WO2023206726A1 - 一种六氟磷酸锂的制备方法 - Google Patents

一种六氟磷酸锂的制备方法 Download PDF

Info

Publication number
WO2023206726A1
WO2023206726A1 PCT/CN2022/097821 CN2022097821W WO2023206726A1 WO 2023206726 A1 WO2023206726 A1 WO 2023206726A1 CN 2022097821 W CN2022097821 W CN 2022097821W WO 2023206726 A1 WO2023206726 A1 WO 2023206726A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
lithium hexafluorophosphate
area
preparation
Prior art date
Application number
PCT/CN2022/097821
Other languages
English (en)
French (fr)
Inventor
刘庭
陈东林
吴远胜
戴浩翔
蓝茂炜
谢光明
陈颂美
温思成
Original Assignee
福建省龙德新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建省龙德新能源有限公司 filed Critical 福建省龙德新能源有限公司
Publication of WO2023206726A1 publication Critical patent/WO2023206726A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of electrochemistry, and in particular relates to a preparation method of lithium hexafluorophosphate.
  • Lithium hexafluorophosphate (LiPF 6 ) is a common and commonly used lithium salt for lithium-ion battery electrolytes, and tests have proven that it has the best overall performance and the best use effect among the many lithium-ion battery electrolyte lithium salts currently. For this reason, the production and preparation of lithium hexafluorophosphate has always been a research hotspot.
  • wet method is to dissolve lithium salt in anhydrous hydrofluoric acid to form a LiF ⁇ HF solution, and then introduce phosphorus pentafluoride gas to react to produce lithium hexafluorophosphate crystals, which are separated and dried to obtain the product;
  • the dry method is to dissolve LiF in an anhydrous form.
  • LiF Water is treated with HF to form porous LiF, and then phosphorus pentafluoride gas is introduced to react directly to obtain lithium hexafluorophosphate product; the solvent rule is to use lithium salt and alkali metal salt, ammonium salt or organic ammonium salt of hexafluorophosphate to react and crystallize in an organic solvent.
  • Others include some complex methods and ion exchange methods.
  • the present invention provides a preparation method of lithium hexafluorophosphate.
  • the purpose of the present invention is to: first, ensure that the preparation method is simple and efficient; second, ensure the safety of the preparation process; third, improve the preparation efficiency; fourth, ensure that the purity of the obtained product can reach 99.8 wt% or more.
  • the present invention adopts the following technical solutions.
  • a method for preparing lithium hexafluorophosphate includes: 1) configuring an electrolytic cell.
  • the electrolytic cell is provided with a cathode and an anode.
  • the anode is a current collector with a pretreated surface.
  • the anode can be embedded with potassium ions.
  • the cathode It is a current collector whose surface is covered with a compound that can embed negative ions, and a cation exchange membrane is provided in the electrolytic cell.
  • the cation exchange membrane separates the electrolytic cell into a cathode area and an anode area, the anode is located in the anode area, and the cathode is located in the cathode area; 2 ) Inject electrolyte into the anode area and cathode area respectively, the electrolyte in the anode area is potassium fluoride solution, and the electrolyte in the cathode area is lithium salt solution to form an electrochemical system; 3) Conduct the electrochemical system on the formed Discharge, and simultaneously introduce phosphorus pentafluoride gas into the anode area. When the discharge is completed, the preparation of lithium hexafluorophosphate is completed.
  • a stable electrochemical system is constructed through steps 1) and 2).
  • the cathode when discharging, the cathode first loses electrons to capture the anions of the lithium salt in the cathode area.
  • the anode in the anode area obtains electrons to capture potassium ions, causing the potassium ions to be embedded into the anode.
  • the lithium ions in the cathode area will enter the cathode area through the anode exchange membrane, and form lithium fluoride with the fluorine ions in the cathode area.
  • the preparation of lithium hexafluorophosphate can be quickly achieved.
  • the ventilation part needs to be controlled between the anode and the cation exchange membrane.
  • a porous panel-type pump head can be used to form a bubble network between the cation exchange membrane and the anode to improve the reaction efficiency.
  • controlling the solvent composition of the electrolyte in the anode area can directly realize the crystallization and precipitation of lithium hexafluorophosphate while preparing lithium hexafluorophosphate, which is of great significance for improving the preparation and recovery efficiency, and can effectively improve the purity of the product.
  • the anode surface in step 1) is pre-treated by coating Prussian blue on the current collector surface; the Prussian blue is ferricyanide salt.
  • Specific Prussian blue includes conventional ferricyanide salts such as iron ferricyanide and chromium ferricyanide. Coating Prussian blue on the surface of the current collector is the key to the anode's ability to capture potassium ions. And Prussian blue compares favorably to other ingredients, including In terms of other ingredients, when used in the technical solution of the present invention, it has the uniqueness of ion capture, so that potassium ions have the ability to preferentially embed to form stable compounds, so that potassium has a significantly higher embedding advantage to improve product yield and ensure product purity.
  • the compound capable of inserting negative ions in step 1) includes polyaniline and/or polypyrrole and/or polythiophene and/or polyparaphenylene and/or polytriphenylamine and/or graphene oxide.
  • the cathode materials selected are common and easily available semiconductor/conductor materials, and have the ability to reversibly deintercalate lithium salt anions.
  • the cation exchange membrane in step 1) is a sulfonate type cation exchange membrane.
  • the cation exchange membrane used in the present invention specifically adopts Nafion TM 211 cation exchange membrane.
  • the potassium fluoride solution in step 2) is prepared by dissolving potassium fluoride in an alcohol-dimethylformamide solution.
  • the solubility of lithium fluoride can be ensured, while the solubility of lithium hexafluorophosphate can be suppressed to achieve the formation of lithium fluoride and the transformation and precipitation crystallization of lithium hexafluorophosphate, achieving one-step and efficient preparation.
  • the present invention selects dimethylformamide (DMF) as an important component of the solvent, because for the technical solution of the present invention, dimethylformamide has almost irreplaceable uniqueness.
  • DMF dimethylformamide
  • dimethylformamide has solubility, and together with ethylene glycol and dimethyl sulfoxide, it serves as the third compound of potassium fluoride.
  • lithium fluoride also has good solubility in dimethylformamide. Lithium fluoride itself is insoluble in alcohol. Using ethylene glycol with any other alcohol or monoethylene glycol will cause lithium fluoride to precipitate directly, resulting in low purity of the actual product.
  • Dimethyl sulfoxide serves as a solubilizer for lithium hexafluorophosphate.
  • Some organic solvents are used when preparing lithium hexafluorophosphate, but in the technical solution of the present invention, its role is completely contradictory to the concept of the present invention, and through experiments, the researchers of the present invention also realized that using dimethyl
  • dimethylformamide has almost irreplaceable uniqueness.
  • the solvent in the potassium fluoride solution is composed of alcohol and dimethylformamide in a volume ratio of (0.4-0.6): (0.4-0.6).
