WO2023246365A1 - 微晶玻璃、微晶玻璃制品及其制造方法 - Google Patents

微晶玻璃、微晶玻璃制品及其制造方法 Download PDF

Info

Publication number
WO2023246365A1
WO2023246365A1 PCT/CN2023/093852 CN2023093852W WO2023246365A1 WO 2023246365 A1 WO2023246365 A1 WO 2023246365A1 CN 2023093852 W CN2023093852 W CN 2023093852W WO 2023246365 A1 WO2023246365 A1 WO 2023246365A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
crystallized glass
zro
sio
less
Prior art date
Application number
PCT/CN2023/093852
Other languages
English (en)
French (fr)
Inventor
原保平
李赛
于天来
莫大洪
粟勇
张英
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Publication of WO2023246365A1 publication Critical patent/WO2023246365A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/005Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to introduce in the glass such metals or metallic ions as Ag, Cu
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a kind of crystallized glass, in particular to a kind of crystallized glass with excellent mechanical properties and low haze, a crystallized glass product and a manufacturing method thereof.
  • glass-ceramics have been commonly used in various displays and display devices in many electronic products, such as cell phones, music players, e-book readers, notepads, tablets, laptops, ATMs, and other similar devices.
  • Materials used to form housings for display devices and electronic devices are typically selected to meet the mechanical requirements associated with the end use of the electronic device.
  • electronic devices or display devices place higher requirements on the optical properties of the crystallized glass used in them.
  • Optical properties refer to the properties of a substance when it absorbs, reflects and refracts light, such as haze, B value and refractive index, etc.
  • the crystallized glass currently on the market has the problem of high haze, making it difficult to be used in display devices or electronic devices that require high optical performance.
  • the technical problem to be solved by the present invention is to provide a kind of crystallized glass and crystallized glass products with excellent mechanical properties and low haze.
  • Crystallized glass products the components of which are expressed in weight percentage, containing: SiO 2 : 60 to 80%; Al 2 O 3 : 3 to 15%; Li 2 O: greater than or equal to 5% but less than 10%; Na 2 O: 4 to 8%; P 2 O 5 : 0.5 to 5%; ZrO 2 : greater than 5% but less than or equal to 15%, where (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 4.0 ⁇ 15.5.
  • Crystallized glass products the components of which are expressed in weight percentage, containing: SiO 2 : 60 to 80%; Al 2 O 3 : 3 to 15%; Li 2 O: greater than or equal to 5% but less than 10%; Na 2 O: 4 to 8%; P 2 O 5 : 0.5 to 5%; ZrO 2 : greater than 5% but less than or equal to 15%.
  • the crystallized glass product according to (1) or (2) the components of which are expressed in weight percentage, and also contain: ZnO: 0 to 2%; and/or MgO: 0 to 2%; and/or B 2 O 3 : 0 to 4%; and/or K 2 O: 0 to 3%; and/or Ln 2 O 3 : 0 to 2%; and/or clarifier: 0 to 2%, the Ln 2 O 3 is one or more of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , and Yb 2 O 3 .
  • Ceramic glass products containing SiO 2 , Al 2 O 3 , Li 2 O, Na 2 O, P 2 O 5 , ZrO 2 , and its components are expressed in weight percentages, among which (SiO 2 +Li 2 O) /(ZrO 2 +P 2 O 5 ) is 4.0 to 15.5, and the haze of crystallized glass products with a thickness of 1 mm or less is 0.2% or less.
  • Ceramic glass products containing SiO 2 , Al 2 O 3 , Li 2 O, Na 2 O, and ZrO 2 .
  • the crystallized glass products contain a lithium silicate crystal phase.
  • the lithium silicate crystal phase has a higher density than other crystal phases. phase higher weight percent.
  • Crystallized glass products containing SiO 2 , Al 2 O 3 , Li 2 O, Na 2 O, and ZrO 2 .
  • the crystallized glass products contain a lithium silicate crystal phase.
  • Crystallized glass products including SiO 2 : 60 to 80%; Al 2 O 3 : 3 to 15%; Li 2 O: greater than or equal to 5% but less than 10%; Na 2 O: 4 to 8%; P 2 O 5 : 0.5 to 5%; ZrO 2 : greater than 5% but less than or equal to 15%; ZnO: 0 to 2%; MgO: 0 to 2%; B 2 O 3 : 0 to 4%; K 2 O: 0 to 3%; Ln 2 O 3 : 0 to 2%; clarifying agent: 0 to 2%, and the Ln 2 O 3 is La 2 O 3 , Gd 2 O 3 , One or more of Y 2 O 3 and Yb 2 O 3 .
  • SiO 2 /ZrO 2 is 5.0 to 15.0, preferably SiO 2 /ZrO 2 is 6.0 to 13.0, more preferably SiO 2 /ZrO 2 is 6.5 to 12.0, even more preferably SiO 2 /ZrO 2 is 7.0 to 11.0;
  • (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 5.0 to 13.5, preferably (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 6.0 to 11.5, more Preferably (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 6.0 to 10.5;
  • (ZrO 2 +Al 2 O 3 )/Li 2 O is 0.85 to 5.0, preferably (ZrO 2 +Al 2 O 3 )/Li 2 O is 0.9 to 4.0, more preferably (ZrO 2 +Al 2 O 3 ) /Li 2 O is 1.0 to 3.5, and more preferably (ZrO 2 +Al 2 O 3 )/Li 2 O is 1.0 to 3.0;
  • (Li 2 O + Na 2 O) / (SiO 2 + ZrO 2 ) is 0.10 to 0.27, preferably (Li 2 O + Na 2 O) / (SiO 2 + ZrO 2 ) is 0.12 to 0.25, more preferably ( Li 2 O+Na 2 O)/(SiO 2 +ZrO 2 ) is 0.14 to 0.25, and more preferably (Li 2 O+Na 2 O)/(SiO 2 +ZrO 2 ) is 0.15 to 0.23.
  • the crystallized glass product according to any one of (1) to (8), which contains a lithium silicate crystal phase, and the lithium silicate crystal phase has a higher weight percentage than other crystal phases It is preferable that the lithium silicate crystal phase accounts for 5 to 50% of the weight percentage of the crystallized glass product. It is more preferable that the lithium silicate crystal phase accounts for 5 to 40% of the weight percentage of the crystallized glass product. It is further preferred that the lithium silicate crystal phase accounts for micron The weight percentage of crystal glass products is 10 to 30%.
  • the crystallized glass product according to any one of (1) to (8), which contains a lithium silicate crystal phase, and a lithium silicate crystal phase has a higher weight than other crystal phases. Percentage, preferably a lithium silicate crystalline phase accounts for 5 to 50% of the weight percentage of the crystallized glass product, more preferably a lithium silicate crystalline phase accounts for 5 to 40% of the weight percentage of the crystallized glass product, and further preferably monosilicic acid The lithium crystal phase accounts for 10 to 30% of the weight of the glass-ceramic product.
  • the crystallized glass product according to any one of (1) to (8), which contains a feldspar crystal phase, and the weight percentage of the feldspar crystal phase in the glass-ceramic product is 15% or less, preferably 10% or less by weight of the lithium feldspar crystal phase in the crystallized glass product, more preferably 5% or less of the lithium feldspar crystal phase in the weight percentage of the crystallized glass product, and further preferably no lithium feldspar crystal phase. Hectorite crystal phase.
  • the crystallized glass product according to any one of (1) to (8), the ball drop test height of the crystallized glass product is 1400mm or more, preferably 1500mm or more, more preferably 1600mm or more; and/or breaks
  • the toughness is 1MPa ⁇ m 1/2 or more, preferably 1.1MPa ⁇ m 1/2 or more, more preferably 1.2MPa ⁇ m 1/2 or more; and/or the four-point bending strength is 600MPa or more, preferably 650MPa or more, more It is preferably 700 MPa or more; and/or the Vickers hardness is 670 kgf/mm 2 or more, preferably 680 kgf/mm 2 or more, more preferably 700 kgf/mm 2 or more; and/or the ion exchange layer depth is 80 ⁇ m or more, preferably 90 ⁇ m or more.
  • the surface stress is 100 MPa or more, preferably 150 MPa or more, more preferably 200 MPa or more; and/or the crystallinity is 10% or more, preferably 15% or more, more preferably 20% or more; and /or the crystal grain size is 50nm or less, preferably 40nm or less, more preferably 30nm or less; and/or the drop resistance is 1500mm or more, preferably 1600mm or more, more preferably 1800mm or more.
  • Crystallized glass products according to any one of (1) to (8), crystallized glass products with a thickness of 1 mm or less
  • the haze is 0.2% or less, preferably 0.17% or less, more preferably 0.15% or less; and/or the average light transmittance of 400-800 nm wavelength is 88.0% or more, preferably 89.0% or more, more preferably 90.0% Above, more preferably 90.5% or more; and/or the light transmittance at 550nm wavelength is 89.0% or more, preferably 90.0% or more, more preferably 91.0% or more, further preferably 91.5% or more; and/or 400-800nm
  • value is 1.0 or less, preferably 0.9 or less, and more preferably 0.8 or less.
  • the thickness of the crystallized glass product according to (16) is 0.2 to 1 mm, preferably 0.3 to 0.9 mm, more preferably 0.5 to 0.8 mm, further preferably 0.55 mm or 0.6 mm or 0.68mm or 0.7mm or 0.75mm.
  • the crystallized glass product according to (18), the colorant, expressed in weight percentage, contains: NiO: 0 to 4%; and/or Ni 2 O 3 : 0 to 4%; and/or CoO :0 ⁇ 2%; and/or Co 2 O 3 :0 ⁇ 2%; and/or Fe 2 O 3 :0 ⁇ 7%; and/or MnO 2 :0 ⁇ 4%; and/or Er 2 O 3 : 0 to 8%; and/or Nd 2 O 3 : 0 to 8%; and/or Cu 2 O: 0 to 4%; and/or Pr 2 O 3 : 0 to 8%; and/or CeO 2 : 0 ⁇ 4%.
  • Crystallized glass the components of which are expressed in weight percentage, containing: SiO 2 : 60 to 80%; Al 2 O 3 : 3 to 15%; Li 2 O: greater than or equal to 5% but less than 10%; Na 2 O: 4 to 8%; P 2 O 5 : 0.5 to 5%; ZrO 2 : greater than 5% but less than or equal to 15%, where (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) It is 4.0 ⁇ 15.5.
  • Crystallized glass the components of which are expressed in weight percentage, containing: SiO 2 : 60 to 80%; Al 2 O 3 : 3 to 15%; Li 2 O: greater than or equal to 5% but less than 10%; Na 2 O: 4 to 8%; P 2 O 5 : 0.5 to 5%; ZrO 2 : greater than 5% but less than or equal to 15%.
  • Crystallized glass containing SiO 2 , Al 2 O 3 , Li 2 O, Na 2 O, P 2 O 5 , ZrO 2 , and its components are expressed in weight percentage, where (SiO 2 +Li 2 O)/ (ZrO 2 +P 2 O 5 ) is 4.0 to 15.5, and the haze of crystallized glass with a thickness of 1 mm or less is 0.2% or less.
  • Crystallized glass containing SiO 2 , Al 2 O 3 , Li 2 O, Na 2 O, and ZrO 2 .
  • the crystallized glass contains a lithium silicate crystal phase.
  • the lithium silicate crystal phase has higher properties than other crystal phases. High weight percentage.
  • Crystallized glass containing SiO 2 , Al 2 O 3 , Li 2 O, Na 2 O, and ZrO 2 .
  • the crystallized glass contains a lithium silicate crystal phase.
  • Crystallized glass the components of which are expressed in weight percentage, including SiO 2 : 60 to 80%; Al 2 O 3 : 3 to 15%; Li 2 O: greater than or equal to 5% but less than 10%; Na 2 O: 4 ⁇ 8%; P2O5 : 0.5 ⁇ 5%; ZrO2 : greater than 5% but less than or equal to 15%; ZnO: 0 ⁇ 2%; MgO: 0 ⁇ 2%; B2O3 : 0 ⁇ 4%; K 2 O: 0 ⁇ 3%; Ln 2 O 3 : 0 ⁇ 2%; Clarifying agent: 0 ⁇ 2% composition, the Ln 2 O 3 is La 2 O 3 , Gd 2 O 3 , Y One or more of 2 O 3 and Yb 2 O 3 .
  • SiO 2 /ZrO 2 is 5.0 to 15.0, preferably SiO 2 /ZrO 2 is 6.0 to 13.0, more preferably SiO 2 /ZrO 2 is 6.5 to 12.0, even more preferably SiO 2 /ZrO 2 is 7.0 to 11.0;
  • (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 5.0 to 13.5, preferably (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 6.0 to 11.5, more Preferably (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 6.0 to 10.5;
  • (ZrO 2 +Al 2 O 3 )/Li 2 O is 0.85 to 5.0, preferably (ZrO 2 +Al 2 O 3 )/Li 2 O is 0.9 to 4.0, more preferably (ZrO 2 +Al 2 O 3 ) /Li 2 O is 1.0 to 3.5, and more preferably (ZrO 2 +Al 2 O 3 )/Li 2 O is 1.0 to 3.0;
  • (Li 2 O + Na 2 O) / (SiO 2 + ZrO 2 ) is 0.10 to 0.27, preferably (Li 2 O + Na 2 O) / (SiO 2 + ZrO 2 ) is 0.12 to 0.25, more preferably ( Li 2 O+Na 2 O)/(SiO 2 +ZrO 2 ) is 0.14 to 0.25, and more preferably (Li 2 O+Na 2 O)/(SiO 2 +ZrO 2 ) is 0.15 to 0.23.
  • the lithium acid crystal phase accounts for the weight percentage of the glass-ceramics
  • the ratio is 5 to 50%, more preferably the weight percentage of the lithium silicate crystal phase in the glass ceramics is 5 to 40%, and further preferably the weight percentage of the lithium silicate crystal phase in the glass ceramics is 10 to 30%.
  • the crystallized glass according to any one of (20) to (27), which contains a lithium silicate crystal phase, and a lithium silicate crystal phase has a higher weight percentage than other crystal phases, It is preferable that the weight percentage of a lithium silicate crystal phase in the glass ceramics is 5 to 50%, and it is more preferred that the weight percentage of a lithium silicate crystal phase in the glass ceramics is 5 to 40%, and it is even more preferred that a lithium silicate crystal phase accounts for The weight percentage of glass-ceramics is 10 to 30%.
  • the crystallized glass contains a feldspar crystal phase, and the feldspar crystal phase accounts for less than 15% of the weight percentage of the glass-ceramics.
  • the weight percentage of the lithium feldspar crystal phase in the glass-ceramics is less than 10%, more preferably the lithium feldspar crystal phase accounts for less than 5% by weight of the crystallized glass, and it is even more preferred that it does not contain the lithium feldspar crystal phase.
  • the particle size is 50nm or less, preferably 40nm or less, more preferably 30nm or less; and/or the body drop height is 1700mm or more, preferably 1900mm or more, more preferably 2000mm or more; and/or the Vickers hardness is 600kgf/ mm2 or more. , preferably 620kgf/mm 2 or more, more preferably 630kgf/mm 2 or more; and/or the refractive index is 1.520 to 1.545; and/or the Young's modulus is 80 to 100GPa.
  • the crystallized glass according to any one of (20) to (27), the haze of the crystallized glass with a thickness of 1 mm or less is 0.2% or less, preferably 0.17% or less, more preferably 0.15% or less; and/ Or the average light transmittance at a wavelength of 400 to 800 nm is 88.0% or more, preferably 89.0% or more, more preferably 90.0% or more, further preferably 90.5% or more; and/or the light transmittance at a wavelength of 550 nm is 89.0% or more , preferably 90.0% or more, more preferably 91.0% or more, further preferably 91.5% or more; and/or the average light
  • the thickness of the crystallized glass according to (35) is 0.2 to 1 mm, preferably 0.3 to 0.9 mm, more preferably 0.5 to 0.8 mm, further preferably 0.55 mm or 0.6 mm or 0.68mm or 0.7mm or 0.75mm.
  • the crystallized glass according to (37), the colorant, expressed in weight percentage, contains: NiO: 0 to 4%; and/or Ni 2 O 3 : 0 to 4%; and/or CoO: 0 ⁇ 2%; and/or Co 2 O 3 : 0 ⁇ 2%; and/or Fe 2 O 3 : 0 ⁇ 7%; and/or MnO 2 : 0 to 4%; and/or Er 2 O 3 : 0 to 8%; and/or Nd 2 O 3 : 0 to 8%; and/or Cu 2 O: 0 to 4%; and /or Pr 2 O 3 : 0 to 8%; and/or CeO 2 : 0 to 4%.
  • Matrix glass the components of which are expressed in weight percentage, containing: SiO 2 : 60 to 80%; Al 2 O 3 : 3 to 15%; Li 2 O: greater than or equal to 5% but less than 10%; Na 2 O: 4 ⁇ 8 %; P2O5 : 0.5 ⁇ 5%; ZrO2 : greater than 5% but less than or equal to 15%, where ( SiO2 + Li2O )/( ZrO2 + P2O5 ) is 4.0 ⁇ 15.5.
  • Matrix glass the components of which are expressed in weight percentage, containing: SiO 2 : 60 to 80%; Al 2 O 3 : 3 to 15%; Li 2 O: greater than or equal to 5% but less than 10%; Na 2 O: 4 to 8%; P 2 O 5 : 0.5 to 5%; ZrO 2 : greater than 5% but less than or equal to 15%.
  • Matrix glass the components of which are expressed in weight percentage, including SiO 2 : 60 to 80%; Al 2 O 3 : 3 to 15%; Li 2 O: greater than or equal to 5% but less than 10%; Na 2 O : 4 ⁇ 8%; P 2 O 5 : 0.5 ⁇ 5%; ZrO 2 : greater than 5% but less than or equal to 15%: ZnO: 0 ⁇ 2%; MgO: 0 ⁇ 2%; B 2 O 3 : 0 ⁇ 4%; K 2 O: 0 to 3%; Ln 2 O 3 : 0 to 2%; clarifying agent: 0 to 2%, and the Ln 2 O 3 is La 2 O 3 , Gd 2 O 3 , Y 2 One or more of O 3 and Yb 2 O 3 .
  • SiO 2 /ZrO 2 is 5.0 to 15.0, preferably SiO 2 /ZrO 2 is 6.0 to 13.0, more preferably SiO 2 /ZrO 2 is 6.5 to 12.0, even more preferably SiO 2 /ZrO 2 is 7.0 to 11.0;
  • (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 5.0 to 13.5, preferably (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 6.0 to 11.5, more Preferably (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 6.0 to 10.5;
  • (ZrO 2 +Al 2 O 3 )/Li 2 O is 0.85 to 5.0, preferably (ZrO 2 +Al 2 O 3 )/Li 2 O is 0.9 to 4.0, more preferably (ZrO 2 +Al 2 O 3 ) /Li 2 O is 1.0 to 3.5, and more preferably (ZrO 2 +Al 2 O 3 )/Li 2 O is 1.0 to 3.0;
  • (Li 2 O + Na 2 O) / (SiO 2 + ZrO 2 ) is 0.10 to 0.27, preferably (Li 2 O + Na 2 O) / (SiO 2 + ZrO 2 ) is 0.12 to 0.25, more preferably ( Li 2 O+Na 2 O)/(SiO 2 +ZrO 2 ) is 0.14 to 0.25, and more preferably (Li 2 O+Na 2 O)/(SiO 2 +ZrO 2 ) is 0.15 to 0.23.
  • the matrix glass according to (46), the colorant, expressed in weight percentage, contains: NiO: 0 to 4%; and/or Ni 2 O 3 : 0 to 4%; and/or CoO: 0 ⁇ 2%; and/or Co 2 O 3 : 0 ⁇ 2%; and/or Fe 2 O 3 : 0 ⁇ 7%; and/or MnO 2 : 0 ⁇ 4%; and/or Er 2 O 3 : 0 ⁇ 8%; and/or Nd 2 O 3 : 0 ⁇ 8%; and/or Cu 2 O: 0 ⁇ 4%; and/or Pr 2 O 3 : 0 ⁇ 8%; and/or CeO 2 : 0 ⁇ 4%.
