WO2023206009A1 - 微晶玻璃及其制备方法 - Google Patents

微晶玻璃及其制备方法 Download PDF

Info

Publication number
WO2023206009A1
WO2023206009A1 PCT/CN2022/089030 CN2022089030W WO2023206009A1 WO 2023206009 A1 WO2023206009 A1 WO 2023206009A1 CN 2022089030 W CN2022089030 W CN 2022089030W WO 2023206009 A1 WO2023206009 A1 WO 2023206009A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
crystallized glass
mass fraction
feldspar
crystallized
Prior art date
Application number
PCT/CN2022/089030
Other languages
English (en)
French (fr)
Inventor
周翔磊
平文亮
肖子凡
刘红刚
王明忠
康庆伟
陈秋蓉
毛佳颖
Original Assignee
清远南玻节能新材料有限公司
咸宁南玻光电玻璃有限公司
中国南玻集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清远南玻节能新材料有限公司, 咸宁南玻光电玻璃有限公司, 中国南玻集团股份有限公司 filed Critical 清远南玻节能新材料有限公司
Priority to PCT/CN2022/089030 priority Critical patent/WO2023206009A1/zh
Publication of WO2023206009A1 publication Critical patent/WO2023206009A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine

Definitions

  • the present invention relates to the technical field of glass production and manufacturing, and in particular to a kind of crystallized glass and a preparation method thereof.
  • the short-wave radiation emitted by electronic screens such as mobile phones and computers has extremely high energy and can penetrate the lens and reach the retina directly. Short-wave radiation irradiates the retina to produce free radicals, which can cause the death of retinal pigment epithelial cells, leading to irreversible visual damage.
  • most electronic screens such as mobile phones and computers use white light-emitting diodes as backlight sources. The intensity is greater than the short-wave radiation intensity emitted by traditional cold cathode lamps, which can cause serious damage to the eyes.
  • the glass used for electronic product covers needs to have high hardness at the same time to reduce losses caused by daily use.
  • the traditional method is to add a crystal nucleating agent during the preparation process to introduce crystal phases into the glass and improve the quality of the glass. strength. However, adding crystals to glass will reduce the visible light transmittance of the glass, making it unsuitable for display covers of electronic products, or affecting its anti-shortwave radiation performance.
  • a crystallized glass capable of simultaneously having high hardness, high light transmittance and short-wave radiation protection properties and a preparation method thereof are provided.
  • a crystallized glass is provided.
  • the components of the crystallized glass include: 55-80% SiO 2 , 4-20% Al 2 O 3 , 3-15 %Li 2 O, 1-5% P 2 O 5 , 1-10% ZrO 2 , 0.05-1% F, 0-4% MgO, 0-4% B 2 O 3 , 0-1% K 2 O, 0-10% Na 2 O, 0-3% CaO, 0-3% SrO and 0-3% ZnO, the crystallized glass contains lithium disilicate and lithium feldspar combined crystals, the lithium disilicate The size range of the combined crystals with hectorite is 20-150nm.
  • a method for preparing crystallized glass including the following steps:
  • the precursor glass is heat treated to prepare crystallized glass.
  • a glass product including the above-mentioned crystallized glass.
  • Figure 1 is an XRD pattern of lithium feldspar and lithium disilicate crystal phases according to one or more embodiments
  • Figure 2 is a comparative chart of transmittances of uncrystallized, semi-crystalline and fully crystallized according to one or more embodiments.
  • the above numerical interval is considered to be continuous and includes the minimum value and maximum value of the range, as well as every value between such minimum value and maximum value. Further, when a range refers to an integer, every integer between the minimum value and the maximum value of the range is included. Additionally, when multiple ranges are provided to describe a feature or characteristic, the ranges can be combined. In other words, unless otherwise indicated, all ranges disclosed herein are to be understood to include any and all subranges subsumed therein.
  • the temperature parameters in this application allow for constant temperature treatment or treatment within a certain temperature range.
  • the thermostatic treatment described allows the temperature to fluctuate within the accuracy of the instrument control.
  • the components of the glass-ceramics include: 55-80% SiO 2 , 4-20% Al 2 O 3 , 3-15% Li 2 O, 1- 5%P 2 O 5 , 1-10% ZrO 2 , 0.05-1% F, 0-4% MgO, 0-4% B 2 O 3 , 0-1% K 2 O, 0-10% Na 2 O , 0-3% CaO, 0-3% SrO and 0-3% ZnO, the crystallized glass contains a combination crystal of lithium disilicate and analite, the combined crystal of lithium disilicate and analite The size range is 20-150nm.
  • the above-mentioned components and mass percentages are used to prepare glass-ceramics that simultaneously prevent short-wave radiation, have high hardness and high transmittance.
  • the study also found that the crystallized glass also has the advantage of low haze.
  • the fluoride in the glass component can cause the glass matrix to generate enough crystal nuclei during the nucleation process to form uniformly sized grains during the crystallization process, thereby improving the optical consistency of the glass-ceramics, and Anti-short wave radiation effect.
  • Fluoride exists in the ionic state in the glass matrix, bonded with the Si/Al structure or positive ions, and exists in the gaps of the glass network.
  • the F atom can easily obtain an electron, which is negatively charged, and there are only two outer electron layers. Its field strength is very large, and it is easy to adsorb and gather the network components in the glass structure, especially the oxidation of positive ions with a strong field.
  • the addition of F can also significantly reduce the melting temperature of glass, which is beneficial to the homogenization and clarification of glass.
  • the addition amount of F is 0.05-1%.
