WO2022062425A1 - 一种开关电容型直流/直流变换器、开关电源及控制方法 - Google Patents

一种开关电容型直流/直流变换器、开关电源及控制方法 Download PDF

Info

Publication number
WO2022062425A1
WO2022062425A1 PCT/CN2021/093559 CN2021093559W WO2022062425A1 WO 2022062425 A1 WO2022062425 A1 WO 2022062425A1 CN 2021093559 W CN2021093559 W CN 2021093559W WO 2022062425 A1 WO2022062425 A1 WO 2022062425A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
switched capacitor
switch tube
voltage
switch
Prior art date
Application number
PCT/CN2021/093559
Other languages
English (en)
French (fr)
Inventor
何正言
程杰斌
谌海涛
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP21870812.1A priority Critical patent/EP4207570A4/en
Publication of WO2022062425A1 publication Critical patent/WO2022062425A1/zh
Priority to US18/186,482 priority patent/US20230231480A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/072Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps adapted to generate an output voltage whose value is lower than the input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the technical field, and in particular, to a switched capacitor DC/DC DC/DC converter, a switching power supply and a control method.
  • switching power supplies are widely used in various electrical equipment to provide electrical equipment with electrical energy that meets the requirements.
  • the power supply voltage of service boards is generally 48V.
  • the power supply voltage of the chips and various loads inside the service board needs to be lower than 48V, that is, the power supply voltage of the service board 48V cannot directly supply power to the chips and various loads, and generally needs to go through at least two levels of step-down processing.
  • the first step is to step down 48V to 12V
  • the second step is to step down 12V to 5V, 3.3V and 1.8V to supply power to the chip and various loads.
  • the DC/DC DC/DC converter used in the first-stage step-down generally adopts an isolated topology, such as an LLC resonant DC/DC converter, see Figure 1, which is a full-bridge LLC resonant DC/DC converter schematic diagram.
  • the voltage of the DC power supply DC connected to the input end of the full-bridge circuit can be 48V, which is input to the primary winding of the transformer through the LLC resonant circuit (resonant inductance Lr, resonant capacitor Cr and excitation inductance Lm), and the secondary winding of the transformer is connected to the rectifier circuit.
  • the rectifier circuit outputs a DC voltage of 12V to supply power to the load R, or the output voltage of 12V goes through the second-stage step-down circuit to continue to step down and then supply power to the chip or other loads.
  • the capacitor C at the output end is a filter capacitor.
  • the main disadvantage of the DC/DC converter shown in Figure 1 is that it includes the transformer T. Since the transformer T needs to include the primary winding, the secondary winding and the magnetic core, the volume is small, so the volume of the power supply is large and the thickness is difficult to thin. In order to Reducing the size can only be achieved by increasing the switching frequency, but increasing the switching frequency will increase the function and reduce the power efficiency. Generally, in the implementation, the primary winding and the secondary winding of the transformer need to be coupled, and there is repeated coupling current, which needs to occupy more PCB area to pass the current, which limits the reduction of the power supply area.
  • the present application provides a switched capacitor DC/DC DC/DC converter, a switching power supply and a control method, which can realize voltage transformation, that is, step-down or step-up, and does not include a transformer inside, which can Reduce the volume of the entire transformer.
  • the switched capacitor DC/DC DC/DC converter provided in the embodiment of the present application can be applied to a switching power supply, that is, a converter inside the switching power supply.
  • the input of the DC/DC converter is a DC voltage, and its output is also a DC voltage.
  • the switched-capacitor DC/DC converter provided in the embodiment of the present application can be used as a bidirectional DC/DC converter, which can realize both step-down from left to right and step-up from right to left.
  • the embodiments of the present application do not specifically limit the application scenarios of the switching power supply, such as various application scenarios that require switching power supplies, such as servers, communication base stations, and photovoltaic equipment.
  • the switching power supply can finally output the voltage required by the load such as a chip or a control circuit.
  • An embodiment of the present application provides a switched capacitor type DC/DC DC/DC converter, including: a controllable switch and n switched capacitor modules; the n is an integer greater than or equal to 1; the first end of the controllable switch is the The high-voltage end of the converter, the n switched capacitor modules are connected in series to form a transformer branch, the first end of the transformer branch is connected to the second end of the controllable switch, and the The second end is the low voltage end of the converter; each of the switched capacitor modules includes: a first switch tube, a second switch tube, a third switch tube and a capacitor; the first end of the first switch tube is connected to the first switch tube A node, the second end of the first switch is connected to the second node, the first end of the second switch is connected to the second node, and the second end of the second switch passes through the third The switch is grounded; the first end of the capacitor is connected to the first node, and the second end of the capacitor is connected to the second end of the second switch tube; the first switch tube and
  • each of the switched capacitor modules further includes: an inductor; the inductor is connected in series with the capacitor and is connected to the first node and the second end of the second switch tube.
  • the inductance can be set only in the odd-numbered switched capacitor module, that is, the inductance is further included : (n+1)/2 inductances; from the high-voltage end to the low-voltage end, the numbers of all the switched capacitor modules are sequentially numbered, and the capacitors in the odd-numbered switched capacitor modules are connected in series with inductances; the inductance and all The capacitor is connected in series between the first node and the second end of the second switch tube.
  • the parameters of the inductor can be set to form a series resonance with the capacitor, that is, the inductor and the capacitor A series resonant circuit is formed, and the resonant frequency of the series resonant circuit is equal to the operating frequency of the switched capacitor module.
  • the high-voltage end of the converter provided in this embodiment is connected to the DC power supply, and when the low-voltage end of the converter is the output end, the converter is a step-down converter.
  • the specific step-down ratio can be realized by setting the number of switched capacitor modules according to actual needs.
  • the conduction mode of the switched capacitor module includes a charge conduction mode and a discharge conduction mode; the charge conduction mode is that the second switch is turned on, the The first switch tube and the third switch tube are both turned off; the discharge conduction mode is that both the first switch tube and the third switch tube are turned on, and the second switch tube is turned off.
  • the low-voltage end of the converter provided in this embodiment is connected to the DC power supply, and when the high-voltage end of the converter is the output end, the converter is a boost converter.
  • the specific boost ratio can be realized by setting the number of switched capacitor modules according to actual needs.
  • the conduction mode of the switched capacitor module includes a charge conduction module and a discharge conduction mode; the charge conduction mode is that both the first switch tube and the third switch tube are turned on, and the first switch tube is turned on. The two switches are disconnected; the discharge conduction mode is that the second switch is turned on, and both the first switch and the third switch are disconnected.
  • the voltages of the capacitors in the three adjacent switched capacitor modules satisfy the following relationship:
  • Vc(n-2) Vc(n-1)+Vcn;
  • the realized step-down or step-up ratio is different, for example, when the n is 1, the voltage ratio between the high-voltage terminal and the low-voltage terminal is 2: 1.
  • the voltage ratio of the high voltage terminal and the low voltage terminal is 3:1.
  • the voltage ratio of the high voltage terminal and the low voltage terminal is 5:1.
  • the voltage ratio of the high voltage terminal and the low voltage terminal is 8:1.
  • the voltage ratio of the high voltage terminal and the low voltage terminal is 13:1.
  • Increasing the number of switched capacitor modules can also achieve a higher ratio of boost or buck.
  • the converter can be used as a buck converter in the forward direction, and can be used as a boost converter in the reverse direction.
  • the duty cycle intervals of the first switch tube, the second switch tube and the third switch tube are all 40%-60%.
  • Embodiments of the present application further provide a switching power supply, including the switched capacitor DC/DC converter described in the above embodiments; further comprising: a DC power supply; the first end or the second end of the switched capacitor DC/DC converter is used for The DC power supply is connected, and the voltage of the DC power supply is transformed and output; the first end of the switched capacitor DC/DC converter is the first end of the controllable switch, and the second end of the controllable switch is the first end of the controllable switch.
  • the terminal is connected to the first terminal of the transformer branch, and the second terminal of the transformer branch is the second terminal of the switched capacitor DC/DC converter.
  • An open-loop power supply refers to a power supply whose output voltage changes with the change of the input voltage. This power supply does not have the function of independent voltage regulation of the output voltage.
  • the switched capacitor type DC/DC converter when the first end of the switched capacitor type DC/DC converter is connected to the DC power supply, and when the switched capacitor type DC/DC converter is a step-down converter, it further comprises: a voltage regulator module; The second end of the switched capacitor type DC/DC converter is connected to the voltage regulator module; the voltage regulator module is used for providing the voltage after voltage regulation to the load.
  • the voltage regulator module can realize the function of closed-loop voltage regulation for the closed-loop controlled DC/DC conversion circuit, and provide a stable and precise DC voltage to the post-stage load.
  • the embodiments of the present application further provide a control method for the switched capacitor DC/DC converter, which is applied to the switched capacitor DC/DC converter introduced above, including : Send the first drive signal to the first switch tube, and send the second drive signal to the third switch tube, the timing of the first drive signal and the second drive signal are the same; send the third drive signal to the the second switch tube; the conduction state of the second switch tube is complementary to the conduction state of the first switch tube; the conduction state of the first switch tube in the two adjacent switched capacitor modules The state is different; the drive signal output to the controllable switch has the same timing as the third drive signal of the second switch tube in the switched capacitor module connected to the second end of the controllable switch.
  • the switched capacitor DC/DC converter includes a controllable switch and n switched capacitor modules; the first end of the controllable switch is the high voltage terminal of the converter, and the n switched capacitor modules are connected in series to form a transformer branch, the transformer branch The first end of the transformer is connected to the second end of the controllable switch, and the second end of the transformer branch is the low voltage end of the converter.
  • the converter does not include a transformer, but only includes switches and capacitors, which can realize the function of voltage transformation, that is, the input voltage is output after voltage conversion, which can be used as a boost converter, a step-down converter, or a function single converter.
  • the number of switched capacitor modules is different, the ratio of the input voltage to the output voltage is different, and the number of switched capacitor modules can be adjusted according to actual needs to achieve the required voltage transformation ratio. Since the bulky transformer is not included, the volume of the entire converter can be reduced, and it is easy to make the converter thinner, which is beneficial to reduce the overall volume of the switching power supply.
  • FIG. 1 is a schematic diagram of a full-bridge LLC resonant DC/DC converter
  • FIG. 2 is a schematic diagram of a switching power supply provided by an embodiment of the present application.
  • 3A is a structural diagram of a single switched capacitor module provided by an embodiment of the present application.