  • the alcohol content should be kept low to avoid premature and rapid precipitation of lithium fluoride.
  • too low an alcohol content will cause lithium hexafluorophosphate to dissolve, so the alcohol-dimethylformamide ratio needs to be strictly controlled. .
  • the alcohol is ethylene glycol.
  • Ethylene glycol is a common industrial alcohol with the best preparation effect and the highest product yield and purity of lithium hexafluorophosphate according to tests. At the same time, ethylene glycol can improve the solubility of potassium fluoride. Compared with other alcohols, the purity of the product made with ethylene glycol is significantly higher. Compared with common alcohols such as methanol, ethanol, and propanol, The average purity value is increased by approximately 0.8 to 1.6%.
  • the discharge in step 3) is a constant current discharge; the current of the constant current discharge is 30 to 100 A ⁇ m 2 .
  • Controlling the above current density enables stable intercalation of potassium ions to form lithium fluoride and convert it into lithium hexafluorophosphate.
  • the ventilation flow needs to be controlled in conjunction with the electrolyte concentration and current density in the anode and cathode areas to avoid the cumulative precipitation of lithium fluoride and the loss of lithium ions. It is usually necessary to at least ensure that the flow rate of phosphorus pentafluoride gas reaches 0.12 times the amount of lithium salt material or potassium fluoride material per minute. That is, if the electrolyte in the cathode area provides a concentration of lithium chloride of 40 mol, and the amount of electrolyte in the anode area provides 50 mol of potassium fluoride, then at least 107.52 must be introduced per minute at room temperature. L phosphorus pentafluoride gas.
  • the beneficial effects of the present invention are: 1) The overall scheme is simple and efficient, and can realize efficient preparation of lithium hexafluorophosphate in one step; 2) The preparation process is safe and has low equipment and operation requirements; 3) The prepared product is easy to separate and recover, and the yield is high And the purity is higher, the purity can generally reach 99.8 wt% or more.
  • Figure 1 is a graph showing the relationship between product yield and dimethylformamide content of the electrolyte in the anode area.
  • Figure 2 is a graph showing the relationship between product purity and dimethylformamide content of the electrolyte in the anode area.
  • the raw materials used in the examples of the present invention are all commercially available or those available to those skilled in the art.
  • the methods used in the examples of the present invention are all methods mastered by those skilled in the art.
  • Embodiment 1 A method for preparing lithium hexafluorophosphate.
  • the method includes: 1) Configuring an electrolytic cell.
  • a cathode and an anode are provided in the electrolytic cell.
  • the anode is an acetylene black current collector whose surface is coated with iron ferricyanide.
  • the cathode is It is an acetylene black current collector coated with polypyrrole on the surface.
  • the anode and cathode areas are of equal size.
  • a Nafion TM 211 cation exchange membrane is installed in the electrolytic cell.
  • the Nafion TM 211 cation exchange membrane separates the electrolytic cell into a cathode area and an anode area.
  • the anode is in the anode area, and the cathode is in the cathode area; 2) Inject electrolyte into the anode area and cathode area respectively.
  • the potassium fluoride solution of the electrolyte in the anode area provides a total of 12 mol of KF, and the solvent of the potassium fluoride solution is volume
  • the ethylene glycol-dimethylformamide solution with a ratio of 1:1, the lithium chloride dimethylformamide solution of the cathode electrolyte provides a total of 10 mol of lithium fluoride to form an electrochemical system; 3)
  • the electrochemical system performs 60 A ⁇ m2 discharge, and at the same time, phosphorus pentafluoride gas is introduced into the anode area.
  • the flow rate of phosphorus pentafluoride gas is 55 L/min.
  • the product obtained has a purity of 99.89 % of lithium hexafluorophosphate, and the product yield is 98.9%.
  • Embodiment 2 A method for preparing lithium hexafluorophosphate.
  • the method includes: 1) Configuring an electrolytic cell.
  • a cathode and an anode are provided in the electrolytic cell.
  • the anode is an acetylene black current collector whose surface is coated with iron ferricyanide.
  • the cathode is It is an acetylene black current collector coated with polypyrrole on the surface.
  • the anode and cathode areas are of equal size.
  • a Nafion TM 211 cation exchange membrane is installed in the electrolytic cell.
  • the Nafion TM 211 cation exchange membrane separates the electrolytic cell into a cathode area and an anode area.
  • the anode is in In the anode area, the cathode is in the cathode area; 2) Inject electrolyte into the anode area and the cathode area respectively.
  • the potassium fluoride solution of the anode area electrolyte provides a total of 12 mol of KF, and the solvent of the potassium fluoride solution is a volume ratio of 1 : 1 ethylene glycol-dimethylformamide solution, the lithium chloride dimethylformamide solution of the cathode zone electrolyte provides a total of 10 mol of lithium fluoride to form an electrochemical system; 3) to the formed electrolyte
  • the chemical system performs a 30 A ⁇ m2 discharge, and at the same time, phosphorus pentafluoride gas is introduced into the anode area.
  • the flow rate of phosphorus pentafluoride gas is 30 L/min.
  • the yield of lithium hexafluorophosphate of this example is 97.6%, and the purity is 99.93%.
  • Embodiment 3 A method for preparing lithium hexafluorophosphate.
  • the method includes: 1) Configuring an electrolytic cell.
  • a cathode and an anode are provided in the electrolytic cell.
  • the anode is an acetylene black current collector whose surface is coated with iron ferricyanide.
  • the cathode is It is an acetylene black current collector coated with polypyrrole on the surface.
  • the anode and cathode areas are of equal size.
  • a Nafion TM 211 cation exchange membrane is installed in the electrolytic cell.
  • the Nafion TM 211 cation exchange membrane separates the electrolytic cell into a cathode area and an anode area.
  • the anode is in the anode area, and the cathode is in the cathode area; 2) Inject electrolyte into the anode area and cathode area respectively.
  • the potassium fluoride solution of the electrolyte in the anode area provides a total of 12 mol of KF, and the solvent of the potassium fluoride solution is volume
  • the ethylene glycol-dimethylformamide solution with a ratio of 1:1, the lithium chloride dimethylformamide solution of the cathode electrolyte provides a total of 10 mol of lithium fluoride to form an electrochemical system; 3)
  • the electrochemical system performs a 100 A ⁇ m2 discharge, and at the same time, phosphorus pentafluoride gas is introduced into the anode area.
  • the flow rate of phosphorus pentafluoride gas is 90 L/min.
  • the yield of lithium hexafluorophosphate in this example is 99.1%, and the purity is 99.81%.
  • Embodiment 4 A method for preparing lithium hexafluorophosphate.
  • the method includes: 1) Configuring an electrolytic cell.
  • a cathode and an anode are provided in the electrolytic cell.
  • the anode is an acetylene black current collector whose surface is coated with iron ferricyanide.
  • the cathode is It is an acetylene black current collector coated with polypyrrole on the surface.
  • the anode and cathode areas are of equal size.
  • a Nafion TM 211 cation exchange membrane is installed in the electrolytic cell.
  • the Nafion TM 211 cation exchange membrane separates the electrolytic cell into a cathode area and an anode area.
