WO2021258619A1 - 一种变换器电路 - Google Patents
一种变换器电路 Download PDFInfo
- Publication number
- WO2021258619A1 WO2021258619A1 PCT/CN2020/129024 CN2020129024W WO2021258619A1 WO 2021258619 A1 WO2021258619 A1 WO 2021258619A1 CN 2020129024 W CN2020129024 W CN 2020129024W WO 2021258619 A1 WO2021258619 A1 WO 2021258619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch
- circuit
- terminal
- tube
- capacitor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to the technical field of electronic circuits, in particular to a converter circuit.
- the purpose of the present invention is to provide a converter circuit to realize the ZVS of the primary side switch tube and the ZVS of the secondary side diode and improve the efficiency of the converter.
- the present invention provides a converter circuit including: a switching circuit including at least one bridge arm, a first capacitor, a second capacitor, a third capacitor, a transformer, a diode, and an inductor, the bridge arm Contains 2 switch tubes connected in series;
- the first input terminal and the second input terminal of the switch circuit are used as two DC input terminals to input a direct current
- the first output terminal of the switch circuit is connected to the first terminal of the first capacitor
- the first The second end of a capacitor is connected to the first end of the primary winding of the transformer
- the second output end of the switch circuit is connected to the second end of the primary winding of the transformer
- the secondary winding of the transformer The first end of the second capacitor is connected to the first end of the second capacitor
- the second end of the second capacitor is connected to the first end of the inductor
- the common end is connected to the cathode of the diode
- the second end of the third capacitor is connected to the first end of the third capacitor
- the second end of the third capacitor is connected to the second end of the secondary winding of the transformer
- the common end is connected to the anode of the diode
- the first end and the second end of the third capacitor are used to connect to a load as two DC output ends, and output
- the primary magnetizing inductance of the transformer is:
- L m is the excitation inductance of the primary side
- N is the turns ratio of the primary winding and the secondary winding of the transformer
- D is the duty ratio of the target switching tube in the switching circuit
- f s Is the switching frequency of the switching tube in the switching circuit
- I oL is the current value of the direct current output to the load
- V o is the voltage value of the direct current output to the load
- L is the inductance of the inductor
- K is the number of bridge arms in the switch circuit.
- the current of the diode first rises and then falls within the conduction interval of the target switching tube of the bridge arm, and the non-target switching tube of the bridge arm is turned on The time is zero; wherein, the two switching tubes included in each bridge arm are the target switching tube and the non-target switching tube, respectively.
- the current value of the direct current connected to the first input terminal and the second input terminal of the switch circuit is The voltage value of the direct current output to the load is
- I g is the current value of the direct current connected to the first input terminal and the second input terminal of the switch circuit
- V o is the voltage value of the direct current output to the load
- D is the target switch in the switch circuit
- I oL is the current value of the direct current output to the load
- N is the turns ratio of the primary winding and the secondary winding of the transformer
- V g is the first input terminal of the switching circuit
- k is the number of bridge arms in the switch circuit.
- the switching circuit when the switching circuit is a full-bridge circuit, the switching circuit includes: a first switching tube, a second switching tube, a third switching tube, and a fourth switching tube;
- first end of the first switch tube and the first end of the second switch tube are connected with a common end as the first input terminal of the switch circuit, and the second end of the second switch tube is connected to the
- the first terminal of the third switch tube is connected to its common terminal as the second output terminal of the switch circuit, and the second terminal of the first switch tube is connected to the first terminal of the fourth switch tube as the common terminal.
- the first output terminal of the switch circuit, the second terminal of the third switch tube and the second terminal of the fourth switch tube are connected with a common terminal as the second input terminal of the switch circuit.
- the switch circuit when the switch circuit is a half-bridge circuit, the switch circuit includes: a fifth switch tube and a sixth switch tube;
- the first terminal of the fifth switch tube is used as the first input terminal of the switch circuit
- the second terminal of the fifth switch tube is connected to the first terminal of the sixth switch tube
- the common terminal is used as the common terminal.
- the first output terminal of the switch circuit and the second terminal of the sixth switch tube serve as the second output terminal and the second input terminal of the switch circuit.
- the two switch tubes included in each bridge arm are specifically NMOS tubes;
- the drain of the fifth switching tube is used as the first input terminal of the switching circuit, and the source of the fifth switching tube is connected to the drain of the sixth switching tube, and the common terminal thereof is used as the switching circuit.
- the first output terminal of the sixth switch tube is used as the second output terminal and the second input terminal of the switch circuit, the gate of the fifth switch tube and the gate of the sixth switch tube They are respectively used to connect their corresponding drive pulse output terminals.
- the converter circuit further includes: a resistor
- the first end of the resistor is connected to the second end of the inductor, and the second end of the resistor is connected to the first end of the third capacitor; the first end of the resistor is connected to the first end of the third capacitor.
- the second end of the third capacitor is used to connect to a load as two direct current output ends, and output a direct current to the load.
- the converter circuit further includes: a DC power supply;
- the positive pole of the DC power supply is connected to the first input terminal of the switching circuit, and the negative pole of the DC power supply is connected to the second input terminal of the switching circuit.
- the ZVS of the switch tube and the ZVS of the diode in the switch circuit can be realized in the present invention, thereby improving the efficiency of the converter; and compared with the traditional PWM converter circuit, the secondary winding of the transformer in the present invention is connected
- the circuit structure is simpler and easy to implement.
- Figure 1 is a structural diagram of a converter circuit provided by an embodiment of the present invention.
- Figure 2 is a structural diagram of another converter circuit provided by an embodiment of the present invention.