  • FIG. 3B is a timing diagram of driving signals of three switch tubes according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a DC/DC converter including a switched capacitor module provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a discharge path corresponding to FIG. 4 provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a DC/DC converter including two switched capacitor modules provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of a discharge path corresponding to FIG. 6 provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a DC/DC converter including three switched capacitor modules provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a discharge path corresponding to FIG. 8 provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a DC/DC converter including four switched capacitor modules provided by an embodiment of the present application;
  • FIG. 11 is a schematic diagram of a discharge path corresponding to FIG. 10 provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a DC/DC converter including five switched capacitor modules provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a discharge path corresponding to FIG. 12 provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another switched capacitor DC/DC converter provided by an embodiment of the application.
  • 15 is a schematic diagram of yet another switched capacitor DC/DC converter provided by an embodiment of the application.
  • FIG. 16 is a flowchart of a control method of a switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the switched capacitor DC/DC DC/DC converter provided in the embodiment of the present application can be applied to a switching power supply, that is, a converter inside the switching power supply.
  • a DC/DC converter as its name implies, has a DC voltage as its input and a DC voltage as its output.
  • the switched capacitor DC/DC converter provided by the embodiment of the present application can be used as a bidirectional DC/DC converter, which can realize step-down from left to right and step-up from right to left.
  • the embodiments of the present application do not specifically limit the application scenarios of the switching power supply, such as various application scenarios that require switching power supplies, such as servers, communication base stations, and photovoltaic equipment.
  • the switching power supply can finally output the voltage required by the load such as the chip or the control circuit.
  • the following takes the switched-capacitor DC/DC converter as a step-down converter as an example to introduce.
  • FIG. 2 this figure is a schematic diagram of a switching power supply provided by an embodiment of the present application.
  • the switching power supply provided in the embodiment of the present application can be applied to an AI or a digital center, and can also be applied to a communication power supply, and the specific application scenarios of the switching power supply are not limited.
  • the switching power supply includes a step-down converter 100 and a voltage regulator module 200;
  • the step-down converter 100 is a switched capacitor DC/DC converter, and the specific implementation of the switched capacitor DC/DC converter will be described in detail in subsequent embodiments.
  • the output end of the step-down converter 100 that is, the switched capacitor DC/DC converter, is connected to the input end of the voltage regulator module 200;
  • the output end of the voltage stabilization module 200 is connected to the load for supplying power to the load.
  • the input voltage of the buck converter 100 is 48V
  • the output voltage of the buck converter 100 is 12V
  • the voltage regulator module 200 is used to step down the input voltage of 12V to 5V, 3.3V and 1.8V. Equivalent voltage supplies power to the chip and various loads.
  • the buck converter 100 Since the buck converter 100 is used to step down the input 48V to 12V, the obtained 12V voltage will not directly supply power to the chip, but will be further stepped down through the voltage regulator module 200, that is, the voltage regulator module 200 needs to output The precise voltage meets the power supply requirements of the load.
  • the output 12V voltage can be open-loop controlled, allowing it to be within a certain voltage range, as long as the input voltage range of the voltage regulator module 200 is satisfied. Therefore, for a 12V step-down converter from 48V, it can be designed as an open-loop power supply in AI and data center application scenarios.
  • An open-loop power supply refers to a power supply whose output voltage changes with the input voltage. The power supply does not have the function of independent voltage regulation of the output voltage. For example, the ratio of the input voltage Vin to the output voltage of the buck converter 100 may be 4:1 or 5:1. At the same time, since there is no requirement for insulation withstand voltage between the output voltage and the input voltage, there is no need to force the use of an isolation topology.
  • the step-down converter in the switching power supply provided by the embodiment of the present application can use a switched capacitor DC/DC
  • the converter does not need to be isolated by a transformer. Therefore, the volume of the converter can be reduced to make it thinner and smaller, thereby reducing the volume of the switching power supply to meet the requirements of miniaturization.
  • each switched capacitor module is connected in series, and the transformer branch is connected in series with the controllable switch.
  • FIG. 3A is a schematic diagram of a switched capacitor module provided by an embodiment of the present application.
  • this figure is a schematic diagram of a DC/DC converter including a switched capacitor module according to an embodiment of the present application.
  • the switched capacitor DC/DC converter provided in this embodiment includes: a controllable switch S and n switched capacitor modules; the n is an integer greater than or equal to 1;
  • n 1.
  • the first end of the controllable switch S is the high voltage end of the converter, and the n switched capacitor modules are connected in series to form a transformer branch, the first end of the transformer branch is connected to the second end of the controllable switch S, and the transformer branch
  • the second end of the converter is the low-voltage end of the converter; whether the converter is used as a boost converter or a step-down converter, there are high-voltage and low-voltage ends.
  • the high-voltage terminal is connected to the DC power supply, and the low-voltage terminal is used as the output terminal.
  • the converter is used as a boost converter, the low-voltage end is connected to the DC power supply, and the high-voltage end is used as the output end.
  • the second switch tube Q2 in the switched capacitor module connected in series with the controllable switch is turned on. That is, the switching states of the controllable switch S and Q2 in the adjacent switched capacitor modules are the same, that is, the timing sequences of the corresponding driving signals are the same.
  • the transformer branch includes only one switched capacitor module.
  • each switched capacitor module includes: a first switch transistor Q1A, a second switch transistor Q2, a third switch transistor Q1B and a capacitor C;
  • Each switched capacitor module includes a first terminal and a second terminal, the first terminal is the first node E, and the second terminal is the second node F; when the transformer branch includes only one switched capacitor module, E is the transformer branch The first end of the road, F is the second end of the transformer branch.
  • the first end of the first switch Q1A is connected to the first node E, the second end of the first switch Q1A is connected to the second node F, the first end of the second switch Q2 is connected to the second node F, and the second switch Q2
  • the second end of the capacitor C is connected to the ground through the third switch Q1B; the first end of the capacitor C is connected to the first node E, and the second end of the capacitor C is connected to the second end of the second switch tube Q2;
  • FIG. 3B is a timing diagram of a driving signal of a switch tube in a single switched capacitor module provided by an embodiment of the present application.
  • the timing of the driving signal of Q1A is the same as the timing of the driving signal of Q1B
  • the timing of the driving signal of Q2 is complementary to the timing of the driving signal of Q1A
  • the driving signals of the three switches are accounted for
  • the empty ratio is 50% as an example.
  • FIG. 3B is only a theoretical illustration, which may be different from FIG. 3B in practice.
  • the driving signal of Q1A and the driving signal of Q2 can be complementary.
  • the conduction states of the first switch tube Q1A and the third switch tube Q1B are the same, that is, when the first switch tube Q1A is turned on, the third switch tube Q1B is also turned on, and when the first switch tube Q1A is turned off, the third switch tube Q1A is turned off.
  • the transistor Q1B is also turned off, and the phases of the driving signals of the first switching transistor Q1A and the third switching transistor Q1B can be synchronized, that is, the timing sequences of the driving signal of Q1 and the driving signal of Q1B can be the same.
  • the conduction state of the second switch tube Q2 is complementary to the conduction state of the first switch tube Q1A, that is, when the first switch tube Q1A is turned on, the second switch tube Q2 is not turned on; when the second switch tube Q2 is turned on, the first switch tube Q2 is turned on.
  • a switch tube Q1A is not conducting. That is, Q1A and Q2 are not turned on at the same time.
  • the duty ratios of the driving signals of the first switch transistor Q1A, the second switch transistor Q2 and the third switch transistor Q1B are all 50%;
  • the three-switch Q1B is turned on for half a cycle, during which Q1A is turned on, Q2 is turned off; in the other half cycle, the second switch Q2 is turned on for half a cycle, and Q1A and Q1B are turned off for half a cycle, that is, each switch
  • the duty cycle of the tube is 50%.
  • the duty cycle may be less than 50%.
  • the size of the duty cycle is not specifically limited in the embodiments of this application, such as the first switch tube, the second The value interval or value range of the duty cycle of the switch tube and the third switch tube may be set to 40%-60%. It should be noted that, since the conduction state of the first switch transistor is the same as the conduction state of the third switch transistor, the duty cycle and timing sequence of the driving signals corresponding to the two are the same. Since the conduction state of the first switch tube and the conduction state of the second switch tube are complementary, the duty cycle and timing of the driving signals of the first switch tube and the second switch tube are complementary. For example, if the duty cycle of the first switch tube is 40%, and the dead time is not considered, the duty cycle of the second switch tube is 60%, and the duty ratios of the two are equal to 1.
  • the conduction modes of two adjacent switched capacitor modules are different; different conduction modes refer to different conduction states of the switch tubes at the same position.
  • two adjacent switched capacitor modules are included. The first switch tube is in the on state, then the first switch tube in the second switched capacitor module needs to be controlled to be in the off state, and the other switch tubes are in the on state and so on.
  • FIG. 6 and FIG. 7 are schematic diagrams of a DC/DC converter including two switched capacitor modules according to an embodiment of the present application.
  • the converter includes a first switched capacitor module M1 and a second switched capacitor module M2, wherein the conduction states of the switches in the same positions in M1 and M2 are different, for example, Q2 in M1 conducts When on, Q2 in M2 is off. Since in each switched capacitor module, the conduction state of Q2 is complementary to that of Q1A, therefore, when Q2 in M1 is turned on, Q1A and Q1B in M1 are in an off state, that is, disconnected. When Q2 in M2 is turned off, Q1A and Q1B in M2 are in an on state.
  • the conduction states of the first switch transistor Q1A in the two adjacent switched capacitor modules M1 and M2 are different, because the conduction states of the first switch transistors Q1A and Q1B are the same, and the conduction states of Q1A and Q2 are complementary. Therefore, The conduction state of Q1A is limited, which is equivalent to also limiting the switching states of Q1B and Q2.
  • Vc(n-2) Vc(n-1)+Vcn;
  • Vc(n-2), Vc(n-1) and Vcn are the voltages of the capacitors in the n-2th switch capacitor module from the high voltage end to the low voltage end, and the n-1th The voltage of the capacitor in the switched capacitor module and the voltage of the capacitor in the nth switched capacitor module.
  • the input terminal voltage and output terminal voltage can be substituted into the above formula as the above voltage Vc, which is established as usual.
  • Vin Vc(1)+ Vout
  • Vin Vin is the input voltage of the converter
  • Vout the output voltage of the converter.
  • the above formula can also be applied and still holds true.
  • Vc(n-1) is the voltage of the capacitor in one switched capacitor module included in the converter
  • Vc(n-2) is The voltage of the high-voltage terminal
  • Vcn is the voltage of the low-voltage terminal.
  • the first terminal of Q0 is connected to the DC power supply, that is, the high-voltage terminal is connected to the DC power supply Vin.
  • each switching cycle can refer to the above control.
  • each switch tube is not specifically limited in each embodiment of the present application, and it may be a MOS tube, or an IGBT or a BJT or the like.