  • the anode is in the anode area, and the cathode is in the cathode area; 2) Inject electrolyte into the anode area and cathode area respectively.
  • the potassium fluoride solution of the electrolyte in the anode area provides a total of 12 mol of KF, and the solvent of the potassium fluoride solution is volume
  • the ethylene glycol-dimethylformamide solution with a ratio of 1:1, the lithium chloride dimethylformamide solution of the cathode electrolyte provides a total of 10 mol of lithium fluoride to form an electrochemical system; 3)
  • the electrochemical system performs 60 A ⁇ m2 discharge, and at the same time, phosphorus pentafluoride gas is introduced into the anode area.
  • the flow rate of phosphorus pentafluoride gas is 60 L/min.
  • the yield of lithium hexafluorophosphate in this example is 98.9%, and the purity is 99.90%.
  • Embodiment 5 A method for preparing lithium hexafluorophosphate.
  • the method includes: 1) Configuring an electrolytic cell.
  • a cathode and an anode are provided in the electrolytic cell.
  • the anode is an acetylene black current collector whose surface is coated with iron ferricyanide.
  • the cathode is It is an acetylene black current collector coated with polypyrrole on the surface.
  • the anode and cathode areas are of equal size.
  • a Nafion TM 211 cation exchange membrane is installed in the electrolytic cell.
  • the Nafion TM 211 cation exchange membrane separates the electrolytic cell into a cathode area and an anode area.
  • the anode is in the anode area, and the cathode is in the cathode area; 2) Inject electrolyte into the anode area and cathode area respectively.
  • the potassium fluoride solution of the electrolyte in the anode area provides a total of 12 mol of KF, and the solvent of the potassium fluoride solution is volume
  • the ethylene glycol-dimethylformamide solution with a ratio of 1:1, the lithium chloride dimethylformamide solution of the cathode electrolyte provides a total of 10 mol of lithium fluoride to form an electrochemical system; 3)
  • the electrochemical system performs 60 A ⁇ m2 discharge, and at the same time, phosphorus pentafluoride gas is introduced into the anode area.
  • the flow rate of phosphorus pentafluoride gas is 65 L/min.
  • the yield of the product lithium hexafluorophosphate in this example is 98.7%, and the purity is 99.92%.
  • Comparative Example 1 A method for preparing lithium hexafluorophosphate.
  • the method includes: 1) Configuring an electrolytic cell.
  • a cathode and an anode are provided in the electrolytic cell.
  • the anode is an acetylene black current collector with iron ferricyanide coated on the surface.
  • the cathode It is an acetylene black current collector coated with polypyrrole on the surface.
  • the anode and cathode areas are of equal size.
  • a Nafion TM 211 cation exchange membrane is installed in the electrolytic cell.
  • the Nafion TM 211 cation exchange membrane separates the electrolytic cell into a cathode area and an anode area.
  • the anode is in the anode area, and the cathode is in the cathode area; 2) Inject electrolyte into the anode area and cathode area respectively, and the potassium hexafluorophosphate solution of the electrolyte in the anode area provides a total of 12 mol of KPF6, the solvent of the potassium hexafluorophosphate solution It is an ethylene glycol-dimethylformamide solution with a volume ratio of 1:1, and the lithium chloride dimethylformamide solution of the cathode electrolyte provides a total of 10 mol of lithium fluoride to form an electrochemical system; 3)
  • the constituted electrochemical system performs 60 A ⁇ m2 discharge, and at the same time, phosphorus pentafluoride gas is introduced into the anode area.
  • the flow rate of phosphorus pentafluoride gas is 55 L/min.
  • the yield of lithium hexafluorophosphate of this comparative example is 99.8% and the purity is 96.22%, and the main impurity is potassium hexafluorophosphate.
  • Comparative Example 2 A method for preparing lithium hexafluorophosphate.
  • the method includes: 1) Configuring an electrolytic cell.
  • a cathode and an anode are provided in the electrolytic cell.
  • the anode is an acetylene black current collector with iron ferricyanide coated on the surface.
  • the cathode It is an acetylene black current collector coated with polypyrrole on the surface.
  • the anode and cathode areas are of equal size.
  • a Nafion TM 211 cation exchange membrane is installed in the electrolytic cell.
  • the Nafion TM 211 cation exchange membrane separates the electrolytic cell into a cathode area and an anode area.
  • the anode is in the anode area, and the cathode is in the cathode area; 2) Inject electrolyte into the anode area and cathode area respectively, and the potassium hexafluorophosphate solution of the electrolyte in the anode area provides a total of 12 mol of KPF6, the solvent of the potassium hexafluorophosphate solution It is an ethylene glycol-dimethylformamide solution with a volume ratio of 1:1, and the lithium chloride dimethylformamide solution of the cathode electrolyte provides a total of 10 mol of lithium fluoride to form an electrochemical system; 3) The formed electrochemical system is discharged at 60 A ⁇ m2, and when the discharge is completed, the preparation of lithium hexafluorophosphate is completed.
  • the yield of lithium hexafluorophosphate of this comparative example product is 100.7%, and the purity is 92.09%, and the main impurity is potassium hexafluorophosphate.
  • Example 1 By comparing Example 1 with Comparative Examples 1 and 2, it can be found that the electrolyte in the anode region has a huge impact on the purity of the product.
  • the present invention specifically uses potassium fluoride, which utilizes the balance between dissolution and precipitation. First, lithium fluoride is formed that can be effectively dissolved, and lithium fluoride reacts with the blown phosphorus pentafluoride gas to generate lithium hexafluorophosphate, so it can quickly The product precipitates and precipitates.
  • potassium hexafluorophosphate If potassium hexafluorophosphate is directly used, precipitation will directly occur in the electrolyte solvent system in the anode area of the present invention, and in the process, potassium hexafluorophosphate will easily be co-precipitated, that is, the potassium hexafluorophosphate will be "captured" to produce Impurities, especially in Comparative Example 2, caused the actual impurity content to be higher without aeration, and it is also for this reason.
  • the electrolyte solvent system in the anode area will have a huge impact on the implementation effect of the solution.
  • the refined step test (based on 1 %VOL is the gradient), indicating that the volume content of ethylene glycol in the electrolyte ethylene glycol-dimethylformamide solvent in the anode area is 37 to 66 %VOL can achieve better preparation effects, but the optimal range should still be limited to the range of 40 to 60%VOL.
  • Comparative Example 3 On the basis of Example 1, the alcohol in the electrolyte solvent in the anode area was replaced with an organic solvent, and experiments were carried out to test the product yield and purity, and the results shown in the table below were obtained.
  • the preparation method of the present invention can realize the preparation of lithium hexafluorophosphate quickly and efficiently, and the product yield of the preparation method of the present invention is high, which can basically reach more than 98%, and the purity of the obtained product can basically reach more than 99.8%, which has extremely high purity standards. , and has low requirements for equipment and low operation difficulty, and has huge promotion value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Primary Cells (AREA)

