施例中的数据中心冷却系统200还包括室外散热设备203,室外散热设备203用于对 冷却水进行冷却,当在热交换器102进行热交换后,冷却水的温度会增高,为了持续对冷却液进行冷却,升温后的冷却水需要进行冷却,本发明实施例中通过室外散热设备203进行散热。
可选的,在本发明实施例中,如图13所示,数据中心冷却系统200还包括冷却水供水管204以及冷却水回水管205,冷却水供水管204的一端与冷却单元100的出水口105连接,冷却水供水管204的另一端与室外散热设备203连接,冷却水回水管205的一端与冷却单元100的入水口106连接,冷却水回水管205的另一端与室外散热设备203连接。
可选的,在本发明实施例中,室外散热设备203还包括冷却模块2031以及冷水循环泵2032,其中冷却模块2031可以有多种类型,包括:自然冷却模块(一般指开式或闭式冷却塔、干式冷却器等)、机械制冷(泛指使用蒸气压缩式制冷的各类设备,如:冷水机组、直接蒸发制冷机组等)以及热回收设备(可以是各类热交换器,也可以是水源热泵等)。冷却模块2031可以是上述设备中的一种或是多种的组合。
冷却水循环泵2032用于驱动冷却水在各个冷却单元100与冷却模块2031间循环。冷却水在冷却单元100内的热交换器102内与冷却液进行热交换,吸收冷却液中的热量。吸热后的冷却水通过出水口105进入冷却水供水管204进入冷却模块2301,通过冷却模块2301将热量排放的自然环境中,亦或是对余热进行回收再利用。经过重新冷却后的冷却水通过冷却水回水管205输送到各 个冷却单元100中的热交换器102中。
在本发明实施例中,液冷池202上部的较高温度的冷却液被维持在一个特定的温度范围内,在该温度范围内可保证多台服务器201被充分冷却的同时尽量减少冷却服务器所消耗的能量。一般来说,该温度范围一般为35~48℃。由于该温度高于大部分地区的环境温度,因此在大部分地区使用自然散热即可满足液冷数据中心的散热,不需要额外的机械制冷。
可选的,在本发明实施例中,数据中心冷却系统200还包括盖板206,盖板206用于防止灰尘或杂物掉入液冷池202。同时盖板206被设计成能够能承受一定的重量,比如:盖板206上人员可以操作或搬运服务器201,运维配套设备可以在盖板上移动等。盖板206在遮蔽液冷池202的同时将液冷池202上部区域划分为运维空间,充分利用了垂直方向上的空间,提高了数据中心的空间利用率。
在本发明实施例中,除了上述实施例中的数据中心冷却系统200外,还有另一种数据中心冷却系统300,数据中心冷却系统300中没有使用冷却单元100,而是包括了装满冷却液的液冷池301,浸没在液冷池301中的服务器302以及设置在服务器302上方的微型泵303;微型泵303通过导流管304将液冷池中的冷却液吸出液冷池,使冷却液能够进行冷却,并且通过微型泵303将服务器302上方的冷却液吸出能够使液冷池301中的冷却液形成循环,能够更好的为浸没在液冷池301中的服务器302进行散热。
可选的,在本发明实施例中,液冷池301是一个上部敞开,由四壁和底面围成的具有一定内部容积的结构,液冷池301的内部容积充满冷却液。可选的,在本发明实施例中,冷却液是一种具备一定介电强度的液体,服务器302上的各类电子组件可以在该液体内正常运行且不需要进行任何改造。此外,冷却液还应具有不易燃、无毒、无异味等特性。可选的,冷却液可以是但不限于是矿物油、合成油或氢氟醚等。
如图14所示,微型泵303位于服务器302的上方,微型泵303与服务器302之间的配置可以为N:1,N为不为0的自然数;循环泵303与服务器302一样成列排布,一个液冷池301内可以排布多列循环泵303。任意循环泵303与其附近的循环泵303可形成冗余配置,即当一台循环泵303出现故障时,其附近的循环泵303所抽送的冷却液流量仍可以维持这一区域服务器302散热需求。
