WO2023206952A1 - 宽输入电压范围的增益可调高变比dc/dc变换器 - Google Patents

宽输入电压范围的增益可调高变比dc/dc变换器 Download PDF

Info

Publication number
WO2023206952A1
WO2023206952A1 PCT/CN2022/121396 CN2022121396W WO2023206952A1 WO 2023206952 A1 WO2023206952 A1 WO 2023206952A1 CN 2022121396 W CN2022121396 W CN 2022121396W WO 2023206952 A1 WO2023206952 A1 WO 2023206952A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
electrically connected
bridge circuit
voltage
terminal
Prior art date
Application number
PCT/CN2022/121396
Other languages
English (en)
French (fr)
Inventor
杜贵平
朱天生
郑昊
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2023206952A1 publication Critical patent/WO2023206952A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter

Definitions

  • the present invention relates to the technical field of DC/DC converters, and in particular, to a gain-adjustable high-turnover DC/DC converter with a wide input voltage range.
  • server power supplies generally use a 48V intermediate bus architecture, which is converted from power on the server motherboard.
  • Existing technical solutions mostly use a two-stage voltage conversion architecture. In the middle, the voltage is converted once to 12V, and then the voltage is converted to the required low voltage such as 3.3V, 1.2V.
  • the two-stage voltage conversion here will increase The power loss of the system reduces the efficiency of the system, and increases the volume of the system and reduces the power density.
  • the traditional switching resonant cavity converter requires a large number of switching tubes to form a high-level DC/DC converter to achieve a high transformation ratio, and this type of high transformation ratio DC/DC converter is generally in an open-loop operation state without voltage regulation. The immunity to input voltage fluctuations and load power fluctuations is poor.
  • the purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art and provide a gain-adjustable high-turnover DC/DC converter with a wide input voltage range.
  • the converter consists of an N-stage high-turnover DC/DC converter and It is composed of a negative voltage output DC/DC converter, which reduces the power loss, improves the power efficiency, reduces the power supply volume and increases the power density; compared with the traditional switching resonant cavity converter, it reduces the volume and the number of components used, except
  • the present invention adjusts the value of the negative voltage of the negative voltage output DC/DC converter so that the system can resist fluctuations and wide-range changes in the power supply voltage and maintain the input voltage of the N-level high transformation ratio DC/DC converter. stability, thereby achieving the effect of maintaining the stability of the output voltage.
  • the technical solution provided by the present invention is: a gain-adjustable high-turnover DC/DC converter with a wide input voltage range.
  • the converter is composed of an N-stage high-turnover DC/DC converter, a negative voltage output
  • the DC/DC converter is composed of a first capacitor, wherein the N-level high transformation ratio DC/DC converter is an N-level converter composed of N-level conversion units, and N is an integer greater than or equal to 2; the N-level converter is Non-isolated converter is used to achieve high transformation ratio voltage conversion; the negative voltage output DC/DC converter is an isolated converter or a non-isolated converter, which can output negative voltage and adapt to the power supply by adjusting the voltage gain of the negative voltage.
  • the negative voltage output DC/DC converter has a positive input terminal, a negative input terminal and a negative output terminal
  • the N-stage high transformation ratio DC/DC converter has a positive input terminal, a negative input terminal, a positive output terminal and a negative output terminal
  • negative voltage The positive input terminal of the output DC/DC converter is electrically connected to the positive input terminal of the N-stage high transformation ratio DC/DC converter and the positive pole of the power supply, and the negative input terminal of the negative voltage output DC/DC converter is electrically connected to the negative pole of the power supply.
  • the positive electrode of the first capacitor and the negative output terminal of the negative voltage output DC/DC converter are electrically connected to the negative input terminal of the N-level high transformation ratio DC/DC converter and the negative electrode and the ground port of the first capacitor; the N-level high transformation ratio
  • the positive output terminal of the DC/DC converter is electrically connected to the positive terminal of the load
  • the negative output terminal of the N-stage high transformation ratio DC/DC converter is electrically connected to the negative terminal of the load and the ground port
  • the negative terminal of the power supply is electrically connected to the positive terminal of the first capacitor.
  • the negative electrode of the first capacitor is electrically connected to the ground port;
  • the transformation ratio between the input voltage and the output voltage of the N-stage high transformation ratio DC/DC converter is a fixed value.
  • the transformation ratio is related to the number of stages N, the wiring method of the converter, and the type of basic transformation unit that makes up the converter.
  • the maximum value of the ratio is related to N and satisfies the following rules: the 2-level transformation unit achieves a 5-fold transformation ratio, and the 3-level transformation unit achieves a 13-fold transformation ratio.
  • N>3 the transformation ratio value is the transformation ratio value achieved by the N-1th level.
  • the step-by-step accumulation of the transformation ratio value achieved at the second stage, plus the transformation ratio value achieved at the N-1 stage, plus 3; the turn-on and turn-off time of the switch tube inside the negative voltage output DC/DC converter The length affects the ratio of the converter's output voltage to the input voltage. Therefore, controlling the duty cycle of the switching tube can adjust the value of the negative voltage output and resist voltage fluctuations and wide-range changes in the power supply. By adjusting the negative voltage output DC/DC converter The value of the negative voltage maintains the stability of the input voltage of the N-stage high transformation ratio DC/DC converter, thereby achieving the effect of maintaining the stability of the output voltage.
  • the negative voltage output DC/DC converter is a non-isolated converter, which is composed of a first switch tube, a second switch tube and an inductor.
  • the above components are all two-terminal components, including a first end and a second end;
  • the first switch tube and the second switch tube operating complementaryly form a half-bridge circuit.
  • the half-bridge circuit includes a first end, a second end and a midpoint.
  • the first end of the first switch tube is electrically connected to the first end of the half-bridge circuit.
  • the second end of the first switch tube is electrically connected to the midpoint of the half-bridge circuit and the first end of the second switch tube, the second end of the second switch tube is electrically connected to the second end of the half-bridge circuit; the first end of the inductor The midpoint of the half-bridge circuit is electrically connected, and the second end is electrically connected to the negative input end of the negative voltage output DC/DC converter; the first end of the half-bridge circuit is electrically connected to the positive input end of the negative voltage output DC/DC converter. The two ends are electrically connected to the negative output end of the negative voltage output DC/DC converter;
  • the voltage of the first capacitor is V c
  • the voltage of the power supply is V in
  • the duty cycle of the first switching tube is D
  • the duty cycle of the second switching tube is 1-D
  • the value of D is 0-1
  • the relationship between the voltage of the first capacitor and the voltage of the power supply is:
  • the output voltage of the negative voltage output DC/DC converter can be adjusted to ensure that the input voltage value of the N-level high transformation ratio DC/DC converter is V in + when the power supply voltage is input in a wide range. V c remains unchanged.
  • the negative voltage output DC/DC converter is a non-isolated converter, which is composed of a first inductor, a second inductor, a second capacitor, a switching tube and a diode.
  • Each of the above components is a two-terminal component, including a first terminal and the second terminal; the first terminal of the first inductor is electrically connected to the first terminal of the switch tube and the first terminal of the second capacitor, and the second terminal of the first inductor is electrically connected to the positive input of the negative voltage output DC/DC converter.
  • the first terminal of the second inductor is electrically connected to the second terminal of the second capacitor and the second terminal of the diode, and the second terminal of the second inductor is electrically connected to the negative output terminal of the negative voltage output DC/DC converter; negative voltage output The negative input terminal of the DC/DC converter is electrically connected to the first terminal of the diode and the second terminal of the switch tube;
  • the voltage of the first capacitor is V c
  • the voltage of the power supply is V in
  • the duty cycle of the switching tube is D
  • the value of D is 0-1.
  • the relationship between the voltage of the first capacitor and the voltage of the power supply is: :
  • the output voltage of the negative voltage output DC/DC converter can be adjusted to ensure that the input voltage value of the N-level high transformation ratio DC/DC converter is V in + when the power supply voltage is input in a wide range. V c remains unchanged.
  • the negative voltage output DC/DC converter is an isolation converter, consisting of first, second, third, fourth, fifth and sixth switching tubes, a first inductor, a second inductor, a second capacitor, a third capacitor and a transformer.
  • the switching tube, inductor, and capacitor are all two-terminal components, including the first end and the second end;
  • the transformer has the first end of the primary side, the second end of the primary side, the first end of the secondary side, the second end of the secondary side, and the secondary side.
  • the midpoint, the number of turns of the inductor winding between the first end of the primary side and the second end of the primary side is p, the number of turns of the inductor winding between the first end of the secondary side and the midpoint of the secondary side is s, the midpoint of the secondary side
  • the number of turns of the inductor winding between the second end of the secondary side and the second end of the secondary side is s, and there is electrical isolation between the primary winding and the secondary winding;
  • the first end of the first switch tube is electrically connected to the first end of the second switch tube and the negative input end of the negative voltage output DC/DC converter.
  • the midpoint of the secondary side of the transformer is electrically connected to the negative voltage output DC/DC converter.
  • the first end of the secondary side of the transformer is electrically connected to the second end of the first switching tube, and the second end of the secondary side of the transformer is electrically connected to the second end of the second switching tube; the third switching tube and the fourth switch operate complementary
  • the tubes constitute a first half-bridge circuit.
  • the first half-bridge circuit includes a first end, a second end and a midpoint.
  • the first end of the third switch tube is electrically connected to the first end of the first half-bridge circuit.
  • the third switch tube The second end of the first half-bridge circuit is electrically connected to the midpoint of the first half-bridge circuit and the first end of the fourth switch tube, and the second end of the fourth switch tube is electrically connected to the second end of the first half-bridge circuit;
  • the fifth switch of complementary operation The tube and the sixth switch tube constitute a second half-bridge circuit.
  • the second half-bridge circuit includes a first end, a second end and a midpoint.
  • the first end of the fifth switch tube is electrically connected to the first end of the second half-bridge circuit.
  • the second end of the fifth switch tube is electrically connected to the midpoint of the second half-bridge circuit and the first end of the sixth switch tube
  • the second end of the sixth switch tube is electrically connected to the second end of the second half-bridge circuit;
  • the positive input end of the negative voltage output DC/DC converter is electrically connected to the first end of the second capacitor, the first end of the first half-bridge circuit, and the first end of the second half-bridge circuit.
