CN113507230A - 基于开关感容网络的组合式升压逆变系统及其控制方法 - Google Patents
基于开关感容网络的组合式升压逆变系统及其控制方法 Download PDFInfo
- Publication number
- CN113507230A CN113507230A CN202110760172.9A CN202110760172A CN113507230A CN 113507230 A CN113507230 A CN 113507230A CN 202110760172 A CN202110760172 A CN 202110760172A CN 113507230 A CN113507230 A CN 113507230A
- Authority
- CN
- China
- Prior art keywords
- capacitor
- switch
- energy
- inductor
- system based
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000003990 capacitor Substances 0.000 claims description 55
- 238000004146 energy storage Methods 0.000 claims description 30
- 230000005347 demagnetization Effects 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 241000022852 Letis Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1582—Buck-boost converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
本发明涉及一种基于开关感容网络的组合式升压逆变系统及其控制方法,包括输入直流源、开关感容网络、单相高频组合调制开关、LC滤波器和负载;所述输入直流源、开关感容网络、单相高频组合调制开关、LC滤波器和负载依序级联。本发明相较于传统Boost型升压逆变系统,其具有输入输出电流纹波小,输入输出电压传输比增加一倍,有体积小、重量轻等优点,适用于中小容量逆变场合。
Description
技术领域
本发明涉及电力电子变换技术领域,具体涉及一种基于开关感容网络的组合式升压逆变系统及其控制方法。
背景技术
随着光伏、风力、太阳能等清洁能源被广泛的应用,逆变系统在清洁能源并网等领域发挥着越来越重要的作用,传统逆变系统常见的升压方式有以下几种(1)Buck型低频环节逆变系统采用后级串联一个工频升压变压器实现升压,由于引入低频升压变压器,使其具有装置体积大、成本高、噪声大的特点;(2)对于高频环节逆变系统,其中准单级或两级式逆变系统有效的解决了使用低频升压变压器所带来的装置体积和成本问题,具有效率高、体积小等优点,但由于存在前后级隔离高频变压器,导致高端输入电压时占空比较小,变换效率低的问题。(3)准Z源型逆变系统,虽然具有高增益宽输入特性,但其依靠阻抗网络升压,体积成本不占优势。
发明内容
有鉴于此,本发明的目的在于提供一种基于开关感容网络的组合式升压逆变系统及其控制方法,以解决上述问题。
为实现上述目的,本发明采用如下技术方案:
一种基于开关感容网络的组合式升压逆变系统,包括输入直流源、开关感容网络、单相高频组合调制开关、LC滤波器和负载;所述输入直流源、开关感容网络、单相高频组合调制开关、LC滤波器和负载依序级联。
进一步的,所述开关感容网络包括储能电感L1、两个储能电容C1、C2、一个高频斩波功率开关S5、以及两个模式选择开关S6、S7;所述储能电感L1的一端与输入直流源的参考正极性端相连;所述储能电感的另一端与高频斩波功率开关S5的一端、储能电容C1的参考正极性端以及模式选择开关S6的一端分别连接;所述高频斩波功率开关S5的另一端与输入电源的参考负极性端、储能电容C2的参考负极性端、模式选择开关S7分别连接;所述模式选择开关S7的另一端与储能电容C1的参考负极性端相连接;所述模式选择开关S6的另一端与储能电容C2的参考正极性端相连接。
进一步的,所述单相高频组合调制开关由四个承受单相电压应力和双相电流应力的两象限功率开关S11、S12、S13、S14构成。
进一步的,所述LC滤波器由输出滤波电感Lf、输出滤波电容Cf依次级联构成。
一种基于开关感容网络的组合式升压逆变系统的控制方法,所述基于开关感容网络的组合式升压逆变系统输出电压反馈信号u o与输出电压参考u oref进入输出电压PI调节器,PI调节器输出信号u e再分别与两种模式下的前馈控制信号u s1 、u s2进入比较器1、比较器2后产生两种模式下的占空比D 1、 D 2,最后经过组合逻辑电路产生各开关管驱动信号。当输入电压或是输出负载突变时,占空比可进行自动调节,从而实现输出电压u o的稳定。
