WO2023206783A1 - 一种服务器及其除湿节能型负压液冷系统 - Google Patents

一种服务器及其除湿节能型负压液冷系统 Download PDF

Info

Publication number
WO2023206783A1
WO2023206783A1 PCT/CN2022/101985 CN2022101985W WO2023206783A1 WO 2023206783 A1 WO2023206783 A1 WO 2023206783A1 CN 2022101985 W CN2022101985 W CN 2022101985W WO 2023206783 A1 WO2023206783 A1 WO 2023206783A1
Authority
WO
WIPO (PCT)
Prior art keywords
dehumidifier
negative pressure
liquid cooling
water tank
cooling system
Prior art date
Application number
PCT/CN2022/101985
Other languages
English (en)
French (fr)
Inventor
张晓伟
刘广志
信志涛
Original Assignee
苏州元脑智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州元脑智能科技有限公司 filed Critical 苏州元脑智能科技有限公司
Publication of WO2023206783A1 publication Critical patent/WO2023206783A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3058Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid

Definitions

  • This application relates to the technical field of liquid cooling servers, and in particular to a server and its dehumidification and energy-saving negative pressure liquid cooling system.
  • chip-level liquid cooling technologies include immersion liquid cooling and cold plate liquid cooling.
  • immersed liquid cooling has a small application scale due to its high cost and difficult maintenance.
  • Cold plate liquid cooling uses a pump to drive coolant (water, ethylene glycol, etc.) to flow through the channel on the back of the chip. The coolant exchanges heat with the chip through the plate wall in the channel, taking away the heat on the chip to achieve heat dissipation.
  • coolant water, ethylene glycol, etc.
  • the internal pressure of conventional cold plate liquid cooling systems is positive, that is, the air pressure inside the system is greater than the external atmospheric pressure.
  • the coolant leaks when the system breaks or loosens somewhere.
  • the widely used coolants such as water and propylene glycol aqueous solution have Electrical conductivity can cause fatal damage to the server.
  • negative pressure cold plate liquid cooling technology emerged.
  • the internal pressure of the system is lower than the external atmospheric pressure.
  • the coolant will not leak.
  • the server instead of external gas entering the system, the system has high security and broad application prospects.
  • a vacuum pump is required in a negative pressure liquid cooling circulation system.
  • the vacuum pump evacuates the water tank chamber to form a negative pressure, and the coolant continuously flows into the water tank chamber under the action of the pressure difference.
  • the vacuum pump needs to exhaust the water tank chamber while exhausting it to the outside. Since the air pressure in the water tank chamber is very low, the internal coolant can easily evaporate, which results in a very high humidity in the gas discharged to the outside. A large amount of coolant vapor is mixed, which requires regular replenishment, which requires higher system operation and maintenance, and it is also prone to condensation and other problems.
  • Some existing technologies have a gas-liquid separator connected to the air outlet of the vacuum pump. However, the gas-liquid separator can only separate liquid water and cannot separate the gaseous coolant contained in the mixed gas, resulting in a large loss of coolant.
  • the present application provides a dehumidification and energy-saving negative pressure liquid cooling system, which includes a water tank chamber for circulating cooling liquid, and is connected to the water tank chamber for sucking the gas inside it to remove the gas inside it.
  • a vacuum pump that forms a negative pressure in the water tank chamber, and a dehumidifier connected to the exhaust port of the vacuum pump for condensing the coolant vapor in the mixed gas.
  • the dehumidifier returns the collected liquid coolant to the water tank chamber through the liquid return pipe. middle.
  • an exhaust pipe is connected to the exhaust port of the vacuum pump, and the air inlet of the dehumidifier is connected to the exhaust pipe.
  • sealing rings are provided at the connection position between the exhaust port of the vacuum pump and the exhaust pipe, and at the connection position between the air inlet and the exhaust pipe of the dehumidifier.
  • a controller connected to the dehumidifier signal is further included for adjusting the refrigeration load of the dehumidifier according to the difference between the real-time enthalpy value of the mixed gas and the target enthalpy value.
  • it also includes a first temperature sensor for detecting the real-time temperature of the mixed gas, and a first humidity sensor for detecting the real-time humidity of the mixed gas; the controller includes a first calculation module for detecting the real-time temperature of the mixed gas. The detection data of the temperature sensor and the first humidity sensor are used to calculate the real-time enthalpy value of the mixed gas.
  • the controller further includes a second temperature sensor for detecting the temperature of the external environment and a second humidity sensor for detecting the humidity of the external environment; the controller further includes a second calculation module for detecting the temperature of the external environment according to the second temperature sensor and the second humidity sensor.
  • the detection data of the two humidity sensors are used to calculate the enthalpy value of the outside air.
  • it also includes a flow meter for detecting the real-time flow rate of the mixed gas; the controller also includes a third calculation module and an adjustment output module, and the third calculation module is used to calculate the first calculation module according to the detection data of the flow meter.