在本发明实施例中,导流管304的作用是约束冷却液的流动,保证循环泵303能够均匀地吸入服务器302上部的冷却液。一般循环泵303的吸入口只有一个小孔,直接用吸入口抽取冷却液会出现部分服务器302上部的冷却液被抽取的较多,另一部分服务器302上部的冷却液被抽取的较少甚至不流动的情况。所以在本发明实施例中使用导流管304来约束冷却液的流动,保证循环泵303均匀地吸入服务器302上部的冷却液。
可选的,在本发明实施例中,导流管304可以是两端封闭的方形管,方形 管上部与循环泵303的吸入口连接,方形管在朝向服务器302的一侧开有若干个小孔。
可选的,在本发明实施例中,如图15所示的数据中心冷却系统300,为了能够便于汇集多个循环泵303抽取出的冷却液,数据中心冷却系统300还包括溢流管305;溢流管305用来将一排或者一列的循环泵305抽取出的冷却液进行汇聚。
可选的,在本发明实施例中,为了便于将溢流管305汇聚后的冷却液聚集起来,也便于将汇聚起来的冷却液进行处理,数据中心冷却系统300还包括热池306,热池306与多个溢流管305连接,并将溢流管305汇聚的冷却液进行汇聚,且不会影响循环泵305的工作状态。
可选的,为保证系统中冷却液循环的稳定性,热池306的有效容积一般要能容纳冷却液10~15min的循环量。
可选的,在本发明实施例中,数据中心冷却系统300还包括过滤网307,过滤网307位于热池306与溢流管305之间,过滤网307用于将即将进入到热池306的冷却液进行过滤,以免冷却液中的杂质会影响数据中心冷却系统300的正常工作。
可选的,为了能够使抽出的冷却液进行冷却,数据中心冷却系统300还包括热交换器308,热交换器308利用冷却水对热池306中的冷却液进行冷却,冷却后的冷却液被导回液冷池301中,使得液冷池301中的冷却液的温度保持 在一个稳定的温度内,并能够构成冷却液的循环,使得浸没在液冷池301中的服务器302起到冷却作用。
可选的,在本发明实施例中,由于热交换器308使用冷却水对冷却液进行冷却,冷却水在升温后也需要散热,为了减少对现有的数据中心冷却系统的改造,并且充分利用自然散热,减少能源浪费,数据中心冷却系统300还包括室外散热设备309,室外散热设备309用于对冷却水进行冷却。
同样的,在本发明实施例中,室外散热设备309还包括冷却模块3091以及冷水循环泵3092,其中冷却模块3091可以有多种类型,包括:自然冷却模块(一般指开式或闭式冷却塔、干式冷却器等)、机械制冷(泛指使用蒸气压缩式制冷的各类设备,如:冷水机组、直接蒸发制冷机组等)以及热回收设备(可以是各类热交换器,也可以是水源热泵等)。冷却模块3091可以是上述设备中的一种或是多种的组合。
冷却水循环泵3092用于将冷却后的冷却水驱动回热交换器308中,使得热交换器308中的冷却水保持在设定温度。
可选的,如图16所示,热交换器308的第一入口3081与热池306的出口连接,热交换器308的第一出口3082与室外散热设备309的冷却模块3091连接,冷却水经过冷却模块3091冷却后,由冷水循环泵3092驱动回热交换器308,及冷水循环泵3092的一端与冷却模块3091连接,冷水循环泵3092的另一端与热交换器308的第二入口3083连接,热交换器308中的冷却水完成循环过 程。
可选的,在图16中,为了经过热交换器308冷却的冷却液快速回到液冷池301中,本发明实施例中的数据中心冷却系统300还包括冷却液循环泵310,冷却液循环泵310的一端与热交换器308的第二出口3084连接,冷却液循环泵310的另一端与液冷池301连接,在冷却液循环泵310的驱动下,将经过热交换器308冷却后的冷却液重新注入到液冷池301中,实现了冷却液的循环过程。
可选的,在本发明实施例中,由于有两个独立的循环系统,即冷却液循环系统以及冷却水循环系统,两个循环系统不会相互影响,所以可选的,位于服务器301上方的微型泵303以第一速度运转,冷却液循环泵310以第二速度运转,第一速度与第二速度可以相同,也可以不同。
