WO2023206953A1 - 多参考电平宽范围增益调节高变比dc/dc变换器 - Google Patents

多参考电平宽范围增益调节高变比dc/dc变换器 Download PDF

Info

Publication number
WO2023206953A1
WO2023206953A1 PCT/CN2022/121398 CN2022121398W WO2023206953A1 WO 2023206953 A1 WO2023206953 A1 WO 2023206953A1 CN 2022121398 W CN2022121398 W CN 2022121398W WO 2023206953 A1 WO2023206953 A1 WO 2023206953A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically connected
bridge circuit
converter
switch tube
level converter
Prior art date
Application number
PCT/CN2022/121398
Other languages
English (en)
French (fr)
Inventor
杜贵平
郑昊
朱天生
雷雁雄
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2023206953A1 publication Critical patent/WO2023206953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Definitions

  • the present invention relates to the technical field of DC/DC converters, and in particular, to a multi-reference level wide-range gain adjustment high transformation ratio DC/DC converter.
  • server power supplies generally use a 48V intermediate bus architecture, which is converted from power on the server motherboard.
  • Existing technical solutions mostly use a two-stage voltage conversion architecture. In the middle, the voltage is converted once to 12V, and then the voltage is converted to the required low voltage such as 3.3V, 1.2V.
  • the two-stage voltage conversion here will increase The power loss of the system reduces the efficiency of the system and increases the volume of the system thereby reducing the power density.
  • the traditional switching resonant cavity converter requires a large number of switching tubes to form a high-level DC/DC converter to achieve a high transformation ratio, and this type of high transformation ratio DC/DC converter is generally in an open-loop operation state without voltage regulation. The immunity to input voltage fluctuations and load power fluctuations is poor.
  • the purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art and provide a multi-reference level wide-range gain adjustment high transformation ratio DC/DC converter.
  • the converter consists of an N-stage high transformation ratio DC/DC converter and
  • the reference level converter is composed of a reference level converter, which reduces the power loss, improves the power supply efficiency, reduces the power supply volume and improves the power density; compared with the traditional switching resonant cavity converter, the volume and the number of devices used are reduced.
  • the present invention adjusts the Reference the voltage value at the output end of the level converter to adjust the voltage transformation ratio of the N-stage converter to resist fluctuations and wide-range changes in the power supply voltage, achieve wide-range gain adjustment of the converter, and ensure the stability of the load-side output voltage. .
  • the technical solution provided by the present invention is: a multi-reference level wide-range gain adjustment high-turnover ratio DC/DC converter.
  • the converter is composed of an N-level high-turnover ratio DC/DC converter and a reference level
  • the N-level high transformation ratio DC/DC converter is an N-level converter composed of N-level conversion units. N is an integer greater than or equal to 2. It is a non-isolated converter and is used to achieve high transformation ratio. Voltage conversion; the reference level converter is an isolated converter or a non-isolated converter, or the reference level converter is an independent external power supply;
  • the first-level transformation unit of the N-level converter adopts the first type of basic transformation unit, and other transformation units except the first level adopt the first type of basic transformation unit or the second type of basic transformation unit.
  • the first type of basic transformation unit The parts included with the second type of basic transformation unit are:
  • the first resonant cavity includes a first end and a second end
  • the second resonant cavity includes a first end and a second end, and the first end of the second resonant cavity is electrically connected to the output port;
  • the first half-bridge circuit includes a first end, a second end and a midpoint.
  • the midpoint of the first half-bridge circuit is electrically connected to the first end of the first resonant cavity.
  • the first end of the first half-bridge circuit is electrically connected to Input port, the second end is electrically connected to the output port;
  • the second half-bridge circuit includes a first end, a second end and a midpoint.
  • the midpoint of the second half-bridge circuit is electrically connected to the second end of the first resonant cavity.
  • the first end of the second half-bridge circuit is electrically connected to An output port, the second end is electrically connected to the ground port or the output end of the reference level converter;
  • the second end of the second resonant cavity of the first type of basic conversion unit is electrically connected to the ground port.
  • the second type of basic conversion unit also includes:
  • the third half-bridge circuit includes a first end, a second end and a midpoint.
  • the midpoint of the third half-bridge circuit is electrically connected to the second end of the second resonant cavity of the second type basic conversion unit.
  • the third half-bridge circuit The first end of the circuit is electrically connected to the output port of the lower-level conversion unit, and the second end is electrically connected to the ground port or the output end of the reference level converter;
  • the output port of the first-level conversion unit in the N-level converter is the output end of the N-level high transformation ratio DC/DC converter, and is electrically connected to the positive pole of the load and the output ports of other conversion units except the first-level conversion unit. Electrically connected to the input port of the lower-level conversion unit, the input port of the N-level conversion unit is the input end of the N-level high transformation ratio DC/DC converter, and is electrically connected to the positive pole of the power supply; the N-level high transformation ratio DC/DC converter The ground port of the device, the negative pole of the load and the negative pole of the power supply are at the same potential;
  • the input end of the reference level converter is electrically connected to the input end of the N-level converter, the positive pole of the power supply, or any first-level converter in the N-level converter.
  • the output port of the basic conversion unit; the output end can output an adjustable voltage, the level value of the adjustable voltage is a positive value, a negative value or zero potential;
  • the second half-bridge circuit of at least one conversion unit in the N-level converter or The second end of the third half-bridge circuit, or the second end of the second half-bridge circuit and the third half-bridge circuit, is electrically connected to the output end of a reference level converter;
  • the switching tube inside the reference level converter is turned on The length of the off time affects the voltage at the output end of the converter, so controlling the duty cycle of the switching tube can adjust the level value at the output end of the reference level converter;
  • the positive, negative, and high level of the level value at the output end of the reference level converter affects the voltage transformation ratio of the N-level converter: when the output voltage of the reference level converter is positive, the voltage transformation ratio of the N-level converter will become smaller, and the output When the terminal voltage is negative, the voltage transformation ratio of the N-level converter will become larger; the higher the output voltage of the reference level converter, the smaller the voltage transformation ratio of the N-level converter, and the lower the output voltage of the N-level converter.
  • the reference level converter is a non-isolated converter, which is composed of a first switch tube, a second switch tube, an inductor and a capacitor.
  • the above components are all two-terminal components, including a first end and a second end; complementary.
  • the operating first switch tube and the second switch tube constitute a half-bridge circuit.
  • the half-bridge circuit includes a first end, a second end and a midpoint. The first end is the input end of the reference level converter, and the second end is the output end of the reference level converter; the first end of the first switch tube is electrically connected to the first end of the half-bridge circuit, and the second end of the first switch tube is electrically connected to the first end of the second switch tube and the half-bridge circuit.
  • the midpoint of the second switch tube is electrically connected to the second end of the half-bridge circuit; the first end of the inductor is electrically connected to the midpoint of the half-bridge circuit, and the second end is electrically connected to the ground port; the first end of the capacitor is electrically connected to the ground port. Connect the ground port, and the second end is electrically connected to the second end of the half-bridge circuit;
  • the input end of the reference level converter is electrically connected to the output port of a certain first-type basic conversion unit, and the output end is electrically connected to the second half-bridge circuit of a certain-level conversion unit of the N-level converter or the second half-bridge circuit of the third half-bridge circuit. terminal, or the second terminal of the second half-bridge circuit and the third half-bridge circuit; assuming that the voltage between the first terminal and the second terminal of the capacitor is V c , which is the output terminal voltage of the reference level converter, the half-bridge
  • V c which is the output terminal voltage of the reference level converter
  • the output voltage of the reference level converter can be adjusted, thereby adjusting the voltage transformation ratio of the N-level converter.
  • the reference level converter is an isolation converter, which is composed of first, second, third, fourth, fifth and sixth switch tubes, a first inductor, a second inductor, a first capacitor, a second capacitor and a transformer;
  • the switch tubes , inductors and capacitors are two-terminal components, including the first end and the second end;
  • the transformer has the first end of the primary side, the second end of the primary side, the first end of the secondary side, the second end of the secondary side and the midpoint of the secondary side.
  • the number of turns of the inductor winding between the first end of the primary side and the second end of the primary side is p
  • the number of turns of the inductor winding between the first end of the secondary side and the midpoint of the secondary side is s
  • the midpoint of the secondary side and the secondary side The number of turns of the inductor winding between the second ends is s, and there is electrical isolation between the primary winding and the secondary winding;
  • the first end of the first switch tube is electrically connected to the first end of the second switch tube, the first end of the first capacitor and the ground port.
  • the midpoint of the secondary side of the transformer is the output end of the reference level converter, and is electrically connected to the first end of the first switch tube. the second end of the capacitor; the first end of the secondary side of the transformer is electrically connected to the second end of the first switching tube, and the second end of the secondary side is electrically connected to the second end of the second switching tube;
  • the first half-bridge circuit includes a first end, a second end and a midpoint.
  • the first end of the third switch tube is electrically connected to the first half-bridge circuit.
  • the first end of the bridge circuit and the second end of the third switch tube are electrically connected to the midpoint of the first half-bridge circuit and the first end of the fourth switch tube.
  • the second end of the fourth switch tube is electrically connected to the first half-bridge circuit.
  • the second half-bridge circuit includes a first end, a second end and a midpoint.
  • the first end of the fifth switch tube The first end of the second half-bridge circuit is electrically connected, the second end of the fifth switch tube is electrically connected to the midpoint of the second half-bridge circuit and the first end of the sixth switch tube, and the second end of the sixth switch tube is electrically connected. the second terminal of the second half-bridge circuit;
  • the first end of the first inductor is electrically connected to the midpoint of the second half-bridge circuit, the second end of the first inductor is electrically connected to the first end of the second inductor and the first end of the primary side of the transformer, and the first end of the second capacitor
  • the midpoint of the first half-bridge circuit is electrically connected, the second end of the second capacitor is electrically connected to the second end of the second inductor and the second end of the primary side of the transformer;
  • the input end of the reference level converter is electrically connected to the first half-bridge.
  • the first end of the circuit and the first end of the second half-bridge circuit, the second end of the first half-bridge circuit is electrically connected to the second end of the second half-bridge circuit and the ground port;
  • the input end of the reference level converter is electrically connected to the positive pole of the power supply, and the output end is electrically connected to the second half-bridge circuit or the second end of the third half-bridge circuit of a certain stage conversion unit of the N-level converter, or the second half-bridge circuit and the second end of the third half-bridge circuit; let the voltage between the first end and the second end of the first capacitor be V c , which is the output voltage of the reference level converter; after determining the p and s of the transformer After the value, the voltage transformation ratio of the transformer is a fixed value.
