WO2022109983A1 - 谐振开关电容直流/直流变换器及电源系统 - Google Patents

谐振开关电容直流/直流变换器及电源系统 Download PDF

Info

Publication number
WO2022109983A1
WO2022109983A1 PCT/CN2020/132088 CN2020132088W WO2022109983A1 WO 2022109983 A1 WO2022109983 A1 WO 2022109983A1 CN 2020132088 W CN2020132088 W CN 2020132088W WO 2022109983 A1 WO2022109983 A1 WO 2022109983A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant
switched capacitor
switch
converter
capacitor
Prior art date
Application number
PCT/CN2020/132088
Other languages
English (en)
French (fr)
Inventor
何正言
谌海涛
张兴中
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/132088 priority Critical patent/WO2022109983A1/zh
Priority to CN202080011409.7A priority patent/CN114830516A/zh
Priority to EP20962874.2A priority patent/EP4243265A4/en
Publication of WO2022109983A1 publication Critical patent/WO2022109983A1/zh
Priority to US18/324,207 priority patent/US20230299669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the technical field of power electronics, and in particular, to a resonant switched capacitor DC/DC converter and a power supply system.
  • switching power supplies are widely used in various electrical equipment to provide electrical equipment with a power supply that meets the requirements.
  • the power supply voltage of the service board is generally 48V.
  • the power supply voltage of the chips and various loads inside the business board needs to be lower than 48V, that is, the power supply voltage of the business board is 48V, which cannot directly supply power to the chips and various loads.
  • it needs to be stepped down to 5V. , 3.3V and 1.8V and other voltages to supply power to the chip and various loads.
  • the direct current (DC, Direct Current)/DC converter used for step-down generally adopts an isolated topology, such as an LLC resonant DC/DC converter.
  • LLC resonant DC/DC converters include transformers. Since transformers generally include primary windings, secondary windings and magnetic cores, the volume is large, so the volume of the power supply is also large, and the thickness is difficult to thin. In order to reduce the volume, This can only be achieved by increasing the switching frequency, but increasing the switching frequency increases power dissipation and reduces power efficiency.
  • the present application provides a resonant switched capacitor DC/DC converter and a power supply system, which can reduce the volume of the DC/DC converter and improve the power conversion efficiency.
  • the embodiment of the present application provides a resonant switched capacitor DC/DC converter, which can be applied to any scenario of switching power supply, such as the power supply of AI chips, or the power supply board of a data center, etc.
  • the DC/DC converter can be used as a step-down converter, and then connected to a first-stage voltage stabilizer circuit to output a stable voltage output by the load. It should be understood that the embodiments of the present application do not limit the specific application scenarios of the DC/DC converter.
  • the /DC converter can be a bidirectional converter and can be used as both a boost converter and a buck converter. In order to reduce the area occupied by the circuit and reduce the cost, only one LC series circuit may be included.
  • connection position of the LC series circuit is not specifically limited, and may be specifically connected between any two resonant cavities.
  • the LC series circuit can be connected between two resonant cavities with a higher voltage, that is, between two resonant cavities close to the high voltage side. Because the reverse voltage borne by the resonant inductance in the resonant cavity on the high-voltage side is relatively high, when the junction capacitance of the corresponding switch is charged and discharged, the charge is likely to be insufficiently charged or incompletely discharged.
  • the DC/DC converter includes N resonant switched capacitor groups, M capacitors, and at least one LC series circuit; N is an integer greater than or equal to 2; M is an integer less than or equal to N; the LC series circuit includes a series-connected first inductor and a first capacitor; each resonant switched capacitor group includes: a switch and a resonant circuit; the resonant circuit includes at least a resonant inductor and a resonant capacitor; two ends of the LC series circuit are respectively connected to the resonant circuits in two different resonant switched capacitor groups.
  • a resonant inductor and a resonant capacitor are connected in series to form a series resonant circuit.
  • the function of the first capacitor in the LC series circuit is to block DC and balance the voltage, so as to avoid the magnetic saturation of the first inductor during the working process, that is, during the charging and discharging process, so that it cannot work normally.
  • the embodiments of the present application do not limit the number of LC series circuits connected to the resonant cavity, and one LC series circuit may be connected between any two resonant cavities.
  • the function of the resonant inductor in each resonant switch capacitor bank is to reduce the current impact of the charging and discharging current on the resonant capacitor, and also reduce the impact of the charging and discharging current on the switch, reduce the loss, and improve the power conversion efficiency of the converter.
  • An embodiment of the present application provides a resonant switched capacitor DC/DC converter, in which an LC series circuit is connected between any two resonant switched capacitor groups, that is, a circuit in which an inductor and a capacitor are connected in series. When the MOS tube is turned off, the resonant inductance is not enough to completely discharge the charge on the junction capacitance of the MOS tube.
  • the inductance By increasing the inductance, the charge on the junction capacitance of the MOS tube is completely discharged, that is, the current Take it away, so as to realize the soft switching of the MOS tube.
  • the power consumption of the entire resonant switched capacitor DC/DC converter can be reduced, thereby improving the power conversion efficiency of the resonant switched capacitor DC/DC converter.
  • the DC/DC converter does not include a transformer, the volume of the converter can be reduced. The effect of soft switching is better when the LC series circuit is connected between two resonant switched capacitor banks with higher voltages.
  • M is equal to N
  • the N resonant switched capacitor groups are in one-to-one correspondence with the M capacitors respectively; that is, one resonant switched capacitor group corresponds to one of the M capacitors.
  • the two input terminals of each resonant switched capacitor group are respectively connected to two ends of the corresponding capacitor, and the two output terminals of each resonant switched capacitor group are respectively connected to both ends of the output capacitor.
  • the embodiment of the present application adds an LC series circuit to the resonant cavity, mainly using the first inductance in the LC series circuit to forcibly charge and discharge the junction capacitance of the switch in the resonant cavity, thereby ensuring that the switch realizes soft switching during operation. Moreover, the turn-off angle of each resonant switch capacitor bank can be reduced, and the turn-off damage of each switch in each resonant switch capacitor bank and the equivalent current effective value can be reduced. Because the larger the equivalent current effective value is, the higher the switching loss corresponding to the switch is.
  • the technical solution provided in this embodiment can enable each resonant switched capacitor bank to be closer to the turn-off angle of 180 degrees, thereby improving the load regulation rate of the resonant switched capacitor DC/DC converter.
  • the N resonant switched capacitor groups at least include a first type of resonant switched capacitor group and a second type of resonant switched capacitor group; the first type of resonant switched capacitor group corresponds to one of the M capacitors at least two capacitors connected in series; the two input ends of the first type of resonant switched capacitor group are respectively connected to two ends of the at least two capacitors connected in series; the second type of resonant switched capacitor group corresponds to the M capacitors One capacitor in the second type of resonant switched capacitor group is respectively connected to two ends of one of the corresponding M capacitors.
  • At least one resonant switched capacitor group corresponds to a plurality of capacitors connected in series. This situation is different from the above introduction.
  • the voltage transformation ratio of the converter is changed. . For example, by increasing the voltage transformation ratio without increasing the number of resonant switched capacitor banks, the hardware circuit can be saved, the circuit board area occupied by the entire converter can be saved, and the cost can be saved.
  • the output capacitor and the N capacitors are connected in series between two input ends of the converter, and the output capacitor is connected between the two output ends of the converter
  • the two input ends of the converter are connected to both ends of the DC power supply; the converter is used to step down the voltage of the DC power supply and output it.
  • the output capacitor and the N capacitors are connected in series between two output terminals of the converter, and the output capacitor is connected between the two input terminals of the converter
  • the two input ends of the converter are connected to both ends of the DC power supply; the converter is used for boosting the voltage of the DC power supply and then outputting it.
  • each of the resonant switched capacitor banks includes the following at least four switches: a first switch, a second switch, a third switch and a fourth switch; the first end of the first switch is connected to The first end of the capacitor corresponding to the resonant switch capacitor group, the first end of the second switch is connected to the second end of the capacitor corresponding to the resonant switch capacitor group; the second end of the first switch is connected to the third The first end of the switch, the second end of the second switch is connected to the first end of the fourth switch; the resonant capacitor and the resonant inductor are connected in series to the second end of the first switch and the the second end of the second switch; the second end of the third switch is connected to the second end of the output capacitor, and the second end of the fourth switch is connected to the first end of the output capacitor.
  • the first end of the LC series circuit is connected to the second end of the first switch tube in one of the resonant switched capacitor groups, and the second end of the LC series circuit is connected to the other The second end of the first switch tube in the resonant switch capacitor group.
  • the first end of the LC series circuit is connected to the second end of the second switch tube in one of the resonant switched capacitor groups, and the second end of the LC series circuit is connected to the other The second end of the second switch tube in the resonant switch capacitor group.
  • the first switch and the second switch act synchronously
  • the third switch and the fourth switch act synchronously.
  • the synchronous action of the two switches means that the timing sequences of the driving signals corresponding to the two switches are in the same phase.
  • the embodiments of the present application do not limit the implementation form of each switch, and the controllable switch tube is sufficient, and the driving signal is applied to the controllable switch tube.
  • the control terminal of the controllable switch such as the gate or gate, can control the turn-off and turn-on of the controllable switch.
  • the phases of the driving signals corresponding to each of the resonant switched capacitor groups are the same. That is, the timing sequences of the driving signals of all the resonant switched capacitor banks are the same, and the switches at the corresponding positions operate synchronously.
  • the advantage of this is that the generation of the timing sequence of the driving signal is relatively easy to implement, and only one timing sequence of the driving signal can be generated.
  • the phases of the drive signals corresponding to each of the resonant switched capacitor groups are out of phase by a preset angle.
  • the inductance value of the first inductor is greater than the inductance value of the resonant inductor.
  • the inductance value of the first inductance is greater than the resonant inductance, a better soft switching effect can be achieved, and the charging and discharging of the junction capacitance of the MOS transistor can be enhanced.
  • Greater than in the embodiments of the present application generally means that the first inductance is at least 10 times larger than the resonant inductance.
  • the capacitance of the first capacitor is greater than the capacitance of the resonance capacitor.
  • the voltage transformation ratio of the converter is N+1.
  • the embodiments of the present application also provide a power supply system, the advantages of which can be parameterized by the advantages of the DC/DC described above, the power supply system includes: a rectifier and the resonant switched capacitor DC/DC converter described above; an input of the rectifier The terminal is used to connect the AC power supply, and is used to convert the AC voltage output by the AC power supply into a DC voltage; the input terminal of the resonant switched capacitor DC/DC converter is connected to the output terminal of the rectifier, which is used to convert the rectifier The output DC voltage is transformed and output.
  • the method further includes: a step-down voltage regulator circuit; an input end of the step-down voltage regulator circuit is connected to the output end of the resonant switched capacitor DC/DC converter for connecting the resonant switch capacitor The voltage output by the capacitor DC/DC converter is stepped down and then a stable voltage is output.
  • it further includes: a voltage regulator circuit; the voltage regulator circuit is connected between the rectifier and the resonant switched capacitor DC/DC converter, and is used to convert the DC voltage output by the rectifier After the voltage is stabilized, it is supplied to the resonant switched capacitor DC/DC converter.
  • the embodiments of the present application have the following advantages:
  • the present application discloses a resonant switched capacitor DC/DC converter, adding at least one LC series circuit, the number of LC series circuits is not limited, the LC series circuit is connected between any two resonant switched capacitor banks, and the LC series circuit includes A first inductor and a first capacitor are connected in series.
  • the resonant inductance in the resonant switch capacitor bank is not enough to completely discharge the charge on the junction capacitance of the switch when the switch in the resonant switch capacitor bank is turned off, therefore, by increasing the inductance in the LC series circuit, the The charge on the junction capacitor of the switch is completely discharged, that is, the current on the junction capacitor of the switch is taken away, so that the switch can truly realize soft switching, which can reduce the turn-off angle of each resonant switch capacitor bank and improve the converter's performance. Load Regulation.
  • FIG. 1 is a schematic diagram of a switching power supply provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a resonant switched capacitor DC/DC converter according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a resonant switched capacitor DC/DC converter according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of yet another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of yet another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hybrid connection of an LC series circuit provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of yet another LC series circuit hybrid connection provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of another resonant switched capacitor DC/DC converter provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of another resonant switched capacitor DC/DC converter provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of yet another resonant switched capacitor DC/DC converter provided by an embodiment of the application.
  • 15 is a schematic diagram of another resonant switched capacitor DC/DC converter provided by an embodiment of the application.
  • 16 is a schematic diagram of a power supply system provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of another power supply system provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of still another power supply system provided by an embodiment of the present application.
  • the resonant switched capacitor DC/DC converter provided by the embodiment of the present application is a DC/DC converter.
  • the input of the DC/DC converter is a DC voltage
  • the output thereof is also a DC voltage.
  • the resonant switched capacitor DC/DC converter provided by the embodiment of the present application can be used as a bidirectional DC/DC converter, which can realize step-down from left to right and step-up from right to left, that is, the input end and the output end can be exchange.
  • the resonant switched capacitor DC/DC converter provided in the embodiment of the present application can be applied to a switching power supply, that is, a DC/DC converter belonging to the switching power supply.
  • the power supply system may further include A rectifier, which rectifies the AC voltage of the AC power source into a DC voltage.
  • the power supply system can supply power to the AI chip, that is, it can be integrated on the AI single board, or it can be used as the power supply system of the single board in the data center.
  • the embodiments of the present application do not specifically limit the specific application scenarios of the converter, and the resonant switched capacitor DC/DC converter provided by the embodiments of the present application can be applied to various application scenarios that require switching power supplies, such as servers, communication base stations, and photovoltaic equipment.
  • the switching power supply can finally output the voltage required by the load such as the chip or the control circuit.
  • the following takes the switched-capacitor DC/DC converter as a step-down converter as an example to introduce.
  • FIG. 1 this figure is a schematic diagram of a switching power supply provided by an embodiment of the present application.
  • the switching power supply provided in the embodiment of the present application can be applied to an AI or a data center, and can also be applied to a communication power supply, and the specific application scenarios of the switching power supply are not limited.
  • the switching power supply includes a step-down converter 100 and a voltage regulator circuit 200;
  • the step-down converter 100 may be the resonant switched capacitor DC/DC converter provided by the embodiments of the present application, and the specific implementation manner of the resonant switched capacitor DC/DC converter will be described in detail in subsequent embodiments.
  • the output end of the step-down converter 100 is used to connect to the input end of the voltage regulator circuit 200;
  • the output end of the voltage stabilizing circuit 200 is used to connect to the load and supply power to the load.
  • the voltage stabilizing circuit 200 has both the function of step-down and the function of voltage regulation, so that the output voltage of the voltage-stabilizing circuit 200 is stable and controllable.
  • the input voltage of the step-down converter 100 is 48V
  • the output voltage of the step-down converter 100 is 12V
  • the voltage regulator circuit 200 is used to continuously step down the input voltage of 12V
  • the step-down voltage is Voltages such as 5V, 3.3V and 1.8V supply power to the chip and various loads.