- Fig. 3 is a waveform diagram of PWM control of the converter circuit in Fig. 1;
- Fig. 4 is a waveform diagram of PWM control of the converter circuit in Fig. 2;
- Fig. 5 is an equivalent circuit diagram of another converter circuit provided by an embodiment of the present invention.
- Fig. 6 is a schematic diagram of typical operating waveforms of the converter circuit in Fig. 5;
- FIG. 7 is a graph of normalized voltage gain obtained by simulation of the converter circuit in FIG. 5.
- FIG. 1 is a schematic structural diagram of a converter circuit provided by an embodiment of the present invention.
- the converter circuit may include: a switch circuit 10 including at least one bridge arm, a first capacitor 20 (Cp), a second capacitor 30 (Cs), a third capacitor 40 (C), a transformer 50, and a diode 60 (D ) And inductor 70 (L), the bridge arm includes 2 switch tubes connected in series;
- the first input terminal and the second input terminal of the switch circuit 10 are used as two DC input terminals to input a direct current
- the first output terminal of the switch circuit 10 is connected to the first terminal of the first capacitor 20, and the first capacitor 20
- the second end of the transformer 50 is connected to the first end of the primary winding of the transformer 50
- the second output end of the switching circuit 10 is connected to the second end of the primary winding of the transformer 50
- the first end of the secondary winding of the transformer 50 is connected to the first end of the primary winding of the transformer 50.
- the first end of the second capacitor 30 is connected
- the second end of the second capacitor 30 is connected to the first end of the inductor 70
- the common end is connected to the cathode of the diode 60.
- the second end of the inductor 70 is connected to the first end of the third capacitor 40.
- One end is connected, the second end of the third capacitor 40 is connected to the second end of the secondary winding of the transformer 50, and the common end is connected to the anode of the diode 60; the first end and the second end of the third capacitor 40 are used as two Two DC output terminals are connected to the load, and output a DC power to the load; the control terminals of the switch tubes in the switch circuit 10 are respectively used to connect their corresponding drive pulse output terminals.
- the switch circuit 10 in this embodiment can be a full bridge circuit including two bridge arms or a half bridge circuit including one bridge arm, such as a full bridge circuit or a half bridge circuit composed of only switch tubes. Circuit.
- the switch circuit 10 can be a full bridge circuit composed of four switch tubes (S1-S4), that is, the switch circuit 10 includes a first switch tube (S1) and a second switch tube (S2) connected in series.
- the switch circuit 10 may include: a first switch tube (S1), a second switch tube ( S2), the third switch tube (S3) and the fourth switch tube (S4); wherein, the first terminal of the first switch tube is connected to the first terminal of the second switch tube, and the common terminal can be used as the first terminal of the switch circuit 10.
- An input terminal is used to input a direct current (V g and I g ) together with the second input terminal of the switch circuit 10, such as being connected to the positive and negative terminals of the DC power supply; the second terminal of the second switch tube is connected to the third switch tube The first terminal is connected, and the common terminal can be used as the second output terminal of the switch circuit 10 to connect to the second terminal of the primary winding of the transformer 50; the second terminal of the first switch tube is connected to the first terminal of the fourth switch tube, The common terminal can be used as the first output terminal of the switch circuit 10 to be connected to the first terminal of the first capacitor 20 (C p ); the second terminal of the third switch tube is connected to the second terminal of the fourth switch tube, and the common terminal It can be used as the second input terminal of the switch circuit 10.
- V g and I g direct current
- the switch circuit 10 can also be a half-bridge circuit composed of two switch tubes (S1 and S2), that is, the switch circuit 10 includes: a fifth switch tube (S1) and a sixth switch tube (S2); where , The first terminal of the fifth switch tube is used as the first input terminal of the switch circuit 10, the second terminal of the fifth switch tube is connected to the first terminal of the sixth switch tube, and the common terminal is used as the first output terminal of the switch circuit 10.
- the second terminal of the sixth switch tube serves as the second output terminal and the second input terminal of the switch circuit 10.
- the specific type of the switch tube in the switch circuit 10 in this embodiment can be set by the designer according to practical scenarios and user needs.
- it can be a MOS tube, such as the NMOS tube shown in FIGS. 1 and 2, That is, the drain of the fifth switching tube (S1) in FIG. 2 is used as the first input terminal of the switching circuit 10, and the source of the fifth switching tube and the drain of the sixth switching tube (S2) are connected to their common terminal as the switching circuit 10
- the first output terminal of the sixth switch tube is used as the second output terminal and the second input terminal of the switch circuit 10.
- the gate of the fifth switch tube and the gate of the sixth switch tube are respectively used to connect their corresponding The driving pulse output terminal; it can also be other switching tubes such as a triode and an IGBT tube, and this embodiment does not impose any limitation on this.
- the specific settings of the drive pulse output terminals connected to the control terminals of the switching tubes (such as the gate of the MOS tube) in the switching circuit 10 in this embodiment can be made by the designer.
- Settings, such as PWM drive control can be used.
- This embodiment does not impose any restriction on this.
- the ideal steady-state relationship of the converter circuit under CCM Continuous Conduction Mode
- V g is The voltage of the direct current connected to the switching circuit 10
- V Cp is the voltage of the first capacitor 20 (Cp)
- D is the first switching tube (S1), the second switching tube (S2), the third switching tube (S3) and the fourth
- V Cs V o ; where V Cs is the voltage of the second capacitor 30 (Cs), and V o is the voltage of the connected load;
- I L I oL ; where I g is the current of the direct current connected to the switch circuit 10, I L is the current flowing through the inductor 70 (L), and I oL is the current flowing through the connected load.