进一步的,所述基于开关感容网络的组合式升压逆变系统包括两种工作模式,具体如下:
在工作模式一时,当时,此时,逆变系统处于降压逆变状态,S6 、S7、S14常通,S5常断,以输出电压正半周为例,在一个高频开关周期内,充磁周期D 1Ts对应开关管S11和S14导通,储能电感L f储能,直流源直接向交流负载提供能量;去磁周期(1- D 1)Ts, 对应开关管S13和S14导通,储能电感L f释能,储能电感和滤波电容C f向负载提供能量;
在工作模式二时,当时,以输出电压正半周为例,S14常通,在一个高频开关周期内,充磁周期D 2Ts对应开关管S5、 S11导通、S6、S7关断,电容C 1、电容C 2串联叠加后向交流负载提供能量。去磁周期(1- D 2)Ts, 对应开关管S5关断,S6、S7、 S13导通,储能电感L 1释能,电容C 1、电容C 2储能,输出滤波电容C f向负载提供能量。
本发明与现有技术相比具有以下有益效果:
本发明相较于传统Boost型升压逆变系统,其具有输入输出电流纹波小,输入输出电压传输比增加一倍,有体积小、重量轻等优点,适用于中小容量逆变场合。
附图说明
图1是本发明电路结构图;
图2是本发明一实施例中系统电路拓扑;
图3是本发明一实施例中逆变系统的原理波形图;
图4是本发明一实施例中模式一时逆变系统的充磁等效电路图;
图5是本发明一实施例中模式一时逆变系统的去磁等效电路图;
图6是本发明一实施例中模式二时逆变系统的充磁等效电路图;
图7是本发明一实施例中模式二时逆变系统的去磁等效电路图;
图8是本发明一实施例中逆变系统的控制原理波形;
图9是本发明一实施例中逆变系统的控制原理框图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
请参照图1,本发明提供一种基于开关感容网络的组合式升压逆变系统,包括输入直流源、开关感容网络、单相高频组合调制开关、LC滤波器和负载;所述输入直流源、开关感容网络、单相高频组合调制开关、LC滤波器和负载依序级联。
在本实施例中,参考图2,优选的,开关感容网络包括储能电感L1、两个储能电容C1、C2、一个高频斩波功率开关S5、以及两个模式选择开关S6、S7;所述储能电感L1的一端与输入直流源的参考正极性端相连;所述储能电感的另一端与高频斩波功率开关S5的一端、储能电容C1的参考正极性端以及模式选择开关S6的一端分别连接;所述高频斩波功率开关S5的另一端与输入电源的参考负极性端、储能电容C2的参考负极性端、模式选择开关S7分别连接;所述模式选择开关S7的另一端与储能电容C1的参考负极性端相连接;所述模式选择开关S6的另一端与储能电容C2的参考正极性端相连接,模式选择开关S6与模式选择开关S7的两端构成开关感容网络的输出端口。单相高频组合调制开关由四个承受单相电压应力和双相电流应力的两象限功率开关S11、S12、S13、S14构成。LC滤波器由输出滤波电感Lf、输出滤波电容Cf依次级联构成。
在本实施例中,优选的,基于开关感容网络的组合式升压逆变系统包括两种工作模式,在每种工作模式下,在一个高频开关周期Ts内储能电感各完成一次充磁和去磁过程,若Ui1为输入直流电压,u oref为输出电压参考信号,具体如下:
在工作模式一时,当时,此时,逆变系统处于降压逆变状态,S6 、S7、S14常通,S5常断,以输出电压正半周为例,在一个高频开关周期内,充磁周期D 1Ts对应开关管S11和S14导通,储能电感L f储能,直流源直接向交流负载提供能量;去磁周期(1- D 1)Ts, 对应开关管S13和S14导通,储能电感L f释能,储能电感和滤波电容C f向负载提供能量;如图4、图5所示,为模式一时,在一个高频开关周期内,所述的基于开关感容网络的组合式升压逆变系统的充磁等效电路图和去磁等效电路图。
设输出滤波电容C f两端电压在一个高频开关周期内不变化,由图4和图5等效电路可得,
在工作模式二时,当时,以输出电压正半周为例,S14常通,在一个高频开关周期内,充磁周期D 2Ts对应开关管S5、 S11导通、S6、S7关断,电容C 1、电容C 2串联叠加后向交流负载提供能量。去磁周期(1- D 2)Ts, 对应开关管S5关断,S6、S7、 S13导通,储能电感L 1释能,电容C 1、电容C 2储能,输出滤波电容C f向负载提供能量。如图6、图7所示,为模式二时,在一个高频开关周期内,所述的基于开关感容网络的组合式升压逆变系统的充磁等效电路图和去磁等效电路图。
由图6和图7等效电路可得,
联立式(4)、(5)、(6)、(7)基于开关感容网络的组合式升压逆变系统在模式二时的输入输出电压关系为,