  • the negative voltage output DC/DC converter The negative input end of the first inductor is electrically connected to the second end of the second capacitor, the second end of the first half-bridge circuit, and the second end of the second half-bridge circuit; the first end of the first inductor is electrically connected to the middle end of the second half-bridge circuit.
  • the second end of the first inductor is electrically connected to the first end of the second inductor and the first end of the primary side of the transformer
  • the first end of the third capacitor is electrically connected to the midpoint of the first half-bridge circuit
  • the third end of the third capacitor is electrically connected to the midpoint of the first half-bridge circuit.
  • the two terminals are electrically connected to the second terminal of the second inductor and the second terminal of the primary side of the transformer
  • the voltage transformation ratio of the transformer is a fixed value. It can be adjusted by adjusting the duty cycle of the switching tube or the switch frequency, making the output voltage V c of the negative voltage output DC/DC converter adjustable, ensuring that the input voltage value V in +V c of the N-level high transformation ratio DC/DC converter remains unchanged when the power supply voltage is input in a wide range. .
  • the N-level high transformation ratio DC/DC converter is an N-level converter, consisting of N-level conversion units.
  • the first-level conversion unit adopts the first type of basic conversion unit, and other conversion units except the first-level conversion unit are used.
  • the parts included in both the first type of basic transformation unit and the second type of basic transformation unit are:
  • the first resonant cavity includes a first end and a second end
  • the second resonant cavity includes a first end and a second end, and the first end of the second resonant cavity is electrically connected to the output port;
  • the first half-bridge circuit includes a first end, a second end and a midpoint.
  • the midpoint of the first half-bridge circuit is electrically connected to the first end of the first resonant cavity.
  • the first end of the first half-bridge circuit is electrically connected to Input port, the second end is electrically connected to the output port;
  • the second half-bridge circuit includes a first end, a second end and a midpoint.
  • the midpoint of the second half-bridge circuit is electrically connected to the second end of the first resonant cavity.
  • the first end of the second half-bridge circuit is electrically connected to Output port, the second end is electrically connected to the ground port;
  • the second end of the second resonant cavity of the first type of basic conversion unit is electrically connected to the ground port.
  • the second type of basic conversion unit also includes:
  • the third half-bridge circuit includes a first end, a second end and a midpoint.
  • the midpoint of the third half-bridge circuit is electrically connected to the second end of the second resonant cavity of the second type basic conversion unit.
  • the third half-bridge circuit The first end of the circuit is electrically connected to the output port of the lower-level conversion unit, and the second end is electrically connected to the ground port;
  • the first half-bridge circuit is composed of a first switch tube and a second switch tube that operate in a complementary manner.
  • the first end of the first switch tube is electrically connected to the second end of the second switch tube and the midpoint of the first half-bridge circuit.
  • the second end of the switch tube is electrically connected to the second end of the first half-bridge circuit, and the first end of the second switch tube is electrically connected to the first end of the first half-bridge circuit;
  • the second half-bridge circuit is composed of a third switch that operates complementary
  • the first end of the third switch tube is electrically connected to the second end of the fourth switch tube and the midpoint of the second half-bridge circuit, and the second end of the third switch tube is electrically connected to the second half-bridge circuit.
  • the second end of the circuit and the first end of the fourth switch tube are electrically connected to the first end of the second half-bridge circuit;
  • the third half-bridge circuit is composed of a fifth switch tube and a sixth switch tube that operate complementary to each other.
  • the fifth switch tube The first terminal of the sixth switch tube is electrically connected to the second terminal of the sixth switch tube and the midpoint of the third half-bridge circuit, the second terminal of the fifth switch tube is electrically connected to the second terminal of the third half-bridge circuit, and the third terminal of the sixth switch tube is electrically connected to the second terminal of the third half-bridge circuit.
  • One end is electrically connected to the first end of the third half-bridge circuit;
  • the output port of the first-level conversion unit in the N-level converter is the positive output end of the N-level high transformation ratio DC/DC converter, and is electrically connected to the positive pole of the load and the output ports of other conversion units except the first-level conversion unit. Electrically connected to the input port of the lower-level conversion unit, the input port of the N-level conversion unit is the positive input end of the N-level high transformation ratio DC/DC converter, and the negative input end of the N-level high transformation ratio DC/DC converter. The negative output terminal and the ground terminal are at the same potential.
  • the first resonant cavity is composed of an inductor and a capacitor, and the inductor and the capacitor are electrically connected in series.
  • the second resonant cavity is composed of an inductor and a capacitor, and the inductor and the capacitor are electrically connected in series, or is composed of only the capacitor.
  • all the first switching transistors, all the third switching transistors of the first-level conversion unit to the N-th level conversion unit, and the sixth switching transistor of each level of conversion unit composed of the second type of basic conversion unit are turned on at the same time.
  • all second switching tubes, all fourth switching tubes of the first-level conversion unit to the N-th level conversion unit, and the fifth switching tube of each level of conversion unit composed of the second type of basic conversion unit It is turned on and turned off at the same time; without considering the dead time, the duty cycle of each switch tube is 50%; the first-level conversion unit to the N-th level conversion unit All switching tubes of each stage of conversion unit work at variable frequency or fixed frequency.
  • the present invention has the following advantages and beneficial effects:
  • the present invention Compared with the traditional two-stage converter connected in series, the present invention has only one main power converter for voltage conversion, which reduces the number of electric energy conversions, reduces the electric energy loss, improves the efficiency of the converter, and at the same time reduces the size of the converter.
  • the size of the converter increases the power density.
  • the present invention improves the transformation ratio of the input voltage and the output voltage.
  • the number of switching devices and inductors and capacitors is reduced. It reduces the power loss, improves the efficiency of the converter and reduces the cost.
  • the voltage value of the output negative voltage can be adjusted, and the input voltage of the N-stage high transformation ratio DC/DC converter can be adjusted to adapt to the requirements of the power supply.
  • Wide-range voltage input resists voltage fluctuations of the power supply and achieves stable and adjustable load-side output voltage.
  • Figure 1 is a schematic structural diagram of the first type of basic transformation unit in this embodiment.
  • Figure 2 is a schematic structural diagram of the second type of basic transformation unit in this embodiment.
  • Figure 3 is a schematic diagram of the resonant cavity structure of this embodiment.
  • Figure 4 is a schematic structural diagram of the half-bridge circuit in this embodiment.
  • Figure 5 is a schematic diagram of the overall structure and connection method of the negative voltage output DC/DC converter and the N-stage high transformation ratio DC/DC converter in this embodiment.
  • Figure 6 is a schematic diagram of a specific embodiment of the circuit connection of the first negative voltage output DC/DC converter implementation in this embodiment when the number of conversion unit stages N is 3.
  • Figure 7 is a schematic diagram of a specific embodiment of the circuit connection of the second negative voltage output DC/DC converter implementation method in this embodiment when the number of conversion unit stages N is 3.
  • Figure 8 is a schematic diagram of a specific embodiment of the circuit connection of the third negative voltage output DC/DC converter implementation method in this embodiment when the number of conversion unit stages N is 3.
  • This embodiment provides a gain-adjustable high transformation ratio DC/DC converter with a wide input voltage range.
  • the converter is composed of an N-stage high transformation ratio DC/DC converter, a negative voltage output DC/DC converter and a third It consists of a capacitor, in which the N-level high transformation ratio DC/DC converter is an N-level converter composed of N-level conversion units, and N is an integer greater than or equal to 2; the N-level converter is a non-isolated converter, which is composed of switches.
  • the negative voltage output DC/DC converter is an isolated converter or a non-isolated converter, which is composed of switching tubes, inductors, capacitors, diodes, transformers Certain components in the circuit breaker are capable of outputting a negative voltage and can adapt to the wide input voltage range of the power supply by adjusting the voltage gain of the negative voltage.
  • the first-stage conversion unit of the N-stage converter adopts a first-type basic conversion unit, and other conversion units except the first-stage converter adopt a first-type basic conversion unit or a second-type basic conversion unit.
  • the first type of basic conversion unit includes: an input port, an output port, a first resonant cavity, a second resonant cavity, a first half-bridge circuit, a second half-bridge circuit, and a ground port.
  • the first end of the first half-bridge circuit is electrically connected to the input port, and the second end of the first half-bridge circuit is electrically connected to the output port;
  • the first end of the first resonant cavity is electrically connected to the midpoint of the first half-bridge circuit, and the first resonant cavity
  • the second end of the cavity is electrically connected to the midpoint of the second half-bridge circuit;
  • the first end of the second resonant cavity is electrically connected to the output port, and the second end of the second resonant cavity is electrically connected to the ground port.
  • the second type of basic conversion unit includes: an input port, an output port, a first resonant cavity, a second resonant cavity, a first half-bridge circuit, a second half-bridge circuit, and a third half-bridge circuit.
  • the first end of the first half-bridge circuit is electrically connected to the input port, and the second end of the first half-bridge circuit is electrically connected to the output port; the first end of the first resonant cavity is electrically connected to the midpoint of the first half-bridge circuit, and the first resonant cavity The second end of the cavity is electrically connected to the midpoint of the second half-bridge circuit; the first end of the second resonant cavity is electrically connected to the output port, and the second end of the second resonant cavity is electrically connected to the midpoint of the third half-bridge circuit.
  • the resonant cavity includes a first end and a second end, and is composed of an inductor and a capacitor.
  • the inductor and the capacitor are electrically connected in series; or it is composed of only the capacitor.
  • the half-bridge circuit includes a first end, a second end and a midpoint, and is composed of a first switch tube and a second switch tube that operate in a complementary manner.
  • the switch tube operates at variable frequency or fixed frequency.
  • the first end of the second half-bridge circuit of the N-level converter is electrically connected to the output port, and the second end is electrically connected to the ground port; the first end of the third half-bridge circuit in the second-type basic conversion unit is electrically connected to the lower one.
  • the output port of the first-stage conversion unit, the second end is electrically connected to the ground port.
  • the output port of the first-level conversion unit in the N-level converter is the positive output end of the N-level high transformation ratio DC/DC converter, and is electrically connected to the positive pole of the load and the output ports of other conversion units except the first-level conversion unit.