  • the high-voltage side and the low-voltage side achieve a 2:1 step-down. It can be understood that when the low-voltage end is connected to the DC power supply and the high-voltage end is the output end, the boost is doubled.
  • the first switched capacitor module M1 and the second switched capacitor module M2 are connected in series to form a transformer branch.
  • each switching cycle may refer to the above control.
  • the first switched capacitor module M1, the second switched capacitor module M2 and the third switched capacitor module M3 are connected in series to form a transformer branch.
  • each switching cycle may refer to the above control.
  • the first switched capacitor module M1, the second switched capacitor module M2, the third switched capacitor module M3 and the fourth switched capacitor module M4 are connected in series to form a voltage transformation branch.
  • each switching cycle may refer to the above control.
  • the first switched capacitor module M1, the second switched capacitor module M2, the third switched capacitor module M3 are connected in series, and the fourth switched capacitor module M4 and the fifth switched capacitor module M5 form a transformer branch.
  • Q0 is turned off
  • Q2 in M1 is turned off
  • both Q1A and Q1B in M1 are turned on
  • Q2 in M2 is turned on
  • both Q1A and Q1B in M2 are turned off.
  • Q1A and Q1B in M3 are closed
  • Q2 in M3 is open
  • Q2 in M4 is closed
  • both Q1A and Q1B in M4 are open
  • both Q1A and Q1B in M5 are open
  • Q2 in M5 is closed.
  • each switching cycle can refer to the above control.
  • n can also be other integers with a value greater than 5.
  • the working principle of the converter is the same as the above. These situations are similar, and will not be repeated here.
  • those skilled in the art can select the value of n according to the specific ratio of the voltage transformation, that is, select the number of switched capacitor modules. When the number of switched capacitor modules connected in series is When the number is larger, the corresponding transformation ratio is larger. For example, when the voltage is reduced, the ratio of the step-down is larger; when the voltage is boosted, the multiple of the step-up is larger.
  • the conduction modes of the switched capacitor module include a charge conduction mode and a discharge conduction mode; the charge conduction mode is the first conduction mode.
  • the two switch tubes are turned on, the first switch tube and the third switch tube are both turned off; the discharge conduction mode is that both the first switch tube and the third switch tube are turned on, and the third switch tube is turned on.
  • the second switch is disconnected.
  • the conduction mode of the switched capacitor module is different from the conduction mode of the switched capacitor module of the buck converter. That is, when the converter is a boost converter, the conduction mode of the switched capacitor module includes a charge conduction module and a discharge conduction mode; the charge conduction mode is the first switch tube and the third conduction mode.
  • the switch tubes are all turned on, and the second switch tube is turned off; the discharge conduction mode is that the second switch tube is turned on, and both the first switch tube and the third switch tube are turned off.
  • the first terminal of Q2 in M5 is connected to the DC power supply, that is, the right side is the power supply terminal, and the left side is the output terminal.
  • the DC power supply connected to the right side charges the capacitor C5 in M5.
  • the switched-capacitor DC/DC converter does not include a transformer inside, but only includes a switch and a capacitor, so that the voltage transformation function can be realized. It can also be used as a step-down converter or a single-function converter.
  • the number of switched capacitor modules is different, the ratio of the input voltage to the output voltage is different, and the number of switched capacitor modules can be adjusted according to actual needs to achieve the required voltage transformation ratio. Since the transformer is not included, the volume of the converter can be reduced, and it is easy to make the converter thinner, which is beneficial to reduce the volume of the switching power supply.
  • an inductor can be added to each switched capacitor module, specifically, it can be added in series with the capacitor.
  • this figure is a schematic diagram of another switched capacitor DC/DC converter provided by an embodiment of the present application.
  • each switched capacitor module further includes an inductor
  • the inductor and the capacitor are connected in series with the first node and the second end of the second switch tube. Since the inductor has the ability to suppress the sudden change of current, as shown in Figure 14, taking M1 as an example to illustrate, the capacitor C1 and the inductor L1 are connected in series, and L1 can suppress the inrush current that the capacitor C1 bears during charging, and protect C1 from being damaged by the inrush current.
  • the operating frequency of the switched capacitor module refers to the frequency of the driving signal of the switch tube. It can be seen from FIG. 3B that the driving signals corresponding to Q1A, Q2 and Q1B have the same period and the same frequency, that is, the operating frequency of a switched capacitor module refers to the frequency corresponding to the driving signal in FIG. 3B .
  • each switched capacitor module includes an inductor as an example.
  • an inductor can also be set in some switched capacitor modules instead of each switched capacitor module. Inductors are set.
  • this figure is a schematic diagram of still another switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the setting method of the inductance is only applicable when n is an odd number.
  • the inductor is connected in series with the capacitor and is connected to the first node and the second end of the second switch;
  • the switched capacitor modules are numbered, and the odd-numbered switched capacitor modules in the transformer branch are numbered.
  • the capacitor is connected in series with the inductance, for example, the inductance is set in the switched capacitor modules numbered 1, 3, 5, 7, 9, etc.
  • the converter Since the converter is a step-up transformer or a step-down converter, one of the leftmost and rightmost is the input end, and the other is the output end. For example, when the converter is a step-down converter, the leftmost side is the input terminal, and the rightmost side is the output terminal. Inductors need to be set in the switched capacitor modules used as the input terminal and the output terminal. Therefore, if the number of inductances needs to be reduced, and the inrush current of the capacitors can be reduced, when n is an odd number, only the inductances can be set in the odd-numbered switched capacitor modules, because, in the adjacent two switched capacitor modules At the same time only one is charging and the other is discharging.
  • the capacitor C1 is connected in series with the inductor L1. Since the inductor has the ability to suppress the sudden change of current, the capacitor C1 and the inductor L1 are connected in series, and L1 can suppress the inrush current that the capacitor C1 bears during charging, and protect C1 from being damaged by the inrush current.
  • the inductor and the capacitor form a series resonant circuit.
  • the operating frequency of the switched capacitor module refers to the frequency of the driving signal of the switch tube. It can be seen from FIG. 3B that the driving signals corresponding to Q1A, Q2 and Q1B have the same period and the same frequency, that is, the operating frequency of a switched capacitor module refers to the frequency corresponding to the driving signal in FIG. 3B .
  • the inductor L1 in the above two embodiments of the present application is only used as a resonant element, not as an energy storage element of the converter, that is, it is different from the winding in the transformer. Therefore, the volume of the converter can be Made smaller and thinner.
  • each switch tube in the embodiments of the present application shows a diode in anti-parallel with the switch tube in the figure, and the diode may not be included, that is, the switch tube may not include the anti-parallel diode. If the switch tube has its own anti-parallel diode, the diode can be reserved, which is not limited in the embodiment of the present application.
  • the embodiments of the present application provide a switching power supply.
  • the switching power supply provided in this embodiment can continue to be shown in FIG. 2, including the switched capacitor DC/DC converter described in any one of the above embodiments; and also includes a DC power supply;
  • the DC power supply can be the output of the previous stage converter, such as a rectifier or other DC/DC converters.
  • the first end or the second end of the switched capacitor type DC/DC converter is used for connecting the DC power source, and the voltage of the DC power source is transformed and output;
  • the first end of the switched capacitor DC/DC converter is the first end of the controllable switch
  • the second end of the controllable switch is connected to the first end of the transformer branch
  • the transformer The second end of the branch is the second end of the switched capacitor DC/DC converter.
  • the switched capacitor DC/DC converter provided in this embodiment is an open-loop converter.
  • a first-stage voltage regulator module can be included.
  • the switched capacitor DC/DC converter When the first end of the switched capacitor DC/DC converter is connected to the DC power supply, and when the switched capacitor DC/DC converter is a step-down converter, it further includes: a voltage regulator module;
  • the second end of the switched capacitor DC/DC converter is connected to the voltage regulator module
  • the voltage stabilizing module is used for providing the regulated voltage to the load.
  • the voltage regulator module can be a step-down module, and the voltage regulator module can be a closed-loop control module. Therefore, a good voltage regulation function can be achieved through closed-loop control, providing a stable output voltage for loads with high voltage requirements.
  • the switching power supply provided by the embodiments of the present application includes the switched capacitor DC/DC converters described in the above embodiments, and does not include a transformer, but only includes switches and capacitors
  • the transformer function can be realized, that is, after the input voltage is subjected to voltage transformation
  • the output can be used as a boost converter, a buck converter, or a single-function converter.
  • the number of switched capacitor modules is different, the ratio of the input voltage to the output voltage is different, and the number of switched capacitor modules can be adjusted according to actual needs to achieve the required voltage transformation ratio. Since the transformer is not included, the volume of the converter can be reduced, and it is easy to make the converter thinner, which is beneficial to reduce the volume of the switching power supply.
  • the embodiments of the present application further provide a control method for the switched capacitor DC/DC converter, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 16 is a flowchart of a method for a switched capacitor DC/DC converter provided by an embodiment of the present application.
  • the control method of the switched capacitor DC/DC converter provided in this embodiment is applied to the converter introduced in any one of the above converter embodiments, and the method includes the following steps:
  • S1602 Send a second drive signal to the third switch tube, the first drive signal and the second drive signal have the same timing sequence;
  • S1603 Send a third drive signal to the second switch; the conduction state of the second switch is complementary to the conduction state of the first switch;
  • the timing of the driving signal output to the controllable switch is the same as that of the third driving signal of the second switch tube in the switched capacitor module connected to the second end of the controllable switch.
  • the first switch tube and the third switch tube may share the same driving signal, that is, the first driving signal and the second driving signal may be combined into one.
  • the converter does not include a transformer, but only includes a switch and a capacitor, so that the voltage transformation function can be realized, that is, the input voltage is output after voltage transformation.
  • the converter which can be used as a boost converter, a buck converter, or a single-function converter.
  • the number of switched capacitor modules is different, the ratio of the input voltage to the output voltage is different, and the number of switched capacitor modules can be adjusted according to actual needs to achieve the required voltage transformation ratio. Since the transformer is not included, the volume of the converter can be reduced, and it is easy to make the converter thinner, which is beneficial to reduce the volume of the switching power supply.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and both A and B exist at the same time. , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请公开了一种开关电容型DC/DC变换器、开关电源及控制方法,包括:可控开关和n个开关电容模块;n个开关电容模块串联后形成变压支路,变压支路与可控开关串联。n为大于等于1的整数;该DC/DC变换器实现不同的电压变比时,n可以取不同的值,例如,当n=1时,该DC/DC变换器实现的电压变比为2:1;当n=2时,该DC/DC变换器实现的电压变比为2:1;当n=3时,该DC/DC变换器实现的电压变比为5:1;当n=4时,该DC/DC变换器实现的电压变比为8:1;当n=5时,该DC/DC变换器实现的电压变比为13:1,以此类推。该变换器能实现降压或升压,内部不包括变压器,减小整个变换器的体积。