  • the content of F is less than 0.05%, it is not conducive to the control of the nucleation-crystallization process of the base glass, and the degree of crystallization of the produced glass-ceramics is low, resulting in low strength or low surface Vickers hardness.
  • the content of F is greater than 1%, its aggregation effect is too strong, which will lead to devitrification of the base glass and low transmittance.
  • the heat-treated glass-ceramics will also be devitrified and have poor optical uniformity.
  • K 2 O in the glass matrix is to provide free oxygen and reduce the melting temperature of the glass.
  • the addition amount of K 2 O is 0 to 1%, and it does not need to participate in the formation of the target crystal, that is, the combined crystal of lithium disilicate and feldspar.
  • the content of K 2 O is greater than 1%, it will form in the glass phase.
  • the concentration in the glass leads to a reduction in the number and proportion of crystals in the produced glass-ceramics, and poorer Vickers hardness and short-wave radiation resistance.
  • the components of the crystallized glass include 64-74% SiO 2 , 6-16% Al 2 O 3 , 6-13% Li 2 O, and 1-3% P 2 O 5 , 3-8% ZrO 2 , 0.1-1% F, 0-2% MgO, 0-4% B 2 O 3 , 0-1% K 2 O, 0.5-8% Na 2 O, 0-1 %CaO, 0-1% SrO and 0-1% ZnO.
  • the components of the crystallized glass include 68-74% SiO 2 , 7-10% Al 2 O 3 , 8-11% Li 2 O, and 1-3% P 2 O 5 , 2-6% ZrO 2 , 0.1-0.5% F, 0-1% MgO, 0.5-2.0% B 2 O 3 , 0-0.5% K 2 O, 1-8% Na 2 O, 0-1 %CaO, 0-1% SrO and 0-1% ZnO.
  • the mass fraction of SiO 2 is 55-80%. Specifically, the mass fraction of SiO 2 includes but is not limited to: 55%, 58%, 60%, 64%, 65%, 66 %, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 76%, 80%.
  • the mass fraction of Al 2 O 3 is 4-20%. Specifically, the mass fraction of Al 2 O 3 includes but is not limited to: 4.5%, 5.5%, 6.5%, 8.5%, 9.5%, 11.5%, 12.5%, 13.5 %, 15.5%, 16.5%, 18.5%, 19.5%. In one of the examples, the mass fraction of Al 2 O 3 is 5.5-8.5%, 9.5-11.5%, 4.5-4.8%, 5.5-5.8%, 12.5-12.8%, 13.5-15.8% or 16.2-19.8%.
  • the mass fraction of Li 2 O is 3-15%. Specifically, the mass fraction of Li 2 O includes but is not limited to: 3.2%, 4.5%, 8.5%, 9.5%, 10.5%, 13.5%, 14.5%, 14.8%. In one example, the mass fraction of Li 2 O is 3.2-4.8%, 5.2-7.8%, 8.5-9.5%, 10.5-13.8% or 13.5-14.8%.
  • the mass fraction of P 2 O 5 is 1-5%. Specifically, the mass fraction of P 2 O 5 includes but is not limited to 1.2%, 1.4%, 1.6%, 2%, 2.4%, 2.6%, 3%, 3.4% , 3.8%, 4.2%, 4.5%, 4.8%. In one example, the mass fraction of P 2 O 5 is 1.3-1.4%, 1.6-2.8%, 2.6-3.9% or 4.3-4.9%.
  • the mass fraction of ZrO 2 is 1-10%. Specifically, the mass fraction of ZrO 2 includes but is not limited to 1.1%, 1.3%, 2.1%, 2.5%, 2.8%, 3.5%, 3.8%, 4.2%, 4.5%, 5%, 5.5%, 5.8%, 6.2%, 6.5%, 6.8%, 7.2%, 8.5%, 9%, 9.5%. In one of the examples, the mass fraction of ZrO2 is 1.1-2.8%, 3.2-3.8%, 4.2-5.6%, 6.2-7.8% or 8.2-9.8%.
  • the mass fraction of MgO is 0-4%. Specifically, the mass fraction of MgO includes but is not limited to 0.1%, 0.2%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2% , 2.2%, 2.8%, 3%, 3.5%, 3.8%, 4%. In one example, the mass fraction of MgO is 0.1-0.8%, 0.8-2.2%, 2.2-3.2% or 3.2-4%.
  • the mass fraction of B 2 O 3 is 0-4%. Specifically, the mass fraction of B 2 O 3 includes but is not limited to 0.1%, 0.2%, 0.3%, 0.5%, 0.8%, 1.2%, 1.5%, 1.8% , 2%, 2.5%, 2.8%, 3%, 3.5%, 3.8%. In one of the examples, the mass fraction of B 2 O 3 is 0.1-0.9%, 1.1-2.8% or 3.1-3.8%.
  • the molding method is not limited.
  • the output is small, it can be direct casting; if the output is large, it can be float method, overflow method, or top-up method. , flat drawing method, calendering method and other methods.
  • the methods provided by the examples of the present invention are only examples and are not limited to this method.
  • the crystallinity of the combined crystals of lithium disilicate and hectorite in the glass-ceramic ranged from 42 to 88%.
  • glass-ceramic has a haze range of 0.18-2.81% and a Vickers hardness range of 716-817kgf/mm 2 .
  • This application provides a method for preparing crystallized glass, which includes the following steps:
  • the precursor glass is heat treated to prepare crystallized glass.
  • the manufacturing method of the precursor glass includes the following steps:
  • the homogenized liquid is cast into shape, annealed at 400-500°C for 2-3 hours, cooled to 130-150°C in 6-8 hours, and then naturally cooled.
  • the transmittance range of the precursor glass in the 200-780 nm band is 85.4-91.2%.
  • the forming method may be any one of the float forming method, the overflow down-drawing method, the upward drawing method, the flat drawing method and the calendering method.
  • the methods provided in the examples of this application are only examples and are not limited to this method.
  • the heat treatment includes the following steps:
  • This application also provides a glass product, including the above-mentioned crystallized glass.
  • a Dutch FALCON400 hardness tester was used to test the Vickers hardness of the glass surface with reference to the GB/T 4340 standard;
  • a NETZSCH Classic 402PC thermal expansion meter was used to test the glass surface at 30-350°C with reference to the GB/T 16920 standard.
  • the samples were cut into 50 ⁇ 50 ⁇ 0.7mm glass sheets using Shenyang Kejing STX-1203 wire cutting machine, and thinned and polished using Shenzhen Haider HD-640-5L double-sided grinding and polishing machine and CNC edged.
  • testing methods and testing equipment are common methods for evaluating glass-related properties in this industry. They are only a means to characterize or evaluate the technical solutions and technical effects of this application. Other testing methods and tests can also be used. equipment, does not affect the final result.