  • the output voltage of the reference level converter is adjustable, thereby adjusting the voltage transformation ratio of the N-level converter.
  • the reference level converter is a non-isolated converter, which is composed of a first switch tube, a second switch tube, an inductor and a capacitor.
  • the above components are all two-terminal components, including a first end and a second end; complementary.
  • the operating first switch tube and the second switch tube constitute a half-bridge circuit.
  • the half-bridge circuit includes a first end, a second end and a midpoint.
  • the first end is the input end of the reference level converter and is electrically connected to the first The first end of the switch tube; the second end of the first switch tube is electrically connected to the first end of the second switch tube and the midpoint of the half-bridge circuit, and the second end of the second switch tube is electrically connected to the second end of the half-bridge circuit ;
  • the first end of the inductor is electrically connected to the midpoint of the half-bridge circuit, the second end is the output end of the reference level converter, and is electrically connected to the first end of the capacitor; the second end of the capacitor is electrically connected to the second end of the half-bridge circuit and ground port;
  • the input end of the reference level converter is electrically connected to the positive pole of the power supply, and the output end is electrically connected to the second half-bridge circuit or the second end of the third half-bridge circuit of a certain stage conversion unit of the N-level converter, or the second half-bridge circuit and the second end of the third half-bridge circuit; let the voltage between the first end and the second end of the capacitor be V c , which is the output voltage of the reference level converter, the voltage of the power supply is V in , and
  • the duty cycle of the first switch tube is D
  • the duty cycle of the second switch tube is 1-D
  • the value of D is 0-1, then the relationship between V c and V in is:
  • the output voltage of the reference level converter can be adjusted, thereby adjusting the voltage transformation ratio of the N-level converter.
  • the first half-bridge circuit is composed of a first switch tube and a second switch tube that operate in a complementary manner.
  • the first end of the first switch tube is electrically connected to the second end of the second switch tube and the first half-bridge circuit.
  • the second end of the first switch tube is electrically connected to the second end of the first half-bridge circuit, and the first end of the second switch tube is electrically connected to the first end of the first half-bridge circuit;
  • the second half-bridge circuit It is composed of a third switch tube and a fourth switch tube that operate in a complementary manner.
  • the first end of the third switch tube is electrically connected to the second end of the fourth switch tube and the midpoint of the second half-bridge circuit.
  • the second end of the third switch tube is electrically connected to the second end of the fourth switch tube.
  • the first terminal of the fourth switch tube is electrically connected to the second terminal of the second half-bridge circuit, and the first terminal of the fourth switch tube is electrically connected to the first terminal of the second half-bridge circuit;
  • the third half-bridge circuit consists of a fifth switch tube and a third It is composed of six switch tubes.
  • the first end of the fifth switch tube is electrically connected to the second end of the sixth switch tube and the midpoint of the third half-bridge circuit.
  • the second end of the fifth switch tube is electrically connected to the third end of the third half-bridge circuit.
  • Two terminals, the first terminal of the sixth switch tube is electrically connected to the first terminal of the third half-bridge circuit.
  • the first resonant cavity is composed of an inductor and a capacitor, and the inductor and the capacitor are electrically connected in series.
  • the second resonant cavity is composed of an inductor and a capacitor, and the inductor and the capacitor are electrically connected in series, or is composed of only the capacitor.
  • all the first switching transistors, all the third switching transistors of the first-level conversion unit to the N-th level conversion unit, and the sixth switching transistor of each level of conversion unit composed of the second type of basic conversion unit are turned on at the same time.
  • all second switching tubes, all fourth switching tubes of the first-level conversion unit to the N-th level conversion unit, and the fifth switching tube of each level of conversion unit composed of the second type of basic conversion unit It is turned on and turned off at the same time; without considering the dead time, the duty cycle of each switch tube is 50%; the first-level conversion unit to the N-th level conversion unit All switching tubes of each stage of conversion unit work at variable frequency or fixed frequency.
  • a high-frequency compensation circuit is also configured.
  • the high-frequency compensation circuit includes an input end, an output end, and a ground end.
  • the input end of the high-frequency compensation circuit is electrically connected to the input end of the N-level converter, the positive pole of the power supply, or the N-level conversion.
  • the output port of any first-class basic conversion unit in the converter the output end is electrically connected to the positive pole of the load, and the grounding end is electrically connected to the negative pole of the input power supply; the high-frequency compensation circuit is only used when the DC/DC converter is in an unstable transient state. Or it works at the moment of state switching.
  • the high-frequency compensation circuit compensates for the high-frequency power fluctuations and improves the temporary stability of the DC/DC converter. State response, when the DC/DC converter is in a steady state, it stops working and does not perform power conversion.
  • the present invention has the following advantages and beneficial effects:
  • the present invention Compared with the traditional two-stage converter connected in series, the present invention has only one main power converter for voltage conversion, which reduces the number of electric energy conversions, reduces the electric energy loss, improves the efficiency of the converter, and at the same time reduces the size of the converter.
  • the size of the converter increases the power density.
  • the present invention improves the transformation ratio of the input voltage and the output voltage.
  • the number of switching devices and inductors and capacitors is reduced. It reduces the power loss, improves the efficiency of the converter and reduces the cost.
  • the voltage transformation ratio of the N-stage converter is adjusted to resist fluctuations and wide-range changes in the power supply voltage, achieve wide-range gain adjustment of the converter, and ensure the stability of the load-side output voltage.
  • the positive and negative value of this level affects the voltage transformation ratio of the N-level converter.
  • the input power supply of the reference level converter can be selected from an external power supply, or it can be powered from within the entire converter system.
  • the connection points between the input end and the output end of the reference level converter can be determined according to the devices in the actual application circuit. The stress can be freely selected.
  • a high-frequency compensation circuit can be added to the multi-reference level wide-range gain-adjusted high-turnover ratio DC/DC converter proposed by the present invention to compensate for the high frequency when the DC/DC converter is in an unstable transient state or a state switching instant. frequency power fluctuations, thereby improving dynamic response speed and reducing voltage fluctuations on the load side.
  • Figure 1 is a schematic structural diagram of the first type of basic transformation unit in this embodiment.
  • Figure 2 is a schematic structural diagram of the second type of basic transformation unit in this embodiment.
  • Figure 3 is a schematic diagram of the resonant cavity structure of this embodiment.
  • Figure 4 is a schematic structural diagram of the half-bridge circuit in this embodiment.
  • FIG. 5 is a schematic diagram of the circuit structure and connection method when the reference level converter of this embodiment is connected to an external power supply (without high-frequency compensation).
  • Figure 6 is a schematic diagram of the circuit structure and connection method of this embodiment in which the reference level converter is connected to an external power supply and a high-frequency compensation circuit is added.
  • Figure 7 is a schematic diagram of the circuit structure and connection method when the reference level converter of this embodiment is non-isolated, the input terminal is connected to the internal connection point of the N-level converter, the output terminal is a negative voltage, and the number of conversion unit stages N is 4. (No high frequency compensation added).
  • Figure 8 is a schematic diagram of the circuit structure and connection method when the reference level converter of this embodiment is an isolated type, the input terminal is connected to the power supply, the output terminal is a negative voltage, and the number of conversion unit stages N is 3 (no high frequency is added) compensate).
  • Figure 9 is a schematic diagram of the circuit structure and connection method when the reference level converter of this embodiment is non-isolated, the input terminal is connected to the power supply, the output terminal is a positive voltage, and the number of conversion unit stages N is 3 (no high frequency is added) compensate).
  • This embodiment provides a multi-reference level wide range gain adjustment high transformation ratio DC/DC converter.
  • the converter is composed of an N-level high transformation ratio DC/DC converter and a reference level converter, wherein the N-level converter
  • the high ratio DC/DC converter is an N-level converter composed of N-level conversion units.
  • N is an integer greater than or equal to 2. It is a non-isolated converter. It is composed of switching tubes, capacitors, inductors and other components, and has an input terminal.
  • the reference level converter is an isolated converter or a non-isolated converter, which is composed of switching tubes, inductors, capacitors, diodes, and certain components of transformers, and has an input terminal and output terminal, the output terminal can output adjustable voltages of different polarities, or the reference level converter is an independent external power supply and has an output terminal capable of outputting adjustable voltages of different polarities.
  • the first-stage conversion unit of the N-stage converter adopts a first-type basic conversion unit, and other conversion units except the first-stage converter adopt a first-type basic conversion unit or a second-type basic conversion unit.
  • the first type of basic conversion unit includes: an input port, an output port, a first resonant cavity, a second resonant cavity, a first half-bridge circuit, a second half-bridge circuit, and a ground port.
  • the first end of the first half-bridge circuit is electrically connected to the input port, and the second end of the first half-bridge circuit is electrically connected to the output port;
  • the first end of the first resonant cavity is electrically connected to the midpoint of the first half-bridge circuit, and the first resonant cavity
  • the second end of the cavity is electrically connected to the midpoint of the second half-bridge circuit;
  • the first end of the second resonant cavity is electrically connected to the output port, and the second end of the second resonant cavity is electrically connected to the ground port.
  • the second type of basic conversion unit includes: an input port, an output port, a first resonant cavity, a second resonant cavity, a first half-bridge circuit, a second half-bridge circuit, and a third half-bridge circuit.
  • the first end of the first half-bridge circuit is electrically connected to the input port, and the second end of the first half-bridge circuit is electrically connected to the output port; the first end of the first resonant cavity is electrically connected to the midpoint of the first half-bridge circuit, and the first resonant cavity The second end of the cavity is electrically connected to the midpoint of the second half-bridge circuit; the first end of the second resonant cavity is electrically connected to the output port, and the second end of the second resonant cavity is electrically connected to the midpoint of the third half-bridge circuit.
  • the resonant cavity includes a first end and a second end, and is composed of an inductor and a capacitor.
  • the inductor and the capacitor are electrically connected in series; or it is composed of only the capacitor.
  • the half-bridge circuit includes a first end, a second end and a midpoint, and is composed of a first switch tube and a second switch tube that operate in a complementary manner.
  • the switch tube operates at variable frequency or fixed frequency.
  • the first half-bridge circuit of the N-level converter is composed of a first switching tube Q1 and a second switching tube Q2 that operate in a complementary manner.
  • the first end of the first switching tube Q1 is electrically connected to the second end of the second switching tube Q2 and At the midpoint of the first half-bridge circuit, the second end of the first switch Q1 is electrically connected to the second end of the first half-bridge circuit, and the first end of the second switch Q2 is electrically connected to the first end of the first half-bridge circuit.
  • the second half-bridge circuit is composed of a third switching tube Q3 and a fourth switching tube Q4 that operate in a complementary manner.
