WO2023206205A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2023206205A1
WO2023206205A1 PCT/CN2022/089788 CN2022089788W WO2023206205A1 WO 2023206205 A1 WO2023206205 A1 WO 2023206205A1 CN 2022089788 W CN2022089788 W CN 2022089788W WO 2023206205 A1 WO2023206205 A1 WO 2023206205A1
Authority
WO
WIPO (PCT)
Prior art keywords
blocking
pixel
flow guide
display substrate
base substrate
Prior art date
Application number
PCT/CN2022/089788
Other languages
English (en)
French (fr)
Inventor
赵德江
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/245,923 priority Critical patent/US20240147765A1/en
Priority to CN202280000980.8A priority patent/CN117501844A/zh
Priority to PCT/CN2022/089788 priority patent/WO2023206205A1/zh
Publication of WO2023206205A1 publication Critical patent/WO2023206205A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present disclosure relates to the field of display technology, and specifically, to a display substrate, a preparation method thereof, and a display device.
  • organic electroluminescent displays Compared with traditional LCD displays, organic electroluminescent displays (OLEDs) have obvious advantages, such as being thinner and thinner, having a wider viewing angle, significantly saving power consumption, saving materials, and being easy to produce in large areas.
  • OLEDs organic electroluminescent displays
  • the luminescent layer of the OLED device is prepared by inkjet printing, which can effectively improve the utilization rate of the luminescent material. Patterning can be achieved without using a mask, and the preparation process is simple. ,low cost.
  • a display substrate including: a base substrate; and a pixel defining layer for defining a plurality of pixel printing areas on the base substrate, the pixel printing area being used to fill a pixel printing medium,
  • the plurality of pixel printing areas are arranged in an array along a first direction and a second direction, and the first direction and the second direction have an included angle;
  • the pixel definition layer includes: a plurality of first blocking portions, the A plurality of first blocking parts are spaced apart along the second direction, and each first blocking part is parallel to the first direction; a plurality of second blocking parts, the plurality of second blocking parts are spaced apart along the first direction, and each first blocking part is parallel to the first direction;
  • Two blocking parts are parallel to the second direction, the plurality of first blocking parts and the plurality of second blocking parts surround and form a plurality of pixel light-emitting areas; and a plurality of blocking walls, the plurality of blocking walls are along the first direction Arranged at intervals, at least one blocking wall is provided
  • Accommodation area at least one accommodation area is located between the adjacent first blocking parts in the second direction, and is located between the adjacent second blocking parts and the retaining wall in the first direction; and
  • the display substrate also includes a first flow guide structure, the first flow guide structure is disposed on a side of the second blocking portion away from the base substrate, and the first flow guide structure is used to fill the pixels Some of the pixel printing media in the light-emitting area are led to the accommodation area adjacent to the pixel light-emitting area.
  • the first flow guide structure includes a plurality of first flow guide grooves spaced apart on a side of the second barrier portion away from the substrate substrate, and each first guide groove is One end of the flow channel is connected to the pixel light-emitting area, and the other end is connected to the accommodating area.
  • the second blocking part includes a plurality of thickened parts and thinned parts arranged at intervals, and the thickness of each thickened part in the third direction is greater than the thickness of each thinned part.
  • the third direction is perpendicular to the plane formed by the intersection of the first direction and the second direction.
  • opposite side surfaces of two adjacent thickened portions form side walls of the first guide groove, and a top surface of the thinned portion away from the base substrate Form the bottom wall of the first guide groove.
  • the display substrate further includes a liquid level adjustment structure, the liquid level adjustment structure is disposed on at least one of the first blocking part and the second blocking part, so The liquid level adjustment structure is used to adjust the pixel printing medium in the pixel light-emitting area so that the pixel printing medium in the pixel light-emitting area forms a smooth liquid level.
  • the liquid level adjustment structure includes a first liquid level adjustment structure disposed on the first blocking part, and the first liquid level adjustment structure includes: a plurality of recessed parts, The plurality of recessed portions are spaced apart on the side of the first blocking portion facing the pixel light-emitting area.
  • the recessed portion includes a recessed portion opening and a recessed portion bottom surface, the recessed portion opening is provided on a side surface of the first blocking portion away from the base substrate, and the recessed portion The opening faces the second direction and the third direction; the bottom surface of the recessed portion is provided between a side surface of the first blocking portion away from the base substrate and a side surface close to the base substrate. , the bottom surface of the recessed portion and the upper surface of the second blocking portion away from the base substrate are located in the same plane.
  • the liquid level adjustment structure includes a second liquid level adjustment structure disposed on the second blocking part, the second liquid level adjustment structure includes: a cylindrical structure, the The cylindrical structure is disposed on a side of the second blocking part away from the base substrate and extends along the third direction.
  • the cylindrical structure is provided on an upper surface of at least one of the thickened portions on a side away from the base substrate.
  • the display substrate further includes a second flow guide structure, the second flow guide structure is disposed on a side of the first blocking part facing the pixel light emitting area, and the The second flow guide structure is used to guide part of the pixel printing medium filled in the pixel light-emitting area to the accommodation area.
  • the second flow guide structure includes: a second flow guide groove provided on the first blocking portion along the first direction, and each of the second flow guide grooves One end is respectively connected to the accommodation area adjacent to the pixel light-emitting area.
  • the first blocking part includes: a first blocking sub-part close to the pixel light-emitting area; a second blocking sub-part far from the pixel light-emitting area; and a third blocking sub-part part, located between the first blocking sub-part and the second blocking sub-part; wherein, in the third direction, the thickness of the second blocking sub-part is greater than the thickness of the first blocking sub-part, and the The thickness of the first blocking sub-section is greater than the thickness of the third blocking sub-section.
  • the first blocking sub-portion and the second blocking sub-portion respectively form both side walls of the second flow guide groove, and the third blocking sub-portion forms the The bottom wall of the second diversion channel.
  • the upper surface of the first blocking sub-portion in the third direction and the upper surface of the second blocking portion in the third direction are located in the same plane; the second guide The bottom wall of the flow channel and the bottom wall of the first guide channel are located on the same plane.
  • the display substrate further includes an anode material layer disposed between the base substrate and the pixel definition layer, the first blocking part and the An orthographic projection of at least one of the second blocking portions on the base substrate and an orthographic projection of the anode material layer on the base substrate form an overlapping area.
  • At least part of the orthographic projection of the liquid level adjustment structure on the substrate is located in the overlapping area; and/or the second flow guide groove is located on the substrate At least part of the orthographic projection on the substrate is located in the overlap area.
  • orthographic projections of the plurality of retaining walls on the base substrate do not overlap with orthographic projections of the anode material layer on the base substrate.
  • a side of the first blocking portion facing the pixel light-emitting area has an included angle with a plane formed by intersecting the first direction and the second direction, and the included angle is The angle is less than or equal to 90 degrees.
  • the height of the first blocking part is greater than the height of the blocking wall, and the height of the blocking wall is greater than the height of the second blocking part.
  • Another aspect of the present disclosure provides a method for preparing a display substrate, including: forming a pixel defining layer on a base substrate, the pixel defining layer being used to define a plurality of pixel printing areas on the base substrate, The pixel printing area is used to fill the pixel printing medium, the plurality of pixel printing areas are arranged in an array along a first direction and a second direction, and the first direction and the second direction have an included angle;
  • the forming the pixel defining layer includes: forming a plurality of first blocking portions, the plurality of first blocking portions being spaced apart along the second direction, and each first blocking portion being parallel to the first direction; forming a plurality of second blocking portions , the plurality of second blocking portions are spaced apart along the first direction, each second blocking portion is parallel to the second direction, and the plurality of first blocking portions and the plurality of second blocking portions surround and form a plurality of pixels The light-emitting area; and forming a plurality of blocking walls, the plurality of blocking walls are spaced apart along the first direction, at least one blocking wall is provided between adjacent second blocking portions, each blocking wall is parallel to the second direction ;
  • the preparation method further includes forming a plurality of accommodation areas, the plurality of accommodation areas are provided on the base substrate, and at least one accommodation area is located between the adjacent first blocking parts in the second direction. , and located between the adjacent second blocking portion and the retaining wall in the first direction; and
  • the preparation method also includes forming a first flow guide structure, the first flow guide structure being disposed on a side of the second blocking part away from the base substrate, the first flow guide structure being used to fill the Part of the pixel printing medium in the pixel light-emitting area is directed to the accommodation area adjacent to the pixel light-emitting area.
  • Another aspect of the present disclosure provides a display device, including: the display substrate as described above.
  • FIG. 1 is a schematic plan view of a display substrate according to an exemplary embodiment of the present disclosure
  • Figure 2 is a partial enlarged view of the M area of the display substrate shown in Figure 1;
  • 3A is a schematic plan view of a pixel definition layer of a display substrate according to an exemplary embodiment of the present disclosure
  • Figure 3B is a cross-sectional view along line AA' of Figure 3A;
  • Figure 3C is a cross-sectional view along line BB' of Figure 3A;
  • Figure 3D is a cross-sectional view along line CC' of Figure 3A;
  • 3E to 3H are schematic diagrams of liquid level changes during drying of the pixel printing medium in the pixel printing area of the display substrate according to an exemplary embodiment of the present disclosure
  • Figure 3I is a schematic three-dimensional structural diagram of the pixel definition layer of the display substrate in Figure 3A;
  • FIG. 4A is a schematic plan view of a pixel defining layer of a display substrate according to another exemplary embodiment of the present disclosure
  • Figure 4B is a cross-sectional view along line DD' of Figure 4A;
  • Figure 4C is a cross-sectional view along line EE' of Figure 4A;
  • Figure 4D is a cross-sectional view along line FF' of Figure 4A;
  • Figure 4E is a schematic three-dimensional structural diagram of the pixel definition layer of the display substrate in Figure 4A;
  • 5A is a plan structural view of a pixel defining layer of a display substrate according to another exemplary embodiment of the present disclosure
  • Figure 5B is a cross-sectional view along line GG' of Figure 5A;
  • Figure 5C is a schematic three-dimensional structural diagram of the pixel definition layer of the display substrate in Figure 5A;
  • FIG. 6 schematically shows a partial enlarged view of a cross-section of a display substrate according to an exemplary embodiment of the present disclosure
  • FIG. 7 is a flow chart of a method of manufacturing a display substrate according to an exemplary embodiment of the present disclosure.
  • FIG. 8 is a flowchart of the preparation method of a display substrate in operation S10 according to an exemplary embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a display device according to an exemplary embodiment of the present disclosure.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection and its derivatives may be used.
  • electrically connected to indicate that two or more components are in direct physical or electrical contact with each other.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • “Same layer” in this article refers to a layer structure formed by using the same film formation process to form a film layer for forming a specific pattern, and then using a mask to form a layer structure through a patterning process.
  • a patterning process may include multiple exposure, development or etching processes, and the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be at different heights. Or have different thicknesses.