  • Display device containing the crystallized glass product according to any one of (1) to (19), and/or the crystallized glass product according to any one of (20) to (38), and/or (39) to (47)
  • the crystallization process includes the following steps: raising the temperature to a prescribed crystallization treatment temperature, and after reaching the crystallization treatment temperature, maintaining the temperature at a certain time, then Then, the temperature is lowered.
  • the crystallization treatment temperature is 550-700°C, preferably 580-650°C.
  • the holding time at the crystallization treatment temperature is 0-8 hours, preferably 1-6 hours.
  • the method for manufacturing a crystallized glass product according to (53), wherein the crystallization process includes the following steps: performing a nucleation process at a first temperature, and then performing a nucleation process at a second temperature higher than the nucleation process temperature.
  • the crystal growth process is carried out at high temperatures.
  • the manufacturing method of crystallized glass products according to (55), the crystallization process includes the following steps: the first temperature is 450-550°C, the second temperature is 550-700°C; at the first temperature
  • the holding time at the second temperature is 0 to 24 hours, preferably 2 to 15 hours; the holding time at the second temperature is 0 to 10 hours, preferably 0.5 to 6 hours.
  • the preferred temperature range is 380°C to 460°C
  • the preferred time range is 2 to 24 hours
  • the crystallized glass is immersed in a salt bath of molten K salt at a temperature of 360°C to 450°C for 1 to 36 hours, the preferred time range is 2 to 24 hours
  • the crystallized glass is immersed in a mixed salt bath in which K salt and Na salt are melted at a temperature of 360°C to 450°C for 1 to 36 hours, the preferred time range is 2 to 24 hours. 24 hours.
  • the method for manufacturing crystallized glass according to (58), wherein the crystallization process includes the following steps: raising the temperature to a prescribed crystallization temperature, and maintaining the temperature for a certain period of time after reaching the crystallization temperature. , and then the temperature is lowered.
  • the crystallization treatment temperature is 550 to 700°C, preferably 580 to 650°C.
  • the holding time at the crystallization treatment temperature is 0 to 8 hours, preferably 1 to 6 hours.
  • the holding time is 0 to 24 hours, preferably 2 to 15 hours;
  • the holding time at the second temperature is 0 to 10 hours, preferably 0.5 to 6 hours.
  • the matrix glass undergoes a crystallization heat treatment process, including heating, heat preservation nucleation, temperature rise, heat preservation crystallization, and cooling to room temperature to form pre-crystallized glass;
  • the pre-crystallized glass is thermally processed and formed to obtain a crystallized glass formed body.
  • Temperature heating and preheating Place the matrix glass, pre-crystallized glass or crystallized glass in the mold. The mold passes through each heating station in sequence in the hot bending machine and stays at each station for a certain period of time to keep warm.
  • the temperature in the preheating zone is 400°C. ⁇ 800°C, pressure 0.01 ⁇ 0.05MPa, time 40 ⁇ 200s;
  • the beneficial effects of the present invention are: through reasonable component design, the crystallized glass or crystallized glass products obtained by the present invention have excellent mechanical properties and low haze, and are suitable for display equipment or devices with higher optical performance requirements. in electronic equipment.
  • the crystallized glass and crystallized glass products of the present invention are materials with a crystalline phase (sometimes also called a crystal) and a glass phase, which are different from amorphous solids.
  • the crystallographic phases of glass-ceramics and glass-ceramic articles can be identified by the peak angles appearing in the X-ray diffraction pattern of X-ray diffraction analysis and/or measured by TEMEDX.
  • the inventor of the present invention determined that the content and content ratio of specific components constituting crystallized glass and crystallized glass products are set to specific values and allowed to precipitate specific crystal phases at a lower cost.
  • the crystallized glass or crystallized glass product of the present invention is obtained.
  • each component (component) of the matrix glass, crystallized glass and crystallized glass products of the present invention will be described.
  • the content of each component is expressed in weight percent (wt%) relative to the total mass of matrix glass, or crystallized glass, or crystallized glass products converted into the composition of oxides.
  • the "composition converted into oxides” refers to the molten oxides, complex salts, hydroxides, etc. used as raw materials for the matrix glass, crystallized glass or crystallized glass products of the present invention. When decomposed and converted into an oxide, the total amount of the oxide is regarded as 100%.
  • crystallized glass products refer to A product obtained by chemically strengthening crystallized glass.
  • the crystalline phase in the crystallized glass or the crystallized glass product contains a lithium silicate crystalline phase (one or both of lithium monosilicate and lithium disilicate).
  • the lithium silicate crystalline phase has a higher weight percent than other crystalline phases.
  • the weight percentage of the lithium silicate crystalline phase in the glass-ceramics or crystallized glass products is 5-50%.
  • the weight percentage of the lithium silicate crystalline phase in the crystallized glass or crystallized glass products is 5-50%.
  • 40%, more preferably, the weight percentage of the lithium silicate crystal phase in the crystallized glass or crystallized glass products is 10 to 30%.
  • the lithium silicate crystalline phase accounts for 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13% by weight of the glass-ceramics or glass-ceramics products. , 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30 %, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%.
  • the crystalline phase in the glass-ceramics or glass-ceramics article contains a lithium silicate crystalline phase.
  • the lithium monosilicate crystalline phase has a higher weight percent than other crystalline phases.
  • the weight percentage of a lithium silicate crystal phase in the crystallized glass or crystallized glass products is 5 to 50%.
  • the weight percentage of a lithium silicate crystal phase in the crystallized glass or crystallized glass products is 5 to 40%, and more preferably, the weight percentage of the lithium silicate crystal phase in the crystallized glass or crystallized glass products is 10 to 30%.
  • the weight percentage of the lithium silicate crystal phase in the crystallized glass or crystallized glass products is 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13 %, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46% , 47%, 48%, 49%, 50%.
  • the crystalline phase in the crystallized glass or crystallized glass article contains a lithium disilicate crystalline phase.
  • the weight percentage of the lithium disilicate crystal phase in the crystallized glass or crystallized glass products is less than 20%.
  • the weight percentage of the lithium disilicate crystalline phase in the crystallized glass or crystallized glass products is 10%. % or less, more preferably the weight percentage of the lithium disilicate crystal phase in the crystallized glass or crystallized glass products is 5% or less, and further preferably the crystallized glass or crystallized glass products do not contain the lithium disilicate crystal phase.
  • the weight percentage of the lithium disilicate crystal phase in the crystallized glass or crystallized glass products is 0%, greater than 0%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11% , 11.5%, 12%, 12.5%, 13%, 13.5%, 14%, 14.5%, 15%, 15.5%, 16%, 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5 %, 20%.
  • the crystalline phase in the crystallized glass or the crystallized glass article contains a feldspar crystalline phase
  • the weight percentage of the feldspar crystal phase in the glass-ceramics or glass-ceramic products is less than 15%.
  • the weight percentage of the feldspar crystal phase in the glass-ceramics or glass-ceramic products is preferably less than 10%. More preferably, the weight percentage of the feldspar crystal phase is less than 10%.
  • the weight percentage of hectorite crystal phase in the crystallized glass or crystallized glass products is less than 5%. It is further preferred that the crystallized glass or crystallized glass products do not contain the hectorite crystal phase.
  • the weight percentage of the lucite crystal phase in the crystallized glass or crystallized glass products is 0%, greater than 0%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11% , 11.5%, 12%, 12.5%, 13%, 13.5%, 14%, 14.5%, 15%.
  • SiO 2 is the basic component of the glass, glass-ceramics and glass-ceramic products of the present invention. It is one of the components that forms the crystalline phase of lithium silicate. If the content of SiO 2 is less than 60%, the crystals will be in the glass-ceramics. It easily becomes coarse and affects the light transmittance of crystallized glass and crystallized glass products. Therefore, the lower limit of the SiO 2 content is 60%, the preferred lower limit is 62%, and the more preferred lower limit is 64%. If the SiO 2 content is above 80%, the melting temperature of the glass will be high, resulting in difficulty in melting materials, and the haze of crystallized glass and crystallized glass products will increase.
  • the upper limit of the SiO2 content is 80%, the preferred upper limit is 78%, and the more preferred upper limit is 75%.
  • Al 2 O 3 is a component that forms a glass network structure, which is beneficial to the chemical strengthening of glass-ceramics and improves the drop resistance of glass-ceramic products. If its content is less than 3%, the above effects will not be good. Therefore, the lower limit of the Al 2 O 3 content is 3%, and the preferred lower limit is 5%. On the other hand, if the content of Al 2 O 3 exceeds 15%, the glass-ceramic products obtained by chemically strengthening the glass-ceramics will have smaller fragments (generally in the form of granules) when broken, which is not conducive to continued use. Therefore, the upper limit of the Al 2 O 3 content is 15%, the upper limit is preferably 12%, and the upper limit is more preferably 10%.
  • about 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5% may be included , 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, 13.5%, 14%, 14.5%, 15% Al 2 O 3 .
  • Li 2 O is a necessary component for forming the crystal phase of the glass-ceramics of the present invention and is also a necessary component for chemical strengthening. However, if its content is less than 5%, the types of crystals formed will change, affecting the glass-ceramics and glass-ceramic products. Strength of. Therefore, the lower limit of the Li 2 O content is 5%, and the preferred lower limit is 6%. On the other hand, if too much Li 2 O is contained, the haze of crystallized glass and crystallized glass products will increase, and the cost of raw materials will be higher. Therefore, the upper limit of Li 2 O content is less than 10%. In some embodiments, about 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 9.8%, less than 10% Li2O may be included.
  • Na 2 O is beneficial to the formation of the lithium monosilicate crystal phase in the glass-ceramics, and can improve the chemical stability of the glass-ceramics after chemical strengthening.
  • the above effect is achieved by containing more than 4% of Na 2 O, which is preferred. Contains more than 4.5% Na 2 O.
  • the upper limit of the Na 2 O content is 8%, the upper limit is preferably 7.5%, and the upper limit is more preferably 7%. In some embodiments, about 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8% Na2O may be included.
  • the ratio between the total content of SiO 2 , Al 2 O 3 , and Na 2 O, SiO 2 +Al 2 O 3 +Na 2 O, and the content of Li 2 O (SiO 2 +Al 2 O 3 +Na 2 O)/Li 2 O is controlled within the range of 7.0 to 18.0, which is beneficial to refining the grains, improving the fracture toughness of glass-ceramics and glass-ceramic products, and improving the ion exchange layer depth and surface stress of glass-ceramic products. .
  • (SiO 2 +Al 2 O 3 +Na 2 O)/Li 2 O is preferably 7.0 to 18.0, more preferably (SiO 2 +Al 2 O 3 +Na 2 O)/Li 2 O is 7.5 to 15.0, and further (SiO 2 +Al 2 O 3 +Na 2 O)/Li 2 O is preferably 8.5 to 13.0, and more preferably (SiO 2 +Al 2 O 3 +Na 2 O)/Li 2 O is 8.5 to 11.0.
  • the value of (SiO 2 +Al 2 O 3 +Na 2 O)/Li 2 O can be 7.0, 7.3, 7.5, 7.7, 8.0, 8.3, 8.5, 8.7, 9.0, 9.3, 9.5, 9.7 ,10.0,10.3,10.5,10.7,11.0,11.3,11.5,11.7,12.0,12.3,12.5,12.7,13.0,13.3,13.5,13.7,14.0,14.3,14.5,14.7,15.0,15.3,15.5,15.7,16 .0 ,16.3,16.5,16.7,17.0,17.3,17.5,17.7,18.0.
  • ZrO 2 can prevent crystallization during glass molding, refine grains during crystallization heat treatment, and reduce the haze of crystallized glass and crystallized glass products.
  • the lower limit of the ZrO 2 content in the present invention is greater than 5%, preferably 5.5% or more, and more preferably 6% or more. However, if too much ZrO 2 is contained, ZrO 2 is not easy to melt in the glass, easily forms stones, and weakens the crystallization ability of the glass during heat treatment. Therefore, the upper limit of the ZrO2 content is 15%, the preferred upper limit is 13%, and the more preferred upper limit is 12%.
  • controlling the ratio SiO 2 /ZrO 2 between the content of SiO 2 and the content of ZrO 2 in the range of 5.0 to 15.0 is beneficial to improving the light transmittance and light transmittance of crystallized glass and crystallized glass products.
  • the four-point bending strength improves the ball drop test height of glass-ceramic products and the ball drop height of the glass-ceramic body, preventing haze and ⁇ B ⁇ values from increasing. Therefore , it is preferable that SiO 2 / ZrO 2 is 5.0 to 15.0, more preferably 6.0 to 13.0, further preferably 6.5 to 12.0 , and even more preferably 7.0 to 11.0 .
  • the value of SiO 2 /ZrO 2 can be 5.0, 5.3, 5.5, 5.7, 6.0, 6.3, 6.5, 6.7, 7.0, 7.3, 7.5, 7.7, 8.0, 8.3, 8.5, 8.7, 9.0, 9.3 ,9.5,9.7,10.0,10.3,10.5,10.7,11.0,11.3,11.5,11.7,12.0,12.3,12.5,12.7,13.0,13.3,13.5,13.7,14.0,14.3,14.5,14.7,15.0.
  • the ratio between the total content of ZrO 2 and Al 2 O 3 ZrO 2 +Al 2 O 3 and the content of Li 2 O (ZrO 2 +Al 2 O 3 )/Li 2 O is controlled at 0.85 Within the range of ⁇ 5.0, the ball drop height of the crystallized glass body can be increased, the ball drop test height and the ion exchange layer depth of the crystallized glass products can be increased, and the light transmittance and crystallinity of the crystallized glass and glass-ceramic products can be prevented from decreasing.
  • (ZrO 2 +Al 2 O 3 )/Li 2 O is preferably 0.85 to 5.0, and more preferably (ZrO 2 +Al 2 O 3 ) /Li 2 O is 0.9 to 4.0, more preferably (ZrO 2 +Al 2 O 3 )/Li 2 O is 1.0 to 3.5, and still more preferably (ZrO 2 +Al 2 O 3 )/Li 2 O is 1.0 to 3.0.
  • the value of (ZrO 2 +Al 2 O 3 )/Li 2 O can be 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5 ,1.55,1.6,1.65,1.7,1.75,1.8,1.85,1.9,1.95,2.0,2.05,2.1,2.15,2.2,2.25,2.3,2.35,2.4,2.45,2.5,2.55,2.6,2.65,2.7,2.75 ,2.8,2.85,2.9,2.95,3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0 .
  • the ratio between the total content of Li 2 O and Na 2 O, Li 2 O + Na 2 O, and the total content of SiO 2 and ZrO 2 , SiO 2 +ZrO 2 (Li 2 O + Na 2 O )/(SiO 2 +ZrO 2 ) is controlled within the range of 0.10 to 0.27, which is beneficial to improving the surface stress and ion exchange layer depth of glass-ceramic products, and improving the four-point bending strength and hardness of glass-ceramics and glass-ceramic products. Prevent the reduction of fracture toughness and drop resistance of crystallized glass and glass-ceramic products.
  • (Li 2 O+Na 2 O)/(SiO 2 +ZrO 2 ) is preferably 0.10 to 0.27, more preferably (Li 2 O+Na 2 O)/(SiO 2 +ZrO 2 ) is 0.12 to 0.25, and further (Li 2 O+Na 2 O)/(SiO 2 +ZrO 2 ) is preferably 0.14 to 0.25, and more preferably (Li 2 O+Na 2 O)/(SiO 2 +ZrO 2 ) is 0.15 to 0.23.
  • the value of (Li 2 O + Na 2 O)/(SiO 2 +ZrO 2 ) may be 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21 , 0.22, 0.23, 0.24, 0.25, 0.26, 0.27.
  • P 2 O 5 can carry out non-uniform nucleation in glass, promote crystal formation, and improve the light transmittance of crystallized glass and crystallized glass products.
  • the lower limit of the P 2 O 5 content in the present invention is 0.5%, the preferred lower limit is 1%, and the more preferred lower limit is 1.5%.
  • the upper limit of the P 2 O 5 content is 5%, the upper limit is preferably 4.5%, and the upper limit is more preferably 4%. In some embodiments, about 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5 % P2O5 may be included.
  • the ratio between the total content of SiO 2 and Li 2 O, SiO 2 +Li 2 O, and the total content of ZrO 2 and P 2 O 5 , ZrO 2 +P 2 O 5 (SiO 2 +Li 2 Controlling O)/(ZrO 2 +P 2 O 5 ) within the range of 4.0 to 15.5 can reduce the haze and ⁇ B ⁇ value of ceramics and glass-ceramics products, and improve the resistance of crystallized glass and glass-ceramics products. Breakability and hardness, optimize the crystallinity of glass-ceramics and glass-ceramic products.
  • (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is preferably 4.0 to 15.5, and more preferably (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 5.0 to 13.5 , more preferably (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 6.0 to 11.5, and still more preferably (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) is 6.0 to 11.5. 10.5.
  • the value of (SiO 2 +Li 2 O)/(ZrO 2 +P 2 O 5 ) may be 4.0, 4.3, 4.5, 4.7, 5.0, 5.3, 5.5, 5.7, 6.0, 6.3, 6.5, 6.7, 7.0, 7.3, 7.5, 7.7, 8.0, 8.3, 8.5, 8.7, 9.0, 9.3, 9.5, 9.7, 10.0, 10.3, 10.5, 10.7, 11.0, 11.3, 11.5, 11.7, 12.0, 12.3, 12.5, 12.7, 13.0, 13.3, 13.5, 13.7, 14.0, 14.3, 14.5, 14.7, 15.0, 15.3, 15.5.
  • ZnO can lower the melting temperature of glass, but too much content will cause the haze of crystallized glass and crystallized glass products to increase. Therefore, the content of ZnO is limited to 2% or less, preferably 1.5% or less, and more preferably 1% or less. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1 %, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2% ZnO.
  • MgO can lower the melting temperature of glass, but too much content will cause the haze of crystallized glass and crystallized glass products to increase. Therefore, the content of MgO is limited to 2% or less, preferably 1.5% or less, and more preferably 1% or less. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1 %, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2% MgO.
  • B 2 O 3 can lower the melting temperature of glass, increase the content of glass phase in glass-ceramics, and is beneficial to the heat bending of glass-ceramics and glass-ceramic products.
  • the glass contains too much B 2 O 3 , it is easy to phase separate during the crystallization heat treatment, resulting in a decrease in the light transmittance of crystallized glass and crystallized glass products. Therefore, the B 2 O 3 content is 0 to 4%, preferably 0 to 3%, and more preferably 0 to 2%.
  • K 2 O can reduce the viscosity of glass and promote the growth of crystals during crystallization heat treatment. However, if too much K 2 O is contained, it is easy for the crystals in the glass to grow rapidly and reduce the quality of glass-ceramics and glass-ceramic products. Light transmittance. Therefore, the content of K 2 O is 3% or less, preferably 2%, and more preferably 1% or less.
  • Ln 2 O 3 (Ln 2 O 3 is one or more of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , Yb 2 O 3 ) can reduce the difficulty of melting glass. If the content is too much, the glass will It is difficult to form crystals during crystallization, the crystallinity of glass-ceramics and glass-ceramic products decreases, and the ball-drop height of the glass-ceramics body and the ball-drop test height of glass-ceramic products decrease. Therefore, the upper limit of the Ln 2 O 3 content is 2%, the upper limit is preferably 1%, the upper limit is more preferably 0.5%, and it is still more preferably not to contain Ln 2 O 3 .
  • 0% greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1 %, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2% Ln 2 O 3 .
  • glass, glass-ceramics or glass-ceramics products may also contain 0 to 2% of clarifiers to improve the defoaming ability of the glass, glass-ceramics or glass-ceramics products.
  • clarifiers include: Not limited to Sb 2 O 3 , SnO 2 , One or more of SnO, CeO 2 , F (fluorine), Cl (chlorine) and Br (bromine), preferably Sb 2 O 3 is used as the clarification agent.