Abstract

本发明属于电化学领域,尤其涉及一种六氟磷酸锂的制备方法。所述方法包括:配置电解槽,电解槽内设有阴极和阳极,所述阳极可嵌入钾离子,所述阴极可嵌入负离子,所述电解槽中设置阳离子交换膜,阳离子交换膜将电解槽分隔为阴极区和阳极区;分别向阳极区和阴极区注入电解液,所述阳极区电解液为氟化钾溶液,所述阴极区电解液为锂盐溶液,构成电化学体系;对所构成的电化学体系进行放电,同时向阳极区内通入五氟化磷气体,至放电完成即完成六氟磷酸锂的制备。本发明整体方案简洁高效,能够一步法实现六氟磷酸锂的高效制备;制备过程安全,对设备要求和操作要求低;所制得产物方便分离回收,且得率和纯度较高,纯度能够普遍达到99.8 %以上。

Description

一种六氟磷酸锂的制备方法 技术领域
本发明属于电化学领域,尤其涉及一种六氟磷酸锂的制备方法。
背景技术
六氟磷酸锂(LiPF 6)是一种常见且常用的锂离子电池电解质锂盐,且经试验已证实是目前众多锂离子电池电解质锂盐中综合性能最优、使用效果最好的。为此,六氟磷酸锂的生产和制备始终是一个研究的热点。
在目前众多的制备方法中,传统的方法有湿法、干法和溶剂法三种。其中,湿法是将锂盐溶于无水氢氟酸中形成LiF·HF溶液,然后通入五氟化磷气体进行反应生产六氟磷酸锂结晶,经分离、干燥得到产品;干法是将LiF以无水HF处理形成多孔LiF,然后通入五氟化磷气体直接反应得到六氟磷酸锂产品;溶剂法则是使用锂盐与六氟磷酸的碱金属盐、铵盐或有机铵盐在有机溶剂中反应、结晶制备。其他的还包括一些络合法和离子交换法等方法。
但是,现有的制备方法大多存在较多的缺陷。如干法制备需要高温高压,对设备需求高,且转化率低、转化仅在表面进行,导致产品得率和纯度均较低。而湿法制备由于HF的腐蚀性带来较大的安全隐患,反应需要在低温条件下进行、能耗大。而溶剂法反应速度慢、反应过程中容易引入杂质,导致产品纯度低。络合法虽然具有设备和操作需求低等优势,但是其甚至无法分离得到六氟磷酸锂晶体,导致其实际应用受到极大的限制。离子交换法则存在成本高、规模化生产难度大且产品纯度低等缺陷。
为此,开发一种全新的六氟磷酸锂制备方法,具有重大的意义。
技术问题
为解决现有的六氟磷酸锂制备方法或多或少存在缺陷,或成本高、性价比低、难度大、危险性高、产品得率和品质不佳等问题,本发明提供了一种六氟磷酸锂的制备方法。
技术解决方案
本发明的目的在于:一、确保制备方法简洁高效;二、保障制备过程的安全性;三、提高制备效率;四、确保所得产品的纯度能够达到99.8 wt%以上。
为实现上述目的,本发明采用以下技术方案。
一种六氟磷酸锂的制备方法,所述方法包括:1)配置电解槽,电解槽内设有阴极和阳极,所述阳极为表面经过预处理的集流体,所述阳极可嵌入钾离子,所述阴极为表面覆盖有可嵌入负离子的化合物的集流体,所述电解槽中设置阳离子交换膜,阳离子交换膜将电解槽分隔为阴极区和阳极区,阳极处于阳极区内,阴极处于阴极区内;2)分别向阳极区和阴极区注入电解液,所述阳极区电解液为氟化钾溶液,所述阴极区电解液为锂盐溶液,构成电化学体系;3)对所构成的电化学体系进行放电,同时向阳极区内通入五氟化磷气体,至放电完成即完成六氟磷酸锂的制备。
在本发明技术方案中,通过步骤1)和步骤2)构建了一个稳定的电化学体系。在所构建的电化学体系中,进行放电时,阴极首先失去电子捕获阴极区中锂盐的阴离子,同时阳极区的阳极得到电子对钾离子进行捕获,使得钾离子嵌入至阳极中,而为保持电中性,阴极区的锂离子会通过阳极交换膜进入到阴极区中,与阴极区中的氟离子构成氟化锂,随后通入五氟化磷气体后能够快速实现六氟磷酸锂的制备。
在该过程中,通气部位需要控制在阳极与阳离子交换膜之间,通气时采用可选用具有多孔的面板型泵头在阳离子交换膜与阳极之间形成气泡网,以提高反应效率。同时,控制阳极区电解液的溶剂构成,能够在实现六氟磷酸锂制备的同时直接实现其结晶沉淀,对于提高制备和回收效率而言具有重大的意义,并且能够有效提高产品的纯度。
作为优选,步骤1)所述阳极表面经过预处理具体为:在集流体表面涂布普鲁士蓝;所述普鲁士蓝为铁氰化盐。
具体的普鲁士蓝包括铁氰化铁、铁氰化铬等常规铁氰化盐,通过在集流体表面涂布普鲁士蓝,是阳极能够实现对钾离子捕获的关键。且普鲁士蓝相较于其他成分,包括 ­­ 等成分而言,用于本发明技术方案时更具备离子捕获的独特性,使得钾离子具有优先嵌入形成稳定化合物的能力,使得钾具有显著更高的嵌入优势,以提高产物得率并确保产物纯度。