  • different layers refers to a layer structure formed by using corresponding film-forming processes to form film layers for forming specific patterns, and then using corresponding masks to form a layer structure through a patterning process, for example, "two-layer structure” "Different layer setting" means that two layer structures are formed under corresponding process steps (film forming process and patterning process).
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • the term "accommodating area” refers to an area used to accommodate or fill pixel printing media, for example, it may be a pixel printing medium that accommodates redundant printing.
  • the pixel printing medium may be, for example, an ink formed of an organic light-emitting material of inkjet printing.
  • the term “climbing effect” refers to the ability of a liquid to resist tensile stress due to cohesion and adsorption, as well as to adhere to the surface of other objects, such as when interacting with other objects. When objects come into contact, they adhere to the surface of other objects. At the same time, due to the cohesion of the liquid, a curved liquid surface is formed. At the position where the liquid contacts the solid, due to surface tension, the height of the liquid surface is lower than the contact point between the liquid and the solid. high degree of phenomenon.
  • the display substrate 100 includes a display area 110 and a non-display area 120 surrounding the display area 110 .
  • Display substrate 100 also includes a binding area 130.
  • the binding area 130 is located on one side of the display area 110 and the non-display area 120.
  • the binding area 130 is used for electrical connection with other circuits.
  • the display area 110 of the display substrate 100 is provided with a plurality of light-emitting units. Each light-emitting unit is provided with an organic light-emitting material layer, which emits light according to the received electrical signal to produce light of different colors, such as red, blue, green, White and other colors of light.
  • FIG. 2 is a partial enlarged view of the M region of the display substrate shown in FIG. 1 .
  • each light-emitting unit includes a plurality of light-emitting units arranged in an array and defined by a pixel defining layer.
  • the pixel printing area 200 is filled with the pixel light-emitting area L formed by the pixel printing medium.
  • the pixel light-emitting area L receives an electrical signal, it emits light for display.
  • the pixel light-emitting area L produces light of different colors by printing different pixel printing media.
  • the pixel light-emitting area L can also be generated by printing the same pixel printing medium. Same color light.
  • FIG. 3A is a schematic plan view of a pixel defining layer of a display substrate according to an exemplary embodiment of the present disclosure.
  • Fig. 3B is a cross-sectional view along line AA' of Fig. 3A.
  • Fig. 3C is a cross-sectional view along line BB' of Fig. 3A.
  • Fig. 3D is a cross-sectional view along line CC' of Fig. 3A.
  • FIG. 3I is a schematic three-dimensional structural diagram of the pixel defining layer of the display substrate in FIG. 3A.
  • a pixel defining layer 20 is formed on one side of the base substrate 10 , and other material layers 30 are formed between the base substrate 10 and the pixel defining layer 20 .
  • the other material layers 30 may include, for example, a light-shielding layer, a buffer layer, a semiconductor layer, a gate layer, an interlayer dielectric layer and other material layers.
  • the film thickness and number of film layers of other material layers 30 can be set according to actual needs, and are not limited in the embodiments of the present disclosure.
  • the pixel defining layer 20 is used to define a plurality of pixel printing areas 200 in the third direction Z on the substrate substrate 10 , and the pixel printing areas 200 are used to fill a pixel printing medium.
  • the pixel printing medium includes, for example. Inkjet printing ink made of organic light-emitting materials, etc.
  • the plurality of pixel printing areas 200 are arranged in an array along the first direction X and the second direction Y.
  • the first direction X and the second direction Y have an included angle
  • the third direction Z is perpendicular to the first direction X and the second direction Y and intersects formed plane.
  • the first direction X is set along the transverse direction
  • the second direction Y is set along the longitudinal direction
  • the area 200 is arranged according to the actual design of the pixel unit.
  • the first direction X and the second direction Y have an included angle.
  • the included angle between the first direction X and the second direction Y is an acute angle, an obtuse angle or a right angle.
  • the angle between the first direction X and the second direction Y can be set according to the arrangement rules of sub-pixels in the actual pixel unit.
  • the first direction X is set perpendicular to the second direction Y.
  • the third direction Z may be, for example, a direction perpendicular to the plane where the upper surface of the base substrate 10 is located, that is, perpendicular to the plane formed by the intersection of the first direction X and the second direction Y.
  • the pixel definition layer 20 defines a pixel printing area 200 in the third direction of the base substrate 10 .
  • the pixel printing area 200 has a first blocking portion 21 , a second blocking portion 22 and a blocking wall 23 in the third direction Z.
  • Pixel light-emitting area L is a first blocking portion 21 , a second blocking portion 22 and a blocking wall 23 in the third direction Z.
  • the pixel definition layer 20 includes a plurality of first blocking portions 21 , a plurality of second blocking portions 22 and a plurality of blocking walls 23 .
  • the plurality of first blocking parts 21 are arranged at intervals along the second direction Y, that is, the plurality of first blocking parts 21 are arranged at intervals in the second direction Y, and there is a set distance between adjacent first blocking parts 21.
  • the spacing can be determined according to the size of the actually designed pixel unit.
  • Each first blocking portion 21 is arranged parallel to the first direction X, that is, each first blocking portion 21 extends in the first direction X.
  • the plurality of second blocking portions 22 are spaced apart along the first direction It can be determined according to the size of the actually designed pixel unit.
  • Each second blocking portion 22 is arranged parallel to the second direction, that is, each second blocking portion 22 extends in the second direction Y.
  • a plurality of retaining walls 23 are arranged at intervals along the first direction X, that is, a plurality of retaining walls 23 are arranged at intervals in the first direction Extending in the direction Y, the blocking wall 23 is provided between adjacent second blocking portions 22 .
  • the first blocking part 21 and the blocking wall 23 surround and form a plurality of pixel printing areas 200 arranged in an array.
  • the first blocking part 21 and the second blocking part 22 surround and form the pixel light emitting area L.
  • two adjacent first blocking portions 21 extending along the first direction X and two adjacent second blocking portions 22 extending along the second direction Y form a light-emitting area L around them.
  • the blocking wall 23 is disposed between the second blocking portions 22 of adjacent pixel printing areas 200 along the second direction Y.
  • a blocking wall 23 is provided along the second direction Y to separate the two adjacent pixel printing areas 200.
  • the display substrate 100 further includes a plurality of accommodation areas R disposed on the base substrate 10 , at least one accommodation area R is located between adjacent first blocking portions 21 in the second direction Y, And located between the adjacent second blocking portion 22 and the retaining wall 23 in the first direction X.
  • the accommodating area R is located on the base substrate 10 , and the accommodating area R is formed by a first blocking part 21 , a second blocking part and a blocking wall 23 .
  • the accommodation areas R are located on both sides of the pixel light-emitting area L respectively.
  • the pixel printing area 200 includes a pixel light-emitting area L and an accommodating area R.
  • each pixel printing area 200 may include two accommodating areas R on both sides and between the two accommodating areas R.
  • the pixel light-emitting area L between.
  • the display substrate 100 further includes a first flow guide structure.
  • the first flow guide structure is disposed on a side of the second blocking portion 22 away from the base substrate 10 .
  • the first flow guide structure is used to fill the Part of the pixel printing medium in the pixel light-emitting area L is directed to the accommodation area R adjacent to the pixel light-emitting area L.
  • the first flow guide structure includes a plurality of first flow guide grooves 24 opened on the second blocking part 22 .
  • the first flow guide grooves 24 are spaced apart on a side of the second blocking portion 22 away from the base substrate 10 .
  • each first guide groove 24 has two opposite ends, one end of which is connected to the pixel light-emitting area L, and the other end is connected to the accommodation area R.
  • the pixel printing area 200 may include a pixel light emitting area L and a receiving area R.
  • the first flow guide structure By arranging the light-emitting area L and the accommodating area R in the pixel printing area 200 and arranging the first flow guide structure between the light-emitting area L and the accommodating area, the excess pixel printing medium in the light-emitting area can pass through the first flow guide structure.
  • the structure (such as the first guide groove 24) guides the water to the accommodation area R, thereby effectively avoiding the uneven liquid level and uneven thickness of the pixel printing medium in the pixel light-emitting area L, and improving the film quality of the pixel light-emitting area L of the display substrate. Thick consistency effectively improves the display effect and yield rate of the display substrate.
  • the first guide groove 24 has a concave structure.
  • the pixel printing medium fills the pixel printing area 200 , and the pixel printing medium will cover the pixel printing area due to the effect of surface tension.
  • the pixel printing media will not cross-talk with each other in each pixel printing area 200 .
  • the pixel printing medium located in the pixel light-emitting area L emits light when receiving an electrical signal, thereby achieving a luminous display effect.
  • the second blocking portion 22 includes spaced apart thickened portions 221 and thinned portions 222 , and the thickness of each thickened portion 221 in the third direction Z is greater than the thickness of each thinned portion.
  • a plurality of thickened portions 221 and a plurality of thinned portions 222 are spaced apart to form the first guide groove 24 with a concave structure, and the opposite side surfaces of two adjacent thickened portions 221 form the first guide groove 24 .
  • the side walls of the flow guide groove 24 and the top surface of the thinned portion 222 away from the base substrate form the bottom wall of the first flow guide groove 24 .
  • the first guide groove 24 is used to guide part of the pixel printing medium filled in the pixel light-emitting area L into the accommodation area R adjacent to the pixel light-emitting area L, thereby achieving a diversion effect, so that the pixels in the pixel light-emitting area L
  • the thickness of the film layer of the printing media is uniform.
  • the display substrate further includes a liquid level adjustment structure, the liquid level adjustment structure is disposed on at least one of the first blocking part and the second blocking part, and the liquid level adjusting structure is used to adjust the pixel in the pixel light-emitting area.
  • the pixel printing medium is used to form a smooth liquid surface on the pixel printing medium in the pixel light-emitting area.
  • the present disclosure realizes the adjustment of the liquid level of the pixel printing medium by arranging a liquid level adjustment structure, so that the pixel printing medium in the pixel light-emitting area can form a smooth liquid level during the drying process.
  • the liquid level adjustment structure includes a first liquid level adjustment structure provided on the first blocking part 21.
  • the first liquid level adjusting structure includes: a plurality of recessed parts, and the plurality of recessed parts are spaced apart from the first blocking part facing the pixel light-emitting area. on the side.
  • the liquid level adjustment structure also includes a second liquid level adjustment structure disposed on the second blocking part 22.
  • the second liquid level adjusting structure includes: a cylindrical structure disposed on a side of the second blocking part away from the base substrate, along the third direction. extend.
  • the liquid level adjustment structure may be a first liquid level adjustment structure provided on the first blocking part 21 , or may be a second liquid level adjusting structure provided on the second blocking part 22 .
  • the first liquid level adjustment structure and the second liquid level adjustment structure may be provided alternatively or simultaneously, and the embodiments of the present disclosure are not limited to this.