- V Cp DV g
- V g is the voltage of the direct current connected to the switch circuit 10
- V Cp is the voltage of the first capacitor 20 (Cp)
- D is the duty cycle of the switching tube (S1) and the sixth switching tube (S2)
- T s is the switching period of the fifth switching tube and the sixth switching tube;
- V Cs V o ; where V Cs is the voltage of the second capacitor 30 (Cs), and V o is the voltage of the connected load;
- I L I oL ; where I g is the current of the direct current connected to the switch circuit 10, I L is the current flowing through the inductor 70 (L), and I oL is the current flowing through the connected load.
- the current value of the direct current connected to the first input terminal and the second input terminal of the switch circuit 10 in this embodiment can be
- the voltage value of the direct current output to the load can be Among them, I g is the current value of the direct current connected to the first input terminal and the second input terminal of the switch circuit 10, V o is the voltage value of the direct current output to the load, and D is the duty cycle of the target switch tube in the switch circuit 10 I oL is the current value of the direct current output to the load, N is the turns ratio of the primary winding and the secondary winding of the transformer 50, and V g is the direct current connected between the first input terminal and the second input terminal of the switching circuit 10
- the voltage value of k is the number of bridge arms in the switch circuit 10, that is, the number of bridge arms in the switch circuit 10.
- the converter circuit provided in this embodiment can have the same input/output voltage boost relationship as a traditional PWM converter circuit (such as a PWM full-bridge circuit or a PWM half-bridge circuit); in this embodiment
- the mid-switch tubes of the converter circuit of the provided full-bridge version (switch circuit 10 is a full-bridge circuit) and the asymmetric half-bridge version (switch circuit 10 is a half-bridge circuit) can be driven by the same complementary PWM.
- L m is the primary magnetizing inductance of the transformer 50;
- the primary excitation current (i m ) of the converter circuit can be CCM (Continuous Conduction Mode), and its average current is zero;
- the output filter inductor current of the converter circuit (i L ) can be CCM, the average value of the output filter inductor current is the load current (I oL );
- the current of the diode 60 (D 1 ) is in the conduction interval between the second switch tube (S2) and the fourth switch tube (S4)
- the internal drop is zero, and the current of the diode 60 at the moment when the first switching tube (S1) and the third switching tube (S3) are turned on is exactly zero, which can be called CRM (Critical Conduction Mode, critical conduction mode).
- N is the turns ratio of the primary winding and the secondary winding of the transformer 50
- D is the duty cycle of the first switching tube to the fourth switching tube
- f s is the first switching tube to
- the switching frequency of the fourth switching tube that is, the switching tubes in the switching circuit 10 can have the same switching frequency f s
- I oL is the current value of the direct current output to the load
- V o is the voltage value of the direct current output to the load
- L Is the inductance of the inductor 70
- ⁇ is the full load efficiency of the power stage of the transformer 50
- ⁇ L is the ripple current coefficient of the inductor.
- the converter circuit shown in FIG. 2 can be used to control the primary magnetizing inductance (L m ) of the transformer 50 That is, the primary magnetizing inductance of the transformer 50 in this embodiment can be: Among them, N is the turns ratio of the primary winding and the secondary winding of the transformer 50, D is the duty cycle of the target switching tube in the switching circuit 10, f s is the switching frequency of the switching tube in the switching circuit 10, I oL Is the current value of the direct current output to the load, Vo is the voltage value of the direct current output to the load, L is the inductance of the inductor 70, and k is the number of bridge arms in the switch circuit 10. At this time, the ZVS of the first switching tube (S1) and the third switching tube (S3) can be turned on and the ZCS of the diode 60 (D1) can be turned off.
- the diode 60 can be CRM; that is, when the inductor 70 is in CCM mode, the current of the diode 60 can be During the conduction interval of the sixth diode (S2), it first rises and then falls, and it is zero at the time when the fifth diode (S1) is turned on.
- each bridge arm in the switching circuit 10 may include one The target switching tube (S2, S4 in Figure 5 or S2 in Figure 2) and a non-target switching tube (S1, S3 in Figure 5 or S1 in Figure 2), and all targets in the switching circuit 10
- the switching tubes are turned on and off at the same time, and all non-target switching tubes are turned on and off at the same time.
- the specific circuit structure and specific component parameters of the converter circuit provided in this embodiment can be determined by the designer according to practical scenarios and user needs.
- the converter circuit provided in this embodiment may also include a DC power supply; wherein the positive pole of the DC power supply is connected to the first input terminal of the switching circuit 10, and the negative pole of the DC power supply is connected to the second input terminal of the switching circuit 10; 5, the converter circuit of the present embodiment provided by the embodiment may further comprise: a resistor (R C); wherein the first end of the resistor and the inductor 70 (L) connecting the second end, the resistor The second end is connected to the first end of the third capacitor 40 (C).
- R C resistor
- the normalized voltage gain curve shown in Figure 7 can be obtained by the simulation of the converter circuit. From the normalized gain curve, it can be seen that under full load: D max ⁇ 0.65; when D max ⁇ 0.6 can be selected, the return of the circuit
- the unified gain is basically the same as the traditional PWM full-bridge converter.
- I n I oL /I oL max , I oL is the current flowing through the connected load, that is, the output current of the converter circuit; I oL max is the maximum output current of the converter circuit.
- the converter circuit provided by this embodiment is similar to the half-bridge LLC converter, which can realize the ZVS and ZVS of the switching tube (such as MOS tube) in the full input/full load range.
- Diode ZCS and there are no various out-of-control problems in half-bridge LLC, such as no-load out-of-control problems under current load, light-load out-of-control problems under voltage load, and short-circuit protection problems under current load;
- the output of the converter circuit provided by the embodiment is LC filter, which is more suitable for the application of battery charging than the capacitor filter output by the half-bridge LLC converter; and the control of the converter circuit provided by this embodiment is much better than
- the half-bridge LLC converter is simple. It can use traditional voltage-type control and traditional peak-current-type control, as well as some new control strategies.