  • the input port of the N-level conversion unit is the positive input end of the N-level high transformation ratio DC/DC converter, and the negative input end of the N-level high transformation ratio DC/DC converter.
  • the negative output terminal and the ground terminal are at the same potential.
  • the first half-bridge circuit of the N-level converter is composed of a first switching tube Q1 and a second switching tube Q2 that operate in a complementary manner.
  • the first end of the first switching tube Q1 is electrically connected to the second end of the second switching tube Q2 and At the midpoint of the first half-bridge circuit, the second end of the first switch Q1 is electrically connected to the second end of the first half-bridge circuit, and the first end of the second switch Q2 is electrically connected to the first end of the first half-bridge circuit.
  • the second half-bridge circuit is composed of a third switching tube Q3 and a fourth switching tube Q4 that operate in a complementary manner.
  • the first end of the third switching tube Q3 is electrically connected to the second end of the fourth switching tube Q4 and the second half-bridge circuit.
  • the second end of the third switch Q3 is electrically connected to the second end of the second half-bridge circuit, and the first end of the fourth switch Q4 is electrically connected to the first end of the second half-bridge circuit;
  • the third half-bridge circuit It is composed of a fifth switching tube Q5 and a sixth switching tube Q6 that operate in a complementary manner.
  • the first end of the fifth switching tube Q5 is electrically connected to the second end of the sixth switching tube Q6 and the midpoint of the third half-bridge circuit.
  • the second end of the transistor Q5 is electrically connected to the second end of the third half-bridge circuit, and the first end of the sixth switching transistor Q6 is electrically connected to the first end of the third half-bridge circuit.
  • the six switching tubes Q6 are turned on and off at the same time, all the second switching tubes Q2 of the first-level conversion unit to the N-th level conversion unit, all the fourth switching tubes Q4 and each of the second-type basic conversion units are composed of
  • the fifth switching transistor Q5 of the first-level conversion unit is turned on and turned off at the same time. Without considering the dead time, the duty cycle of each switch tube is 50%. All switching tubes of each conversion unit from the first to the Nth stage conversion units work at variable frequency or fixed frequency.
  • the transformation ratio between the input voltage and the output voltage of the N-level converter is a fixed value.
  • the transformation ratio is related to the number of stages N, the wiring method of the converter, and the basic conversion unit type that makes up the converter.
  • the maximum value of the transformation ratio is related to It is related to N and satisfies the following rules: the 2-level transformation unit achieves a 5-fold transformation ratio, and the 3-level transformation unit achieves a 13-fold transformation ratio.
  • N>3 the transformation ratio value is the transformation ratio value achieved at the N-1 level to the 2-level implementation.
  • the transformation ratio value is accumulated item by item, plus the transformation ratio value achieved at the N-1 level, plus 3.
  • the negative voltage output DC/DC converter has a positive input terminal, a negative input terminal, and a negative output terminal
  • the N-level high transformation ratio DC/DC converter has a positive input terminal, a negative input terminal, a positive output terminal, Negative output terminal
  • the positive input terminal of the negative voltage output DC/DC converter is electrically connected to the positive input terminal of the N-stage high transformation ratio DC/DC converter and the positive electrode of the power supply
  • the negative input terminal of the negative voltage output DC/DC converter The negative electrode of the power supply is electrically connected to the positive electrode of the first capacitor C
  • the negative output terminal of the negative voltage output DC/DC converter is electrically connected to the negative input terminal of the N-stage high transformation ratio DC/DC converter and the negative electrode of the first capacitor C.
  • the positive output terminal of the N-level high transformation ratio DC/DC converter is electrically connected to the positive pole of the load
  • the negative output terminal of the N-level high transformation ratio DC/DC converter is electrically connected to the negative pole of the load and the ground port, and the negative pole of the power supply.
  • the positive electrode of the first capacitor C is electrically connected
  • the negative electrode of the first capacitor C is electrically connected to the ground port.
  • the length of the on and off time of the switch tube inside the negative voltage output DC/DC converter affects the ratio of the converter's output voltage to the input voltage. Therefore, controlling the duty cycle of the switch tube can adjust the value of the negative voltage output and resist In response to the voltage fluctuations and wide range changes of the power supply, by adjusting the negative voltage value of the negative output DC/DC converter, the input voltage of the N-stage high transformation ratio DC/DC converter is maintained stable, thereby maintaining the stability of the output voltage. Effect.
  • the negative voltage output DC/DC converter is a non-isolated converter, consisting of a first switch S1, a second switch S2, and an inductor L.
  • the above components are all two-terminal components, including the first terminal and The second end; the complementary operating first switch S1 and the second switch S2 form a half-bridge circuit.
  • the half-bridge circuit includes a first end, a second end and a midpoint. The first end of the first switch S1 is electrically connected. The first end of the half-bridge circuit and the second end of the first switch S1 are electrically connected to the midpoint of the half-bridge circuit and the first end of the second switch S2. The second end of the second switch S2 is electrically connected to the half-bridge circuit.
  • the second end of the inductor L is electrically connected to the midpoint of the half-bridge circuit, and the second end is electrically connected to the negative input end of the negative voltage output DC/DC converter; the first end of the half-bridge circuit is electrically connected to the negative voltage output
  • the positive input terminal of the DC/DC converter and the second terminal are electrically connected to the negative output terminal of the negative voltage output DC/DC converter; assuming that the voltage of the first capacitor C is V c and the voltage of the power supply is V in , the first switch
  • the duty cycle of tube S1 is D
  • the duty cycle of the second switching tube S2 is 1-D
  • the value of D is 0-1.
  • the relationship between the voltage of the first capacitor C and the voltage V in of the power supply is:
  • the output voltage of the negative voltage output DC/DC converter can be adjusted to ensure that the input voltage value of the N-level high transformation ratio DC/DC converter is V in + when the power supply voltage is input in a wide range. V c remains unchanged.
  • the negative voltage output DC/DC converter is a non-isolated converter, which is composed of a first inductor L1, a second inductor L2, a second capacitor C1, a switch S1 and a diode D.
  • Each of the above components is two terminal element, including a first end and a second end; the first end of the first inductor L1 is electrically connected to the first end of the switch S1 and the first end of the second capacitor C1, and the second end of the first inductor L1 is electrically connected to the negative The positive input end of the voltage output DC/DC converter; the first end of the second inductor L2 is electrically connected to the second end of the second capacitor C1 and the second end of the diode D, and the second end of the second inductor L2 is electrically connected to the negative voltage The negative output terminal of the output DC/DC converter; the negative input terminal of the negative voltage output DC/DC converter is electrically connected to the first terminal of the diode D and the second terminal of the switch S1; let
  • the output voltage of the negative voltage output DC/DC converter can be adjusted to ensure that the input voltage value of the N-level high transformation ratio DC/DC converter is V in + when the power supply voltage is input in a wide range. V c remains unchanged.
  • the negative voltage output DC/DC converter is an isolation converter, consisting of the first, second, third, fourth, fifth, and sixth switch tubes, a first inductor, a second inductor, a second capacitor, and a third capacitor. , it is composed of a transformer; the switching tube, inductor, and capacitor are all two-terminal components, including the first end and the second end; the transformer has the first end of the primary side, the second end of the primary side, the first end of the secondary side, and the second end of the secondary side.
  • the midpoint of the secondary side, the number of turns of the inductor winding between the first end of the primary side and the second end of the primary side is p
  • the number of turns of the inductor winding between the first end of the secondary side and the midpoint of the secondary side is s
  • the number of turns of the inductor winding between the first end of the primary side and the second end of the secondary side is s
  • the number of turns of the inductor winding between the midpoint of the side and the second end of the secondary side is s
  • the primary winding and the secondary winding are electrically isolated.
  • the first end of the first switch tube is electrically connected to the first end of the second switch tube and the negative input end of the negative voltage output DC/DC converter.
  • the midpoint of the secondary side of the transformer is electrically connected to the negative voltage output DC/DC converter.
  • the first end of the secondary side of the transformer is electrically connected to the second end of the first switching tube, and the second end of the secondary side of the transformer is electrically connected to the second end of the second switching tube; the third switching tube and the fourth switch operate complementary
  • the tubes constitute a first half-bridge circuit.
  • the first half-bridge circuit includes a first end, a second end and a midpoint.
  • the first end of the third switch tube is electrically connected to the first end of the first half-bridge circuit.
  • the third switch tube The second end of the first half-bridge circuit is electrically connected to the midpoint of the first half-bridge circuit and the first end of the fourth switch tube, and the second end of the fourth switch tube is electrically connected to the second end of the first half-bridge circuit; the fifth switch of complementary operation
  • the tube and the sixth switch tube constitute a second half-bridge circuit.
  • the second half-bridge circuit includes a first end, a second end and a midpoint.
  • the first end of the fifth switch tube is electrically connected to the first end of the second half-bridge circuit.
  • the second end of the fifth switch tube is electrically connected to the midpoint of the second half-bridge circuit and the first end of the sixth switch tube
  • the second end of the sixth switch tube is electrically connected to the second end of the second half-bridge circuit.
  • the positive input end of the negative voltage output DC/DC converter is electrically connected to the first end of the second capacitor, the first end of the first half-bridge circuit, and the first end of the second half-bridge circuit.
  • the negative voltage output DC/DC converter The negative input end of the first inductor is electrically connected to the second end of the second capacitor, the second end of the first half-bridge circuit, and the second end of the second half-bridge circuit; the first end of the first inductor is electrically connected to the middle end of the second half-bridge circuit.
  • the second end of the first inductor is electrically connected to the first end of the second inductor and the first end of the primary side of the transformer
  • the first end of the third capacitor is electrically connected to the midpoint of the first half-bridge circuit
  • the third end of the third capacitor is electrically connected to the midpoint of the first half-bridge circuit.
  • the two ends are electrically connected to the second end of the second inductor and the second end of the primary side of the transformer; assuming the voltage of the first capacitor is V c and the voltage of the power supply is V in , after determining the values of p and s of the transformer, the The voltage transformation ratio of the transformer is a fixed value.
  • the output voltage V c of the negative voltage output DC/DC converter can be adjusted to ensure that when the power supply voltage is input in a wide range, N The input voltage value V in +V c of the high-stage ratio DC/DC converter remains unchanged.