  • FIGS. 3A to 3H are schematic diagrams of liquid level changes during drying of the pixel printing medium in the pixel printing area of the display substrate according to an exemplary embodiment of the present disclosure.
  • the figures of FIGS. 3A to 3H show a second liquid level adjustment structure provided on the second blocking part.
  • the liquid level adjustment structure includes a second liquid level adjustment structure 25 disposed on the second barrier 22 .
  • the second liquid level adjustment structure 25 includes a cylindrical structure.
  • the cylindrical structure is disposed on the second barrier.
  • the portion 22 is away from the side of the base substrate 10 and extends along the third direction Z.
  • the cylindrical structure is provided on the upper surface of the thickened portion 221 of the second blocking portion 22 on the side away from the base substrate.
  • the diameter of the cylindrical structure is in the range of 1 to 3 microns, and the height in the third direction Z is in the range of 0.2 to 0.4 microns.
  • the cylindrical structure may be made of resin materials or inorganic materials (SiO, SiNx, etc.).
  • the pixel printing medium W is ink-jet printed in the pixel printing area 200, and the pixel printing medium W fills the pixel printing area 200. Due to the effect of surface tension, the upper side of the liquid surface of the pixel printing medium forms an upwardly convex curved surface. , covered on the pixel definition layer 20, and blocked by the first blocking part 21 and the blocking wall 23, so that the various pixel printing areas 200 will not cross-talk with each other.
  • the liquid level of the pixel printing medium W gradually decreases due to the climbing effect (climbing effect) between the pixel printing medium W and the first blocking part 21 and the blocking wall 23 . ), causing the liquid level of the pixel printing medium W to have a downward concave shape.
  • the second liquid level adjustment structure 25 destroys the surface tension of the pixel printing medium W, This suppresses the ramp-up effect.
  • FIG. 4A is a schematic plan view of a pixel defining layer of a display substrate according to another exemplary embodiment of the present disclosure.
  • Fig. 4B is a cross-sectional view taken along line DD' of Fig. 4A.
  • Fig. 4C is a cross-sectional view along line EE' of Fig. 4A.
  • Fig. 4D is a cross-sectional view along line FF' of Fig. 4A.
  • FIG. 4E is a schematic three-dimensional structural diagram of the pixel defining layer of the display substrate in FIG. 4A .
  • the pixel definition layer 20 of the display substrate 110A of this embodiment includes a first blocking part 21 , a second blocking part 22 and a blocking wall 23 .
  • the first blocking part 21 and The second blocking part 22 surrounds and forms the pixel light-emitting area L, and the first blocking part adjacent in the second direction Y and the second blocking part 22 and the blocking wall 23 adjacent in the first direction X form an accommodating area R.
  • a first flow guide structure 24 is provided on the side of the second blocking portion 22 away from the base substrate. The first flow guide structure 24 is used to guide part of the pixel printing medium filled in the pixel light-emitting area L to the same side as the pixel light-emitting area L. Adjacent accommodation area R.
  • the liquid level adjustment structure of the display substrate 100A includes a first liquid level adjustment structure provided on the first blocking part 21 .
  • the first liquid level adjustment structure includes a plurality of recessed portions 26 that are spaced apart on the side of the first blocking portion 21 facing the pixel light-emitting area L.
  • the recessed portion 26 includes a recessed portion opening 261 and a recessed portion bottom surface 262 , wherein the recessed portion opening is provided on a side surface of the first blocking portion 21 away from the base substrate, and the recessed portion opening faces the first direction X and In the third direction Z, that is, the recessed portion openings 261 between adjacent first blocking portions 21 are arranged oppositely, and the recessed portion opening 261 of each recessed portion 26 faces away from the base substrate 10 on the first blocking portion 21 . side direction.
  • the recessed portion bottom surface 262 is disposed between the side surface of the first blocking portion 21 away from the base substrate and the side surface close to the base substrate.
  • the distance between the recessed portion bottom surface 262 and the second blocking portion 22 is
  • the upper surface of the base substrate 10 is located in the same plane, that is, in the third direction Z, the bottom surface 262 of the recessed portion and the upper surface of the second blocking portion 22 have the same height, or the bottom surface 262 of the recessed portion and the upper surface of the second blocking portion 22 have the same height.
  • the height difference between the surfaces is within a set threshold, for example, the height difference is in the range of 0 micron to 1 micron.
  • the width of the recess opening 261 in the first direction X is in the range of 1 to 2 microns
  • the depth of the recess opening 261 in the second direction Y is in the range of 1 to 3 microns.
  • the first liquid level adjustment structure and the second liquid level adjustment structure can be set at the same time, thereby achieving better adjustment of the liquid level of the pixel printing medium in the pixel light-emitting area and ensuring the surface of the pixel light-emitting area.
  • the formed film layer has good thickness uniformity.
  • FIG. 5A is a plan structural view of a pixel defining layer of a display substrate according to another exemplary embodiment of the present disclosure.
  • Fig. 5B is a cross-sectional view along line GG' of Fig. 5A.
  • FIG. 5C is a schematic three-dimensional structural diagram of the pixel defining layer of the display substrate in FIG. 5A .
  • the display substrate 100B includes a first blocking part 21, a second blocking part 22, and a blocking wall 23.
  • a first flow guide structure is provided on the second blocking part 22.
  • the first flow guide structure may be, for example, It is the first guide groove 24, and the second blocking part 22 is also provided with a second liquid level adjustment structure 25.
  • the second liquid level adjustment structure may be a cylindrical structure, for example.
  • the display substrate 100B further includes a second flow guide structure.
  • the second flow guide structure is disposed on the side of the first blocking portion 21 facing the pixel light-emitting area L.
  • the second flow guide structure is used to fill the portion of the pixel light-emitting area L.
  • the pixel printing medium is directed to the receiving area R.
  • the second flow guide structure includes a second flow guide groove 27 disposed on the first blocking portion 21 along the first direction X.
  • Each end of the second flow guide groove 27 is respectively Connected to the accommodation area R adjacent to the pixel light-emitting area L. That is, the length direction of the second guide groove 27 is parallel to the first direction X.
  • the first blocking part 21 includes a first blocking sub-part 211, a second blocking sub-part 212 and a third blocking sub-part 213, wherein the first blocking sub-part 211 is close to the pixel light-emitting area L, and the first blocking sub-part 211 is close to the pixel light emitting area L.
  • the second blocking sub-section 212 is far away from the pixel light-emitting area L, and the third blocking sub-section 213 is located between the first blocking sub-section 211 and the second blocking sub-section 213.
  • the thickness of the second blocking sub-section 212 is greater than The thickness of the first blocking sub-part 211 is greater than the thickness of the third blocking sub-part 213 .
  • the first blocking sub-portion 211 and the second blocking sub-portion 212 respectively form the two side walls of the second flow guide groove 27
  • the third blocking sub-section 213 forms the bottom wall of the second flow guide groove 27
  • the second flow guide groove 27 is formed by the first blocking sub-part 211 , the second blocking sub-part 212 and the third blocking sub-part 213 .
  • the upper surface of the first blocking sub-portion 211 in the third direction Z and the upper surface of the first guide groove 24 of the first guide structure in the third direction Z are located in the same plane, that is, In the third direction Z, the first blocking sub-part 211 and the first flow guide structure have the same height. Specifically, the upper surfaces of the first blocking sub-part 211 and the second blocking part 22 have the same height.
  • the bottom wall of the second guide groove 27 and the bottom wall of the first guide groove 24 are located on the same plane, that is, in the third direction Z, the depths of the first guide groove 24 and the second guide groove 27 are consistent.
  • the display substrate further includes an anode material layer 40, which is disposed on the base substrate 10 and the pixel definition layer. 20 , the orthographic projection of at least one of the first blocking portion 21 and the second blocking portion 22 on the base substrate 10 and the orthographic projection of the anode material layer 40 on the base substrate 10 form an overlapping area.
  • a part of the anode material layer 40 is in contact with a part of the first blocking part 21 and the second blocking part 22 respectively, thereby achieving the protection effect on the edge of the anode material layer 40 .
  • At least part of the orthographic projection of the liquid level adjustment structure on the base substrate is located in the overlapping area; and/or at least part of the orthographic projection of the second flow guide groove on the base substrate is located in the overlapping area.
  • the liquid level adjustment structure may include a first liquid level adjustment structure (such as a cylindrical structure) and a second liquid level adjustment structure (such as a recessed portion 26).
  • the first liquid level adjustment structure and the second liquid level adjustment structure are At least a portion of at least one orthographic projection on the base substrate is located in the overlapping area, which can ensure that at least a portion of the first blocking portion and the second blocking portion overlap with the anode material layer, thereby achieving protection of the anode material layer.
  • orthographic projections of the plurality of blocking walls on the base substrate do not overlap with orthographic projections of the anode material layer on the base substrate. Thereby, there is a certain distance between the blocking wall and the second blocking part to form an accommodating area, thereby accommodating excess pixel printing media.
  • FIG. 6 schematically shows a partial enlarged view of a cross-section of a display substrate according to an exemplary embodiment of the present disclosure.
  • the plane formed by the intersection of the side of the first blocking portion facing the pixel light-emitting area and the first direction X and the second direction Y has an included angle ⁇ , and the included angle ⁇ is less than or equal to 90 degrees.
  • the height of the first blocking part 21 is greater than the height of the blocking wall 23
  • the height of the blocking wall 23 is greater than the height of the second blocking part 22 .
  • the height of the first blocking part is in the range of 1 micron to 2.5 micron, and the height of the retaining wall is in the range of 0.7 micron to 2.25 micron.
  • the first blocking portion extends along the first direction X, and the width in the second direction Y is in the range of 9 microns to 12 microns, for example, the width is set to 10 microns.
  • the second blocking portion extends along the second direction Y, the width in the first direction X is in the range of 1 micron to 3 microns, and the height of the second blocking portion in the third direction Z is in the range of 0.3 micron to 0.8 micron. within, for example, 0.6 microns.
  • the retaining wall extends along the second direction Y, and the width of the retaining wall in the first direction X ranges from 0.5 microns to 3 microns.
  • the height of the retaining wall in the third direction Z is in the range of 1.2 to 1.5 times the height of the second barrier part.
  • the width of the first flow guide groove in the second direction Y is in the range of 3 microns to 6 microns
  • the depth of the first flow guide groove in the third direction Z is in the range of 0.25 microns to 0.35 microns, for example
  • the first guide channel can be made by halftone process.
  • the display panel prepared by the method includes the display substrate described above.
  • FIG. 7 is a flowchart of a method of manufacturing a display substrate according to an exemplary embodiment of the present disclosure.
  • the method includes operations S10 to S30.
  • a pixel definition layer 20 is formed on the base substrate.
  • the pixel definition layer is used to define a plurality of pixel printing areas 200 on the base substrate.
  • the pixel printing area 200 is used to fill the pixels.