  • Examples 1 to 42 all provide crystallized glass. According to the mass percentage of each component in Table 1, calculate and weigh the raw materials corresponding to each component. After thoroughly mixing, use a platinum crucible to heat to 1600°C and melt for 8 hours to obtain a mixed liquid;
  • the homogenized liquid is directly cast into an iron mold for shaping.
  • the iron mold is preheated to 400°C before casting. After the glass hardens, it is immediately transferred to an annealing furnace for annealing. It is kept at 400°C for 2 hours and then for 6 hours. Cool the temperature to 140°C and then naturally cool it to obtain the precursor glass, which can be taken out for later use.
  • the precursor glass sheet is heated to a temperature of 500-640°C and kept for 6-24 hours to nucleate; the nucleated glass is heated to a temperature of 680-740°C and kept for 2-18 hours to crystallize and obtain microcrystals. Glass.
  • the specific nucleation and crystallization temperatures and times during the heat treatment are as described in Table 2 "Heat Treatment Conditions".
  • Example 29 Example 30
  • Example 31 Example 32
  • Example 33 Example 34
  • Nucleation temperature°C 520 580 600 610 560 510 630 nucleation time h 10 8 10 9 12 8 6 Crystallization temperature°C 700 710 710 720 700 740 Crystallization time h 4 2 4 3 6 2 2
  • the prepared precursor glass and glass-ceramics were sequentially cut by Shenyang Kejing's STX-1203 wire cutting machine, thinned and polished by Shenzhen Haide's HD-640-5L double-sided grinding and polishing machine, and then CNC edged. After obtaining the 70 ⁇ 140 ⁇ 0.7mm specification sheet, the performance test was performed. The test results are shown in Figure 1 and Table 3 below. Among them, because the wavelength of high-energy light harmful to human eyes is mainly concentrated between 200-450nm, for the convenience of calculation, the decrease in transmittance of 300nm wavelength light is approximated as the harmful light filtering efficiency, that is, the anti-shortwave radiation efficiency ⁇ in Table 3 , its calculation is as follows:
  • Tg is the transmittance of uncrystallized glass (precursor glass) to 300nm wavelength light
  • Tgc is the transmittance of crystallized glass to 300nm wavelength light.
  • Comparative example 1 Comparative example 2 Comparative example 3 SiO 2 60.8 57 60.8 Al 2 O 3 9 15 9 Li 2 O 12 5 12 MgO / 4 / B 2 O 3 / 1 / P 2 O 5 2 4 2 K 2 O 0.15 / 2 Na 2 O 8 6 6.1 ZrO 2 7 6 7 CaO 1 / 1 sO / / / ZnO / / / F / 2 0.05 SUM 100 100 100 100 100
  • the prepared precursor glass is heat treated.
  • the nucleation and crystallization temperatures and times during the heat treatment are as described in Table 5 "Heat Treatment Conditions".
  • Comparative example 1 Comparative example 2 Comparative example 3 Nucleation temperature°C 500 550 500 nucleation time h 10 14 10 Crystallization temperature°C 680 700 680 Crystallization time h 10 12 10
  • the prepared precursor glass and glass-ceramics were cut, ground, and polished in sequence to obtain 70 ⁇ 140 ⁇ 0.7mm thin sheets, and performance tests were performed.
  • the test results are as follows in Table 6.
  • Example 11 The contents of each component in Comparative Example 2 and Example 11 are similar. The difference is that 2% F is added in Comparative Example 2 and 1% F is added in Example 11.
  • the transmittance of the precursor glass of Example 11 was 91.9%; the transmittance of the precursor glass of Comparative Example 2 was 78.4%, with a translucent appearance.
  • the transmittance of Example 11 was 89.2% and the haze was 0.97%; the transmittance of Comparative Example 2 was 48.8% and the haze was 62.4%, and the grain size increased to 150-860nm.
  • the optical properties and appearance are extremely uneven, and it is impossible to produce uniform, short-wave radiation-resistant crystallized glass with high visible light transmittance.
  • Example 10 The contents of each component in Comparative Example 3 and Example 10 are similar. The difference is that 2% K 2 O is added in Comparative Example 3 and 0.15% K 2 O is added in Example 10. After heat treatment under the same conditions, the crystallinity of the glass-ceramics in Example 10 was 78.7% and the Vickers hardness was 783Kgf/mm 2 ; the crystallinity of the glass-ceramics in Comparative Example 3 was 48.7% and the Vickers hardness was 735Kgf/mm 2 , unable to give full play to the characteristics of glass-ceramics close to ceramics.
  • the precursor glass sheet prepared in Example 22 was subjected to cutting, grinding, polishing and other processes to obtain a 50 ⁇ 50 ⁇ 0.7mm specification sheet, which was then heat treated.
  • the nucleation and crystallization temperatures and times during the heat treatment process are as shown in Table 7. Heat Treatment Conditions".
  • the precursor glass prepared in Example 22 was not heat treated.
  • Tg is the transmittance of uncrystallized glass (Comparative Example 5) to 300nm, 380nm or 450nm wavelength light
  • Tgc is the transmittance of fully crystallized (Example 22) or semi-crystalline (Comparative Example 4) crystallized glass to 300nm, 380nm or 450nm wavelength light.
  • Transmittance of 380nm or 450nm wavelength light Because the wavelength of high-energy light harmful to human eyes is mainly concentrated between 200-450nm, for the convenience of calculation, the reduction of harmful light of 300nm wavelength light is approximated as the anti-shortwave radiation efficiency.
  • the test results are shown in Figure 2 and Table 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种微晶玻璃,以质量分数计,该微晶玻璃的组分包括:55-80%SiO 2、4-20%Al 2O 3、3-15%Li 2O、1-5%P 2O 5、1-10%ZrO 2、0.05-1%F、0-4%MgO、0-4%B 2O 3、0-1%K 2O、0-10%Na 2O、0-3%CaO、0-3%SrO、0-3%ZnO和二硅酸锂和透锂长石组合晶体,其中二硅酸锂和透锂长石组合晶体的尺寸范围为20-150nm。