  • the first end of the third switching tube Q3 is electrically connected to the second end of the fourth switching tube Q4 and the second half-bridge circuit.
  • the second end of the third switch Q3 is electrically connected to the second end of the second half-bridge circuit, and the first end of the fourth switch Q4 is electrically connected to the first end of the second half-bridge circuit;
  • the third half-bridge circuit It is composed of a fifth switching tube Q5 and a sixth switching tube Q6 that operate in a complementary manner.
  • the first end of the fifth switching tube Q5 is electrically connected to the second end of the sixth switching tube Q6 and the midpoint of the third half-bridge circuit.
  • the second end of the transistor Q5 is electrically connected to the second end of the third half-bridge circuit, and the first end of the sixth switching transistor Q6 is electrically connected to the first end of the third half-bridge circuit.
  • the six switching tubes Q6 are turned on and off at the same time, all the second switching tubes Q2 of the first-level conversion unit to the N-th level conversion unit, all the fourth switching tubes Q4 and each of the second-type basic conversion units are composed of
  • the fifth switching transistor Q5 of the first-level conversion unit is turned on and turned off at the same time. Without considering the dead time, the duty cycle of each switch tube is 50%. All switching tubes of each conversion unit from the first to the Nth stage conversion units work at variable frequency or fixed frequency.
  • the output port of the first-level conversion unit in the N-level converter is the output end of the N-level high transformation ratio DC/DC converter, and is electrically connected to the positive pole of the load and the output ports of other conversion units except the first-level conversion unit. Electrically connected to the input port of the lower-level conversion unit, the input port of the N-level conversion unit is the input end of the N-level high transformation ratio DC/DC converter, and is electrically connected to the positive pole of the power supply; the N-level high transformation ratio DC/DC converter
  • the ground port of the device is at the same potential as the negative pole of the load and the negative pole of the power supply.
  • the input end of the reference level converter is electrically connected to the input end of the N-level converter, the positive pole of the power supply, or any first-level converter in the N-level converter.
  • the output port of the basic conversion unit; the output terminal can output adjustable voltages of different polarities, and the level value of the adjustable voltage is positive value, negative value or zero potential; the second level of at least one conversion unit in the N-level converter
  • the second end of the half-bridge circuit or the third half-bridge circuit, or the second end of the second half-bridge circuit and the third half-bridge circuit is electrically connected to the output end of a reference level converter; the switch inside the reference level converter
  • the length of the on and off time of the tube affects the voltage at the output end of the converter, so controlling the duty cycle of the switching tube can adjust the level value at the output end of the reference level converter.
  • the positive, negative, and high level of the level value at the output end of the reference level converter affects the voltage transformation ratio of the N-level converter: when the output voltage of the reference level converter is positive, the voltage transformation ratio of the N-level converter will become smaller, and the output When the terminal voltage is negative, the voltage transformation ratio of the N-level converter will become larger; the higher the output voltage of the reference level converter, the smaller the voltage transformation ratio of the N-level converter, and the lower the output voltage of the N-level converter. The greater the voltage transformation ratio.
  • the reference level converter is an independent external power supply, and the voltage value at the output terminal of the external power supply can be positive, negative, or zero potential;
  • the second resonant cavity of the first-stage conversion unit of the N-level converter only Composed of a capacitor, the first end of the second half-bridge circuit of the N-level converter is electrically connected to the output port, and the second end is electrically connected to the output end of the reference level converter;
  • the third half-bridge circuit in the second type of basic conversion unit The first end is electrically connected to the output port of the lower-level conversion unit, and the second end is electrically connected to the output end of the reference level converter.
  • this example is a schematic diagram of adding a high-frequency compensation circuit based on Figure 5.
  • the input end of the high-frequency compensation circuit is electrically connected to the positive pole of the power supply, the output end is electrically connected to the positive pole of the load, and the ground end is electrically connected to the input power supply. negative electrode.
  • the reference level converter is a non-isolated converter, consisting of a first switch S1, a second switch S2, an inductor L, and a capacitor C.
  • the above components are all two-terminal components, including the first terminal and The second end; the complementary operating first switch S1 and the second switch S2 form a half-bridge circuit.
  • the half-bridge circuit includes a first end, a second end and a midpoint. The first end is the reference level converter.
  • the input end, the second end is the output end of the reference level converter; the first end of the first switch S1 is electrically connected to the first end of the half-bridge circuit, and the second end of the first switch S1 is electrically connected to the second switch
  • the first end of tube S2 and the midpoint of the half-bridge circuit, the second end of the second switch tube S2 is electrically connected to the second end of the half-bridge circuit;
  • the first end of the inductor L is electrically connected to the midpoint of the half-bridge circuit, and the second end of the second switch tube S2 is electrically connected to the midpoint of the half-bridge circuit.
  • terminal is electrically connected to the ground port;
  • the first terminal of the capacitor C is electrically connected to the ground port, and the second terminal is electrically connected to the second terminal of the half-bridge circuit;
  • the third-level conversion unit of the N-level converter adopts the first type of basic conversion unit, and the second resonant cavity is composed only of capacitors.
  • the second and fourth-level conversion units adopt the second type of basic conversion unit.
  • the second resonant cavity is composed of an inductor and a It is composed of a capacitor;
  • the input end of the reference level converter is electrically connected to the output port of the third-level conversion unit, and the output end is electrically connected to the second end of the second half-bridge circuit of the fourth-level conversion unit;
  • the second half of the N-level converter is The first end of the bridge circuit is electrically connected to the output port, the second end of the second half-bridge circuit except the fourth-level conversion unit is electrically connected to the ground port;
  • the first end of the third half-bridge circuit is electrically connected to the lower-level conversion unit.
  • the output port, the second end is electrically connected to the ground port; let the voltage between the first end and the second end of the capacitor be V c , which is the output end voltage of the reference level converter, the first end of the half-bridge circuit and the ground port The voltage between them is V 1 , the duty cycle of the first switching tube is D, the duty cycle of the second switching tube is 1-D, and the value of D is 0-1, then the voltage between V c and V 1
  • V c the voltage between V c and V 1
  • the output voltage of the reference level converter can be adjusted, thereby adjusting the voltage transformation ratio of the N-level converter.
  • the reference level converter is an isolation converter, which is composed of the first, second, third, fourth, fifth, and sixth switch tubes, the first inductor, the second inductor, the first capacitor, the second capacitor and the transformer.
  • the switching tube, inductor, and capacitor are all two-terminal components, including the first end and the second end;
  • the transformer has the first end of the primary side, the second end of the primary side, the first end of the secondary side, the second end of the secondary side, and the secondary side.
  • the midpoint, the number of turns of the inductor winding between the first end of the primary side and the second end of the primary side is p, the number of turns of the inductor winding between the first end of the secondary side and the midpoint of the secondary side is s, the midpoint of the secondary side
  • the number of turns of the inductor winding between it and the second end of the secondary side is s, and the primary winding and the secondary winding are electrically isolated; the first end of the first switch tube is electrically connected to the first end of the second switch tube and the second end of the second switch tube.
  • the first end of a capacitor and the ground port, the midpoint of the secondary side of the transformer is the output end of the reference level converter, and is electrically connected to the second end of the first capacitor; the first end of the secondary side of the transformer is electrically connected to the first switching tube. The second end, the second end of the secondary side is electrically connected to the second end of the second switch tube;
  • the first half-bridge circuit includes a first end, a second end and a midpoint.
  • the first end of the third switch tube is electrically connected to the first half-bridge circuit.
  • the first end of the bridge circuit and the second end of the third switch tube are electrically connected to the midpoint of the first half-bridge circuit and the first end of the fourth switch tube.
  • the second end of the fourth switch tube is electrically connected to the first half-bridge circuit.
  • the second half-bridge circuit includes a first end, a second end and a midpoint.
  • the first end of the fifth switch tube The first end of the second half-bridge circuit is electrically connected, the second end of the fifth switch tube is electrically connected to the midpoint of the second half-bridge circuit and the first end of the sixth switch tube, and the second end of the sixth switch tube is electrically connected. the second terminal of the second half-bridge circuit;
  • the first end of the first inductor is electrically connected to the midpoint of the second half-bridge circuit, the second end of the first inductor is electrically connected to the first end of the second inductor and the first end of the primary side of the transformer, and the first end of the second capacitor
  • the midpoint of the first half-bridge circuit is electrically connected, the second end of the second capacitor is electrically connected to the second end of the second inductor and the second end of the primary side of the transformer;
  • the input end of the reference level converter is electrically connected to the first half-bridge.
  • the first end of the circuit and the first end of the second half-bridge circuit, the second end of the first half-bridge circuit is electrically connected to the second end of the second half-bridge circuit and the ground port;
  • the second and third-level conversion units of the N-level converter adopt the second type basic conversion unit; the input end of the reference level converter is electrically connected to the positive electrode of the power supply, and the output end is electrically connected to the second half-bridge of the third-level conversion unit.
  • the reference level converter is a non-isolated converter, consisting of a first switch S1, a second switch S2, an inductor L, and a capacitor C.
  • the above components are all two-terminal components, including the first terminal and The second end; the complementary operating first switch S1 and the second switch S2 form a half-bridge circuit.
  • the half-bridge circuit includes a first end, a second end and a midpoint. The first end is the reference level converter.
  • the input terminal is electrically connected to the first terminal of the first switch tube S1; the second terminal of the first switch tube S1 is electrically connected to the first terminal of the second switch tube S2 and the midpoint of the half-bridge circuit, and the third terminal of the second switch tube S2 is electrically connected.
  • the two ends are electrically connected to the second end of the half-bridge circuit;
  • the first end of the inductor L is electrically connected to the midpoint of the half-bridge circuit, and the second end is the output end of the reference level converter, and is electrically connected to the first end of the capacitor C;
  • the capacitor The second end of C is electrically connected to the second end of the half-bridge circuit and the ground port;
  • the second and third-level conversion units of the N-level converter adopt the second type basic conversion unit; the input end of the reference level converter is electrically connected to the positive electrode of the power supply, and the output end is electrically connected to the second half-bridge of the first-level conversion unit.
  • the output terminal voltage, the voltage of the power supply is V in , the duty cycle of the first switch tube is D, the duty cycle of the second switch tube is 1-D, the value of D is 0-1, then V c and V
  • the relationship between in is:
  • the output voltage of the reference level converter can be adjusted, thereby adjusting the voltage transformation ratio of the N-level converter.