  • Printing medium, a plurality of pixel printing areas are arranged in an array along a first direction X and a second direction Y, the first direction Two blocking parts 22 and a plurality of retaining walls 23.
  • the pixel defining layer 20 may define a plurality of pixel printing areas in a third direction on the substrate, where the third direction Z is perpendicular to a plane formed by the intersection of the first direction X and the second direction Y.
  • the plurality of first blocking portions 21, a plurality of second blocking portions 22 and a plurality of blocking walls 23 are surrounded to form multiple pixel light-emitting area L.
  • FIG. 8 is a flowchart of the preparation method of a display substrate in operation S10 according to an exemplary embodiment of the present disclosure.
  • operation S10 includes operations S11 to S13.
  • a plurality of first blocking portions 21 are formed, the plurality of first blocking portions 21 are spaced apart along the second direction Y, and each first blocking portion 21 is parallel to the first direction X.
  • a plurality of second blocking portions 22 are formed, the plurality of second blocking portions 22 are spaced apart along the first direction X, each second blocking portion 22 is parallel to the second direction Y, and the plurality of first blocking portions 21 A plurality of pixel light-emitting areas L are formed surrounded by a plurality of second blocking portions 22 .
  • a plurality of blocking walls 23 are formed.
  • the plurality of blocking walls 23 are spaced apart along the first direction Direction Y.
  • a plurality of accommodation areas R are formed, the plurality of accommodation areas R are disposed on the base substrate 10, at least one accommodation area R is located between adjacent first blocking portions 21 in the second direction Y, and in It is located between the adjacent second blocking part 22 and the retaining wall 23 in the first direction X.
  • the positions of the first blocking part 21 , the second blocking part 22 and the blocking wall 23 are designed so that the first blocking part 21 , the second blocking part 22 and the blocking wall 23 together form an accommodating space.
  • Area R, the accommodation area R is located on both sides of the pixel display area L and is used to accommodate excess pixel printing media.
  • a first flow guide structure is formed.
  • the first flow guide structure is disposed on a side of the second blocking part away from the base substrate.
  • the first flow guide structure is used to guide part of the pixel printing medium filled in the pixel light-emitting area. to the accommodation area R adjacent to the pixel light-emitting area.
  • the first flow guide structure by forming the first flow guide structure, it is possible to effectively guide the excess portion of the pixel printing medium in the pixel light-emitting area L to the accommodation area R adjacent to the pixel light-emitting area L, so that the pixel light-emitting area L can
  • the film layer formed by pixel printing media is uniform in thickness.
  • the formed first flow guide structure includes a plurality of first flow guide grooves 24 spaced apart on a side of the second barrier portion away from the base substrate.
  • One end of each first flow guide groove 24 is connected to the pixel.
  • the other end of the light-emitting area L is connected to the accommodation area R.
  • the second blocking part 22 includes a plurality of thickened parts 221 and thinned parts 222 arranged at intervals, and the thickness of each thickened part in the third direction is greater than the thickness of each thinned part.
  • the opposite side surfaces of the two adjacent thickened portions form the side walls of the first flow guide groove, and the top surface of the thinned portion away from the base substrate forms the bottom wall of the first flow guide groove.
  • the preparation method further includes forming a liquid level adjustment structure, the liquid level adjustment structure being disposed on at least one of the first blocking part and the second blocking part, the liquid level adjusting structure being used to adjust the pixel light emitting area
  • the pixel printing medium in the pixel light-emitting area forms a smooth liquid surface.
  • Forming the liquid level adjustment structure includes forming a first liquid level adjustment structure on the first barrier part.
  • the first liquid level adjustment structure includes: a plurality of recessed parts. The plurality of recessed parts are spaced apart from the first barrier part facing the pixel light-emitting area. On the side.
  • Forming the liquid level adjustment structure further includes forming a second liquid level adjustment structure on the second barrier part.
  • the second liquid level adjustment structure includes: a cylindrical structure. The cylindrical structure is disposed on a side of the second barrier part away from the base substrate, along the first Extended in three directions.
  • the preparation method further includes forming a second flow guide structure.
  • the second flow guide structure is disposed on a side of the first blocking part facing the pixel light-emitting area.
  • the second flow guide structure is used to fill the pixel in the pixel. Part of the pixel printing medium in the light-emitting area is directed to the containing area.
  • the method further includes printing a pixel printing medium (containing a luminescent material forming a pixel luminescent layer) in a plurality of pixel printing areas defined by the pixel defining layer.