Abstract

本发明公开了一种宽输入电压范围的增益可调高变比DC/DC变换器,由N级高变比DC/DC变换器、负压输出DC/DC变换器和第一电容构成;N为大于或等于2的整数,N级高变比DC/DC变换器的输入电压与输出电压的变比值为固定值,该变比值与级数N、变换器的接线方式、组成变换器的基本变换单元类型有关;负压输出DC/DC变换器可输出负电压,通过控制开关管的导通与关断时间来调节负电压的电压增益,适应供电电源的宽范围电压输入,调节N级高变比DC/DC变换器的输入电压。本发明对传统的开关谐振变换器进行了改进,在提高变换器电压变比的同时,实现了在输入电压宽范围变化与输入电压波动时负载侧输出电压的稳定可调。

Description

宽输入电压范围的增益可调高变比DC/DC变换器 技术领域
本发明涉及DC/DC变换器的技术领域,尤其是指一种宽输入电压范围的增益可调高变比DC/DC变换器。
背景技术
目前,服务器电源普遍采用48V的中间总线架构,该48V由服务器主板上进行的功率变换而来。现有的技术方案多采用两级电压变换的架构,中间先经过一次电压变换到12V,再进行一次电压变换到所需的3.3V、1.2V等低电压,此处的两级电压变换会增加系统电能损耗从而降低系统的效率,提高系统的体积从而降低功率密度。传统的开关谐振腔变换器需要大量的开关管构成高级数的DC/DC变换器来实现高变比,并且这类高变比DC/DC变换器一般处于不调压的开环运行状态,对输入电压波动、负载功率波动的抗扰性较差。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供了一种宽输入电压范围的增益可调高变比DC/DC变换器,该变换器由N级高变比DC/DC变换器和负压输出DC/DC变换器构成,减少了电能损耗提高了电源效率,减小了电源体积提高了功率密度;与传统的开关谐振腔变换器相比,减小了体积与器件使用数量,除此之外,本发明通过调整负压输出DC/DC变换器的负电压的值,使得系统可以抵抗供电电源电压的波动与宽范围变化,维持N级高变比DC/DC变换器的输入电压的稳定,从而实现维持输出电压稳定的效果。
为实现上述目的,本发明所提供的技术方案为:宽输入电压范围的增益可调高变比DC/DC变换器,该变换器是由N级高变比DC/DC变换器、负压输出DC/DC变换器和第一电容构成,其中N级高变比DC/DC变换器是由N级变换单元构成的N级变换器,N为大于或等于2的整数;该N级变换器为非隔离变换器,用于实现高变比的电压变换;该负压输出DC/DC变换器为隔离型变换器或非隔离变换器,能够输出负电压,通过调节负电压的电压增益来适应供电电源的宽输入电压范围;
负压输出DC/DC变换器具有正输入端、负输入端和负输出端,N级高变比DC/DC变换器具有正输入端、负输入端、正输出端和负输出端;负压输出DC/DC变换器的正输入端电连接N级高变比DC/DC变换器的正输入端与供电电源的正极,负压输出DC/DC变换器的负输入端电连接供电电源的负极与第一电容的正极,负压输出DC/DC变换器的负输出端电连接N级高变比DC/DC变换器的负输入端以及第一电容的负极和接地端口;N级高变比DC/DC变换器的正输出端电连接负载的正极,N级高变比DC/DC变换器的负输出端电连接负载的负极以及接地端口,供电电源的负极电连接第一电容的正极,第一电容的负极电连接接地端口;
该N级高变比DC/DC变换器的输入电压与输出电压的变比值为固定值,该变比值与级数N、变换器的接线方式、组成变换器的基本变换单元类型有关,该变比值的最大值与N有关,满足如下规律:2级变换单元实现5倍变比,3级变换单元实现13倍变比,当N>3时,变比值为第N-1级实现的变比值至第2级实现的变比值的逐项累加,再加上第N-1级实现的变比值, 再加3;负压输出DC/DC变换器内部的开关管的导通与关断时间的长短影响该变换器输出电压与输入电压的比值,因此控制开关管的占空比能够调节负压输出的值,抵抗供电电源的电压波动与宽范围变化,通过调整负压输出DC/DC变换器的负电压的值,维持N级高变比DC/DC变换器的输入电压的稳定,从而实现维持输出电压稳定的效果。
优选的,负压输出DC/DC变换器为非隔离变换器,由第一开关管、第二开关管和电感这些元件构成,上述元件均为二端元件,包含第一端与第二端;互补运行的第一开关管以及第二开关管构成半桥电路,该半桥电路包含第一端、第二端以及中点,第一开关管的第一端电连接半桥电路的第一端,第一开关管的第二端电连接半桥电路的中点与第二开关管的第一端,第二开关管的第二端电连接半桥电路的第二端;电感的第一端电连接半桥电路的中点,第二端电连接负压输出DC/DC变换器的负输入端;半桥电路的第一端电连接负压输出DC/DC变换器的正输入端,第二端电连接负压输出DC/DC变换器的负输出端;
设第一电容的电压为V c,供电电源的电压为V in,第一开关管的占空比为D,第二开关管的占空比为1-D,D的取值为0-1,第一电容的电压与供电电源的电压的关系式为:
Figure PCTCN2022121396-appb-000001
通过调整D的取值,能够使得负压输出DC/DC变换器的输出电压可调,保证在供电电源电压宽范围输入时,N级高变比DC/DC变换器的输入电压值V in+V c不变。
优选的,负压输出DC/DC变换器为非隔离变换器,由第一电感、第二电感、第二电容、开关管以及二极管这些元件构成,上述各元件均为二端元件,包含第一端与第二端;第一电感的第一端电连接开关管的第一端以及第二电容的第一端,第一电感的第二端电连接负压输出DC/DC变换器的正输入端;第二电感的第一端电连接第二电容的第二端以及二极管的第二端,第二电感的第二端电连接负压输出DC/DC变换器的负输出端;负压输出DC/DC变换器的负输入端电连接二极管的第一端以及开关管的第二端;
设第一电容的电压为V c,供电电源的电压为V in,开关管的占空比为D,D的取值为0-1,第一电容的电压与供电电源的电压的关系式为:
Figure PCTCN2022121396-appb-000002
通过调整D的取值,能够使得负压输出DC/DC变换器的输出电压可调,保证在供电电源电压宽范围输入时,N级高变比DC/DC变换器的输入电压值V in+V c不变。
优选的,负压输出DC/DC变换器为隔离变换器,由第一、二、三、四、五、六开关管,第一电感,第二电感,第二电容,第三电容和变压器构成;开关管、电感、电容均为二端元件,包含第一端与第二端;变压器有原边第一端、原边第二端、副边第一端、副边第二端和副边中点,原边第一端与原边第二端之间的电感绕组的匝数为p,副边第一端与副边中点之间的电感绕组的匝数为s,副边中点与副边第二端之间的电感绕组的匝数为s,原边绕组与副边绕组之间是电气隔离;
第一开关管的第一端电连接第二开关管的第一端以及负压输出DC/DC变换器的负输入 端,变压器的副边中点电连接负压输出DC/DC变换器的负输出端,变压器的副边第一端电连接第一开关管的第二端,变压器的副边第二端电连接第二开关管的第二端;互补运行的第三开关管以及第四开关管构成第一半桥电路,该第一半桥电路包含第一端、第二端以及中点,第三开关管的第一端电连接第一半桥电路的第一端,第三开关管的第二端电连接第一半桥电路的中点与第四开关管的第一端,第四开关管的第二端电连接第一半桥电路的第二端;互补运行的第五开关管以及第六开关管构成第二半桥电路,该第二半桥电路包含第一端、第二端以及中点,第五开关管的第一端电连接第二半桥电路的第一端,第五开关管的第二端电连接第二半桥电路的中点与第六开关管的第一端,第六开关管的第二端电连接第二半桥电路的第二端;