可选的,在本发明实施例中,如图17所示,决定第一速度的因素是根据需要散热的冷却液的容量来确定的,为了更准确的调节微型泵303的运转速度,在数据中心冷却系统300中还包括冷却液温度检测器311,冷却液温度检测器311位于液冷池301中,用于检测冷却液的温度,冷却液温度检测器311保存了温度与转速的调整关系对照表,当确定检测的冷却液的温度需要调整时,则向微型泵303发送调整信号,使得微型泵303调整第一速度。
可选的,为了更准确的确定冷却液的温度,冷却液温度检测器311位于液冷池301的入口处,检测通过冷却液循环泵310驱动回液冷池301的冷却液的 温度。
在本发明实施例中,由于热池306有容积的限制,在调整了微型泵303的第一速度后,还需要调整进入热池306的冷却液的流量,数据中心冷却系统300还包括冷却水调节阀312,冷却水调节阀312位于热交换器306的入口处,冷却水调节阀312通过开度调节来调整经过热交换器的冷却水流量。
可选的,在本发明实施例中,数据中心冷却系统300还包括盖板313,盖板313用于防止灰尘或杂物掉入液冷池301中。同时盖板313被设计成能够能承受一定的重量,比如:盖板313上人员可以操作或搬运服务器302,运维配套设备可以在盖板上移动等。盖板313在遮蔽液冷池301的同时将液冷池301上部区域划分为运维空间,充分利用了垂直方向上的空间,提高了数据中心的空间利用率。
上述介绍了两种数据中心冷却系统,分别为数据中心冷却系统200以及数据中心冷却系统300,基于上述两种数据中心冷却系统,为了更好的对每种数据中心冷却系统中的服务器进行散热,规定了在数据中心冷却系统中,服务器完全浸没在液冷池中,且服务器的顶部与底部分别与液冷池中冷却液的液面和底面具有第一间距和第二间距。
这两个间距形成了两个冷却液流动的通道,使得冷却液能够在服务器之间循环流动。此外足够大的间距可以改善冷却液在穿过多个服务器流动时的均匀性。
可选的,由于循环泵位于服务器上部,服务器顶部与冷却液液面的第一间距能够保证循环泵充分地吸入冷却液,而不会吸入空气,第一间距的距离一般为50~100mm。
服务器底部与液冷池底部有第二间距,这个空间内储存有一定体积的温度较低的冷却液。由于冷却液的单位体积比热容较高,即冷却液温度上升一度所能吸收的热量较多。所以即使热交换器发生故障,整个液冷池的温度只会缓慢上升,仍可以维持服务器正常运行一段时间。
可选的,在两种数据中心冷却系统中,第一间距与第二间距是根据冷却液的最大设计循环量来确定的,例如,当冷却单元以最大设计循环量运行时,服务器顶部与冷却液液面的第一间距与回液口所围成的流通截面积内的流速应保持在0.2~0.4m/s范围内,太小的流通截面积导致循环泵无法吸入足量的冷却液。服务器底部与液冷池底部的第二间距与出液口所围成的流通截面积内的流速应保持在0.5~0.8m/s范围内,在该流速范围内能保证冷却液能够比较均匀的流过每一台服务器。
例如,如图12所示,数据中心冷却系统200的局部剖视图中,服务器201顶部与冷却液液面之间存在第一间距,服务器201底部与液冷池202底部存在第二间距。结合图16所示,数据中心冷却系统300的局部剖视图中,浸没在液冷池301中的服务器302顶部与冷却液液面之间存在第一间距,服务器302底部与液冷池202底部存在第二间距。
可选的,在上述两个数据中心冷却系统中,在液冷池中都设置了安装架,安装架的位置是根据第一间距与第二间距确定的,使得在液冷池中放置服务器时,安装架会托住服务器,使得服务器的顶部与底部分别与液冷池中冷却液的液面和底面具有第一间距和第二间距。两个安装架之间的宽度被设成与常规服务器配套,因此常规服务器不需要进行额外的结构改造即可直接放入液冷池中。
针对上述实施例中的冷却中心以及数据中心冷却系统,本发明提供一种数据中心,例如如图18以及如图19所示的数据中心的部分结构剖面图,数据中心中包括任意所述的冷却中心100、任意所述的数据中心冷却系统200以及任意所述的数据中心冷却系统300。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (17)