  • the buck converter 100 Since the buck converter 100 is used to step down the input 48V to 12V, the obtained 12V voltage will not directly supply power to the chip, but will be further stepped down and regulated by the voltage regulator circuit 200, that is, the voltage regulator circuit 200 needs The output voltage is accurate to meet the power supply requirements of the load.
  • the 12V output voltage can be open-loop controlled, allowing the output voltage to fluctuate within a certain range, as long as the input voltage range of the voltage regulator circuit 200 is satisfied. Therefore, for the buck converter corresponding to 48V step-down to 12V, in AI and data center application scenarios, it can be designed as an open-loop power supply.
  • An open-loop power supply refers to a power supply whose output voltage changes with the input voltage. The power supply does not have the function of independent voltage regulation of the output voltage. For example, the ratio of the input voltage Vin to the output voltage of the buck converter 100 may be 4:1 or 5:1.
  • the step-down converter in the power supply system provided by the embodiment of the present application can utilize resonance It can be realized by switched capacitor DC/DC converter without isolation by a transformer. Therefore, the volume of the converter can be reduced, making it thinner and smaller, thereby reducing the volume of the power supply system, such as the single board occupied by the power supply system. The area and volume are reduced to meet the requirements of miniaturization.
  • FIG. 2 is a schematic diagram of a resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the left side is the input terminal and the right side is the output terminal as an example. That is, the input terminal is connected to the DC power supply Vin and the output terminal Vout.
  • the converter is a step-down converter, that is, the Vin is stepped down and then output.
  • the number of resonant switched capacitor banks is different, the corresponding step-down ratio is different.
  • the right side can also be the input terminal, and the left side can be the output terminal, which corresponds to the boost converter.
  • the voltage transformation ratio is not specifically limited in the embodiments of the present application, and can be set according to the needs of the actual application scenario, and the required voltage transformation ratio can be obtained by changing the number or connection relationship of the resonant switch capacitor banks.
  • one resonant switched capacitor group corresponds to one capacitor, that is, the resonant switched capacitor group and the capacitor are in a one-to-one correspondence, and the three resonant switched capacitor groups correspond to three capacitors, which are the first capacitors respectively.
  • C1 the second capacitor C2 and the third capacitor C3.
  • C1, C2 and C3 are connected in series in sequence, and are also connected in series with the output capacitor COUT, that is, C1-COUT are connected in series in sequence, and C1-COUT are connected in series at both ends of Vin, wherein COUT is connected at both ends of Vout, When energy is transferred from Vin to Vout, COUT is used as the output capacitor, and C1-COUT is connected in series as the input capacitor.
  • COUT is used as the output capacitor
  • C1-COUT is connected in series as the input capacitor.
  • each resonant switched capacitor bank is referred to as the first switch to the fourth switch.
  • the dashed box in FIG. 2 corresponds to the first resonant switched capacitor group, and each resonant switched capacitor group has the same structure, which will be introduced separately below.
  • the first resonant switched capacitor group is introduced, that is, it includes four switches and a resonant circuit.
  • the first resonant switched capacitor group is described below.
  • the four switches are: the first switch Q1_1, the second switch Q1_2, the third switch Q1_3 and the The fourth switch Q1_4; wherein the first end of Q1_1 is connected to the first end of C1, the first end of Q1_2 is connected to the second end of C1, the first end of Q1_3 is connected to the second end of Q1_1, and the first end of Q1_4 is connected to Q1_2
  • the second end of Q1_3 is connected to Vout, and the second end of Q1_4 is grounded.
  • the second resonant switched capacitor group is described below.
  • the four switches in each resonant switched capacitor group are referred to as the first switch to the fourth switch.
  • the four switches are: a first switch Q2_1, a second switch Q2_2, a third switch Q2_3 and a fourth switch Q2_4; wherein the first end of Q2_1 is connected to the first end of C2, and the first end of Q2_2 is connected to the first end of C2
  • the first terminal of Q2_3 is connected to the second terminal of Q2_1
  • the first terminal of Q2_4 is connected to the second terminal of Q2_2
  • the second terminal of Q2_3 is connected to Vout
  • the second terminal of Q2_4 is grounded.
  • the second resonant switched capacitor group is described below, wherein the four switches are: a first switch Q2_1, a second switch Q2_2, a third switch Q2_3 and a fourth switch Q2_4; wherein the first end of Q2_1 is connected to the first end of C2, The first end of Q2_2 is connected to the second end of C2, the first end of Q2_3 is connected to the second end of Q2_1, the first end of Q2_4 is connected to the second end of Q2_2, the second end of Q2_3 is connected to Vout, and the second end of Q2_4 is grounded .
  • the third resonant switched capacitor group will be described below.
  • the four switches in each resonant switched capacitor group are referred to as the first switch to the fourth switch.
  • the four switches are: a first switch Q3_1, a second switch Q3_2, a third switch Q3_3 and a fourth switch Q3_4; wherein the first end of Q3_1 is connected to the first end of C2, and the first end of Q3_2 is connected to the first end of C2 Two terminals, the first terminal of Q3_3 is connected to the second terminal of Q3_1, the first terminal of Q3_4 is connected to the second terminal of Q3_2, the second terminal of Q3_3 is connected to Vout, and the second terminal of Q3_4 is grounded.
  • the left side is the input
  • the right side is the output
  • the corresponding resonant switched capacitor DC/DC converter is a step-down converter.
  • the right side is the input and the left side is the output, that is, the corresponding resonant switched capacitor DC/DC converter is a boost converter.
  • the voltage of Vin is equal to the sum of the voltages on C1, C2, C3 and Cout. And since the voltage on C1 is equal to the voltage on Cr1, the voltage on C2 is equal to the voltage on Cr2, the voltage on C3 is equal to the voltage on Cr3, the voltages on Cr1, Cr2 and Cr3 are all equal to the voltage on Cout, therefore, Vin It is four times the Vout, achieving a four-fold step-down.
  • the left side is the high voltage side
  • the right side is the low voltage side.
  • the voltage of the resonant switched capacitor group C1 is the highest
  • the voltage of the resonant switched capacitor group connected to C2 is second
  • the voltage of the resonant switched capacitor group connected to C3 is the smallest.
  • the function of the resonant inductor in each resonant switch capacitor bank is to reduce the current impact of the charging and discharging current on the resonant capacitor, and also reduce the impact of the charging and discharging current on the switch, reduce the loss, and improve the power conversion efficiency of the converter.
  • the embodiment of the present application does not specifically limit the implementation type of the switch, specifically a controllable switch tube, such as a metal oxide semiconductor field effect transistor (MOS, Metal Oxide Semiconductor) tube, an insulated gate bipolar transistor (IGBT, Insulated Gate Bipolar Transistor) It can also be other types of switching devices, as long as the control terminal is included, and its switching state can be controlled through the control terminal.
  • MOS metal oxide semiconductor field effect transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the switch in the resonant switch capacitor group is taken as an example of a MOS transistor for description.
  • the above MOS transistors must pass through the residual currents on Lr1, Lr2 and Lr3 respectively at the moment of turning off as the corresponding MOS transistors.
  • the junction capacitance of the tube is charged and discharged; at the same time, in the higher voltage resonant switch capacitor bank, the reverse voltage that Lr bears will be higher, for example, the reverse voltage endured by Lr1 is Vo*2, while the reverse voltage endured by Lr2
  • the reverse voltage is Vo, that is, the reverse voltage that Lr1 bears is twice the reverse voltage that Lr2 bears. Therefore, the current in Lr1 decays faster, and there is not enough charge to fully or completely discharge the junction capacitance of the corresponding MOS tubes, so that these MOS tubes cannot truly achieve soft switching.
  • an embodiment of the present application provides a resonant switched capacitor DC/DC converter, in which an LC series circuit is connected between any two resonant switched capacitor groups, that is, a circuit in which an inductor and a capacitor are connected in series.
  • the resonant inductance is not enough to completely discharge the charge on the junction capacitance of the MOS tube. Therefore, by increasing the inductance, the charge on the junction capacitance of the MOS tube is completely discharged, that is, the current Take it away, so as to realize the soft switching of the MOS tube.
  • the power consumption of the entire resonant switched capacitor DC/DC converter can be reduced, thereby improving the power conversion efficiency of the resonant switched capacitor DC/DC converter.
  • FIG. 4 is a schematic diagram of a resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the resonant switched capacitor DC/DC converter provided by the embodiment of the present application includes: N resonant switched capacitor groups, M capacitors and at least one LC series circuit; N is an integer greater than or equal to 2; M is an integer less than or equal to N, That is, M may be equal to N, or M may be smaller than N, for example; when N is 3, M may be 2.
  • the number of M can be set according to the connection relationship and the number of the resonant switched capacitor banks, which is not specifically limited in the embodiment of the present application.
  • Each resonant switched capacitor bank includes: a switch and a resonant circuit; the resonant circuit includes a resonant inductor and a resonant capacitor; in general, the resonant inductor and the resonant capacitor are connected in series to form a series resonant circuit.
  • the function of the resonant inductance has been introduced above, and will not be repeated here.
  • the LC series circuit includes a first inductor and a first capacitor connected in series.
  • each resonant switch capacitor group can be regarded as a resonant cavity. Since the switches in the resonant cavity cannot fully realize soft switching when the resonant cavity is working, in order to solve this technical problem, the embodiment of the present application adds an LC series connection to the resonant cavity.
  • the circuit mainly uses the first inductance in the LC series circuit to forcibly charge and discharge the junction capacitance of the switch in the resonant cavity, thereby ensuring that the switch realizes soft switching during operation.
  • the turn-off angle of each resonant switch capacitor bank can be reduced, and the turn-off damage of each switch in each resonant switch capacitor bank and the equivalent current effective value can be reduced.
  • each resonant switched capacitor bank can be closer to the turn-off angle of 180 degrees, thereby improving the load regulation rate of the resonant switched capacitor DC/DC converter.
  • the gain of each resonant cavity is 1, that is, the output voltage is equal to the input voltage. At this time, the output voltage is less affected by the load and is basically not affected by the load.
  • the output voltage of the resonant cavity will drop. The greater the load, the more severe the drop in the output voltage of the resonant cavity, that is, the output voltage sags. Therefore, in order to prevent the output voltage from being affected by the load when the load changes, that is, to improve the load regulation rate, the converter needs to work at the resonant frequency.
  • the turn-off angle When the turn-off angle is 180 degrees, it is equivalent to 50% of the positive half cycle and 0% of the negative half cycle.
  • the operating frequency corresponding to the fundamental wave after Fourier decomposition is the corresponding actual operating frequency.
  • the turn-off angle is less than 180 degrees, the operating frequency corresponding to the fundamental wave after Fourier decomposition is greatly affected by higher harmonics, resulting in a drop in the output voltage of the resonant cavity.
  • the function of the first capacitor in the LC series circuit is to block DC and balance the voltage, so as to avoid the magnetic saturation of the first inductor during the working process, that is, during the charging and discharging process, so that the first inductor cannot work normally.
  • the embodiments of the present application do not limit the number of LC series circuits connected to the resonant cavity, and one LC series circuit may be connected between any two resonant cavities.
  • N 3
  • it can include 2 LC series circuits, one LC series circuit is connected between the first resonant cavity and the second resonant cavity, and one LC series circuit is connected between the second resonant cavity and the third resonant cavity Connect an LC series circuit.
  • only one LC series circuit may be included, and the connection position of the LC series circuit is not specifically limited, and may be specifically connected between any two resonant cavities.
  • the LC series circuit can be connected between two resonant cavities with a higher voltage, that is, between two resonant cavities close to the high voltage side. Because the reverse voltage borne by the resonant inductance in the resonant cavity on the high-voltage side is relatively high, when the junction capacitance of the corresponding switch is charged and discharged, the charge is likely to be insufficiently charged or incompletely discharged.
  • the output capacitor and N capacitors are connected in series between the two input ends of the converter, and the output capacitor is connected between the two output ends of the converter; the two inputs of the converter
  • the terminal is connected to both ends of the DC power supply; the converter is used to step down the voltage of the DC power supply and output it.
  • the output capacitor and the N capacitors are connected in series between two output ends of the converter, and the output capacitor is connected between two input ends of the converter; the converter The two input ends of the DC power supply are connected to both ends of the DC power supply; the converter is used to boost the voltage of the DC power supply and output it.
  • the embodiments of the present application do not specifically limit whether the resonant switched capacitor DC/DC converter is a boost converter or a buck converter, that is, the input end and the output end can be interchanged, and bidirectional flow of energy can also be realized.
  • N is 3 and M is 3 as an example to introduce, that is, M and N are equal, and the N resonant switched capacitor groups correspond to M capacitors one-to-one, that is, one resonant switched capacitor group corresponds to one capacitor .
  • the voltage transformation ratio of the converter is N+1, that is, the voltage transformation ratio corresponding to FIG. 4 is 4.
  • Those skilled in the art can set the number of resonant capacitor groups and the number of capacitors according to actual needs.
  • each resonant switched capacitor group is respectively connected to two ends of the corresponding capacitor, and the two output ends of each resonant switched capacitor group are connected to both ends of the output capacitor.
  • Each resonant switched capacitor bank includes at least the following four switches: a first switch, a second switch, a third switch and a fourth switch; the first end of the first switch is connected to the first end of the corresponding capacitor, and the first end of the second switch is connected to the first end of the corresponding capacitor.
  • One end is connected to the second end of the corresponding capacitor; the second end of the first switch is connected to the first end of the third switch, and the second end of the second switch is connected to the first end of the fourth switch; after the resonant capacitor and the resonant inductor are connected in series It is connected to the second end of the first switch and the second end of the second switch; the second end of the third switch is connected to the second end of the output capacitor, and the second end of the fourth switch is connected to the first end of the output capacitor.
  • the connection relationship of each internal device in a resonant switched capacitor bank corresponding to FIG. 2 please refer to the description of the connection relationship of each internal device in a resonant switched capacitor bank corresponding to FIG. 2 .
  • the embodiments of the present application do not specifically limit the specific positions where the LC series circuit is connected to any two resonant switched capacitor banks, and may include at least the following two connection modes:
  • the first end of the LC series circuit is connected to the second end of the first switch in one of the resonant switched capacitor groups, and the second end of the LC series circuit is connected to the second end of the first switch in the other resonant switched capacitor group.
  • the first end of the LC series circuit is connected to the second end of the second switch in one of the resonant switched capacitor groups, and the second end of the LC series circuit is connected to the second end of the second switch in the other resonant switched capacitor group.
  • FIG. 4 The difference between FIG. 4 and FIG. 2 is that an LC series circuit is added between the first resonant switched capacitor group and the second resonant switched capacitor group, that is, the first inductor Lz and the first capacitor Cz form an LC series circuit.
  • the connection relationship of other parts in FIG. 3 is the same as that in FIG. 4 , and details are not repeated here.
  • the first end of Lz is connected to the second end of the first switch Q1_1 in the first resonant switched capacitor bank, the second end of Lz is connected to the first end of Cz, and the second end of Cz is connected to the first end of the second resonant switched capacitor bank The second terminal of switch Q2_1.
  • the inductance value of the first inductance Lz may be greater than the inductance value of the resonant inductance.
  • FIG. 4 Lz in is greater than Lr1, and Lz is greater than Lr2.
  • the larger the inductance value of Lz the better the effect of soft switching.
  • the multiple of Lz greater than Lr1 can be set as required.
  • the ratio of Lz to Lr1 can be greater than 10.
  • the ratio of Lz to Lr2 can also be greater than 10.
  • the embodiments of the present application do not specifically limit the relationship between the capacitance value of the first capacitor in the LC series circuit and the capacitance value of the resonant capacitor in each resonant switch capacitor group.
  • the capacitance Cz can be selected to be larger than the resonant capacitance, for example, the capacitance of Cz is larger than that of Cr1.
  • Lz and Cz shown in FIG. 4 are connected in series with the high voltage side A of the first resonant switched capacitor group and the high voltage side C of the second resonant switched capacitor group, which is more conducive to the soft switching of the switches in the resonant switched capacitor group.
  • the voltage of point A of the first resonant switched capacitor group is higher than that of point B.
  • the voltage of point C of the second resonant switched capacitor group is higher than that of point D. Due to the higher voltage on the high-voltage side, the junction capacitance of the switch needs additional Lz to force it to charge and discharge, thereby realizing the soft switching of the switch. That is, Q1_1 and Q1_3 in the first resonant switched capacitor group, and Q2_1 and Q2_3 in the second resonant switched capacitor group.