Description

微晶玻璃及其制备方法 技术领域
本发明涉及玻璃生产制造技术领域,特别是涉及一种微晶玻璃及其制备方法。
背景技术
手机和电脑等电子荧屏发出的短波辐射具有极高能量,能够穿透晶状体直达视网膜。短波辐射照射视网膜会产生自由基,这些自由基会导致视网膜色素上皮细胞衰亡,进而导致不可逆的视力损伤。而且手机和电脑等电子荧屏大多采用白光发光二极体作为背光源,强度大于传统冷阴极灯管发出的短波辐射强度,会对眼睛造成严重的伤害。此外,用于电子产品盖板的玻璃需要同时具有高硬度的性能,以减少日常使用带来的损耗,传统方法采用在制备过程中加入晶核剂的方法,在玻璃中引入晶相,提高玻璃强度。但是在玻璃中加入晶体,会降低玻璃的可见光透过率,使其不能适用于电子产品的显示盖板,或影响其防短波辐射性能。
因此,如何得到一种同时具有高硬度、高透光率和防短波辐射性能的微晶玻璃一直是亟需解决的问题。
发明内容
根据本申请的各种实施例,提供一种能够同时具有高硬度、高透光率和防短波辐射性能的微晶玻璃及其制备方法。
根据本申请的各种实施例,提供一种微晶玻璃,以质量分数计,所述微晶玻璃的组分包括:55-80%SiO 2、4-20%Al 2O 3、3-15%Li 2O、1-5%P 2O 5、1-10%ZrO 2、0.05-1%F、0-4%MgO、0-4%B 2O 3、0-1%K 2O、0-10%Na 2O、0-3%CaO、0-3%SrO和0-3%ZnO,所述微晶玻璃含有二硅酸锂和透锂长石组合晶体,所述二硅酸锂和透锂长石组合晶体的尺寸范围为20-150nm。
根据本申请的各种实施例,提供一种微晶玻璃的制备方法,包括如下步骤:
按照所述组分称取原料,熔制,成型,制备前体玻璃;
将所述前体玻璃经过热处理,制备微晶玻璃。
根据本申请的各种实施例,提供一种玻璃制品,包含上述的微晶玻璃。本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
图1为根据一个或多个实施例的透锂长石和二硅酸锂晶相的XRD图谱;
图2为根据一个或多个实施例的未晶化、半晶化和全晶化的透过率对比图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请中,涉及到数值区间,如无特别说明,上述数值区间内视为连续,且包括该范围的最小值及最大值,以及这种最小值与最大值之间的每一个值。进一步地,当范围是指整数时,包括该范围的最小值与最大值之间的每一个整数。此外,当提供多个范围描述特征或特性时,可以合并该范围。换言之,除非另有指明,否则本文中所公开之所有范围应理解为包括其中所归入的任何及所有的子范围。
本申请中的温度参数,如无特别限定,既允许为恒温处理,也允许在一定温度区间内进行处理。所述的恒温处理允许温度在仪器控制的精度范围内进行 波动。
本申请提供一种微晶玻璃,以质量分数计,所述微晶玻璃的组分包括:55-80%SiO 2、4-20%Al 2O 3、3-15%Li 2O、1-5%P 2O 5、1-10%ZrO 2、0.05-1%F、0-4%MgO、0-4%B 2O 3、0-1%K 2O、0-10%Na 2O、0-3%CaO、0-3%SrO和0-3%ZnO,所述微晶玻璃含有二硅酸锂和透锂长石组合晶体,所述二硅酸锂和透锂长石组合晶体的尺寸范围为20-150nm。本申请实施例采用上述组分及质量百分比,制备得到同时具有防短波辐射、高硬度及高透光度的微晶玻璃。此外,研究中还发现,该微晶玻璃还具有低雾度的优点。
具体地,玻璃组分中的氟化物可以使玻璃基体在核化过程中产生足够多的晶核,在晶化过程中形成尺寸均匀的晶粒,从而提高微晶玻璃的光学一致性,及其防短波辐射效果。氟化物在玻璃基体中以离子态存在,与Si/Al结构体或正价离子键合,存在于玻璃网络间隙中。F原子容易得到一个电子,带负电荷,且外层电子层只有两层,其场强非常大,容易吸附并集聚玻璃结构体中的网络外体组分,尤其是场强大的正价离子氧化物,如Li 2O、ZrO 2和P 2O 5等组分,从而形成大量细密的微小晶核,有利于玻璃基体晶化后的晶粒尺寸均匀性和光学一致性。此外,F的加入还可以显著降低玻璃熔化温度,有利于玻璃的均化澄清。F的加入量为0.05-1%。当F的含量小于0.05%时,不利于基础玻璃的核化-晶化过程控制,制得的微晶玻璃晶化程度偏低,导致低强度或低表面维氏硬度。当F的含量大于1%时,其集聚作用太强会导致基体玻璃失透,透过率低,经过热处理后的微晶玻璃同样失透且光学均匀性差。
K 2O在玻璃基体中的作用是提供游离氧,及降低玻璃熔化温度。K 2O的加入量为0~1%,其可以不参与目标晶体,即二硅酸锂和透锂长石组合晶体的形成,但当K 2O的含量大于1%时,会在玻璃相中富集,导致制得的微晶玻璃中晶体数量及比例降低,维式硬度及防短波辐射性能较差。
在其中一个示例中,以质量分数计,所述微晶玻璃的组分包括64-74%SiO 2、6-16%Al 2O 3、6-13%Li 2O、1-3%P 2O 5、3-8%ZrO 2、0.1-1%F、0-2%MgO、0-4%B 2O 3、0-1%K 2O、0.5-8%Na 2O、0-1%CaO、0-1%SrO和0-1%ZnO。
在其中一个示例中,以质量分数计,所述微晶玻璃的组分包括68-74%SiO 2、 7-10%Al 2O 3、8-11%Li 2O、1-3%P 2O 5、2-6%ZrO 2、0.1-0.5%F、0-1%MgO、0.5-2.0%B 2O 3、0-0.5%K 2O、1-8%Na 2O、0-1%CaO、0-1%SrO和0-1%ZnO。
所述微晶玻璃的组分中,SiO 2的质量分数为55-80%,具体地,SiO 2的质量分数包括但不限于:55%、58%、60%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、76%、80%。Al 2O 3的质量分数为4-20%,具体地,Al 2O 3的质量分数包括但不限于:4.5%、5.5%、6.5%、8.5%、9.5%、11.5%、12.5%、13.5%、15.5%、16.5%、18.5%、19.5%。在其中一个示例中,Al 2O 3的质量分数为5.5-8.5%、9.5-11.5%、4.5-4.8%、5.5-5.8%、12.5-12.8%、13.5-15.8%或16.2-19.8%。