Abstract

本发明公开了一种多参考电平宽范围增益调节高变比DC/DC变换器,由N级高变比DC/DC变换器和参考电平变换器构成,或含有高频补偿电路;N级高变比DC/DC变换器用于实现高变比的电压变换,参考电平变换器为隔离型变换器或非隔离变换器,其输出端能够输出不同极性的可调电压,或者该变换器为独立的外接电源;参考电平变换器输出端电平值的正负与高低影响N级高变比DC/DC变换器的电压变比,通过调整该电平值,可抵抗供电电源电压的波动与宽范围变化;高频补偿电路补偿高频功率波动。本发明对传统开关谐振变换器进行了改进,在提高变换器电压变比的同时,实现了变换器的宽范围增益调节,保证负载侧输出电压的稳定;若加入高频补偿电路可提高动态响应速度。

Description

多参考电平宽范围增益调节高变比DC/DC变换器 技术领域
本发明涉及DC/DC变换器的技术领域,尤其是指一种多参考电平宽范围增益调节高变比DC/DC变换器。
背景技术
目前,服务器电源普遍采用48V的中间总线架构,该48V由服务器主板上进行的功率变换而来。现有的技术方案多采用两级电压变换的架构,中间先经过一次电压变换到12V,再进行一次电压变换到所需的3.3V、1.2V等低电压,此处的两级电压变换会增加系统电能损耗从而降低系统的效率,增加系统的体积从而降低功率密度。传统的开关谐振腔变换器需要大量的开关管构成高级数的DC/DC变换器来实现高变比,并且这类高变比DC/DC变换器一般处于不调压的开环运行状态,对输入电压波动、负载功率波动的抗扰性较差。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供了一种多参考电平宽范围增益调节高变比DC/DC变换器,该变换器由N级高变比DC/DC变换器和参考电平变换器构成,减少了电能损耗提高了电源效率,减小了电源体积提高了功率密度;与传统的开关谐振腔变换器相比,减小了体积与器件使用数量,本发明通过调整参考电平变换器输出端的电压值,从而调整N级变换器的电压变比,达到抵抗供电电源电压的波动与宽范围变化,实现变换器的宽范围增益调节,保证负载侧输出电压稳定的效果。
为实现上述目的,本发明所提供的技术方案为:多参考电平宽范围增益调节高变比DC/DC变换器,该变换器是由N级高变比DC/DC变换器和参考电平变换器构成,其中N级高变比DC/DC变换器是由N级变换单元构成的N级变换器,N为大于或等于2的整数,为非隔离变换器,用于实现高变比的电压变换;参考电平变换器为隔离型变换器或非隔离变换器,或者参考电平变换器为独立的外接电源;
所述N级变换器的第1级变换单元采用第一类基本变换单元,除第1级外的其它变换单元采用第一类基本变换单元或第二类基本变换单元,第一类基本变换单元与第二类基本变换单元均包含的部分有:
输入端口;
输出端口;
第一谐振腔,包含第一端以及第二端;
第二谐振腔,包含第一端以及第二端,该第二谐振腔的第一端电连接输出端口;
第一半桥电路,包含第一端、第二端以及中点,该第一半桥电路的中点电连接第一谐振腔的第一端,该第一半桥电路的第一端电连接输入端口,第二端电连接输出端口;
第二半桥电路,包含第一端、第二端以及中点,该第二半桥电路的中点电连接第一谐振腔的第二端,该第二半桥电路的第一端电连接输出端口,第二端电连接接地端口或者参考电平变换器的输出端;
第一类基本变换单元的第二谐振腔的第二端电连接接地端口,第二类基本变换单元还包含:
第三半桥电路,包含第一端、第二端以及中点,该第三半桥电路的中点电连接第二类基本变换单元的第二谐振腔的第二端,该第三半桥电路的第一端电连接低一级变换单元的输出端口,第二端电连接接地端口或者参考电平变换器的输出端;
所述N级变换器中第1级变换单元的输出端口为N级高变比DC/DC变换器的输出端,电连接负载的正极,除第1级变换单元外的其它变换单元的输出端口电连接低一级变换单元的输入端口,第N级变换单元的输入端口为N级高变比DC/DC变换器的输入端,电连接供电电源的正极;N级高变比DC/DC变换器的接地端口与负载的负极、供电电源的负极为同一电位;
除参考电平变换器为独立的外接电源的情况外,参考电平变换器的输入端电连接N级变换器的输入端、供电电源的正极或者N级变换器中的任意一级第一类基本变换单元的输出端口;输出端能够输出可调电压,该可调电压的电平值为正值、负值或者零电位;N级变换器中至少一级变换单元的第二半桥电路或者第三半桥电路的第二端,或者第二半桥电路与第三半桥电路的第二端电连接一个参考电平变换器的输出端;参考电平变换器内部的开关管的导通与关断时间的长短影响该变换器输出端的电压,因此控制开关管的占空比能够调节参考电平变换器输出端的电平值;
参考电平变换器输出端的电平值的正负与高低影响N级变换器的电压变比:参考电平变换器的输出端电压为正,N级变换器的电压变比将变小,输出端电压为负,N级变换器的电压变比将变大;参考电平变换器的输出端电压越高,N级变换器的电压变比越小,输出端电压越低,N级变换器的电压变比越大;通过调节N级变换器的电压变比,从而抵抗供电电源电压的波动与宽范围变化,实现变换器的宽范围增益调节,保证负载输出电压的稳定。
优选的,参考电平变换器为非隔离变换器,由第一开关管、第二开关管、电感和电容这些元件构成,上述元件均为二端元件,包含第一端与第二端;互补运行的第一开关管以及第二开关管构成半桥电路,该半桥电路包含第一端、第二端以及中点,该第一端为参考电平变换器的输入端,该第二端为参考电平变换器的输出端;第一开关管的第一端电连接半桥电路的第一端,第一开关管的第二端电连接第二开关管的第一端以及半桥电路的中点,第二开关管的第二端电连接半桥电路的第二端;电感的第一端电连接半桥电路的中点,第二端电连接接地端口;电容的第一端电连接接地端口,第二端电连接半桥电路的第二端;
参考电平变换器的输入端电连接某一第一类基本变换单元的输出端口,输出端电连接N级变换器某一级变换单元的第二半桥电路或者第三半桥电路的第二端,或者第二半桥电路与第三半桥电路的第二端;设电容的第一端与第二端之间的电压为V c,为参考电平变换器的输出端电压,半桥电路的第一端与接地端口之间的电压为V 1,第一开关管的占空比为D,第二开关管的占空比为1-D,D的取值为0-1,则V c与V 1之间的关系式为:
Figure PCTCN2022121398-appb-000001
通过调整D的取值,能够使得参考电平变换器的输出端电压可调,从而调整N级变换器 的电压变比。
优选的,参考电平变换器为隔离变换器,由第一、二、三、四、五、六开关管,第一电感,第二电感,第一电容,第二电容和变压器构成;开关管、电感、电容均为二端元件,包含第一端与第二端;变压器有原边第一端、原边第二端、副边第一端、副边第二端和副边中点,原边第一端与原边第二端之间的电感绕组的匝数为p,副边第一端与副边中点之间的电感绕组的匝数为s,副边中点与副边第二端之间的电感绕组的匝数为s,原边绕组与副边绕组之间是电气隔离;
第一开关管的第一端电连接第二开关管的第一端、第一电容的第一端以及接地端口,变压器的副边中点为参考电平变换器的输出端,电连接第一电容的第二端;变压器的副边第一端电连接第一开关管的第二端,副边第二端电连接第二开关管的第二端;
互补运行的第三开关管以及第四开关管构成第一半桥电路,该第一半桥电路包含第一端、第二端以及中点,第三开关管的第一端电连接第一半桥电路的第一端,第三开关管的第二端电连接第一半桥电路的中点与第四开关管的第一端,第四开关管的第二端电连接第一半桥电路的第二端;互补运行的第五开关管以及第六开关管构成第二半桥电路,该第二半桥电路包含第一端、第二端以及中点,第五开关管的第一端电连接第二半桥电路的第一端,第五开关管的第二端电连接第二半桥电路的中点与第六开关管的第一端,第六开关管的第二端电连接第二半桥电路的第二端;
第一电感的第一端电连接第二半桥电路的中点,第一电感的第二端电连接第二电感的第一端以及变压器的原边第一端,第二电容的第一端电连接第一半桥电路的中点,第二电容的第二端电连接第二电感的第二端以及变压器的原边第二端;参考电平变换器的输入端电连接第一半桥电路的第一端以及第二半桥电路的第一端,第一半桥电路的第二端电连接第二半桥电路的第二端以及接地端口;