  • the driving pulse signals corresponding to the first resonant cavity and the second resonant cavity may be out of phase.
  • Q2_1 When Q2_1 is on, the potential of point C is higher than that of point A.
  • Q3_1 When Q3_1 is off, the current of point C flows to point A through Lz and Cz. At this time, the junction capacitance of Q3_1 is charged, and the voltage at point A rises.
  • the voltage at point A rises to be equal to Vin that is, when the voltages at both ends of Q1_1 are equal, Q1_1 is turned on, so that Q1_1 truly realizes soft switching.
  • the embodiments of the present application do not specifically limit the timing of driving signals of switches in each resonant switched capacitor bank.
  • the corresponding switches in each resonant switched capacitor bank operate synchronously, that is, the corresponding drive signals of each resonant switched capacitor bank are synchronized. That is, for all the resonant switched capacitor groups: the first switch and the second switch operate synchronously, and the third switch and the fourth switch operate synchronously. That is, the phases of the driving signals of each of the resonant switched capacitor groups are the same.
  • the first switch is turned on first
  • the second switch is turned on later.
  • the driving signals of the corresponding switches in all resonant switched capacitor groups are in the same phase, for example, the driving signals of the first switch in the three resonant switched capacitor groups are in the same phase, the driving signals of the second switch The driving signals of the switches are in the same phase, and the driving signals of the fourth switch are in the same phase.
  • the phase of the drive signal of each resonant switched capacitor bank may be out of phase by a preset angle, for example, the drive signals corresponding to Q1_1, Q2_1 and Q3_1 in FIG. 4 are sequentially out of phase by a preset angle, that is, each The driving signals of the first switches in the two resonant switched capacitor banks are not in phase.
  • the LC series circuit shown in Fig. 4 is connected to the first resonant switched capacitor group and the second resonant switched capacitor group. The following describes the case where the LC series circuit is connected to the second resonant switched capacitor group and the third resonant switched capacitor group.
  • this figure is a schematic diagram of another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • FIG. 5 The difference between FIG. 5 and FIG. 4 is that the first end of Lz in FIG. 5 is connected to the second end C of the first switch Q2_1 in the second resonant switched capacitor bank, the second end of Lz is connected to the first end of Cz, and the The second terminal is connected to the second terminal E of the first switch Q3_1 in the third resonant switched capacitor group.
  • FIG. 5 The connection relationship of other parts in FIG. 5 is the same as that in FIG. 4 and FIG. 2 , and details are not repeated here.
  • the working principles and advantages described in the part corresponding to FIG. 4 are also applicable to the embodiment corresponding to FIG. 5 .
  • the voltage at point C is higher than the voltage at point D.
  • the voltage at point E is higher than the voltage at point F.
  • this figure is a schematic diagram of yet another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • FIG. 6 The difference between FIG. 6 and FIG. 4 is that the first end of Lz in FIG. 6 is connected to the second end A of the first switch Q1_1 in the first resonant switched capacitor bank, the second end of Lz is connected to the first end of Cz, and the The second terminal is connected to the second terminal E of the first switch Q3_1 in the third resonant switched capacitor group.
  • FIG. 6 The connection relationship of other parts in FIG. 6 is the same as that in FIG. 4 and FIG. 2 , and details are not repeated here.
  • the working principles and advantages described in the part corresponding to FIG. 4 are also applicable to the embodiment corresponding to FIG. 6 .
  • the voltage at point A is higher than the voltage at point B.
  • the voltage at point E is higher than the voltage at point F.
  • the LC series circuits in Figures 4 to 6 above are all connected to the high-voltage side of any two resonant switched capacitor banks.
  • the following describes the implementation of the LC series circuit connected to the low-voltage side of any two resonant switched capacitor banks.
  • FIG. 7 is a schematic diagram of still another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the LC series circuit in the converter shown in FIG. 7 is connected to the low voltage side of the first resonant switched capacitor group and the low voltage side of the second resonant switched capacitor group.
  • the first end of Lz in FIG. 7 is connected to the second end B of the second switch Q1_2 in the first resonant switch capacitor group, the second end of Lz is connected to the first end of Cz, and the second end of Cz is connected to the second resonant switch
  • FIG. 8 is a schematic diagram of yet another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the first end of Lz is connected to the second end B of the second switch Q1_2 in the first resonant switch capacitor group, the second end of Lz is connected to the first end of Cz, and the second end of Cz is connected to the third resonant switch The second terminal F of the second switch Q3_2 in the capacitor group.
  • FIG. 9 is a schematic diagram of yet another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the first end of Lz is connected to the second end D of the second switch Q2_2 in the second resonant switch capacitor group, the second end of Lz is connected to the first end of Cz, and the second end of Cz is connected to the third resonant switch The second terminal F of the second switch Q3_2 in the capacitor group.
  • FIGS 7 to 9 above describe the case where the LC series circuit is connected to the low-voltage side of any two resonant switched capacitor banks.
  • one end of the LC series circuit can be connected to the high-voltage side of one of the resonant switched capacitor banks.
  • the LC series circuit The other end of the capacitor can be connected to the low voltage side of another resonant switched capacitor bank, that is, the case of mixed connection, which will be described in detail below with reference to the accompanying drawings.
  • this figure is a schematic diagram of another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the LC series circuit is connected between the first resonant switched capacitor group and the second resonant switched capacitor group. Specifically, the first end of Lz is connected to the first switch Q1_1 in the first resonant switched capacitor group. The second terminals of the two terminals A and Cz are connected to the second terminal D of the second switch Q2_2 in the second resonant switch capacitor group. That is, the LC series circuit is connected to the high voltage side of the first resonant switched capacitor group and the low voltage side of the second resonant switched capacitor group. It can also be reversed, that is, the LC series circuit is connected to the low voltage side of the first resonant switched capacitor group and the high voltage side of the second resonant switched capacitor group.
  • this figure is a schematic diagram of still another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the LC series circuit is connected between the first resonant switched capacitor group and the third resonant switched capacitor group.
  • the first end of Lz is connected to the first switch Q1_1 in the first resonant switched capacitor group.
  • the second terminals of the two terminals A and Cz are connected to the second terminal F of the second switch Q3_2 in the third resonant switched capacitor group. That is, the LC series circuit is connected to the high voltage side of the first resonant switched capacitor group and the low voltage side of the third resonant switched capacitor group. It can also be reversed, that is, the LC series circuit is connected to the low voltage side of the first resonant switched capacitor group and the high voltage side of the third resonant switched capacitor group.
  • the LC series circuit can also be connected between the low voltage side of the second resonant switched capacitor group and the high voltage side of the third switched capacitor group. Similarly, it can also be connected between the high voltage side of the second resonant switched capacitor group and the third switched capacitor. Between the low-voltage sides of the group, the examples will not be described one by one here.
  • N 3 resonant switched capacitor banks
  • N 3 resonant switched capacitor banks
  • this figure is a schematic diagram of another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the resonant switched capacitor DC/DC converter includes two resonant switched capacitor groups, wherein the first resonant switched capacitor group corresponds to the first capacitor C1, and the second resonant switched capacitor group corresponds to the second capacitor C2.
  • the LC series circuit is connected between the first resonant switched capacitor group and the second resonant switched capacitor group. Specifically, the first end of Lz is connected to the first switch Q1_1 in the first resonant switched capacitor group. The second terminals of the two terminals A and Cz are connected to the second terminal C of the first switch Q2_1 in the second resonant switched capacitor group. That is, the two ends of the LC series circuit are respectively connected to the high voltage side of the first resonant switched capacitor group and the high voltage side of the second resonant switched capacitor group.
  • Fig. 12 has one less resonant switched capacitor bank than Fig. 4, and the voltage transformation ratio is 3:1, while Fig. 4 is 4:1. Others are the same and will not be repeated here.
  • the first inductor in the LC series circuit may be one or more than one in an actual product, and the number is not limited.
  • the first capacitor in the LC series circuit may also be one or more in an actual product, and the number is not limited.
  • the following describes the situation where at least one resonant switched capacitor bank corresponds to a plurality of capacitors connected in series. This situation is different from the above description.
  • the voltage of the converter can be changed. ratio. For example, by increasing the voltage transformation ratio without increasing the number of resonant switched capacitor banks, the hardware circuit can be saved, the circuit board area occupied by the entire converter can be saved, and the cost can be saved.
  • this figure is a schematic diagram of another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the N resonant switched capacitor groups at least include a first type of resonant switched capacitor group and a second type of resonant switched capacitor group;
  • the first type of resonant switched capacitor group corresponds to at least two capacitors connected in series among the M capacitors; the two input ends of the first type of resonant switched capacitor group are respectively connected to two ends of the at least two capacitors connected in series; that is,
  • the capacitor corresponding to the first type of resonant switched capacitor group is a plurality of capacitors connected in series, and the number of the capacitors connected in series is not specifically limited.
  • the second type of resonant switched capacitor group corresponds to one of the M capacitors, and two input ends of the second type of resonant switched capacitor group are respectively connected to two ends of the corresponding one of the M capacitors. That is, each resonant switched capacitor group in the second type of resonant switched capacitor group is still in one-to-one correspondence with capacitors.
  • a converter may include a plurality of resonant switched capacitor banks of the first type, and may also include a plurality of resonant switched capacitor banks of the second type, and the specific number is not specifically limited.
  • the voltage transformation ratio of the resonant switched capacitor DC/DC converter shown in Figure 13 is 5:1.
  • the second terminal of the third switch Q1_3 in the first resonant switched capacitor group is not connected to the first terminal of Cout, but is connected to the first terminal of C3.
  • connection position of the second end of the third switch in other resonant switched capacitor banks can also be changed, and another implementation manner is described below with reference to FIG. 14 .
  • this figure is a schematic diagram of still another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the voltage transformation ratio of the resonant switched capacitor DC/DC converter shown in Figure 14 is 5:1.
  • the second terminal of the third switch Q2_3 in the second resonant switched capacitor group in FIG. 14 is not connected to the first terminal of Cout, but is connected to the first terminal of C3.
  • Each of the above embodiments describes the implementation of including an LC series circuit in a resonant switched capacitor DC/DC converter. This application does not specifically limit the number of LC series circuits included in a resonant switched capacitor DC/DC converter. The following describes an implementation manner of including two LC series circuits in a resonant switched capacitor DC/DC converter with reference to the accompanying drawings.
  • this figure is a schematic diagram of yet another resonant switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the resonant switched capacitor DC/DC converter includes three resonant switched capacitor banks as an example for description.
  • the resonant switched capacitor DC/DC converter includes at least two LC series circuits, wherein the first LC series circuits (Lz1 and Cz1) are connected between the high voltage side of the first resonant switched capacitor group and the second resonant switched capacitor Between the high voltage sides of the group, a second LC series circuit (Lz2 and Cz2) is connected between the high voltage side of the second resonant switched capacitor group and the high voltage side of the third resonant switched capacitor group.
  • the first end of Lz1 is connected to the second end A of the first switch Q1_1 in the first resonant switched capacitor bank
  • the second end of Lz1 is connected to the first end of Cz1
  • the second end of Cz1 is connected to the second end A of the first switch Q1_1 in the first resonant switched capacitor bank.
  • the first end of Lz2 is connected to the second end C of the first switch Q2_1 in the second resonant switched capacitor bank, the second end of Lz2 is connected to the first end of Cz2, and the second end of Cz2 is connected to the first end of the third resonant switched capacitor bank
  • FIG. 15 only schematically illustrates the connection positions of the two LC series circuits, and other connection relationships are also possible.
  • the second LC series circuit may also be connected between the first resonant switched capacitor group and the third resonant switched capacitor group.
  • the resonant switched capacitor DC/DC converter may also include three LC series circuits, for example, one LC series circuit is connected between the first resonant switched capacitor group and the second resonant switched capacitor group, the first resonant switched capacitor group and the An LC series circuit is connected between the third resonant switched capacitor group, and an LC series circuit is connected between the second resonant switched capacitor group and the third resonant switched capacitor group.
  • the embodiment of the present application further provides a power supply system, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 16 is a schematic diagram of a power supply system provided by an embodiment of the present application.
  • the power supply system provided by the embodiments of the present application includes: a rectifier 1601 and the resonant switched capacitor DC/DC converter 1602 described in the above embodiments.
  • the input end of the rectifier 1601 is used for connecting an AC power source, and is used for converting the AC voltage output by the AC power source into a DC voltage;
  • the input end of the resonant switched capacitor DC/DC converter 1602 is connected to the output end of the rectifier 1601 for transforming the DC voltage output by the rectifier 1601 and outputting it.
  • step-down circuits may also be included between the rectifier 1601 and the resonant switched capacitor DC/DC converter 1602 , that is, to step down the output voltage of the rectifier 1601 to an input voltage range that the resonant switched capacitor DC/DC converter 1602 can withstand.
  • the resonant switched capacitor DC/DC converter 1602 can be a boost converter or a step-down converter.
  • it can be used as a step-down converter to reduce 48V to 12V and provide it to the subsequent circuit or load .
  • the switches in the resonant switched capacitor DC/DC converter 1602 can truly implement soft switching, thereby reducing the operating time The switching loss in the process is reduced, the power consumption of the entire converter is reduced, the power conversion efficiency of the converter is improved, and the power supply efficiency of the power supply system can be improved.
  • FIG. 17 is a schematic diagram of another power supply system provided by an embodiment of the present application.
  • the power supply system provided in this embodiment may further include one stage in the latter stage of the resonant switched capacitor DC/DC converter 1602: a step-down voltage regulator circuit 1701;
  • the input end of the step-down voltage regulator circuit 1701 is connected to the output end of the resonant switched capacitor DC/DC converter 1602, and is used to step down the voltage output by the resonant switched capacitor DC/DC converter and output a stable voltage.
  • the resonant switched capacitor DC/DC converter 1602 reduces the DC voltage of 48V to a DC voltage of 12V, and the step-down voltage regulator circuit 1701 further steps down and stabilizes the DC voltage of 12V, such as outputting stable 5V, 3.3V Wait.
  • the step-down voltage regulator circuit 1701 can be implemented by a closed-loop step-down circuit. Since its output voltage can be controlled in a closed-loop, a stable voltage output can be achieved, making the output voltage controllable.
  • the power supply system introduced in FIG. 17 is a circuit in which a first-stage voltage stabilization function is connected to the rear stage of the resonant switched capacitor DC/DC converter 1602. Since the resonant switched capacitor DC/DC converter 1602 is an open-loop converter, the output cannot be guaranteed. voltage stability.
  • a circuit with a voltage stabilization function may also be added to the previous stage of the resonant switched capacitor DC/DC converter 1602 , which will be described in detail below with reference to FIG. 18 .
  • FIG. 18 is a schematic diagram of yet another power supply system provided by an embodiment of the present application.
  • the power supply system provided in this embodiment further includes: a voltage regulator circuit 1801;
  • the voltage regulator circuit 1801 is connected between the rectifier 1601 and the resonant switched capacitor DC/DC converter 1602, and is used to stabilize the DC voltage output by the rectifier 1601 and provide it to the input end of the resonant switched capacitor DC/DC converter 1602.
  • the voltage stabilization circuit 1801 Since the voltage stabilization circuit 1801 has a voltage stabilization function, its output voltage is a very stable voltage, which is equivalent to the stable input voltage of the resonant switched capacitor DC/DC converter 1602. Therefore, the power supply system can ensure that the resonant switched capacitor DC/DC The output voltage of the converter 1602 is also very stable, providing power directly to the load.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请公开了一种谐振开关电容直流/直流变换器及电源系统,包括:N个谐振开关电容组、M个电容和至少一个LC串联电路;N为大于等于2的整数;M为小于等于N的整数;每个谐振开关电容组包括:开关和谐振电路;谐振电路包括谐振电感和谐振电容;在任意两个谐振开关电容组之间连接LC串联电路,即连接电感和电容串联的电路。由于开关在关断的瞬间,谐振电感不足以将开关的结电容上的电荷完全放完,通过增加的电感,来实现开关的结电容上的电荷被完全放掉,即将电流抽走,从而使开关实现软开关。当各个开关真正实现软开关时,可以降低整个谐振开关电容直流/直流变换器的功耗,提高谐振开关电容直流/直流变换器的电能转换效率。