负压输出DC/DC变换器的正输入端电连接第二电容的第一端以及第一半桥电路的第一端以及第二半桥电路的第一端,负压输出DC/DC变换器的负输入端电连接第二电容的第二端以及第一半桥电路的第二端以及第二半桥电路的第二端;第一电感的第一端电连接第二半桥电路的中点,第一电感的第二端电连接第二电感的第一端以及变压器的原边第一端,第三电容的第一端电连接第一半桥电路的中点,第三电容的第二端电连接第二电感的第二端以及变压器的原边第二端;
设第一电容的电压为V c,供电电源的电压为V in,在确定变压器的p和s的值后,该变压器的电压变比为固定值,能够通过调整开关管的占空比或开关频率,使得负压输出DC/DC变换器的输出电压V c可调,保证在供电电源电压宽范围输入时,N级高变比DC/DC变换器的输入电压值V in+V c不变。
优选的,N级高变比DC/DC变换器为N级变换器,由N级变换单元构成,第1级变换单元采用第一类基本变换单元,除第1级变换单元外的其它变换单元采用第一类基本变换单元或第二类基本变换单元,第一类基本变换单元与第二类基本变换单元均包含的部分有:
输入端口;
输出端口;
第一谐振腔,包含第一端以及第二端;
第二谐振腔,包含第一端以及第二端,该第二谐振腔的第一端电连接输出端口;
第一半桥电路,包含第一端、第二端以及中点,该第一半桥电路的中点电连接第一谐振腔的第一端,该第一半桥电路的第一端电连接输入端口,第二端电连接输出端口;
第二半桥电路,包含第一端、第二端以及中点,该第二半桥电路的中点电连接第一谐振腔的第二端,该第二半桥电路的第一端电连接输出端口,第二端电连接接地端口;
第一类基本变换单元的第二谐振腔的第二端电连接接地端口,第二类基本变换单元还包含:
第三半桥电路,包含第一端、第二端以及中点,该第三半桥电路的中点电连接第二类基本变换单元的第二谐振腔的第二端,该第三半桥电路的第一端电连接低一级变换单元的输出端口,第二端电连接接地端口;
第一半桥电路由互补运行的第一开关管以及第二开关管构成,第一开关管的第一端电连 接第二开关管的第二端以及第一半桥电路的中点,第一开关管的第二端电连接第一半桥电路的第二端,第二开关管的第一端电连接第一半桥电路的第一端;第二半桥电路由互补运行的第三开关管以及第四开关管构成,第三开关管的第一端电连接第四开关管的第二端以及第二半桥电路的中点,第三开关管的第二端电连接第二半桥电路的第二端,第四开关管的第一端电连接第二半桥电路的第一端;第三半桥电路由互补运行的第五开关管以及第六开关管构成,第五开关管的第一端电连接第六开关管的第二端以及第三半桥电路的中点,第五开关管的第二端电连接第三半桥电路的第二端,第六开关管的第一端电连接第三半桥电路的第一端;
该N级变换器中第1级变换单元的输出端口为N级高变比DC/DC变换器的正输出端,电连接负载的正极,除第1级变换单元外的其它变换单元的输出端口电连接低一级变换单元的输入端口,第N级变换单元的输入端口为N级高变比DC/DC变换器的正输入端,N级高变比DC/DC变换器的负输入端、负输出端与接地端口为同一电位。
优选的,第一谐振腔由电感和电容构成,该电感与电容串联电连接。
优选的,第二谐振腔由电感和电容构成,该电感与电容串联电连接,或者仅由电容构成。
优选的,第1级变换单元至第N级变换单元的所有第一开关管、所有第三开关管以及由第二类基本变换单元所构成的每一级变换单元的第六开关管是同时导通及同时关断,第1级变换单元至第N级变换单元的所有第二开关管、所有第四开关管以及由第二类基本变换单元所构成的每一级变换单元的第五开关管是同时导通及同时关断;不考虑死区时间的情况下,每个开关管的导通和关断的占空比为50%;第1级变换单元至该第N级变换单元中的每一级变换单元的所有开关管是变频或定频工作。
本发明与现有技术相比,具有如下优点与有益效果:
与传统的两级串联相接的变换器相比,本发明只有一级进行电压变换的主功率变换器,减少了电能变换次数,减小了电能损耗,提高了变换器的效率,同时缩小了变换器的体积,提高了功率密度。
与现有的开关谐振腔变换器相比,本发明提高了输入电压与输出电压的变比,在采用同样级数变换单元的情况下,减小了开关器件与电感电容的使用数量,减小了电能损耗,提高了变换器的效率,降低了成本。
通过控制负压输出DC/DC变换器的开关管的导通与关断时间,能够调节输出的负电压的电压值,调节N级高变比DC/DC变换器的输入电压,适应供电电源的宽范围电压输入,抵抗供电电源的电压波动,实现了负载侧输出电压的稳定可调。
附图说明
图1为本实施例的第一类基本变换单元结构示意图。
图2为本实施例的第二类基本变换单元结构示意图。
图3为本实施例的谐振腔结构示意图。
图4为本实施例的半桥电路结构示意图。
图5为本实施例的负压输出DC/DC变换器与N级高变比DC/DC变换器的整体结构与连 接方式示意图。
图6为本实施例的当变换单元级数N取3时的第一种负压输出DC/DC变换器实现方式的电路连接具体实施例示意图。
图7为本实施例的当变换单元级数N取3时的第二种负压输出DC/DC变换器实现方式的电路连接具体实施例示意图。
图8为本实施例的当变换单元级数N取3时的第三种负压输出DC/DC变换器实现方式的电路连接具体实施例示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
本实施例提供了一种宽输入电压范围的增益可调高变比DC/DC变换器,该变换器是由N级高变比DC/DC变换器、负压输出DC/DC变换器和第一电容构成,其中N级高变比DC/DC变换器是由N级变换单元构成的N级变换器,N为大于或等于2的整数;该N级变换器为非隔离变换器,由开关管、电容、电感等元件构成,用于实现高变比的电压变换;该负压输出DC/DC变换器为隔离型变换器或非隔离变换器,由开关管、电感、电容、二极管、变压器中的某些元件构成,能够输出负电压,通过调节负电压的电压增益来适应供电电源的宽输入电压范围。
所述N级变换器的第1级变换单元采用第一类基本变换单元,除第1级外的其它变换单元采用第一类基本变换单元或第二类基本变换单元。
如图1所示,第一类基本变换单元包括:输入端口、输出端口、第一谐振腔、第二谐振腔、第一半桥电路、第二半桥电路、接地端口。第一半桥电路的第一端电连接输入端口,第一半桥电路的第二端电连接输出端口;第一谐振腔的第一端电连接第一半桥电路的中点,第一谐振腔的第二端电连接第二半桥电路的中点;第二谐振腔的第一端电连接输出端口,第二谐振腔的第二端电连接接地端口。
如图2所示,第二类基本变换单元包括:输入端口、输出端口、第一谐振腔、第二谐振腔、第一半桥电路、第二半桥电路、第三半桥电路。第一半桥电路的第一端电连接输入端口,第一半桥电路的第二端电连接输出端口;第一谐振腔的第一端电连接第一半桥电路的中点,第一谐振腔的第二端电连接第二半桥电路的中点;第二谐振腔的第一端电连接输出端口,第二谐振腔的第二端电连接第三半桥电路的中点。
如图3所示,谐振腔包含第一端以及第二端,由电感和电容构成,该电感与电容串联电连接;或者仅由电容构成。
如图4所示,半桥电路包含第一端、第二端以及中点,由互补运行的第一开关管以及第二开关管构成,开关管是变频或定频工作。
所述N级变换器的第二半桥电路的第一端电连接输出端口,第二端电连接接地端口;第二类基本变换单元中的第三半桥电路的第一端电连接低一级变换单元的输出端口,第二端电连接接地端口。该N级变换器中第1级变换单元的输出端口为N级高变比DC/DC变换器的正输 出端,电连接负载的正极,除第1级变换单元外的其它变换单元的输出端口电连接低一级变换单元的输入端口,第N级变换单元的输入端口为N级高变比DC/DC变换器的正输入端,N级高变比DC/DC变换器的负输入端、负输出端与接地端口为同一电位。