  • the upper limit of their content is preferably 1%, and more preferably 0.5%.
  • the content of one or more of the above clarification agents is about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6% , 0.7%, 0.8%, 0.9%, 1%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2%.
  • the present invention preferably does not contain PbO and As 2 O 3 .
  • colored matrix glass, glass-ceramics or glass-ceramic products can be prepared by containing colorants, which can make the matrix glass, glass-ceramics or glass-ceramic products present different colors.
  • the agent contains: NiO: 0 to 4%; and/or Ni 2 O 3 : 0 to 4%; and/or CoO: 0 to 2%; and/or Co 2 O 3 : 0 to 2%; and/or Fe 2 O 3 : 0 to 7%; and/or MnO 2 : 0 to 4%; and/or Er 2 O 3 : 0 to 8%; and/or Nd 2 O 3 : 0 to 8%; and/or Cu 2 O: 0 to 4%; and/or Pr 2 O 5 : 0 to 8%; and/or CeO 2 : 0 to 4%.
  • the colorant weight percentage content and its functions are detailed as follows:
  • the brown or green matrix glass, crystallized glass or crystallized glass products prepared by the invention use NiO, Ni 2 O 3 or Pr 2 O 5 as colorants.
  • NiO and Ni 2 O 3 are colorants used to prepare brown or green matrix glass, crystallized glass or crystallized glass products.
  • the two components can be used alone or mixed, and their respective contents are generally less than 4%, preferably Below 3%, if the content exceeds 4%, the colorant cannot be well dissolved in the matrix glass, crystallized glass or glass-ceramic products, and the lower limit of its respective content is above 0.1%. If it is less than 0.1%, the colorant cannot be dissolved well in the matrix glass, microcrystalline glass or microcrystalline glass products. The color of crystallized glass or glass-ceramic products is not obvious.
  • the lower limit of the content is more than 0.4%, such as less than 0.4 %, the color of matrix glass, glass-ceramics or glass-ceramics products is not obvious.
  • the blue matrix glass, crystallized glass or crystallized glass products prepared by the present invention use CoO or Co 2 O 3 as the colorant.
  • the two colorant components can be used alone or mixed, and their respective contents are generally 2 % or less, preferably 1.8% or less. If the content exceeds 2%, the colorant cannot be well dissolved in the matrix glass, crystallized glass or crystallized glass products, and the lower limit of their respective contents is above 0.05%, such as less than 0.05 %, the color of matrix glass, glass-ceramics or glass-ceramics products is not obvious.
  • about 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3% may be included , 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0% CoO or Co 2 O 3 . If mixed, the total amount of CoO and Co 2 O 3 should not exceed 2%, and the lower limit of the total amount should be above 0.05%.
  • about 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3% may be included , 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0% CoO and Co 2 O 3 .
  • the yellow matrix glass, crystallized glass or crystallized glass products prepared by the present invention use Cu 2 O or CeO 2 as the colorant.
  • the two colorant components are used alone or mixed, and the lower limit of their respective contents is more than 0.5%. If it is less than 0.5%, the color of the matrix glass, crystallized glass or glass-ceramics products will not be obvious.
  • Cu 2 O used alone is less than 4%, preferably less than 3%. If the content exceeds 4%, the matrix glass will easily crystallize.
  • the black or smoke gray matrix glass, crystallized glass or crystallized glass products prepared by the present invention use Fe 2 O 3 alone As colorant; or use two mixed colorants of Fe 2 O 3 and CoO; or use two mixed colorants of Fe 2 O 3 and Co 2 O 3 ; or use three of Fe 2 O 3 , CoO and NiO A mixed colorant; or a mixed colorant of Fe 2 O 3 , Co 2 O 3 and NiO.
  • the colorant for preparing black and smoke gray matrix glass, crystallized glass or glass-ceramic products is mainly colored with Fe 2 O 3 , with a content of less than 7%, preferably less than 5%, and the lower limit of its content is more than 0.2%.
  • it can include about 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6% , 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3.0%, 3.1%, 3.2%, 3.3 %, 3.4%, 3.5%, 3.6%, 3.7%, 3.8%, 3.9%, 4.0%, 4.5%, 5.0%, 5.5%, 6.0%, 6.5%, 7.0% Fe 2 O 3 .
  • CoO and Co 2 O 3 absorb visible light and can deepen the coloring of matrix glass, glass-ceramics or glass-ceramic products.
  • NiO absorbs visible light and can deepen the coloring of matrix glass, glass-ceramics or glass-ceramic products. Generally, its content is less than 1% when mixed and used, and the lower limit of the total amount is more than 0.2%. In some embodiments, about 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0% NiO may be included.
  • the purple matrix glass, crystallized glass or crystallized glass products prepared by the present invention use MnO2 as the colorant, and the content is generally below 4%, preferably below 3%, and the lower limit of the content is above 0.1%, such as below 0.1 %, the color of matrix glass, glass-ceramics or glass-ceramics products is not obvious.
  • the pink matrix glass, crystallized glass or crystallized glass products prepared by the present invention use Er 2 O 3 as the colorant, and the usage content is generally less than 8%, preferably less than 6%. Due to the low coloring efficiency of the rare earth element Er 2 O 3 , when the content exceeds 8%, it will not further deepen the color of the matrix glass, crystallized glass or crystallized glass products, but will increase the cost.
  • the lower limit of its content is above 0.4%. If it is less than 0.4%, the color of the matrix glass, glass-ceramics or glass-ceramics products will not be obvious.
  • the purple-red matrix glass, crystallized glass or crystallized glass products prepared by the present invention use Nd 2 O 3 as the colorant, and the usage content is generally 8% or less, preferably 6% or less. Due to the low coloring efficiency of the rare earth element Nd 2 O 3 , if the content exceeds 8%, it will not further deepen the color of the matrix glass, crystallized glass or crystallized glass products, but will increase the cost. The lower limit of its content is above 0.4%. If it is less than 0.4%, the color of the matrix glass, glass-ceramics or glass-ceramics products will not be obvious.
  • the red matrix glass, crystallized glass or crystallized glass products prepared by the present invention use Er 2 O 3 , Nd 2 O 3 and MnO 2 mixed colorants.
  • Er ions in the glass are absorbed at 400-500nm, and Mn ions are mainly absorbed at 500nm. There is absorption at 580nm, and Nd ions mainly have strong absorption at 580nm.
  • the mixture of the three substances can prepare red matrix glass, glass-ceramics or glass-ceramics products.
  • Er 2 O 3 and Nd 2 O 3 are rare earth colors, The coloring ability is relatively weak, the usage amount of Er 2 O 3 is within 6%, the usage amount of Nd 2 O 3 is within 4%, MnO 2 is strong in coloring, the usage amount is within the range of 2%, and the lower limit of the total amount of mixed colorants used is 0.9% or more.
  • Does not contain” and “0%” as described in this article means that the compound, molecule or element is not intentionally added as a raw material to the matrix glass, glass-ceramics or glass-ceramic products of the present invention; but as a raw material for the production of matrix glass, micro-glass
  • the raw materials and/or equipment of crystallized glass or glass-ceramic products may contain some unintentionally added impurities or components, which may be contained in small or trace amounts in the final matrix glass, crystallized glass or glass-ceramic products. This situation is also within the protection scope of the patent of this invention.
  • the crystalline phase of the glass-ceramics and glass-ceramic products contains lithium silicate, which provides high strength to the glass-ceramics and glass-ceramic products of the present invention.
  • the crystallized glass and glass-ceramic products break The toughness becomes higher; the ball drop height of the crystallized glass body, the ball drop test height of the crystallized glass products and the four-point bending strength become larger.
  • the crystallized glass of the present invention has excellent chemical strengthening properties, and can also be processed through a chemical strengthening process to obtain excellent mechanical strength. Through reasonable component design, the crystallized glass and crystallized glass products of the present invention can obtain appropriate grain sizes, so that the crystallized glass and crystallized glass products of the present invention have high strength.
  • the crystallized glass and the crystallized glass products of the invention have good crystallinity, so that the crystallized glass and the crystallized glass products of the invention have excellent mechanical properties.
  • the crystallinity referred to in this article refers to the complete degree of crystallization.
  • the arrangement of the internal particles of a crystal with complete crystallization is relatively regular, the diffraction lines are strong, sharp and symmetrical, and the half-height width of the diffraction peak is close to the width measured by the instrument; in crystals with poor crystallinity, There are defects such as dislocations, which make the peak shape of the diffraction lines broad and diffuse.
  • the crystallization degree of the crystallized glass article or crystallized glass is above 10%, preferably above 15%, and more preferably above 20%.
  • the size of the grains and the types of crystal phases in the glass-ceramics or glass-ceramics products of the present invention will affect the haze and light transmittance of the glass-ceramics or glass-ceramics products.
  • the haze of crystallized glass products or crystallized glass with a thickness of less than 1 mm is less than 0.2%, preferably 0.17% or less, and more preferably 0.15% or less.
  • the crystallized glass article or crystallized glass has a grain size of 50 nm or less, preferably 40 nm or less, and more preferably 30 nm or less.
  • the crystalline phase content and refractive index of the crystallized glass or crystallized glass products of the present invention affect the
  • the crystallized glass or crystallized glass products of the present invention exhibit a low
  • value of the crystallized glass product or crystallized glass with a thickness of less than 1 mm and 400-800 nm is 1.0 or less, preferably 0.9 or less, more preferably 0.8 or less.
  • the crystallized glass or crystallized glass article of the present invention exhibits high transparency in the visible range (ie, the crystallized glass or crystallized glass article is transparent). Crystallized glass or crystallized glass products exhibit high transmittance in the visible light range.
  • the average light transmittance of 400-800nm of crystallized glass products or crystallized glass with a thickness of less than 1 mm is preferably 90.5%. above.
  • the light transmittance at 550 nm of a crystallized glass product with a thickness of less than 1 mm or crystallized glass is preferably above 91.5%.
  • antimicrobial ingredients may be added to the matrix glass, crystallized glass, or crystallized glass article.
  • the crystallized glass or glass-ceramic articles described herein may be used in applications such as kitchen or dining countertops where exposure to harmful bacteria is likely.
  • the antimicrobial components contained in the matrix glass, crystallized glass or crystallized glass products include but are not limited to Ag, AgO, Cu, CuO, Cu 2 O, etc.
  • the above-mentioned antimicrobial components alone or in combination are present in an amount of less than 2%, preferably less than 1%.
  • the matrix glass, crystallized glass and crystallized glass products of the present invention can be produced and manufactured by the following methods:
  • Generate matrix glass Mix the raw materials evenly according to the component proportions. Put the uniformly mixed raw materials into a platinum or quartz crucible. According to the melting difficulty of the glass composition, heat it in an electric furnace or a gas furnace at 1250 to 1650°C. It is melted within the temperature range for 5 to 24 hours, stirred to make it uniform, then lowered to the appropriate temperature, cast into a mold, and cooled slowly.
  • the matrix glass of the present invention can be formed by a well-known method.
  • the matrix glass of the present invention is crystallized through a crystallization process after molding or molding processing, and crystals are uniformly precipitated inside the glass.
  • This crystallization treatment may be performed in one stage or in two stages. It is preferable to perform the crystallization treatment in two stages.
  • the nucleation process is performed at a first temperature, and the crystal growth process is then performed at a second temperature higher than the nucleation process temperature.
  • the crystallization process performed at the first temperature is called a first crystallization process
  • the crystallization process performed at the second temperature is called a second crystallization process.
  • the preferred crystallization process is:
  • the above-mentioned crystallization process is performed in one stage, and the nucleation process and the crystal growth process can be continuously performed.
  • the temperature is raised to the prescribed crystallization treatment temperature, and after reaching the crystallization treatment temperature, the temperature is maintained for a certain period of time, and then the temperature is lowered.
  • the crystallization treatment temperature is preferably 550 to 700°C. In order to precipitate the desired crystal phase, it is more preferably 580 to 650°C.
  • the holding time at the crystallization treatment temperature is preferably 0 to 8 hours, and more preferably 1 to 8 hours. 6 hours.
  • the first temperature is preferably 450 to 550°C
  • the second temperature is preferably 550 to 700°C.
  • the holding time at the first temperature is preferably 0 to 24 hours, and more preferably 2 to 15 hours.
  • the holding time at the second temperature is preferably 0 to 10 hours, more preferably 0.5 to 6 hours.
  • the above-mentioned holding time of 0 hours means that cooling or heating begins less than 1 minute after reaching this temperature.
  • the matrix glass or glass-ceramics described herein can be fabricated into shaped bodies, including but not limited to sheets, by a variety of processes including, but not limited to, slot drawing, Float, roll compaction, and other sheet forming processes known in the art.
  • the matrix glass or glass-ceramics may be formed by float or roll pressing methods known in the art.
  • the formed objects of the present invention also include lenses, prisms, etc.
  • the matrix glass or glass-ceramics of the present invention can be ground or polished to produce a sheet glass molding or a glass-ceramics molding.
  • the method of producing a glass molding or a glass-ceramics molding is not limited to these methods.
  • the matrix glass or glass-ceramics of the present invention can be prepared at a certain temperature using methods such as hot bending or pressing to form glass shaped bodies or glass-ceramics shaped bodies of various shapes, but is not limited to these methods.
  • a hot bending process can be used to make the glass shaped body or the crystallized glass shaped body.
  • the hot bending process is to place 2D or 2.5D glass or crystallized glass in a mold, and sequentially perform steps including temperature rise and preheating, pressure forming, pressure maintaining and cooling in a hot bending machine to obtain 3D curved glass forming.
  • the process of forming bodies or crystallized glass bodies can be used to make the glass shaped body or the crystallized glass shaped body.
  • the crystallized glass shaped body has a 2.5D or 3D configuration, ie the crystallized glass shaped body has a non-planar configuration.
  • non-planar configuration means that in a 2.5D or 3D shape, at least a portion of the crystallized glass form extends outwardly or along a plane defined by the original, layout configuration of the 2D matrix glass. Extend the included angle.
  • 2.5D or 3D glass-ceramic shaped bodies formed from matrix glass may have one or more raised or curved portions.
  • the manufacturing method of the glass-ceramics shaped body is a hot bending process based on the characteristics of the growth and transformation of crystal phases in the glass-ceramics.
  • the method includes pre-crystallization and thermal process shaping.
  • the pre-crystallization of the present invention is to form pre-crystallized glass from matrix glass through a controlled crystallization process, and the crystallinity of the pre-crystallized glass does not reach the crystallinity required for the performance index of the target glass-ceramics molded body.
  • the pre-crystallized glass is then thermally processed to form a glass-ceramic shaped body.
  • a method for manufacturing a glass-ceramic shaped body includes the following steps:
  • the matrix glass is subjected to a crystallization heat treatment process, including temperature rise, heat preservation nucleation, temperature rise, heat preservation crystallization, Cool to room temperature to form pre-crystallized glass;
  • the pre-crystallized glass is thermally processed to form a glass-ceramics shaped body.
  • the crystallization heat treatment process of the present invention includes nucleating the matrix glass at a certain temperature T h and time t h , and then crystallizing it at a certain temperature T c and time t c .
  • the obtained pre-crystallized glass has The crystallinity does not reach the crystallinity required for the performance index of the target crystallized glass formed body.
  • the total content of the main crystal phase in the crystallinity of pre-crystallized glass is calculated to be I c1 .
  • the pre-crystallization of the present invention is a complete process in terms of process, including one step of nucleation process, one stage, two stages or three stages of crystallization process and more, etc. It is a complete process from heating up, heat preservation, heating up and heat preservation again. ...and then lower to room temperature according to the process.
  • the present invention is actually only the first stage of crystallization and the second stage of crystallization in a complete crystallization process, with the middle stage being Continuously, there is no process of crystallization after cooling down to room temperature and then rising again.
  • Thermal processing and molding in the present invention refers to subjecting the pre-crystallized glass to thermal processing and molding under certain conditions of temperature, time, pressure, etc.
  • the thermal processing and molding includes more than one thermal processing process.
  • Thermal processing technology includes but is not limited to pressing, bending or drawing pre-crystallized glass under certain temperature, time, pressure and other conditions. In the process of thermal processing and molding, sometimes complex-shaped molded objects cannot be completed by one thermal processing, and may require more than two thermal processing to achieve them.
  • the manufacturing method of the glass-ceramic shaped body is a hot bending process.
  • the method for manufacturing a glass-ceramic shaped body includes the following steps:
  • Temperature heating and preheating Place the matrix glass, pre-crystallized glass or crystallized glass in the mold.
  • the mold passes through each heating station in sequence in the hot bending machine and stays at each station for a certain period of time to keep warm.
  • the temperature of the preheating zone is 400 ⁇ 800°C
  • the pressure is 0.01 ⁇ 0.05MPa
  • the time is 40 ⁇ 200s.
  • the initial temperature rise is generally set stably at around 500°C, and subsequent stations gradually increase the temperature.
  • the temperature gradient between two adjacent stations gradually changes from low temperature to high temperature. To narrow it down, the temperature difference between the last preheating station and the first pressing station can be within the range of 20°C.
  • Pressure molding After preheating, the mold is transferred to the molding station.
  • the hot bending machine applies a certain pressure to the mold.
  • the pressure range is 0.1 ⁇ 0.8Mpa.
  • the pressure is determined according to factors such as glass thickness and curvature.
  • the temperature range of the molding station is 600 ⁇ 850°C, molding time range is 40 ⁇ 200s.
  • Pressure maintaining and cooling transfer the mold to the cooling station to cool down station by station.
  • the cooling temperature range is controlled to 750 ⁇ 500°C, the pressure is 0.01 ⁇ 0.05Mpa, and the time is 40 ⁇ 200s.
  • the heat-bending process of glass-ceramics forming bodies also requires controlling the impact of crystal growth and development during the heat-bending process on the performance of the glass-ceramics, such as when used in display equipment or electronics.
  • the 3D curved glass-ceramic of the equipment shell close attention needs to be paid to the light transmittance, haze, ⁇ B ⁇ value and its uniformity after thermal bending.
  • the matrix glass, crystallized glass, and crystallized glass articles described herein may have any thickness that is reasonably useful.
  • the crystallized glass of the present invention can also obtain more excellent mechanical properties by forming a compressive stress layer, thereby making crystallized glass products.
  • the matrix glass or glass-ceramics can be processed into sheets and/or shaped (such as drilling, hot bending, etc.), polished and/or scanned after shaping, and then chemically strengthened through a chemical strengthening process. .
  • the chemical strengthening described in the present invention is the ion exchange method.
  • smaller metal ions in the matrix glass or glass-ceramics are displaced or "exchanged" by larger metal ions of the same valence state located closer to the matrix glass or glass-ceramics.
  • Substituting larger ions for smaller ions builds compressive stress in the matrix glass or glass-ceramics, forming a compressive stress layer.
  • the metal ions are monovalent alkali metal ions (e.g., Na + , K + , Rb + , Cs + , etc.), and the ion exchange is performed by immersing the matrix glass or glass-ceramics in at least one layer containing larger metal ions. It is carried out in a salt bath of molten salt, and the larger metal ions are used to replace the smaller metal ions in the matrix glass.
  • monovalent metal ions such as Ag + , Tl + , Cu + , etc. can also be used to exchange monovalent ions.
  • One or more ion exchange processes used to chemically strengthen the matrix glass or glass-ceramics may include, but are not limited to: immersing it in a single salt bath, or immersing it in multiple salt baths of the same or different compositions , there are washing and/or annealing steps between immersions.
  • the matrix glass or glass-ceramics can be ion exchanged by being immersed in a salt bath of molten Na salt (such as NaNO3 ) at a temperature of about 350°C to 470°C for about 1 to 36 hours, with the preferred temperature The range is 380°C to 460°C, and the preferred time range is 2 to 24 hours.
  • Na ions replace some of the Li ions in the matrix glass or glass-ceramics, thereby forming a surface compression layer and exhibiting high mechanical properties.
  • the matrix glass or glass-ceramics can be ion-exchanged by immersing in a salt bath melting a K salt (such as KNO3 ) at a temperature of about 360°C to 450°C for 1 to 36 hours, with a preferred time range For 2 to 24 hours.