Description

一种开关电容型直流/直流变换器、开关电源及控制方法
本申请要求于2020年09月25日提交中国国家知识产权局的申请号为202011024139.1、申请名称为“一种开关电容型直流/直流DC/DC变换器、开关电源及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及技术领域,尤其涉及一种开关电容型直流/直流DC/DC变换器、开关电源及控制方法。
背景技术
目前,开关电源被广泛应用于各类电气设备中,为电气设备提供符合要求的电能。
例如,应用场景为AI及数据中心时,业务单板的供电电压一般为48V。而业务单板内部的芯片及各类负载的供电电压需要低于48V,即业务单板的供电电压48V并不能直接给芯片及各类负载供电,一般还需要经过至少两级的降压处理,通常第一级降压是将48V降压到12V,第二级降压是将12V降压到5V、3.3V和1.8V等电压为芯片及各类负载供电。
目前,第一级降压使用的直流/直流DC/DC变换器一般采用隔离式拓扑,例如LLC谐振DC/DC变换器,参见图1,该图为一种全桥LLC谐振DC/DC变换器的示意图。
全桥电路的输入端连接的直流电源DC的电压可以为48V,经过LLC谐振电路(谐振电感Lr、谐振电容Cr和励磁电感Lm)输入到变压器的初级绕组,变压器的次级绕组连接整流电路,整流电路输出12V的直流电压为负载R供电,或者12V的输出电压经过第二级降压电路继续进行降压后给芯片或其他负载供电。其中输出端的电容C为滤波电容。
图1所示的DC/DC变换器主要缺点是包括变压器T,由于变压器T需要包括初级绕组、次级绕组和磁芯,体积较小,因此电源的体积较大,厚度也难以变薄,为了降低体积,只能通过增加开关频率来实现,但是增大开关频率会增大功能,导致电源效率降低。一般在实现时,变压器的初级绕组和次级绕组需要耦合,存在重复的耦合电流,需要占用更多的PCB面积来通流,限制电源面积的降低。
发明内容
为了解决以上的技术问题,本申请提供一种开关电容型直流/直流DC/DC变换器、开关电源及控制方法,能够实现变压,即实现降压或升压,而且内部不包括变压器,可以减小整个变换器的体积。
本申请实施例提供的开关电容型直流/直流DC/DC变换器可以应用于开关电源中,即属于开关电源内部的一个变换器。DC/DC变换器其输入为直流电压,其输出也是直流电压。本申请实施例提供的开关电容型DC/DC变换器可以作为双向DC/DC变换器,既可以从左向右实现降压,又可以从右向左实现升压。
本申请实施例不具体限定开关电源的应用场景,例如服务器、通信基站、光伏设备等各种需要开关电源的应用场景。开关电源最终可以输出负载例如芯片或控制电路等需要的电压。
本申请实施例提供一种开关电容型直流/直流DC/DC变换器,包括:可控开关和n个开关电容模块;所述n为大于等于1的整数;可控开关的第一端为所述变换器的高压端,所述n个开关电容模块串联后形成变压支路,所述变压支路的第一端连接所述可控开关的第二端,所述变压支路的第二端为所述变换器的低压端;每个所述开关电容模块包括:第一开关管、第二开关管、第三开关管和电容;所述第一开关管的第一端连接第一节点,所述第一开关管的第二端连接第二节点,所述第二开关管的第一端连接所述第二节点,所述第二开关管的第二端通过所述第三开关接地;所述电容的第一端连接所述第一节点,所述电容的第二端连接所述第二开关管的第二端;所述第一开关管和所述第三开关管的导通状态相同,所述第二开关管的导通状态与所述第一开关管的导通状态互补;相邻的两个所述开关电容模块中的所述第一开关管的导通状态不同;当所述可控开关导通时,连接所述可控开关的第二端的所述开关电容模块中的所述第二开关管导通。
优选地,为了降低电容充电时的冲击电流,保护电容,可以在每个开关电容模块内部增加电感,电感可以抑制充电电流的冲击。即每个所述开关电容模块还包括:电感;所述电感与所述电容串联后连接在所述第一节点和所述第二开关管的第二端。
优选地,为了降低电气元件的个数,减小电路面积,又可以降低电容充电时的冲击电流,当所述n为奇数时,可以仅在奇数编号的开关电容模块中设置电感,即还包括:(n+1)/2个电感;从所述高压端向所述低压端依次为所有所述开关电容模块编号,奇数编号的所述开关电容模块中的电容串联电感;所述电感与所述电容串联后连接在所述第一节点和所述第二开关管的第二端。
优选地,以上当开关电容模块中设置电感用来降低电容的冲击电流时,为了实现软开关,降低功率损耗,可以设置电感的参数使其与电容形成串联谐振,即所述电感与所述电容形成串联谐振电路,且所述串联谐振电路的谐振频率与所述开关电容模块的工作频率相等。
优选地,本实施例提供的变换器的高压端连接直流电源,所述变换器的低压端为输出端时,该变换器为降压变换器。具体的降压比例可以根据实际需要设置开关电容模块的数量来实现。
优选地,当该变换器为降压变换器时,开关电容模块的导通模式包括充电导通模式和放电导通模式;所述充电导通模式为所述第二开关管导通,所述第一开关管和所述第三开关管均断开;所述放电导通模式为所述第一开关管和所述第三开关管均导通,所述第二开关管断开。
优选地,本实施例提供的变换器的低压端连接直流电源,所述变换器的高压端为输出端时,该变换器为升压变换器。具体的升压比例可以根据实际需要设置开关电容模块的个数来实现。
优选地,所述开关电容模块的导通模式包括充电导通模块和放电导通模式;所述充电导通模式为所述第一开关管和所述第三开关管均导通,所述第二开关管断开;所述放电导通模式为所述第二开关管导通,所述第一开关管和所述第三开关管均断开。
优选地,无论该变换器为升压变换器还是降压变换器,三个相邻的所述开关电容模块中的所述电容的电压满足以下关系:
Vc(n-2)=Vc(n-1)+Vcn;
其中,Vc(n-2)、Vc(n-1)和Vcn分别为从所述高压端至所述低压端的第n-2个所述开关电容模块中电容的电压、第n-1个所述开关电容模块中电容的电压和第n个所述开关电容模块中电容的电压。可以理解的是,以上的电压比例关系存在至少三个开关电容模块串联的场景。当开关电容模块的数量小于2时,可以将输入端电压和输出端电压作为以上的电压Vc代入以上公式,照常是成立,例如当开关电容模块仅为1个时,Vin=Vc(1)+Vout,其中,Vin为变换器的输入端电压,Vout为变换器的输出电压。同理,当开关电容模块的数量为2时,也可以套用以上公式,仍然成立。
优选地,该变换器中开关电容模块的个数不同时,实现的降压或升压比例不同,例如,当所述n为1时,所述高压端与所述低压端的电压比例为2:1。当所述n为2时,所述高压端与所述低压端的电压比例3:1。当所述n为3时,所述高压端与所述低压端的电压比例5:1。当所述n为4时,所述高压端与所述低压端的电压比例8:1。当所述n为5时,所述高压端与所述低压端的电压比例13:1。增加开关电容模块的个数,还可以实现更高比例的升压或降压。需要说明的是,该变换器可以正向作为降压变换器,可以反向作为升压变换器。
优选地,所述第一开关管、所述第二开关管和所述第三开关管的占空比区间均为40%-60%。
本申请实施例还提供一种开关电源,包括以上实施例介绍的开关电容型DC/DC变换器;还包括:直流电源;开关电容型直流/直流变换器的第一端或第二端用于连接所述直流电源,将所述直流电源的电压进行变压后输出;开关电容型直流/直流变换器的第一端为所述可控开关的第一端,所述可控开关的第二端连接所述变压支路的第一端,所述变压支路的第二端为所述开关电容型直流/直流变换器的第二端。
在AI及数据中心的应用场景中,可以设计为开环电源,开环电源是指输出电压跟随输入电压的变化而变化的电源,该电源不具备输出电压独立稳压的功能。
优选地,当所述开关电容型直流/直流变换器的第一端连接所述直流电源时,所述开关电容型直流/直流变换器的为降压变换器时,还包括:稳压模块;所述开关电容型直流/直流变换器的第二端连接所述稳压模块;所述稳压模块用于将稳压后的电压提供给负载。稳压模块可以为闭环控制的DC/DC转换电路,实现闭环稳压功能,给后级负载提供一个稳定的精准直流电压。
基于以上实施例提供的开关电容型DC/DC变换器,本申请实施例还提供一种开关电容型直流/直流变换器的控制方法,应用于以上介绍的开关电容型DC/DC变换器,包括:发送第一驱动信号给所述第一开关管,发送第二驱动信号给所述第三开关管,所述第一驱动信号和所述第二驱动信号的时序相同;发送第三驱动信号给所述第二开关管;所述第二开关管的导通状态与所述第一开关管的导通状态互补;相邻的两个所述开关电容模块中所述第一开关管的导通状态不同;向所述可控开关输出的驱动信号与 连接所述可控开关的第二端的开关电容模块中的第二开关管的所述第三驱动信号的时序相同。
与现有技术相比,本申请实施例提供的技术方案具有以下优点:
开关电容型DC/DC变换器包括可控开关和n个开关电容模块;可控开关的第一端为变换器的高压端,n个开关电容模块串联后形成变压支路,变压支路的第一端连接可控开关的第二端,变压支路的第二端为变换器的低压端。通过控制各个开关电容模块中的各个开关管的导通状态,实现电容的充放电,同时给输出端提供输出电压。该变换器内部不包括变压器,仅包括开关和电容,便可以实现变压功能,即将输入电压进行电压变换后输出,既可以作为升压变换器,又可以作为降压变换器,也可以作为功能单一的变换器。其中开关电容模块的数量不同,则输入电压与输出电压的比例不同,可以根据实际需要调整开关电容模块的数量来达到需求的电压变比。由于不包括体积较大的变压器,因此,可以减小整个变换器的体积,容易使变换器做的更薄,进而有利于减小开关电源的整体体积。
附图说明
图1为一种全桥LLC谐振DC/DC变换器的示意图;
图2为本申请实施例提供的一种开关电源的示意图;
图3A为本申请实施例提供的单个开关电容模块的结构图;
图3B为本申请实施例提供的三个开关管的驱动信号的时序图;
图4为本申请实施例提供的包括一个开关电容模块的DC/DC变换器的示意图;
图5为本申请实施例提供的与图4对应的放电路径示意图;
图6为本申请实施例提供的包括两个开关电容模块的DC/DC变换器的示意图;
图7为本申请实施例提供的与图6对应的放电路径示意图;
图8为本申请实施例提供的包括三个开关电容模块的DC/DC变换器的示意图;
图9为本申请实施例提供的与图8对应的放电路径示意图;
图10为本申请实施例提供的包括四个开关电容模块的DC/DC变换器的示意图;
图11为本申请实施例提供的与图10对应的放电路径示意图;
图12为本申请实施例提供的包括五个开关电容模块的DC/DC变换器的示意图;
图13为本申请实施例提供的与图12对应的放电路径示意图;
图14为本申请实施例提供的另一种开关电容型DC/DC变换器的示意图;
图15为本申请实施例提供的又一种开关电容型DC/DC变换器的示意图;
图16为本申请实施例提供的一种开关电容型DC/DC变换器的控制方法的流程图。
具体实施方式
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面先介绍本申请提供的技术方案的应用场景。
本申请实施例提供的开关电容型直流/直流DC/DC变换器可以应用于开关电源中,即属于开关电源内部的一个变换器。DC/DC变换器顾名思义,其输入为直流电压,其输出也是直流电压。本申请实施例提供的开关电容型DC/DC变换器可以作为双向 DC/DC变换器,既可以从左向右实现降压,又可以从右向左实现升压。
本申请实施例不具体限定开关电源的应用场景,例如服务器、通信基站、光伏设备等各种需要开关电源的应用场景。开关电源最终可以输出芯片或控制电路等负载需要的电压。
下面以开关电容型DC/DC变换器为降压变换器为例进行介绍。
参见图2,该图为本申请实施例提供的一种开关电源的示意图。
本申请实施例提供的开关电源,可以应用于为AI或数字中心,也可以应用于通信电源,对于开关电源的具体应用场景不做限制。
该开关电源包括降压变换器100和稳压模块200;
其中,降压变换器100为开关电容型直流/直流变换器,后续实施例将详细介绍开关电容型DC/DC变换器的具体实现方式。
降压变换器100即开关电容型DC/DC变换器的输出端连接稳压模块200的输入端;
所述稳压模块200的输出端连接负载,用于给负载供电。