由式(3)、(8)、可看出基于开关感容网络的组合式升压逆变系统,工作在模式一时,它的电压传输比与传统两级式Buck型逆变器相同,但在工作模式二时,相较于传统两级式Boost型逆变器,它的电压传输比变成原来的两倍,使其具有宽输入电压、高电压增益的特性,由于其双模式单级控制的方式,具有较高的功率密度和较低的开关损耗
参考图9,在本实施例中,还提供一种基于开关感容网络的组合式升压逆变系统的控制方法,所述基于开关感容网络的组合式升压逆变系统输出电压反馈信号u o与输出电压参考u oref进入输出电压PI调节器,PI调节器输出信号u e再分别与两种模式下的前馈控制信号u s1 、u s2进入比较器1、比较器2后产生两种模式下的占空比D 1、 D 2,最后经过组合逻辑电路产生各开关管驱动信号。当输入电压或是输出负载突变时,占空比可进行自动调节,从而实现输出电压u o的稳定。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (8)
1.一种基于开关感容网络的组合式升压逆变系统,其特征在于,包括输入直流源、开关感容网络、单相高频组合调制开关、LC滤波器和负载;所述输入直流源、开关感容网络、单相高频组合调制开关、LC滤波器和负载依序级联。
2.根据权利要求1所述的基于开关感容网络的组合式升压逆变系统,其特征在于,所述开关感容网络包括储能电感L1、两个储能电容C1、C2、一个高频斩波功率开关S5、以及两个模式选择开关S6、S7;所述储能电感L1的一端与输入直流源的参考正极性端相连;所述储能电感的另一端与高频斩波功率开关S5的一端、储能电容C1的参考正极性端以及模式选择开关S6的一端分别连接;所述高频斩波功率开关S5的另一端与输入电源的参考负极性端、储能电容C2的参考负极性端、模式选择开关S7分别连接;所述模式选择开关S7的另一端与储能电容C1的参考负极性端相连接;所述模式选择开关S6的另一端与储能电容C2的参考正极性端相连接。
3.根据权利要求1所述的基于开关感容网络的组合式升压逆变系统,其特征在于,所述单相高频组合调制开关由四个承受单相电压应力和双相电流应力的两象限功率开关S11、S12、S13、S14构成。
4.根据权利要求1所述的基于开关感容网络的组合式升压逆变系统,其特征在于,所述LC滤波器由输出滤波电感Lf、输出滤波电容Cf依次级联构成。
5.根据权利要求1-4任一基于开关感容网络的组合式升压逆变系统的控制方法,其特征在于,所述基于开关感容网络的组合式升压逆变系统输出电压反馈信号u o与输出电压参考u oref进入输出电压PI调节器,PI调节器输出信号u e再分别与两种模式下的前馈控制信号u s1 、u s2进入比较器1、比较器2后产生两种模式下的占空比D 1、 D 2,最后经过组合逻辑电路产生各开关管驱动信号。
6.当输入电压或是输出负载突变时,占空比可进行自动调节,从而实现输出电压u o的稳定。
7.根据权利要求5所述的基于开关感容网络的组合式升压逆变系统的控制方法,其特征在于,所述基于开关感容网络的组合式升压逆变系统包括两种工作模式,具体如下:
在工作模式一时,当时,此时,逆变系统处于降压逆变状态,S6 、S7、S14常通,S5常断,以输出电压正半周为例,在一个高频开关周期内,充磁周期D 1Ts对应开关管S11和S14导通,储能电感L f储能,直流源直接向交流负载提供能量;去磁周期(1- D 1)Ts, 对应开关管S13和S14导通,储能电感L f释能,储能电感和滤波电容C f向负载提供能量;
8.去磁周期(1- D 2)Ts, 对应开关管S5关断,S6、S7、 S13导通,储能电感L 1释能,电容C 1、电容C 2储能,输出滤波电容C f向负载提供能量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110760172.9A CN113507230A (zh) | 2021-07-06 | 2021-07-06 | 基于开关感容网络的组合式升压逆变系统及其控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110760172.9A CN113507230A (zh) | 2021-07-06 | 2021-07-06 | 基于开关感容网络的组合式升压逆变系统及其控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113507230A true CN113507230A (zh) | 2021-10-15 |
Family