- the embodiment of the present invention can realize the ZVS of the switch tube in the switch circuit 10 and the ZVS of the diode 60, thereby improving the efficiency of the converter; and compared with the traditional PWM converter circuit, the transformer in the present invention has The circuit structure connected by the secondary winding is simpler and easy to implement.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
一种变换器电路,包括:包含有至少一个桥臂的开关电路(10)、第一电容(20)、第二电容(30)、第三电容(40)、变压器(50)、二极管(60)和电感器(70),桥臂包含串联连接的2个开关管;其中,开关电路(10)的第一输入端和第二输入端用于作为两个直流输入端输入一路直流电;第三电容(40)的第一端和第二端用于作为两个直流输出端与负载连接,向负载输出一路直流电;开关电路(10)中的开关管的控制端分别用于连接各自对应的驱动脉冲输出端;可以实现开关电路(10)中的开关管的ZVS和二极管的ZVS,从而提高变换器的效率;并且相较于传统的PWM变换器电路,该变换器电路中的变压器的副边绕组所连接的电路结构更为简单,易于实施。
Description
本发明涉及电子电路技术领域,特别涉及一种变换器电路。
目前,变换器电路的应用越来与广泛,而传统的PWM(Pulse Width Modulation,脉冲宽度调制)变换器电路(如PWM全桥电路或PWM半桥电路)中与变压器的原边绕组连接的开关管难以实现ZVS(Zero Voltage Switch,零电压开关),使得变换器的效率较低。
因此,如何能够使变换器电路中与变压器的原边绕组连接的开关管实现ZVS,提高变换器的效率是现今急需解决的问题。
发明内容
本发明的目的是提供一种变换器电路,以实现原边开关管的ZVS和副边二极管的ZVS,提高变换器的效率。
为解决上述技术问题,本发明提供一种变换器电路,包括:包含有至少一个桥臂的开关电路、第一电容、第二电容、第三电容、变压器、二极管和电感器,所述桥臂包含串联连接的2个开关管;
所述开关电路的第一输入端和第二输入端用于作为两个直流输入端输入一路直流电,所述开关电路的第一输出端与所述第一电容的第一端连接,所述第一电容的第二端与所述变压器的原边绕组的第一端连接,所述开关电路的第二输出端与所述变压器的原边绕组的第二端连接,所述变压器的副边绕组的第一端与所述第二电容的第一端连接,所述第二电容的第二端与所述电感器的第一端连接其公共端与所述二极管的阴极连接,所述电感器的第二端与所述第三电容的第一端连接,所述第三电容的第二端与所述变压器的副边绕组的第二端连接其公共端与所述二极管的阳极连接;所述第三电容的第一 端和第二端用于作为两个直流输出端与负载连接,向所述负载输出一路直流电;所述开关电路中的开关管的控制端分别用于连接各自对应的驱动脉冲输出端。
其中,L
m为所述原边激磁电感感量,N为所述变压器的原边绕组与副边绕组的匝数比,D为所述开关电路中的目标开关管的占空比,f
s为所述开关电路中的开关管的开关频率,I
oL为向所述负载输出的直流电的电流值,V
o为向所述负载输出的直流电的电压值,L为所述电感器的感量,k为所述开关电路中的桥臂数。
可选的,所述电感器在CCM模式时,所述二极管的电流在所述桥臂的目标开关管的导通间隔内先上升再下降,且在所述桥臂的非目标开关管导通时刻为零;其中,每个所述桥臂所包含的2个所述开关管分别为所述目标开关管和所述非目标开关管。
其中,I
g为所述开关电路的第一输入端和第二输入端连接的直流电的电流值,V
o为向所述负载输出的直流电的电压值,D为所述开关电路中的目标开关管的占空比,I
oL为向所述负载输出的直流电的电流值,N为所述变压器的原边绕组与副边绕组的匝数比,V
g为所述开关电路的第一输入端和第二输入端连接的直流电的电压值,k为所述开关电路中的桥臂数。
可选的,所述开关电路为全桥电路时,所述开关电路包括:第一开关管、第二开关管、第三开关管和第四开关管;
其中,所述第一开关管的第一端与所述第二开关管的第一端连接其公共端作为所述开关电路的第一输入端,所述第二开关管的第二端与所述第三开关管的第一端连接其公共端作为所述开关电路的第二输出端,所述第一开关管的第二端与所述第四开关管的第一端连接其公共端作为所述开关电路的第一输出端,所述第三开关管的第二端与所述第四开关管的第二端连接其公共端作为所述开关电路的第二输入端。
可选的,所述开关电路为半桥电路时,所述开关电路包括:第五开关管和第六开关管;
其中,所述第五开关管的第一端作为所述开关电路的第一输入端,所述第五开关管的第二端与所述第六开关管的第一端连接其公共端作为所述开关电路的第一输出端,所述第六开关管的第二端作为所述开关电路的第二输出端和第二输入端。
可选的,每个所述桥臂所包含的2个所述开关管均具体为NMOS管;
其中,所述第五开关管的漏极作为所述开关电路的第一输入端,所述第五开关管的源极与所述第六开关管的漏极连接其公共端作为所述开关电路的第一输出端,所述第六开关管的源极作为所述开关电路的第二输出端和第二输入端,所述第五开关管的栅极和所述第六开关管的栅极分别用于连接各自对应的驱动脉冲输出端。
可选的,该变换器电路还包括:电阻器;
其中,所述电阻器的第一端与所述电感器的第二端连接,所述电阻器的第二端与所述第三电容的第一端连接;所述电阻器的第一端和所述第三电容的第二端用于作为两个直流输出端与负载连接,向所述负载输出一路直流电。
可选的,该变换器电路还包括:直流电源;
其中,所述直流电源的正极与所述开关电路的第一输入端连接,所述直流电源的负极与所述开关电路的第二输入端连接。