  • the calculation results of the dehumidifier and the calculation results of the second calculation module are used to calculate the current cooling capacity of the dehumidifier, and the adjustment output module is used to adjust the cooling load of the dehumidifier according to the calculation results of the third calculation module.
  • the dehumidifier is a thermoelectric refrigerator
  • the regulating output module is specifically used to regulate the current of the dehumidifier.
  • a temperature and humidity sensor for detecting the temperature and humidity of the mixed gas at the exhaust port of the dehumidifier is also included.
  • the temperature and humidity sensor is connected with the controller signal to enable the controller to modify the control instructions for the dehumidifier.
  • This application also provides a server, including a chassis and a dehumidification and energy-saving negative pressure liquid cooling system arranged in the chassis, wherein the dehumidification and energy-saving negative pressure liquid cooling system is specifically the dehumidification and energy-saving negative pressure liquid cooling system described in any one of the above. Cool system.
  • Figure 1 is a schematic diagram of the system structure of a specific implementation provided by this application.
  • Figure 2 is a schematic diagram of the specific structure of the controller.
  • FIG. 1 is a schematic system structure diagram of a specific implementation manner provided by this application.
  • the dehumidification energy-saving negative pressure liquid cooling system mainly includes a water tank chamber 1, a vacuum pump 2 and a dehumidifier 3.
  • the water tank chamber 1 is mainly used for circulating cooling liquid.
  • the vacuum pump 2 is connected to the water tank chamber 1 and is mainly used to pump the mixed gas in the water tank chamber 1, that is, the mixed gas formed by the low-pressure evaporated coolant vapor and air in the water tank chamber 1, so that a negative pressure is formed in the water tank chamber 1. pressure to use this negative pressure to drive the coolant circulation.
  • Dehumidifier 3 is the core component of this system. It is connected to the exhaust port of vacuum pump 2. It is mainly used to condense the coolant vapor in the mixed gas, so that the coolant vapor can re-condensate into liquid coolant. At the same time, dehumidifier 3 is connected with the water tank A liquid return pipe 31 is also connected between the chambers 1 to collect the re-condensed liquid cooling fluid and return it to the water tank chamber 1 to replenish the water tank chamber 1 with cooling fluid.
  • the dehumidification energy-saving negative pressure liquid cooling system uses the vacuum pump 2 to discharge the mixed gas in the water tank chamber 1, and then uses the dehumidifier 3 to condense the cooling liquid vapor therein, so that most of the cooling liquid The steam recondenses into liquid coolant, and is finally sent back to the water tank chamber 1 through the liquid return pipe 31, realizing feedback online replenishment of the coolant, thus reducing the coolant dissipation rate of the negative pressure liquid cooling system and reducing the System rehydration maintenance frequency and operation and maintenance costs.
  • an exhaust pipe 21 is connected between the vacuum pump 2 and the dehumidifier 3 in this embodiment. Specifically, one end of the exhaust pipe 21 is connected to the exhaust port of the vacuum pump 2 , and the other end of the exhaust pipe 21 is connected to the air inlet of the dehumidifier 3 .
  • the mixed gas sucked out by the vacuum pump 2 from the inner cavity of the water tank chamber 1 can smoothly enter the dehumidifier 3 through the exhaust pipe 21, preventing the mixed gas from escaping to the dehumidifier after being discharged from the exhaust port of the vacuum pump 2. in the external environment.
  • the exhaust pipe 21 may be a hose, so as to adjust the specific installation positions of the vacuum pump 2 and the dehumidifier 3 in the server chassis, and at the same time facilitate the installation arrangement of the exhaust pipe 21 in a narrow installation space.
  • Sealing rings such as O-rings, are provided at the connection positions between the air inlet and the exhaust pipe 21 to improve the airtightness of the connection between the vacuum pump 2 and the dehumidifier 3 and the exhaust pipe 21 .
  • the dehumidification energy-saving negative pressure liquid cooling system includes a controller 4 in addition to a water tank chamber 1, a vacuum pump 2 and a dehumidifier 3.
  • the controller 4 maintains a signal connection with the dehumidifier 3 and is mainly used to adjust the refrigeration load of the dehumidifier 3 based on the difference between the real-time enthalpy value of the mixed gas and the target enthalpy value.
  • the real-time enthalpy value of the mixed gas is in dynamic change, and the target enthalpy value can be set by the operator, or the air enthalpy value in the external environment can usually be used.
  • the real-time cooling capacity (or heat exchange amount) of the dehumidifier 3 is the difference between the real-time enthalpy value and the target enthalpy value of the mixed gas, which is discharged to the outside world.
  • the gas in the environment meets the target requirements, which not only has strong environmental protection performance, but also ensures that most of the coolant vapor is condensed.