作为优选,步骤1)所述可嵌入负离子的化合物包括聚苯胺和/或聚吡咯和/或聚噻吩和/或聚对苯和/或聚三苯胺和/或氧化石墨烯。
对于可嵌入负离子的化合物材料并没有特定的选择,所选用的阴极材料为常见且容易获得的半导体/导体材料,且具有可逆脱嵌锂盐阴离子的能力。
作为优选,步骤1)所述阳离子交换膜为磺酸盐型阳离子交换膜。
具体的,本发明所用阳离子交换膜具体采用Nafion TM211阳离子交换膜。
作为优选,步骤2)所述氟化钾溶液由氟化钾溶于醇-二甲基甲酰胺溶液配制。
通过特定的溶剂配比,能够确保氟化锂的溶解性,同时抑制六氟磷酸锂的溶解性,以实现氟化锂的形成以及六氟磷酸锂的转变和析出结晶,实现一步高效的制备。
同时,本发明选用二甲基甲酰胺(DMF)作为溶剂的重要构成部分,这是因为对于本发明技术方案而言,二甲基甲酰胺具有几乎不可替代的独特性。首先其能够与醇类物质互溶,但最为重要的是,对于氟化钾而言,二甲基甲酰胺具有溶解性,与乙二醇、二甲基亚砜类物质共同作为氟化钾的三大常用有机溶剂,同时,氟化锂在二甲基甲酰胺也具有良好的溶解性。而氟化锂本身不溶于醇,使用乙二醇与其他任意醇或单乙二醇均会导致氟化锂直接析出,导致实际产品纯度低,二甲基亚砜作为六氟磷酸锂的一种增溶剂,部分有机溶剂法制备六氟磷酸锂时会进行使用,但在本发明技术方案中,其所起的作用与本发明的构思是完全矛盾的,且通过试验,本发明研究人员也意识到,采用二甲基亚砜与醇配合,会导致产品的得率和纯度均产生显著的下降,因此对于本发明技术方案而言,二甲基甲酰胺具有几乎不可替代的独特性。
作为优选,步骤2)所述氟化钾溶液中:溶剂由体积比为(0.4~0.6):(0.4~0.6)的醇和二甲基甲酰胺构成。
由于氟化锂不溶于醇,因此应当控制醇含量较低避免氟化锂过早、过快地析出,但醇含量过低又会导致六氟磷酸锂溶解,因此需要严格控制醇-二甲基甲酰胺比。
作为优选,所述醇为乙二醇。
乙二醇是经试验制备效果最优、六氟磷酸锂的产物得率和纯度相对最高的常见工业醇。同时,乙二醇能够提高氟化钾的溶解度,相较于其余的醇类物质,采用乙二醇所制得的产物纯度明显更高,相较于甲醇、乙醇、丙醇等常见醇类,纯度均值提高约0.8~1.6 %。
作为优选,步骤3)所述放电为恒电流放电;所述恒电流放电的电流为30~100 A·m 2
控制上述电流密度能够稳定地实现钾离子嵌入,以形成氟化锂并转化为六氟磷酸锂。
但与此同时,需要注意的是,需要配合阳极区和阴极区中电解液浓度和电流密度控制通气流量,以避免氟化锂的累计析出和锂离子的损失。通常需要至少确保五氟化磷气体的流速达到每分钟所通入的五氟化磷气体物质的量达到0.12 倍锂盐物质的量或氟化钾物质的量。即若阴极区电解液提供氯化锂浓度为40 mol,阳极区电解液用量提供氟化钾50 mol,则常温下每分钟至少需要通入107.52 L五氟化磷气体。
有益效果
本发明的有益效果在于:1)整体方案简洁高效,能够一步法实现六氟磷酸锂的高效制备;2)制备过程安全,对设备要求和操作要求低;3)所制得产物方便分离回收,且得率和纯度较高,纯度能够普遍达到99.8 wt%以上。
附图说明
图1为产品得率与阳极区电解液二甲基甲酰胺含量的关系图。
图2为产品纯度与阳极区电解液二甲基甲酰胺含量的关系图。
本发明的实施方式
以下结合具体实施例和说明书附图对本发明作出进一步清楚详细的描述说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
如无特殊说明,本发明实施例所用原料均为市售或本领域技术人员可获得的原料;如无特殊说明,本发明实施例所用方法均为本领域技术人员所掌握的方法。
实施例1:一种六氟磷酸锂的制备方法,所述方法包括:1)配置电解槽,电解槽内设有阴极和阳极,阳极为表面涂布有铁氰化铁的乙炔黑集流体,所述阴极为表面涂布有聚吡咯的乙炔黑集流体,阳极和阴极面积等大,所述电解槽中设置Nafion TM211阳离子交换膜,Nafion TM211阳离子交换膜将电解槽分隔为阴极区和阳极区,阳极处于阳极区内,阴极处于阴极区内;2)分别向阳极区和阴极区注入电解液,所述阳极区电解液的氟化钾溶液提供KF共12 mol,氟化钾溶液的溶剂为体积比1:1的乙二醇-二甲基甲酰胺溶液,所述阴极区电解液的氯化锂二甲基甲酰胺溶液提供氟化锂共计10 mol,构成电化学体系;3)对所构成的电化学体系进行60 A•m2放电,同时向阳极区内通入五氟化磷气体,五氟化磷气体流速为55 L/min,至放电完成即完成六氟磷酸锂的制备。