Description

谐振开关电容直流/直流变换器及电源系统 技术领域
本申请涉及电力电子技术领域,尤其涉及一种谐振开关电容直流/直流变换器及电源系统。
背景技术
目前,开关电源被广泛应用于各类电气设备中,为电气设备提供符合要求的电源。
例如,应用场景为人工智能(AI,Artificial Intelligence)及数据中心时,业务单板的供电电压一般为48V。而业务单板内部的芯片及各类负载的供电电压需要低于48V,即业务单板的供电电压48V并不能直接给芯片及各类负载供电,一般还需要经过降压处理,降压到5V、3.3V和1.8V等电压为芯片及各类负载供电。
目前,降压使用的直流(DC,Direct Current)/DC变换器一般采用隔离式拓扑,例如LLC谐振DC/DC变换器。
LLC谐振DC/DC变换器的主要缺点是包括变压器,由于变压器一般包括初级绕组、次级绕组和磁芯,体积较大,因此导致电源的体积也较大,厚度难以变薄,为了降低体积,只能通过增加开关频率来实现,但是增加开关频率会增大功耗,导致电源效率降低。
申请内容
本申请提供了一种谐振开关电容直流/直流变换器及电源系统,能够减小直流/直流变换器的体积,并且能够提高电能转换效率。
本申请实施例提供一种谐振开关电容DC/DC变换器,该DC/DC变换器可以应用于开关电源的任何场景,例如AI芯片的供电,或者数据中心的电源单板等,该DC/DC变换器可以作为降低变换器来使用,后续再连接一级稳压电路,可以输出负载输出的稳定的电压,应该理解,本申请实施例不限定该DC/DC变换器的具体应用场景,该DC/DC变换器可以为双向变换器,既可以作为升压变换器,又可以作为降压变换器。为了降低电路所占面积,降低成本,也可以只包括一个LC串联电路,该LC串联电路的连接位置不作具体限定,具体可以连接在任意两个谐振腔之间。在一种可能的实现方式中,LC串联电路可以连接在电压较高的两个谐振腔之间,即连接在靠近高压侧的两个谐振腔之间。由于高压侧的谐振腔中的谐振电感承受的反向电压较高,对应的开关的结电容在充放电时,电荷容易充不满或者放不彻底。
该DC/DC变换器包括N个谐振开关电容组、M个电容和至少一个LC串联电路;N为大于等于2的整数;M为小于等于N的整数;LC串联电路包括串联的第一电感和第一电容;每个谐振开关电容组包括:开关和谐振电路;谐振电路至少包括谐振电感和谐振电容;LC串联电路的两端分别连接两个不同的谐振开关电容组中的谐振电路。一般情况下,谐振电感和谐振电容串联形成串联谐振电路。LC串联电路中的第一电容的作用是为了隔直流,用来平衡电压,以免在工作过程中,即充电和放电过程中,第一电感出现磁饱和,而不能正常工作。本申请实施例不限定与谐振腔连接的LC串联电路的数目,可以在任意两个谐振腔之间连接一个LC串联电路。
每个谐振开关电容组中的谐振电感的作用是降低充放电电流对于谐振电容的电流冲击,而且降低充放电电流对于开关的冲击,降低损耗,提高变换器的电能转换效率。本申请实施例提供了一种谐振开关电容DC/DC变换器,在任意两个谐振开关电容组之间连接LC串联电路,即连接电感和电容串联的电路。由于MOS管在关断的瞬间,谐振电感不足以将MOS管的结电容上的电荷完全放完,因此,通过增加的电感,来实现MOS管的结电容上的电荷被完全放掉,即将电流抽走,从而实现MOS管的软开关。当各个开关真正实现软开关时,可以降低整个谐振开关电容DC/DC变换器的功耗,从而提高谐振开关电容DC/DC变换器的电能转换效率。另外,由于该直流/直流变换器不包括变压器,因此,可以减小变换器的体积。其中LC串联电路连接在电压较高的两个谐振开关电容组之间时软开关的效果更好。
在一种可能的实现方式中,M等于N,N个谐振开关电容组分别与M个电容一一对应;即一个谐振开关电容组对应M个电容中的一个。每个谐振开关电容组的两个输入端分别连接对应的电容的两端,每个谐振开关电容组的两个输出端分别连接输出电容的两端。
本申请实施例给谐振腔增加了LC串联电路,主要是利用LC串联电路中的第一电感来强制给谐振腔中的开关的结电容进行充电和放电,进而保证开关在动作时实现软开关。而且可以减小每个谐振开关电容组的关断角,降低每个谐振开关电容组中各个开关的关断损坏以及等效的电流有效值。因为等效的电流有效值越大,则开关对应的开关损耗越高。本实施例提供的技术方案可以使每个谐振开关电容组可以更接近180度的关断角,从而提高该谐振开关电容DC/DC变换器的负载调整率。
在一种可能的实现方式中,所述N个谐振开关电容组至少包括第一类谐振电容组和第二类谐振开关电容组;所述第一类谐振开关电容组对应所述M个电容中至少两个串联的电容;所述第一类谐振开关电容组的两个输入端分别连接所述至少两个串联的电容的两端;所述第二类谐振开关电容组对应所述M个电容中的一个电容,所述第二类谐振开关电容组的两个输入端分别连接对应的所述M个电容中的一个电容的两端。
至少一个谐振开关电容组对应多个串联在一起的电容的情况,此种情况与以上介绍的有所区别,通过改变谐振开关电容组与对应的电容的连接关系,从而改变变换器的电压变比。例如,增大电压变比,而不用增加谐振开关电容组的个数,从而节省硬件电路,节省整个变换器所占的电路板面积,节省成本。
在一种可能的实现方式中,所述输出电容和所述N个电容串联后连接所述变换器的两个输入端之间,所述输出电容连接在所述变换器的两个输出端之间;所述变换器的两个输入端连接直流电源的两端;所述变换器,用于将所述直流电源的电压降压后输出。
在一种可能的实现方式中,所述输出电容和所述N个电容串联后连接所述变换器的两个输出端之间,所述输出电容连接在所述变换器的两个输入端之间;所述变换器的两个输入端连接直流电源的两端;所述变换器,用于将所述直流电源的电压升压后输出。
在一种可能的实现方式中,每个所述谐振开关电容组包括以下至少四个开关:第一开关、第二开关、第三开关和第四开关;所述第一开关的第一端连接该谐振开关电容组对应的电容的第一端,所述第二开关的第一端连接该谐振开关电容组对应的电容的第二端;所 述第一开关的第二端连接所述第三开关的第一端,所述第二开关的第二端连接所述第四开关的第一端;所述谐振电容和所述谐振电感串联后连接在所述第一开关的第二端和所述第二开关的第二端;所述第三开关的第二端连接所述输出电容的第二端,所述第四开关的第二端连接所述输出电容的第一端。
在一种可能的实现方式中,所述LC串联电路的第一端连接其中一个所述谐振开关电容组中的第一开关管的第二端,所述LC串联电路的第二端连接另一个所述谐振开关电容组中的第一开关管的第二端。
在一种可能的实现方式中,所述LC串联电路的第一端连接其中一个所述谐振开关电容组中的第二开关管的第二端,所述LC串联电路的第二端连接另一个所述谐振开关电容组中的第二开关管的第二端。
在一种可能的实现方式中,所述第一开关和所述第二开关同步动作,所述第三开关和所述第四开关同步动作。其中,两个开关同步动作,是指两个开关对应的驱动信号的时序同相位,本申请实施例不限定各个开关的实现形式,为可控开关管即可,驱动信号施加在可控开关管的控制端,例如栅极或门极,可以控制该可控开关管的关断和导通。
在一种可能的实现方式中,每个所述谐振开关电容组对应的驱动信号的相位均相同。即所有谐振开关电容组的驱动信号的时序均相同,对应位置的开关同步动作。这样的优点是,驱动信号的时序产生比较方便实现,只产生一种时序的驱动信号即可。
在一种可能的实现方式中,每个所述谐振开关电容组对应的驱动信号的相位错相预设角度。在某些场合,为了控制更灵活,或者更好地实现软开关,降低功率损耗,可以控制不同的谐振开关电容组中对应位置的开关的驱动信号有稍微的错相,即存在相位差。
在一种可能的实现方式中,所述第一电感的感值大于所述谐振电感的感值。第一电感的感值大于谐振电感时可以起到更好地软开关的效果,可以强化MOS管结电容的充放电。本申请实施例中的大于,一般是指第一电感为谐振电感的至少10倍。
在一种可能的实现方式中,所述第一电容的容值大于所述谐振电容的容值。
在一种可能的实现方式中,所述N等于所述M时,所述变换器的电压变比倍数为N+1。例如,M=N=3时,该DC/DC的电压变比为4,即实现4倍降压或4倍升压。
本申请实施例还提供一种电源系统,电源系统的优点可以参数上面描述的DC/DC的优点,该电源系统包括:整流器和以上介绍的谐振开关电容直流/直流变换器;所述整流器的输入端用于连接交流电源,用于将所述交流电源输出的交流电压转换为直流电压;所述谐振开关电容直流/直流变换器的输入端连接所述整流器的输出端,用于将所述整流器输出的直流电压变压后输出。
在一种可能的实现方式中,还包括:降压稳压电路;所述降压稳压电路的输入端连接所述谐振开关电容直流/直流变换器的输出端,用于将所述谐振开关电容直流/直流变换器输出的电压进行降压后输出稳定的电压。
在一种可能的实现方式中,还包括:稳压电路;所述稳压电路连接在所述整流器和所述谐振开关电容直流/直流变换器之间,用于将所述整流器输出的直流电压稳压后提供给所述谐振开关电容直流/直流变换器。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请公开了一种谐振开关电容直流/直流变换器,增加至少一个LC串联电路,不限定LC串联电路的个数,LC串联电路连接在任意两个谐振开关电容组之间,LC串联电路包括串联的第一电感和第一电容。由于谐振开关电容组中的开关在关断瞬间时,谐振开关电容组中的谐振电感不足以将开关的结电容上的电荷完全放完,因此,通过增加的LC串联电路中的电感,来将开关的结电容上的电荷被完全放掉,即将开关的结电容上的电流抽走,从而使开关真正实现软开关,这样可以减小每个谐振开关电容组的关断角,提高变换器的负载调整率。当各个开关真正实现软开关时,可以降低各个开关在开断过程中产生的功耗,进而降低整个谐振开关电容DC/DC变换器的功耗,从而提高谐振开关电容DC/DC变换器的电能转换效率。
附图说明
图1为本申请实施例提供的一种开关电源的示意图;
图2为本申请实施例提供的一种谐振开关电容DC/DC变换器的示意图;
图3为本申请实施例提供的又一种谐振开关电容DC/DC变换器的示意图;
图4为本申请实施例提供的一种谐振开关电容DC/DC变换器的示意图;
图5为本申请实施例提供的另一种谐振开关电容DC/DC变换器的示意图;
图6为本申请实施例提供的又一种谐振开关电容DC/DC变换器的示意图;
图7为本申请实施例提供的再一种谐振开关电容DC/DC变换器的示意图;
图8为本申请实施例提供的又一种谐振开关电容DC/DC变换器的示意图;
图9为本申请实施例提供的再一种谐振开关电容DC/DC变换器的示意图;
图10为本申请实施例提供的一种LC串联电路混合连接的示意图;
图11为本申请实施例提供的又一种LC串联电路混合连接的示意图;
图12为本申请实施例提供的又一种谐振开关电容DC/DC变换器的示意图;
图13为本申请实施例提供的另一种谐振开关电容DC/DC变换器的示意图;
图14为本申请实施例提供的再一种谐振开关电容DC/DC变换器的示意图;
图15为本申请实施例提供的又一种谐振开关电容DC/DC变换器的示意图;
图16为本申请实施例提供的一种电源系统的示意图;
图17为本申请实施例提供的另一种电源系统的示意图;
图18为本申请实施例提供的又一种电源系统的示意图。
具体实施方式
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面先介绍谐振开关电容变换器的应用场景和实现直流/直流电压变换的原理。
本申请实施例提供的谐振开关电容直流/直流变换器即是一种DC/DC变换器,顾名思义,DC/DC变换器的输入为直流电压,其输出也是直流电压。本申请实施例提供的谐振开关电容DC/DC变换器可以作为双向DC/DC变换器,既可以从左向右实现降压,又可以从右向左实现升压,即输入端和输出端可以互换。
例如,本申请实施例提供的谐振开关电容DC/DC变换器可以应用于开关电源中, 即属于开关电源内部的一个DC/DC变换器,该开关电源作为电源系统的一部分,电源系统还可以包括整流器,即将交流电源的交流电压整流为直流电压。该电源系统可以为AI芯片供电,即集成在AI的单板上,也可以作为数据中心的单板的电源系统。
本申请实施例不具体限定该变换器的具体应用场景,本申请实施例提供的谐振开关电容DC/DC变换器可以应用于例如服务器、通信基站、光伏设备等各种需要开关电源的应用场景。开关电源最终可以输出芯片或控制电路等负载需要的电压。