  • Figure 2 is a schematic diagram of the specific structure of the controller 4.
  • a first temperature sensor 5 and a first humidity sensor 6 are added in this embodiment.
  • the first temperature sensor 5 is mainly used to detect the real-time temperature of the mixed gas, and can generally be arranged in the exhaust pipe 21 .
  • the first humidity sensor 6 is mainly used to detect the real-time humidity of the mixed gas, and can generally be arranged in the exhaust pipe 21 .
  • the controller 4 is equipped with a first calculation module 41, which is mainly used to calculate the real-time enthalpy value of the mixed gas based on the detection data of the first temperature sensor 5 and the first humidity sensor 6.
  • the real-time enthalpy value of the mixed gas can be calculated through the formula:
  • H1 1.01T1+D1(2500+1.84T1) is calculated.
  • H1 is the real-time enthalpy value of the mixed gas
  • T1 is the real-time temperature of the mixed gas
  • D1 is the real-time humidity of the mixed gas.
  • the target enthalpy value can usually be the air enthalpy value in the external environment.
  • a second temperature sensor 7 and a second humidity sensor 8 are also added in this embodiment.
  • the second temperature sensor 7 is mainly used to detect the temperature of the external environment
  • the second humidity sensor 8 is mainly used to detect the humidity of the external environment.
  • the controller 4 is also equipped with a second calculation module 42, which is mainly used to calculate the outside air enthalpy value based on the detection data of the second temperature sensor 7 and the second humidity sensor 8.
  • the enthalpy value of outside air can be calculated by the formula:
  • H2 1.01T2+D2(2500+1.84T2) is calculated.
  • H2 is the enthalpy value of the outside air
  • T2 is the outside ambient temperature
  • D2 is the outside ambient humidity
  • a flow meter 9 is added in this embodiment, and a third calculation module 43 and a regulating output module 44 are also provided in the controller 4.
  • the flow meter 9 is mainly used to detect the real-time flow rate of the mixed gas, and can generally be installed in the exhaust pipe 21 .
  • the third calculation module 43 is mainly used to calculate the current cooling capacity of the dehumidifier 3 based on the detection data of the flow meter 9 , the calculation results of the first calculation module 41 and the calculation results of the second calculation module 42 .
  • the adjustment output module 44 is mainly used to adjust the cooling load of the dehumidifier 3 according to the settlement result of the third calculation module 43 .
  • the real-time cooling capacity of dehumidifier 3 can be calculated through the formula:
  • Q is the real-time cooling capacity of the dehumidifier 3
  • L is the real-time flow rate of the mixed gas.
  • the dehumidifier 3 can specifically use a thermoelectric refrigerator or a semiconductor refrigerator, such as a thermoelectric cooling chip, a thermocouple chip, etc.
  • the adjusting output module 44 can adjust the cooling load of the thermoelectric refrigerator by adjusting the current of the dehumidifier 3 .
  • the current of the dehumidifier 3 can be adjusted in real time through a highly integrated bridge PWM switching driver chip.
  • the adjustment output module 44 has a higher accuracy for the cooling load of the dehumidifier 3, and the current adjustment method can directly affect the power of the dehumidifier 3, thereby directly reflecting the cooling load.
  • a temperature and humidity sensor 10 is added in this embodiment.
  • the temperature and humidity sensor 10 is mainly used to detect the temperature and humidity of the mixed gas at the exhaust port of the dehumidifier 3.
  • the temperature and humidity sensor 10 maintains a signal connection with the controller 4 to feed back its detection value to the control.
  • the controller 4 allows the controller 4 to correct the control instructions to the dehumidifier 3 according to the actual temperature and humidity of the mixed gas at the exhaust port of the dehumidifier 3, so as to appropriately increase or decrease the real-time cooling capacity.
  • an alarm module 45 is also added to the controller 4 in this embodiment.
  • the alarm module 45 is mainly used to send an alarm signal when the detection data of the temperature and humidity sensor 10 exceeds a preset threshold or when the adjustment output module 44 fails, and controls the dehumidifier 3 to operate at the maximum cooling capacity while using sound. Notify operation and maintenance personnel to perform maintenance through light alarm and other means.
  • the exhaust gas of the dehumidifier 3 is A gas-liquid separator 11 is also connected to the port to separate gas and liquid (liquid coolant) through the gas-liquid separator 11 and return the separated liquid coolant to the water tank chamber 1, thereby further improving the The recovery efficiency of coolant further reduces the coolant loss rate.
  • This embodiment also provides a server, which mainly includes a chassis and a dehumidification and energy-saving negative pressure liquid cooling system disposed in the chassis.
  • a server which mainly includes a chassis and a dehumidification and energy-saving negative pressure liquid cooling system disposed in the chassis.
  • the specific content of the dehumidification and energy-saving negative pressure liquid cooling system is the same as the above-mentioned relevant content and will not be discussed here. Again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computing Systems (AREA)
  • Quality & Reliability (AREA)
  • Drying Of Gases (AREA)