所述N级变换器的第一半桥电路由互补运行的第一开关管Q1以及第二开关管Q2构成,第一开关管Q1的第一端电连接第二开关管Q2的第二端以及第一半桥电路的中点,第一开关管Q1的第二端电连接第一半桥电路的第二端,第二开关管Q2的第一端电连接第一半桥电路的第一端;第二半桥电路由互补运行的第三开关管Q3以及第四开关管Q4构成,第三开关管Q3的第一端电连接第四开关管Q4的第二端以及第二半桥电路的中点,第三开关管Q3的第二端电连接第二半桥电路的第二端,第四开关管Q4的第一端电连接第二半桥电路的第一端;第三半桥电路由互补运行的第五开关管Q5以及第六开关管Q6构成,第五开关管Q5的第一端电连接第六开关管Q6的第二端以及第三半桥电路的中点,第五开关管Q5的第二端电连接第三半桥电路的第二端,第六开关管Q6的第一端电连接第三半桥电路的第一端。
所述N级变换器的第1级变换单元至第N级变换单元的所有第一开关管Q1、所有第三开关管Q3以及由第二类基本变换单元所构成的每一级变换单元的第六开关管Q6是同时导通及同时关断,第1级变换单元至第N级变换单元的所有第二开关管Q2、所有第四开关管Q4以及由第二类基本变换单元所构成的每一级变换单元的第五开关管Q5是同时导通及同时关断。在不考虑死区时间的情况下,每个开关管的导通和关断的占空比为50%。第1级变换单元至第N级变换单元中的每一级变换单元的所有开关管是变频或定频工作。
所述N级变换器的输入电压与输出电压的变比值为固定值,该变比值与级数N、变换器的接线方式、组成变换器的基本变换单元类型有关,该变比值的最大值与N有关,满足如下规律:2级变换单元实现5倍变比,3级变换单元实现13倍变比,当N>3时,变比值为第N-1级实现的变比值至第2级实现的变比值的逐项累加,再加上第N-1级实现的变比值,再加3。
如图5所示,负压输出DC/DC变换器具有正输入端、负输入端、负输出端,N级高变比DC/DC变换器具有正输入端、负输入端、正输出端、负输出端;负压输出DC/DC变换器的正输入端电连接N级高变比DC/DC变换器的正输入端与供电电源的正极,负压输出DC/DC变换器的负输入端电连接供电电源的负极与第一电容C的正极,负压输出DC/DC变换器的负输出端电连接N级高变比DC/DC变换器的负输入端以及第一电容C的负极和接地端口;N级高变比DC/DC变换器的正输出端电连接负载的正极,N级高变比DC/DC变换器的负输出端电连接负载的负极以及接地端口,供电电源的负极电连接第一电容C的正极,第一电容C的负极电连接接地端口。
负压输出DC/DC变换器内部的开关管的导通与关断时间的长短影响该变换器输出电压与输入电压的比值,因此控制开关管的占空比可以调节负压输出的值,抵抗供电电源的电压波动与宽范围变化,通过调整负压输出DC/DC变换器的负电压的值,维持N级高变比DC/DC变换器的输入电压的稳定,从而实现维持输出电压稳定的效果。
如图6所示,负压输出DC/DC变换器为非隔离变换器,由第一开关管S1、第二开关管S2、电感L构成,上述元件均为二端元件,包含第一端与第二端;互补运行的第一开关管S1以及第二开关管S2构成半桥电路,该半桥电路包含第一端、第二端以及中点,第一开关管S1的第一端电连接半桥电路的第一端,第一开关管S1的第二端电连接半桥电路的中点与第二开关管S2的第一端,第二开关管S2的第二端电连接半桥电路的第二端;电感L的第一端电连接半桥电路的中点,第二端电连接负压输出DC/DC变换器的负输入端;半桥电路的第一端电连接负压输出DC/DC变换器的正输入端,第二端电连接负压输出DC/DC变换器的负输出端;设第一电容C的电压为V c,供电电源的电压为V in,第一开关管S1的占空比为D,第二开关管S2的占空比为1-D,D的取值为0-1,第一电容C的电压与供电电源的电压V in的关系式为:
Figure PCTCN2022121396-appb-000003
通过调整D的取值,可以使得负压输出DC/DC变换器的输出电压可调,保证在供电电源电压宽范围输入时,N级高变比DC/DC变换器的输入电压值V in+V c不变。
如图7所示,负压输出DC/DC变换器为非隔离变换器,由第一电感L1、第二电感L2、第二电容C1、开关管S1以及二极管D构成,上述各元件均为二端元件,包含第一端与第二端;第一电感L1的第一端电连接开关管S1的第一端以及第二电容C1的第一端,第一电感L1的第二端电连接负压输出DC/DC变换器的正输入端;第二电感L2的第一端电连接第二电容C1的第二端以及二极管D的第二端,第二电感L2的第二端电连接负压输出DC/DC变换器的负输出端;负压输出DC/DC变换器的负输入端电连接二极管D的第一端以及开关管S1的第二端;设第一电容C的电压为V c,供电电源的电压为V in,开关管S1的占空比为D,D的取值为0-1,第一电容C的电压与供电电源的电压V in的关系式为:
Figure PCTCN2022121396-appb-000004
通过调整D的取值,可以使得负压输出DC/DC变换器的输出电压可调,保证在供电电源电压宽范围输入时,N级高变比DC/DC变换器的输入电压值V in+V c不变。
如图8所示,负压输出DC/DC变换器为隔离变换器,由第一、二、三、四、五、六开关管,第一电感,第二电感,第二电容,第三电容,变压器构成;开关管、电感、电容均为二端元件,包含第一端与第二端;变压器有原边第一端、原边第二端,副边第一端、副边第二端、副边中点,原边第一端与原边第二端之间的电感绕组的匝数为p,副边第一端与副边中点之间的电感绕组的匝数为s,副边中点与副边第二端之间的电感绕组的匝数为s,原边绕组与副边绕组之间是电气隔离的。第一开关管的第一端电连接第二开关管的第一端以及负压输出DC/DC变换器的负输入端,变压器的副边中点电连接负压输出DC/DC变换器的负输出端,变压器的副边第一端电连接第一开关管的第二端,变压器的副边第二端电连接第二开关管的第二端;互补运行的第三开关管以及第四开关管构成第一半桥电路,该第一半桥电路包含第一端、第二端以及中点,第三开关管的第一端电连接第一半桥电路的第一端,第三开关管的第二端电连接第一半桥电路的中点与第四开关管的第一端,第四开关管的第二端电连接第一半桥电路的 第二端;互补运行的第五开关管以及第六开关管构成第二半桥电路,该第二半桥电路包含第一端、第二端以及中点,第五开关管的第一端电连接第二半桥电路的第一端,第五开关管的第二端电连接第二半桥电路的中点与第六开关管的第一端,第六开关管的第二端电连接第二半桥电路的第二端。
负压输出DC/DC变换器的正输入端电连接第二电容的第一端以及第一半桥电路的第一端以及第二半桥电路的第一端,负压输出DC/DC变换器的负输入端电连接第二电容的第二端以及第一半桥电路的第二端以及第二半桥电路的第二端;第一电感的第一端电连接第二半桥电路的中点,第一电感的第二端电连接第二电感的第一端以及变压器的原边第一端,第三电容的第一端电连接第一半桥电路的中点,第三电容的第二端电连接第二电感的第二端以及变压器的原边第二端;设第一电容的电压为V c,供电电源的电压为V in,在确定变压器的p和s的值后,该变压器的电压变比为固定值,可通过调整开关管的占空比或开关频率,使得负压输出DC/DC变换器的输出电压V c可调,保证在供电电源电压宽范围输入时,N级高变比DC/DC变换器的输入电压值V in+V c不变。
以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、连接原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (8)