Li 2O的质量分数为3-15%,具体地,Li 2O的质量分数包括但不限于:3.2%、4.5%、8.5%、9.5%、10.5%、13.5%、14.5%、14.8%。在其中一个示例中,Li 2O的质量分数为3.2-4.8%、5.2-7.8%、8.5-9.5%、10.5-13.8%或13.5-14.8%。
P 2O 5的质量分数为1-5%,具体地,P 2O 5的质量分数包括但不限于1.2%、1.4%、1.6%、2%、2.4%、2.6%、3%、3.4%、3.8%、4.2%、4.5%、4.8%。在其中一个示例中P 2O 5的质量分数为1.3-1.4%、1.6-2.8%、2.6-3.9%或4.3-4.9%。
ZrO 2的质量分数为1-10%,具体地,ZrO 2的质量分数包括但不限于1.1%、1.3%、2.1%、2.5%、2.8%、3.5%、3.8%、4.2%、4.5%、5%、5.5%、5.8%、6.2%、6.5%、6.8%、7.2%、8.5%、9%、9.5%。在其中一个示例中,ZrO 2的质量分数为1.1-2.8%、3.2-3.8%、4.2-5.6%、6.2-7.8%或8.2-9.8%。
MgO的质量分数为0-4%,具体地,MgO的质量分数包括但不限于0.1%、0.2%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.8%、3%、3.5%、3.8%、4%。在其中一个示例中,MgO的质量分数为0.1-0.8%、0.8-2.2%、2.2-3.2%或3.2-4%。
B 2O 3的质量分数为0-4%,具体地,B 2O 3的质量分数包括但不限于0.1%、0.2%、0.3%、0.5%、0.8%、1.2%、1.5%、1.8%、2%、2.5%、2.8%、3%、3.5%、3.8%。在其中一个示例中,B 2O 3的质量分数为0.1-0.9%、1.1-2.8%或3.1-3.8%。
需要说明的是,成型的方法的不作限制,举例可如,在产量较小的情况下, 可以是直接浇铸法,在产量较大的情况下,可以是浮法、溢流法、引上法、平拉法、压延法等方法中的任意一种。本发明示例提供的方法仅仅是举例,并不限于此方法。
在其中一个示例中,微晶玻璃中二硅酸锂和透锂长石组合晶体的结晶度为42-88%。
在其中一个示例中,微晶玻璃的雾度范围为0.18-2.81%,维氏硬度范围为716-817kgf/mm 2
本申请提供一种微晶玻璃的制备方法,包括如下步骤:
按照所述组分称取原料,熔制,成型,制备前体玻璃;
将所述前体玻璃经过热处理,制备微晶玻璃。
在其中一个示例中,所述前体玻璃的制造方法包括以下步骤:
将上述任一组分原料加热至1400-1600℃,熔制8-10小时,制备混合液体;
将所述混合液体降温至1300-1350℃,保温2-3小时,制备均化液体;
将所述均化液体浇铸成型,400-500℃下退火2-3小时,6-8小时降温至130-150℃,再自然冷却。
在其中一个示例中,所述前体玻璃在200-780nm波段的透过率范围为85.4-91.2%。
需要说明的是,采用成型的方法,可以是浮法成形法、溢流下拉法、引上法、平拉法及压延法中的任一种。本申请示例提供的方法仅仅是举例,并不限于此方法。
在其中一个示例中,所述热处理包括以下步骤:
将前体玻璃加热到温度500-640℃,保温6-24小时,进行核化;
将核化后的玻璃加热到温度680-740℃,保温2-18小时,进行晶化。
本申请还提供了一种玻璃制品,包含上述的微晶玻璃。
本申请实施例使用荷兰轶诺FALCON400硬度计,参照GB/T 4340标准,测试玻璃表面维氏硬度;使用耐驰Classic 402PC热膨胀仪,参照GB/T 16920标准,测试其在30-350℃间的热膨胀系数;使用美国PerkinElmer公司Lambda950紫外可见光分光光度计,参照GB/T 40415标准,测试其在200-780nm波长范围 的透过率;使用SUGA光学HZ-V3雾度计,参照GB/T 2410标准,测试样品雾度;使用布鲁克X射线衍射仪Bruker D8 advance,参照GB/T 23413标准,测试样品晶相、结晶度及晶粒尺寸,二硅酸锂晶相化学式为:Li 2Si 2O 5,透锂长石晶相化学式为:LiAlSi 4O 10
样品在测试前使用沈阳科晶STX-1203线切割机切割成50×50×0.7mm的玻璃片,使用深圳海德HD-640-5L双面研磨抛光机减薄抛光和CNC磨边。
可以理解的是,上述测试方式和测试设备,是本行业领域内评价玻璃相关性能的常用方式,只是表征或是评价本申请技术方案和技术效果的一种手段,亦可采用其他测试方式和测试设备,并不影响最终结果。
以下结合具体实施例对本申请提供的微晶玻璃及其制备方法进行具体说明。
实施例1-实施例42
实施例1-实施例42均提供微晶玻璃。按照表1中各组分质量百分比,计算并称取各组分对应的原料,充分混合均匀后,用铂金坩埚加热至1600℃,熔制8小时,得到混合液体;
同时用铂金搅拌桨搅拌,待抽出搅拌桨后,将混合液体降温至1350℃,保温2小时,得到均化液体;
将所述均化液体直接浇铸到铁质模具上成型,铁质模具在浇铸前预热到400℃,待玻璃硬化后立即转移至退火炉中退火,在400℃下保温2小时,再6小时降温至140℃,再自然冷却,得到前体玻璃,取出后备用。
将前体玻璃薄片加热到温度500-640℃,保温6-24小时,进行核化;将核化后的玻璃加热到温度680-740℃,保温2-18小时,进行晶化,得到微晶玻璃。热处理过程中的具体的核化和晶化温度以及时间,如表2“热处理条件”所述。
表1组分
Figure PCTCN2022089030-appb-000001
Figure PCTCN2022089030-appb-000002
Figure PCTCN2022089030-appb-000003
Figure PCTCN2022089030-appb-000004
Figure PCTCN2022089030-appb-000005
Figure PCTCN2022089030-appb-000006
Figure PCTCN2022089030-appb-000007