下面以开关电容型DC/DC变换器为降压变换器为例进行介绍。
参见图1,该图为本申请实施例提供的一种开关电源的示意图。
本申请实施例提供的开关电源,可以应用于为AI或数据中心,也可以应用于通信电源,对于开关电源的具体应用场景不做限制。
该开关电源包括降压变换器100和稳压电路200;
其中,降压变换器100可以为本申请实施例提供的谐振开关电容DC/DC变换器,后续实施例将详细介绍谐振开关电容DC/DC变换器的具体实现方式。
降压变换器100的输出端用于连接稳压电路200的输入端;
稳压电路200的输出端用于连接负载,用于给负载供电,稳压电路200既具有降压的功能又具有稳压的功能,使其输出电压实现稳定可控。
一种可能的实现方式,例如,降压变换器100的输入电压为48V,降压变换器100的输出电压为12V,稳压电路200用于将12V的输入电压继续进行降压,降压为5V、3.3V和1.8V等电压为芯片及各类负载供电。
由于降压变换器100用于将输入的48V降压到12V,得到的12V电压并不会直接给芯片供电,而是经过稳压电路200进一步进行降压和稳压,即稳压电路200需要输出精确的电压满足负载的供电要求。
因此,对于降压变换器100来说,其输出的12V电压可以进行开环控制,允许输出电压在一定范围内波动,只要满足稳压电路200的输入电压范围即可。因此,对于48V降压为12V对应的降压变换器,在AI及数据中心的应用场景中,可以设计为开环电源,开环电源是指输出电压跟随输入电压的变化而变化的电源,该电源不具备输出电压独立稳压的功能。例如,降压变换器100的输入电压Vin与输出电压的比例可以为4:1或5:1即可。同时,由于输出电压与输入电压之间没有绝缘耐压要求,因此也不需要强制使用隔离拓扑,即不必包括变压器,因此,本申请实施例提供的电源系统中的降压变换器,可以利用谐振开关电容DC/DC变换器来实现,不需要通过变压器进行隔离,因此,可以降低变换器的体积,使其做的更薄更小,进而降低电源系统的体积,例如电源系统所占的单板面积和体积得以缩小,使其满足小型化的要求。
下面结合谐振开关电容DC/DC变换器的示意图,介绍其工作原理。
参见图2,该图为本申请实施例提供的一种谐振开关电容DC/DC变换器的示意图。
图2中以左侧为输入端,右侧为输出端为例进行介绍,即输入端连接直流电源Vin,输出端Vout,该变换器为降压变换器,即将Vin降压后输出。谐振开关电容组的数量不同,则对应的降压变比不同。另外,右侧也可以为输入端,左侧为输出端,此时对 应的为升压变换器。
下面为了方便描述和便于理解,以谐振开关电容组为3个为例进行介绍,对应的降压变比为4:1,即将Vin实现4倍降压输出,例如Vin为48V,Vout为12V。本申请实施例中不具体限定电压变比的具体数值,可以根据实际应用场景的需要来设置,改变谐振开关电容组的数量或者连接关系来得到需要的电压变比。
如图2所示,本实施例中,一个谐振开关电容组对应一个电容,即谐振开关电容组和电容为一一对应的关系,三个谐振开关电容组对应3个电容,分别为第一电容C1、第二电容C2和第三电容C3。C1、C2和C3依次串联在一起,而且与输出电容COUT也串联在一起,即C1-COUT依次串联,C1-COUT依次串联后连接在Vin的两端,其中,COUT连接在Vout的两端,能量从Vin向Vout传递时,COUT作为输出电容,C1-COUT串联后作为输入电容。图中对应的各个字母均是为了方便描述,表示标号,不具有特殊的含义。
为了方便理解,每个谐振开关电容组中的四个开关均称之为第一开关至第四开关。
图2中虚框对应第一谐振开关电容组,每个谐振开关电容组的结构相同,下面分别介绍。
先介绍第一谐振开关电容组,即包括四个开关和谐振电路,下面先描述第一谐振开关电容组,其中四个开关分别为:第一开关Q1_1、第二开关Q1_2、第三开关Q1_3和第四开关Q1_4;其中,Q1_1的第一端连接C1的第一端,Q1_2的第一端连接C1的第二端,Q1_3的第一端连接Q1_1的第二端,Q1_4的第一端连接Q1_2的第二端,Q1_3的第二端连接Vout,Q1_4的第二端接地。
下面描述第二谐振开关电容组,为了方便理解,每个谐振开关电容组中的四个开关均称之为第一开关至第四开关。其中四个开关分别为:第一开关Q2_1、第二开关Q2_2、第三开关Q2_3和第四开关Q2_4;其中,Q2_1的第一端连接C2的第一端,Q2_2的第一端连接C2的第二端,Q2_3的第一端连接Q2_1的第二端,Q2_4的第一端连接Q2_2的第二端,Q2_3的第二端连接Vout,Q2_4的第二端接地。
下面描述第二谐振开关电容组,其中四个开关分别为:第一开关Q2_1、第二开关Q2_2、第三开关Q2_3和第四开关Q2_4;其中,Q2_1的第一端连接C2的第一端,Q2_2的第一端连接C2的第二端,Q2_3的第一端连接Q2_1的第二端,Q2_4的第一端连接Q2_2的第二端,Q2_3的第二端连接Vout,Q2_4的第二端接地。
下面描述第三谐振开关电容组,为了方便理解,每个谐振开关电容组中的四个开关均称之为第一开关至第四开关。其中四个开关分别为:第一开关Q3_1、第二开关Q3_2、第三开关Q3_3和第四开关Q3_4;其中,Q3_1的第一端连接C2的第一端,Q3_2的第一端连接C2的第二端,Q3_3的第一端连接Q3_1的第二端,Q3_4的第一端连接Q3_2的第二端,Q3_3的第二端连接Vout,Q3_4的第二端接地。
图2中是以左侧为输入,右侧为输出,对应的谐振开关电容DC/DC变换器为降压变换器。
图3中是以右侧为输入,左侧为输出端,即对应的谐振开关电容DC/DC变换器为 升压变换器。
以图2对应的降压变换器为例说明电压转换的工作原理,当Q1_1和Q1_2闭合,Q1_3和Q1_4断开时,C1储存的电能转移到Cr1上;当Q1_1和Q1_2断开,Q1_3和Q1_4闭合时,Cr1上储存的电能转移到Cout上,从而实现能量从输入端到输出端的转移。同理,当Q2_1和Q2_2闭合,Q2_3和Q2_4断开时,C2储存的电能转移到Cr2上;当Q2_1和Q2_2断开,Q2_3和Q2_4闭合时,Cr2上储存的电能转移到Cout上,从而实现能量从输入端到输出端的转移。当Q3_1和Q3_2闭合,Q3_3和Q3_4断开时,C3储存的电能转移到Cr3上;当Q3_1和Q3_2断开,Q3_3和Q3_4闭合时,Cr3上储存的电能转移到Cout上,从而实现能量从输入端到输出端的转移。因为,Vin的电压等于C1、C2、C3和Cout上的电压之和。又由于C1上的电压等于Cr1上的电压,C2上的电压等于Cr2上的电压,C3上的电压等于Cr3上的电压,Cr1、Cr2和Cr3上的电压均等于Cout上的电压,因此,Vin是Vout的四倍,实现了四倍降压。
经过以上分析,谐振开关电容DC/DC变换器无论是升压变换器还是降压变换器,左侧均为高压侧,右侧均为低压侧,对于谐振开关电容组也存在类似的趋势,连接C1的谐振开关电容组的电压最高,连接C2的谐振开关电容组的电压次之,连接C3的谐振开关电容组的电压最小。
每个谐振开关电容组中的谐振电感的作用是降低充放电电流对于谐振电容的电流冲击,而且降低充放电电流对于开关的冲击,降低损耗,提高变换器的电能转换效率。
本申请实施例不具体限定开关的实现类型,具体为可控开关管,例如金属氧化物半导体场效应晶体管(MOS,Metal Oxide Semiconductor)管,绝缘栅双极型晶体管(IGBT,Insulated Gate Bipolar Transistor)等,也可以为其他类型的开关器件,只要包括控制端,通过控制端可以控制其开关状态即可。下面以开关为MOS为例进行介绍。
为了描述方便,以谐振开关电容组中的开关为MOS管为例进行说明。
对于图2中的MOS管Q1_1和Q1_3、Q2_1和Q2_3、Q3_1和Q3_3,如果实现软开关,以上几个MOS管必须在关断的瞬间,分别通过Lr1、Lr2和Lr3上的残余电流为对应MOS管的结电容进行充放电实现;而同时,在更高电压的谐振开关电容组内,Lr所承受的反向电压会越高,例如Lr1承受的反向电压为Vo*2,而Lr2承受的反向电压为Vo,既Lr1承受的反向电压是Lr2承受的反向电压的2倍。因此,导致Lr1内的电流衰减的更快,没有足够的电荷将对应的MOS管的结电容充满或完全放掉,导致这些MOS管无法真正实现软开关。
基于以上技术问题,本申请实施例提供了一种谐振开关电容DC/DC变换器,在任意两个谐振开关电容组之间连接LC串联电路,即连接电感和电容串联的电路。由于MOS管在关断的瞬间,谐振电感不足以将MOS管的结电容上的电荷完全放完,因此,通过增加的电感,来实现MOS管的结电容上的电荷被完全放掉,即将电流抽走,从而实现MOS管的软开关。当各个开关真正实现软开关时,可以降低整个谐振开关电容DC/DC变换器的功耗,从而提高谐振开关电容DC/DC变换器的电能转换效率。
变换器实施例:
参见图4,该图为本申请实施例提供的一种谐振开关电容DC/DC变换器的示意图。
本申请实施例提供的谐振开关电容DC/DC变换器,包括:N个谐振开关电容组、M个电容和至少一个LC串联电路;N为大于等于2的整数;M为小于等于N的整数,即M可以等于N,M也可以小于N,例如;N为3个时,M可以为2个。M的个数可以根据谐振开关电容组的连接关系和数量来设置,本申请实施例不做具体限定。
每个谐振开关电容组包括:开关和谐振电路;谐振电路包括谐振电感和谐振电容;一般情况下,谐振电感和谐振电容串联形成串联谐振电路。其中谐振电感的作用以上已经介绍,在此不再赘述。
LC串联电路的两端分别连接两个不同的所述谐振开关电容组中的所述谐振电路的一端;LC串联电路包括串联的第一电感和第一电容。
其中,每个谐振开关电容组可以看作为一个谐振腔,由于谐振腔在工作时,其中的开关无法完全实现软开关,因此,为了解决该技术问题,本申请实施例给谐振腔增加了LC串联电路,主要是利用LC串联电路中的第一电感来强制给谐振腔中的开关的结电容进行充电和放电,进而保证开关在动作时实现软开关。而且可以减小每个谐振开关电容组的关断角,降低每个谐振开关电容组中各个开关的关断损坏以及等效的电流有效值。因为等效的电流有效值越大,则开关对应的开关损耗越高。本实施例提供的技术方案可以使每个谐振开关电容组可以更接近180度的关断角,从而提高该谐振开关电容DC/DC变换器的负载调整率。
因为变换器的工作频率与谐振频率相等时,即变换器工作在谐振点,每个谐振腔的增益为1,即输出电压等于输入电压。此时输出电压受负载的影响比较小,基本不受负载的影响。而当变换器的工作频率与谐振频率不相等时,谐振腔的输出电压会下降,负载越大,则谐振腔的输出电压下降的越厉害,即输出电压出现下垂。因此,为了在负载变化时,输出电压不受负载的影响,即为了提高负载调整率,需要变换器工作在谐振频率。而关断角为180度时,相当于正半周50%负半周0%,傅里叶分解后的基波对应的工作频率就是对应的实际的工作频率。但是当关断角小于180度时,傅里叶分解后的基波对应的工作频率受高次谐波的影响较大,导致谐振腔的输出电压下降。
其中,LC串联电路中的第一电容的作用是为了隔直流,用来平衡电压,以免在工作过程中,即充电和放电过程中,第一电感出现磁饱和,而不能正常工作。
本申请实施例不限定与谐振腔连接的LC串联电路的数目,可以在任意两个谐振腔之间连接一个LC串联电路。例如当N为3个时,可以包括2个LC串联电路,在第一个谐振腔和第二个谐振腔之间连接一个LC串联电路,在第二个谐振腔和第三个谐振腔之间连接一个LC串联电路。另外,为了降低电路所占面积,降低成本,也可以只包括一个LC串联电路,该LC串联电路的连接位置不作具体限定,具体可以连接在任意两个谐振腔之间。在一种可能的实现方式中,LC串联电路可以连接在电压较高的两个谐振腔之间,即连接在靠近高压侧的两个谐振腔之间。由于高压侧的谐振腔中的谐振电感承受的反向电压较高,对应的开关的结电容在充放电时,电荷容易充不满或者放不彻底。
对于降压变换器,输出电容和N个电容串联后连接所述变换器的两个输入端之间,所述输出电容连接所述变换器的两个输出端之间;变换器的两个输入端连接直流电源的两端;变换器,用于将所述直流电源的电压降压后输出。