例如,降压变换器100的输入电压为48V,降压变换器100的输出电压为12V,稳压模块200用于将12V的输入电压继续进行降压,降压为5V、3.3V和1.8V等电压为芯片及各类负载供电。
由于降压变换器100用于将输入的48V降压到12V,得到的12V电压并不会直接给芯片供电,而是还会经过稳压模块200进一步进行降压,即稳压模块200需要输出精确的电压满足负载的供电要求。
因此,对于降压变换器100来说,其输出的12V电压可以进行开环控制,允许在一定的电压范围内,只要满足稳压模块200的输入电压范围即可。因此,对于48V降压为12V的一级降压变换器,在AI及数据中心的应用场景中,可以设计为开环电源,开环电源是指输出电压跟随输入电压的变化而变化的电源,该电源不具备输出电压独立稳压的功能。例如,降压变换器100的输入电压Vin与输出电压的比例可以为4:1或5:1即可。同时,由于输出电压与输入电压之间没有绝缘耐压要求,因此也不需要强制使用隔离拓扑,因此,本申请实施例提供的开关电源中的降压变换器,可以利用开关电容型DC/DC变换器来实现,不需要通过变压器进行隔离,因此,可以降低变换器的体积,使其做的更薄更小,进而降低开关电源的体积,使其满足小型化的要求。
变换器实施例一:
本实施例提供的开关电容型DC/DC变换器,包括:可控开关和n个开关电容模块;n为大于等于1的整数;该DC/DC变换器实现不同的电压变比时,n可以取不同的值,例如,当n=1时,该DC/DC变换器实现的电压变比为2:1;当n=2时,该DC/DC变换器实现的电压变比为2:1;当n=3时,该DC/DC变换器实现的电压变比为5:1;当n=4时,该DC/DC变换器实现的电压变比为8:1;当n=5时,该DC/DC变换器实现的电压变比为13:1,以此类推。
n个开关电容模块串联后形成变压支路,变压支路与可控开关串联。每个开关电容模块的结构相同,如图3A所示,该图为本申请实施例提供的一种开关电容模块的示意 图。
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面结合附图3A、图3B和图4为例进行介绍。
参见图4,该图为本申请实施例提供的包括一个开关电容模块的DC/DC变换器的示意图。
本实施例提供的开关电容型DC/DC变换器,包括:可控开关S和n个开关电容模块;所述n为大于等于1的整数;
图4所示的变换器中n=1。
可控开关S的第一端为变换器的高压端,n个开关电容模块串联后形成变压支路,变压支路的第一端连接可控开关S的第二端,变压支路的第二端为变换器的低压端;无论变换器作为升压变换器还是降压变换器,均存在高压端和低压端。当该变换器作为降压变换器时,高压端连接直流电源,低压端作为输出端。当该变换器作为升压变换器时,低压端连接直流电源,高压端作为输出端。
当可控开关S闭合时,与可控开关串联的开关电容模块中的第二开关管Q2导通。即可控开关S与相邻的开关电容模块中的Q2的开关状态相同,即对应的驱动信号的时序相同。
由于图4中只有一个开关电容模块,因此,变压支路仅包括一个开关电容模块。
如图3A所示,每个开关电容模块包括:第一开关管Q1A、第二开关管Q2、第三开关管Q1B和电容C;
每个开关电容模块包括第一端和第二端,第一端为第一节点E,第二端为第二节点F;当变压支路仅包括一个开关电容模块时,E为变压支路的第一端,F为变压支路的第二端。
第一开关管Q1A的第一端连接第一节点E,第一开关管Q1A的第二端连接第二节点F,第二开关管Q2的第一端连接第二节点F,第二开关管Q2的第二端通过第三开关Q1B接地;电容C的第一端连接第一节点E,电容C的第二端连接第二开关管Q2的第二端;
参见图3B所示,该图为本申请实施例提供的单个开关电容模块中的开关管的驱动信号时序图。
从图3B可以看出,Q1A的驱动信号的时序与Q1B的驱动信号的时序相同,Q2的驱动信号与Q1A的驱动信号的时序互补,并且图3B中是以三个开关管的驱动信号的占空比均为50%为例进行的示意图。
图3B中仅是从理论上进行的示意,实际中可以与图3B有差别,例如,实际实现时,第一开关管Q1A和第二开关管Q2之间存在一定的死区时间,即Q1A和Q2存在均不导通的时间段。
一种具体的实现方式,Q1A的驱动信号和Q2的驱动信号可以互补。
第一开关管Q1A和第三开关管Q1B的导通状态相同,即当第一开关管Q1A导通时,第三开关管Q1B也导通,当第一开关管Q1A断开时,第三开关管Q1B也断开, 第一开关管Q1A和第三开关管Q1B的驱动信号的相位可以同步,即Q1的驱动信号和Q1B的驱动信号的时序可以相同。
第二开关管Q2的导通状态与第一开关管Q1A的导通状态互补,即第一开关管Q1A导通时,第二开关管Q2不导通;第二开关管Q2导通时,第一开关管Q1A不导通。即Q1A和Q2不同时导通。
另一种实现方式中,第一开关管Q1A、第二开关管Q2和第三开关管Q1B的驱动信号的占空比均为50%;例如,在一个开关周期,第一开关管Q1A和第三开关管Q1B导通半个周期,在Q1A导通期间,Q2关断;在另半个周期,第二开关管Q2导通半个周期,Q1A和Q1B关断半个周期,即每个开关管的占空比为50%。实际产品实现时,由于Q1A和Q2之间存在死区时间,因此,占空比可能小于50%,因此,本申请实施例中不具体限定占空比的大小,例如第一开关管、第二开关管和第三开关管的占空比的取值区间或取值范围可以设置为40%-60%。需要说明的是,由于第一开关管的导通状态与第三开关管的导通状态相同,因此,两者对应的驱动信号的占空比和时序均相同。又由于第一开关管的导通状态与第二开关管的导通状态互补,因此,第一开关管和第二开关管的驱动信号的占空比和时序均互补。例如,第一开关管的占空比为40%,不考虑死区时间时,则第二开关管的占空比为60%,两者的占空比相等为1。
相邻的两个开关电容模块中的导通模式不同;导通模式不同是指相同位置的开关管的导通状态不同,例如包括两个相邻的开关电容模块,如果第一开关电容模块中的第一开关管为导通状态,则第二开关电容模块中的第一开关管需要控制为断开状态,其他开关管的导通状态以此类推。
为了更好地理解,下面结合图6和图7说明当变换器中n=2时的工作原理。
参见图6和图7,该图为本申请实施例提供的包括两个开关电容模块的DC/DC变换器的示意图。
从图6中可以看出,该变换器包括第一开关电容模块M1和第二开关电容模块M2,其中M1和M2中的相同位置的开关管的导通状态不同,例如,M1中的Q2导通时,M2中的Q2断开。由于在每个开关电容模块中,Q2的导通状态与Q1A互补,因此,当M1中的Q2导通时,M1中的Q1A和Q1B为关断状态,即断开。M2中的Q2关断时,M2中的Q1A和Q1B为导通状态。即M1和M2两个相邻的开关电容模块中的第一开关管Q1A的导通状态不同,因为第一开关管Q1A与Q1B的导通状态相同,Q1A与Q2的导通状态互补,因此,限定了Q1A的导通状态,相当于同时也限定了Q1B和Q2的开关状态。
三个相邻的所述开关电容模块中对应的所述电容的电压满足以下关系:
Vc(n-2)=Vc(n-1)+Vcn;
其中,Vc(n-2)、Vc(n-1)和Vcn分别为从所述高压端至所述低压端的第n-2个所述开关电容模块中电容的电压、第n-1个所述开关电容模块中电容的电压和第n个所述开关电容模块中电容的电压。
当开关电容模块的数量小于2时,可以将输入端电压和输出端电压作为以上的电 压Vc代入以上公式,照常是成立,例如当开关电容模块仅为1个时,Vin=Vc(1)+Vout,其中,Vin为变换器的输入端电压,Vout为变换器的输出电压。同理,当开关电容模块的数量为2时,也可以套用以上公式,仍然成立。
需要说明的是,当变换器仅包括一个开关电容模块时,以上公式也成立,例如Vc(n-1)为变换器包括的一个开关电容模块中电容的电压,则Vc(n-2)为高压端的电压,Vcn为低压端的电压。
为了更直观地理解,下面结合图4和图5进行说明。
以降压变换器为例,Q0的第一端连接直流电源,即高压端连接直流电源Vin。
例如,如图4所示,半个周期内,当Q0闭合时,Q2闭合,此时Vin经过Q0为电容C1充电,电流路径为S-C1-Q2-Vo。此时,Vin=Vc1+Vo。
如图5所示,另半个周期内,Q0断开,Q1A和Q1B闭合,Q2断开,C1通过Q1A给输出端放电,此时电容C1上的电压Vc1=Vo。
以上仅是介绍了一个开关周期内,各个开关管的工作状态,每个开关周期参照以上控制即可。
由于Vc1=Vo,因此Vin=Vc1+Vo=2Vo,即Vin=2Vo,Vin/Vo=2:1。
本申请各个实施例中不具体限定各个开关管的具体实现方式,可以为MOS管,也可以为IGBT或BJT等。
经过以上推导过程可知,高压端和低压端实现2:1的降压。可以理解的是,当低压端连接直流电源,高压端为输出端时,即实现了2倍的升压。
下面结合图6和图7说明当n=2时,实现3:1降压的工作原理。
为了方便理解,图中表明了各个电容对应的电压标号。
当n=2时,第一开关电容模块M1和第二开关电容模块M2串联形成变压支路。
如图6所示,半个周期内,当Q0闭合时,M1中的Q2闭合,M1中的Q1A和Q1B均断开,M2中的Q2断开,Q1A和Q1B均闭合。此时Vin经过Q0为电容C1充电,电流路径为Q0-M1中C1-M1中Q2-M2中Q1A-Vo。此时,Vin=Vc1+Vc2,Vc2=Vo。
如图7所示,另半个周期内,Q0断开,M1中的Q2断开,M1中的Q1A和Q1B均导通,M2中的Q2导通,M2中的Q1A和Q1B均断开,此时M1中的C1上的电压Vc1=Vc2+Vo。
由于Vin=Vc1+Vc2,Vc2=Vo,Vc1=Vc2,因此Vin=3Vo,即Vin/Vo=3:1。
以上仅是介绍了n=2对应的一个开关周期内,各个开关管的工作状态,每个开关周期参照以上控制即可。
下面结合图8和图9说明当n=3时,实现5:1降压的工作原理。
为了方便理解,图中表明了各个电容对应的电压标号。
当n=3时,第一开关电容模块M1、第二开关电容模块M2和第三开关电容模块M3串联形成变压支路。
如图8所示,半个周期内,当Q0闭合时,M1中的Q2闭合,M1中的Q1A和Q1B均断开,M2中的Q2断开,Q1A和Q1B均闭合,M3中Q2闭合,M3中的Q1A和Q1B 均断开。此时电流路径为Q0-M1中C1-M1中Q2-M2中Q1A-M3中C3-M3中Q2-Vo。此时,Vin=Vc1+Vc2,Vc2=Vc3+Vo。
如图9所示,另半个周期内,Q0断开,M1中的Q2断开,M1中的Q1A和Q1B均导通,M2中的Q2导通,M2中的Q1A和Q1B均断开,M3中的Q1A和Q1B闭合,M3中的Q2断开,M1中的C1进行放电,M3中的C3进行放电,C1通过M1中的Q1A给M2中的电容C2充电,同时给输出端供电,此时M1中的C1上的电压Vc1=Vc2+Vc3,Vc3=Vo。
由于Vin=Vc1+Vc2,Vc2=Vc3+Vo,Vc1=Vc2+Vc3,Vc3=Vo。因此Vin=5Vo,Vin/Vo=5:1。
以上仅是介绍了n=3对应的一个开关周期内,各个开关管的工作状态,每个开关周期参照以上控制即可。
下面结合图10和图11说明当n=4时,实现8:1降压的工作原理。
为了方便理解,图中表明了各个电容对应的电压标号。
当n=4时,第一开关电容模块M1、第二开关电容模块M2、第三开关电容模块M3串联和第四开关电容模块M4形成变压支路。
如图10所示,半个周期内,当Q0闭合时,M1中的Q2闭合,M1中的Q1A和Q1B均断开,M2中的Q2断开,Q1A和Q1B均闭合,M3中Q2闭合,M3中的Q1A和Q1B均断开,M4中Q1A和Q1B闭合,M4中的Q2断开。此时电流路径为Q0-M1中C1-M1中Q2-M2中Q1A-M3中C3-M3中Q2-M4中Q1A-Vo。此时,Vin=Vc1+Vc2,Vc2=Vc3+Vc4,Vc4=Vo。
如图11所示,另半个周期内,Q0断开,M1中的Q2断开,M1中的Q1A和Q1B均导通,M2中的Q2导通,M2中的Q1A和Q1B均断开,M3中的Q1A和Q1B闭合,M3中的Q2断开,M4中的Q2闭合,M4中的Q1A和Q1B均断开。M1中的C1进行放电,M3中的C3进行放电,C1通过M1中的Q1A给M2中的电容C2充电,同时给输出端供电,此时M1中的C1上的电压Vc1=Vc2+Vc3,Vc3=Vc4+Vo。