回收阳极区的1.5 kg固体物,对其进行分析表征,可得产物为纯度为99.89 %的六氟磷酸锂,产品得率为98.9 %。
实施例2:一种六氟磷酸锂的制备方法,所述方法包括:1)配置电解槽,电解槽内设有阴极和阳极,阳极为表面涂布有铁氰化铁的乙炔黑集流体,所述阴极为表面涂布有聚吡咯的乙炔黑集流体,阳极和阴极面积等大,所述电解槽中设置Nafion TM211阳离子交换膜,NafionTM211阳离子交换膜将电解槽分隔为阴极区和阳极区,阳极处于阳极区内,阴极处于阴极区内;2)分别向阳极区和阴极区注入电解液,所述阳极区电解液的氟化钾溶液提供KF共12 mol,氟化钾溶液的溶剂为体积比1:1的乙二醇-二甲基甲酰胺溶液,所述阴极区电解液的氯化锂二甲基甲酰胺溶液提供氟化锂共计10 mol,构成电化学体系;3)对所构成的电化学体系进行30 A•m2放电,同时向阳极区内通入五氟化磷气体,五氟化磷气体流速为30 L/min,至放电完成即完成六氟磷酸锂的制备。
回收并计算产物得率并分析其纯度,本实施例产品六氟磷酸锂得率为97.6 %,纯度为99.93 %。
实施例3:一种六氟磷酸锂的制备方法,所述方法包括:1)配置电解槽,电解槽内设有阴极和阳极,阳极为表面涂布有铁氰化铁的乙炔黑集流体,所述阴极为表面涂布有聚吡咯的乙炔黑集流体,阳极和阴极面积等大,所述电解槽中设置Nafion TM211阳离子交换膜,Nafion TM211阳离子交换膜将电解槽分隔为阴极区和阳极区,阳极处于阳极区内,阴极处于阴极区内;2)分别向阳极区和阴极区注入电解液,所述阳极区电解液的氟化钾溶液提供KF共12 mol,氟化钾溶液的溶剂为体积比1:1的乙二醇-二甲基甲酰胺溶液,所述阴极区电解液的氯化锂二甲基甲酰胺溶液提供氟化锂共计10 mol,构成电化学体系;3)对所构成的电化学体系进行100 A•m2放电,同时向阳极区内通入五氟化磷气体,五氟化磷气体流速为90 L/min,至放电完成即完成六氟磷酸锂的制备。
回收并计算产物得率并分析其纯度,本实施例产品六氟磷酸锂得率为99.1 %,纯度为99.81 %。
实施例4:一种六氟磷酸锂的制备方法,所述方法包括:1)配置电解槽,电解槽内设有阴极和阳极,阳极为表面涂布有铁氰化铁的乙炔黑集流体,所述阴极为表面涂布有聚吡咯的乙炔黑集流体,阳极和阴极面积等大,所述电解槽中设置Nafion TM211阳离子交换膜,Nafion TM211阳离子交换膜将电解槽分隔为阴极区和阳极区,阳极处于阳极区内,阴极处于阴极区内;2)分别向阳极区和阴极区注入电解液,所述阳极区电解液的氟化钾溶液提供KF共12 mol,氟化钾溶液的溶剂为体积比1:1的乙二醇-二甲基甲酰胺溶液,所述阴极区电解液的氯化锂二甲基甲酰胺溶液提供氟化锂共计10 mol,构成电化学体系;3)对所构成的电化学体系进行60 A•m2放电,同时向阳极区内通入五氟化磷气体,五氟化磷气体流速为60 L/min,至放电完成即完成六氟磷酸锂的制备。
回收并计算产物得率并分析其纯度,本实施例产品六氟磷酸锂得率为98.9 %,纯度为99.90 %。
实施例5:一种六氟磷酸锂的制备方法,所述方法包括:1)配置电解槽,电解槽内设有阴极和阳极,阳极为表面涂布有铁氰化铁的乙炔黑集流体,所述阴极为表面涂布有聚吡咯的乙炔黑集流体,阳极和阴极面积等大,所述电解槽中设置Nafion TM211阳离子交换膜,Nafion TM211阳离子交换膜将电解槽分隔为阴极区和阳极区,阳极处于阳极区内,阴极处于阴极区内;2)分别向阳极区和阴极区注入电解液,所述阳极区电解液的氟化钾溶液提供KF共12 mol,氟化钾溶液的溶剂为体积比1:1的乙二醇-二甲基甲酰胺溶液,所述阴极区电解液的氯化锂二甲基甲酰胺溶液提供氟化锂共计10 mol,构成电化学体系;3)对所构成的电化学体系进行60 A•m2放电,同时向阳极区内通入五氟化磷气体,五氟化磷气体流速为65 L/min,至放电完成即完成六氟磷酸锂的制备。
回收并计算产物得率并分析其纯度,本实施例产品六氟磷酸锂得率为98.7 %,纯度为99.92 %。