  1. 宽输入电压范围的增益可调高变比DC/DC变换器,其特征在于:该变换器是由N级高变比DC/DC变换器、负压输出DC/DC变换器和第一电容构成,其中N级高变比DC/DC变换器是由N级变换单元构成的N级变换器,N为大于或等于2的整数;该N级变换器为非隔离变换器,用于实现高变比的电压变换;该负压输出DC/DC变换器为隔离型变换器或非隔离变换器,能够输出负电压,通过调节负电压的电压增益来适应供电电源的宽输入电压范围;
    负压输出DC/DC变换器具有正输入端、负输入端和负输出端,N级高变比DC/DC变换器具有正输入端、负输入端、正输出端和负输出端;负压输出DC/DC变换器的正输入端电连接N级高变比DC/DC变换器的正输入端与供电电源的正极,负压输出DC/DC变换器的负输入端电连接供电电源的负极与第一电容的正极,负压输出DC/DC变换器的负输出端电连接N级高变比DC/DC变换器的负输入端以及第一电容的负极和接地端口;N级高变比DC/DC变换器的正输出端电连接负载的正极,N级高变比DC/DC变换器的负输出端电连接负载的负极以及接地端口,供电电源的负极电连接第一电容的正极,第一电容的负极电连接接地端口;
    该N级高变比DC/DC变换器的输入电压与输出电压的变比值为固定值,该变比值与级数N、变换器的接线方式、组成变换器的基本变换单元类型有关,该变比值的最大值与N有关,满足如下规律:2级变换单元实现5倍变比,3级变换单元实现13倍变比,当N>3时,变比值为第N-1级实现的变比值至第2级实现的变比值的逐项累加,再加上第N-1级实现的变比值,再加3;负压输出DC/DC变换器内部的开关管的导通与关断时间的长短影响该变换器输出电压与输入电压的比值,因此控制开关管的占空比能够调节负压输出的值,抵抗供电电源的电压波动与宽范围变化,通过调整负压输出DC/DC变换器的负电压的值,维持N级高变比DC/DC变换器的输入电压的稳定,从而实现维持输出电压稳定的效果。
  2. 根据权利要求1所述的宽输入电压范围的增益可调高变比DC/DC变换器,其特征在于:负压输出DC/DC变换器为非隔离变换器,由第一开关管、第二开关管和电感这些元件构成,上述元件均为二端元件,包含第一端与第二端;互补运行的第一开关管以及第二开关管构成半桥电路,该半桥电路包含第一端、第二端以及中点,第一开关管的第一端电连接半桥电路的第一端,第一开关管的第二端电连接半桥电路的中点与第二开关管的第一端,第二开关管的第二端电连接半桥电路的第二端;电感的第一端电连接半桥电路的中点,第二端电连接负压输出DC/DC变换器的负输入端;半桥电路的第一端电连接负压输出DC/DC变换器的正输入端,第二端电连接负压输出DC/DC变换器的负输出端;
    设第一电容的电压为V c,供电电源的电压为V in,第一开关管的占空比为D,第二开关管的占空比为1-D,D的取值为0-1,第一电容的电压与供电电源的电压的关系式为:
    Figure PCTCN2022121396-appb-100001
    通过调整D的取值,能够使得负压输出DC/DC变换器的输出电压可调,保证在供电电源电压宽范围输入时,N级高变比DC/DC变换器的输入电压值V in+V c不变。
  3. 根据权利要求1所述的宽输入电压范围的增益可调高变比DC/DC变换器,其特征在于:负压输出DC/DC变换器为非隔离变换器,由第一电感、第二电感、第二电容、开关管以及二极 管这些元件构成,上述各元件均为二端元件,包含第一端与第二端;第一电感的第一端电连接开关管的第一端以及第二电容的第一端,第一电感的第二端电连接负压输出DC/DC变换器的正输入端;第二电感的第一端电连接第二电容的第二端以及二极管的第二端,第二电感的第二端电连接负压输出DC/DC变换器的负输出端;负压输出DC/DC变换器的负输入端电连接二极管的第一端以及开关管的第二端;
    设第一电容的电压为V c,供电电源的电压为V in,开关管的占空比为D,D的取值为0-1,第一电容的电压与供电电源的电压的关系式为:
    Figure PCTCN2022121396-appb-100002
    通过调整D的取值,能够使得负压输出DC/DC变换器的输出电压可调,保证在供电电源电压宽范围输入时,N级高变比DC/DC变换器的输入电压值V in+V c不变。
  4. 根据权利要求1所述的宽输入电压范围的增益可调高变比DC/DC变换器,其特征在于:负压输出DC/DC变换器为隔离变换器,由第一、二、三、四、五、六开关管,第一电感,第二电感,第二电容,第三电容和变压器构成;开关管、电感、电容均为二端元件,包含第一端与第二端;变压器有原边第一端、原边第二端、副边第一端、副边第二端和副边中点,原边第一端与原边第二端之间的电感绕组的匝数为p,副边第一端与副边中点之间的电感绕组的匝数为s,副边中点与副边第二端之间的电感绕组的匝数为s,原边绕组与副边绕组之间是电气隔离;第一开关管的第一端电连接第二开关管的第一端以及负压输出DC/DC变换器的负输入端,变压器的副边中点电连接负压输出DC/DC变换器的负输出端,变压器的副边第一端电连接第一开关管的第二端,变压器的副边第二端电连接第二开关管的第二端;互补运行的第三开关管以及第四开关管构成第一半桥电路,该第一半桥电路包含第一端、第二端以及中点,第三开关管的第一端电连接第一半桥电路的第一端,第三开关管的第二端电连接第一半桥电路的中点与第四开关管的第一端,第四开关管的第二端电连接第一半桥电路的第二端;互补运行的第五开关管以及第六开关管构成第二半桥电路,该第二半桥电路包含第一端、第二端以及中点,第五开关管的第一端电连接第二半桥电路的第一端,第五开关管的第二端电连接第二半桥电路的中点与第六开关管的第一端,第六开关管的第二端电连接第二半桥电路的第二端;
    负压输出DC/DC变换器的正输入端电连接第二电容的第一端以及第一半桥电路的第一端以及第二半桥电路的第一端,负压输出DC/DC变换器的负输入端电连接第二电容的第二端以及第一半桥电路的第二端以及第二半桥电路的第二端;第一电感的第一端电连接第二半桥电路的中点,第一电感的第二端电连接第二电感的第一端以及变压器的原边第一端,第三电容的第一端电连接第一半桥电路的中点,第三电容的第二端电连接第二电感的第二端以及变压器的原边第二端;
    设第一电容的电压为V c,供电电源的电压为V in,在确定变压器的p和s的值后,该变压器的电压变比为固定值,能够通过调整开关管的占空比或开关频率,使得负压输出DC/DC变换器的输出电压V c可调,保证在供电电源电压宽范围输入时,N级高变比DC/DC变换器的输入电压值V in+V c不变。
  5. 根据权利要求1所述的宽输入电压范围的增益可调高变比DC/DC变换器,其特征在于:N级高变比DC/DC变换器为N级变换器,由N级变换单元构成,第1级变换单元采用第一类基本变换单元,除第1级变换单元外的其它变换单元采用第一类基本变换单元或第二类基本变换单元,第一类基本变换单元与第二类基本变换单元均包含的部分有:
    输入端口;
    输出端口;
    第一谐振腔,包含第一端以及第二端;
    第二谐振腔,包含第一端以及第二端,该第二谐振腔的第一端电连接输出端口;
    第一半桥电路,包含第一端、第二端以及中点,该第一半桥电路的中点电连接第一谐振腔的第一端,该第一半桥电路的第一端电连接输入端口,第二端电连接输出端口;
    第二半桥电路,包含第一端、第二端以及中点,该第二半桥电路的中点电连接第一谐振腔的第二端,该第二半桥电路的第一端电连接输出端口,第二端电连接接地端口;
    第一类基本变换单元的第二谐振腔的第二端电连接接地端口,第二类基本变换单元还包含:
    第三半桥电路,包含第一端、第二端以及中点,该第三半桥电路的中点电连接第二类基本变换单元的第二谐振腔的第二端,该第三半桥电路的第一端电连接低一级变换单元的输出端口,第二端电连接接地端口;
    第一半桥电路由互补运行的第一开关管以及第二开关管构成,第一开关管的第一端电连接第二开关管的第二端以及第一半桥电路的中点,第一开关管的第二端电连接第一半桥电路的第二端,第二开关管的第一端电连接第一半桥电路的第一端;第二半桥电路由互补运行的第三开关管以及第四开关管构成,第三开关管的第一端电连接第四开关管的第二端以及第二半桥电路的中点,第三开关管的第二端电连接第二半桥电路的第二端,第四开关管的第一端电连接第二半桥电路的第一端;第三半桥电路由互补运行的第五开关管以及第六开关管构成,第五开关管的第一端电连接第六开关管的第二端以及第三半桥电路的中点,第五开关管的第二端电连接第三半桥电路的第二端,第六开关管的第一端电连接第三半桥电路的第一端;
    该N级变换器中第1级变换单元的输出端口为N级高变比DC/DC变换器的正输出端,电连接负载的正极,除第1级变换单元外的其它变换单元的输出端口电连接低一级变换单元的输入端口,第N级变换单元的输入端口为N级高变比DC/DC变换器的正输入端,N级高变比DC/DC变换器的负输入端、负输出端与接地端口为同一电位。
  6. 根据权利要求5所述的宽输入电压范围的增益可调高变比DC/DC变换器,其特征在于:第一谐振腔由电感和电容构成,该电感与电容串联电连接。
  7. 根据权利要求5所述的宽输入电压范围的增益可调高变比DC/DC变换器,其特征在于:第二谐振腔由电感和电容构成,该电感与电容串联电连接,或者仅由电容构成。
  8. 根据权利要求5所述的宽输入电压范围的增益可调高变比DC/DC变换器,其特征在于:第1级变换单元至第N级变换单元的所有第一开关管、所有第三开关管以及由第二类基本变换单元所构成的每一级变换单元的第六开关管是同时导通及同时关断,第1级变换单元至第N级 变换单元的所有第二开关管、所有第四开关管以及由第二类基本变换单元所构成的每一级变换单元的第五开关管是同时导通及同时关断;不考虑死区时间的情况下,每个开关管的导通和关断的占空比为50%;第1级变换单元至该第N级变换单元中的每一级变换单元的所有开关管是变频或定频工作。
PCT/CN2022/121396 2022-04-24 2022-09-26 宽输入电压范围的增益可调高变比dc/dc变换器 WO2023206952A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210434761.2A CN114785128A (zh) 2022-04-24 2022-04-24 宽输入电压范围的增益可调高变比dc/dc变换器
CN202210434761.2 2022-04-24