可见,本发明中可以实现开关电路中的开关管的ZVS和二极管的ZVS,从而提高变换器的效率;并且相较于传统的PWM变换器电路,本发明中的变压器的副边绕组所连接的电路结构更为简单,易于实施。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例所提供的一种变换器电路的结构图;
图2为本发明实施例所提供的另一种变换器电路的结构图;
图3为图1中的变换器电路的PWM控制的波形图;
图4为图2中的变换器电路的PWM控制的波形图;
图5为本发明实施例所提供的另一种变换器电路的等效电路图;
图6为图5中的变换器电路的典型工作波形的示意图;
图7为图5中的变换器电路的仿真得到的归一化电压增益曲线图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明实施例所提供的一种变换器电路的结构示意图。该变换器电路,可以包括:包含有至少一个桥臂的开关电路10、第一电容20(Cp)、第二电容30(Cs)、第三电容40(C)、变压器50、二极管60(D)和电感器70(L),桥臂包含串联连接的2个开关管;
其中,开关电路10的第一输入端和第二输入端用于作为两个直流输入端输入一路直流电,开关电路10的第一输出端与第一电容20的第一端连接,第一电容20的第二端与变压器50的原边绕组的第一端连接,开关电路10的第二输出端与变压器50的原边绕组的第二端连接,变压器50的副边绕组的第一端与第二电容30的第一端连接,第二电容30的第二端与电感器70的第一端连接其公共端与二极管60的阴极连接,电感器70的第二端与第三电容40的第一端连接,第三电容40的第二端与变压器50的副边绕组的第二端连接其公共端与二极管60的阳极连接;第三电容40的第一端和第二端用于作为两个直流输出端与负载连接,向负载输出一路直流电;开关电路10中的开关管的控制端分别用于连接各自对应的驱动脉冲输出端。
可以理解的是,本实施例中的开关电路10可以为包含有两个桥臂的全桥电路或包含有一个桥臂的半桥电路,如仅由开关管连接组成的全桥电路或半桥电路。如图1所示,开关电路10可以为四个开关管(S1-S4)组成的全桥电路,即开关电路10包括串联连接的第一开关管(S1)和第二开关管(S2)组成的一个桥臂及第三开关管(S3)和第四开关管(S4)组成的另一个桥臂; 也就是说,开关电路10可以包括:第一开关管(S1)、第二开关管(S2)、第三开关管(S3)和第四开关管(S4);其中,第一开关管的第一端与第二开关管的第一端连接,其公共端可以作为开关电路10的第一输入端用于与开关电路10的第二输入端共同输入一路直流电(V
g和I
g),如与直流电源的正极和负极连接;第二开关管的第二端与第三开关管的第一端连接,其公共端可以作为开关电路10的第二输出端与变压器50的原边绕组的第二端连接;第一开关管的第二端与第四开关管的第一端连接,其公共端可以作为开关电路10的第一输出端与第一电容20(C
p)的第一端连接;第三开关管的第二端与第四开关管的第二端连接,其公共端可以作为开关电路10的第二输入端。
如图2所示,开关电路10也可以为两个开关管(S1和S2)组成的半桥电路,即开关电路10包括:第五开关管(S1)和第六开关管(S2);其中,第五开关管的第一端作为开关电路10的第一输入端,第五开关管的第二端与第六开关管的第一端连接其公共端作为开关电路10的第一输出端,第六开关管的第二端作为开关电路10的第二输出端和第二输入端。
对应的,对于本实施例中开关电路10中的开关管的具体类型,可以由设计人员根据实用场景和用户需求自行设置,如可以为MOS管,例如图1和图2所示的NMOS管,即图2中第五开关管(S1)的漏极作为开关电路10的第一输入端,第五开关管的源极与第六开关管(S2)的漏极连接其公共端作为开关电路10的第一输出端,第六开关管的源极作为开关电路10的第二输出端和第二输入端,第五开关管的栅极和第六开关管的栅极分别用于连接各自对应的驱动脉冲输出端;也可以为如三极管和IGBT管的其他开关管,本实施例对此不做任何限制。
具体的,对于本实施例中开关电路10中的开关管的控制端(如MOS管的栅极)各自连接的驱动脉冲输出端的具体设置,即开关管的具体驱动控制方式,可以由设计人员自行设置,如可以采用PWM驱动控制。本实施例对此不做任何限制。如对图1所示的变换器电路中的四个开关管进行图3所示的PWM驱动控制时,该变换器电路的在CCM(Continuous ConductionMode,连续导通模式)下的理想稳态关系可以如下:
原边激磁电感伏秒平衡为(V
g-V
Cp)DT
s=(V
g+V
Cp)(1-D)T
s,即V
Cp=(2D-1)V
g;其中,V
g为开关电路10连接的直流电的电压,V
Cp为第一电 容20(Cp)的电压;D为第一开关管(S1)、第二开关管(S2)、第三开关管(S3)和第四开关管(S4)的占空比,即开关电路10中的开关管可以为相同的占空比D,即占空比对称驱动;D=(1-D′),D′为第一开关管(S1)、第二开关管(S2)、第三开关管(S3)和第四开关管(S4)的关断时间的占比,T
s为第一开关管至第四开关管的开关周期。另外的实施例中,可以使用占空比互补驱动:D为第一开关管(S1)和第三开关管(S3)的占空比,D′为第二开关管(S2)和第四开关管(S4)的占空比,忽略驱动死区,则D=(1-D′)。
副边激磁电感伏秒平衡为V
Cs=V
o;其中,V
Cs为第二电容30(Cs)的电压,V
o为连接的负载的电压;
如对图2所示的变换器电路中的两个开关管进行图4所示的PWM驱动控制时,该变换器电路的在CCM下的理想稳态关系可以如下:
原边激磁电感伏秒平衡为(V
g-V
Cp)DT
s=V
Cp(1-D)T
s,即V
Cp=DV
g;其中,V
g为开关电路10连接的直流电的电压,V
Cp为第一电容20(Cp)的电压,D为开关管(S1)和第六开关管(S2)的占空比,T
s为第五开关管和第六开关管的开关周期;
副边激磁电感伏秒平衡为V
Cs=V
o;其中,V
Cs为第二电容30(Cs)的电压,V
o为连接的负载的电压;
也就是说,本实施例中开关电路10的第一输入端和第二输入端连接的直流电的电流值可以为
向负载输出的直流电的电压值可以为
其中,I
g为开关电路10的第一输入端和第二输入端连接的直流电的电流值,V
o为向负载输出的直流电的电压值,D为开关电路10中的目标开关管的占空比,I
oL为向负载输出的直流电的电流值,N为变压器50的原边绕组与副边绕组的匝数比,V