Figure PCTCN2022089030-appb-000008
Figure PCTCN2022089030-appb-000009
表2.热处理条件
Figure PCTCN2022089030-appb-000010
Figure PCTCN2022089030-appb-000011
Figure PCTCN2022089030-appb-000012
Figure PCTCN2022089030-appb-000013
  实施 实施 实施 实施 实施 实施 实施
   例29 例30 例31 例32 例33 例34 例35
核化温度℃ 520 580 600 610 560 510 630
核化时间h 10 8 10 9 12 8 6
晶化温度℃ 700 710 710 720 700 700 740
晶化时间h 4 2 4 3 6 2 2
Figure PCTCN2022089030-appb-000014
对制备得到的前体玻璃和微晶玻璃分别依次经沈阳科晶的STX-1203线切割机切割,经深圳海德的HD-640-5L双面研磨抛光机减薄抛光,再经CNC磨边,得到70×140×0.7mm规格薄片后进行性能测试,测试结果如图1及下表3。其中,因为对人眼有害的高能光线波长主要集中在200-450nm之间,为便于计算,将300nm波长光的透过率降幅近似为有害光线过滤效率,即表3中的防短波辐射效率Ω,其计算公示如下所示:
Ω=(Tg—Tgc)/Tg
其中Tg为未晶化玻璃(前体玻璃)对300nm波长光的透过率;Tgc为微晶玻璃对300nm波长光的透过率。
表3.性能测试
Figure PCTCN2022089030-appb-000015
Figure PCTCN2022089030-appb-000016
Figure PCTCN2022089030-appb-000017
Figure PCTCN2022089030-appb-000018
Figure PCTCN2022089030-appb-000019
Figure PCTCN2022089030-appb-000020
Figure PCTCN2022089030-appb-000021
Figure PCTCN2022089030-appb-000022
Figure PCTCN2022089030-appb-000023
Figure PCTCN2022089030-appb-000024
对比例1-3
按照下表4对比例1-3中各组分配比,计算并称取各组分对应的原料,充分混合后进行熔化、澄清、成型、退火、切裁等工艺后,制得前体玻璃片。
表4.组分
组分wt% 对比例1 对比例2 对比例3
SiO 2 60.8 57 60.8
Al 2O 3 9 15 9
Li 2O 12 5 12
MgO / 4 /
B 2O 3 / 1 /
P 2O 5 2 4 2
K 2O 0.15 / 2
Na 2O 8 6 6.1
ZrO 2 7 6 7
CaO 1 / 1
SrO / / /
ZnO / / /
F / 2 0.05
SUM 100 100 100
对制备得到的前体玻璃进行热处理,热处理过程中的核化和晶化温度以及时间,如表5“热处理条件”所述。
表5.热处理条件
  对比例1 对比例2 对比例3
核化温度℃ 500 550 500
核化时间h 10 14 10
晶化温度℃ 680 700 680
晶化时间h 10 12 10
对制备得到的前体玻璃和微晶玻璃分别依次进行切割、研磨、抛光工序,得到70×140×0.7mm规格薄片,进行性能测试,测试结果如下表6。
表6.性能测试
Figure PCTCN2022089030-appb-000025
Figure PCTCN2022089030-appb-000026
从表3和表6的结果可以看出,对比例1和实施例10各组分含量相近,区别在于对比例1未加入F,实施例10加入0.05%的F。经过同样条件的热处理后,实施例10的晶粒尺寸为50-90nm,结晶度为78.7%,维氏硬度为783Kgf/mm 2,防短波辐射效率为25.7%;对比例1的晶粒尺寸为5-40nm,结晶度为42.9%,维氏硬度为694Kgf/mm 2,防短波辐射效率为8.6%。
对比例2和实施例11各组分含量相近,区别在于对比例2加入2%的F,实施例11加入1%的F。实施例11的前体玻璃透过率为91.9%;对比例2的前体玻璃透过率为78.4%,为半透明外观。经过相同条件的热处理后,实施例11的透过率为89.2%,雾度为0.97%;对比例2的透过率为48.8%,雾度为62.4%,晶粒尺寸增加到150-860nm,且光学性质和外观极不均匀,无法制成均匀、且可见光透过率较高的防短波辐射微晶玻璃。
对比例3和实施例10各组分含量相近,区别在于对比例3加入2%的K 2O,实施例10加入0.15%的K 2O。经过相同条件的热处理后,实施例10的微晶玻璃结晶度为78.7%,维氏硬度为783Kgf/mm 2;对比例3的微晶玻璃结晶度为48.7%,维氏硬度为735Kgf/mm 2,不能充分发挥出微晶玻璃接近于陶瓷的特性。
对比例4
对实施例22制备得到的前体玻璃片进行切割、研磨、抛光等工序,得到50×50×0.7mm规格薄片后进行热处理,热处理过程中的核化和晶化温度以及时 间,如表7“热处理条件”所述。
对比例5
对实施例22制备得到的前体玻璃不经过热处理。
表7.热处理条件
Figure PCTCN2022089030-appb-000027
测试制备得到的玻璃在200-780nm波长范围的透过率,并求出其有害光线降幅Ω,其计算公示如下所示:
Ω=(Tg—Tgc)/Tg
其中Tg为未晶化玻璃(对比例5)对300nm、380nm或450nm波长光的透过率;Tgc为全晶化(实施例22)或半晶化(对比例4)微晶玻璃对300nm、380nm或450nm波长光的透过率。因为对人眼有害的高能光线波长主要集中在200-450nm之间,为便于计算,将300nm波长光的有害光线降幅近似为防短波辐射效率。测试结果如图2和表8所示。
表8.性能测试
Figure PCTCN2022089030-appb-000028