对于升压变换器,输出电容和所述N个电容串联后连接所述变换器的两个输出端之间,所述输出电容连接所述变换器的两个输入端之间;所述变换器的两个输入端连接直流电源的两端;变换器,用于将所述直流电源的电压升压后输出。
本申请实施例不具体限定谐振开关电容DC/DC变换器为升压变换器还是降压变换器,即输入端和输出端可以互换,而且也可以实现能量的双向流动。
为了方便理解,首先介绍M和N相等的场景。
如图4所示,以N为3,M为3为例进行介绍,即M和N相等,且N个谐振开关电容组分别与M个电容一一对应,即一个谐振开关电容组对应一个电容。对于这种情况的变换器,N等于M时,变换器的电压变比倍数为N+1,即图4对应的电压变比为4。本领域技术人员可以根据实际需求来设置谐振电容组的数量以及电容的数量。
具体地,每个谐振开关电容组的两个输入端分别连接对应的电容的两端,每个谐振开关电容组的两个输出端连接输出电容的两端。
每个谐振开关电容组包括至少以下四个开关:第一开关、第二开关、第三开关和第四开关;第一开关的第一端连接对应的电容的第一端,第二开关的第一端连接对应的电容的第二端;第一开关的第二端连接第三开关的第一端,第二开关的第二端连接第四开关的第一端;谐振电容和谐振电感串联后连接在第一开关的第二端和第二开关的第二端;第三开关的第二端连接输出电容的第二端,第四开关的第二端连接输出电容的第一端。具体可以参见图2对应的一个谐振开关电容组中各个内部器件的连接关系的描述。
本申请实施例不具体限定LC串联电路连接在任意两个谐振开关电容组的具体位置,可以至少包括以下两种连接方式:
第一种:
LC串联电路的第一端连接其中一个谐振开关电容组中的第一开关管的第二端,LC串联电路的第二端连接另一个谐振开关电容组中的第一开关管的第二端。
第二种:
LC串联电路的第一端连接其中一个谐振开关电容组中的第二开关管的第二端,LC串联电路的第二端连接另一个谐振开关电容组中的第二开关管的第二端。
图4与图2的区别是在第一谐振开关电容组和第二谐振开关电容组之间增加了LC串联电路,即第一电感Lz和第一电容Cz形成了LC串联电路。图3其他部分的连接关系与图4相同,在此不再赘述。
其中Lz的第一端连接第一谐振开关电容组中第一开关Q1_1的第二端,Lz的第二端连接Cz的第一端,Cz的第二端连接第二谐振开关电容组中第一开关Q2_1的第二端。
本申请实施例中具体不限定,Lz与各个谐振电容组中的谐振电感的大小关系,在一种可能的实现方式中,第一电感Lz的感值可以大于谐振电感的感值,例如图4中的 Lz大于Lr1,Lz大于Lr2。Lz的感值越大,则软开关的效果越好。Lz大于Lr1的倍数可以根据需要来设置,例如Lz与Lr1的比值可以大于10,同理,Lz与Lr2的比值也可以大于10。
另外,本申请实施例也不具体限定,LC串联电路中的第一电容的容值与各个谐振开关电容组中的谐振电容的容值的大小关系,在一种可行的实现方式中,第一电容Cz可以选择大于谐振电容的容值,例如Cz的容值大于Cr1的容值。
图4所示的Lz和Cz串联在第一谐振开关电容组的高压侧A和第二谐振开关电容组的高压侧C,更有利于谐振开关电容组中的开关实现软开关。如图所示,第一谐振开关电容组的A点比B点的电压高,同理,第二谐振开关电容组的C点比D点的电压高。由于高压侧的电压更高,开关的结电容更需要外加的Lz来强制对其充放电,进而实现开关的软开关。即,第一谐振开关电容组中的Q1_1和Q1_3,第二谐振开关电容组中的Q2_1和Q2_3。
下面结合图分析LC串联电路实现软开关的工作原理。
当Q1_1和Q1_2导通时,A点电位比C点电位高。Q1_1关断时,A点的电流经过Lz和Cz流向C点。Lz具有保持电流的功能,因此,为了维持住从A点向C点的电流,会从Q1_1和Q1_3的结电容抽取电流,进而使Q1_1和Q1_3的结电容放电,Q1_1和Q1_3相当于并联。此时,A点的电流不从Cr1抽取电流,因为A点的电流是流向B点的。当A点的电位逐渐下降到与Vout相等时,此时对于Q1_3来说,其两端的电压相等,此时闭合Q1_3,使Q1_3真正实现软开关。
以上介绍的是Q1_3闭合的过程,下面介绍Q1_1闭合的过程。
由于第一谐振腔和第二谐振腔对应的驱动脉冲信号可以错相。Q2_1导通时,C点电位比A点电位高,Q3_1断开时,C点电流经过Lz和Cz流向A点。此时给Q3_1的结电容充电,A点的电压升高,当A点的电压升高到与Vin相等时,即Q1_1两端的电压相等时Q1_1才打开,使Q1_1真正实现软开关。
本申请实施例中不具体限定各个谐振开关电容组中开关的驱动信号的时序,例如,各个谐振开关电容组中的对应开关同步动作,即各个谐振开关电容组对应的驱动信号同步。即针对所有的谐振开关电容组:第一开关和所述第二开关同步动作,第三开关和所述第四开关同步动作。即每个所述谐振开关电容组的驱动信号的相位均相同。以上仅是举例说明,例如针对同一个谐振开关电容组,第一开关的驱动信号和第二开关的驱动信号可以存在相位差,例如第一开关先导通,第二开关后导通。
以上介绍的是所有谐振开关电容组中对应的开关的驱动信号均同相位,例如,三个谐振开关电容组中的第一开关的驱动信号同相位、第二开关的驱动信号同相位、第三开关的驱动信号同相位、第四开关的驱动信号同相位。
在另外一种实现方式中,每个谐振开关电容组的驱动信号的相位可以错相预设角度,例如,图4中的Q1_1、Q2_1和Q3_1对应的驱动信号依次错相预设角度,即每个谐振开关电容组中的第一开关的驱动信号并不同相位。
图4所示的LC串联电路连接在第一谐振开关电容组和第二谐振开关电容组,下面 介绍LC串联电路连接在第二谐振开关电容组和第三谐振开关电容组的情况。
参见图5,该图为本申请实施例提供的另一种谐振开关电容DC/DC变换器的示意图。
图5与图4的区别是,图5中的Lz的第一端连接第二谐振开关电容组中第一开关Q2_1的第二端C,Lz的第二端连接Cz的第一端,Cz的第二端连接第三谐振开关电容组中第一开关Q3_1的第二端E。
图5其他部分的连接关系与图4和图2相同,在此不再赘述。其中,图4对应的部分描述的工作原理和优点同样适用于图5对应的实施例。
图5中,对于第二谐振开关电容组,C点的电压高于D点的电压。同理对于第三谐振开关电容组,E点的电压高于F点的电压。
下面介绍LC串联电路连接在第一谐振开关电容组和第三谐振开关电容组的情况。
参见图6,该图为本申请实施例提供的又一种谐振开关电容DC/DC变换器的示意图。
图6与图4的区别是,图6中的Lz的第一端连接第一谐振开关电容组中第一开关Q1_1的第二端A,Lz的第二端连接Cz的第一端,Cz的第二端连接第三谐振开关电容组中第一开关Q3_1的第二端E。
图6其他部分的连接关系与图4和图2相同,在此不再赘述。其中,图4对应的部分描述的工作原理和优点同样适用于图6对应的实施例。
图6中,对于第一谐振开关电容组,A点的电压高于B点的电压。同理对于第三谐振开关电容组,E点的电压高于F点的电压。
以上图4-图6中的LC串联电路均是连接在任意两个谐振开关电容组的高压侧,下面介绍LC串联电路连接在任意两个谐振开关电容组的低压侧的实现方式。
参见图7,该图为本申请实施例提供的再一种谐振开关电容DC/DC变换器的示意图。
图7所示的变换器中LC串联电路连接在第一谐振开关电容组的低压侧和第二谐振开关电容组的低压侧。其中,图7中Lz的第一端连接第一谐振开关电容组中第二开关Q1_2的第二端B,Lz的第二端连接Cz的第一端,Cz的第二端连接第二谐振开关电容组中第二开关Q2_2的第二端D。
下面介绍LC串联电路连接在第一谐振开关电容组的低压侧和第三谐振开关电容组的低压侧的情况。参见图8,该图为本申请实施例提供的又一种谐振开关电容DC/DC变换器的示意图。
其中,图8中Lz的第一端连接第一谐振开关电容组中第二开关Q1_2的第二端B,Lz的第二端连接Cz的第一端,Cz的第二端连接第三谐振开关电容组中第二开关Q3_2的第二端F。
下面介绍LC串联电路连接在第二谐振开关电容组的低压侧和第三谐振开关电容组的低压侧的情况。参见图9,该图为本申请实施例提供的又一种谐振开关电容DC/DC变换器的示意图。
其中,图9中Lz的第一端连接第二谐振开关电容组中第二开关Q2_2的第二端D,Lz的第二端连接Cz的第一端,Cz的第二端连接第三谐振开关电容组中第二开关Q3_2的第二 端F。
以上图7-图9介绍的是LC串联电路连接在任意两个谐振开关电容组的低压侧的情况,另外,LC串联电路的一端可以连接在其中一个谐振开关电容组的高压侧,LC串联电路的另一端可以连接另一个谐振开关电容组的低压侧,即混合连接的情况,下面结合附图进行详细介绍。
参见图10,该图为本申请实施例提供的另一种谐振开关电容DC/DC变换器的示意图。
图10所示的是LC串联电路连接在第一谐振开关电容组和第二谐振开关电容组之间,具体地,Lz的第一端连接第一谐振开关电容组中的第一开关Q1_1的第二端A,Cz的第二端连接第二谐振开关电容组中第二开关Q2_2的第二端D。即LC串联电路连接的是第一谐振开关电容组的高压侧和第二谐振开关电容组的低压侧。也可以颠倒,即LC串联电路连接在第一谐振开关电容组的低压侧和第二谐振开关电容组的高压侧。
下面结合图11介绍另一种混合连接的实现方式。
参见图11,该图为本申请实施例提供的再一种谐振开关电容DC/DC变换器的示意图。
图11所示的是LC串联电路连接在第一谐振开关电容组和第三谐振开关电容组之间,具体地,Lz的第一端连接第一谐振开关电容组中的第一开关Q1_1的第二端A,Cz的第二端连接第三谐振开关电容组中第二开关Q3_2的第二端F。即LC串联电路连接的是第一谐振开关电容组的高压侧和第三谐振开关电容组的低压侧。也可以颠倒,即LC串联电路连接的是第一谐振开关电容组的低压侧和第三谐振开关电容组的高压侧。
应该理解,LC串联电路也可以连接在第二谐振开关电容组低压侧和第三开关电容组的高压侧之间,同理,也可以连接在第二谐振开关电容组高压侧和第三开关电容组的低压侧之间,在此不再一一举例说明。
以上的示意图均是以3个谐振开关电容组为例进行的介绍,即N为3,N也可以为其他整数,下面介绍N为2的情况。
参见图12,该图为本申请实施例提供的又一种谐振开关电容DC/DC变换器的示意图。
从图12可以看出,该谐振开关电容DC/DC变换器包括2个谐振开关电容组,其中第一谐振开关电容组对应第一电容C1,第二谐振开关电容组对应第二电容C2。
图12所示的是LC串联电路连接在第一谐振开关电容组和第二谐振开关电容组之间,具体地,Lz的第一端连接第一谐振开关电容组中的第一开关Q1_1的第二端A,Cz的第二端连接第二谐振开关电容组中第一开关Q2_1的第二端C。即LC串联电路的两端分别连接的是第一谐振开关电容组的高压侧和第二谐振开关电容组的高压侧。
图12的工作原理,也可以参见图4对应的文字部分的描述,区别仅是图12比图4少了一个谐振开关电容组,电压变比为3:1,而图4为4:1。其他均相同,在此不再赘述。
需要说明的是,本申请中LC串联电路中的第一电感在实际产品中可以为一个,也可以为多个,个数不作限定。同理LC串联电路中的第一电容在实际产品中也可以为一个,也可以为多个,个数不作限定。
以上的示意图均是以一个谐振开关电容组对应一个电容为例进行的说明,即M和N相等,谐振开关电容组和电容为一一对应的关系,并且这种情况对应的电压变比为N+1。
下面介绍至少一个谐振开关电容组对应多个串联在一起的电容的情况,此种情况与以上介绍的有所区别,通过改变谐振开关电容组与对应的电容的连接关系,从而改变变换器的电压变比。例如,增大电压变比,而不用增加谐振开关电容组的个数,从而节省硬件电路,节省整个变换器所占的电路板面积,节省成本。
下面继续以三个谐振开关电容组为例进行介绍,但是对应的变换器的电压变比不是4:1了。
参见图13,该图为本申请实施例提供的另一种谐振开关电容DC/DC变换器的示意图。
N个谐振开关电容组至少包括第一类谐振电容组和第二类谐振开关电容组;
第一类谐振开关电容组对应所述M个电容中至少两个串联的电容;所述第一类谐振开关电容组的两个输入端分别连接所述至少两个串联的电容的两端;即第一类谐振开关电容组对应的电容是多个电容串联在一起,不具体限定串联的电容的个数。
第二类谐振开关电容组对应所述M个电容中的一个电容,所述第二类谐振开关电容组的两个输入端分别连接对应的所述M个电容中的一个电容的两端。即第二类谐振开关电容组中的每个谐振开关电容组还是与电容一一对应。