Abstract

本申请公开一种除湿节能型负压液冷系统,包括用于供冷却液循环流动的水箱腔室,还包括与所述水箱腔室连通、用于抽吸其内部的混合气体以在所述水箱腔室内形成负压的真空泵,以及与所述真空泵的排气口连通、用于冷凝混合气体中的冷却液蒸气的除湿器,所述除湿器通过回液管将收集的液态冷却液送回至所述水箱腔室中。本申请通过真空泵排出水箱腔室中的混合气体后,利用除湿器对冷却液蒸气的冷凝作用,使得大部分冷却液蒸气重新凝结成液态冷却液,最后通过回液管送回至水箱腔室中,实现了对冷却液的反馈式在线补充,因此能够降低负压液冷系统的冷却液耗散速率,降低系统补液维护频率和运维成本。本申请还公开一种服务器,其有益效果如上所述。

Description

一种服务器及其除湿节能型负压液冷系统
相关申请的交叉引用
本申请要求于2022年4月29日提交中国专利局,申请号为202210468206.1,申请名称为“一种服务器及其除湿节能型负压液冷系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及液冷服务器技术领域,特别涉及一种服务器及其除湿节能型负压液冷系统。
背景技术
随着CPU、GPU等部件功耗的成倍增长,传统风冷技术已经达到其经济有效的散热极限,伴随着国家建设绿色数据中心的倡议,可以解决更高热流密度散热问题同时具有更高能效的液冷散热技术应运而生,在近几年时间里得到了蓬勃发展。
常用的芯片级液冷技术有浸没式液冷和冷板式液冷。其中,浸没式液冷由于成本高、维护困难,应用规模较小。冷板式液冷是采用泵驱动冷却液(水、乙二醇等)流过芯片背部的通道,冷却液在通道内通过板壁与芯片进行热交换,带走芯片上的热量达到散热目的,该技术具有技术成熟、节能降噪等优势,应用较为广泛。
目前,常规冷板式液冷系统内部为正压,即系统内气压大于外部大气压,存在着当系统某处发生破裂或者松动时冷却液泄漏的缺陷,目前广泛使用的水和丙二醇水溶液等冷却液具有导电性,会造成服务器损毁的致命危害。在此背景下,负压冷板式液冷技术应运而生,负压冷板式液冷技术其系统内压强低于外部大气压,系统某处尤其是冷板连接处存在破损时,冷却液不会泄漏至服务器,而是外部气体进入系统中,系统安全性高,应用前景广阔。
在现有技术中,负压液冷循环系统中都需使用真空泵,真空泵对水箱腔室抽气从而形成负压,冷却液在压差作用下不断流入水箱腔室。然而,真空泵在对水箱腔室抽气的同时还需向外进行排气,由于水箱腔室内气压很低,内部的冷却液极易蒸发,这就导致 了向外排出的气体含湿度非常高,混合了较多冷却液蒸气,导致需要定期补液,对于系统运维要求较高,而且还容易造成凝露等问题。部分现有技术在真空泵的出气口处连接有气液分离器,然而气液分离器只能分离液态水,无法分离混合气体中蕴含的气态冷却液,导致冷却液仍然存在较大损耗。
因此,如何降低负压液冷系统的冷却液耗散速率,降低系统补液维护频率和运维成本,是本领域技术人员面临的技术问题。
发明内容
根据第一方面,本申请提供一种除湿节能型负压液冷系统,包括用于供冷却液循环流动的水箱腔室,还包括与水箱腔室连通、用于抽吸其内部的气体以在水箱腔室内形成负压的真空泵,以及与真空泵的排气口连通、用于冷凝混合气体中的冷却液蒸气的除湿器,除湿器通过回液管将收集的液态冷却液送回至水箱腔室中。
在一些实施方式中,真空泵的排气口处连接有排气管,除湿器的进气口与排气管连通。
在一些实施方式中,真空泵的排气口与排气管的连接位置处、除湿器的进气口与排气管的连接位置处均设置有密封圈。
在一些实施方式中,还包括与除湿器信号连接的控制器,用于根据混合气体的实时焓值与目标焓值之间的差值调节除湿器的制冷负荷。
在一些实施方式中,还包括用于检测混合气体的实时温度的第一温度传感器,以及用于检测混合气体的实时湿度的第一湿度传感器;控制器包括第一计算模块,用于根据第一温度传感器及第一湿度传感器的检测数据计算混合气体的实时焓值。