从图2和表8可以看出,通过本申请提供的热处理方法,可以有效提高微晶玻璃的防短波辐射性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技 术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种微晶玻璃,以质量分数计,所述微晶玻璃的组分包括:55-80%SiO 2、4-20%Al 2O 3、3-15%Li 2O、1-5%P 2O 5、1-10%ZrO 2、0.05-1%F、0-4%MgO、0-4%B 2O 3、0-1%K 2O、0-10%Na 2O、0-3%CaO、0-3%SrO和0-3%ZnO,所述微晶玻璃含有二硅酸锂和透锂长石组合晶体,所述二硅酸锂和透锂长石组合晶体的尺寸范围为20-150nm。
  2. 如权利要求1所述的微晶玻璃,其特征在于,以质量分数计,所述微晶玻璃的组分包括64-74%SiO 2、6-16%Al 2O 3、6-13%Li 2O、1-3%P 2O 5、3-8%ZrO 2、0.1-1%F、0-2%MgO、0-4%B 2O 3、0-1%K 2O、0.5-8%Na 2O、0-1%CaO、0-1%SrO和0-1%ZnO。
  3. 如权利要求1所述的微晶玻璃,其特征在于,以质量分数计,所述微晶玻璃的组分包括68-74%SiO 2、7-10%Al 2O 3、8-11%Li 2O、1-3%P 2O 5、2-6%ZrO 2、0.1-0.5%F、0-1%MgO、0.5-2.0%B 2O 3、0-0.5%K 2O、1-8%Na 2O、0-1%CaO、0-1%SrO和0-1%ZnO。
  4. 如权利要求1所述的微晶玻璃,其特征在于,所述二硅酸锂和透锂长石组合晶体的尺寸范围为20-90nm。
  5. 如权利要求1-4任一项所述的微晶玻璃,其特征在于,所述二硅酸锂和透锂长石组合晶体的结晶度为42-88%。
  6. 如权利要求1-4任一项所述的微晶玻璃,其特征在于,所述微晶玻璃的雾度范围为0.18-2.81%,维氏硬度范围为716-817kgf/mm 2
  7. 一种微晶玻璃的制备方法,包括如下步骤:
    按照所述组分称取原料,熔制,成型,制备前体玻璃;
    将所述前体玻璃进行热处理,制备微晶玻璃;以质量分数计,所述微晶玻璃的组分包括:55-80%SiO 2、4-20%Al 2O 3、3-15%Li 2O、1-5%P 2O 5、1-10%ZrO 2、0.05-1%F、0-4%MgO、0-4%B 2O 3、0-1%K 2O、0-10%Na 2O、0-3%CaO、0-3%SrO和0-3%ZnO,所述微晶玻璃含有二硅酸锂和透锂长石组合晶体,所述二硅 酸锂和透锂长石组合晶体的尺寸范围为20-150nm。
  8. 如权利要求7所述的微晶玻璃的制备方法,其特征在于,以质量分数计,所述微晶玻璃的组分包括64-74%SiO 2、6-16%Al 2O 3、6-13%Li 2O、1-3%P 2O 5、3-8%ZrO 2、0.1-1%F、0-2%MgO、0-4%B 2O 3、0-1%K 2O、0.5-8%Na 2O、0-1%CaO、0-1%SrO和0-1%ZnO。
  9. 如权利要求7所述的微晶玻璃的制备方法,其特征在于,以质量分数计,所述微晶玻璃的组分包括68-74%SiO 2、7-10%Al 2O 3、8-11%Li 2O、1-3%P 2O 5、2-6%ZrO 2、0.1-0.5%F、0-1%MgO、0.5-2.0%B 2O 3、0-0.5%K 2O、1-8%Na 2O、0-1%CaO、0-1%SrO和0-1%ZnO。
  10. 如权利要求7所述的微晶玻璃的制备方法,其特征在于,所述微晶玻璃含有二硅酸锂和透锂长石组合晶体,所述二硅酸锂和透锂长石组合晶体的尺寸范围为20-90nm。
  11. 如权利要求7-10任一项所述的微晶玻璃的制备方法,其特征在于,所述微晶玻璃含有二硅酸锂和透锂长石组合晶体,所述二硅酸锂和透锂长石组合晶体的结晶度为42-88%。
  12. 如权利要求7-10任一项所述的微晶玻璃的制备方法,其特征在于,所述微晶玻璃的雾度范围为0.18-2.81%,维氏硬度范围为716-817kgf/mm 2
  13. 如权利要求7-10任一项所述的微晶玻璃的制备方法,其特征在于,所述热处理包括以下步骤:
    将前体玻璃加热到温度500-640℃,保温6-24小时,进行核化;
    将核化后的玻璃加热到温度680-740℃,保温2-18小时,进行晶化。
  14. 如权利要求7-10任一项所述的微晶玻璃的制备方法,其特征在于,所述前体玻璃的制造方法包括以下步骤:
    将所述原料加热至1400-1600℃,熔制8-10小时,制备混合液体;
    将所述混合液体降温至1300-1350℃,保温2-3小时,制备均化液体;
    将所述均化液体成型,400-500℃下退火2-3小时,然后在6-8小时内降温至130-150℃,再自然冷却。
  15. 如权利要求14所述的微晶玻璃的制备方法,其特征在于,所述前体玻璃 在200-780nm波段的透过率范围为85.4-91.2%。
  16. 一种玻璃制品,包含微晶玻璃,以质量分数计,所述微晶玻璃的组分包括68-74%SiO 2、7-10%Al 2O 3、8-11%Li 2O、1-3%P 2O 5、2-6%ZrO 2、0.1-0.5%F、0-1%MgO、0.5-2.0%B 2O 3、0-0.5%K 2O、1-8%Na 2O、0-1%CaO、0-1%SrO和0-1%ZnO。
PCT/CN2022/089030 2022-04-25 2022-04-25 微晶玻璃及其制备方法 WO2023206009A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089030 WO2023206009A1 (zh) 2022-04-25 2022-04-25 微晶玻璃及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089030 WO2023206009A1 (zh) 2022-04-25 2022-04-25 微晶玻璃及其制备方法