一个变换器中可以包括多个第一类谐振开关电容组,也可以包括多个第二类谐振开关电容组,对于具体数目均不作具体限定。
图13所示的谐振开关电容DC/DC变换器的电压变比为5:1。
图13中第一谐振开关电容组中第三开关Q1_3的第二端并不是连接Cout的第一端,而是连接C3的第一端。
另外,还可以改变其他谐振开关电容组中第三开关的第二端的连接位置,下面介绍图14介绍另一种实现方式。
参见图14,该图为本申请实施例提供的再一种谐振开关电容DC/DC变换器的示意图。
图14所示的谐振开关电容DC/DC变换器的电压变比为5:1。
图14中第二谐振开关电容组中第三开关Q2_3的第二端并不是连接Cout的第一端,而是连接C3的第一端。
以上各个实施例介绍的均是谐振开关电容DC/DC变换器中包括一个LC串联电路的实现方式,本申请具体不限定一个谐振开关电容DC/DC变换器中包括的LC串联电路的个数,下面结合附图介绍,谐振开关电容DC/DC变换器中包括两个LC串联电路的实现方式。
参见图15,该图为本申请实施例提供的又一种谐振开关电容DC/DC变换器的示意图。
本实施例中继续以谐振开关电容DC/DC变换器中包括三个谐振开关电容组为例进行介绍。
本实施例提供的谐振开关电容DC/DC变换器中包括至少两个LC串联电路,其中第一LC串联电路(Lz1和Cz1)连接在第一谐振开关电容组的高压侧和第二谐振开关电容组的高压侧之间,第二LC串联电路(Lz2和Cz2)连接在第二谐振开关电容组的高压侧和第三谐振开关电容组的高压侧之间。
如图15所示,Lz1的第一端连接第一谐振开关电容组中的第一开关Q1_1的第二端A,Lz1的第二端连接Cz1的第一端,Cz1的第二端连接第二谐振开关电容组中第一开关Q2_1 的第二端C。
Lz2的第一端连接第二谐振开关电容组中的第一开关Q2_1的第二端C,Lz2的第二端连接Cz2的第一端,Cz2的第二端连接第三谐振开关电容组中第一开关Q3_1的第二端E。
图15中仅是示意性说明两个LC串联电路的连接位置,另外,也可以为其他连接关系。例如,第二LC串联电路也可以连接在第一谐振开关电容组与第三谐振开关电容组之间。
另外,谐振开关电容DC/DC变换器中也可以包括三个LC串联电路,例如,第一谐振开关电容组和第二谐振开关电容组之间连接一个LC串联电路,第一谐振开关电容组和第三谐振开关电容组之间连接一个LC串联电路,第二谐振开关电容组和第三谐振开关电容组之间连接一个LC串联电路。
基于以上实施例提供的一种谐振开关电容DC/DC变换器,本申请实施例还提供一种电源系统,下面结合附图进行详细介绍。
参见图16,该图为本申请实施例提供的一种电源系统的示意图。
本申请实施例提供的电源系统包括:整流器1601和以上实施例介绍的谐振开关电容DC/DC变换器1602。
整流器1601的输入端用于连接交流电源,用于将所述交流电源输出的交流电压转换为直流电压;
谐振开关电容DC/DC变换器1602的输入端连接整流器1601的输出端,用于将所述整流器1601输出的直流电压变压后输出。
在整流器1601和谐振开关电容DC/DC变换器1602之间还可以包括其他的降压电路,即将整流器1601的输出电压降压到谐振开关电容DC/DC变换器1602可以承受的输入电压范围内。
可以理解的是,谐振开关电容DC/DC变换器1602可以为升压变换器,也可以为降压变换器,例如可以作为降压变换器,将48V降低为12V,提供给后级电路或者负载。
由于本申请实施例提供的电源系统中包括以上实施例介绍的谐振开关电容DC/DC变换器1602,其中,谐振开关电容DC/DC变换器1602中的开关可以真正实现软开关,从而降低在工作过程中的开关损耗,进而降低整个变换器的功耗,提高变换器的电能转换效率,进而可以提高该电源系统的供电效率。
参见图17,该图为本申请实施例提供的另一种电源系统的示意图。
本实施例提供的电源系统,还可以在谐振开关电容DC/DC变换器1602的后级还包括一级:降压稳压电路1701;
降压稳压电路1701的输入端连接谐振开关电容DC/DC变换器1602的输出端,用于将谐振开关电容DC/DC变换器输出的电压进行降压后输出稳定的电压。
例如,谐振开关电容DC/DC变换器1602将48V的直流电压降低为12V的直流电压,降压稳压电路1701将12V的直流电压再进行降压和稳压,例如输出稳定的5V、3.3V等。一种可能的实现方式中,降压稳压电路1701可以采用闭环降压电路来实现,由于可以闭环控制其输出电压,因此,可以实现稳定电压的输出,使输出电压可控。
图17介绍的电源系统是在谐振开关电容DC/DC变换器1602的后级连接一级稳压功能 的电路,由于谐振开关电容DC/DC变换器1602为开环变换器,因此,无法保证输出的电压的稳定性。除了图17的方案以外,还可以采用在谐振开关电容DC/DC变换器1602的前一级增加具有稳压功能的电路,下面结合图18进行详细介绍。
参见图18,该图为本申请实施例提供的又一种电源系统的示意图。
本实施例提供的电源系统还包括:稳压电路1801;
稳压电路1801连接在整流器1601和谐振开关电容直流/直流变换器1602之间,用于将整流器1601输出的直流电压稳压后提供给谐振开关电容直流/直流变换器1602的输入端。
由于稳压电路1801具有稳压功能,其输出电压是很稳定的电压,即相当于谐振开关电容直流/直流变换器1602的输入电压很稳定,因此,该电源系统可以保证谐振开关电容直流/直流变换器1602的输出电压也很稳定,直接为负载提供电源。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种谐振开关电容直流/直流变换器,其特征在于,包括:N个谐振开关电容组、M个电容和至少一个LC串联电路;所述N为大于等于2的整数;所述M为小于等于N的整数;所述LC串联电路包括串联的第一电感和第一电容;
    每个所述谐振开关电容组包括:开关和谐振电路;所述谐振电路至少包括谐振电感和谐振电容;
    所述LC串联电路的两端分别连接两个不同的所述谐振开关电容组中的所述谐振电路。
  2. 根据权利要求1所述的变换器,其特征在于,所述M等于所述N,所述N个谐振开关电容组分别与所述M个电容一一对应;
    每个所述谐振开关电容组的两个输入端分别连接对应的所述电容的两端,每个所述谐振开关电容组的两个输出端分别连接输出电容的两端。
  3. 根据权利要求1所述的变换器,其特征在于,所述N个谐振开关电容组至少包括第一类谐振电容组和第二类谐振开关电容组;
    所述第一类谐振开关电容组对应所述M个电容中至少两个串联的电容;所述第一类谐振开关电容组的两个输入端分别连接所述至少两个串联的电容的两端;
    所述第二类谐振开关电容组对应所述M个电容中的一个电容,所述第二类谐振开关电容组的两个输入端分别连接对应的所述M个电容中的一个电容的两端。
  4. 根据权利要求2或3所述的变换器,其特征在于,所述输出电容和所述N个电容串联后连接所述变换器的两个输入端之间,所述输出电容连接在所述变换器的两个输出端之间;
    所述变换器的两个输入端连接直流电源的两端;
    所述变换器,用于将所述直流电源的电压降压后输出。
  5. 根据权利要求2或3所述的变换器,其特征在于,所述输出电容和所述N个电容串联后连接所述变换器的两个输出端之间,所述输出电容连接在所述变换器的两个输入端之间;
    所述变换器的两个输入端连接直流电源的两端;
    所述变换器,用于将所述直流电源的电压升压后输出。
  6. 根据权利要求1-5任一项所述的变换器,其特征在于,每个所述谐振开关电容组包括以下至少四个开关:第一开关、第二开关、第三开关和第四开关;
    所述第一开关的第一端连接该谐振开关电容组对应的电容的第一端,所述第二开关的第一端连接该谐振开关电容组对应的电容的第二端;
    所述第一开关的第二端连接所述第三开关的第一端,所述第二开关的第二端连接所述第四开关的第一端;
    所述谐振电容和所述谐振电感串联后连接在所述第一开关的第二端和所述第二开关的第二端;
    所述第三开关的第二端连接所述输出电容的第二端,所述第四开关的第二端连接所述输出电容的第一端。
  7. 根据权利要求6所述的变换器,其特征在于,所述LC串联电路的第一端连接其中一个所述谐振开关电容组中的第一开关管的第二端,所述LC串联电路的第二端连接另一个所述谐振开关电容组中的第一开关管的第二端。
  8. 根据权利要求6所述的变换器,其特征在于,所述LC串联电路的第一端连接其中一个所述谐振开关电容组中的第二开关管的第二端,所述LC串联电路的第二端连接另一个所述谐振开关电容组中的第二开关管的第二端。
  9. 根据权利要求6-8任一项所述的变换器,其特征在于,所述第一开关和所述第二开关同步动作,所述第三开关和所述第四开关同步动作。
  10. 根据权利要求1-9任一项所述的变换器,其特征在于,每个所述谐振开关电容组对应的驱动信号的相位均相同。
  11. 根据权利要求1-9任一项所述的变换器,其特征在于,每个所述谐振开关电容组对应的驱动信号的相位错相预设角度。
  12. 根据权利要求1-11任一项所述的变换器,其特征在于,所述第一电感的感值大于所述谐振电感的感值。
  13. 根据权利要求12所述的变换器,其特征在于,所述第一电容的容值大于所述谐振电容的容值。
  14. 根据权利要求2所述的变换器,其特征在于,所述N等于所述M时,所述变换器的电压变比倍数为N+1。
  15. 一种电源系统,其特征在于,包括:整流器和权利要求1-15任一项所述的谐振开关电容直流/直流变换器;
    所述整流器的输入端用于连接交流电源,用于将所述交流电源输出的交流电压转换为直流电压;
    所述谐振开关电容直流/直流变换器的输入端连接所述整流器的输出端,用于将所述整流器输出的直流电压变压后输出。
  16. 根据权利要求15所述的电源系统,其特征在于,还包括:降压稳压电路;
    所述降压稳压电路的输入端连接所述谐振开关电容直流/直流变换器的输出端,用于将所述谐振开关电容直流/直流变换器输出的电压进行降压后输出稳定的电压。
  17. 根据权利要求15所述电源系统,其特征在于,还包括:稳压电路;
    所述稳压电路连接在所述整流器和所述谐振开关电容直流/直流变换器之间,用于将所述整流器输出的直流电压稳压后提供给所述谐振开关电容直流/直流变换器。
PCT/CN2020/132088 2020-11-27 2020-11-27 谐振开关电容直流/直流变换器及电源系统 WO2022109983A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/132088 WO2022109983A1 (zh) 2020-11-27 2020-11-27 谐振开关电容直流/直流变换器及电源系统
CN202080011409.7A CN114830516A (zh) 2020-11-27 2020-11-27 谐振开关电容直流/直流变换器及电源系统
EP20962874.2A EP4243265A4 (en) 2020-11-27 2020-11-27 RESONANT SWITCHED CAPACITOR DC/DC CONVERTER AND POWER SUPPLY SYSTEM
US18/324,207 US20230299669A1 (en) 2020-11-27 2023-05-26 Resonant switched capacitor direct current/direct current converter and power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132088 WO2022109983A1 (zh) 2020-11-27 2020-11-27 谐振开关电容直流/直流变换器及电源系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/324,207 Continuation US20230299669A1 (en) 2020-11-27 2023-05-26 Resonant switched capacitor direct current/direct current converter and power system