  • the matrix glass or glass-ceramics can be ion exchanged by immersing in a mixed salt bath melting K salt and Na salt at a temperature of about 360°C to 450°C for 1 to 36 hours, with a preferred time range being 2 ⁇ 24 hours.
  • the haze tester Minolta CM3600A was used to prepare samples below 1 mm and tested according to GB2410-80.
  • the SEM scanning electron microscope is used for measurement.
  • the crystallized glass is surface treated in HF acid, and then the surface of the crystallized glass is sprayed with gold.
  • the surface is scanned under the SEM scanning electron microscope to determine the size of the crystal grains.
  • the light transmittance described in this article is external transmittance, sometimes referred to as transmittance.
  • the sample was processed to 1 mm or less and the opposite surfaces were parallel polished, and the average light transmittance from 400 to 800 nm was measured using a Hitachi U-41000 spectrophotometer.
  • the sample was processed to 1 mm or less and the opposite surfaces were parallel polished, and the light transmittance at 550 nm was measured using a Hitachi U-41000 spectrophotometer.
  • the XRD diffraction peaks are compared with the database pattern.
  • the crystallinity is obtained by calculating the proportion of the diffraction intensity of the crystalline phase in the overall pattern intensity and is calibrated internally using pure quartz crystals.
  • the depth of the ion exchange layer was measured using a glass surface stress meter SLP-2000.
  • the directional drop tester WH-2101 to conduct the drop resistance test.
  • 2D glass-ceramic products with the same specification of glass products (each piece weighs 20g, load 2 pieces), lay 60-80 mesh sandpaper on the base, and freely fall from the specified height.
  • the sample directly hits the sandpaper without breaking.
  • the height of impact that can be withstood is the drop resistance.
  • the test was carried out starting from a height of 600mm, and the height was sequentially changed through 700mm, 800mm, 900mm, 1000mm and above without breaking.
  • the crystallized glass product was used as the test object.
  • the test data recorded as 2000mm in the example shows that even if the crystallized glass product is loaded from a height of 2000mm, it will not break but will withstand the impact.
  • the maximum test height of the drop tester WH-2101 is 2000mm.
  • the maximum drop ball test height that the sample can withstand the impact without breaking Specifically, the test started from the falling ball test height of 800mm, and the height was changed sequentially through 850mm, 900mm, 950mm, 1000mm and above without breaking.
  • the crystallized glass product is used as the test object.
  • the test data recorded as 1000mm in the example means that even from a height of 1000mm Even if the steel ball falls, the crystallized glass product will not break and withstand the impact.
  • the height of the falling ball test in the present invention is sometimes referred to as the falling ball height.
  • the maximum drop ball test height that the sample can withstand the impact without breaking is the body drop ball height.
  • the test started from the falling ball test height of 500mm, and the height was changed sequentially through 550mm, 600mm, 650mm, 700mm and above without breaking.
  • the crystallized glass is used as the test object, which is the falling ball test height of the crystallized glass.
  • the test data recorded as 1000 mm in the examples shows that even if a steel ball is dropped from a height of 1000 mm, the crystallized glass can withstand the impact without breaking.
  • the method of directly measuring the size of indentation propagation cracks is used.
  • the sample size is 2mm ⁇ 4mm ⁇ 20mm.
  • a Vickers hardness indenter is used to add a force of 49N to the sample and After maintaining for 30 seconds and making indentations, the breaking strength is measured using the three-point bending method.
  • a microcomputer-controlled electronic universal testing machine CMT6502 is used.
  • the sample specification is less than 1mm thick, and the test is carried out according to the standard "ASTM C 158-2002".
  • the four-point bending strength is sometimes simply referred to as bending strength.
  • B ⁇ value is the absolute value of the B value.
  • E Young’s modulus, Pa;
  • G is shear modulus, Pa
  • V T is the transverse wave velocity, m/s
  • V S is the longitudinal wave velocity, m/s
  • is the density of glass, g/cm 3 .
  • the refractive index (n d ) is tested according to the method specified in "GB/T7962.1-2010".
  • the crystallized glass product of the present invention has the following properties:
  • the four-point bending strength of the crystallized glass product is 600 MPa or more, preferably 650 MPa or more, and more preferably 700 MPa or more.
  • the depth of the ion exchange layer of the crystallized glass product is 80 ⁇ m or more, preferably 90 ⁇ m or more, and more preferably 100 ⁇ m or more.
  • the surface stress of the crystallized glass product is 100 MPa or more, preferably 150 MPa or more, and more preferably 200 MPa or more.
  • the ball drop test height of the crystallized glass product is 1400mm or more, preferably 1500mm or more, and more preferably 1600mm or more.
  • the fracture toughness of the crystallized glass product is 1 MPa ⁇ m 1/2 or more, preferably 1.1 MPa ⁇ m 1/2 or more, and more preferably 1.2 MPa ⁇ m 1/2 or more.
  • the Vickers hardness (H v ) of the crystallized glass product is 670 kgf/mm 2 or more, preferably 680 kgf/mm 2 or more, and more preferably 700 kgf/mm 2 or more.
  • the crystallinity of the crystallized glass product is 10% or more, preferably 15% or more, and more preferably 20% or more.
  • the grain size of the crystallized glass product is 50 nm or less, preferably 40 nm or less, and more preferably 30 nm or less.
  • the drop resistance of the crystallized glass product is 1500mm or more, preferably 1600mm or more, and more preferably 1800mm or more.
  • the haze of crystallized glass products with a thickness of 1 mm or less is 0.2% or less, preferably 0.17% or less, and more preferably 0.15% or less.
  • the thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, still more preferably 0.5 to 0.8 mm, even more preferably 0.55 mm or 0.6 mm or 0.68 mm or 0.7 mm or 0.75 mm.
  • the average light transmittance of a glass-ceramic product with a thickness of 1 mm or less at a wavelength of 400 to 800 nm is 88.0% or more, preferably 89.0% or more, more preferably 90.0% or more, and even more preferably 90.5%. above.
  • the thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, still more preferably 0.5 to 0.8 mm, even more preferably 0.55 mm or 0.6 mm or 0.68 mm or 0.7 mm or 0.75 mm.
  • the light transmittance of a crystallized glass product with a thickness of 1 mm or less is 89.0% or more at a wavelength of 550 nm, preferably 90.0% or more, more preferably 91.0% or more, and even more preferably 91.5% or more.
  • the thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, still more preferably 0.5 to 0.8 mm, even more preferably 0.55 mm or 0.6 mm or 0.68 mm or 0.7 mm or 0.75 mm.
  • B ⁇ value of 400 to 800 nm is less than 1.0, preferably less than 0.9, and more preferably less than 0.8.
  • the thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, still more preferably 0.5 to 0.8 mm, even more preferably 0.55 mm or 0.6 mm or 0.68 mm or 0.7 mm or 0.75 mm.
  • the crystallized glass of the present invention has the following properties:
  • the crystallinity of the glass-ceramics is 10% or more, preferably 15% or more, and more preferably 20% or more.
  • the grain size of the glass-ceramics is 50 nm or less, preferably 40 nm or less, and more preferably 30 nm or less.
  • the haze of crystallized glass with a thickness of 1 mm or less is 0.2% or less, preferably 0.17% or less, and more preferably 0.15% or less.
  • the thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, still more preferably 0.5 to 0.8 mm, even more preferably 0.55 mm or 0.6 mm or 0.68 mm or 0.7 mm or 0.75 mm.
  • the average light transmittance of the crystallized glass with a thickness of 1 mm or less at a wavelength of 400 to 800 nm is 87.0% or more, preferably 88.0% or more, and more preferably 88.5% or more.
  • the thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, still more preferably 0.5 to 0.8 mm, even more preferably 0.55 mm or 0.6 mm or 0.68 mm or 0.7 mm or 0.75 mm.
  • the light transmittance of glass-ceramics with a thickness of 1 mm or less at a wavelength of 550 nm is 89.0% or more, preferably 90.0% or more, and more preferably 90.5% or more.
  • the thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, still more preferably 0.5 to 0.8 mm, even more preferably 0.55 mm or 0.6 mm or 0.68 mm or 0.7 mm or 0.75 mm.
  • the body drop height of the crystallized glass is 1700 mm or more, preferably 1900 mm or more, and more preferably 2000 mm or more.
  • B ⁇ value of 400 to 800 nm is 1.0 or less, preferably 0.9 or less, and more preferably 0.8 or less.
  • the thickness is preferably 0.2 to 1 mm, more preferably 0.3 to 0.9 mm, still more preferably 0.5 to 0.8 mm, even more preferably 0.55 mm or 0.6 mm or 0.68 mm or 0.7 mm or 0.75mm.
  • the Vickers hardness (H v ) of the crystallized glass is 600 kgf/mm 2 or more, preferably 620 kgf/mm 2 or more, and more preferably 630 kgf/mm 2 or more.
  • the refractive index (n d ) of the crystallized glass is 1.520 ⁇ 1.545.
  • the Young's modulus (E) of the crystallized glass product is 80 to 100 GPa.
  • the matrix glass of the present invention has the following properties:
  • the refractive index (n d ) of the matrix glass is 1.510 ⁇ 1.530.
  • the crystallized glass, crystallized glass products, matrix glass, glass formed body, and crystallized glass formed body of the present invention can be widely made into glass cover plates or glass components due to the above-mentioned excellent properties; at the same time, the crystallized glass of the present invention , glass-ceramic products, matrix glass, glass moldings, and glass-ceramic moldings can be used in electronic devices or display devices, such as mobile phones, watches, computers, touch screens, etc., and are used to manufacture mobile phones, smart phones, tablets, etc.
  • the matrix glass manufacturing method described above is used to obtain matrix glass having the composition shown in Table 1 to Table 2.
  • the characteristics of each matrix glass were measured by the testing method described in the present invention, and the measurement results are shown in Tables 1 and 2.
  • the above-mentioned manufacturing method of crystallized glass is used to obtain crystallized glass having the composition shown in Table 3 to Table 4.
  • the characteristics of each crystallized glass were measured by the testing method described in the present invention, and the measurement results are shown in Table 3 ⁇ In Table 4, in the following examples, the thickness of the test sample for haze, average light transmittance at 400 to 800 nm wavelength, light transmittance at 550 nm wavelength, and average light