g为开关电路10的第一输入端和第二输入端连接的直流电的电压值,k为开关电路10中的桥臂数,即开关电路10中的桥臂的数量。
也就是说,本实施例中所提供的变换器电路可以具有与传统的PWM变换器电路(如PWM全桥电路或PWM半桥电路)完全相同的输入/输出电压增压关系;本实施例中所提供的全桥版本(开关电路10为全桥电路)的变换器电路与不对称半桥版本(开关电路10为半桥电路)的变换器电路的中开关管可以采用相同的互补PWM驱动。
需要说明的是,如图5所示,以变换器电路中的开关电路10为四个开关管组成的全桥电路为例,L
m为变压器50的原边激磁电感;该变换器电路采用图6所示的工作波形时,该变换器电路的原边激磁电流(i
m)可以为CCM(Continuous Conduction Mode,连续导通模式),其平均电流为零;该变换器电路的输出滤波电感电流(i
L)可以为CCM,输出滤波电感电流的平均值为负载电流(I
oL);二极管60(D
1)的电流在第二开关管(S2)和第四开关管(S4)导通间隔内降为零,在第一开关管(S1)和第三开关管(S3)导通时刻的二极管60的电流刚好为零,可以称CRM(Critical Conduction Mode,临界导通模式)。可以通过控制变压器50的原边激磁电感感量(L
m)使
实现S1和S3的ZVS;其中,N为变压器50的原边绕组与副边绕组的匝数比,D为第一开关管至第四开关管的占空比,f
s为第一开关管至第四开关管的开关频率,即开关电路10中的开关管可以为相同的开关频率f
s,I
oL为向负载输出的直流电的电流值,V
o为向负载输出的直流电的 电压值,L为电感器70的感量;
η为变压器50的功率级满载效率;
λ
L为电感的纹波电流系数。
对应的,如图2所示的变换器电路可以通过控制变压器50的原边激磁电感感量(L
m)使
即本实施例中变压器50的原边激磁电感感量可以为:
其中,N为变压器50的原边绕组与副边绕组的匝数比,D为开关电路10中的目标开关管的占空比,f
s为开关电路10中的开关管的开关频率,I
oL为向负载输出的直流电的电流值,V
o为向负载输出的直流电的电压值,L为电感器70的感量,k为开关电路10中的桥臂数。此时,可以实现第一开关管(S1)和第三开关管(S3)的ZVS开通和二极管60(D1)的ZCS关断。
也就是说,如图2所示,变换器电路中的开关电路10为两个开关管组成的半桥电路时,二极管60可以采用CRM;即电感器70在CCM模式时,二极管60的电流可以在第六二极管(S2)的导通间隔内先上升再下降,且在第五二极管(S1)导通时刻为零。也就是说,本实施例中电感器70在CCM模式时,二极管60的电流在开关电路10的桥臂的目标开关管的导通间隔内先上升再下降,且在开关电路10桥臂的非目标开关管导通时刻为零;其中,开关电路10中每个桥臂所包含的2个开关管分别为目标开关管和非目标开关管,即开关电路10中的每个桥臂可以包括一个目标开关管(如图5中的S2、S4或图2中的S2)和一个非目标开关管(如图5中的S1、S3或图2中的S1),且开关电路10中全部的目标开关管同时导通和关断,全部的非目标开关管同时导通和关断。
对应的,对于本实施例所提供的变换器电路的具体电路结构和具体元器件参数,如变压器50的原边绕组匝数和副边绕组匝数,可以由设计人员根据实用场景和用户需求自行设置,如本实施例所提供的变换器电路还可以包括直流电源;其中,直流电源的正极与开关电路10的第一输入端连接,直流电源的负极与开关电路10的第二输入端连接;如图5所示,本实施例所提供的变换器电路还可以包括:电阻器(R
C);其中,电阻器的第一端与电感器70 (L)的第二端连接,电阻器的第二端与第三电容40(C)的第一端连接。只要可以实现开关电路10中的开关管的ZVS和二极管60的ZVS,本实施例对此不做任何限制。
可以理解的是,本实施例所提供的变换器电路采用PWM控制时,电路的归一化电压增益类似于传统的PWM全桥变换器:M=NV
o/V
g=2D;采用图5所示变换器电路进行仿真可以得到的图7所示的归一化电压增益曲线图,从归一化增益曲线可知,满载下:D
max≤0.65;可以选用D
max≤0.6时,使电路的归一化增益与传统的PWM全桥变换器基本上一致。图7中I
n=I
oL/I
oL max,I
oL为流过连接的负载的电流,即变换器电路的输出电流;I
oL max为变换器电路的最大输出电流。
并且,相较于传统的半桥LLC变换器,本实施例所提供的变换器电路与半桥LLC变换器类似,可以在全输入/全负载范围内实现开关管(如MOS管)的ZVS和二极管的ZCS,并且不存在半桥LLC中的各种失控问题,如在电流负载下的空载失控问题、在电压负载下的轻载失控问题和在电流负载下的短路无法保护问题;而本实施例所提供的变换器电路的输出为LC滤波,较半桥LLC变换器输出的电容滤波,更适合用于电池充电的这种应用;且本实施例所提供的变换器电路的控制远比半桥LLC变换器简单,既可采用传统的电压型控制和传统的峰值电流型控制,也可采用一些新型的控制策略。
本实施例中,本发明实施例可以实现开关电路10中的开关管的ZVS和二极管60的ZVS,从而提高变换器的效率;并且相较于传统的PWM变换器电路,本发明中的变压器的副边绕组所连接的电路结构更为简单,易于实施。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同 要素。
以上对本发明所提供的一种变换器电路进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
Claims (9)
- 一种变换器电路,其特征在于,包括:包含有至少一个桥臂的开关电路、第一电容、第二电容、第三电容、变压器、二极管和电感器,所述桥臂包含串联连接的2个开关管;所述开关电路的第一输入端和第二输入端用于作为两个直流输入端输入一路直流电,所述开关电路的第一输出端与所述第一电容的第一端连接,所述第一电容的第二端与所述变压器的原边绕组的第一端连接,所述开关电路的第二输出端与所述变压器的原边绕组的第二端连接,所述变压器的副边绕组的第一端与所述第二电容的第一端连接,所述第二电容的第二端与所述电感器的第一端连接其公共端与所述二极管的阴极连接,所述电感器的第二端与所述第三电容的第一端连接,所述第三电容的第二端与所述变压器的副边绕组的第二端连接其公共端与所述二极管的阳极连接;所述第三电容的第一端和第二端用于作为两个直流输出端与负载连接,向所述负载输出一路直流电;所述开关电路中的开关管的控制端分别用于连接各自对应的驱动脉冲输出端。