  1. 一种数据中心冷却系统,其特征在于,包括:
    液冷池,用于装载冷却液;
    冷却单元,所述冷却单元放置在所述液冷池中并与所述服务器交替布置;
    服务器,所述服务器放置在所述液冷池中并浸入所述冷却液中,所述冷却液与所述服务器、所述冷却单元之间形成流动通道,其中,所述服务器的顶部、底部分别与所述冷却液分别具有第一间距和第二间距。
  2. 根据权利要求1所述的数据中心冷却系统,其特征在于,所述第一间距和第二间距是根据所述冷却液的最大设计循环量确定的。
  3. 根据权利要求1所述的数据中心冷却系统,其特征在于,所述冷却单元还包括循环泵和热交换器,所述循环泵与所述热交换器的配置比为N:1,N为大于零的自然数。
  4. 根据权利要求1所述的数据中心冷却系统,其特征在于,所述冷却单元还包括出液口以及回液口,所述回液口用于将所述服务器上部的所述冷却液通过所述回液口进入所述循环泵中;所述出液口用于将经过所述热交换器冷却后的冷却液通过所述出液口导入所述服务器的底部。
  5. 根据权利要求1所述的数据中心的冷却系统,其特征在于,所述冷却单元还包括用于过滤所述冷却液的第一过滤网,所述第一过滤网位于所述循环泵的上部。
  6. 根据权利要求1至5中任一项所述的数据中心冷却系统,其特征在于,所述数据中心冷却系统还包括冷却水供水管、冷却水回水管以及室外散热设备;
    所述冷却水供水管的一端与所述数据中心的热交换器的进水口连接,另一端与所述室外散热设备的出口连接;所述冷却水供水管用于将所述室外散热设备冷却后的冷却水导入所述热交换器;
    所述冷却水回水管的一端与所述热交换器的出水口连接,另一端与所述室外散热设备的入口连接;所述冷却水回水管用于将所述热交换器中用于冷却冷却液的冷却水导入所述室外散热设备;
    所述室外散热设备,用于冷却所述冷却水。
  7. 根据权利要求1所述的数据中心冷却系统,其特征在于,所述数据中心冷却系统还包括微型泵以及导流管,所述微型泵放置在所述服务器的上方,所述服务器的上方还设置有导流管,所述微型泵用于通过所述导流管吸入所述液冷池中的冷却液,并将所述冷却液输出所述液冷池,以使所述冷却液被冷却。
  8. 根据权利要求1所述的数据中心冷却系统,其特征在于,所述数据中心冷却系统还包括:
    溢流管,所述溢流管的一端与所述微型泵连接,所述溢流管用于将所述微型泵抽出的所述冷却液进行汇聚。
  9. 根据权利要求8所述的数据中心冷却系统,其特征在于,所述数据中 心冷却系统还包括:
    热池,所述热池的入口与所述溢流管的一端连接,所述热池用于将所述溢流管中的冷却液进行汇聚。
  10. 根据权利要求9所述的数据中心冷却系统,其特征在于,所述数据中心冷却系统还包括:
    第二过滤网,所述第二过滤网位于所述热池与所述溢流管之间,用于过滤所述冷却液。
  11. 根据权利要求10所述的数据中心冷却系统,其特征在于,所述中心冷却系统还包括:热交换器,室外散热设备;
    所述热交换器的第一入口与所述热池的出口连接,所述热交换器的第一出口与所述室外散热设备的入口连接;所述室外散热设备用于冷却冷却水;
    所述热交换器的第二入口与所述室外散热设备的出口连接,所述热交换器的第二出口与所述液冷池连接;
    所述热交换器,用于使用冷却水冷却所述热池中的冷却液。
  12. 根据权利要求11所述的数据中心冷却系统,其特征在于,所述数据中心冷却系统还包括:
    冷却液循环泵,所述热交换器的第二出口与所述液冷池之间通过所述冷却液循环泵连接,所述冷却液循环泵用于将所述热交换器冷却后的冷却液输入回所述液冷池。
  13. 根据权利要求12所述的数据中心冷却系统,其特征在于,
    所述微型泵以第一速度运转,所述冷却液循环泵以第二速度运转。
  14. 根据权利要求6-13任一所述的数据中心冷却系统,其特征在于,所述数据中心冷却系统还包括冷却液温度检测器,所述冷却液温度检测器位于所述液冷池内部,用于检测所述冷却液温度,并根据所述冷却液温度与所述微型泵的转速的设定关系,向所述微型泵发送调节转速信号。
  15. 根据权利要求14所述的数据中心冷却系统,其特征在于,所述数据中心冷却系统还包括冷却水调节阀,所述冷却水调节阀位于所述热交换器的冷却水入口端,所述冷却水调节阀用于通过调节所述冷却水调节阀的开度调节所述冷却水的流量。
  16. 一种数据中心,其特征在于,包括:如权利要求6所述的数据中心冷却系统。
  17. 一种数据中心,其特征在于,包括:如权利要求15所述的数据中心冷却系统。
PCT/CN2017/110956 2017-09-30 2017-11-14 一种数据中心冷却系统以及数据中心 WO2019061721A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710919651.4 2017-09-30
CN201710919651.4A CN107690267B (zh) 2017-09-30 2017-09-30 一种数据中心冷却系统以及数据中心