Publications (1)

Publication Number Publication Date
WO2022109983A1 true WO2022109983A1 (zh) 2022-06-02

Family

ID=81755129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132088 WO2022109983A1 (zh) 2020-11-27 2020-11-27 谐振开关电容直流/直流变换器及电源系统

Country Status (4)

Country Link
US (1) US20230299669A1 (zh)
EP (1) EP4243265A4 (zh)
CN (1) CN114830516A (zh)
WO (1) WO2022109983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220302831A1 (en) * 2018-01-23 2022-09-22 Huawei Digital Power Technologies Co., Ltd. Power converter used in a renewable energy device such as a photo-voltaic device or a wind energy device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286694A (zh) * 2007-04-12 2008-10-15 三菱电机株式会社 Dc/dc电力变换装置
EP2863529A1 (en) * 2013-10-15 2015-04-22 Huawei Technologies Co., Ltd. DC/DC switch mode converter with input voltage selection and LC tanks for resonant boosting and method of operation
CN105006964A (zh) * 2015-07-02 2015-10-28 北京交通大学 一种多电平均压谐振零电流软开关dc-dc变换器
CN109980932A (zh) * 2017-12-20 2019-07-05 英飞凌科技奥地利有限公司 开关电容器转换器和用于提供开关电容器转换器的方法
CN111164869A (zh) * 2018-01-23 2020-05-15 华为技术有限公司 功率转换器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047374A2 (en) * 2006-10-20 2008-04-24 Itamar Levin Switched resonant-tank, cell based power converter
WO2015120023A1 (en) * 2014-02-04 2015-08-13 The Trustees Of Dartmouth College System and method for reducing power loss in switched-capacitor power converters
US10651731B1 (en) * 2019-01-31 2020-05-12 Infineon Technologies Austria Ag Zero voltage switching of interleaved switched-capacitor converters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286694A (zh) * 2007-04-12 2008-10-15 三菱电机株式会社 Dc/dc电力变换装置
EP2863529A1 (en) * 2013-10-15 2015-04-22 Huawei Technologies Co., Ltd. DC/DC switch mode converter with input voltage selection and LC tanks for resonant boosting and method of operation
CN105006964A (zh) * 2015-07-02 2015-10-28 北京交通大学 一种多电平均压谐振零电流软开关dc-dc变换器
CN109980932A (zh) * 2017-12-20 2019-07-05 英飞凌科技奥地利有限公司 开关电容器转换器和用于提供开关电容器转换器的方法
CN111164869A (zh) * 2018-01-23 2020-05-15 华为技术有限公司 功率转换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4243265A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220302831A1 (en) * 2018-01-23 2022-09-22 Huawei Digital Power Technologies Co., Ltd. Power converter used in a renewable energy device such as a photo-voltaic device or a wind energy device
US11652408B2 (en) * 2018-01-23 2023-05-16 Huawei Digital Power Technologies Co., Ltd. Power converter used in a renewable energy device such as a photo-voltaic device or a wind energy device

Also Published As

Publication number Publication date
CN114830516A (zh) 2022-07-29
EP4243265A4 (en) 2023-12-20
US20230299669A1 (en) 2023-09-21
EP4243265A1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
Forouzesh et al. Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications
US10468965B2 (en) Multi-stage multilevel DC-DC step-down converter
Fardoun et al. Ultra step-up DC–DC converter with reduced switch stress
Zhao et al. Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell
Meraj et al. Interleaved multilevel boost converter with minimal voltage multiplier components for high-voltage step-up applications
WO2022062425A1 (zh) 一种开关电容型直流/直流变换器、开关电源及控制方法
CN110212764B (zh) 一种适用于数据中心电压调节模块的非隔离直流斩波电路
US20210391786A1 (en) Power Converter
US11362576B1 (en) Power converter with multiple output voltages
WO2021027468A1 (zh) 一种直流-直流变换电路
Hardy et al. 8.3 a 10.9 W 93.4%-efficient (27W 97%-Efficient) flying-inductor hybrid DC-DC converter suitable for 1-Cell (2-Cell) battery charging applications
Luo Switched-capacitorized DC/DC converters
Choi et al. Design of high step-down ratio isolated three-level half-bridge DC–DC converter with balanced voltage on flying capacitor
WO2022109983A1 (zh) 谐振开关电容直流/直流变换器及电源系统
Liu et al. A MHz regulated DC transformer with wide voltage range
US20230155495A1 (en) Biphasic dickson switched capacitor converter
Zhu et al. Development of voltage lift technique on double-output transformerless DC-DC converter
WO2023206953A1 (zh) 多参考电平宽范围增益调节高变比dc/dc变换器
WO2023274236A1 (zh) 电压变换电路和电子设备
Yang et al. High frequency and high power density bipolar DC–DC converter with GaN HEMT
Gohari et al. Family of interleaved high step-up DC-DC converters utilizing multi-winding coupled inductors
CN110729887B (zh) 一种电源管理架构及应用于该电源管理架构的升压变换器
US20230155491A1 (en) Switched capacitor converter
US20230361679A1 (en) Partial power converters and split partial power conversion
US20230155493A1 (en) Cascade switched capacitor converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020962874

Country of ref document: EP

Effective date: 20230607

NENP Non-entry into the national phase

Ref country code: DE