  • the above-mentioned manufacturing method of crystallized glass products is used to obtain crystallized glass having the composition shown in Tables 5 to 6.
  • Glass products were measured by the testing method described in the present invention, and the measurement results are shown in Tables 5 and 6.
  • haze, average light transmittance at wavelengths of 400 to 800 nm, The thickness of the test sample for the light transmittance of 550nm wavelength and the average light ⁇ B ⁇ value of 400 to 800nm is 0.7mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种具有优异的机械性能和较低雾度的微晶玻璃和微晶玻璃制品。微晶玻璃制品,其组分按重量百分比表示,含有:SiO2:60~80%;Al2O3:3~15%;Li2O:大于等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%,其中(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5。通过合理的组分设计,本发明获得的微晶玻璃或微晶玻璃制品具有优异的机械性能,以及较低的雾度,适用于光学性能要求较高的显示设备或电子设备中。

Description

微晶玻璃、微晶玻璃制品及其制造方法 技术领域
本发明涉及一种微晶玻璃,尤其是涉及一种机械性能优异和雾度较低的微晶玻璃、微晶玻璃制品及其制造方法。
背景技术
近年来,微晶玻璃常用于许多电子产品的各种显示器和显示器装置,例如,手机、音乐播放器、电子书阅读器、记事本、平板、笔记本电脑、自动取款机和其他类似装置。用于形成显示设备和电子设备的外壳的材料通常经过选择以满足与电子设备的终端用途相关的机械要求。另一方面,电子设备或显示设备对用于其中的微晶玻璃的光学性能提出了更高的要求,光学性能是指物质对光线的吸收、反射和折射时所表现的性能,如雾度、B值和折射率等。但目前市面上的微晶玻璃存在雾度高的问题,难以应用于光学性能要求较高的显示设备或电子设备中。
因此,开发一款具有优异机械性能和较低雾度,且适用于显示设备或电子设备的微晶玻璃及微晶玻璃制品,成为了科技人员所追求的目标。
发明内容
本发明所要解决的技术问题是提供一种具有优异的机械性能和较低雾度的微晶玻璃和微晶玻璃制品。
本发明解决技术问题所采用的技术方案是:
(1)微晶玻璃制品,其组分按重量百分比表示,含有:SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%,其中(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5。
(2)微晶玻璃制品,其组分按重量百分比表示,含有:SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%。
(3)根据(1)或(2)所述的微晶玻璃制品,其组分按重量百分比表示,还含有:ZnO:0~2%;和/或MgO:0~2%;和/或B2O3:0~4%;和/或K2O:0~3%;和/或Ln2O3:0~2%;和/或澄清剂:0~2%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
(4)微晶玻璃制品,含有SiO2、Al2O3、Li2O、Na2O、P2O5、ZrO2,其组分按重量百分比表示,其中(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5,1mm以下厚度的微晶玻璃制品的雾度为0.2%以下。
(5)微晶玻璃制品,含有SiO2、Al2O3、Li2O、Na2O、ZrO2,所述微晶玻璃制品含有硅酸锂晶相,硅酸锂晶相具有比其他晶相更高的重量百分比。
(6)微晶玻璃制品,含有SiO2、Al2O3、Li2O、Na2O、ZrO2,所述微晶玻璃制品含有一硅酸锂晶相。
(7)根据(4)~(6)任一所述的微晶玻璃制品,其组分按重量百分比表示,含有:SiO2:60~80%;和/或Al2O3:3~15%;和/或Li2O:大于或等于5%但小于10%;和/或Na2O:4~8%;和/或P2O5:0.5~5%;和/或ZrO2:大于5%但小于或等于15%;和/或ZnO:0~2%;和/或MgO:0~2%;和/或B2O3:0~4%;和/或K2O:0~3%;和/或Ln2O3:0~2%;和/或澄清剂:0~2%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
(8)微晶玻璃制品,其组分按重量百分比表示,由SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%;ZnO:0~2%;MgO:0~2%;B2O3:0~4%;K2O:0~3%;Ln2O3:0~2%;澄清剂:0~2%组成,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
(9)根据(1)~(8)任一所述的微晶玻璃制品,其组分按重量百分比表示,满足以下5种情形中的一种或多种:
1)SiO2/ZrO2为5.0~15.0,优选SiO2/ZrO2为6.0~13.0,更优选SiO2/ZrO2为6.5~12.0,进一步优选SiO2/ZrO2为7.0~11.0;
2)(SiO2+Li2O)/(ZrO2+P2O5)为5.0~13.5,优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~11.5,更优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~10.5;
3)(SiO2+Al2O3+Na2O)/Li2O为7.0~18.0,优选(SiO2+Al2O3+Na2O)/Li2O为7.5~15.0,更优选(SiO2+Al2O3+Na2O)/Li2O为8.5~13.0,进一步优选(SiO2+Al2O3+Na2O)/Li2O为8.5~11.0;
4)(ZrO2+Al2O3)/Li2O为0.85~5.0,优选(ZrO2+Al2O3)/Li2O为0.9~4.0,更优选(ZrO2+Al2O3)/Li2O为1.0~3.5,进一步优选(ZrO2+Al2O3)/Li2O为1.0~3.0;
5)(Li2O+Na2O)/(SiO2+ZrO2)为0.10~0.27,优选(Li2O+Na2O)/(SiO2+ZrO2)为0.12~0.25,更优选(Li2O+Na2O)/(SiO2+ZrO2)为0.14~0.25,进一步优选(Li2O+Na2O)/(SiO2+ZrO2)为0.15~0.23。
(10)根据(1)~(8)任一所述的微晶玻璃制品,其组分按重量百分比表示,含有:SiO2:62~78%,优选SiO2:64~75%;和/或Al2O3:5~12%,优选Al2O3:5~10%;和/或Li2O:大于或等于6%但小于10%;和/或Na2O:4~7.5%,优选Na2O:4.5~7%;和/或P2O5:1~4.5%,优选P2O5:1.5~4%;和/或ZrO2:5.5~13%,优选ZrO2:6~12%; 和/或ZnO:0~1.5%,优选ZnO:0~1%;和/或MgO:0~1.5%,优选MgO:0~1%;和/或B2O3:0~3%,优选B2O3:0~2%;和/或K2O:0~2%,优选K2O:0~1%;和/或Ln2O3:0~1%,优选Ln2O3:0~0.5%;和/或澄清剂:0~1%,优选澄清剂:0~0.5%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
(11)根据(1)~(8)任一所述的微晶玻璃制品,所述微晶玻璃制品含有硅酸锂晶相,硅酸锂晶相具有比其他晶相更高的重量百分比,优选硅酸锂晶相占微晶玻璃制品的重量百分比为5~50%,更优选硅酸锂晶相占微晶玻璃制品的重量百分比为5~40%,进一步优选硅酸锂晶相占微晶玻璃制品的重量百分比为10~30%。
(12)根据(1)~(8)任一所述的微晶玻璃制品,所述微晶玻璃制品含有一硅酸锂晶相,一硅酸锂晶相具有比其他晶相更高的重量百分比,优选一硅酸锂晶相占微晶玻璃制品的重量百分比为5~50%,更优选一硅酸锂晶相占微晶玻璃制品的重量百分比为5~40%,进一步优选一硅酸锂晶相占微晶玻璃制品的重量百分比为10~30%。
(13)根据(1)~(8)任一所述的微晶玻璃制品,所述微晶玻璃制品含有二硅酸锂晶相,二硅酸锂晶相占微晶玻璃制品的重量百分比为20%以下,优选二硅酸锂晶相占微晶玻璃制品的重量百分比为10%以下,更优选二硅酸锂晶相占微晶玻璃制品的重量百分比为5%以下,进一步优选不含有二硅酸锂晶相。
(14)根据(1)~(8)任一所述的微晶玻璃制品,所述微晶玻璃制品含有透锂长石晶相,透锂长石晶相占微晶玻璃制品的重量百分比为15%以下,优选透锂长石晶相占微晶玻璃制品的重量百分比为10%以下,更优选透锂长石晶相占微晶玻璃制品的重量百分比为5%以下,进一步优选不含有透锂长石晶相。
(15)根据(1)~(8)任一所述的微晶玻璃制品,所述微晶玻璃制品的落球试验高度为1400mm以上,优选为1500mm以上,更优选为1600mm以上;和/或断裂韧性为1MPa·m1/2以上,优选为1.1MPa·m1/2以上,更优选为1.2MPa·m1/2以上;和/或四点弯曲强度为600MPa以上,优选为650MPa以上,更优选为700MPa以上;和/或维氏硬度为670kgf/mm2以上,优选为680kgf/mm2以上,更优选为700kgf/mm2以上;和/或离子交换层深度为80μm以上,优选为90μm以上,更优选100μm以上;和/或表面应力为100MPa以上,优选为150MPa以上,更优选为200MPa以上;和/或结晶度为10%以上,优选为15%以上,更优选为20%以上;和/或晶粒尺寸为50nm以下,优选为40nm以下,更优选为30nm以下;和/或耐摔性为1500mm以上,优选为1600mm以上,更优选为1800mm以上。
(16)根据(1)~(8)任一所述的微晶玻璃制品,1mm以下厚度的微晶玻璃制品 的雾度为0.2%以下,优选为0.17%以下,更优选为0.15%以下;和/或400~800nm波长的平均光透过率为88.0%以上,优选为89.0%以上,更优选为90.0%以上,进一步优选为90.5%以上;和/或550nm波长的光透过率为89.0%以上,优选为90.0%以上,更优选为91.0%以上,进一步优选为91.5%以上;和/或400~800nm的平均光∣B∣值为1.0以下,优选为0.9以下,更优选为0.8以下。
(17)根据(16)所述的微晶玻璃制品,所述微晶玻璃制品的厚度为0.2~1mm,优选为0.3~0.9mm,更优选为0.5~0.8mm,进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。
(18)根据(1)~(7)任一所述的微晶玻璃制品,所述微晶玻璃制品含有着色剂。
(19)根据(18)所述的微晶玻璃制品,所述着色剂按重量百分比表示,含有:NiO:0~4%;和/或Ni2O3:0~4%;和/或CoO:0~2%;和/或Co2O3:0~2%;和/或Fe2O3:0~7%;和/或MnO2:0~4%;和/或Er2O3:0~8%;和/或Nd2O3:0~8%;和/或Cu2O:0~4%;和/或Pr2O3:0~8%;和/或CeO2:0~4%。
(20)微晶玻璃,其组分按重量百分比表示,含有:SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%,其中(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5。
(21)微晶玻璃,其组分按重量百分比表示,含有:SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%。
(22)根据(20)或(21)所述的微晶玻璃,其组分按重量百分比表示,还含有:ZnO:0~2%;和/或MgO:0~2%;和/或B2O3:0~4%;和/或K2O:0~3%;和/或Ln2O3:0~2%;和/或澄清剂:0~2%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
(23)微晶玻璃,含有SiO2、Al2O3、Li2O、Na2O、P2O5、ZrO2,其组分按重量百分比表示,其中(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5,1mm以下厚度的微晶玻璃的雾度为0.2%以下。
(24)微晶玻璃,含有SiO2、Al2O3、Li2O、Na2O、ZrO2,所述微晶玻璃含有硅酸锂晶相,硅酸锂晶相具有比其他晶相更高的重量百分比。
(25)微晶玻璃,含有SiO2、Al2O3、Li2O、Na2O、ZrO2,所述微晶玻璃含有一硅酸锂晶相。
(26)根据(23)~(25)任一所述的微晶玻璃,其组分按重量百分比表示,含有:SiO2:60~80%;和/或Al2O3:3~15%;和/或Li2O:大于或等于5%但小于10%;和/或 Na2O:4~8%;和/或P2O5:0.5~5%;和/或ZrO2:大于5%但小于或等于15%;和/或ZnO:0~2%;和/或MgO:0~2%;和/或B2O3:0~4%;和/或K2O:0~3%;和/或Ln2O3:0~2%;和/或澄清剂:0~2%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
(27)微晶玻璃,其组分按重量百分比表示,由SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%;ZnO:0~2%;MgO:0~2%;B2O3:0~4%;K2O:0~3%;Ln2O3:0~2%;澄清剂:0~2%组成,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
(28)根据(20)~(27)任一所述的微晶玻璃,其组分按重量百分比表示,满足以下5种情形中的一种或多种:
1)SiO2/ZrO2为5.0~15.0,优选SiO2/ZrO2为6.0~13.0,更优选SiO2/ZrO2为6.5~12.0,进一步优选SiO2/ZrO2为7.0~11.0;
2)(SiO2+Li2O)/(ZrO2+P2O5)为5.0~13.5,优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~11.5,更优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~10.5;
3)(SiO2+Al2O3+Na2O)/Li2O为7.0~18.0,优选(SiO2+Al2O3+Na2O)/Li2O为7.5~15.0,更优选(SiO2+Al2O3+Na2O)/Li2O为8.5~13.0,进一步优选(SiO2+Al2O3+Na2O)/Li2O为8.5~11.0;
4)(ZrO2+Al2O3)/Li2O为0.85~5.0,优选(ZrO2+Al2O3)/Li2O为0.9~4.0,更优选(ZrO2+Al2O3)/Li2O为1.0~3.5,进一步优选(ZrO2+Al2O3)/Li2O为1.0~3.0;
5)(Li2O+Na2O)/(SiO2+ZrO2)为0.10~0.27,优选(Li2O+Na2O)/(SiO2+ZrO2)为0.12~0.25,更优选(Li2O+Na2O)/(SiO2+ZrO2)为0.14~0.25,进一步优选(Li2O+Na2O)/(SiO2+ZrO2)为0.15~0.23。
(29)根据(20)~(27)任一所述的微晶玻璃,其组分按重量百分比表示,含有:SiO2:62~78%,优选SiO2:64~75%;和/或Al2O3:5~12%,优选Al2O3:5~10%;和/或Li2O:大于或等于6%但小于10%;和/或Na2O:4~7.5%,优选Na2O:4.5~7%;和/或P2O5:1~4.5%,优选P2O5:1.5~4%;和/或ZrO2:5.5~13%,优选ZrO2:6~12%;和/或ZnO:0~1.5%,优选ZnO:0~1%;和/或MgO:0~1.5%,优选MgO:0~1%;和/或B2O3:0~3%,优选B2O3:0~2%;和/或K2O:0~2%,优选K2O:0~1%;和/或Ln2O3:0~1%,优选Ln2O3:0~0.5%;和/或澄清剂:0~1%,优选澄清剂:0~0.5%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
(30)根据(20)~(27)任一所述的微晶玻璃,所述微晶玻璃含有硅酸锂晶相,硅酸锂晶相具有比其他晶相更高的重量百分比,优选硅酸锂晶相占微晶玻璃的重量百分 比为5~50%,更优选硅酸锂晶相占微晶玻璃的重量百分比为5~40%,进一步优选硅酸锂晶相占微晶玻璃的重量百分比为10~30%。
(31)根据(20)~(27)任一所述的微晶玻璃,所述微晶玻璃含有一硅酸锂晶相,一硅酸锂晶相具有比其他晶相更高的重量百分比,优选一硅酸锂晶相占微晶玻璃的重量百分比为5~50%,更优选一硅酸锂晶相占微晶玻璃的重量百分比为5~40%,进一步优选一硅酸锂晶相占微晶玻璃的重量百分比为10~30%。
(32)根据(20)~(27)任一所述的微晶玻璃,所述微晶玻璃含有二硅酸锂晶相,二硅酸锂晶相占微晶玻璃的重量百分比为20%以下,优选二硅酸锂晶相占微晶玻璃的重量百分比为10%以下,更优选二硅酸锂晶相占微晶玻璃的重量百分比为5%以下,进一步优选不含有二硅酸锂晶相。
(33)根据(20)~(27)任一所述的微晶玻璃,所述微晶玻璃含有透锂长石晶相,透锂长石晶相占微晶玻璃的重量百分比为15%以下,优选透锂长石晶相占微晶玻璃的重量百分比为10%以下,更优选透锂长石晶相占微晶玻璃的重量百分比为5%以下,进一步优选不含有透锂长石晶相。
(34)根据(20)~(27)任一所述的微晶玻璃,所述微晶玻璃的结晶度为10%以上,优选为15%以上,更优选为20%以上;和/或晶粒尺寸为50nm以下,优选为40nm以下,更优选为30nm以下;和/或本体落球高度为1700mm以上,优选为1900mm以上,更优选为2000mm以上;和/或维氏硬度为600kgf/mm2以上,优选为620kgf/mm2以上,更优选为630kgf/mm2以上;和/或折射率为1.520~1.545;和/或杨氏模量为80~100GPa。
(35)根据(20)~(27)任一所述的微晶玻璃,1mm以下厚度的微晶玻璃的雾度为0.2%以下,优选为0.17%以下,更优选为0.15%以下;和/或400~800nm波长的平均光透过率为88.0%以上,优选为89.0%以上,更优选为90.0%以上,进一步优选为90.5%以上;和/或550nm波长的光透过率为89.0%以上,优选为90.0%以上,更优选为91.0%以上,进一步优选为91.5%以上;和/或400~800nm的平均光∣B∣值为1.0以下,优选为0.9以下,更优选为0.8以下。
(36)根据(35)所述的微晶玻璃,所述微晶玻璃的厚度为0.2~1mm,优选为0.3~0.9mm,更优选为0.5~0.8mm,进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。
(37)根据(20)~(26)任一所述的微晶玻璃,所述微晶玻璃含有着色剂。
(38)根据(37)所述的微晶玻璃,所述着色剂按重量百分比表示,含有:NiO:0~4%;和/或Ni2O3:0~4%;和/或CoO:0~2%;和/或Co2O3:0~2%;和/或Fe2O3:0~7%; 和/或MnO2:0~4%;和/或Er2O3:0~8%;和/或Nd2O3:0~8%;和/或Cu2O:0~4%;和/或Pr2O3:0~8%;和/或CeO2:0~4%。
(39)基质玻璃,其组分按重量百分比表示,含有:SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%,其中(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5。
(40)基质玻璃,其组分按重量百分比表示,含有:SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%。
(41)根据(39)或(40)所述的基质玻璃,其组分按重量百分比表示,还含有:ZnO:0~2%;和/或MgO:0~2%;和/或B2O3:0~4%;和/或K2O:0~3%;和/或Ln2O3:0~2%;和/或澄清剂:0~2%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
(42)基质玻璃,其组分按重量百分比表示,由SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%:ZnO:0~2%;MgO:0~2%;B2O3:0~4%;K2O:0~3%;Ln2O3:0~2%;澄清剂:0~2%组成,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
(43)根据(39)~(42)任一所述的基质玻璃,其组分按重量百分比表示,满足以下5种情形中的一种或多种:
1)SiO2/ZrO2为5.0~15.0,优选SiO2/ZrO2为6.0~13.0,更优选SiO2/ZrO2为6.5~12.0,进一步优选SiO2/ZrO2为7.0~11.0;
2)(SiO2+Li2O)/(ZrO2+P2O5)为5.0~13.5,优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~11.5,更优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~10.5;
3)(SiO2+Al2O3+Na2O)/Li2O为7.0~18.0,优选(SiO2+Al2O3+Na2O)/Li2O为7.5~15.0,更优选(SiO2+Al2O3+Na2O)/Li2O为8.5~13.0,进一步优选(SiO2+Al2O3+Na2O)/Li2O为8.5~11.0;
4)(ZrO2+Al2O3)/Li2O为0.85~5.0,优选(ZrO2+Al2O3)/Li2O为0.9~4.0,更优选(ZrO2+Al2O3)/Li2O为1.0~3.5,进一步优选(ZrO2+Al2O3)/Li2O为1.0~3.0;
5)(Li2O+Na2O)/(SiO2+ZrO2)为0.10~0.27,优选(Li2O+Na2O)/(SiO2+ZrO2)为0.12~0.25,更优选(Li2O+Na2O)/(SiO2+ZrO2)为0.14~0.25,进一步优选(Li2O+Na2O)/(SiO2+ZrO2)为0.15~0.23。
(44)根据(39)~(42)任一所述的基质玻璃,其组分按重量百分比表示,含有:SiO2:62~78%,优选SiO2:64~75%;和/或Al2O3:5~12%,优选Al2O3:5~10%;和/ 或Li2O:大于或等于6%但小于10%;和/或Na2O:4~7.5%,优选Na2O:4.5~7%;和/或P2O5:1~4.5%,优选P2O5:1.5~4%;和/或ZrO2:5.5~13%,优选ZrO2:6~12%;和/或ZnO:0~1.5%,优选ZnO:0~1%;和/或MgO:0~1.5%,优选MgO:0~1%;和/或B2O3:0~3%,优选B2O3:0~2%;和/或K2O:0~2%,优选K2O:0~1%;和/或Ln2O3:0~1%,优选Ln2O3:0~0.5%;和/或澄清剂:0~1%,优选澄清剂:0~0.5%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
(45)根据(39)~(42)任一所述的基质玻璃,所述基质玻璃的折射率为1.510~1.530。
(46)根据(39)~(41)任一所述的基质玻璃,所述基质玻璃含有着色剂。
(47)根据(46)所述的基质玻璃,所述着色剂按重量百分比表示,含有:NiO:0~4%;和/或Ni2O3:0~4%;和/或CoO:0~2%;和/或Co2O3:0~2%;和/或Fe2O3:0~7%;和/或MnO2:0~4%;和/或Er2O3:0~8%;和/或Nd2O3:0~8%;和/或Cu2O:0~4%;和/或Pr2O3:0~8%;和/或CeO2:0~4%。
(48)微晶玻璃成形体,含有(20)~(38)任一所述的微晶玻璃。
(49)玻璃盖板,含有(1)~(19)任一所述的微晶玻璃制品,和/或(20)~(38)任一所述的微晶玻璃,和/或(39)~(47)任一所述的基质玻璃,和/或(48)所述的微晶玻璃成形体。
(50)玻璃元器件,含有(1)~(19)任一所述的微晶玻璃制品,和/或(20)~(38)任一所述的微晶玻璃,和/或(39)~(47)任一所述的基质玻璃,和/或(48)所述的微晶玻璃成形体。
(51)显示设备,含有(1)~(19)任一所述的微晶玻璃制品,和/或(20)~(38)任一所述的微晶玻璃,和/或(39)~(47)任一所述的基质玻璃,和/或(48)所述的微晶玻璃成形体,和/或(49)所述的玻璃盖板,和/或(50)所述的玻璃元器件。
(52)电子设备,含有(1)~(19)任一所述的微晶玻璃制品,和/或(20)~(38)任一所述的微晶玻璃,和/或(39)~(47)任一所述的基质玻璃,和/或(48)所述的微晶玻璃成形体,和/或(49)所述的玻璃盖板,和/或(50)所述的玻璃元器件。
(53)(1)~(19)任一所述微晶玻璃制品的制造方法,所述方法包括以下步骤:形成基质玻璃,将基质玻璃通过晶化工艺形成微晶玻璃,再将所述微晶玻璃通过化学强化工艺形成微晶玻璃制品。