- 根据权利要求1所述的变换器电路,其特征在于,所述电感器在CCM模式时,所述二极管的电流在所述桥臂的目标开关管的导通间隔内先上升再下降,且在所述桥臂的非目标开关管导通时刻为零;其中,每个所述桥臂所包含的2个所述开关管分别为所述目标开关管和所述非目标开关管。
- 根据权利要求1所述的变换器电路,其特征在于,所述开关电路为全桥电路时,所述开关电路包括:第一开关管、第二开关管、第三开关管和第四开关管;其中,所述第一开关管的第一端与所述第二开关管的第一端连接其公共端作为所述开关电路的第一输入端,所述第二开关管的第二端与所述第三开关管的第一端连接其公共端作为所述开关电路的第二输出端,所述第一开关管的第二端与所述第四开关管的第一端连接其公共端作为所述开关电路的第一输出端,所述第三开关管的第二端与所述第四开关管的第二端连接其公共端作为所述开关电路的第二输入端。
- 根据权利要求1所述的变换器电路,其特征在于,所述开关电路为半桥电路时,所述开关电路包括:第五开关管和第六开关管;其中,所述第五开关管的第一端作为所述开关电路的第一输入端,所述第五开关管的第二端与所述第六开关管的第一端连接其公共端作为所述开关电路的第一输出端,所述第六开关管的第二端作为所述开关电路的第二输出端和第二输入端。
- 根据权利要求1所述的变换器电路,其特征在于,每个所述桥臂所包含的2个所述开关管均具体为NMOS管;其中,所述第五开关管的漏极作为所述开关电路的第一输入端,所述第五开关管的源极与所述第六开关管的漏极连接其公共端作为所述开关电路的第一输出端,所述第六开关管的源极作为所述开关电路的第二输出端和第二输入端,所述第五开关管的栅极和所述第六开关管的栅极分别用于连接各自对应的驱动脉冲输出端。
- 根据权利要求1所述的变换器电路,其特征在于,还包括:电阻器;其中,所述电阻器的第一端与所述电感器的第二端连接,所述电阻器的第二端与所述第三电容的第一端连接;所述电阻器的第一端和所述第三电容的第二端用于作为两个直流输出端与负载连接,向所述负载输出一路直流电。
- 根据权利要求1所述的变换器电路,其特征在于,还包括:直流电源;其中,所述直流电源的正极与所述开关电路的第一输入端连接,所述直流电源的负极与所述开关电路的第二输入端连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010573054.2A CN111697841B (zh) | 2020-06-22 | 2020-06-22 | 一种变换器电路 |
CN202010573054.2 | 2020-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021258619A1 true WO2021258619A1 (zh) | 2021-12-30 |
Family
ID=72482827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/129024 WO2021258619A1 (zh) | 2020-06-22 | 2020-11-16 | 一种变换器电路 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111697841B (zh) |
WO (1) | WO2021258619A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115347797A (zh) * | 2022-08-31 | 2022-11-15 | 固德威技术股份有限公司 | 一种双向串联谐振型dc-dc变换器的pwm调制方法 |
WO2023206952A1 (zh) * | 2022-04-24 | 2023-11-02 | 华南理工大学 | 宽输入电压范围的增益可调高变比dc/dc变换器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111697841B (zh) * | 2020-06-22 | 2021-12-17 | 科华恒盛股份有限公司 | 一种变换器电路 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1750375A (zh) * | 2005-08-11 | 2006-03-22 | 浙江大学 | 副边元器件电压应力是输出电压一半的谐振型变流器 |
CN101997420A (zh) * | 2010-11-11 | 2011-03-30 | 江苏大学 | 一种不对称半桥磁耦合驱动电路 |
US20170054375A1 (en) * | 2015-08-19 | 2017-02-23 | Astec International Limited | Fixed Frequency Discontinuous Conduction Mode Flyback Power Converters Employing Zero Voltage Switching |
CN106877669A (zh) * | 2015-12-10 | 2017-06-20 | 现代自动车株式会社 | 谐振变换器系统 |
CN107834862A (zh) * | 2017-12-06 | 2018-03-23 | 深圳南云微电子有限公司 | 不对称半桥正激电路的控制电路、控制方法及控制装置 |
CN111697841A (zh) * | 2020-06-22 | 2020-09-22 | 科华恒盛股份有限公司 | 一种变换器电路 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101075784A (zh) * | 2007-06-21 | 2007-11-21 | 艾默生网络能源有限公司 | 移相控制零电压dc/dc开关电路 |