在一些实施方式中,还包括用于检测外界环境温度的第二温度传感器、用于检测外界环境湿度的第二湿度传感器;控制器还包括第二计算模块,用于根据第二温度传感器及第二湿度传感器的检测数据计算外界空气焓值。
在一些实施方式中,还包括用于检测混合气体的实时流量的流量计;控制器还包括第三计算模块和调节输出模块,第三计算模块用于根据流量计的检测数据、第一计算模块的计算结果以及第二计算模块的计算结果计算除湿器的当前制冷量,调节输出模块用于根据第三计算模块的计算结果调节除湿器的制冷负荷。
在一些实施方式中,除湿器为热电制冷器,调节输出模块具体用于调节除湿器的电流。
在一些实施方式中,还包括用于检测除湿器的排气口处的混合气体的温湿度的温湿度传感器,温湿度传感器与控制器信号连接,以使控制器修正对除湿器的控制指令。
本申请还提供一种服务器,包括机箱和设置于机箱中的除湿节能型负压液冷系统,其中,除湿节能型负压液冷系统具体为上述任一项所述的除湿节能型负压液冷系统。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请所提供的一种具体实施方式的系统结构示意图。
图2为控制器的具体结构示意图。
其中,图1—图2中:
水箱腔室—1,真空泵—2,除湿器—3,控制器—4,第一温度传感器—5,第一湿度传感器—6,第二温度传感器—7,第二湿度传感器—8,流量计—9,温湿度传感器—10,气液分离器—11;
排气管—21,回液管—31,第一计算模块—41,第二计算模块—42,第三计算模块—43,调节输出模块—44,报警模块—45。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1,图1为本申请所提供的一种具体实施方式的系统结构示意图。
在本申请所提供的一种具体实施方式中,除湿节能型负压液冷系统主要包括水箱腔室1、真空泵2和除湿器3。
其中,水箱腔室1主要用于供冷却液进行循环流动。
真空泵2与水箱腔室1连通,主要用于抽吸水箱腔室1内的混合气体,即水箱腔室1中低压蒸发的冷却液蒸气与空气形成的混合气,使得水箱腔室1内形成负压,以利用该负压驱动冷却液循环流动。
除湿器3为本系统的核心部件,其与真空泵2的排气口连通,主要用于冷凝混合气体中的冷却液蒸气,使得冷却液蒸气重新凝结成液态冷却液,同时,除湿器3与水箱腔室1之间还连接有回液管31,以收集重新凝结的液态冷却液并将其送回至水箱腔室1中,为水箱腔室1补充冷却液。
如此,本实施例所提供的除湿节能型负压液冷系统,通过真空泵2排出水箱腔室1中的混合气体后,利用除湿器3对其中的冷却液蒸气的冷凝作用,使得大部分冷却液蒸气重新凝结成液态冷却液,最后通过回液管31送回至水箱腔室1中,实现了对冷却液的反馈式在线补充,因此能够降低负压液冷系统的冷却液耗散速率,降低系统补液维护频率和运维成本。
为避免真空泵2排出的混合气体四处逸散至外界环境中,本实施例在真空泵2与除湿器3之间连接有排气管21。具体的,该排气管21的一端管口连接在真空泵2的排气口处,而排气管21的另一端管口连接在除湿器3的进气口处。如此设置,真空泵2从水箱腔室1内腔中抽吸出的混合气体即可顺利地通过排气管21进入到除湿器3中,防止混合气体从真空泵2的排气口排出后逸散到外界环境中。
在一些实施方式中,排气管21具体可采用软管,以便调节真空泵2与除湿器3在服务器机箱中的具体安装位置,同时有利于排气管21在狭窄安装空间中的安装布置。
进一步的,为提高气密性,防止混合气体在真空泵2与除湿器3之间流动时产生泄漏,本实施例在真空泵2的排气口与排气管21的连接位置处、除湿器3的进气口与排气管21的连接位置处均设置有密封圈,比如O型圈等,以提高真空泵2、除湿器3两者与排气管21的连接气密性。
在本申请所提供的另一种具体实施方式中,考虑到随着水箱腔室1的压强及使用环境的变化,除湿器3的制冷量也会不同,如果长期按满足最恶劣的工况设置,不仅造成能源的浪费,也会使除湿器3长期工作在高负荷状态,容易对设备产生损耗,缩短生命周期,为避免除湿器3长期工作在高负荷状态,提高系统实用性,实现节能降耗,本实施例中,除湿节能型负压液冷系统除了包括水箱腔室1、真空泵2和除湿器3之外,还包括控制器4。