参考电平变换器的输入端电连接供电电源的正极,输出端电连接N级变换器某一级变换单元的第二半桥电路或者第三半桥电路的第二端,或者第二半桥电路与第三半桥电路的第二端;设第一电容的第一端与第二端之间的电压为V c,为参考电平变换器的输出端电压;在确定变压器的p和s的值后,该变压器的电压变比为固定值,通过调整开关管的占空比或开关频率,使得参考电平变换器的输出端电压可调,从而调整N级变换器的电压变比。
优选的,参考电平变换器为非隔离变换器,由第一开关管、第二开关管、电感和电容这些元件构成,上述元件均为二端元件,包含第一端与第二端;互补运行的第一开关管以及第二开关管构成半桥电路,该半桥电路包含第一端、第二端以及中点,该第一端为参考电平变换器的输入端,电连接第一开关管的第一端;第一开关管的第二端电连接第二开关管的第一端以及半桥电路的中点,第二开关管的第二端电连接半桥电路的第二端;电感的第一端电连接半桥电路的中点,第二端为参考电平变换器的输出端,电连接电容的第一端;电容的第二端电连接半桥电路的第二端以及接地端口;
参考电平变换器的输入端电连接供电电源的正极,输出端电连接N级变换器某一级变换 单元的第二半桥电路或者第三半桥电路的第二端,或者第二半桥电路与第三半桥电路的第二端;设电容的第一端与第二端之间的电压为V c,为参考电平变换器的输出端电压,供电电源的电压为V in,第一开关管的占空比为D,第二开关管的占空比为1-D,D的取值为0-1,则V c与V in之间的关系式为:
V c=DV in
通过调整D的取值,能够使得参考电平变换器的输出端电压可调,从而调整N级变换器的电压变比。
优选的,所述第一半桥电路由互补运行的第一开关管以及第二开关管构成,第一开关管的第一端电连接第二开关管的第二端以及第一半桥电路的中点,第一开关管的第二端电连接第一半桥电路的第二端,第二开关管的第一端电连接第一半桥电路的第一端;所述第二半桥电路由互补运行的第三开关管以及第四开关管构成,第三开关管的第一端电连接第四开关管的第二端以及第二半桥电路的中点,第三开关管的第二端电连接第二半桥电路的第二端,第四开关管的第一端电连接第二半桥电路的第一端;所述第三半桥电路由互补运行的第五开关管以及第六开关管构成,第五开关管的第一端电连接第六开关管的第二端以及第三半桥电路的中点,第五开关管的第二端电连接第三半桥电路的第二端,第六开关管的第一端电连接第三半桥电路的第一端。
优选的,第一谐振腔由电感和电容构成,该电感与电容串联电连接。
优选的,第二谐振腔由电感和电容构成,该电感与电容串联电连接,或者仅由电容构成。
优选的,第1级变换单元至第N级变换单元的所有第一开关管、所有第三开关管以及由第二类基本变换单元所构成的每一级变换单元的第六开关管是同时导通及同时关断,第1级变换单元至第N级变换单元的所有第二开关管、所有第四开关管以及由第二类基本变换单元所构成的每一级变换单元的第五开关管是同时导通及同时关断;不考虑死区时间的情况下,每个开关管的导通和关断的占空比为50%;第1级变换单元至该第N级变换单元中的每一级变换单元的所有开关管是变频或定频工作。
优选的,还配置高频补偿电路,该高频补偿电路包括输入端、输出端与接地端,高频补偿电路的输入端电连接N级变换器的输入端、供电电源的正极或者N级变换器中的任意一级第一类基本变换单元的输出端口,输出端电连接负载的正极,接地端电连接输入电源的负极;高频补偿电路只在DC/DC变换器处于不稳定的暂态或状态切换瞬间时工作,当供电电源的电压发生波动或者负载功率与变换器输出功率不匹配导致实际输出电压波动时,该高频补偿电路补偿高频功率波动,提高DC/DC变换器的暂态响应,在DC/DC变换器处于稳态时停止工作,不进行电能变换。
本发明与现有技术相比,具有如下优点与有益效果:
与传统的两级串联相接的变换器相比,本发明只有一级进行电压变换的主功率变换器,减少了电能变换次数,减小了电能损耗,提高了变换器的效率,同时缩小了变换器的体积,提高了功率密度。
与现有的开关谐振腔变换器相比,本发明提高了输入电压与输出电压的变比,在采用同样级数变换单元的情况下,减小了开关器件与电感电容的使用数量,减小了电能损耗,提高了变换器的效率,降低了成本。
通过调整参考电平变换器输出端的电压值,从而调整N级变换器的电压变比,达到抵抗供电电源电压的波动与宽范围变化,实现变换器的宽范围增益调节,保证负载侧输出电压稳定的效果,该电平值的正负与高低影响N级变换器的电压变比。
参考电平变换器的输入端电源可以选择外接电源,或者从整个变换器系统的内部取电,与此同时,参考电平变换器的输入端与输出端的连接点可根据实际应用电路中的器件的应力进行自由选择。
可在本发明提出的多参考电平宽范围增益调节高变比DC/DC变换器的基础上加入高频补偿电路,补偿DC/DC变换器处于不稳定的暂态或状态切换瞬间时的高频功率波动,从而可提高动态响应速度,减少负载侧的电压波动。
附图说明
图1为本实施例的第一类基本变换单元结构示意图。
图2为本实施例的第二类基本变换单元结构示意图。
图3为本实施例的谐振腔结构示意图。
图4为本实施例的半桥电路结构示意图。
图5为本实施例的参考电平变换器为外接电源时的电路结构与连接方式示意图(没加高频补偿)。
图6为本实施例的参考电平变换器为外接电源、加入高频补偿电路的电路结构与连接方式示意图。
图7为本实施例的参考电平变换器为非隔离、输入端接N级变换器内部连接点、输出端为负电压、变换单元级数N取4时的一种电路结构与连接方式示意图(没加高频补偿)。
图8为本实施例的参考电平变换器为隔离型、输入端接供电电源、输出端为负电压、变换单元级数N取3时的一种电路结构与连接方式示意图(没加高频补偿)。
图9为本实施例的参考电平变换器为非隔离、输入端接供电电源、输出端为正电压、变换单元级数N取3时的一种电路结构与连接方式示意图(没加高频补偿)。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
本实施例提供了一种多参考电平宽范围增益调节高变比DC/DC变换器,该变换器是由N级高变比DC/DC变换器和参考电平变换器构成,其中N级高变比DC/DC变换器是由N级变换单元构成的N级变换器,N为大于或等于2的整数,为非隔离变换器,由开关管、电容、电感等元件构成,具有输入端和输出端,用于实现高变比的电压变换;参考电平变换器为隔离型变换器或非隔离变换器,由开关管、电感、电容、二极管、变压器中的某些元件构成,具有输入端和输出端,输出端能够输出不同极性的可调电压,或者参考电平变换器为独立的外接电源, 具有能够输出不同极性的可调电压的输出端。
所述N级变换器的第1级变换单元采用第一类基本变换单元,除第1级外的其它变换单元采用第一类基本变换单元或第二类基本变换单元。
如图1所示,第一类基本变换单元包括:输入端口、输出端口、第一谐振腔、第二谐振腔、第一半桥电路、第二半桥电路、接地端口。第一半桥电路的第一端电连接输入端口,第一半桥电路的第二端电连接输出端口;第一谐振腔的第一端电连接第一半桥电路的中点,第一谐振腔的第二端电连接第二半桥电路的中点;第二谐振腔的第一端电连接输出端口,第二谐振腔的第二端电连接接地端口。
如图2所示,第二类基本变换单元包括:输入端口、输出端口、第一谐振腔、第二谐振腔、第一半桥电路、第二半桥电路、第三半桥电路。第一半桥电路的第一端电连接输入端口,第一半桥电路的第二端电连接输出端口;第一谐振腔的第一端电连接第一半桥电路的中点,第一谐振腔的第二端电连接第二半桥电路的中点;第二谐振腔的第一端电连接输出端口,第二谐振腔的第二端电连接第三半桥电路的中点。
如图3所示,谐振腔包含第一端以及第二端,由电感和电容构成,该电感与电容串联电连接;或者仅由电容构成。
如图4所示,半桥电路包含第一端、第二端以及中点,由互补运行的第一开关管以及第二开关管构成,开关管是变频或定频工作。
所述N级变换器的第一半桥电路由互补运行的第一开关管Q1以及第二开关管Q2构成,第一开关管Q1的第一端电连接第二开关管Q2的第二端以及第一半桥电路的中点,第一开关管Q1的第二端电连接第一半桥电路的第二端,第二开关管Q2的第一端电连接第一半桥电路的第一端;第二半桥电路由互补运行的第三开关管Q3以及第四开关管Q4构成,第三开关管Q3的第一端电连接第四开关管Q4的第二端以及第二半桥电路的中点,第三开关管Q3的第二端电连接第二半桥电路的第二端,第四开关管Q4的第一端电连接第二半桥电路的第一端;第三半桥电路由互补运行的第五开关管Q5以及第六开关管Q6构成,第五开关管Q5的第一端电连接第六开关管Q6的第二端以及第三半桥电路的中点,第五开关管Q5的第二端电连接第三半桥电路的第二端,第六开关管Q6的第一端电连接第三半桥电路的第一端。