  • the pixel printing medium is printed in the pixel light-emitting area of the pixel printing area, and the pixel printing medium guides part of the pixel printing medium filled in the pixel printing area through the first flow guide structure provided on the side of the second blocking part away from the substrate.
  • the film thickness of the pixel light-emitting layer formed in the pixel light-emitting area is made uniform, thereby further improving the display effect.
  • FIG. 9 is a schematic diagram of a display device according to an exemplary embodiment of the present disclosure.
  • the display device 300 includes the display substrate 100 described above.
  • the beneficial effects that can be achieved by the display device 300 in the above embodiments of the present disclosure are the same as the beneficial effects that can be achieved by the above-mentioned display substrate 100 and will not be described again here.
  • the above-mentioned display device 300 may be any device that displays images, whether moving (eg, video) or fixed (eg, still images), and whether text or text. More specifically, it is contemplated that the embodiments may be implemented in or in association with a variety of electronic devices, such as, but not limited to, mobile phones, wireless devices, personal data assistants (PDAs) , handheld or portable computers, GPS receivers/navigators, cameras, MP4 video players, camcorders, game consoles, watches, clocks, calculators, television monitors, flat panel displays, computer monitors, automotive displays (e.g., odometer display, etc.), navigator, cockpit controller and/or display, camera view display (e.g. display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, building structures, packaging and aesthetic structure (for example, for the display of an image of a piece of jewelry), etc.
  • PDAs personal data assistants
  • GPS receivers/navigators cameras

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板(100)及其制备方法、显示装置(300)。显示基板(100)包括:衬底基板(10);像素界定层(20),包括多个第一阻挡部(21)沿第二方向(Y)间隔设置,每个第一阻挡部(21)平行于第一方向(X);多个第二阻挡部(22)沿第一方向(X)间隔设置,每个第二阻挡部(22)平行于第二方向(Y),多个第一阻挡部(21)和多个第二阻挡部(22)包围形成多个像素发光区(L),以及多个挡墙(23)沿第一方向(X)间隔设置,至少一个挡墙(23)沿第二方向(Y)设置于相邻的第二阻挡部(22)之间;多个容纳区(R),至少一个容纳区(R)在第二方向(Y)上位于相邻的第一阻挡部(21)之间,在第一方向(X)上位于相邻的第二阻挡部(22)和挡墙(23)之间;第一导流结构,设置于第二阻挡部(22)远离衬底基板(10)的一侧,第一导流结构用于将填充在像素发光区(L)的部分像素打印介质引流至与像素发光区(L)相邻的容纳区(R)。

Description

显示基板及其制备方法、显示装置 技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示基板及其制备方法、显示装置。
背景技术
有机电致发光显示器(OLED)相比于传统的LCD显示,具有更轻薄、可视角度更大、显著节省耗电量、节省材料、易于大面积生产等优点,具有明显的优势。在OLED中的发光层的制备过程中,通过喷墨打印的方式对OLED器件的发光层进行制备,可以有效提高发光材料的利用率,无需使用掩膜板即可实现图案化,同时制备工艺简单、成本低廉。然而,目前的OLED器件的发光层在制备过程中,容易出现发光层膜厚精度不一致,导致像素中心和像素边缘的膜层厚度存在差异,出现显示颜色差异,影响OLED器件的显示效果和使用寿命。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域技术人员已知的现有技术的信息。
发明内容
在一个方面,提供一种显示基板,包括:衬底基板;和像素界定层,用于在所述衬底基板上限定出多个像素打印区,所述像素打印区用于填充像素打印介质,所述多个像素打印区沿第一方向和第二方向阵列排布,所述第一方向与所述第二方向具有夹角;所述像素界定层包括:多个第一阻挡部,所述多个第一阻挡部沿第二方向间隔设置,每个第一阻挡部平行于第一方向;多个第二阻挡部,所述多个第二阻挡部沿第一方向间隔设置,每个第二阻挡部平行于第二方向,所述多个第一阻挡部和所述多个第二阻挡部包围形成多个像素发光区;以及多个挡墙,所述多个挡墙沿第一方向间隔设置,至少一个挡墙设置于相邻的第二阻挡部之间,每个挡墙平行于所述第二方向,其中,所述显示基板还包括设置于所述衬底基板上的多个容纳区,至少一个容纳区在第二方向上位于相邻的所述第一阻挡部之间,以及在第一方向上位于相邻的所述第二阻 挡部和所述挡墙之间;以及所述显示基板还包括第一导流结构,所述第一导流结构设置于所述第二阻挡部远离衬底基板的一侧,所述第一导流结构用于将填充在所述像素发光区的部分像素打印介质引流至与该像素发光区相邻的容纳区。
在本公开的一些示例性实施例中,所述第一导流结构包括间隔设置在所述第二阻挡部的远离衬底基板的一侧的多个第一导流槽,每个第一导流槽的其中一端连通所述像素发光区,另一端连通所述容纳区。
在本公开的一些示例性实施例中,所述第二阻挡部包括多个间隔设置的加厚部和减薄部,每个加厚部在第三方向上的厚度大于每个减薄部的厚度,所述第三方向垂直于所述第一方向和所述第二方向相交形成的平面。
在本公开的一些示例性实施例中,相邻的两个所述加厚部的相对的侧面形成所述第一导流槽的侧壁,所述减薄部的远离衬底基板的顶面形成所述第一导流槽的底壁。
在本公开的一些示例性实施例中,所述显示基板还包括液面调整结构,所述液面调整结构设置于所述第一阻挡部和所述第二阻挡部中的至少一个上,所述液面调整结构用于:调整所述像素发光区中的像素打印介质,以使所述像素发光区中的像素打印介质形成平整液面。
在本公开的一些示例性实施例中,所述液面调整结构包括设置于所述第一阻挡部上的第一液面调整结构,所述第一液面调整结构包括:多个凹陷部,所述多个凹陷部间隔设置于所述第一阻挡部的朝向所述像素发光区的侧面上。
在本公开的一些示例性实施例中,所述凹陷部包括凹陷部开口和凹陷部底面,所述凹陷部开口设置于所述第一阻挡部的远离衬底基板的一侧表面,所述凹陷部开口朝向所述第二方向和所述第三方向;所述凹陷部底面设置于所述第一阻挡部的远离衬底基板的一侧表面和靠近所述衬底基板的一侧表面之间,所述凹陷部底面与所述第二阻挡部的远离衬底基板的上表面位于同一平面内。
在本公开的一些示例性实施例中,所述液面调整结构包括设置于所述第二阻挡部上的第二液面调整结构,所述第二液面调整结构包括:圆柱结构,所述圆柱结构设置于所述第二阻挡部远离所述衬底基板的一侧,沿所述第三方向延伸。
在本公开的一些示例性实施例中,所述圆柱结构设置在至少一个所述加厚部的远离衬底基板一侧的上表面。
在本公开的一些示例性实施例中,所述显示基板还包括第二导流结构,所述第二导流结构设置在所述第一阻挡部的朝向所述像素发光区的侧面,所述第二导流结构用于:将填充在所述像素发光区的部分像素打印介质引流至所述容纳区。
在本公开的一些示例性实施例中,所述第二导流结构包括:沿所述第一方向设置于所述第一阻挡部的第二导流槽,所述第二导流槽的每一端分别连通至与所述像素发光区相邻的所述容纳区。
在本公开的一些示例性实施例中,所述第一阻挡部包括:第一阻挡子部,靠近所述像素发光区;第二阻挡子部,远离所述像素发光区;以及第三阻挡子部,位于所述第一阻挡子部和所述第二阻挡子部之间;其中,在第三方向上,所述第二阻挡子部的厚度大于所述第一阻挡子部的厚度,所述第一阻挡子部的厚度大于所述第三阻挡子部的厚度。
在本公开的一些示例性实施例中,所述第一阻挡子部和所述第二阻挡子部分别形成所述第二导流槽的两侧壁,所述第三阻挡子部形成所述第二导流槽的底壁。
在本公开的一些示例性实施例中,所述第一阻挡子部的在第三方向的上表面与所述第二阻挡部在第三方向的上表面位于同一平面内;所述第二导流槽的底壁与所述第一导流槽的底壁位于同一平面内。
在本公开的一些示例性实施例中,所述显示基板还包括阳极材料层,所述阳极材料层设置于所述衬底基板和所述像素界定层之间,所述第一阻挡部和所述第二阻挡部至少一者在衬底基板上的正投影与所述阳极材料层在所述衬底基板上的正投影形成重叠区。
在本公开的一些示例性实施例中,所述液面调整结构在所述衬底基板上的至少部分正投影位于所述重叠区;和/或所述第二导流槽在所述衬底基板上的至少部分正投影位于所述重叠区。
在本公开的一些示例性实施例中,所述多个挡墙在所述衬底基板上的正投影与所述阳极材料层在所述衬底基板上的正投影不重叠。
在本公开的一些示例性实施例中,所述第一阻挡部的朝向所述像素发光区的侧边与所述第一方向和所述第二方向相交形成的平面具有夹角,所述夹角小于等于90度。
在本公开的一些示例性实施例中,在所述第三方向上,所述第一阻挡部的高度大于所述挡墙的高度,所述挡墙的高度大于所述第二阻挡部的高度。
本公开的另一方面提供了一种显示基板的制备方法,包括:在衬底基板上形成像素界定层,所述像素界定层用于在所述衬底基板上限定出多个像素打印区,所述像素打印区用于填充像素打印介质,所述多个像素打印区沿第一方向和第二方向阵列排布,所述第一方向与所述第二方向具有夹角;
所述形成像素界定层包括:形成多个第一阻挡部,所述多个第一阻挡部沿第二方向间隔设置,每个第一阻挡部平行于第一方向;形成多个第二阻挡部,所述多个第二阻挡部沿第一方向间隔设置,每个第二阻挡部平行于第二方向,所述多个第一阻挡部和所述多个第二阻挡部包围形成多个像素发光区;以及形成多个挡墙,所述多个挡墙沿第一方向间隔设置,至少一个挡墙设置于相邻的第二阻挡部之间,每个挡墙平行于所述第二方向;
其中,所述制备方法还包括形成多个容纳区,所述多个容纳区设置于所述衬底基板上,至少一个容纳区在第二方向上位于相邻的所述第一阻挡部之间,以及在第一方向上位于相邻的所述第二阻挡部和所述挡墙之间;以及
所述制备方法还包括形成第一导流结构,所述第一导流结构设置于所述第二阻挡部远离衬底基板的一侧,所述第一导流结构用于将填充在所述像素发光区的部分像素打印介质引流至与该像素发光区相邻的容纳区。
本公开的另一方面,提供了一种显示装置,包括:如上文所述的显示基板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1是根据本公开的示例性实施例的显示基板的平面示意图;
图2是图1所示的显示基板的M区域的局部放大图;
图3A是根据本公开的一个示例性实施例的显示基板的像素界定层的平面结构示意图;
图3B是沿图3A的AA’线的截面图;
图3C是沿图3A的BB’线的截面图;
图3D是沿图3A的CC’线的截面图;
图3E至图3H是根据本公开的一个示例性实施例的显示基板的像素打印区的像素打印介质干燥的液面变化示意图;
图3I是图3A中的显示基板的像素界定层的立体结构示意图;