(54)根据(53)所述的微晶玻璃制品的制造方法,所述晶化工艺包括以下步骤:升温至规定的晶化处理温度,在达到晶化处理温度之后,将其温度保持一定的时间,然 后再进行降温,该晶化处理温度为550~700℃,优选为580~650℃,在晶化处理温度下的保持时间为0~8小时,优选为1~6小时。
(55)根据(53)所述的微晶玻璃制品的制造方法,所述晶化工艺包括以下步骤:在第1温度下进行成核工艺的处理,然后在比成核工艺温度高的第2温度下进行晶体生长工艺的处理。
(56)根据(55)所述的微晶玻璃制品的制造方法,所述晶化工艺包括以下步骤:第1温度为450~550℃,第2温度为550~700℃;在第1温度下的保持时间为0~24小时,优选为2~15小时;在第2温度下的保持时间为0~10小时,优选为0.5~6小时。
(57)根据(53)~(56)任一所述的微晶玻璃制品的制造方法,所述化学强化工艺包括:微晶玻璃浸没于350℃~470℃的温度的熔融Na盐的盐浴中1~36小时,优选温度范围为380℃~460℃,优选时间范围为2~24小时;和/或微晶玻璃浸没于360℃~450℃的温度下熔融K盐的盐浴中1~36小时,优选时间范围为2~24小时;和/或微晶玻璃浸没于360℃~450℃的温度下熔融K盐和Na盐的混合盐浴中1~36小时,优选时间范围为2~24小时。
(58)(20)~(38)任一所述的微晶玻璃的制造方法,所述方法包括以下步骤:形成基质玻璃,然后将基质玻璃通过晶化工艺形成微晶玻璃。
(59)根据(58)所述的微晶玻璃的制造方法,所述晶化工艺包括以下步骤:升温至规定的晶化处理温度,在达到晶化处理温度之后,将其温度保持一定的时间,然后再进行降温,该晶化处理温度为550~700℃,优选为580~650℃,在晶化处理温度下的保持时间为0~8小时,优选为1~6小时。
(60)根据(59)所述的微晶玻璃的制造方法,所述晶化工艺包括以下步骤:在第1温度下进行成核工艺的处理,然后在比成核工艺温度高的第2温度下进行晶体生长工艺的处理。
(61)根据(60)所述的微晶玻璃的制造方法,所述晶化工艺包括以下步骤:第1温度为450~550℃,第2温度为550~700℃;在第1温度下的保持时间为0~24小时,优选为2~15小时;在第2温度下的保持时间为0~10小时,优选为0.5~6小时。
(62)(48)所述的微晶玻璃成形体的制造方法,所述方法包括将微晶玻璃研磨或抛光制成微晶玻璃成形体,或在一定温度下将基质玻璃或微晶玻璃通过热弯工艺或压型工艺制成微晶玻璃成形体。
(63)根据(62)所述的微晶玻璃成形体的制造方法,所述方法包括以下步骤:将 基质玻璃进行一次晶化热处理过程,包括升温、保温核化、升温、保温晶化、降温至室温,形成预晶化玻璃;将预晶化玻璃进行热加工成型得到微晶玻璃成形体。
(64)根据(62)所述的微晶玻璃成形体的制造方法,所述方法包括以下步骤:
1)升温预热:将基质玻璃或预晶化玻璃或微晶玻璃放置于模具内,模具在热弯机中依次通过各个升温站点,并在各站点停留一定时间保温,预热区温度为400~800℃,压力为0.01~0.05MPa,时间为40~200s;
2)加压成型:模具在经过预热后转运到成型站点,热弯机对模具施加一定压力,压力范围为0.1~0.8Mpa,成型站点温度范围为600~850℃,成型时间范围40~200s;
3)保压降温:将模具转运至降温站点逐站降温,降温温度范围750~500℃,压力为0.01~0.05Mpa,时间为40~200s。
本发明的有益效果是:通过合理的组分设计,本发明获得的微晶玻璃或微晶玻璃制品具有优异的机械性能,以及较低的雾度,适用于光学性能要求较高的显示设备或电子设备中。
具体实施方式
本发明的微晶玻璃和微晶玻璃制品是具有晶相(有时候也称为晶体)和玻璃相的材料,其有别于非晶质固体。微晶玻璃和微晶玻璃制品的晶相可以通过X射线衍射分析的X射线衍射图案中出现的峰值角度进行辨别和/或通过TEMEDX测得。
本发明的发明人经过反复试验和研究,对于构成微晶玻璃和微晶玻璃制品的特定成分,通过将其含量以及含量比例规定为特定值并使其析出特定的晶相,以较低的成本得到了本发明的微晶玻璃或微晶玻璃制品。
下面,对本发明基质玻璃、微晶玻璃及微晶玻璃制品的各组分(成分)的范围进行说明。在本说明书中,如果没有特殊说明,各组分的含量全部采用相对于换算成氧化物的组成的基质玻璃、或微晶玻璃、或微晶玻璃制品物质总量的重量百分比(wt%)表示。在这里,所述“换算成氧化物的组成”是指,作为本发明的基质玻璃、微晶玻璃或微晶玻璃制品组成成分的原料而使用的氧化物、复合盐及氢氧化物等熔融时分解并转变为氧化物的情况下,将该氧化物的物质总量作为100%。此外,在本说明书中仅称为玻璃时为结晶化(即晶化工艺处理)前的基质玻璃,基质玻璃结晶化(即晶化工艺处理)后称为微晶玻璃,微晶玻璃制品是指微晶玻璃经化学强化后得到的产品。
除非在具体情况下另外指出,本文所列出的数值范围包括上限和下限值,“以上”和“以下”包括端点值,以及在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所使用的术语“约”指配方、参数和其他数量以及特征不是、且无需 是精确的,如有需要,可以近似和/或更大或更低,这反映公差、换算因子和测量误差等。本文所称“和/或”是包含性的,例如“A;和/或B”,是指只有A,或者只有B,或者同时有A和B。
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有硅酸锂晶相(一硅酸锂和二硅酸锂中的一种或两种)。在一些实施方式中,硅酸锂晶相具有比其他晶相更高的重量百分比。在一些实施方式中,硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为5~50%,优选硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为5~40%,更优选硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为10~30%。在一些实施方式中,硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%。
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有一硅酸锂晶相。在一些实施方式中,一硅酸锂晶相具有比其他晶相更高的重量百分比。在一些实施方式中,一硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为5~50%,优选一硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为5~40%,更优选一硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为10~30%。在一些实施方式中,一硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%。
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有二硅酸锂晶相。在一些实施方式中,二硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为20%以下,优选二硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为10%以下,更优选二硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为5%以下,进一步优选微晶玻璃或微晶玻璃制品中不含有二硅酸锂晶相。在一些实施方式中,二硅酸锂晶相占微晶玻璃或微晶玻璃制品的重量百分比为0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%。
在本发明的一些实施方式中,微晶玻璃或微晶玻璃制品中的晶相含有透锂长石晶相, 透锂长石晶相占微晶玻璃或微晶玻璃制品的重量百分比为15%以下,优选透锂长石晶相占微晶玻璃或微晶玻璃制品的重量百分比为10%以下,更优选透锂长石晶相占微晶玻璃或微晶玻璃制品的重量百分比为5%以下,进一步优选微晶玻璃或微晶玻璃制品中不含有透锂长石晶相。在一些实施方式中,透锂长石晶相占微晶玻璃或微晶玻璃制品的重量百分比为0%、大于0%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%。
SiO2是本发明玻璃、微晶玻璃和微晶玻璃制品的基础组分,其是形成硅酸锂晶相的组分之一,若SiO2的含量在60%以下,晶体在微晶玻璃中容易变粗,影响微晶玻璃和微晶玻璃制品的光透过率。因此,SiO2含量的下限为60%,优选下限为62%,更优选下限为64%。若SiO2含量在80%以上,玻璃熔化温度高,导致化料困难,微晶玻璃和微晶玻璃制品的雾度变大。因此,SiO2含量的上限为80%,优选上限为78%,更优选上限为75%。在一些实施方式中,可包含约60%、60.5%、61%、61.5%、62%、62.5%、63%、63.5%、64%、64.5%、65%、65.5%、66%、66.5%、67%、67.5%、68%、68.5%、69%、69.5%、70%、70.5%、71%、71.5%、72%、72.5%、73%、73.5%、74%、74.5%、75%、75.5%、76%、76.5%、77%、77.5%、78%、78.5%、79%、79.5%、80%的SiO2
Al2O3是形成玻璃网状结构的组分,有利于微晶玻璃的化学强化,提高微晶玻璃制品的耐摔性,若其含量低于3%,则上述效果不佳。因此,Al2O3含量的下限为3%,优选下限为5%。另一方面,若Al2O3的含量超过15%,微晶玻璃经化学强化后得到的微晶玻璃制品摔碎后的碎片较小(一般呈颗粒状),不利于继续使用。因此,Al2O3含量的上限为15%,优选上限为12%,更优选上限为10%。在一些实施方式中,可包含约3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%的Al2O3
Li2O是本发明微晶玻璃形成晶相的必要组分,也是化学强化的必要组分,但如果其含量不足5%,则形成晶体的种类发生变化,影响微晶玻璃和微晶玻璃制品的强度。因此,Li2O含量的下限为5%,优选下限为6%。另一方面,若过多的含有Li2O,微晶玻璃和微晶玻璃制品的雾度升高,且原料成本较高。因此,Li2O含量的上限小于10%。在一些实施方式中,可包含约5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、9.8%、小于10%的Li2O。
Na2O有利于微晶玻璃中一硅酸锂晶相的形成,并且可以提高微晶玻璃化学强化后的化稳性,本发明中通过含有4%以上的Na2O以达到上述效果,优选含有4.5%以上的Na2O。 但若过多含有Na2O,微晶玻璃中形成一硅酸锂晶相困难,影响微晶玻璃和微晶玻璃制品的光透过率。因此,Na2O含量的上限为8%,优选上限为7.5%,更优选上限为7%。在一些实施方式中,可包含约4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%的Na2O。
在一些实施方式中,将SiO2、Al2O3、Na2O的合计含量SiO2+Al2O3+Na2O与Li2O的含量之间的比值(SiO2+Al2O3+Na2O)/Li2O控制在7.0~18.0范围内,有利于细化晶粒,提高微晶玻璃和微晶玻璃制品的断裂韧性,提高微晶玻璃制品的离子交换层深度和表面应力。因此,优选(SiO2+Al2O3+Na2O)/Li2O为7.0~18.0,更优选(SiO2+Al2O3+Na2O)/Li2O为7.5~15.0,进一步优选(SiO2+Al2O3+Na2O)/Li2O为8.5~13.0,更进一步优选(SiO2+Al2O3+Na2O)/Li2O为8.5~11.0。在一些实施方式中,(SiO2+Al2O3+Na2O)/Li2O的值可为7.0、7.3、7.5、7.7、8.0、8.3、8.5、8.7、9.0、9.3、9.5、9.7、10.0、10.3、10.5、10.7、11.0、11.3、11.5、11.7、12.0、12.3、12.5、12.7、13.0、13.3、13.5、13.7、14.0、14.3、14.5、14.7、15.0、15.3、15.5、15.7、16.0、16.3、16.5、16.7、17.0、17.3、17.5、17.7、18.0。
ZrO2可防止玻璃成型时析晶,在晶化热处理时可以细化晶粒,降低微晶玻璃和微晶玻璃制品的雾度。本发明中ZrO2含量的下限为大于5%,优选为5.5%以上,更优选为6%以上。但若过多的含有ZrO2,ZrO2不易在玻璃中熔化,容易形成结石,并且减弱玻璃热处理析晶能力。因此,ZrO2含量的上限为15%,优选上限为13%,更优选上限为12%。在一些实施方式中,可包含约大于5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%的ZrO2
在一些实施方式中,将SiO2的含量与ZrO2的含量之间的比值SiO2/ZrO2控制在5.0~15.0范围内,有利于提高微晶玻璃和微晶玻璃制品的光透过率和四点弯曲强度,提高微晶玻璃制品的落球试验高度和微晶玻璃的本体落球高度,防止雾度和∣B∣值升高。因此,优选SiO2/ZrO2为5.0~15.0,更优选SiO2/ZrO2为6.0~13.0,进一步优选SiO2/ZrO2为6.5~12.0,更进一步优选SiO2/ZrO2为7.0~11.0。在一些实施方式中,SiO2/ZrO2的值可为5.0、5.3、5.5、5.7、6.0、6.3、6.5、6.7、7.0、7.3、7.5、7.7、8.0、8.3、8.5、8.7、9.0、9.3、9.5、9.7、10.0、10.3、10.5、10.7、11.0、11.3、11.5、11.7、12.0、12.3、12.5、12.7、13.0、13.3、13.5、13.7、14.0、14.3、14.5、14.7、15.0。
在一些实施方式中,将ZrO2和Al2O3的合计含量ZrO2+Al2O3与Li2O的含量之间的比值(ZrO2+Al2O3)/Li2O控制在0.85~5.0范围内,可提高微晶玻璃的本体落球高度,提高微晶玻璃制品的落球试验高度和离子交换层深度,防止微晶玻璃和微晶玻璃制品的光透过率和结晶度降低。因此,优选(ZrO2+Al2O3)/Li2O为0.85~5.0,更优选(ZrO2+Al2O3) /Li2O为0.9~4.0,进一步优选(ZrO2+Al2O3)/Li2O为1.0~3.5,更进一步优选(ZrO2+Al2O3)/Li2O为1.0~3.0。在一些实施方式中,(ZrO2+Al2O3)/Li2O的值可为0.85、0.9、0.95、1.0、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5、1.55、1.6、1.65、1.7、1.75、1.8、1.85、1.9、1.95、2.0、2.05、2.1、2.15、2.2、2.25、2.3、2.35、2.4、2.45、2.5、2.55、2.6、2.65、2.7、2.75、2.8、2.85、2.9、2.95、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5.0。
在一些实施方式中,将Li2O和Na2O的合计含量Li2O+Na2O与SiO2和ZrO2的合计含量SiO2+ZrO2之间的比值(Li2O+Na2O)/(SiO2+ZrO2)控制在0.10~0.27范围内,有利于提高微晶玻璃制品的表面应力和离子交换层深度,提高微晶玻璃和微晶玻璃制品的四点弯曲强度和硬度,防止微晶玻璃和微晶玻璃制品断裂韧性和耐摔性降低。因此,优选(Li2O+Na2O)/(SiO2+ZrO2)为0.10~0.27,更优选(Li2O+Na2O)/(SiO2+ZrO2)为0.12~0.25,进一步优选(Li2O+Na2O)/(SiO2+ZrO2)为0.14~0.25,更进一步优选(Li2O+Na2O)/(SiO2+ZrO2)为0.15~0.23。在一些实施方式中,(Li2O+Na2O)/(SiO2+ZrO2)的值可为0.10、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20、0.21、0.22、0.23、0.24、0.25、0.26、0.27。
P2O5能够在玻璃中进行非均匀成核,促进晶体形成,提高微晶玻璃和微晶玻璃制品的光透过率。本发明中P2O5含量的下限为0.5%,优选下限为1%,更优选下限为1.5%。但若过多的含有P2O5,则玻璃成型时很容易直接析晶,热处理过程不易控制。因此,P2O5含量的上限为5%,优选上限为4.5%,更优选上限为4%。在一些实施方式中,可包含约0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的P2O5
在一些实施方式中,将SiO2和Li2O的合计含量SiO2+Li2O与ZrO2和P2O5的合计含量ZrO2+P2O5之间的比值(SiO2+Li2O)/(ZrO2+P2O5)控制在4.0~15.5范围内,可以降低微晶玻璃和微晶玻璃制品的雾度和∣B∣值,提高微晶玻璃和微晶玻璃制品的耐摔性和硬度,优化微晶玻璃和微晶玻璃制品的结晶度。因此,优选(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5,更优选(SiO2+Li2O)/(ZrO2+P2O5)为5.0~13.5,进一步优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~11.5,更进一步优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~10.5。在一些实施方式中,(SiO2+Li2O)/(ZrO2+P2O5)的值可为4.0、4.3、4.5、4.7、5.0、5.3、5.5、5.7、6.0、6.3、6.5、6.7、7.0、7.3、7.5、7.7、8.0、8.3、8.5、8.7、9.0、9.3、9.5、9.7、10.0、10.3、10.5、10.7、11.0、11.3、11.5、11.7、12.0、12.3、12.5、12.7、13.0、13.3、13.5、13.7、14.0、14.3、14.5、14.7、15.0、15.3、15.5。
ZnO可以降低玻璃的熔化温度,但其含量过多会导致微晶玻璃和微晶玻璃制品的雾度升高。因此,ZnO的含量限定为2%以下,优选为1.5%以下,更优选为1%以下。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%的ZnO。
MgO可以降低玻璃的熔化温度,但其含量过多会导致微晶玻璃和微晶玻璃制品的雾度升高。因此,MgO的含量限定为2%以下,优选为1.5%以下,更优选为1%以下。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%的MgO。
B2O3可以降低玻璃的熔化温度,增加微晶玻璃中玻璃相的含量,有利于微晶玻璃和微晶玻璃制品的热弯。但若玻璃中过多的含有B2O3,在晶化热处理时容易分相,导致微晶玻璃和微晶玻璃制品的光透过率下降。因此,B2O3含量为0~4%,优选为0~3%,更优选为0~2%。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.7%、3.8%、3.9%、4%的B2O3
K2O可以降低玻璃的粘度,晶化热处理时促进晶体的长大,但若过多的含有K2O,则很容易使玻璃中晶体快速长大,降低微晶玻璃和微晶玻璃制品的光透过率。因此,K2O的含量为3%以下,优选为2%,更优选为1%以下。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3%的K2O。
Ln2O3(Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种)可降低玻璃的熔炼难度,含量过多时会导致玻璃晶化时形成晶体困难,微晶玻璃和微晶玻璃制品的结晶度下降,微晶玻璃的本体落球高度和微晶玻璃制品的落球试验高度下降。因此,Ln2O3含量的上限为2%,优选上限为1%,更优选上限为0.5%,进一步优选不含有Ln2O3。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%的Ln2O3
在一些实施方式中,玻璃、微晶玻璃或微晶玻璃制品还可含有0~2%的澄清剂,以提高玻璃、微晶玻璃或微晶玻璃制品的除泡能力,这种澄清剂包括但不限于Sb2O3、SnO2、 SnO、CeO2、F(氟)、Cl(氯)和Br(溴)中的一种或多种,优选Sb2O3作为澄清剂。上述澄清剂单独或组合存在时,其含量的上限优选为1%,更优选为0.5%。在一些实施方式中,上述澄清剂中的一种或多种的含量约为0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%。
PbO和As2O3是有毒物质,即使少量的含有也不符合环保的要求,因此本发明在一些实施方式中优选不含有PbO和As2O3
本发明的一些实施方式中,通过含有着色剂,可以制备出具有颜色的基质玻璃、微晶玻璃或微晶玻璃制品,可使基质玻璃、微晶玻璃或微晶玻璃制品呈现不同的颜色,着色剂含有:NiO:0~4%;和/或Ni2O3:0~4%;和/或CoO:0~2%;和/或Co2O3:0~2%;和/或Fe2O3:0~7%;和/或MnO2:0~4%;和/或Er2O3:0~8%;和/或Nd2O3:0~8%;和/或Cu2O:0~4%;和/或Pr2O5:0~8%;和/或CeO2:0~4%。其着色剂重量百分比含量及其作用详述如下:
本发明制备的褐色或绿色基质玻璃、微晶玻璃或微晶玻璃制品,使用NiO、Ni2O3或Pr2O5为着色剂。NiO和Ni2O3为着色剂,用于制备褐色或绿色基质玻璃、微晶玻璃或微晶玻璃制品,两种组分可以单独使用或者混合使用,其分别含量一般为4%以下,优选为3%以下,如果含量超过4%,着色剂不能很好溶于基质玻璃、微晶玻璃或微晶玻璃制品中,其分别的含量下限在0.1%以上,如低于0.1%,基质玻璃、微晶玻璃或微晶玻璃制品颜色不明显。在一些实施方式中,可包含约0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3.0%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.7%、3.8%、3.9%、4.0%的NiO或Ni2O3。如混合使用时,NiO和Ni2O3合计量一般为4%以下,合计量下限在0.1%以上。在一些实施方式中,可包含约0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3.0%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.7%、3.8%、3.9%、4.0%的NiO和Ni2O3。使用Pr2O5作为绿色基质玻璃、微晶玻璃或微晶玻璃制品着色剂,单独使用,一般含量为8%以下,优选含量为6%以下,其含量下限在0.4%以上,如低于0.4%,基质玻璃、微晶玻璃或微晶玻璃制品颜色不明显。在一些实施方式中,可包含约0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、1.6%、1.8%、2.0%、2.2%、2.4%、2.6%、2.8%、3.0%、3.2%、3.4%、3.6%、3.8%、4.0%、4.2%、4.4%、4.6%、4.8%、 5.0%、5.2%、5.4%、5.6%、5.8%、6.0%、6.2%、6.4%、6.6%、6.8%、7.0%、7.2%、7.4%、7.6%、7.8%、8.0%的Pr2O5
本发明制备的蓝色基质玻璃、微晶玻璃或微晶玻璃制品,使用CoO或Co2O3为着色剂,两种着色剂组分可以单独使用或者混合使用,其分别的含量都一般为2%以下,优选为1.8%以下,如果含量超过了2%,着色剂不能很好溶于基质玻璃、微晶玻璃或微晶玻璃制品中,其分别的含量下限在0.05%以上,如低于0.05%,基质玻璃、微晶玻璃或微晶玻璃制品颜色不明显。在一些实施方式中,可包含约0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%的CoO或Co2O3。如混合使用时,CoO和Co2O3合计量不超过2%,合计量下限在0.05%以上。在一些实施方式中,可包含约0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%的CoO和Co2O3
本发明制备的黄色基质玻璃、微晶玻璃或微晶玻璃制品,使用Cu2O或CeO2为着色剂,两种着色剂组分单独使用或者混合使用,其分别的含量下限在0.5%以上,如低于0.5%,基质玻璃、微晶玻璃或微晶玻璃制品颜色不明显,单独使用Cu2O为4%以下,优选为3%以下,如果含量超过4%,容易使基质玻璃析晶。在一些实施方式中,可包含约0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3.0%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.7%、3.8%、3.9%、4.0%的Cu2O。单独使用CeO2含量一般为4%以下,优选为3%以下,如含量超过4%,基质玻璃、微晶玻璃或微晶玻璃制品光泽不好。在一些实施方式中,可包含约0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3.0%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.7%、3.8%、3.9%、4.0%的CeO2。同时,少量的CeO2加入玻璃中具有除泡的效果,CeO2在玻璃中还可以作为澄清剂使用,作为澄清剂时其含量为2%以下,优选为1%以下,更优选为0.5%以下。如果两种着色剂混合使用时,其合计量一般为4%以下,合计量下限在0.5%以上。在一些实施方式中,可包含约0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3.0%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.7%、3.8%、3.9%、4.0%的CeO2和Cu2O。