ID=78011289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110760172.9A Pending CN113507230A (zh) | 2021-07-06 | 2021-07-06 | 基于开关感容网络的组合式升压逆变系统及其控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113507230A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115441768A (zh) * | 2022-09-26 | 2022-12-06 | 国网福建省电力有限公司 | 一种变拓扑的宽输入电压逆变系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104270022A (zh) * | 2014-09-30 | 2015-01-07 | 马鞍山市安工大工业技术研究院有限公司 | 一种光伏并网逆变电路、开关控制电路及控制方法 |
CN111987924A (zh) * | 2020-08-18 | 2020-11-24 | 国网福建省电力有限公司检修分公司 | 一种单级单相高增益组合式升压逆变电路及升压逆变方法 |
-
2021
- 2021-07-06 CN CN202110760172.9A patent/CN113507230A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104270022A (zh) * | 2014-09-30 | 2015-01-07 | 马鞍山市安工大工业技术研究院有限公司 | 一种光伏并网逆变电路、开关控制电路及控制方法 |
CN111987924A (zh) * | 2020-08-18 | 2020-11-24 | 国网福建省电力有限公司检修分公司 | 一种单级单相高增益组合式升压逆变电路及升压逆变方法 |
Non-Patent Citations (1)
Title |
---|
陈磊 等: ""基于开关电容的双向DC-DC 变换器及其单周期控制"", 《系统仿真学报》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115441768A (zh) * | 2022-09-26 | 2022-12-06 | 国网福建省电力有限公司 | 一种变拓扑的宽输入电压逆变系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111987924B (zh) | 一种单级单相高增益组合式升压逆变电路及升压逆变方法 | |
CN105958823B (zh) | 一种电流连续型高增益开关升压准z源变换器电路 | |
CN111865129B (zh) | 一种四开关单相单级式开关升压逆变器 | |
CN107959429B (zh) | 一种耦合电感升压逆变器及其控制方法 | |
CN117691887B (zh) | 一种超级电容储能型高过载单相逆变器电路及其控制方法 | |
CN112737293B (zh) | 一种非隔离型集成升压dc/ac变换器的控制方法 | |
CN210724563U (zh) | 一种tγ新型升压dc-dc直流变换器拓扑 | |
CN110165921B (zh) | 一种具有高输出电压增益开关电感型准z源逆变器 | |
CN110912407B (zh) | 一种宽范围高频直流变换装置 | |
CN117060709B (zh) | 单级无桥隔离式Zeta型功率因数校正电路 | |
CN113507230A (zh) | 基于开关感容网络的组合式升压逆变系统及其控制方法 | |
CN111725979A (zh) | 基于重复控制的两级式单相逆变器二次谐波电流抑制方法 | |
CN113659863B (zh) | 一种双端共地逆变器 | |
CN113507229A (zh) | 基于开关电容网络的宽输入降压逆变系统及控制方法 | |
CN110071651B (zh) | 一种结构对称的非隔离型升压逆变电路 | |
CN110912406B (zh) | 一种宽范围高频直流变换装置的控制方法 | |
CN110729913B (zh) | 一种单级式高增益五开关Boost型逆变器 | |
CN111342656B (zh) | 能馈型电子负载中负载电流切换电流摆率控制电路和方法 | |
TWI568156B (zh) | 降壓型直流轉換器 | |
CN115441768B (zh) | 一种变拓扑的宽输入电压逆变系统 | |
CN205847087U (zh) | 一种高增益准开关升压dc‑dc变换器 | |
CN113904576B (zh) | 一种集成升压光伏并网逆变器及其控制方法 | |
CN111987902B (zh) | 一种dc/dc变换器电路 | |
CN113595427B (zh) | 一种双输入双升压无漏电流逆变器及其控制电路和方法 | |
CN117691886A (zh) | 基于感容混合升压单元的单级逆变器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20211015 |