Publications (1)

Publication Number Publication Date
WO2019061721A1 true WO2019061721A1 (zh) 2019-04-04

Family

ID=61154147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110956 WO2019061721A1 (zh) 2017-09-30 2017-11-14 一种数据中心冷却系统以及数据中心

Country Status (2)

Country Link
CN (1) CN107690267B (zh)
WO (1) WO2019061721A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290677A (zh) * 2019-06-06 2019-09-27 深圳绿色云图科技有限公司 一种液体浸没式冷却机柜
CN110351995A (zh) * 2019-08-09 2019-10-18 国网江苏省电力有限公司镇江供电分公司 电化学储能电站运行监测设备散热装置
CN110730601A (zh) * 2019-11-15 2020-01-24 北京丰联奥睿科技有限公司 一种液浸式服务器机柜及其冷却系统
US20230091814A1 (en) * 2021-09-17 2023-03-23 Green Revolution Cooling, Inc. Coolant shroud
US11925946B2 (en) 2022-03-28 2024-03-12 Green Revolution Cooling, Inc. Fluid delivery wand

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108966603A (zh) * 2018-08-15 2018-12-07 南京佳力图机房环境技术股份有限公司 一种服务器冷却浸没式液冷组合装置
CN110187751A (zh) * 2019-05-31 2019-08-30 中国联合网络通信集团有限公司 云服务器装置及系统
US20230284413A1 (en) * 2020-07-14 2023-09-07 Canaan Creative Co., Ltd. Immersed liquid cooling heat dissipation system
CN113342144A (zh) * 2021-04-29 2021-09-03 山东英信计算机技术有限公司 一种液冷服务器及其外置栅栏式进水流量调节器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833988A (zh) * 2012-09-19 2012-12-19 北京德能恒信科技有限公司 一种数据中心散热方案
CN103609206A (zh) * 2011-04-19 2014-02-26 力博特公司 高效冷却系统
CN104284536A (zh) * 2014-10-28 2015-01-14 储敏健 服务器机柜及具有其的机柜组和液体浸没冷却服务器系统
CN106255387A (zh) * 2016-08-31 2016-12-21 深圳绿色云图科技有限公司 散热系统及数据中心
WO2017089313A1 (en) * 2015-11-23 2017-06-01 Aecorsis B.V. A device comprising heat producing components with liquid submersion cooling
CN106912186A (zh) * 2017-04-24 2017-06-30 深圳绿色云图科技有限公司 机柜及微型数据中心

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512582A (en) * 1968-07-15 1970-05-19 Ibm Immersion cooling system for modularly packaged components
CA2042260A1 (en) * 1988-11-18 1991-11-12 Mitsutaka Yamada Immersion cooling coolant and electronic device using this coolant
US20080017355A1 (en) * 2006-05-16 2008-01-24 Hardcore Computer, Inc. Case for a liquid submersion cooled electronic device
KR100947292B1 (ko) * 2007-11-01 2010-03-16 최병길 열변형 최소화를 위한 급속 냉각방법
CN102037426B (zh) * 2008-04-21 2014-08-06 固核电脑公司 一种液体浸没式冷却式服务器电脑阵列、服务器电脑
AU2009282170B2 (en) * 2008-08-11 2014-11-27 Green Revolution Cooling, Inc. Liquid submerged, horizontal computer server rack and systems and methods of cooling such a server rack
CN102625639B (zh) * 2012-03-21 2015-10-21 华为技术有限公司 电子设备及其散热系统和散热方法
KR102137294B1 (ko) * 2012-09-25 2020-07-23 리퀴드쿨 솔루션즈, 인코포레이티드 액체 침지 전자 디바이스 어레이용 냉매 압력 및 유량 관리방법 및 장치
CN102931569B (zh) * 2012-11-08 2014-07-30 中国科学院光电研究院 准分子激光器的自动温控系统
US9801310B2 (en) * 2013-04-03 2017-10-24 International Business Machines Corporation Server cooling system without the use of vapor compression refrigeration
EP2825008B1 (en) * 2013-07-09 2018-06-13 ABB Schweiz AG Oil cooling configuration for subsea converter
CN204631753U (zh) * 2015-04-19 2015-09-09 北京德能恒信科技有限公司 一种数据中心
CN204679944U (zh) * 2015-06-03 2015-09-30 浪潮电子信息产业股份有限公司 一种新型液冷Rack服务器
US20180246550A1 (en) * 2015-08-31 2018-08-30 Exascaler Inc. Cooling system for electronic device
CN206431562U (zh) * 2016-12-14 2017-08-22 中国科学院广州能源研究所 一种用于数据中心服务器内液冷系统的防漏装置
CN107045382A (zh) * 2017-05-26 2017-08-15 北京丰联奥睿科技有限公司 一种液浸式数据中心
CN207885064U (zh) * 2017-09-30 2018-09-18 深圳绿色云图科技有限公司 一种数据中心冷却系统以及数据中心