本发明制备的黑色或烟灰色基质玻璃、微晶玻璃或微晶玻璃制品,单独使用Fe2O3 为着色剂;或者使用Fe2O3和CoO两种混合使用的着色剂;或者使用Fe2O3和Co2O3两种混合使用的着色剂;或者使用Fe2O3、CoO和NiO三种混合使用的着色剂;或者使用Fe2O3、Co2O3和NiO三种混合使用的着色剂。制备黑色和烟灰色基质玻璃、微晶玻璃或微晶玻璃制品的着色剂主要使用Fe2O3着色,含量为7%以下,优选为5%以下,其含量下限在0.2%以上,在一些实施方式中,可包含约0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3.0%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.7%、3.8%、3.9%、4.0%、4.5%、5.0%、5.5%、6.0%、6.5%、7.0%的Fe2O3。CoO和Co2O3在可见光有吸收,可以加深基质玻璃、微晶玻璃或微晶玻璃制品的着色程度,一般与Fe2O3混合使用时各自的含量为0.6%以下,下限在0.2%以上。在一些实施方式中,可包含约0.2%、0.3%、0.4%、0.5%、0.6%的CoO和/或Co2O3。NiO在可见光有吸收,可以加深基质玻璃、微晶玻璃或微晶玻璃制品的着色程度,一般混合使用时其含量为1%以下,合计量下限在0.2%以上。在一些实施方式中,可包含约0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%的NiO。
本发明制备的紫色基质玻璃、微晶玻璃或微晶玻璃制品,使用MnO2为着色剂,使用含量一般为4%以下,优选在3%以下,其含量下限在0.1%以上,如低于0.1%,基质玻璃、微晶玻璃或微晶玻璃制品颜色不明显。在一些实施方式中,可包含约0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3.0%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.7%、3.8%、3.9%、4.0%的MnO2
本发明制备的粉色基质玻璃、微晶玻璃或微晶玻璃制品,使用Er2O3为着色剂,使用含量一般为8%以下,优选在6%以下。由于稀土元素Er2O3着色效率低,当使用含量超过8%,也不能使基质玻璃、微晶玻璃或微晶玻璃制品的颜色进一步的加深,反而增加成本,其含量下限在0.4%以上,如低于0.4%,基质玻璃、微晶玻璃或微晶玻璃制品颜色不明显。在一些实施方式中,可包含约0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、1.6%、1.8%、2.0%、2.2%、2.4%、2.6%、2.8%、3.0%、3.2%、3.4%、3.6%、3.8%、4.0%、4.2%、4.4%、4.6%、4.8%、5.0%、5.2%、5.4%、5.6%、5.8%、6.0%、6.2%、6.4%、6.6%、6.8%、7.0%、7.2%、7.4%、7.6%、7.8%、8.0%的Er2O3
本发明制备的紫红色基质玻璃、微晶玻璃或微晶玻璃制品,使用Nd2O3为着色剂,使用含量一般为8%以下,优选在6%以下。由于稀土元素Nd2O3着色效率低,使用含量超过了8%,也不能使基质玻璃、微晶玻璃或微晶玻璃制品的颜色进一步的加深,反而增加成本, 其含量下限在0.4%以上,如低于0.4%,基质玻璃、微晶玻璃或微晶玻璃制品颜色不明显。在一些实施方式中,可包含约0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、1.6%、1.8%、2.0%、2.2%、2.4%、2.6%、2.8%、3.0%、3.2%、3.4%、3.6%、3.8%、4.0%、4.2%、4.4%、4.6%、4.8%、5.0%、5.2%、5.4%、5.6%、5.8%、6.0%、6.2%、6.4%、6.6%、6.8%、7.0%、7.2%、7.4%、7.6%、7.8%、8.0%的Nd2O3
本发明制备的红色基质玻璃、微晶玻璃或微晶玻璃制品,使用Er2O3、Nd2O3和MnO2混合着色剂,玻璃中Er离子在400-500nm有吸收,Mn离子主要在500nm处有吸收,Nd离子主要在580nm处有强的吸收,三种物质的混合,可以制备红色基质玻璃、微晶玻璃或微晶玻璃制品,由于Er2O3和Nd2O3为稀土着色,着色能力比较弱,Er2O3使用量在6%以内,Nd2O3使用量在4%以内,MnO2着色强,使用量在2%范围内,其使用混合着色剂合计量的下限在0.9%以上。
本文所记载的“不含有”“0%”是指没有故意将该化合物、分子或元素等作为原料添加到本发明基质玻璃、微晶玻璃或微晶玻璃制品中;但作为生产基质玻璃、微晶玻璃或微晶玻璃制品的原材料和/或设备,会存在某些不是故意添加的杂质或组分,会在最终的基质玻璃、微晶玻璃或微晶玻璃制品中少量或痕量含有,此种情形也在本发明专利的保护范围内。
本发明的一些实施方式中,微晶玻璃和微晶玻璃制品中晶相含有一硅酸锂,为本发明微晶玻璃和微晶玻璃制品提供高的强度,微晶玻璃和微晶玻璃制品断裂韧性变高;微晶玻璃的本体落球高度和微晶玻璃制品的落球试验高度及四点弯曲强度变大。本发明微晶玻璃化学强化性能优异,还可通过化学强化工艺处理以获得优异的机械强度。通过合理的组分设计,可使本发明微晶玻璃和微晶玻璃制品获得合适的晶粒大小,使本发明微晶玻璃和微晶玻璃制品具有高的强度。本发明中微晶玻璃和微晶玻璃制品具有良好的结晶度,使本发明微晶玻璃和微晶玻璃制品具有优异的机械性能。本文所称的结晶度是指结晶的完整程度,结晶完整的晶体内部质点的排列比较规则,衍射线强、尖锐且对称,衍射峰的半高宽接近仪器测量的宽度;结晶度差的晶体中有位错等缺陷,使衍射线峰形宽而弥散。结晶度越差,衍射能力越弱,衍射峰越宽,直到消失在背景之中。在一些实施方式中,微晶玻璃制品或微晶玻璃的结晶度为10%以上,优选15%以上,更优选为20%以上。
本发明微晶玻璃或微晶玻璃制品中晶粒尺寸和晶相种类会影响微晶玻璃或微晶玻璃制品的雾度和光透过率,晶粒越小光透过率越高;雾度越小,光透过率越高。在一些实施方式中,1mm以下厚度的微晶玻璃制品或微晶玻璃的雾度为0.2%以下,优选为0.17% 以下,更优选为0.15%以下。在一些实施方式中,微晶玻璃制品或微晶玻璃的晶粒尺寸为50nm以下,优选为40nm以下,更优选为30nm以下。
在一些实施方式中,本发明微晶玻璃或微晶玻璃制品中晶相含量和折射率影响微晶玻璃或微晶玻璃制品的∣B∣值,在可见光范围观察微晶玻璃或微晶玻璃制品出现偏蓝或者偏黄,影响产品的光学性能,在LAB(物质颜色的色度值)中用∣B∣值进行标示。本发明微晶玻璃或微晶玻璃制品在可见光范围中呈现低∣B∣值,在一些实施方式中1mm以下厚度的微晶玻璃制品或微晶玻璃400~800nm的平均光∣B∣值为1.0以下,优选为0.9以下,更优选为0.8以下。
在一些实施方式中,本发明微晶玻璃或微晶玻璃制品在可见光范围中呈现高的透明度(即微晶玻璃或微晶玻璃制品是透明的)。微晶玻璃或微晶玻璃制品在可见光范围中呈现高的透过率,在一些实施方式中,1mm以下厚度的微晶玻璃制品或微晶玻璃400~800nm的平均光透过率优选为90.5%以上。在一些优选的实施方式中,1mm以下厚度的微晶玻璃制品或微晶玻璃550nm的光透过率优选为91.5%以上。
在一些实施方式中,可将抗微生物成分添加到基质玻璃、微晶玻璃或微晶玻璃制品中。本文所述的微晶玻璃或微晶玻璃制品可用于例如厨房或餐饮工作台面的应用,其中很可能暴露于有害细菌。基质玻璃、微晶玻璃或微晶玻璃制品含有的抗微生物组分包括但不限Ag,AgO,Cu,CuO,Cu2O等。在一些实施方式中,上述抗微生物组分的单独或组合含量为2%以下,优选为1%以下。
本发明的基质玻璃、微晶玻璃和微晶玻璃制品可以通过如下方法进行生产和制造:
生成基质玻璃:按照组分比例将原料混合均匀,将均匀的混合原料放入铂制或石英制的坩埚中,根据玻璃组成的熔化难易度,在电炉或燃气炉中在1250~1650℃的温度范围内进行5~24小时熔化,搅拌使其均匀后,降至适当的温度并浇铸到模具中,缓慢冷却而成。
本发明的基质玻璃可以通过众所周知的方法进行成型。
本发明的基质玻璃,在成型后或成型加工后通过晶化工艺进行晶化处理,在玻璃内部均匀地析出结晶。该晶化处理可以通过1个阶段进行,也可以通过2个阶段进行,优选采用2个阶段进行晶化处理。在第1温度下进行成核工艺的处理,然后在比成核工艺温度高的第2温度下进行晶体生长工艺的处理。将在第1温度下进行的晶化处理称为第1晶化处理,将在第2温度下进行的晶化处理称为第2晶化处理。
为了使微晶玻璃得到所期望的物化性质,优选的晶化工艺为:
上述通过1个阶段进行晶化处理,可以连续地进行核形成工艺与结晶生长工艺。即, 升温至规定的晶化处理温度,在达到晶化处理温度之后,将其温度保持一定的时间,然后再进行降温。该晶化处理温度优选为550~700℃,为了能够析出所期望的晶相,更优选为580~650℃,在晶化处理温度下的保持时间优选为0~8小时,更优选为1~6小时。
上述通过2个阶段进行晶化处理时,第1温度优选为450~550℃,第2温度优选为550~700℃。在第1温度下的保持时间优选为0~24小时,更优选为2~15小时。在第2温度下的保持时间优选为0~10小时,更优选为0.5~6小时。
上述保持时间0小时,是指在达到该温度后不到1分钟又开始降温或升温。
在一些实施方式中,可通过各种工艺将本文所述的基质玻璃或微晶玻璃制造成成形体,所述成形体包括但不限于片材,所述工艺包括但不限于狭缝拉制、浮法、辊压和本领域公知的其他形成片材的工艺。或者,可通过本领域所公知的浮法或辊压法来形成基质玻璃或微晶玻璃。本发明所述成形体还包括透镜、棱镜等。
本发明的基质玻璃或微晶玻璃,可以采用研磨或抛光加工等方法制造片材的玻璃成形体或微晶玻璃成形体,但制造玻璃成形体或微晶玻璃成形体的方法,并不限定于这些方法。
本发明的基质玻璃或微晶玻璃,可以在一定温度下采用热弯工艺或压型工艺等方法制备形成各种形状的玻璃成形体或微晶玻璃成形体,但并不限定于这些方法。
在一些实施方式中,可以采用热弯工艺制成玻璃成形体或微晶玻璃成形体。所述热弯工艺是将2D或2.5D玻璃或微晶玻璃置放于模具中,在热弯机中依次进行包括升温预热、加压成型、保压降温等步骤制得3D曲面的玻璃成形体或微晶玻璃成形体的过程。
在一些实施方式中,微晶玻璃成形体具有2.5D或3D构造,即微晶玻璃成形体具有非平面构造。本文所述的“非平面构造”是指在一种2.5D或3D形状中,微晶玻璃成形体的至少一部分向外延伸或者沿着与由2D基质玻璃的原始、布局配置所限定的平面的夹角进行延伸。由基质玻璃形成的2.5D或3D微晶玻璃成形体可具有一个或多个凸起或弯曲部分。
在一些实施方式中,结合微晶玻璃中晶相的生长和晶相的转变等特性,微晶玻璃成形体的制造方法为热弯工艺方法。具体而言,所述方法包括预晶化和热加工成型。本发明所述的预晶化是将基质玻璃通过控制晶化工艺形成预晶化玻璃,所述预晶化玻璃的结晶度未达到目标微晶玻璃成型体的性能指标所需要的结晶度。预晶化玻璃再通过热加工成型工艺形成微晶玻璃成形体。
在一些实施方式中,微晶玻璃成形体的制造方法包括以下步骤:
1)将基质玻璃进行一次晶化热处理过程,包括升温、保温核化、升温、保温晶化、 降温至室温,形成预晶化玻璃;
2)将预晶化玻璃进行热加工成型得到微晶玻璃成形体。
本发明所述的晶化热处理过程包括将基质玻璃在一定温度Th和时间th下进行核化,再在一定温度Tc和时间tc下进行晶化,所获得的预晶化玻璃的结晶度未达到目标微晶玻璃成形体的性能指标所需要的结晶度。应用XRD测试数据,通过Rietveld全谱拟合精修法计算出预晶化玻璃的结晶度中主晶相总含量为Ic1。本发明的预晶化从工艺过程上来说是一个完整过程,包含核化工艺一步,晶化工艺一段、两段或三段及以上等等,是一个完整的从升温、保温,再次升温、保温……,然后再按工艺降至室温的过程。区别于部分文献或专利中提及的一次晶化、二次晶化……,本发明实际上只是一个完整晶化工艺中的第一段晶化,第二段晶化……,其中间是连续的,并没有出现降至室温后再次升温晶化的过程。
本发明所述热加工成型,是指在一定温度、时间、压力等条件下,对所述预晶化玻璃经过热加工工艺成型处理,所述热加工成型包括一次以上的热加工工艺,所述热加工工艺包括但不限于在一定温度、时间、压力等条件下对预晶化玻璃进行压制成型、弯曲成型或拉制成型。在热加工成型过程中,有时形状复杂的成型体无法通过一次热加工完成,可能需要进行两次以上的多次热加工才能实现。
在一些实施方式中,微晶玻璃成形体的制造方法为热弯工艺方法。具体而言,在一些实施方式中,微晶玻璃成形体的制造方法包括以下步骤:
1)升温预热:将基质玻璃或预晶化玻璃或微晶玻璃放置于模具内,模具在热弯机中依次通过各个升温站点,并在各站点停留一定时间保温。预热区温度为400~800℃,压力为0.01~0.05MPa,时间为40~200s。在一些实施方式中,对于5个预热站点的热弯机来说,一般初始升温稳定设定在500℃左右,后续站点逐渐升高温度,相邻两站点间的温度梯度由低温向高温逐渐缩小,最后一个预热站与压型第一站点温度温差在20℃范围内即可。
2)加压成型:模具在经过预热后转运到成型站点,热弯机对模具施加一定压力,压力范围为0.1~0.8Mpa,压力大小根据玻璃厚度、弧度等因素确定,成型站点温度范围为600~850℃,成型时间范围40~200s。
3)保压降温:将模具转运至降温站点逐站降温。控制降温温度范围750~500℃,压力为0.01~0.05Mpa,时间为40~200s。
微晶玻璃成形体采用热弯工艺成型除了需要控制如普通高铝玻璃的外观质量,同时还需要控制热弯过程中的晶体生长发育对微晶玻璃性能的影响,如用于显示设备或电子 设备外壳的3D曲面微晶玻璃,需要密切关注热弯后的光透过率、雾度、∣B∣值以及其均匀性等。
本发明所述的基质玻璃、微晶玻璃和微晶玻璃制品可具有合理有用的任何厚度。
本发明的微晶玻璃除了通过析出结晶提高机械特性之外,还可以通过形成压缩应力层获得更优异的机械性能,从而制成微晶玻璃制品。
在一些实施方式中,可将基质玻璃或微晶玻璃加工成片材,和/或造型(如打孔、热弯等),定形后抛光和/或扫光,再通过化学强化工艺进行化学强化。
本发明所述的化学强化,即是离子交换法。在离子交换过程中,基质玻璃或微晶玻璃中的较小的金属离子被靠近基质玻璃或微晶玻璃的具有相同价态的较大金属离子置换或“交换”。用较大的离子置换较小的离子,在基质玻璃或微晶玻璃中构建压缩应力,形成压缩应力层。
在一些实施方式中,金属离子是单价碱金属离子(例如Na+、K+、Rb+、Cs+等),离子交换通过将基质玻璃或微晶玻璃浸没在包含较大的金属离子的至少一种熔融盐的盐浴中来进行,该较大的金属离子用于置换基质玻璃中的较小的金属离子。或者,其他单价金属离子例如Ag+、Tl+、Cu+等也可用于交换单价离子。用来化学强化基质玻璃或微晶玻璃的一种或更多种离子交换过程可包括但不限于:将其浸没在单一盐浴中,或者将其浸没在具有相同或不同组成的多个盐浴中,在浸没之间有洗涤和/或退火步骤。
在一些实施方式中,基质玻璃或微晶玻璃可通过在浸没于约350℃~470℃的温度的熔融Na盐(如NaNO3)的盐浴中约1~36小时来进行离子交换,优选温度范围为380℃~460℃,优选时间范围为2~24小时。在这种实施方式中,Na离子置换基质玻璃或微晶玻璃中的部分Li离子,从而形成表面压缩层且呈现高机械性能。在一些实施方式中,基质玻璃或微晶玻璃可通过在浸没于约360℃~450℃的温度下熔融K盐(如KNO3)的盐浴中1~36小时来进行离子交换,优选时间范围为2~24小时。在一些实施方式中,基质玻璃或微晶玻璃可通过在浸没于约360℃~450℃的温度下熔融K盐和Na盐的混合盐浴中1~36小时来进行离子交换,优选时间范围为2~24小时。
本发明微晶玻璃和/或微晶玻璃制品和/或基质玻璃各项性能指标采用以下方法测试:
[雾度]
采用雾度测试仪美能达CM3600A,以1mm以下的样品制备,以GB2410-80为标准进行测试。
[晶粒尺寸]
利用SEM扫描电镜进行测定,微晶玻璃通过在HF酸中进行表面处理,再对微晶玻璃表面进行喷金,在SEM扫描电镜下进行表面扫描,确定其晶粒的大小。
[光透过率]
本文所述的光透过率均为外部透过率,有时候简称透过率。
将样品加工成1mm以下并进行相对面平行抛光,利用日立U-41000形分光光度计测定400~800nm的平均光透过率。
将样品加工成1mm以下并进行相对面平行抛光,利用日立U-41000形分光光度计测定550nm的光透过率。
[结晶度]
将XRD衍射峰与数据库图谱进行对比,结晶度是通过计算结晶相衍射强度在整体图谱强度中所占比例所得,并且通过使用纯石英晶体进行内部标定。
[离子交换层深度]
利用玻璃表面应力仪SLP-2000进行离子交换层深度测定。
作为测定条件以样品的折射率为1.56、光学弹性常数为29[(nm/cm)/Mpa]进行计算。
[表面应力]
利用玻璃表面应力仪SLP-2000进行表面应力测定。
作为测定条件以样品的折射率为1.52、光学弹性常数为29[(nm/cm)/Mpa]进行计算。
[耐摔性]
使用定向跌落试验机WH-2101进行耐摔性测试。通过在2D微晶玻璃制品上负载同样规格玻璃制品(每片重量为20g,负载2片),底座上铺设60-80目的砂纸,从规定高度自由落体,样品直接砸在砂纸上,不发生断裂而能够承受的冲击的高度即为耐摔性。具体地说,试验从高度600mm开始实施,在不发生断裂的情况下,通过700mm、800mm、900mm、1000mm及以上依次改变高度。对于具有“耐摔性”的实施例,以微晶玻璃制品为试验对象。在实施例中记录为2000mm的试验数据,表示即使从2000mm的高度带有负载的微晶玻璃制品也不发生断裂而承受了冲击,跌落试验机WH-2101最高实验高度为2000mm。
[落球试验高度]
将145mm×67mm×0.7mm的微晶玻璃制品样品放置在玻璃承载夹具上,使132g的钢球从规定高度落下,样品不发生断裂而能够承受的冲击的最大落球试验高度。具体地说,试验从落球试验高度800mm开始实施,在不发生断裂的情况下,通过850mm、900mm、950mm、1000mm及以上依次改变高度。对于具有“落球试验高度”的实施例,以微晶玻璃制品为试验对象。在实施例中记录为1000mm的试验数据,表示即使从1000mm的高度 使钢球落下微晶玻璃制品也不发生断裂而承受了冲击。本发明中落球试验高度有时候简称落球高度。
[本体落球高度]
将145mm×67mm×0.7mm的微晶玻璃样品放置在玻璃承载夹具上,使32g的钢球从规定高度落下,样品不发生断裂而能够承受的冲击的最大落球试验高度即为本体落球高度。具体地说,试验从落球试验高度500mm开始实施,在不发生断裂的情况下,通过550mm、600mm、650mm、700mm及以上依次改变高度。对于具有“本体落球高度”的实施例,以微晶玻璃为试验对象,即为微晶玻璃的落球试验高度。在实施例中记录为1000mm的试验数据,表示即使从1000mm的高度使钢球落下微晶玻璃也不发生断裂而承受了冲击。
[断裂韧性]
使用直接测量压痕扩展裂纹尺寸的方法,试样规格为2mm×4mm×20mm,经过倒角、磨平和抛光,试样制备完成后,用维氏硬度压头在试样上加49N的力并维持30s的时间,打出压痕后,用三点弯曲的方法测定其断裂强度。
[四点弯曲强度]
采用微机控制电子万能试验机CMT6502,样品规格为1mm以下厚度,以《ASTM C 158-2002》为标准进行测试。本发明中有时候将四点弯曲强度简称为弯曲强度。
[维氏硬度]
用相对面夹角为136°的金刚石四角锥压头在试验面上压入金字塔形状的凹陷时的负荷(N)除以通过凹陷的长度计算出的表面积(mm2)的值表示。使试验负荷为100(N)、保持时间为15(秒)进行。本发明中有时候将维氏硬度简称为硬度。
[∣B∣值]
使用美能达CM-700d进行B值检测。样品规格为1mm以下厚度,用配套校正长筒和短筒分别进行仪器零位校准和白板校准,校准后用长筒再进行对空测试,判定仪器稳定校准可靠性(B≤0.05),仪器校正合格后将产品放置在零位长筒上进行测试。
∣B∣值是B值的绝对值。
[杨氏模量]
杨氏模量(E)采用超声波测试其纵波速度和横波速度,再按以下公式计算得出。

G=VS 2ρ
式中:E为杨氏模量,Pa;
G为剪切模量,Pa;
VT为横波速度,m/s;
VS为纵波速度,m/s;
ρ为玻璃密度,g/cm3
[折射率]
折射率(nd)按照《GB/T7962.1-2010》规定的方法测试。
本发明微晶玻璃制品具有以下性能:
1)在一些实施方式中,微晶玻璃制品的四点弯曲强度为600MPa以上,优选为650MPa以上,更优选为700MPa以上。
2)在一些实施方式中,微晶玻璃制品的离子交换层深度为80μm以上,优选为90μm以上,更优选100μm以上。
3)在一些实施方式中,微晶玻璃制品的表面应力为100MPa以上,优选为150MPa以上,更优选为200MPa以上。
4)在一些实施方式中,微晶玻璃制品的落球试验高度为1400mm以上,优选为1500mm以上,更优选为1600mm以上。
5)在一些实施方式中,微晶玻璃制品的断裂韧性为1MPa·m1/2以上,优选为1.1MPa·m1/2以上,更优选为1.2MPa·m1/2以上。
6)在一些实施方式中,微晶玻璃制品的维氏硬度(Hv)为670kgf/mm2以上,优选为680kgf/mm2以上,更优选为700kgf/mm2以上。
7)在一些实施方式中,微晶玻璃制品的结晶度为10%以上,优选为15%以上,更优选为20%以上。
8)在一些实施方式中,微晶玻璃制品的晶粒尺寸为50nm以下,优选为40nm以下,更优选为30nm以下。
9)在一些实施方式中,微晶玻璃制品的耐摔性为1500mm以上,优选为1600mm以上,更优选为1800mm以上。
10)在一些实施方式中,1mm以下厚度的微晶玻璃制品的雾度为0.2%以下,优选为0.17%以下,更优选为0.15%以下。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。
11)在一些实施方式中,1mm以下厚度的微晶玻璃制品,400~800nm波长的平均光透过率为88.0%以上,优选为89.0%以上,更优选为90.0%以上,进一步优选为90.5%以上。 该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。
12)在一些实施方式中,1mm以下厚度的微晶玻璃制品,550nm波长的光透过率为89.0%以上,优选为90.0%以上,更优选为91.0%以上,进一步优选为91.5%以上。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。
13)在一些实施方式中,1mm以下厚度的微晶玻璃制品,400~800nm的平均光∣B∣值为1.0以下,优选为0.9以下,更优选为0.8以下。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。
本发明微晶玻璃具有以下性能:
1)在一些实施方式中,微晶玻璃的结晶度为10%以上,优选为15%以上,更优选为20%以上。
2)在一些实施方式中,微晶玻璃的晶粒尺寸为50nm以下,优选为40nm以下,更优选为30nm以下。
3)在一些实施方式中,1mm以下厚度的微晶玻璃的雾度为0.2%以下,优选为0.17%以下,更优选为0.15%以下。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。
4)在一些实施方式中,1mm以下厚度的微晶玻璃,400~800nm波长的平均光透过率为87.0%以上,优选为88.0%以上,更优选为88.5%以上。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。
5)在一些实施方式中,1mm以下厚度的微晶玻璃,550nm波长的光透过率为89.0%以上,优选为90.0%以上,更优选为90.5%以上。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。
6)在一些实施方式中,微晶玻璃的本体落球高度为1700mm以上,优选为1900mm以上,更优选为2000mm以上。
7)在一些实施方式中,1mm以下厚度的微晶玻璃,400~800nm的平均光∣B∣值为1.0以下,优选为0.9以下,更优选为0.8以下。该厚度优选为0.2~1mm,更优选为0.3~0.9mm,进一步优选为0.5~0.8mm,更进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或 0.75mm。
8)在一些实施方式中,微晶玻璃的维氏硬度(Hv)为600kgf/mm2以上,优选为620kgf/mm2以上,更优选为630kgf/mm2以上。
9)在一些实施方式中,微晶玻璃的折射率(nd)为1.520~1.545。
10)在一些实施方式中,微晶玻璃制品的杨氏模量(E)为80~100GPa。
本发明基质玻璃具有以下性能:
1)在一些实施方式中,基质玻璃的折射率(nd)为1.510~1.530。
本发明的微晶玻璃、微晶玻璃制品、基质玻璃、玻璃成形体、微晶玻璃成形体由于具有上述优异的性能,可广泛制作成玻璃盖板或玻璃元器件;同时,本发明微晶玻璃、微晶玻璃制品、基质玻璃、玻璃成形体、微晶玻璃成形体可应用于电子设备或显示设备中,如手机、手表、电脑、触摸显示屏等,用于制造移动电话、智能电话、平板电脑、笔记本电脑、PDA、电视机、个人电脑、MTA机器或工业显示器的防护玻璃,或用于制造触摸屏、防护窗、汽车车窗、火车车窗、航空机械窗、触摸屏防护玻璃,或用于制造硬盘基材或太阳能电池基材,或用于制造白色家电,如用于制造冰箱部件或厨具。
实施例
为了进一步清楚地阐释和说明本发明的技术方案,提供以下的非限制性实施例。本发明实施例经过诸多努力以确保数值(例如数量、温度等)的精确性,但是必须考虑到存在一些误差和偏差。组成自身基于氧化物以重量%给出,且已标准化成100%。
<基质玻璃实施例>
本实施例采用上述基质玻璃的制造方法得到具有表1~表2所示的组成的基质玻璃。另外,通过本发明所述的测试方法测定各基质玻璃的特性,并将测定结果表示在表1~表2中。
表1.