Publications (1)

Publication Number Publication Date
WO2023206009A1 true WO2023206009A1 (zh) 2023-11-02

Family

ID=88516448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089030 WO2023206009A1 (zh) 2022-04-25 2022-04-25 微晶玻璃及其制备方法

Country Status (1)

Country Link
WO (1) WO2023206009A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107902909A (zh) * 2017-12-01 2018-04-13 成都光明光电股份有限公司 微晶玻璃及其基板
CN107963815A (zh) * 2017-12-01 2018-04-27 成都光明光电股份有限公司 微晶玻璃及其基板
CN110944954A (zh) * 2017-07-26 2020-03-31 Agc株式会社 化学强化用玻璃、化学强化玻璃以及电子设备壳体
CN112243429A (zh) * 2018-04-09 2021-01-19 康宁股份有限公司 局部强化的玻璃陶瓷及其制造方法
CN112585101A (zh) * 2018-08-20 2021-03-30 康宁股份有限公司 具有改进的应力分布的玻璃陶瓷制品
CN113754289A (zh) * 2021-09-18 2021-12-07 重庆鑫景特种玻璃有限公司 一种低翘曲的强化微晶玻璃、及其制备方法和用途
CN114262156A (zh) * 2021-11-11 2022-04-01 深圳旭安光学有限公司 一种结晶玻璃、强化结晶玻璃及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944954A (zh) * 2017-07-26 2020-03-31 Agc株式会社 化学强化用玻璃、化学强化玻璃以及电子设备壳体
CN107902909A (zh) * 2017-12-01 2018-04-13 成都光明光电股份有限公司 微晶玻璃及其基板
CN107963815A (zh) * 2017-12-01 2018-04-27 成都光明光电股份有限公司 微晶玻璃及其基板
CN112243429A (zh) * 2018-04-09 2021-01-19 康宁股份有限公司 局部强化的玻璃陶瓷及其制造方法
US20210024406A1 (en) * 2018-04-09 2021-01-28 Corning Incorporated Locally strengthened glass-ceramics and methods of making the same
CN112585101A (zh) * 2018-08-20 2021-03-30 康宁股份有限公司 具有改进的应力分布的玻璃陶瓷制品
CN113754289A (zh) * 2021-09-18 2021-12-07 重庆鑫景特种玻璃有限公司 一种低翘曲的强化微晶玻璃、及其制备方法和用途
CN114262156A (zh) * 2021-11-11 2022-04-01 深圳旭安光学有限公司 一种结晶玻璃、强化结晶玻璃及其制备方法

Similar Documents

Publication Publication Date Title
KR102294909B1 (ko) 미결정 유리, 미결정 유리 제품 및 그 제조 방법
US10913681B2 (en) Glass-ceramic article and glass-ceramic for electronic device cover plate
TWI806355B (zh) 微晶玻璃、微晶玻璃製品及其製造方法
WO2022228583A1 (zh) 一种微晶玻璃材料及其制备方法和在半导体器件中的应用
DE202018100558U1 (de) Eingefärbte transparente Lithiumaluminiumsilikat-Glaskeramik
WO2022241891A1 (zh) 一种三维微晶玻璃及其制备方法
JP2006199538A (ja) Li2O−Al2O3−SiO2系結晶性ガラス及び結晶化ガラス並びにLi2O−Al2O3−SiO2系結晶化ガラスの製造方法。
JP2010510952A (ja) 透明、無色の、チタニアを含まない、ベータ・石英・ガラス・セラミック材料
JPH08198639A (ja) 着色ガラスセラミックおよびその製造方法
CN110698060A (zh) 玻璃和玻璃陶瓷
CN110407459B (zh) 一种弥散强化的视窗玻璃及其制备方法
JP2024063162A (ja) 微結晶ガラス、微結晶ガラス製品及びその製造方法
CN110577365A (zh) 一种纳米晶玻璃陶瓷及其制备方法
CN111170631A (zh) 重镧火石玻璃
CN112624618B (zh) 一种彩色微晶玻璃及其制备方法
WO2010090208A1 (ja) 結晶化ガラスおよびそれを用いた調理器用トッププレート
JP2023071830A (ja) Li2O-Al2O3-SiO2系結晶化ガラス
CN110577364A (zh) 一种锂铝硅酸盐纳米晶玻璃陶瓷及其制备方法
WO2023246365A1 (zh) 微晶玻璃、微晶玻璃制品及其制造方法
WO2024088033A1 (zh) 微晶玻璃、微晶玻璃制品及其制造方法
WO2024109498A1 (zh) 一种微晶玻璃及其制备方法、微晶玻璃制品
WO2023206009A1 (zh) 微晶玻璃及其制备方法
US6531420B1 (en) Transparent lithium zinc magnesium orthosilicate glass-ceramics
CN1315747C (zh) 一种含氟磷锂铝硅玻璃陶瓷及其制备方法
CN115925264B (zh) 微晶玻璃及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938866

Country of ref document: EP

Kind code of ref document: A1