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103609206A (zh) * 2011-04-19 2014-02-26 力博特公司 高效冷却系统
CN102833988A (zh) * 2012-09-19 2012-12-19 北京德能恒信科技有限公司 一种数据中心散热方案
CN104284536A (zh) * 2014-10-28 2015-01-14 储敏健 服务器机柜及具有其的机柜组和液体浸没冷却服务器系统
WO2017089313A1 (en) * 2015-11-23 2017-06-01 Aecorsis B.V. A device comprising heat producing components with liquid submersion cooling
CN106255387A (zh) * 2016-08-31 2016-12-21 深圳绿色云图科技有限公司 散热系统及数据中心
CN106912186A (zh) * 2017-04-24 2017-06-30 深圳绿色云图科技有限公司 机柜及微型数据中心

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290677A (zh) * 2019-06-06 2019-09-27 深圳绿色云图科技有限公司 一种液体浸没式冷却机柜
CN110290677B (zh) * 2019-06-06 2024-04-26 深圳绿色云图科技有限公司 一种液体浸没式冷却机柜
CN110351995A (zh) * 2019-08-09 2019-10-18 国网江苏省电力有限公司镇江供电分公司 电化学储能电站运行监测设备散热装置
CN110730601A (zh) * 2019-11-15 2020-01-24 北京丰联奥睿科技有限公司 一种液浸式服务器机柜及其冷却系统
US20230091814A1 (en) * 2021-09-17 2023-03-23 Green Revolution Cooling, Inc. Coolant shroud
US11805624B2 (en) * 2021-09-17 2023-10-31 Green Revolution Cooling, Inc. Coolant shroud
US11925946B2 (en) 2022-03-28 2024-03-12 Green Revolution Cooling, Inc. Fluid delivery wand

Also Published As

Publication number Publication date
CN107690267A (zh) 2018-02-13
CN107690267B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2019061721A1 (zh) 一种数据中心冷却系统以及数据中心
US20230276601A1 (en) Liquid submerged, horizontal computer server rack and systems and method of cooling such a server rack
CN107690268B (zh) 一种数据中心冷却系统以及数据中心
CN105704984B (zh) 一种一体式冷却装置
WO2018195885A1 (zh) 一种用于浸没式液冷系统的气汽分离方法及装置
CN109952003B (zh) 一种数据中心液冷系统
CN109769371B (zh) 一种自动化机房温度自调节装置
CN109831900A (zh) 一种液冷服务器机柜
LU502132B1 (en) Liquid-cooling system for rapid heat dissipation in computer
CN211656743U (zh) 一种液冷型虚拟数字货币处理设备
CN109831899A (zh) 一种液冷服务器机柜
CN211429864U (zh) 一种单机柜数据中心液冷结构
US11835285B2 (en) Chiller and energy storage system
CN216930670U (zh) 液冷设备和液冷系统
CN210168389U (zh) 一种数据中心液冷系统
CN209763553U (zh) 制冷设备的蒸发冷油路循环系统
CN207885064U (zh) 一种数据中心冷却系统以及数据中心
CN205450900U (zh) 水冷一体机内部结构布局
EA046087B1 (ru) Система рассеивания тепла методом погружного жидкостного охлаждения
CN114364235A (zh) 液冷设备和液冷系统
CN109831901A (zh) 一种液冷服务器机柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17927498

Country of ref document: EP

Kind code of ref document: A1