图4A是根据本公开的另一个示例性实施例的显示基板的像素界定层的平面结构示意图;
图4B是沿图4A的DD’线的截面图;
图4C是沿图4A的EE’线的截面图;
图4D是沿图4A的FF’线的截面图;
图4E是图4A中的显示基板的像素界定层的立体结构示意图;
图5A是根据本公开的另一个示例性实施例的显示基板的像素界定层的平面结构图;
图5B是沿图5A的GG’线的截面图;
图5C是图5A中的显示基板的像素界定层的立体结构示意图;
图6示意性示出了根据本公开一个示例性实施例的显示基板截面的局部放大图;
图7是根据本公开的示例性实施例的显示基板的制备方法的流程图;
图8是根据本公开的示例性实施例的显示基板的制备方法在操作S10的流程图;
图9是根据本公开的示例性实施例的显示设备的示意图。
需要注意的是,为了清晰起见,在用于描述本公开的实施例的附图中,层、结构或区域的尺寸可能被放大或缩小,即这些附图并非按照实际的比例绘制。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词 形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“电连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其 中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文中“同层”指的是采用同一成膜工艺形成用于形成特定图形的膜层,然后利用掩模板通过一次构图工艺形成的层结构。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的,这些特定图形还可能处于不同的高度或者具有不同的厚度。与之相反地,“异层”指的是分别采用相应的成膜工艺形成用于形成特定图形的膜层,然后利用相应的掩模板通过构图工艺形成的层结构,例如,“两个层结构异层设置”是指两个层结构分别在相应的工艺步骤(成膜工艺和构图工艺)下形成。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
在本公开的实施例中,术语“容纳区”是指用于容纳或者填充像素打印介质的区域,例如可以是容纳多余打印的像素打印介质。在本实施例中,像素打印介质例如可以是喷墨打印的有机发光材料形成的墨水。
在本公开的实施例中,术语“爬坡效应(攀爬效应)”是指液体由于内聚性和吸附性,是液体能抵抗拉伸应力,以及粘附在其他物体表面,例如在与其他物体接触时,粘附在其他物体表面,同时由于液体的内聚性,形成曲面的液面,在液体与固体接触的位置,由于表面张力作用,液体液面的高度低于液体与固体接触点的高度的现象。
下面结合图1至图6对本公开实施例的显示基板的结构进行详细的说明。
如图1所示,显示基板100包括显示区110以及围绕显示区110的非显示区120。显示基板100,显示基板100还包括绑定区130,绑定区130位于显示区110和非显示 区120的一侧,绑定区130用于与其他电路进行电连接。显示基板100的显示区110设置有多个发光单元,每个发光单元内设置有有机发光材料层,根据接收的电信号进行发光,产生不同的颜色的光,例如产生红色、蓝色、绿色、白色等颜色的光。
图2是图1所示的显示基板的M区域的局部放大图。
如图2所示,在显示基板100的显示区110内,例如M所在的区域,设置有呈阵列排布的发光单元,每个发光单元包括通过像素界定层限定出的多个呈阵列排布的像素打印区200,并在像素打印区200填充像素打印介质形成的像素发光区L。像素发光区L接收电信号时,进行发光,以进行显示,像素发光区L通过打印不同的像素打印介质以产生不同颜色的光,或者,像素发光区L也可以通过打印相同的像素打印介质产生相同颜色的光。
图3A是根据本公开的一个示例性实施例的显示基板的像素界定层的平面结构示意图。图3B是沿图3A的AA’线的截面图。图3C是沿图3A的BB’线的截面图。图3D是沿图3A的CC’线的截面图。图3I是图3A中的显示基板的像素界定层的立体结构示意图。
下面通过图3A至图3D对本公开的显示基板的结构进行详细的说明。
如图3A至图3D所示,在衬底基板10的一侧的表面上形成有像素界定层20,在衬底基板10和像素界定层20之间形成有其他的材料层30,其他材料层30例如可以包括遮光层、缓冲层、半导体层、栅极层、层间介质层等材料层。其他材料层30的膜层厚度以及膜层的数量可以根据实际的需要进行设定,本公开的实施例对此不进行限定。
在本公开的实施例中,像素界定层20用于在衬底基板10上的第三方向Z限定出多个像素打印区200,像素打印区200用于填充像素打印介质,像素打印介质例如包括有机发光材料制成的喷墨打印墨水等。多个像素打印区200沿第一方向X和第二方向Y呈阵列排布,第一方向X与第二方向Y具有夹角,第三方向Z垂直于第一方向X和第二方向Y相交形成的平面。
示例性地,如图2和图3A至图3D所示,第一方向X沿横向设置,第二方向Y沿纵向设置,第一方向X和第二方向Y之间具有夹角,即像素打印区200是根据实际的像素单元的设计而进行排列的,第一方向X与第二方向Y具有夹角,例如,第一方向X与第二方向Y之间的夹角是锐角、钝角或者直角,第一方向X和第二方向Y之 间的夹角可以根据实际像素单元内的子像素的排布规则进行设定,在本实施例中,第一方向X垂直与第二方向Y设置。第三方向Z例如可以是垂直于衬底基板10的上表面所在的平面的方向,即垂直于第一方向X和第二方向Y相交形成的平面。
像素界定层20在衬底基板10的第三方向上限定出像素打印区200,像素打印区200在第三方向Z上具有由第一阻挡部21、第二阻挡部22以及挡墙23围绕形成的像素发光区L。
如图3A所示,像素界定层20包括多个第一阻挡部21、多个第二阻挡部22以及多个挡墙23。其中,多个第一阻挡部21沿第二方向Y间隔设置,即多个第一阻挡部21在第二方向Y上间隔排列,相邻的第一阻挡部21之间具有设定的间距,该间距可以根据实际设计的像素单元的大小来确定,每个第一阻挡部21平行于第一方向X设置,即每一个第一阻挡部21在第一方向X上延伸。多个第二阻挡部22沿第一方向X间隔设置,即多个第二阻挡部22在第二方向上间隔排列,相邻的第二阻挡部22之间具有设定的间距,该间距也可以根据实际设计的像素单元的大小来确定,每个第二阻挡部22平行于第二方向设置,即每个第二阻挡部22在第二方向Y上延伸。多个挡墙23沿第一方向X间隔设置,即多个挡墙23在第一方向X上间隔排列,相邻的挡墙23之间具有设定的间距,每个挡墙23在第二方向Y上延伸,挡墙23设置在相邻的第二阻挡部22之间。第一阻挡部21与挡墙23围绕形成呈阵列排布的多个像素打印区200。
在本公开的实施例中,第一阻挡部21和第二阻挡部22围绕形成像素发光区L。例如,沿第一方向X延伸设置的相邻的两个第一阻挡部21与沿第二方向Y延伸设置的相邻的两个第二阻挡部22围绕形成发光区L。挡墙23沿第二方向Y设置在相邻的像素打印区200的第二阻挡部22之间。例如,在两个相邻的像素打印区200之间,沿第二方向Y设置有挡墙23,用于将相邻的两个像素打印区200分隔开。
在本公开的实施例中,显示基板100还包括设置于衬底基板10上的多个容纳区R,至少一个容纳区R在第二方向Y上位于相邻的第一阻挡部21之间,以及在第一方向X上位于相邻的第二阻挡部22和挡墙23之间。
示例性地,如图3A至图3D所示,容纳区R位于衬底基板10上,容纳区R通过第一阻挡部21、第二阻挡部和挡墙23围绕形成。该容纳区R分别位于像素发光区L的两侧。
在本公开的实施例中,像素打印区200包括有像素发光区L以及容纳区R,例如,每一个像素打印区200可以包括位于两侧的两个容纳区R以及位于两个容纳区R之间的像素发光区L。
在本公开的实施例中,显示基板100还包括第一导流结构,第一导流结构设置于第二阻挡部22远离衬底基板10的一侧,第一导流结构用于将填充在像素发光区L的部分像素打印介质引流至与该像素发光区L相邻的容纳区R。
示例性地,如图3D所示,第一导流结构包括在第二阻挡部22上开设的多个第一导流槽24。第一导流槽24间隔设置在第二阻挡部22的远离衬底基板10的一侧。如图3A所示,每一个第一导流槽24具有相对的两端,其中一端连通像素发光区L,另一端连通容纳区R。
根据本公开的实施例,像素打印区200可以包括有像素发光区L和容纳区R。通过在像素打印区200内设置发光区L和容纳区R,同时在发光区L和容纳区之间设置第一导流结构,可以使发光区内的多余的部分像素打印介质通过第一导流结构(例如第一导流槽24)引流至容纳区R,从而有效避免像素发光区L内的像素打印介质液面不平整及厚度不均匀的情况出现,提高显示基板的像素发光区L的膜厚的一致性,有效提高显示基板的显示效果和良品率。
如图3A及图3D所示,第一导流槽24呈凹形结构,在对像素打印区进行打印时,像素打印介质填充像素打印区200,像素打印介质由于表面张力的作用,会覆盖在像素界定层20上,并且由于第一阻挡部21和挡墙23的存在,像素打印介质在各像素打印区200内不会相互串扰。待像素打印介质在像素打印区内干燥后,位于像素发光区L的像素打印介质在接收电信号时进行发光,从而实现发光显示的效果。
如图3D所示,第二阻挡部22包括间隔设置的加厚部221和减薄部222,每个加厚部221在第三方向Z上的厚度大于每个减薄部的厚度。
示例性地,多个加厚部221和多个减薄部222间隔设置,从而形成具有凹形结构的第一导流槽24,相邻的两个加厚部221的相对的侧面形成第一导流槽24的侧壁,减薄部222的远离衬底基板的顶面形成第一导流槽24的底壁。第一导流槽24用于将填充在像素发光区L的部分像素打印介质引流至与该像素发光区L相邻的容纳区R内,从而实现导流的效果,使得像素发光区L的像素打印介质的膜层的厚度均匀一致。
在本公开的实施例中,显示基板还包括液面调整结构,液面调整结构设置于第一阻挡部和第二阻挡部中的至少一个上,液面调整结构用于调整像素发光区中的像素打印介质,以使像素发光区中的像素打印介质形成平整液面。
在本公开的实施例中,像素打印介质打印后,在干燥过程中,由于表面张力的作用导致干燥后形成的膜层表面不均匀,为了解决像素打印介质在干燥过程中形成膜层表面不均匀的问题,本公开通过设置液面调整结构,实现对像素打印介质液面的调整,使像素发光区中的像素打印介质在干燥的过程中能够形成平整液面。
液面调整结构包括设置于第一阻挡部21上的第一液面调整结构,第一液面调整结构包括:多个凹陷部,多个凹陷部间隔设置于第一阻挡部的朝向像素发光区的侧面上。
液面调整结构还包括设置于第二阻挡部22上的第二液面调整结构,第二液面调整结构包括:圆柱结构设置于第二阻挡部远离衬底基板的一侧,沿第三方向延伸。
示例性地,液面调整结构可以是设置于第一阻挡部21上的第一液面调整结构,也可以是设置于第二阻挡部22上的第二液面调整结构。第一液面调整结构和第二液面调整结构可以是择一设置,也可以同时设置,本公开的实施例对此不做限定。
图3E至图3H是根据本公开的一个示例性实施例的显示基板的像素打印区的像素打印介质干燥的液面变化示意图。图3A至图3H的图中示出了在第二阻挡部上设置的第二液面调整结构。
下面结合图3A至图3I对本公开实施例的显示基板的第二液面调整结构的调整过程进行详细的说明。
如图3A至图3D所示,液面调整结构包括设置于第二阻挡部22上的第二液面调整结构25,第二液面调整结构25包括圆柱结构,该圆柱结构设置于第二阻挡部22远离衬底基板10的一侧,沿第三方向Z延伸。例如,圆柱结构设置在第二阻挡部22的加厚部221的远离衬底基板一侧的上表面上。
示例性地,圆柱结构的直径在1微米至3微米的范围内,在第三方向Z的高度在0.2微米至0.4微米的范围内。
示例性地,圆柱结构的制备材料例如可以为树脂类材料或者无机材料(SiO,SiNx等)。
如图3E所示,在像素打印区200内喷墨打印像素打印介质W,像素打印介质W填充像素打印区200,像素打印介质由于表面张力的作用,液面的上侧形成向上凸起 的曲面,覆盖在像素界定层20上,通过第一阻挡部21和挡墙23的阻挡,使各个像素打印区200之间不会相互串扰。
如图3F所示,像素打印介质W在干燥过程中,像素打印介质W的液面逐渐下降,由于像素打印介质W与第一阻挡部21和挡墙23之间存在爬坡效应(攀爬效应),使像素打印介质W的液面呈向下凹陷的形状。通过设置第二液面调整结构25,当像素打印介质W的液面下降至与第二液面调整结构25相同的高度时,第二液面调整结构25破坏了像素打印介质W的表面张力,从而抑制爬坡效应。
如图3G所示,像素打印介质W的液面下降到第二液面调整结构25的高度以下时,液面的爬坡效应被破坏,从而使像素打印区中的像素打印介质的液面保持厚度一致。
如图3H所示,当像素打印介质W继续干燥时,通过在第二阻挡部22远离衬底基板的一侧形成第一导流结构24,可以使像素发光区L中的部分像素打印介质导流至与该像素发光区L相邻的容纳区R,使像素发光区L中的像素打印介质形成的膜层厚度均匀一致。
图4A是根据本公开的另一个示例性实施例的显示基板的像素界定层的平面结构示意图。图4B是沿图4A的DD’线的截面图。图4C是沿图4A的EE’线的截面图。图4D是沿图4A的FF’线的截面图。图4E是图4A中的显示基板的像素界定层的立体结构示意图。