对比例1:一种六氟磷酸锂的制备方法,所述方法包括:1)配置电解槽,电解槽内设有阴极和阳极,阳极为表面涂布有铁氰化铁的乙炔黑集流体,所述阴极为表面涂布有聚吡咯的乙炔黑集流体,阳极和阴极面积等大,所述电解槽中设置Nafion TM211阳离子交换膜,Nafion TM211阳离子交换膜将电解槽分隔为阴极区和阳极区,阳极处于阳极区内,阴极处于阴极区内;2)分别向阳极区和阴极区注入电解液,所述阳极区电解液的六氟磷酸钾溶液提供KPF6共12 mol,六氟磷酸钾溶液的溶剂为体积比1:1的乙二醇-二甲基甲酰胺溶液,所述阴极区电解液的氯化锂二甲基甲酰胺溶液提供氟化锂共计10 mol,构成电化学体系;3)对所构成的电化学体系进行60 A•m2放电,同时向阳极区内通入五氟化磷气体,五氟化磷气体流速为55 L/min,至放电完成即完成六氟磷酸锂的制备。
回收并计算产物得率并分析其纯度,本对比例产品六氟磷酸锂得率为99.8 %,纯度为96.22 %,且其中主要杂质为六氟磷酸钾。
对比例2:一种六氟磷酸锂的制备方法,所述方法包括:1)配置电解槽,电解槽内设有阴极和阳极,阳极为表面涂布有铁氰化铁的乙炔黑集流体,所述阴极为表面涂布有聚吡咯的乙炔黑集流体,阳极和阴极面积等大,所述电解槽中设置Nafion TM211阳离子交换膜,Nafion TM211阳离子交换膜将电解槽分隔为阴极区和阳极区,阳极处于阳极区内,阴极处于阴极区内;2)分别向阳极区和阴极区注入电解液,所述阳极区电解液的六氟磷酸钾溶液提供KPF6共12 mol,六氟磷酸钾溶液的溶剂为体积比1:1的乙二醇-二甲基甲酰胺溶液,所述阴极区电解液的氯化锂二甲基甲酰胺溶液提供氟化锂共计10 mol,构成电化学体系;3)对所构成的电化学体系进行60 A•m2放电,至放电完成即完成六氟磷酸锂的制备。
回收并计算产物得率并分析其纯度,本对比例产品六氟磷酸锂得率为100.7 %,纯度为92.09 %,且其中主要杂质为六氟磷酸钾。
通过实施例1和对比例1、对比例2的对比,可以发现,阳极区的电解液对于产品的纯度具有巨大的影响。本发明特选采用氟化钾,利用的是溶解与沉淀的平衡,首先形成的是能够有效溶解的氟化锂,而氟化锂与鼓入的五氟化磷气体反应后生成六氟磷酸锂,因此快速地析出并沉淀得到产物。而若直接采用六氟磷酸钾,在本发明阳极区的电解液溶剂体系中,会直接产生沉淀,而在该过程中容易带动六氟磷酸钾共析出,即“捕捉”到六氟磷酸钾产生杂质,尤其在对比例2中,在不进行鼓气的情况下,导致实际杂质含量更多,也是出于该原因。
对此,进一步进行阳极区电解液的溶剂体系进行调整,进行正交试验,得到如图1和图2所示结果。而由于阳极区电解液的溶剂中二甲基甲酰胺含量高于80 %VOL后几乎无法直接得到六氟磷酸锂产品,因此对其进行重结晶处理获取产物。从图中试验和检测结果可以看出,随着二甲基甲酰胺含量的提高,产品得率先提升、后断崖式下降,这主要是由于六氟磷酸锂的溶解导致的,因此需要对其进行重结晶获得产物,重结晶获得的产物中含有大量的六氟磷酸钾等杂质,因此重结晶获得的产物纯度发生了断崖式的下降,但下降后迅速维持稳定,这也表明是溶解-沉淀平衡被破坏所带来的不利影响。而在高醇浓度的情况下,产物的得率的下降实际是表现在质量上,从摩尔量角度计算,其产品得率并未下降甚至略高与实施例1,但是产物中混杂了大量的氟化锂杂质。
因此,从上述的测试结果也可以看出,对于本发明技术方案而言,阳极区的电解液溶剂体系,会对方案的实施效果产生巨大的影响,通过细化阶梯试验(以1 %VOL为梯度),表明阳极区的电解液乙二醇-二甲基甲酰胺溶剂中,乙二醇的体积含量为37~66 %VOL均能够实现较优的制备效果,但最优区间仍应当限制在40~60 %VOL范围内。
对比例3:在实施例1的基础上,对阳极区电解液溶剂中的醇以有机溶剂进行替换,并实施试验测试产物得率和纯度,得到下表所示结果。
表中:“*”表示产物无法直接过滤获得,需要进行重结晶获得。
从上表可以看出,对于本发明技术方案而言,除乙醇能够产生较为接近的效果外,其余的醇或常见的有机溶剂均无法达到本发明预期效果,因此乙二醇对于本发明而言具有显著的独特性。
综上,本发明制备方法能够快速高效地实现六氟磷酸锂的制备,且本发明制备方法产品得率高,基本能够达到98 %以上,所得产品的纯度基本能够达到99.8 %以上,具有极高的纯度标准,且对于设备的要求低、操作难度低,具备巨大的推广价值。