由于Vin=Vc1+Vc2,Vc2=Vc3+Vc4,Vc4=Vo,Vc1=Vc2+Vc3,Vc3=Vc4+Vo。因此Vin=8Vo,即Vin/Vo=8:1。
以上仅是介绍了n=4对应的一个开关周期内,各个开关管的工作状态,每个开关周期参照以上控制即可。
下面结合图12和图13说明当n=5时,实现13:1降压的工作原理。
为了方便理解,图中表明了各个电容对应的电压标号。
当n=5时,第一开关电容模块M1、第二开关电容模块M2、第三开关电容模块M3串联、第四开关电容模块M4和第五开关电容模块M5形成变压支路。
如图12所示,半个周期内,当Q0闭合时,M1中的Q2闭合,M1中的Q1A和Q1B均断开,M2中的Q2断开,Q1A和Q1B均闭合,M3中Q2闭合,M3中的Q1A和Q1B均断开,M4中Q1A和Q1B闭合,M4中的Q2断开,M5中Q2闭合,M5中的Q1A和Q1B均断开。此时电流路径为Q0-M1中C1-M1中Q2-M2中Q1A-M3中C3-M3 中Q2-M4中Q1A-M5中的Q2-Vo。此时,Vin=Vc1+Vc2,Vc2=Vc3+Vc4,Vc4=Vc3+Vo。
如图13所示,另半个周期内,Q0断开,M1中的Q2断开,M1中的Q1A和Q1B均导通,M2中的Q2导通,M2中的Q1A和Q1B均断开,M3中的Q1A和Q1B闭合,M3中的Q2断开,M4中的Q2闭合,M4中的Q1A和Q1B均断开,M5中的Q1A和Q1B均断开,M5中的Q2闭合。M1中的C1进行放电,M3中的C3进行放电,C1通过M1中的Q1A给M2中的电容C2充电,同时给输出端供电,此时M1中的C1上的电压Vc1=Vc2+Vc3,Vc3=Vc4+Vc5,Vc5=Vo。
由于Vin=Vc1+Vc2,Vc2=Vc3+Vc4,Vc4=Vc3+Vo,Vc1=Vc2+Vc3,Vc3=Vc4+Vc5,Vc5=Vo。因此Vin=13Vo,即Vin/Vo=13:1。
以上仅是介绍了n=5对应的一个开关周期内,各个开关管的工作状态,每个开关周期参照以上控制即可。
综上所述,以上分别结合附图介绍了n=1、2、3、4和5时的工作原理,另外,n还可以取值大于5的其他整数,变换器的工作原理与以上的各种情况均类似,在此不再一一赘述,实际使用时,本领域技术人员可以根据变压的具体比例来选择n的取值,即选择开关电容模块的数量,当串联的开关电容模块的数量越多时,则对应的变比越大,例如降压时,降压的比例越大;升压时,升压的倍数越大。
以上介绍的是变换器作为降压变换器时的工作原理,降压变换器时,开关电容模块的导通模式包括充电导通模式和放电导通模式;所述充电导通模式为所述第二开关管导通,所述第一开关管和所述第三开关管均断开;所述放电导通模式为所述第一开关管和所述第三开关管均导通,所述第二开关管断开。
当变换器为升压变换器时开关电容模块的导通模式与降压变换器的开关电容模块的导通模式有所区别。即,当变换器为升压变换器时,所述开关电容模块的导通模式包括充电导通模块和放电导通模式;所述充电导通模式为所述第一开关管和所述第三开关管均导通,所述第二开关管断开;所述放电导通模式为所述第二开关管导通,所述第一开关管和所述第三开关管均断开。
以图13为例,当作为升压变换器时,M5中的Q2的第一端连接直流电源,即右侧为电源端,左侧为输出端。当M5中的Q1A和Q1B均闭合,Q2断开时,右侧连接的直流电源为M5中的电容C5进行充电。
本申请实施例提供的开关电容型DC/DC变换器,内部不包括变压器,仅包括开关和电容,便可以实现变压功能,即将输入电压进行电压变换后输出,既可以作为升压变换器,又可以作为降压变换器,也可以作为功能单一的变换器。其中开关电容模块的数量不同,则输入电压与输出电压的比例不同,可以根据实际需要调整开关电容模块的数量来达到需求的电压变比。由于不包括变压器,因此,可以减小变换器的体积,容易使变换器做的更薄,进而有利于减小开关电源的体积。
变换器实施例二:
为了抑制或降低每个开关电容模块中电容在充电时承受的冲击电流,可以在每个 开关电容模块中添加电感,具体可以添加在与电容串联的位置。
参见图14,该图为本申请实施例提供的另一种开关电容型DC/DC变换器的示意图。
本实施例提供了另一种开关电容型DC/DC变换器。图14中以n=4为例进行介绍,该方案适用于n为任何整数。
本实施例提供的开关电容型DC/DC变换器,其中每个开关电容模块还包括电感;
电感与电容串联后连接在所述第一节点和所述第二开关管的第二端。由于电感具有抑制电流突变的能力,如图14所示,以M1为例进行说明,电容C1和电感L1串联,L1可以抑制电容C1在充电时承受的冲击电流,保护C1不被冲击电流损坏。
另外,为了尽量降低每个开关电容模块中各个开关管的开关损耗,尽量使每个开关电容模块中的各个开关管工作在软开关状态,从而提高变换器的电源转换效率,具体技术方案是,使每个开关电容模块中的L1和C1形成串联谐振电路,并且所有开关电容模块中的L1的电感值相等,C1的电容值相等。当L1和C1的串联谐振与每个开关电容模块的工作频率相等时,则可以使所有开关电容模块中的各个开关管实现软开关,降低所有开关电容模块中各个开关管的开关损耗。
其中,开关电容模块的工作频率是指其中开关管的驱动信号的频率。从图3B中可以看出,Q1A、Q2和Q1B对应的驱动信号的周期均相同,其频率也相同,即一个开关电容模块的工作频率就是指图3B中驱动信号对应的频率。
变换器实施例三:
图14中是以每个开关电容模块均包括一个电感为例进行的介绍,为了降低变换器的整体体积,降低成本,也可以在部分开关电容模块中设置电感,而不必在每个开关电容模块均设置电感。
参见图15,该图为本申请实施例提供的又一种开关电容型DC/DC变换器的示意图。
本实施例提供的变换器,电感的设置方式仅适用于n为奇数。所述电感与所述电容串联后连接在所述第一节点和所述第二开关管的第二端;
当所述n为奇数时,从连接所述可控开关的第一端开始,即从高压侧向低压侧依次给开关电容模块进行编号,变压支路中编号为奇数的开关电容模块中的电容串联电感,例如在1、3、5、7、9等编号的开关电容模块中设置电感。
由于变换器无论是升压变压器还是降压变换器,最左侧和最右侧中有一个为输入端,另一个为输出端。例如,当变换器为降压变换器时,最左侧为输入端,最右侧为输出端,作为输入端和输出端的开关电容模块中是需要设置电感的。因此,如果需要降低电感的数量,又可以实现降低电容所受的冲击电流时,可以在n为奇数时,仅在奇数的开关电容模块中设置电感,因为,相邻的两个开关电容模块中同时只有一个在充电,另一个在放电。
图15以n=5为例进行介绍,从图15中可以看出,M1、M3和M5中均包括一个电感与电容串联,即编号为奇数的1、3和5中设置电感。
以M5为例,电容C1与电感L1串联。由于电感具有抑制电流突变的能力,电容 C1和电感L1串联,L1可以抑制电容C1在充电时承受的冲击电流,保护C1不被冲击电流损坏。
所述电感与所述电容形成串联谐振电路。
另外,为了尽量降低每个开关电容模块中各个开关管的开关损耗,尽量使每个开关电容模块中的各个开关管工作在软开关状态,从而提高变换器的电源转换效率,具体技术方案是,使每个开关电容模块中的L1和C1形成串联谐振电路,并且所有奇数开关电容模块中C1的电容值相等,所有偶数开关电容模块中的电容值相等,用C2表示。当L1和C1的串联谐振与每个开关电容模块的工作频率相等时,则可以使所有开关电容模块中的各个开关管实现软开关,降低所有开关电容模块中各个开关管的开关损耗。
其中,开关电容模块的工作频率是指其中开关管的驱动信号的频率。从图3B中可以看出,Q1A、Q2和Q1B对应的驱动信号的周期均相同,其频率也相同,即一个开关电容模块的工作频率就是指图3B中驱动信号对应的频率。
需要说明的是,本申请以上两个实施例中的电感L1仅是用来作为谐振元件,并不是作为变换器的储能元件,即区别于变压器中的绕组,因此,可以把变换器的体积做的较小,厚度做得更薄。
另外,本申请实施例中的各个开关管在图中均示意了与开关管反并联的二极管,该二极管可以没有,即开关管可以不包括该反并联的二极管。如果开关管自带反并联二极管,二极管可以保留,本申请实施例不做限定。
开关电源实施例
基于以上实施例提供的一种开关电容型DC/DC变换器,本申请实施例提供一种开关电源。
本实施例提供的开关电源,可以继续见图2,包括以上任意一个实施例介绍的开关电容型直流/直流变换器;还包括直流电源;
直流电源可以是前一级变换器的输出,例如整流器或其他DC/DC变换器等。
开关电容型直流/直流变换器的第一端或第二端用于连接所述直流电源,将所述直流电源的电压进行变压后输出;
所述开关电容型直流/直流变换器的第一端为所述可控开关的第一端,所述可控开关的第二端连接所述变压支路的第一端,所述变压支路的第二端为所述开关电容型直流/直流变换器的第二端。
本实施例提供的开关电容型DC/DC变换器为一个开环的变换器。为了使输出更稳定的电压,可以再包括一级稳压模块。
当所述开关电容型直流/直流变换器的第一端连接所述直流电源时,所述开关电容型直流/直流变换器的为降压变换器时,还包括:稳压模块;
所述开关电容型直流/直流变换器的第二端连接所述稳压模块;
所述稳压模块用于将稳压后的电压提供给负载。
稳压模块可以为降压模块,而且稳压模块可以为闭环控制模块,因此通过闭环控制可以实现很好地稳压功能,提供稳定的输出电压,提供给对电压要求较高的负载。
由于本申请实施例提供的开关电源,包括以上实施例介绍的开关电容型DC/DC变换器,内部不包括变压器,仅包括开关和电容,便可以实现变压功能,即将输入电压进行电压变换后输出,既可以作为升压变换器,又可以作为降压变换器,也可以作为功能单一的变换器。其中开关电容模块的数量不同,则输入电压与输出电压的比例不同,可以根据实际需要调整开关电容模块的数量来达到需求的电压变比。由于不包括变压器,因此,可以减小变换器的体积,容易使变换器做的更薄,进而有利于减小开关电源的体积。
方法实施例
基于以上实施例提供的一种开关电容型DC/DC变换器和开关电源,本申请实施例还提供一种开关电容型直流/直流变换器的控制方法,下面结合附图进行详细介绍。
参见图16,该图为本申请实施例提供的一种开关电容型DC/DC变换器的方法流程图。
本实施例提供的开关电容型DC/DC变换器的控制方法,应用于以上任意一个变换器实施例介绍的变换器,该方法包括以下步骤:
S1601:发送第一驱动信号给所述第一开关管;
S1602:发送第二驱动信号给所述第三开关管,所述第一驱动信号和所述第二驱动信号的时序相同;
S1603:发送第三驱动信号给所述第二开关管;所述第二开关管的导通状态与所述第一开关管的导通状态互补;
需要说明的是,S1601-S1603之间没有先后顺序,一般同时输出给各个开关管驱动信号,使其同时执行对应的开关动作。
相邻的两个所述开关电容模块中所述第一开关管的导通状态不同;
向所述可控开关输出的驱动信号与连接所述可控开关的第二端的开关电容模块中的第二开关管的所述第三驱动信号的时序相同。
由于第一开关管和第三开关管的开关状态一致,因此第一开关管和第三开关管可以共用同一个驱动信号,即第一驱动信号和第二驱动信号可以合二为一。
由于该控制方法应用于本申请以上实施例介绍的开关电容型DC/DC变换器,变换器内部不包括变压器,仅包括开关和电容,便可以实现变压功能,即将输入电压进行电压变换后输出,既可以作为升压变换器,又可以作为降压变换器,也可以作为功能单一的变换器。其中开关电容模块的数量不同,则输入电压与输出电压的比例不同,可以根据实际需要调整开关电容模块的数量来达到需求的电压变比。由于不包括变压器,因此,可以减小变换器的体积,容易使变换器做的更薄,进而有利于减小开关电源的体积。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A 和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制。虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请。任何熟悉本领域的技术人员,在不脱离本申请技术方案范围情况下,都可利用上述揭示的方法和技术内容对本申请技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本申请技术方案保护的范围内。