US20150055374A1 (en) * | 2013-08-22 | 2015-02-26 | Fujitsu Telecom Networks Limited | Switching power supply apparatus corresponding to zero voltage switching system |
CN105846682B (zh) * | 2016-03-21 | 2020-02-14 | 南京航空航天大学 | 一种正反激变换器的新型混合控制方式 |
-
2020
- 2020-06-22 CN CN202010573054.2A patent/CN111697841B/zh active Active
- 2020-11-16 WO PCT/CN2020/129024 patent/WO2021258619A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1750375A (zh) * | 2005-08-11 | 2006-03-22 | 浙江大学 | 副边元器件电压应力是输出电压一半的谐振型变流器 |
CN101997420A (zh) * | 2010-11-11 | 2011-03-30 | 江苏大学 | 一种不对称半桥磁耦合驱动电路 |
US20170054375A1 (en) * | 2015-08-19 | 2017-02-23 | Astec International Limited | Fixed Frequency Discontinuous Conduction Mode Flyback Power Converters Employing Zero Voltage Switching |
CN106877669A (zh) * | 2015-12-10 | 2017-06-20 | 现代自动车株式会社 | 谐振变换器系统 |
CN107834862A (zh) * | 2017-12-06 | 2018-03-23 | 深圳南云微电子有限公司 | 不对称半桥正激电路的控制电路、控制方法及控制装置 |
CN111697841A (zh) * | 2020-06-22 | 2020-09-22 | 科华恒盛股份有限公司 | 一种变换器电路 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023206952A1 (zh) * | 2022-04-24 | 2023-11-02 | 华南理工大学 | 宽输入电压范围的增益可调高变比dc/dc变换器 |
CN115347797A (zh) * | 2022-08-31 | 2022-11-15 | 固德威技术股份有限公司 | 一种双向串联谐振型dc-dc变换器的pwm调制方法 |
CN115347797B (zh) * | 2022-08-31 | 2024-05-10 | 固德威技术股份有限公司 | 一种双向串联谐振型dc-dc变换器的pwm调制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111697841B (zh) | 2021-12-17 |
CN111697841A (zh) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021258619A1 (zh) | 一种变换器电路 | |
CN106059313B (zh) | 有源钳位的反激电路及其控制方法 | |
CN111130353B (zh) | 开关电源装置 | |
KR20100084585A (ko) | 전류 더블러 정류기를 갖는 공진 전력 컨버터 및 관련 방법 | |
TWI807472B (zh) | 適用於寬範圍輸出電壓的變換器及其控制方法 | |
Chu et al. | Analysis and design of a current-fed zero-voltage-switching and zero-current-switching CL-resonant push–pull dc–dc converter | |
CN108199579B (zh) | 一种带耦合电感的高变比软开关dc-dc降压变换器 | |
CN110504835A (zh) | 一种开关变换器及其控制方法 | |
TWI797813B (zh) | 適用於寬範圍輸出電壓的變換器及其控制方法 | |
WO2020248468A1 (zh) | 一种纹波电流产生电路 | |
CN114759803A (zh) | 一种不对称多模式变频宽输出llc变换器及设计方法 | |
CN111987923A (zh) | 一种采用矩阵变压器的大功率高升压比直流变换器 | |
CN109639132B (zh) | 一种谐振开关电容变换器 | |
TWI686041B (zh) | 具軟切換且能降低輸入電流漣波之逆變電路 | |
TWI666863B (zh) | 高升壓直流轉換器 | |
CN115864813A (zh) | 一种cllc谐振变换器软启动装置和方法 | |
CN112260668B (zh) | 一种产生低频双极性方波的数字功率放大器电路 | |
TWI743652B (zh) | 具新型tt控制之零電壓電力逆變電路 | |
TWI694667B (zh) | 高升壓轉換器 | |
TWI439034B (zh) | Zero voltage switching power converter | |
TWI764403B (zh) | 電壓轉換裝置 | |
CN110518805B (zh) | 一种dcdc升压变换器及实现全范围软开关的方法 | |
CN218603375U (zh) | 一种宽输出范围副边自驱型开关变换电路 | |
CN112271930B (zh) | 二次侧谐振型llc变换电路 | |
CN212278111U (zh) | 一种llc驱动电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20942063 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20942063 Country of ref document: EP Kind code of ref document: A1 |