具体的,控制器4与除湿器3保持信号连接,主要用于根据混合气体的实时焓值与目标焓值之间的差值,调节除湿器3的制冷负荷。其中,混合气体的实时焓值处于动态 变化中,而目标焓值可以由操作人员认为设定,或者通常可以采用外界环境中的空气焓值。如此设置,控制器4调节除湿器3的制冷负荷后,除湿器3的实时制冷量(或换热量)即为混合气体的实时焓值与目标焓值之间的差值,这样排出到外界环境中的气体即符合目标要求,不仅环保性能强,而且也能保证大部分冷却液蒸气都得到凝结。
如图2所示,图2为控制器4的具体结构示意图。
为便于控制器4实现对除湿器3的制冷负荷或制冷量的精确调节,本实施例中增设了第一温度传感器5和第一湿度传感器6。其中,第一温度传感器5主要用于检测混合气体的实时温度,一般可设置在排气管21内。第一湿度传感器6主要用于检测混合气体的实时湿度,一般可设置在排气管21内。相应的,控制器4内设第一计算模块41,该第一计算模块41主要用于根据第一温度传感器5及第一湿度传感器6的检测数据计算混合气体的实时焓值。
具体的,混合气体的实时焓值可通过公式:
H1=1.01T1+D1(2500+1.84T1)进行计算。
其中,H1为混合气体的实时焓值,T1为混合气体的实时温度,D1为混合气体的实时湿度。
此外,目标焓值通常可取外界环境中的空气焓值,为此,本实施例中还增设了第二温度传感器7和第二湿度传感器8。其中,该第二温度传感器7主要用于检测外界环境温度,而第二湿度传感器8主要用于检测外界环境湿度。相应的,控制器4还内设第二计算模块42,该第二计算模块42主要用于根据第二温度传感器7及第二湿度传感器8的检测数据计算外界空气焓值。
具体的,外界空气焓值可通过公式:
H2=1.01T2+D2(2500+1.84T2)进行计算。
其中,H2为外界空气焓值,T2为外界环境温度,D2为外界环境湿度。
为精确计算除湿器3的制冷量或制冷负荷,本实施例中增设了流量计9,同时在控制器4内还设置了第三计算模块43和调节输出模块44。其中,流量计9主要用于检测混合气体的实时流量,一般可设置在排气管21内。第三计算模块43主要用于根据流量计9的检测数据、第一计算模块41的计算结果和第二计算模块42的计算结果,计算除湿器3的当前制冷量。调节输出模块44主要用于根据第三计算模块43的结算结果调节除湿器3的制冷负荷。
具体的,除湿器3的实时制冷量可通过公式:
Q=L*(H2-H1)进行计算。
其中,Q为除湿器3的实时制冷量,L为混合气体的实时流量。
在关于除湿器3的一种可选实施例中,该除湿器3具体可采用热电制冷器或半导体制冷器,比如热电制冷片、热电偶片等。同时,调节输出模块44具体通过调节除湿器3的电流的方式,即可调节热电制冷器的制冷负荷。比如,可通过高度集成桥PWM开关式驱动芯片来实时调节除湿器3的电流。如此设置,调节输出模块44对除湿器3的制冷负荷精度更高,且电流调节方式能够直接影响除湿器3的功率,进而直接反应到制冷负荷上。
另外,为进一步提高对除湿器3的制冷负荷调节精度,本实施例还增设了温湿度传感器10。具体的,该温湿度传感器10主要用于检测除湿器3的排气口处的混合气体的温湿度,同时,该温湿度传感器10与控制器4保持信号连接,以将其检测值反馈给控制器4,使得控制器4根据除湿器3的排气口处的混合气体的实际温度和湿度修正对除湿器3的控制指令,以便适当增大或减小实时制冷量。
不仅如此,为提高系统运行可靠性和安全性,本实施例中还在控制器4内增设了报警模块45。具体的,该报警模块45主要用于在温湿度传感器10的检测数据超过预设阈值时或调节输出模块44出现故障时,发出报警信号,并控制除湿器3以最大制冷量运行,同时以声光报警等方式通知运维人员进行维护。
另外,考虑到经过除湿器3进行除湿后,可能仍然会存在部分凝结的液态冷却液未完全通过回液管31送回至水箱腔室1,针对此,本实施例在除湿器3的排气口上还连接有气液分离器11,以通过该气液分离器11将气体与液体(液态冷却液)进行分离,并将分离出的液态冷却液送回至水箱腔室1,从而能够进一步提高对冷却液的回收效率,进一步降低冷却液损耗率。