Claims (18)

  1. 一种开关电容型直流/直流变换器,其特征在于,包括:可控开关和n个开关电容模块;所述n为大于等于1的整数;
    所述可控开关的第一端为所述变换器的高压端,所述n个开关电容模块串联后形成变压支路,所述变压支路的第一端连接所述可控开关的第二端,所述变压支路的第二端为所述变换器的低压端;
    每个所述开关电容模块包括:第一开关管、第二开关管、第三开关管和电容;
    所述第一开关管的第一端连接第一节点,所述第一开关管的第二端连接第二节点,所述第二开关管的第一端连接所述第二节点,所述第二开关管的第二端通过所述第三开关接地;所述电容的第一端连接所述第一节点,所述电容的第二端连接所述第二开关管的第二端;
    所述第一开关管和所述第三开关管的导通状态相同,所述第二开关管的导通状态与所述第一开关管的导通状态互补;
    相邻的两个所述开关电容模块中的所述第一开关管的导通状态不同;
    当所述可控开关导通时,连接所述可控开关的第二端的所述开关电容模块中的所述第二开关管导通。
  2. 根据权利要求1所述的变换器,其特征在于,每个所述开关电容模块还包括:电感;
    所述电感与所述电容串联后连接在所述第一节点和所述第二开关管的第二端。
  3. 根据权利要求1所述的变换器,其特征在于,当所述n为奇数时,还包括:
    (n+1)/2个电感;
    从所述高压端向所述低压端依次为所有所述开关电容模块编号,奇数编号的所述开关电容模块中的电容串联电感;
    所述电感与所述电容串联后连接在所述第一节点和所述第二开关管的第二端。
  4. 根据权利要求2或3所述的变换器,其特征在于,所述电感与所述电容形成串联谐振电路,且所述串联谐振电路的谐振频率与所述开关电容模块的工作频率相等。
  5. 根据权利要求1-3任一项所述的变换器,其特征在于,所述变换器的高压端连接直流电源,所述变换器的低压端为输出端时,所述变换器为降压变换器。
  6. 根据权利要求5所述的变换器,其特征在于,所述开关电容模块的导通模式包括充电导通模式和放电导通模式;
    所述充电导通模式为所述第二开关管导通,所述第一开关管和所述第三开关管均断开;
    所述放电导通模式为所述第一开关管和所述第三开关管均导通,所述第二开关管断开。
  7. 根据权利要求1-3任一项所述的变换器,其特征在于,所述变换器的低压端连接直流电源,所述变换器的高压端为输出端时,所述变换器为升压变换器。
  8. 根据权利要求7所述的变换器,其特征在于,所述开关电容模块的导通模式包括 充电导通模块和放电导通模式;
    所述充电导通模式为所述第一开关管和所述第三开关管均导通,所述第二开关管断开;
    所述放电导通模式为所述第二开关管导通,所述第一开关管和所述第三开关管均断开。
  9. 根据权利要求1-3任一项所述的变换器,其特征在于,三个相邻的所述开关电容模块中的所述电容的电压满足以下关系:
    Vc(n-2)=Vc(n-1)+Vcn;
    其中,Vc(n-2)、Vc(n-1)和Vcn分别为从所述高压端至所述低压端的第n-2个所述开关电容模块中电容的电压、第n-1个所述开关电容模块中电容的电压和第n个所述开关电容模块中电容的电压。
  10. 根据权利要求6或8所述的变换器,其特征在于,当所述n为1时,所述高压端与所述低压端的电压比例为2:1。
  11. 根据权利要求6或8所述的变换器,其特征在于,当所述n为2时,所述高压端与所述低压端的电压比例3:1。
  12. 根据权利要求6或8所述的变换器,其特征在于,当所述n为3时,所述高压端与所述低压端的电压比例5:1。
  13. 根据权利要求6或8所述的变换器,其特征在于,当所述n为4时,所述高压端与所述低压端的电压比例8:1。
  14. 根据权利要求6或8所述的变换器,其特征在于,当所述n为5时,所述高压端与所述低压端的电压比例13:1。
  15. 根据权利要求1-14任一项所述的变换器,其特征在于,所述第一开关管、所述第二开关管和所述第三开关管的占空比区间均为40%-60%。
  16. 一种开关电源,其特征在于,包括权利要求1-15任一项所述的开关电容型直流/直流变换器;还包括:直流电源;
    所述开关电容型直流/直流变换器的第一端或第二端用于连接所述直流电源,将所述直流电源的电压进行变压后输出;
    所述开关电容型直流/直流变换器的第一端为所述可控开关的第一端,所述可控开关的第二端连接所述变压支路的第一端,所述变压支路的第二端为所述开关电容型直流/直流变换器的第二端。
  17. 根据权利要求16所述的开关电源,其特征在于,当所述开关电容型直流/直流变换器的第一端连接所述直流电源时,所述开关电容型直流/直流变换器的为降压变换器时,还包括:稳压模块;
    所述开关电容型直流/直流变换器的第二端连接所述稳压模块;
    所述稳压模块用于将稳压后的电压提供给负载。
  18. 一种开关电容型直流/直流变换器的控制方法,其特征在于,应用于权利要求1-15任一项所述的变换器,包括:
    发送第一驱动信号给所述第一开关管,发送第二驱动信号给所述第三开关管,所述第一驱动信号和所述第二驱动信号的时序相同;
    发送第三驱动信号给所述第二开关管;所述第二开关管的导通状态与所述第一开关管的导通状态互补;
    相邻的两个所述开关电容模块中所述第一开关管的导通状态不同;
    向所述可控开关输出的驱动信号与连接所述可控开关的第二端的开关电容模块中的第二开关管的所述第三驱动信号的时序相同。
PCT/CN2021/093559 2020-09-25 2021-05-13 一种开关电容型直流/直流变换器、开关电源及控制方法 WO2022062425A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21870812.1A EP4207570A4 (en) 2020-09-25 2021-05-13 SWITCHED CAPACITOR TYPE DIRECT CURRENT TO DIRECT CURRENT (DC/DC) CONVERTER, SWITCHING POWER SUPPLY AND CONTROL METHOD
US18/186,482 US20230231480A1 (en) 2020-09-25 2023-03-20 Switched-capacitor direct current/direct current converter, switching-mode power supply, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011024139.1 2020-09-25
CN202011024139.1A CN112311232B (zh) 2020-09-25 2020-09-25 一种开关电容型直流/直流变换器、开关电源及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/186,482 Continuation US20230231480A1 (en) 2020-09-25 2023-03-20 Switched-capacitor direct current/direct current converter, switching-mode power supply, and control method