所述N级变换器的第1级变换单元至第N级变换单元的所有第一开关管Q1、所有第三开关管Q3以及由第二类基本变换单元所构成的每一级变换单元的第六开关管Q6是同时导通及同时关断,第1级变换单元至第N级变换单元的所有第二开关管Q2、所有第四开关管Q4以及由第二类基本变换单元所构成的每一级变换单元的第五开关管Q5是同时导通及同时关断。在不考虑死区时间的情况下,每个开关管的导通和关断的占空比为50%。第1级变换单元至第N级变换单元中的每一级变换单元的所有开关管是变频或定频工作。
所述N级变换器中第1级变换单元的输出端口为N级高变比DC/DC变换器的输出端,电连接负载的正极,除第1级变换单元外的其他变换单元的输出端口电连接低一级变换单元的输入端口,第N级变换单元的输入端口为N级高变比DC/DC变换器的输入端,电连接供电电 源的正极;N级高变比DC/DC变换器的接地端口与负载的负极、供电电源的负极为同一电位。
除参考电平变换器为独立的外接电源的情况外,参考电平变换器的输入端电连接N级变换器的输入端、供电电源的正极或者N级变换器中的任意一级第一类基本变换单元的输出端口;输出端能够输出不同极性的可调电压,该可调电压的电平值为正值、负值或者零电位;N级变换器中至少一级变换单元的第二半桥电路或者第三半桥电路的第二端,或者第二半桥电路与第三半桥电路的第二端电连接一个参考电平变换器的输出端;参考电平变换器内部的开关管的导通与关断时间的长短影响该变换器输出端的电压,因此控制开关管的占空比能够调节参考电平变换器输出端的电平值。
参考电平变换器输出端的电平值的正负与高低影响N级变换器的电压变比:参考电平变换器的输出端电压为正,N级变换器的电压变比将变小,输出端电压为负,N级变换器的电压变比将变大;参考电平变换器的输出端电压越高,N级变换器的电压变比越小,输出端电压越低,N级变换器的电压变比越大。
如图5所示,参考电平变换器为独立的外接电源,该外接电源输出端的电压值可为正值、负值或者零电位;N级变换器第1级变换单元的第二谐振腔仅由电容构成,N级变换器的第二半桥电路的第一端电连接输出端口,第二端电连接参考电平变换器的输出端;第二类基本变换单元中的第三半桥电路的第一端电连接低一级变换单元的输出端口,第二端电连接参考电平变换器的输出端。
如图6所示,本示例为图5基础上加入高频补偿电路的示意图,高频补偿电路的输入端电连接供电电源的正极,输出端电连接负载的正极,接地端电连接输入电源的负极。
如图7所示,参考电平变换器为非隔离变换器,由第一开关管S1、第二开关管S2、电感L、电容C构成,上述元件均为二端元件,包含第一端与第二端;互补运行的第一开关管S1以及第二开关管S2构成半桥电路,该半桥电路包含第一端、第二端以及中点,该第一端为参考电平变换器的输入端,该第二端为参考电平变换器的输出端;第一开关管S1的第一端电连接半桥电路的第一端,第一开关管S1的第二端电连接第二开关管S2的第一端以及半桥电路的中点,第二开关管S2的第二端电连接半桥电路的第二端;电感L的第一端电连接半桥电路的中点,第二端电连接接地端口;电容C的第一端电连接接地端口,第二端电连接半桥电路的第二端;
其中N级变换器的第3级变换单元采用第一类基本变换单元,第二谐振腔仅由电容构成,第2、4级变换单元采用第二类基本变换单元,第二谐振腔由电感和电容构成;参考电平变换器的输入端电连接第3级变换单元的输出端口,输出端电连接第4级变换单元的第二半桥电路的第二端;N级变换器的第二半桥电路的第一端电连接输出端口,除第4级变换单元以外的第二半桥电路的第二端电连接接地端口;第三半桥电路的第一端电连接低一级变换单元的输出端口,第二端电连接接地端口;设电容的第一端与第二端之间的电压为V c,为参考电平变换器的输出端电压,半桥电路的第一端与接地端口之间的电压为V 1,第一开关管的占空比为D,第二开关管的占空比为1-D,D的取值为0-1,则V c与V 1之间的关系式为:
Figure PCTCN2022121398-appb-000002
通过调整D的取值,能够使得参考电平变换器的输出端电压可调,从而调整N级变换器的电压变比。
如图8所示,参考电平变换器为隔离变换器,由第一、二、三、四、五、六开关管,第一电感,第二电感,第一电容,第二电容和变压器构成;开关管、电感、电容均为二端元件,包含第一端与第二端;变压器有原边第一端、原边第二端、副边第一端、副边第二端和副边中点,原边第一端与原边第二端之间的电感绕组的匝数为p,副边第一端与副边中点之间的电感绕组的匝数为s,副边中点与副边第二端之间的电感绕组的匝数为s,原边绕组与副边绕组之间是电气隔离;第一开关管的第一端电连接第二开关管的第一端、第一电容的第一端以及接地端口,变压器的副边中点为参考电平变换器的输出端,电连接第一电容的第二端;变压器的副边第一端电连接第一开关管的第二端,副边第二端电连接第二开关管的第二端;
互补运行的第三开关管以及第四开关管构成第一半桥电路,该第一半桥电路包含第一端、第二端以及中点,第三开关管的第一端电连接第一半桥电路的第一端,第三开关管的第二端电连接第一半桥电路的中点与第四开关管的第一端,第四开关管的第二端电连接第一半桥电路的第二端;互补运行的第五开关管以及第六开关管构成第二半桥电路,该第二半桥电路包含第一端、第二端以及中点,第五开关管的第一端电连接第二半桥电路的第一端,第五开关管的第二端电连接第二半桥电路的中点与第六开关管的第一端,第六开关管的第二端电连接第二半桥电路的第二端;
第一电感的第一端电连接第二半桥电路的中点,第一电感的第二端电连接第二电感的第一端以及变压器的原边第一端,第二电容的第一端电连接第一半桥电路的中点,第二电容的第二端电连接第二电感的第二端以及变压器的原边第二端;参考电平变换器的输入端电连接第一半桥电路的第一端以及第二半桥电路的第一端,第一半桥电路的第二端电连接第二半桥电路的第二端以及接地端口;
其中N级变换器的第2、3级变换单元采用第二类基本变换单元;参考电平变换器的输入端电连接供电电源的正极,输出端电连接第3级变换单元的第二半桥电路的第二端与第三半桥电路的第二端;N级变换器的第二半桥电路的第一端电连接输出端口,除第3级变换单元以外的第二半桥电路的第二端电连接接地端口;第三半桥电路的第一端电连接低一级变换单元的输出端口,除第3级变换单元以外的第三半桥电路的第二端电连接接地端口;设第一电容的第一端与第二端之间的电压为V c,为参考电平变换器的输出端电压;在确定变压器的p和s的值后,该变压器的电压变比为固定值,通过调整开关管的占空比或开关频率,使得参考电平变换器的输出端电压可调,从而调整N级变换器的电压变比。
如图9所示,参考电平变换器为非隔离变换器,由第一开关管S1、第二开关管S2、电感L、电容C构成,上述元件均为二端元件,包含第一端与第二端;互补运行的第一开关管S1以及第二开关管S2构成半桥电路,该半桥电路包含第一端、第二端以及中点,该第一端为参考电平变换器的输入端,电连接第一开关管S1的第一端;第一开关管S1的第二端电连接第 二开关管S2的第一端以及半桥电路的中点,第二开关管S2的第二端电连接半桥电路的第二端;电感L的第一端电连接半桥电路的中点,第二端为参考电平变换器的输出端,电连接电容C的第一端;电容C的第二端电连接半桥电路的第二端以及接地端口;
其中N级变换器的第2、3级变换单元采用第二类基本变换单元;参考电平变换器的输入端电连接供电电源的正极,输出端电连接第1级变换单元的第二半桥电路的第二端;N级变换器的第二半桥电路的第一端电连接输出端口,除第1级变换单元以外的第二半桥电路的第二端电连接接地端口;第三半桥电路的第一端电连接低一级变换单元的输出端口,第二端电连接接地端口;设电容的第一端与第二端之间的电压为V c,为参考电平变换器的输出端电压,供电电源的电压为V in,第一开关管的占空比为D,第二开关管的占空比为1-D,D的取值为0-1,则V c与V in之间的关系式为:
V c=DV in
通过调整D的取值,能够使得参考电平变换器的输出端电压可调,从而调整N级变换器的电压变比。
以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、连接原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (9)