Publications (1)

Publication Number Publication Date
WO2023206952A1 true WO2023206952A1 (zh) 2023-11-02

Family

ID=82433040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121396 WO2023206952A1 (zh) 2022-04-24 2022-09-26 宽输入电压范围的增益可调高变比dc/dc变换器

Country Status (2)

Country Link
CN (1) CN114785128A (zh)
WO (1) WO2023206952A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785128A (zh) * 2022-04-24 2022-07-22 华南理工大学 宽输入电压范围的增益可调高变比dc/dc变换器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497102A (zh) * 2011-12-24 2012-06-13 西安启芯微电子有限公司 宽输出范围的同步降压-升压型dc-dc转换电路
CN106068606A (zh) * 2014-03-07 2016-11-02 科锐 变换器电路
CN107947565A (zh) * 2017-11-08 2018-04-20 中国电子科技集团公司第五十五研究所 一种基于psm模式的cuk转换器的控制电路
CN111181401A (zh) * 2018-11-12 2020-05-19 台达电子企业管理(上海)有限公司 开关谐振腔变换器
WO2021258619A1 (zh) * 2020-06-22 2021-12-30 科华恒盛股份有限公司 一种变换器电路
CN114785128A (zh) * 2022-04-24 2022-07-22 华南理工大学 宽输入电压范围的增益可调高变比dc/dc变换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497102A (zh) * 2011-12-24 2012-06-13 西安启芯微电子有限公司 宽输出范围的同步降压-升压型dc-dc转换电路
CN106068606A (zh) * 2014-03-07 2016-11-02 科锐 变换器电路
CN107947565A (zh) * 2017-11-08 2018-04-20 中国电子科技集团公司第五十五研究所 一种基于psm模式的cuk转换器的控制电路
CN111181401A (zh) * 2018-11-12 2020-05-19 台达电子企业管理(上海)有限公司 开关谐振腔变换器
WO2021258619A1 (zh) * 2020-06-22 2021-12-30 科华恒盛股份有限公司 一种变换器电路
CN114785128A (zh) * 2022-04-24 2022-07-22 华南理工大学 宽输入电压范围的增益可调高变比dc/dc变换器

Also Published As

Publication number Publication date
CN114785128A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN107453615B (zh) 模块化多电平变换器及电力电子变压器
CN110212764B (zh) 一种适用于数据中心电压调节模块的非隔离直流斩波电路
CN114629349B (zh) 基于开关电感的改进型高频高升压比sepic变换器
Lin et al. Interleaved LLC series converter with output voltage doubler
CN112713766B (zh) 一种高增益Cuk DC-DC变换器
CN112087143B (zh) 一种多端输入单端输出的准并联谐振变换器
CN111464024A (zh) 一种具备高增益升压能力的Buck-Boost DC-DC变换器
WO2023206952A1 (zh) 宽输入电压范围的增益可调高变比dc/dc变换器
CN111245236B (zh) 一种降压式直流-直流转换器拓扑结构
CN112701923A (zh) 一种新型的高增益Zeta DC-DC变换器
CN113541486B (zh) 交错二极管电容网络高增益zvt直流变换器及辅助电路
WO2023206953A1 (zh) 多参考电平宽范围增益调节高变比dc/dc变换器
WO2024045797A1 (zh) 非隔离谐振变换器
WO2024045798A1 (zh) 非隔离llc谐振变换器
CN110661424B (zh) 一种高变压器利用率高增益反激式dc/dc变换器
CN214674908U (zh) 混合级联型ac-ac变换器
CN213151913U (zh) 一种输出宽范围可调的三电平软开关变化电路
CN110071651B (zh) 一种结构对称的非隔离型升压逆变电路
CN110729913B (zh) 一种单级式高增益五开关Boost型逆变器
CN113507229A (zh) 基于开关电容网络的宽输入降压逆变系统及控制方法
CN113507230A (zh) 基于开关感容网络的组合式升压逆变系统及其控制方法
CN112737316A (zh) 准z源逆变器及供电系统
CN108075669B (zh) 带集成级联结构的dc-dc变换器
CN109245578B (zh) 一种单磁芯四绕组高增益单级式Buck-Boost型逆变器
CN111865089A (zh) 一种隔离型宽增益准开关升压dc-dc变换器电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939774

Country of ref document: EP

Kind code of ref document: A1