如图4A至图4D所示,本实施例的显示基板110A的像素界定层20包括第一阻挡部21、第二阻挡部22和挡墙23,与其他实施例相同,第一阻挡部21和第二阻挡部22包围形成像素发光区L,在第二方向Y上相邻的第一阻挡部和在第一方向X上相邻的第二阻挡部22和挡墙23围绕形成容纳区R。第二阻挡部22的远离衬底基板的一侧设置有第一导流结构24,第一导流结构24用于将填充在像素发光区L的部分像素打印介质引流至与该像素发光区L相邻的容纳区R。在本实施例中,显示基板100A的液面调整结构包括设置于第一阻挡部21上的第一液面调整结构。
示例性地,第一液面调整结构包括多个凹陷部26,该多个凹陷部26间隔设置于第一阻挡部21的朝向像素发光区L的侧面上。如图4B所示,凹陷部26包括凹陷部开口261和凹陷部底面262,其中凹陷部开口设置于第一阻挡部21的远离衬底基板的一侧表面,凹陷部开口朝向第一方向X和第三方向Z,即相邻的第一阻挡部21之间的 凹陷部开口261相对设置,并且,每一个凹陷部26的凹陷部开口261在第一阻挡部21上朝向远离衬底基板10一侧的方向上。
如图4D所示,凹陷部底面262设置于第一阻挡部21的远离衬底基板的一侧表面和靠近衬底基板的一侧表面之间,凹陷部底面262与第二阻挡部22的远离衬底基板10的上表面位于同一平面内,即在第三方向Z上,凹陷部底面262与第二阻挡部22的上表面具有相同高度,或者凹陷部底面262与第二阻挡部22的上表面之间的高度高度差在设定的阈值内,例如该高度差在0微米至1微米的范围内。通过设置多个凹陷部26,从而实现对像素发光区L内的像素打印介质的液面进行调整,以使像素发光区中的像素打印介质形成平整液面。
示例性地,凹陷部开口261在第一方向X上的宽度为1微米至2微米的范围,凹陷部开口261在在第二方向Y上的深度为1微米至3微米的范围。
在本公开的实施例中,通过在第一阻挡部21上设置第一液面调整结构,此时,无需在第二阻挡部上设置第二液面调整结构。在其他的可选实施例中,第一液面调整结构和第二液面调整结构可以同时设置,从而实现更好的对像素发光区的像素打印介质的液面进行调整,保证像素发光区表面形成的膜层具有较好的厚度均匀性。
图5A是根据本公开的另一个示例性实施例的显示基板的像素界定层的平面结构图。图5B是沿图5A的GG’线的截面图。图5C是图5A中的显示基板的像素界定层的立体结构示意图。
在本公开的实施例中,显示基板100B包括第一阻挡部21、第二阻挡部22、挡墙23,在第二阻挡部22上设置有第一导流结构,第一导流结构例如可以是第一导流槽24,第二阻挡部22上还设置有第二液面调整结构25,第二液面调整结构例如可以是圆柱结构。此外,显示基板100B还包括第二导流结构,第二导流结构设置在第一阻挡部21的朝向像素发光区L的侧面,第二导流结构用于将填充在像素发光区L的部分像素打印介质引流至容纳区R。
示例性地,如图5A和图5B所示,第二导流结构包括沿着第一方向X设置于第一阻挡部21的第二导流槽27,第二导流槽27的每一端分别连通至与该像素发光区L相邻的容纳区R。即第二导流槽27的长度方向平行于第一方向X。
在本公开的实施例中,第一阻挡部21包括第一阻挡子部211、第二阻挡子部212以及第三阻挡子部213,其中,第一阻挡子部211靠近像素发光区L,第二阻挡子部 212远离像素发光区L,第三阻挡子部213位于第一阻挡子部211和第二阻挡子部213之间,在第三方向Z上,第二阻挡子部212的厚度大于第一阻挡子部211的厚度,第一阻挡子部211的厚度大于第三阻挡子部213的厚度。
第一阻挡子部211和第二阻挡子部212分别形成第二导流槽27的两侧壁,第三阻挡子部213形成第二导流槽27的底壁。例如,第二导流槽27通过第一阻挡子部211、第二阻挡子部212以及第三阻挡子部213形成。
在本公开的实施例中,第一阻挡子部211的在第三方向Z的上表面与第一导流结构的第一导流槽24在第三方向Z的上表面位于同一平面内,即在第三方向Z上,第一阻挡子部211与第一导流结构具有相同高度,具体地,第一阻挡子部211与第二阻挡部22的上表面具有相同的高度。第二导流槽27的底壁与第一导流槽24的底壁位于同一平面内,即在第三方向Z上,第一导流槽24和第二导流槽27的深度相一致。
在本公开的实施例中,如图3B至图3H、图4B至图4D以及图5B所示,显示基板还包括阳极材料层40,该阳极材料层40设置于衬底基板10和像素界定层20之间,第一阻挡部21和第二阻挡部22至少一者在衬底基板10上的正投影与阳极材料层40在衬底基板10上的正投影形成重叠区。
示例性地,阳极材料层40的一部分分别与第一阻挡部21以及第二阻挡部22的一部分接触,从而实现对阳极材料层40的边缘的保护作用。
在本公开的实施例中,液面调整结构在衬底基板上的至少部分正投影位于重叠区;和/或第二导流槽在衬底基板上的至少部分正投影位于重叠区。
示例性地,液面调整结构可以包括第一液面调整结构(例如圆柱结构)和第二液面调整结构(例如凹陷部26),第一液面调整结构和第二液面调整结构中的至少一个在衬底基板上的至少一部分正投影位于重叠区内,可以保证第一阻挡部和第二阻挡部的一部分至少与阳极材料层具有重叠,从而实现对阳极材料层的保护作用。
在本公开的实施例中,多个挡墙在衬底基板上的正投影与阳极材料层在衬底基板上的正投影不重叠。从而使挡墙与第二阻挡部之间具有一定的间隔,形成容纳区,从而容纳多余的像素打印介质。
图6示意性示出了根据本公开一个示例性实施例的显示基板截面的局部放大图。
在本公开的实施例中,如图6所示,第一阻挡部的朝向像素发光区的侧边与第一方向X和第二方向Y相交形成的平面具有夹角α,夹角α小于等于90度。
在本公开的实施例中,在第三方向Z上,第一阻挡部21的高度大于挡墙23的高度,挡墙23的高度大于第二阻挡部22的高度。
例如,第一阻挡部的高度为1微米至2.5微米的范围内,挡墙的高度为0.7微米至2.25微米的范围内。
例如,第一阻挡部沿第一方向X延伸设置,在第二方向Y的宽度为9微米至12微米的范围内,例如宽度设置为10微米。
例如,第二阻挡部沿第二方向Y延伸设置,在第一方向X的宽度为1微米至3微米的范围内,第二阻挡部在第三方向Z的高度为0.3微米至0.8微米的范围内,例如可以为0.6微米。
例如,挡墙沿第二方向Y延伸设置,挡墙在第一方向X的宽度为0.5微米至3微米的范围内。挡墙在第三方向Z的高度为第二阻挡部高度的1.2至1.5倍范围内。
在本实施例中,第一导流槽在第二方向Y的宽度3微米至6微米的范围内,第一导流槽在第三方向Z的深度为0.25微米至0.35微米的范围内,例如第一导流槽可以通过halftone工艺制作。
本公开的另一方面,提供了一种显示面板的制备方法,该方法制备的显示面板包括前面描述的显示基板。
图7是根据本公开的示例性实施例的显示基板的制备方法的流程图。
下面结合图7对本公开的制备方法进行详细的说明。
如图7所示,该方法包括操作S10至操作S30。
参考图3A至图3D,在操作S10中,在衬底基板上形成像素界定层20,像素界定层用于在衬底基板上限定出多个像素打印区200,像素打印区200用于填充像素打印介质,多个像素打印区沿第一方向X和第二方向Y阵列排布,第一方向X与第二方向Y具有夹角,像素界定层包括多个第一阻挡部21、多个第二阻挡部22以及多个挡墙23。
示例性地,像素界定层20例如可以是在衬底基板上的第三方向限定出多个像素打印区,其中第三方向Z垂直于第一方向X和第二方向Y相交形成的平面。
示例性地,通过在衬底基板上形成多个第一阻挡部21、多个第二阻挡部22以及多个挡墙23,使多个第一阻挡部和多个第二阻挡部包围形成多个像素发光区L。
图8是根据本公开的示例性实施例的显示基板的制备方法在操作S10的流程图。
如图8所示,操作S10包括操作S11至操作S13。
在操作S11中,形成多个第一阻挡部21,多个第一阻挡部21沿第二方向Y间隔设置,每个第一阻挡部21平行于第一方向X。
在操作S12中,形成多个第二阻挡部22,多个第二阻挡部22沿第一方向X间隔设置,每个第二阻挡部22平行于第二方向Y,多个第一阻挡部21和多个第二阻挡部22包围形成多个像素发光区L。
在操作S13中,形成多个挡墙23,多个挡墙23沿第一方向X间隔设置,至少一个挡墙设置于相邻的第二阻挡部22之间,每个挡墙平行于第二方向Y。
在操作S20中,形成多个容纳区R,多个容纳区R设置于衬底基板10上,至少一个容纳区R在第二方向Y上位于相邻的第一阻挡部21之间,以及在第一方向X上位于相邻的第二阻挡部22和挡墙23之间。
在本公开的实施例中,通过设计形成第一阻挡部21、第二阻挡部22以及挡墙23的位置,从而使第一阻挡部21、第二阻挡部22以及挡墙23共同围绕形成容纳区R,该容纳区R位于像素显示区L的两侧,用于容纳多余的像素打印介质。
在操作S30中,形成第一导流结构,第一导流结构设置于第二阻挡部远离衬底基板的一侧,第一导流结构用于将填充在像素发光区的部分像素打印介质引流至与该像素发光区相邻的容纳区R。
在本公开的实施例中,通过形成第一导流结构,可以有效实现将像素发光区L的多余部分像素打印介质引流至与像素发光区L相邻的容纳区R,使像素发光区L的像素打印介质形成的膜层厚度均匀。
示例性地,形成的第一导流结构包括间隔设置在第二阻挡部的远离衬底基板的一侧的多个第一导流槽24,每个第一导流槽24的其中一端连通像素发光区L,另一端连通容纳区R。第二阻挡部22包括多个间隔设置的加厚部221和减薄部222,每个加厚部在第三方向上的厚度大于每个减薄部的厚度。相邻的两个加厚部的相对的侧面形成第一导流槽的侧壁,减薄部的远离衬底基板的顶面形成第一导流槽的底壁。
在本公开的实施例中,该制备方法还包括形成液面调整结构,液面调整结构设置于第一阻挡部和第二阻挡部中的至少一个上,液面调整结构用于调整像素发光区中的像素打印介质,以使像素发光区中的像素打印介质形成平整液面。
形成液面调整结构包括在第一阻挡部上形成第一液面调整结构,第一液面调整结构包括:多个凹陷部,多个凹陷部间隔设置于第一阻挡部的朝向像素发光区的侧面上。
形成液面调整结构还包括在第二阻挡部上形成第二液面调整结构,第二液面调整结构包括:圆柱结构,圆柱结构设置于第二阻挡部远离衬底基板的一侧,沿第三方向延伸。
在本公开的实施例中,该制备方法还包括形成第二导流结构,第二导流结构设置在第一阻挡部的朝向像素发光区的侧面,第二导流结构用于将填充在像素发光区的部分像素打印介质引流至所述容纳区。
在本公开的实施例中,还包括在像素界定层限定的多个像素打印区通过打印的方式打印像素打印介质(含有形成像素发光层的发光材料)。例如在像素打印区的像素发光区打印像素打印介质,像素打印介质通过设置在第二阻挡部远离衬底基板的一侧的第一导流结构,将填充在像素打印区的部分像素打印介质引流至与该像素发光区相邻的容纳区,使在像素发光区形成的像素发光层的膜厚均匀,进一步提升显示效果。
图9是根据本公开的示例性实施例的显示设备的示意图。
如图9所示,显示装置300包括上文所述的显示基板100。
本公开的上述实施例中的显示装置300所能实现的有益效果,与上述显示基板100所能达到的有益效果相同,此处不再赘述。
上述显示装置300可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
虽然本公开总体构思的一些实施例已被图示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本公开的范围以权利要求和它们的等同物限定。

Claims (19)

  1. 一种显示基板,包括:
    衬底基板;和
    像素界定层,用于在所述衬底基板上限定出多个像素打印区,所述像素打印区用于填充像素打印介质,所述多个像素打印区沿第一方向和第二方向阵列排布,所述第一方向与所述第二方向具有夹角;
    所述像素界定层包括:
    多个第一阻挡部,所述多个第一阻挡部沿第二方向间隔设置,每个第一阻挡部平行于第一方向;
    多个第二阻挡部,所述多个第二阻挡部沿第一方向间隔设置,每个第二阻挡部平行于第二方向,所述多个第一阻挡部和所述多个第二阻挡部包围形成多个像素发光区;以及
    多个挡墙,所述多个挡墙沿第一方向间隔设置,至少一个挡墙设置于相邻的第二阻挡部之间,每个挡墙平行于所述第二方向,
    其中,所述显示基板还包括设置于所述衬底基板上的多个容纳区,至少一个容纳区在第二方向上位于相邻的所述第一阻挡部之间,以及在第一方向上位于相邻的所述第二阻挡部和所述挡墙之间;以及
    所述显示基板还包括第一导流结构,所述第一导流结构设置于所述第二阻挡部远离衬底基板的一侧,所述第一导流结构用于将填充在所述像素发光区的部分像素打印介质引流至与该像素发光区相邻的容纳区。
  2. 根据权利要求1所述的显示基板,其中,
    所述第一导流结构包括间隔设置在所述第二阻挡部的远离衬底基板的一侧的多个第一导流槽,每个第一导流槽的其中一端连通所述像素发光区,另一端连通所述容纳区。
  3. 根据权利要求2所述的显示基板,其中,
    所述第二阻挡部包括多个间隔设置的加厚部和减薄部,每个加厚部在第三方向上的厚度大于每个减薄部的厚度,所述第三方向垂直于所述第一方向和所述第二方向相交形成的平面。
  4. 根据权利要求3所述的显示基板,其中,
    相邻的两个所述加厚部的相对的侧面形成所述第一导流槽的侧壁,所述减薄部的远离衬底基板的顶面形成所述第一导流槽的底壁。
  5. 根据权利要求4所述的显示基板,其中,
    所述显示基板还包括液面调整结构,所述液面调整结构设置于所述第一阻挡部和所述第二阻挡部中的至少一个上,所述液面调整结构用于:调整所述像素发光区中的像素打印介质,以使所述像素发光区中的像素打印介质形成平整液面。
  6. 根据权利要求5所述的显示基板,其中,