  1. 多参考电平宽范围增益调节高变比DC/DC变换器,其特征在于:该变换器是由N级高变比DC/DC变换器和参考电平变换器构成,其中N级高变比DC/DC变换器是由N级变换单元构成的N级变换器,N为大于或等于2的整数,为非隔离变换器,用于实现高变比的电压变换;参考电平变换器为隔离型变换器或非隔离变换器,或者参考电平变换器为独立的外接电源;所述N级变换器的第1级变换单元采用第一类基本变换单元,除第1级外的其它变换单元采用第一类基本变换单元或第二类基本变换单元,第一类基本变换单元与第二类基本变换单元均包含的部分有:
    输入端口;
    输出端口;
    第一谐振腔,包含第一端以及第二端;
    第二谐振腔,包含第一端以及第二端,该第二谐振腔的第一端电连接输出端口;
    第一半桥电路,包含第一端、第二端以及中点,该第一半桥电路的中点电连接第一谐振腔的第一端,该第一半桥电路的第一端电连接输入端口,第二端电连接输出端口;
    第二半桥电路,包含第一端、第二端以及中点,该第二半桥电路的中点电连接第一谐振腔的第二端,该第二半桥电路的第一端电连接输出端口,第二端电连接接地端口或者参考电平变换器的输出端;
    第一类基本变换单元的第二谐振腔的第二端电连接接地端口,第二类基本变换单元还包含:
    第三半桥电路,包含第一端、第二端以及中点,该第三半桥电路的中点电连接第二类基本变换单元的第二谐振腔的第二端,该第三半桥电路的第一端电连接低一级变换单元的输出端口,第二端电连接接地端口或者参考电平变换器的输出端;
    所述N级变换器中第1级变换单元的输出端口为N级高变比DC/DC变换器的输出端,电连接负载的正极,除第1级变换单元外的其它变换单元的输出端口电连接低一级变换单元的输入端口,第N级变换单元的输入端口为N级高变比DC/DC变换器的输入端,电连接供电电源的正极;N级高变比DC/DC变换器的接地端口与负载的负极、供电电源的负极为同一电位;
    除参考电平变换器为独立的外接电源的情况外,参考电平变换器的输入端电连接N级变换器的输入端、供电电源的正极或者N级变换器中的任意一级第一类基本变换单元的输出端口;
    输出端能够输出可调电压,该可调电压的电平值为正值、负值或者零电位;N级变换器中至少一级变换单元的第二半桥电路或者第三半桥电路的第二端,或者第二半桥电路与第三半桥电路的第二端电连接一个参考电平变换器的输出端;参考电平变换器内部的开关管的导通与关断时间的长短影响该变换器输出端的电压,因此控制开关管的占空比能够调节参考电平变换器输出端的电平值;
    参考电平变换器输出端的电平值的正负与高低影响N级变换器的电压变比:参考电平变换器的输出端电压为正,N级变换器的电压变比将变小,输出端电压为负,N级变换器的电压变比将变大;参考电平变换器的输出端电压越高,N级变换器的电压变比越小,输出端电压越低,N级变换器的电压变比越大;通过调节N级变换器的电压变比,从而抵抗供电电源电压的波动 与宽范围变化,实现变换器的宽范围增益调节,保证负载输出电压的稳定。
  2. 根据权利要求1所述的多参考电平宽范围增益调节高变比DC/DC变换器,其特征在于:参考电平变换器为非隔离变换器,由第一开关管、第二开关管、电感和电容这些元件构成,上述元件均为二端元件,包含第一端与第二端;互补运行的第一开关管以及第二开关管构成半桥电路,该半桥电路包含第一端、第二端以及中点,该第一端为参考电平变换器的输入端,该第二端为参考电平变换器的输出端;第一开关管的第一端电连接半桥电路的第一端,第一开关管的第二端电连接第二开关管的第一端以及半桥电路的中点,第二开关管的第二端电连接半桥电路的第二端;电感的第一端电连接半桥电路的中点,第二端电连接接地端口;电容的第一端电连接接地端口,第二端电连接半桥电路的第二端;
    参考电平变换器的输入端电连接某一第一类基本变换单元的输出端口,输出端电连接N级变换器某一级变换单元的第二半桥电路或者第三半桥电路的第二端,或者第二半桥电路与第三半桥电路的第二端;设电容的第一端与第二端之间的电压为V c,为参考电平变换器的输出端电压,半桥电路的第一端与接地端口之间的电压为V 1,第一开关管的占空比为D,第二开关管的占空比为1-D,D的取值为0-1,则V c与V 1之间的关系式为:
    Figure PCTCN2022121398-appb-100001
    通过调整D的取值,能够使得参考电平变换器的输出端电压可调,从而调整N级变换器的电压变比。
  3. 根据权利要求1所述的多参考电平宽范围增益调节高变比DC/DC变换器,其特征在于:参考电平变换器为隔离变换器,由第一、二、三、四、五、六开关管,第一电感,第二电感,第一电容,第二电容和变压器构成;开关管、电感、电容均为二端元件,包含第一端与第二端;变压器有原边第一端、原边第二端、副边第一端、副边第二端和副边中点,原边第一端与原边第二端之间的电感绕组的匝数为p,副边第一端与副边中点之间的电感绕组的匝数为s,副边中点与副边第二端之间的电感绕组的匝数为s,原边绕组与副边绕组之间是电气隔离;
    第一开关管的第一端电连接第二开关管的第一端、第一电容的第一端以及接地端口,变压器的副边中点为参考电平变换器的输出端,电连接第一电容的第二端;变压器的副边第一端电连接第一开关管的第二端,副边第二端电连接第二开关管的第二端;
    互补运行的第三开关管以及第四开关管构成第一半桥电路,该第一半桥电路包含第一端、第二端以及中点,第三开关管的第一端电连接第一半桥电路的第一端,第三开关管的第二端电连接第一半桥电路的中点与第四开关管的第一端,第四开关管的第二端电连接第一半桥电路的第二端;互补运行的第五开关管以及第六开关管构成第二半桥电路,该第二半桥电路包含第一端、第二端以及中点,第五开关管的第一端电连接第二半桥电路的第一端,第五开关管的第二端电连接第二半桥电路的中点与第六开关管的第一端,第六开关管的第二端电连接第二半桥电路的第二端;
    第一电感的第一端电连接第二半桥电路的中点,第一电感的第二端电连接第二电感的第一端以 及变压器的原边第一端,第二电容的第一端电连接第一半桥电路的中点,第二电容的第二端电连接第二电感的第二端以及变压器的原边第二端;参考电平变换器的输入端电连接第一半桥电路的第一端以及第二半桥电路的第一端,第一半桥电路的第二端电连接第二半桥电路的第二端以及接地端口;
    参考电平变换器的输入端电连接供电电源的正极,输出端电连接N级变换器某一级变换单元的第二半桥电路或者第三半桥电路的第二端,或者第二半桥电路与第三半桥电路的第二端;设第一电容的第一端与第二端之间的电压为V c,为参考电平变换器的输出端电压;在确定变压器的p和s的值后,该变压器的电压变比为固定值,通过调整开关管的占空比或开关频率,使得参考电平变换器的输出端电压可调,从而调整N级变换器的电压变比。
  4. 根据权利要求1所述的多参考电平宽范围增益调节高变比DC/DC变换器,其特征在于:参考电平变换器为非隔离变换器,由第一开关管、第二开关管、电感和电容这些元件构成,上述元件均为二端元件,包含第一端与第二端;互补运行的第一开关管以及第二开关管构成半桥电路,该半桥电路包含第一端、第二端以及中点,该第一端为参考电平变换器的输入端,电连接第一开关管的第一端;第一开关管的第二端电连接第二开关管的第一端以及半桥电路的中点,第二开关管的第二端电连接半桥电路的第二端;电感的第一端电连接半桥电路的中点,第二端为参考电平变换器的输出端,电连接电容的第一端;电容的第二端电连接半桥电路的第二端以及接地端口;
    参考电平变换器的输入端电连接供电电源的正极,输出端电连接N级变换器某一级变换单元的第二半桥电路或者第三半桥电路的第二端,或者第二半桥电路与第三半桥电路的第二端;设电容的第一端与第二端之间的电压为V c,为参考电平变换器的输出端电压,供电电源的电压为V in,第一开关管的占空比为D,第二开关管的占空比为1-D,D的取值为0-1,则V c与V in之间的关系式为:
    V c=DV in
    通过调整D的取值,能够使得参考电平变换器的输出端电压可调,从而调整N级变换器的电压变比。
  5. 根据权利要求1所述的多参考电平宽范围增益调节高变比DC/DC变换器,其特征在于:所述第一半桥电路由互补运行的第一开关管以及第二开关管构成,第一开关管的第一端电连接第二开关管的第二端以及第一半桥电路的中点,第一开关管的第二端电连接第一半桥电路的第二端,第二开关管的第一端电连接第一半桥电路的第一端;所述第二半桥电路由互补运行的第三开关管以及第四开关管构成,第三开关管的第一端电连接第四开关管的第二端以及第二半桥电路的中点,第三开关管的第二端电连接第二半桥电路的第二端,第四开关管的第一端电连接第二半桥电路的第一端;所述第三半桥电路由互补运行的第五开关管以及第六开关管构成,第五开关管的第一端电连接第六开关管的第二端以及第三半桥电路的中点,第五开关管的第二端电连接第三半桥电路的第二端,第六开关管的第一端电连接第三半桥电路的第一端。
  6. 根据权利要求5所述的多参考电平宽范围增益调节高变比DC/DC变换器,其特征在于:第 一谐振腔由电感和电容构成,该电感与电容串联电连接。
  7. 根据权利要求5所述的多参考电平宽范围增益调节高变比DC/DC变换器,其特征在于:第二谐振腔由电感和电容构成,该电感与电容串联电连接,或者仅由电容构成。
  8. 根据权利要求5所述的多参考电平宽范围增益调节高变比DC/DC变换器,其特征在于:第1级变换单元至第N级变换单元的所有第一开关管、所有第三开关管以及由第二类基本变换单元所构成的每一级变换单元的第六开关管是同时导通及同时关断,第1级变换单元至第N级变换单元的所有第二开关管、所有第四开关管以及由第二类基本变换单元所构成的每一级变换单元的第五开关管是同时导通及同时关断;不考虑死区时间的情况下,每个开关管的导通和关断的占空比为50%;第1级变换单元至该第N级变换单元中的每一级变换单元的所有开关管是变频或定频工作。
  9. 根据权利要求1所述的多参考电平宽范围增益调节高变比DC/DC变换器,其特征在于:还配置高频补偿电路,该高频补偿电路包括输入端、输出端与接地端,高频补偿电路的输入端电连接N级变换器的输入端、供电电源的正极或者N级变换器中的任意一级第一类基本变换单元的输出端口,输出端电连接负载的正极,接地端电连接输入电源的负极;高频补偿电路只在DC/DC变换器处于不稳定的暂态或状态切换瞬间时工作,当供电电源的电压发生波动或者负载功率与变换器输出功率不匹配导致实际输出电压波动时,该高频补偿电路补偿高频功率波动,提高DC/DC变换器的暂态响应,在DC/DC变换器处于稳态时停止工作,不进行电能变换。
PCT/CN2022/121398 2022-04-24 2022-09-26 多参考电平宽范围增益调节高变比dc/dc变换器 WO2023206953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210453139.6 2022-04-24
CN202210453139.6A CN114785130A (zh) 2022-04-24 2022-04-24 多参考电平宽范围增益调节高变比dc/dc变换器