Publications (1)

Publication Number Publication Date
WO2022062425A1 true WO2022062425A1 (zh) 2022-03-31

Family

ID=74488118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093559 WO2022062425A1 (zh) 2020-09-25 2021-05-13 一种开关电容型直流/直流变换器、开关电源及控制方法

Country Status (4)

Country Link
US (1) US20230231480A1 (zh)
EP (1) EP4207570A4 (zh)
CN (1) CN112311232B (zh)
WO (1) WO2022062425A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710028A (zh) * 2022-06-02 2022-07-05 浙江大学杭州国际科创中心 一种电源切换系统及切换方法
CN115441737A (zh) * 2022-10-31 2022-12-06 杰华特微电子股份有限公司 升降压变换器及其控制方法
TWI842271B (zh) 2022-12-14 2024-05-11 財團法人工業技術研究院 電壓轉換器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112311232B (zh) * 2020-09-25 2022-05-17 华为数字能源技术有限公司 一种开关电容型直流/直流变换器、开关电源及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332112A (ja) * 1998-05-18 1999-11-30 Jeol Ltd 直並列切換蓄電源の残量検出装置及び残量検出方法
CN106981987A (zh) * 2017-04-26 2017-07-25 广东工业大学 一种基于开关电容电感的直流升压变换器及系统
CN109565243A (zh) * 2016-08-05 2019-04-02 香港大学 高效率的开关电容器电源和方法
CN112311232A (zh) * 2020-09-25 2021-02-02 华为技术有限公司 一种开关电容型直流/直流变换器、开关电源及控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3485562B1 (en) * 2016-07-15 2022-05-04 Analog Devices International Unlimited Company Balancing charge pump circuits
WO2019145015A1 (en) * 2018-01-23 2019-08-01 Huawei Technologies Co., Ltd. Power converter
US10340794B1 (en) * 2018-06-21 2019-07-02 Linear Technology Llc Reverse capacitor voltage balancing for high current high voltage charge pump circuits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332112A (ja) * 1998-05-18 1999-11-30 Jeol Ltd 直並列切換蓄電源の残量検出装置及び残量検出方法
CN109565243A (zh) * 2016-08-05 2019-04-02 香港大学 高效率的开关电容器电源和方法
CN106981987A (zh) * 2017-04-26 2017-07-25 广东工业大学 一种基于开关电容电感的直流升压变换器及系统
CN112311232A (zh) * 2020-09-25 2021-02-02 华为技术有限公司 一种开关电容型直流/直流变换器、开关电源及控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU JING: "A Design Method of Research Based on Switched Networks Applied to DC-DC Converter", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 1 May 2018 (2018-05-01), pages 1 - 57, XP055913918, ISSN: 1674-0246 *
See also references of EP4207570A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710028A (zh) * 2022-06-02 2022-07-05 浙江大学杭州国际科创中心 一种电源切换系统及切换方法
CN115441737A (zh) * 2022-10-31 2022-12-06 杰华特微电子股份有限公司 升降压变换器及其控制方法
CN115441737B (zh) * 2022-10-31 2023-03-14 杰华特微电子股份有限公司 升降压变换器及其控制方法
TWI842271B (zh) 2022-12-14 2024-05-11 財團法人工業技術研究院 電壓轉換器

Also Published As

Publication number Publication date
CN112311232A (zh) 2021-02-02
US20230231480A1 (en) 2023-07-20
CN112311232B (zh) 2022-05-17
EP4207570A1 (en) 2023-07-05
EP4207570A4 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
WO2022062425A1 (zh) 一种开关电容型直流/直流变换器、开关电源及控制方法
CN107947593B (zh) 直流-直流转换器
US11228243B2 (en) Power converter with reduced RMS input current
US11336187B2 (en) Resonant switching converter
US11456663B2 (en) Power converter with reduced root mean square input current
Chen et al. A new bidirectional DC-DC converter with a high step-up/down conversion ratio for renewable energy applications
CN114421761A (zh) 一种带有飞跨电容的三电平变换器及控制方法
CN114391218A (zh) 宽电压范围dc-dc转换器
US20230299669A1 (en) Resonant switched capacitor direct current/direct current converter and power system
CN111682754B (zh) 混合功率变换器
CN113541486A (zh) 交错二极管电容网络高增益zvt直流变换器及辅助电路
US20230155495A1 (en) Biphasic dickson switched capacitor converter
WO2023274236A1 (zh) 电压变换电路和电子设备
Kwak et al. Superimposed Quadratic Buck Converter for High-Efficiency Direct 48V/1V Applications
US20220376619A1 (en) Switched capacitor converter
CN115842476A (zh) 一种基于开关电容的单电感直流功率变换器
CN210007624U (zh) 一种高变比双向半桥倍流变换器
CN113691141A (zh) 一种dc-dc变换器拓扑结构
KR20100078124A (ko) 소프트 스위칭 기능을 갖는 dc­dc 컨버터
CN114244101B (zh) 一种开关电容谐振式直流转换器
US11705823B2 (en) Double-ended dual magnetic DC-DC switching power converter with stacked secondary windings and an AC coupled output
CN114844349B (zh) 一种基于开关电容的混合型高降压比直流电源
TWI767271B (zh) 單側並聯llc功率轉換器以及轉換功率的方法
US20230155491A1 (en) Switched capacitor converter
CN218071306U (zh) 混合功率变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021870812

Country of ref document: EP

Effective date: 20230327

NENP Non-entry into the national phase

Ref country code: DE