本实施例还提供一种服务器,主要包括机箱和设置于机箱中的除湿节能型负压液冷系统,其中,该除湿节能型负压液冷系统的具体内容与上述相关内容相同,此处不再赘述。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种除湿节能型负压液冷系统,包括用于供冷却液循环流动的水箱腔室(1),其特征在于,还包括与所述水箱腔室(1)连通、用于抽吸其内部的混合气体以在所述水箱腔室(1)内形成负压的真空泵(2),以及与所述真空泵(2)的排气口连通、用于冷凝混合气体中的冷却液蒸气的除湿器(3),所述除湿器(3)通过回液管(31)将收集的液态冷却液送回至所述水箱腔室(1)中。
  2. 根据权利要求1所述的除湿节能型负压液冷系统,其特征在于,所述真空泵(2)的排气口处连接有排气管(21),所述除湿器(3)的进气口与所述排气管(21)连通。
  3. 根据权利要求2所述的除湿节能型负压液冷系统,其特征在于,所述真空泵的排气口与所述排气管(21)的连接位置处、所述除湿器(3)的进气口与所述排气管(21)的连接位置处均设置有密封圈。
  4. 根据权利要求1-3任一项所述的除湿节能型负压液冷系统,其特征在于,还包括与所述除湿器(3)信号连接的控制器(4),用于根据混合气体的实时焓值与目标焓值之间的差值调节所述除湿器(3)的制冷负荷。
  5. 根据权利要求4所述的除湿节能型负压液冷系统,其特征在于,还包括用于检测混合气体的实时温度的第一温度传感器(5),以及用于检测混合气体的实时湿度的第一湿度传感器(6);所述控制器(4)包括第一计算模块(41),用于根据所述第一温度传感器(5)及所述第一湿度传感器(6)的检测数据计算混合气体的实时焓值。
  6. 根据权利要求5所述的除湿节能型负压液冷系统,其特征在于,还包括用于检测外界环境温度的第二温度传感器(7)、用于检测外界环境湿度的第二湿度传感器(8);所述控制器(4)还包括第二计算模块(42),用于根据所述第二温度传感器(7)及所述第二湿度传感器(8)的检测数据计算外界空气焓值。
  7. 根据权利要求6所述的除湿节能型负压液冷系统,其特征在于,还包括用于检测混合气体的实时流量的流量计(9);所述控制器(4)还包括第三计算模块(43)和调节输出模块(44),所述第三计算模块(43)用于根据所述流量计(9)的检测数据、所述第一计算模块(41)的计算结果以及所述第二计算模块(42)的计算结果计算所述除湿器(3)的当前制冷量,所述调节输出模块(44)用于根据所述第三计算模块(43)的计算结果调节所述除湿器(3)的制冷负荷。
  8. 根据权利要求7所述的除湿节能型负压液冷系统,其特征在于,所述除湿器 (3)为热电制冷器,所述调节输出模块(44)具体用于调节所述除湿器(3)的电流。
  9. 根据权利要求7所述的除湿节能型负压液冷系统,其特征在于,还包括用于检测所述除湿器(3)的排气口处的混合气体的温湿度的温湿度传感器(10),所述温湿度传感器(10)与所述控制器(4)信号连接,以使所述控制器(4)修正对所述除湿器(3)的控制指令。
  10. 一种服务器,包括机箱和设置于所述机箱中的除湿节能型负压液冷系统,其特征在于,所述除湿节能型负压液冷系统具体为权利要求1-9任一项所述的除湿节能型负压液冷系统。
PCT/CN2022/101985 2022-04-29 2022-06-28 一种服务器及其除湿节能型负压液冷系统 WO2023206783A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210468206.1 2022-04-29
CN202210468206.1A CN114690874A (zh) 2022-04-29 2022-04-29 一种服务器及其除湿节能型负压液冷系统