Publications (1)

Publication Number Publication Date
WO2023206953A1 true WO2023206953A1 (zh) 2023-11-02

Family

ID=82432202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121398 WO2023206953A1 (zh) 2022-04-24 2022-09-26 多参考电平宽范围增益调节高变比dc/dc变换器

Country Status (2)

Country Link
CN (1) CN114785130A (zh)
WO (1) WO2023206953A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785130A (zh) * 2022-04-24 2022-07-22 华南理工大学 多参考电平宽范围增益调节高变比dc/dc变换器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021672A1 (en) * 2000-09-08 2002-03-14 Slobodan Cuk Lossless switching dc-to-dc converter
CN109462337A (zh) * 2018-12-29 2019-03-12 北京中科绿能科技有限公司 一种高升压比级联电桥型阻抗网络dc/dc变换器及控制方法
CN113992010A (zh) * 2021-11-23 2022-01-28 华中科技大学 一种宽增益dc-dc变换器及其控制方法
CN114785130A (zh) * 2022-04-24 2022-07-22 华南理工大学 多参考电平宽范围增益调节高变比dc/dc变换器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021672A1 (en) * 2000-09-08 2002-03-14 Slobodan Cuk Lossless switching dc-to-dc converter
CN109462337A (zh) * 2018-12-29 2019-03-12 北京中科绿能科技有限公司 一种高升压比级联电桥型阻抗网络dc/dc变换器及控制方法
CN113992010A (zh) * 2021-11-23 2022-01-28 华中科技大学 一种宽增益dc-dc变换器及其控制方法
CN114785130A (zh) * 2022-04-24 2022-07-22 华南理工大学 多参考电平宽范围增益调节高变比dc/dc变换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU YI, YANSHAN LI, BOYE LIANG: "Review of DC/DC Converter Based on Modular Multilevel Converter", TECHNIQUES OF AUTOMATION AND APPLICATIONS, vol. 36, no. 8, 25 August 2017 (2017-08-25), pages 1 - 7, XP093105119, ISSN: 1003-7241 *

Also Published As

Publication number Publication date
CN114785130A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN111446854B (zh) 一种可扩展Zeta DC-DC变换器
CN111431399B (zh) 一种可扩展Cuk DC-DC变换器
CN107546959B (zh) 一种开关电源、电子设备及开关电源控制方法
CN112701923B (zh) 一种高增益Zeta DC-DC变换器
CN111987924B (zh) 一种单级单相高增益组合式升压逆变电路及升压逆变方法
CN112713766B (zh) 一种高增益Cuk DC-DC变换器
CN111464024A (zh) 一种具备高增益升压能力的Buck-Boost DC-DC变换器
CN106487226B (zh) IPOP三电平Buck变换器、级联系统及其控制方法
WO2023206953A1 (zh) 多参考电平宽范围增益调节高变比dc/dc变换器
CN112087143A (zh) 一种多端输入单端输出的准并联谐振变换器
WO2023206952A1 (zh) 宽输入电压范围的增益可调高变比dc/dc变换器
WO2024045797A1 (zh) 非隔离谐振变换器
WO2024045798A1 (zh) 非隔离llc谐振变换器
CN110661424B (zh) 一种高变压器利用率高增益反激式dc/dc变换器
TW202207598A (zh) 高電壓增益轉換器
WO2020119407A1 (zh) 一种五电平变换器
WO2022109983A1 (zh) 谐振开关电容直流/直流变换器及电源系统
TWI740343B (zh) 隔離型升壓轉換器
CN110071651B (zh) 一种结构对称的非隔离型升压逆变电路
CN110729913B (zh) 一种单级式高增益五开关Boost型逆变器
CN114285281A (zh) 一种准开关电容型高增益dc-dc变换器
CN113507229A (zh) 基于开关电容网络的宽输入降压逆变系统及控制方法
CN112928917A (zh) 三电平降压dc-dc转换器飞行电容平衡电路及方法
CN112737316A (zh) 准z源逆变器及供电系统
CN109245578B (zh) 一种单磁芯四绕组高增益单级式Buck-Boost型逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939775

Country of ref document: EP

Kind code of ref document: A1