Claims (8)

  1. 一种六氟磷酸锂的制备方法,其特征在于,所述方法包括:1)配置电解槽,电解槽内设有阴极和阳极,所述阳极为表面经过预处理的集流体,所述阳极可嵌入钾离子,所述阴极为表面覆盖有可嵌入负离子的化合物的集流体,所述电解槽中设置阳离子交换膜,阳离子交换膜将电解槽分隔为阴极区和阳极区,阳极处于阳极区内,阴极处于阴极区内;2)分别向阳极区和阴极区注入电解液,所述阳极区电解液为氟化钾溶液,所述阴极区电解液为锂盐溶液,构成电化学体系;3)对所构成的电化学体系进行放电,同时向阳极区内通入五氟化磷气体,至放电完成即完成六氟磷酸锂的制备。
  2. 根据权利要求1所述的一种六氟磷酸锂的制备方法,其特征在于,步骤1)所述阳极表面经过预处理具体为:在集流体表面涂布普鲁士蓝;所述普鲁士蓝为铁氰化盐。
  3. 根据权利要求1所述的一种六氟磷酸锂的制备方法,其特征在于,步骤1)所述可嵌入负离子的化合物包括聚苯胺和/或聚吡咯和/或聚噻吩和/或聚对苯和/或聚三苯胺和/或氧化石墨烯。
  4. 根据权利要求1所述的一种六氟磷酸锂的制备方法,其特征在于,步骤1)所述阳离子交换膜为磺酸盐型阳离子交换膜。
  5. 根据权利要求1所述的一种六氟磷酸锂的制备方法,其特征在于,步骤2)所述氟化钾溶液由氟化钾溶于醇-二甲基甲酰胺溶液配制。
  6. 根据权利要求1或5所述的一种六氟磷酸锂的制备方法,其特征在于,步骤2)所述氟化钾溶液中:溶剂由体积比为(0.4~0.6):(0.4~0.6)的醇和二甲基甲酰胺构成。
  7. 根据权利要求6所述的一种六氟磷酸锂的制备方法,其特征在于,所述醇为乙二醇。
  8. 根据权利要求1所述的一种六氟磷酸锂的制备方法,其特征在于,步骤3)所述放电为恒电流放电;所述恒电流放电的电流为30~100 A·m 2
PCT/CN2022/097821 2022-04-29 2022-06-09 一种六氟磷酸锂的制备方法 WO2023206726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210464825.3 2022-04-29
CN202210464825.3A CN114737206B (zh) 2022-04-29 2022-04-29 一种六氟磷酸锂的制备方法

Publications (1)

Publication Number Publication Date
WO2023206726A1 true WO2023206726A1 (zh) 2023-11-02

Family

ID=82285818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097821 WO2023206726A1 (zh) 2022-04-29 2022-06-09 一种六氟磷酸锂的制备方法

Country Status (2)

Country Link
CN (1) CN114737206B (zh)
WO (1) WO2023206726A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378445A (en) * 1993-12-23 1995-01-03 Fmc Corporation Preparation of lithium hexafluorophosphate solutions
JPH10316410A (ja) * 1997-03-18 1998-12-02 Central Glass Co Ltd ヘキサフルオロリン酸リチウムの製造方法
CN1317445A (zh) * 2001-06-11 2001-10-17 山东省肥城市化肥厂 六氟磷酸锂非水溶剂法规模化生产工艺
CN111304679A (zh) * 2020-03-16 2020-06-19 武汉大学 一种电化学离子提取法电解制备高纯六氟磷酸锂的装置和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031232A (ja) * 2009-08-04 2011-02-17 Kee:Kk 水酸化リチウムの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378445A (en) * 1993-12-23 1995-01-03 Fmc Corporation Preparation of lithium hexafluorophosphate solutions
JPH10316410A (ja) * 1997-03-18 1998-12-02 Central Glass Co Ltd ヘキサフルオロリン酸リチウムの製造方法
CN1317445A (zh) * 2001-06-11 2001-10-17 山东省肥城市化肥厂 六氟磷酸锂非水溶剂法规模化生产工艺
CN111304679A (zh) * 2020-03-16 2020-06-19 武汉大学 一种电化学离子提取法电解制备高纯六氟磷酸锂的装置和方法

Also Published As

Publication number Publication date
CN114737206B (zh) 2022-11-11
CN114737206A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN105789575B (zh) 二氧化硅碳复合负极材料和改性二氧化硅碳复合负极材料及其制备方法和应用
CN102803142B (zh) 四氟硼酸盐的制造方法
CN111952580B (zh) 一种水系锌离子电池正极用钒基纳米材料的制备方法
CN112635698B (zh) 一种锌二次电池的负极极片及其制备方法和用途
CN103490040A (zh) 钛酸锂-石墨烯复合材料的制备方法
CN116315157A (zh) 一种宽温域水系锌电池电解质的制备方法及其应用与回收
CN105762359A (zh) 一种钠离子电池高容量石墨负极材料制备方法
WO2023206726A1 (zh) 一种六氟磷酸锂的制备方法
CN115011978B (zh) 一种二氟草酸硼酸锂的制备方法
CN114824542A (zh) 废旧锂离子电池中负极石墨的回收方法及应用
CN108666551A (zh) 一种石墨烯/LiTi2(PO4)3锂电池负极材料及制备方法
WO2023184704A1 (zh) 双草酸硼酸锂的制备方法及双草酸硼酸锂的应用
CN114314546A (zh) 一种磷酸盐正极材料及其制备方法
CN114032562A (zh) 一种抑制气液界面处结构破碎的电解二氧化锰方法
CN103715427B (zh) 磷酸铁锂纳米单晶材料的制备方法
CN103456962A (zh) 一种Li2C6O6复合材料及其制备方法
CN113394380A (zh) 一种Br掺杂和碳包覆的磷酸钛钠复合材料及其制备方法和用途
WO2021217684A1 (zh) 一种高浓度溶液及其应用与制备方法
CN112707381B (zh) 一种富氮空心碳球修饰石墨烯的正极活性材料的制法和应用
CN115557534B (zh) 一种水系锌离子电池复合正极材料的制备方法
CN115744896B (zh) 人造石墨@鳞片石墨@无定型碳复合活性材料及其制备和应用
CN111029555B (zh) 一种正极材料及其制备方法和用途
CN117996087A (zh) 一种钠金属负极集流体及其制备方法和应用
CN116936792A (zh) 一种双活性组分锌离子电池正极材料及其制备方法
CN113979484A (zh) 一种多孔结构LiCoO2锂离子电池正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939558

Country of ref document: EP

Kind code of ref document: A1