Publications (1)

Publication Number Publication Date
WO2023206783A1 true WO2023206783A1 (zh) 2023-11-02

Family

ID=82144956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101985 WO2023206783A1 (zh) 2022-04-29 2022-06-28 一种服务器及其除湿节能型负压液冷系统

Country Status (2)

Country Link
CN (1) CN114690874A (zh)
WO (1) WO2023206783A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117949045A (zh) * 2024-03-13 2024-04-30 山东星科智能科技股份有限公司 一种新能源电机生产线的数字化监测方法及系统
CN118613043A (zh) * 2024-08-08 2024-09-06 浙江省通信产业服务有限公司 一种数据中心双冷却节能装置、系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI829512B (zh) * 2023-01-18 2024-01-11 緯穎科技服務股份有限公司 浸潤式冷卻系統及其冷凝除濕裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922783A (zh) * 2010-07-28 2010-12-22 重庆市同方科技发展有限公司 一种基于焓值控制的空调节能控制方法及系统
CN105652989A (zh) * 2014-11-13 2016-06-08 北京仙络科技发展有限公司 液冷设备
US20180035569A1 (en) * 2012-02-07 2018-02-01 Chilldyne, Inc. Computer Cooling System And Method of Use
CN209246534U (zh) * 2018-10-12 2019-08-13 联业织染(珠海)有限公司 一种抽凝除湿烘干机
CN111701257A (zh) * 2020-06-17 2020-09-25 新乡航空工业(集团)有限公司 一种吊舱环控系统氟碳冷却液回收装置及冷却液回收方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096687A (zh) * 2011-11-07 2013-05-08 微邦科技股份有限公司 气液循环散热装置
CN109857179B (zh) * 2019-03-22 2021-03-09 中国原子能科学研究院 用于同位素电磁分离器冷却系统的控制系统
CN213160150U (zh) * 2020-08-12 2021-05-11 长沙恒开电气设备有限公司 智能型除湿装置
CN113175733B (zh) * 2021-04-21 2022-07-19 海信空调有限公司 计算空调器能力能效的方法、空调器和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922783A (zh) * 2010-07-28 2010-12-22 重庆市同方科技发展有限公司 一种基于焓值控制的空调节能控制方法及系统
US20180035569A1 (en) * 2012-02-07 2018-02-01 Chilldyne, Inc. Computer Cooling System And Method of Use
CN105652989A (zh) * 2014-11-13 2016-06-08 北京仙络科技发展有限公司 液冷设备
CN209246534U (zh) * 2018-10-12 2019-08-13 联业织染(珠海)有限公司 一种抽凝除湿烘干机
CN111701257A (zh) * 2020-06-17 2020-09-25 新乡航空工业(集团)有限公司 一种吊舱环控系统氟碳冷却液回收装置及冷却液回收方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117949045A (zh) * 2024-03-13 2024-04-30 山东星科智能科技股份有限公司 一种新能源电机生产线的数字化监测方法及系统
CN117949045B (zh) * 2024-03-13 2024-06-11 山东星科智能科技股份有限公司 一种新能源电机生产线的数字化监测方法及系统
CN118613043A (zh) * 2024-08-08 2024-09-06 浙江省通信产业服务有限公司 一种数据中心双冷却节能装置、系统及方法

Also Published As

Publication number Publication date
CN114690874A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2023206783A1 (zh) 一种服务器及其除湿节能型负压液冷系统
WO2023173622A1 (zh) 平稳切换负压液冷系统和平稳切换负压液冷控制方法
CN114051356B (zh) 负压液冷系统
CN112944739B (zh) 利用露点温度冷却的双循环制冷系统及其控制方法
WO2023207074A1 (zh) 一种服务器散热控制装置和服务器散热控制方法
CN107830742A (zh) 一种为热电厂凝汽器保持真空的系统成套装置
CN112556227A (zh) 空调机组、变频器冷却系统及其控制方法
CN114286585B (zh) 负压液冷系统
CN110986196A (zh) 数据中心用蒸发冷却动力多联机vrv装置、控制方法及系统
CN109708486A (zh) 一种带有冷却装置的汽轮机冷凝器抽真空系统及控制方法
CN203642444U (zh) 一种节能空调
JP7421176B2 (ja) 液浸冷却システム
TW201947350A (zh) 用於機櫃伺服器的液冷系統
CN213841387U (zh) 变频器冷却系统及空调机组
CN111077957B (zh) 一种多途径服务器冷却系统
CN209165701U (zh) 一种机房温湿度监控调节装置
CN220582719U (zh) 一种空气能防冻液内循环节能中央空调
CN220366717U (zh) 一种自动加湿浮动式储液器的风冷冷凝机组
CN216626482U (zh) 一种负压液冷系统及服务器
CN219368462U (zh) 一种冷水型工业冷风机
CN219015059U (zh) 一种二级冷却水温控装置
CN217936384U (zh) 一种负压液冷系统
CN212457482U (zh) 水冷螺杆式冷水机组
CN104279789A (zh) 一种三联供空调系统
CN117648022B (zh) 一种数据中心服务器的高功率相变散热系统及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939612

Country of ref document: EP

Kind code of ref document: A1