    所述液面调整结构包括设置于所述第一阻挡部上的第一液面调整结构,所述第一液面调整结构包括:多个凹陷部,所述多个凹陷部间隔设置于所述第一阻挡部的朝向所述像素发光区的侧面上。
  7. 根据权利要求6所述的显示基板,其中,
    所述凹陷部包括凹陷部开口和凹陷部底面,所述凹陷部开口设置于所述第一阻挡部的远离衬底基板的一侧表面,所述凹陷部开口朝向所述第二方向和所述第三方向;
    所述凹陷部底面设置于所述第一阻挡部的远离衬底基板的一侧表面和靠近所述衬底基板的一侧表面之间,所述凹陷部底面与所述第二阻挡部的远离衬底基板的上表面位于同一平面内。
  8. 根据权利要求5所述的显示基板,其中,
    所述液面调整结构包括设置于所述第二阻挡部上的第二液面调整结构,所述第二液面调整结构包括:
    圆柱结构,所述圆柱结构设置于所述第二阻挡部远离所述衬底基板的一侧,沿所述第三方向延伸;
    所述圆柱结构设置在至少一个所述加厚部的远离衬底基板一侧的上表面。
  9. 根据权利要求5所述的显示基板,其中,
    所述显示基板还包括第二导流结构,所述第二导流结构设置在所述第一阻挡部的朝向所述像素发光区的侧面,所述第二导流结构用于:将填充在所述像素发光区的部分像素打印介质引流至所述容纳区。
  10. 根据权利要求9所述的显示基板,其中,
    所述第二导流结构包括:沿所述第一方向设置于所述第一阻挡部的第二导流槽,所述第二导流槽的每一端分别连通至与所述像素发光区相邻的所述容纳区。
  11. 根据权利要求10所述的显示基板,其中,
    所述第一阻挡部包括:
    第一阻挡子部,靠近所述像素发光区;
    第二阻挡子部,远离所述像素发光区;以及
    第三阻挡子部,位于所述第一阻挡子部和所述第二阻挡子部之间;
    其中,在第三方向上,所述第二阻挡子部的厚度大于所述第一阻挡子部的厚度,所述第一阻挡子部的厚度大于所述第三阻挡子部的厚度。
  12. 根据权利要求11所述的显示基板,其中,
    所述第一阻挡子部和所述第二阻挡子部分别形成所述第二导流槽的两侧壁,所述第三阻挡子部形成所述第二导流槽的底壁。
  13. 根据权利要求12所述的显示基板,其中,所述第一阻挡子部的在第三方向的上表面与所述第二阻挡部在第三方向的上表面位于同一平面内;
    所述第二导流槽的底壁与所述第一导流槽的底壁位于同一平面内。
  14. 根据权利要求13所述的显示基板,其中,
    所述显示基板还包括阳极材料层,所述阳极材料层设置于所述衬底基板和所述像素界定层之间,所述第一阻挡部和所述第二阻挡部至少一者在衬底基板上的正投影与所述阳极材料层在所述衬底基板上的正投影形成重叠区。
  15. 根据权利要求14所述的显示基板,其中,所述液面调整结构在所述衬底基板上的至少部分正投影位于所述重叠区;和/或
    所述第二导流槽在所述衬底基板上的至少部分正投影位于所述重叠区;
    所述多个挡墙在所述衬底基板上的正投影与所述阳极材料层在所述衬底基板上的正投影不重叠。
  16. 根据权利要求1所述的显示基板,其中,
    所述第一阻挡部的朝向所述像素发光区的侧边与所述第一方向和所述第二方向相交形成的平面具有夹角,所述夹角小于等于90度。
  17. 根据权利要求3所述的显示基板,其中,
    在所述第三方向上,所述第一阻挡部的高度大于所述挡墙的高度,所述挡墙的高度大于所述第二阻挡部的高度。
  18. 一种显示基板的制备方法,包括:
    在衬底基板上形成像素界定层,所述像素界定层用于在所述衬底基板上限定出多个像素打印区,所述像素打印区用于填充像素打印介质,所述多个像素打印区沿第一方向和第二方向阵列排布,所述第一方向与所述第二方向具有夹角;
    所述形成像素界定层包括:
    形成多个第一阻挡部,所述多个第一阻挡部沿第二方向间隔设置,每个第一阻挡部平行于第一方向;
    形成多个第二阻挡部,所述多个第二阻挡部沿第一方向间隔设置,每个第二阻挡部平行于第二方向,所述多个第一阻挡部和所述多个第二阻挡部包围形成多个像素发光区;以及
    形成多个挡墙,所述多个挡墙沿第一方向间隔设置,至少一个挡墙设置于相邻的第二阻挡部之间,每个挡墙平行于所述第二方向;
    其中,所述制备方法还包括形成多个容纳区,所述多个容纳区设置于所述衬底基板上,至少一个容纳区在第二方向上位于相邻的所述第一阻挡部之间,以及在第一方向上位于相邻的所述第二阻挡部和所述挡墙之间;以及
    所述制备方法还包括形成第一导流结构,所述第一导流结构设置于所述第二阻挡部远离衬底基板的一侧,所述第一导流结构用于将填充在所述像素发光区的部分像素打印介质引流至与该像素发光区相邻的容纳区。
  19. 一种显示装置,包括:如权利要求1至17所述的显示基板。
PCT/CN2022/089788 2022-04-28 2022-04-28 显示基板及其制备方法、显示装置 WO2023206205A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/245,923 US20240147765A1 (en) 2022-04-28 2022-04-28 Display substrate and method of manufacturing the same, and display device
CN202280000980.8A CN117501844A (zh) 2022-04-28 2022-04-28 显示基板及其制备方法、显示装置
PCT/CN2022/089788 WO2023206205A1 (zh) 2022-04-28 2022-04-28 显示基板及其制备方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089788 WO2023206205A1 (zh) 2022-04-28 2022-04-28 显示基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023206205A1 true WO2023206205A1 (zh) 2023-11-02

Family

ID=88516707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089788 WO2023206205A1 (zh) 2022-04-28 2022-04-28 显示基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20240147765A1 (zh)
CN (1) CN117501844A (zh)
WO (1) WO2023206205A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101021685A (zh) * 2006-02-16 2007-08-22 虹创科技股份有限公司 基板结构及薄膜图案层的制造方法
JP2010170767A (ja) * 2009-01-21 2010-08-05 Seiko Epson Corp 電気光学装置、発光装置、及び電子機器
CN106207012A (zh) * 2016-08-15 2016-12-07 京东方科技集团股份有限公司 像素打印结构及其制作方法、显示装置和喷墨打印方法
CN107331780A (zh) * 2017-05-24 2017-11-07 昆山国显光电有限公司 喷墨打印方法、显示基板及oled的制备方法
CN107393939A (zh) * 2017-08-30 2017-11-24 京东方科技集团股份有限公司 像素界定层及制造方法、显示面板及制造方法、显示装置
CN109841752A (zh) * 2019-01-29 2019-06-04 云谷(固安)科技有限公司 显示面板及显示装置
CN113745406A (zh) * 2021-11-04 2021-12-03 惠科股份有限公司 像素结构及其制备方法和显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101021685A (zh) * 2006-02-16 2007-08-22 虹创科技股份有限公司 基板结构及薄膜图案层的制造方法
JP2010170767A (ja) * 2009-01-21 2010-08-05 Seiko Epson Corp 電気光学装置、発光装置、及び電子機器
CN106207012A (zh) * 2016-08-15 2016-12-07 京东方科技集团股份有限公司 像素打印结构及其制作方法、显示装置和喷墨打印方法
CN107331780A (zh) * 2017-05-24 2017-11-07 昆山国显光电有限公司 喷墨打印方法、显示基板及oled的制备方法
CN107393939A (zh) * 2017-08-30 2017-11-24 京东方科技集团股份有限公司 像素界定层及制造方法、显示面板及制造方法、显示装置
CN109841752A (zh) * 2019-01-29 2019-06-04 云谷(固安)科技有限公司 显示面板及显示装置
CN113745406A (zh) * 2021-11-04 2021-12-03 惠科股份有限公司 像素结构及其制备方法和显示面板

Also Published As

Publication number Publication date
US20240147765A1 (en) 2024-05-02
CN117501844A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2021023189A1 (zh) 显示基板及其制备方法、显示装置
US11805667B2 (en) Encapsulation structure, electronic apparatus and encapsulation method
EP3179513B1 (en) Organic electroluminescent display panel and manufacturing method therefor, and display device
WO2021027811A1 (zh) 显示面板及其制备方法、显示装置
US20200119107A1 (en) Pixel arrangement structure, display substrate, and display device
WO2019223641A1 (zh) Oled基板及制作方法、显示装置
JP2023165821A (ja) 表示基板及び表示装置
US20190181196A1 (en) Array substrate, manufacturing method, and display device
WO2019109692A1 (zh) 电子装置基板及制造方法、显示装置
US20210193960A1 (en) Display Panel and Preparation Method Thereof, and Display Apparatus
WO2022052697A1 (zh) 显示面板及显示装置
EP3719843A1 (en) Pixel defining layer, display substrate, display device and inkjet printing method
WO2021164501A9 (zh) 显示面板及显示装置
US20220115452A1 (en) Display Substrate, Display Panel, Display Device and Manufacturing Method of Display Panel
WO2021238645A1 (zh) 显示用基板及其制备方法、显示装置
WO2020237829A1 (zh) 有机发光二极管显示面板及其制造方法
US20220085337A1 (en) Display panel and display device
WO2023206205A1 (zh) 显示基板及其制备方法、显示装置
WO2024017343A1 (zh) 显示面板及其制作方法、显示装置
WO2020140735A1 (zh) 液晶显示面板、阵列基板、对向基板及液晶显示装置
US10707284B2 (en) Organic light-emitting display panel and manufacturing method thereof
KR20240041859A (ko) 디스플레이 패널 및 디스플레이 장치
CN113270461B (zh) 显示基板及其制造方法、显示装置
WO2021227794A1 (zh) 透明显示面板及其制备方法、显示装置
WO2020228594A1 (zh) 阵列基板及其制作方法、显示装置和掩模板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18245923

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939057

Country of ref document: EP

Kind code of ref document: A1