表2.
<微晶玻璃实施例>
本实施例采用上述微晶玻璃的制造方法得到具有表3~表4所示的组成的微晶玻璃。另外,通过本发明所述的测试方法测定各微晶玻璃的特性,并将测定结果表示在表3~ 表4中,以下实施例中雾度、400~800nm波长的平均光透过率、550nm波长的光透过率、400~800nm的平均光∣B∣值的测试样品厚度为0.7mm。
表3.
表4.
<微晶玻璃制品实施例>
本实施例采用上述微晶玻璃制品的制造方法得到具有表5~表6所示组成的微晶玻 璃制品。另外,通过本发明所述的测试方法测定各微晶玻璃制品的特性,并将测定结果表示在表5~表6中,以下实施例中雾度、400~800nm波长的平均光透过率、550nm波长的光透过率、400~800nm的平均光∣B∣值的测试样品厚度为0.7mm。
表5.

表6.

Claims (54)

  1. 微晶玻璃制品,其特征在于,其组分按重量百分比表示,含有:SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%,其中(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5。
  2. 根据权利要求1所述的微晶玻璃制品,其特征在于,其组分按重量百分比表示,还含有:ZnO:0~2%;和/或MgO:0~2%;和/或B2O3:0~4%;和/或K2O:0~3%;和/或Ln2O3:0~2%;和/或澄清剂:0~2%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
  3. 微晶玻璃制品,其特征在于,含有SiO2、Al2O3、Li2O、Na2O、P2O5、ZrO2,其组分按重量百分比表示,其中(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5,1mm以下厚度的微晶玻璃制品的雾度为0.2%以下。
  4. 根据权利要求3所述的微晶玻璃制品,其特征在于,其组分按重量百分比表示,含有:SiO2:60~80%;和/或Al2O3:3~15%;和/或Li2O:大于或等于5%但小于10%;和/或Na2O:4~8%;和/或P2O5:0.5~5%;和/或ZrO2:大于5%但小于或等于15%;和/或ZnO:0~2%;和/或MgO:0~2%;和/或B2O3:0~4%;和/或K2O:0~3%;和/或Ln2O3:0~2%;和/或澄清剂:0~2%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
  5. 根据权利要求1~4任一所述的微晶玻璃制品,其特征在于,其组分按重量百分比表示,满足以下5种情形中的一种或多种:
    1)SiO2/ZrO2为5.0~15.0,优选SiO2/ZrO2为6.0~13.0,更优选SiO2/ZrO2为6.5~12.0,进一步优选SiO2/ZrO2为7.0~11.0;
    2)(SiO2+Li2O)/(ZrO2+P2O5)为5.0~13.5,优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~11.5,更优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~10.5;
    3)(SiO2+Al2O3+Na2O)/Li2O为7.0~18.0,优选(SiO2+Al2O3+Na2O)/Li2O为7.5~15.0,更优选(SiO2+Al2O3+Na2O)/Li2O为8.5~13.0,进一步优选(SiO2+Al2O3+Na2O)/Li2O为8.5~11.0;
    4)(ZrO2+Al2O3)/Li2O为0.85~5.0,优选(ZrO2+Al2O3)/Li2O为0.9~4.0,更优选(ZrO2+Al2O3)/Li2O为1.0~3.5,进一步优选(ZrO2+Al2O3)/Li2O为1.0~3.0;
    5)(Li2O+Na2O)/(SiO2+ZrO2)为0.10~0.27,优选(Li2O+Na2O)/(SiO2+ZrO2)为0.12~0.25,更优选(Li2O+Na2O)/(SiO2+ZrO2)为0.14~0.25,进一步优选(Li2O+Na2O)/(SiO2+ZrO2)为0.15~0.23。
  6. 根据权利要求1~4任一所述的微晶玻璃制品,其特征在于,其组分按重量百分比表示,含有:SiO2:62~78%,优选SiO2:64~75%;和/或Al2O3:5~12%,优选Al2O3:5~10%;和/或Li2O:大于或等于6%但小于10%;和/或Na2O:4~7.5%,优选Na2O:4.5~7%;和/或P2O5: 1~4.5%,优选P2O5:1.5~4%;和/或ZrO2:5.5~13%,优选ZrO2:6~12%;和/或ZnO:0~1.5%,优选ZnO:0~1%;和/或MgO:0~1.5%,优选MgO:0~1%;和/或B2O3:0~3%,优选B2O3:0~2%;和/或K2O:0~2%,优选K2O:0~1%;和/或Ln2O3:0~1%,优选Ln2O3:0~0.5%;和/或澄清剂:0~1%,优选澄清剂:0~0.5%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
  7. 根据权利要求1~4任一所述的微晶玻璃制品,其特征在于,所述微晶玻璃制品含有硅酸锂晶相,硅酸锂晶相具有比其他晶相更高的重量百分比,优选硅酸锂晶相占微晶玻璃制品的重量百分比为5~50%,更优选硅酸锂晶相占微晶玻璃制品的重量百分比为5~40%,进一步优选硅酸锂晶相占微晶玻璃制品的重量百分比为10~30%。
  8. 根据权利要求1~4任一所述的微晶玻璃制品,其特征在于,所述微晶玻璃制品含有一硅酸锂晶相,一硅酸锂晶相具有比其他晶相更高的重量百分比,优选一硅酸锂晶相占微晶玻璃制品的重量百分比为5~50%,更优选一硅酸锂晶相占微晶玻璃制品的重量百分比为5~40%,进一步优选一硅酸锂晶相占微晶玻璃制品的重量百分比为10~30%。
  9. 根据权利要求1~4任一所述的微晶玻璃制品,其特征在于,所述微晶玻璃制品含有二硅酸锂晶相,二硅酸锂晶相占微晶玻璃制品的重量百分比为20%以下,优选二硅酸锂晶相占微晶玻璃制品的重量百分比为10%以下,更优选二硅酸锂晶相占微晶玻璃制品的重量百分比为5%以下,进一步优选不含有二硅酸锂晶相。
  10. 根据权利要求1~4任一所述的微晶玻璃制品,其特征在于,所述微晶玻璃制品含有透锂长石晶相,透锂长石晶相占微晶玻璃制品的重量百分比为15%以下,优选透锂长石晶相占微晶玻璃制品的重量百分比为10%以下,更优选透锂长石晶相占微晶玻璃制品的重量百分比为5%以下,进一步优选不含有透锂长石晶相。
  11. 根据权利要求1~4任一所述的微晶玻璃制品,其特征在于,所述微晶玻璃制品的落球试验高度为1400mm以上,优选为1500mm以上,更优选为1600mm以上;和/或断裂韧性为1MPa·m1/2以上,优选为1.1MPa·m1/2以上,更优选为1.2MPa·m1/2以上;和/或四点弯曲强度为600MPa以上,优选为650MPa以上,更优选为700MPa以上;和/或维氏硬度为670kgf/mm2以上,优选为680kgf/mm2以上,更优选为700kgf/mm2以上;和/或离子交换层深度为80μm以上,优选为90μm以上,更优选100μm以上;和/或表面应力为100MPa以上,优选为150MPa以上,更优选为200MPa以上;和/或结晶度为10%以上,优选为15%以上,更优选为20%以上;和/或晶粒尺寸为50nm以下,优选为40nm以下,更优选为30nm以下;和/或耐摔性为1500mm以上,优选为1600mm以上,更优选为1800mm以上。
  12. 根据权利要求1~4任一所述的微晶玻璃制品,其特征在于,1mm以下厚度的微晶玻 璃制品的雾度为0.2%以下,优选为0.17%以下,更优选为0.15%以下;和/或400~800nm波长的平均光透过率为88.0%以上,优选为89.0%以上,更优选为90.0%以上,进一步优选为90.5%以上;和/或550nm波长的光透过率为89.0%以上,优选为90.0%以上,更优选为91.0%以上,进一步优选为91.5%以上;和/或400~800nm的平均光∣B∣值为1.0以下,优选为0.9以下,更优选为0.8以下。
  13. 根据权利要求12所述的微晶玻璃制品,其特征在于,所述微晶玻璃制品的厚度为0.2~1mm,优选为0.3~0.9mm,更优选为0.5~0.8mm,进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。
  14. 根据权利要求1~4任一所述的微晶玻璃制品,其特征在于,所述微晶玻璃制品含有着色剂。
  15. 根据权利要求14所述的微晶玻璃制品,其特征在于,所述着色剂按重量百分比表示,含有:NiO:0~4%;和/或Ni2O3:0~4%;和/或CoO:0~2%;和/或Co2O3:0~2%;和/或Fe2O3:0~7%;和/或MnO2:0~4%;和/或Er2O3:0~8%;和/或Nd2O3:0~8%;和/或Cu2O:0~4%;和/或Pr2O3:0~8%;和/或CeO2:0~4%。
  16. 微晶玻璃,其特征在于,其组分按重量百分比表示,含有:SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%,其中(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5。
  17. 根据权利要求16所述的微晶玻璃,其特征在于,其组分按重量百分比表示,还含有:ZnO:0~2%;和/或MgO:0~2%;和/或B2O3:0~4%;和/或K2O:0~3%;和/或Ln2O3:0~2%;和/或澄清剂:0~2%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
  18. 微晶玻璃,其特征在于,含有SiO2、Al2O3、Li2O、Na2O、P2O5、ZrO2,其组分按重量百分比表示,其中(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5,1mm以下厚度的微晶玻璃的雾度为0.2%以下。
  19. 根据权利要求18所述的微晶玻璃,其特征在于,其组分按重量百分比表示,含有:SiO2:60~80%;和/或Al2O3:3~15%;和/或Li2O:大于或等于5%但小于10%;和/或Na2O:4~8%;和/或P2O5:0.5~5%;和/或ZrO2:大于5%但小于或等于15%;和/或ZnO:0~2%;和/或MgO:0~2%;和/或B2O3:0~4%;和/或K2O:0~3%;和/或Ln2O3:0~2%;和/或澄清剂:0~2%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
  20. 根据权利要求16~19任一所述的微晶玻璃,其特征在于,其组分按重量百分比表示,满足以下5种情形中的一种或多种:
    1)SiO2/ZrO2为5.0~15.0,优选SiO2/ZrO2为6.0~13.0,更优选SiO2/ZrO2为6.5~12.0, 进一步优选SiO2/ZrO2为7.0~11.0;
    2)(SiO2+Li2O)/(ZrO2+P2O5)为5.0~13.5,优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~11.5,更优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~10.5;
    3)(SiO2+Al2O3+Na2O)/Li2O为7.0~18.0,优选(SiO2+Al2O3+Na2O)/Li2O为7.5~15.0,更优选(SiO2+Al2O3+Na2O)/Li2O为8.5~13.0,进一步优选(SiO2+Al2O3+Na2O)/Li2O为8.5~11.0;
    4)(ZrO2+Al2O3)/Li2O为0.85~5.0,优选(ZrO2+Al2O3)/Li2O为0.9~4.0,更优选(ZrO2+Al2O3)/Li2O为1.0~3.5,进一步优选(ZrO2+Al2O3)/Li2O为1.0~3.0;
    5)(Li2O+Na2O)/(SiO2+ZrO2)为0.10~0.27,优选(Li2O+Na2O)/(SiO2+ZrO2)为0.12~0.25,更优选(Li2O+Na2O)/(SiO2+ZrO2)为0.14~0.25,进一步优选(Li2O+Na2O)/(SiO2+ZrO2)为0.15~0.23。
  21. 根据权利要求16~19任一所述的微晶玻璃,其特征在于,其组分按重量百分比表示,含有:SiO2:62~78%,优选SiO2:64~75%;和/或Al2O3:5~12%,优选Al2O3:5~10%;和/或Li2O:大于或等于6%但小于10%;和/或Na2O:4~7.5%,优选Na2O:4.5~7%;和/或P2O5:1~4.5%,优选P2O5:1.5~4%;和/或ZrO2:5.5~13%,优选ZrO2:6~12%;和/或ZnO:0~1.5%,优选ZnO:0~1%;和/或MgO:0~1.5%,优选MgO:0~1%;和/或B2O3:0~3%,优选B2O3:0~2%;和/或K2O:0~2%,优选K2O:0~1%;和/或Ln2O3:0~1%,优选Ln2O3:0~0.5%;和/或澄清剂:0~1%,优选澄清剂:0~0.5%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
  22. 根据权利要求16~19任一所述的微晶玻璃,其特征在于,所述微晶玻璃含有硅酸锂晶相,硅酸锂晶相具有比其他晶相更高的重量百分比,优选硅酸锂晶相占微晶玻璃的重量百分比为5~50%,更优选硅酸锂晶相占微晶玻璃的重量百分比为5~40%,进一步优选硅酸锂晶相占微晶玻璃的重量百分比为10~30%。
  23. 根据权利要求16~19任一所述的微晶玻璃,其特征在于,所述微晶玻璃含有一硅酸锂晶相,一硅酸锂晶相具有比其他晶相更高的重量百分比,优选一硅酸锂晶相占微晶玻璃的重量百分比为5~50%,更优选一硅酸锂晶相占微晶玻璃的重量百分比为5~40%,进一步优选一硅酸锂晶相占微晶玻璃的重量百分比为10~30%。
  24. 根据权利要求16~19任一所述的微晶玻璃,其特征在于,所述微晶玻璃含有二硅酸锂晶相,二硅酸锂晶相占微晶玻璃的重量百分比为20%以下,优选二硅酸锂晶相占微晶玻璃的重量百分比为10%以下,更优选二硅酸锂晶相占微晶玻璃的重量百分比为5%以下,进一步优选不含有二硅酸锂晶相。
  25. 根据权利要求16~19任一所述的微晶玻璃,其特征在于,所述微晶玻璃含有透锂长石晶相,透锂长石晶相占微晶玻璃的重量百分比为15%以下,优选透锂长石晶相占微晶玻璃的重量百分比为10%以下,更优选透锂长石晶相占微晶玻璃的重量百分比为5%以下,进一步优选不含有透锂长石晶相。
  26. 根据权利要求16~19任一所述的微晶玻璃,其特征在于,所述微晶玻璃的结晶度为10%以上,优选为15%以上,更优选为20%以上;和/或晶粒尺寸为50nm以下,优选为40nm以下,更优选为30nm以下;和/或本体落球高度为1700mm以上,优选为1900mm以上,更优选为2000mm以上;和/或维氏硬度为600kgf/mm2以上,优选为620kgf/mm2以上,更优选为630kgf/mm2以上;和/或折射率为1.520~1.545;和/或杨氏模量为80~100GPa。
  27. 根据权利要求16~19任一所述的微晶玻璃,其特征在于,1mm以下厚度的微晶玻璃的雾度为0.2%以下,优选为0.17%以下,更优选为0.15%以下;和/或400~800nm波长的平均光透过率为88.0%以上,优选为89.0%以上,更优选为90.0%以上,进一步优选为90.5%以上;和/或550nm波长的光透过率为89.0%以上,优选为90.0%以上,更优选为91.0%以上,进一步优选为91.5%以上;和/或400~800nm的平均光∣B∣值为1.0以下,优选为0.9以下,更优选为0.8以下。
  28. 根据权利要求27所述的微晶玻璃,其特征在于,所述微晶玻璃的厚度为0.2~1mm,优选为0.3~0.9mm,更优选为0.5~0.8mm,进一步优选为0.55mm或0.6mm或0.68mm或0.7mm或0.75mm。
  29. 根据权利要求16~19任一所述的微晶玻璃,其特征在于,所述微晶玻璃含有着色剂。
  30. 根据权利要求29所述的微晶玻璃,其特征在于,所述着色剂按重量百分比表示,含有:NiO:0~4%;和/或Ni2O3:0~4%;和/或CoO:0~2%;和/或Co2O3:0~2%;和/或Fe2O3:0~7%;和/或MnO2:0~4%;和/或Er2O3:0~8%;和/或Nd2O3:0~8%;和/或Cu2O:0~4%;和/或Pr2O3:0~8%;和/或CeO2:0~4%。
  31. 基质玻璃,其特征在于,其组分按重量百分比表示,含有:SiO2:60~80%;Al2O3:3~15%;Li2O:大于或等于5%但小于10%;Na2O:4~8%;P2O5:0.5~5%;ZrO2:大于5%但小于或等于15%,其中(SiO2+Li2O)/(ZrO2+P2O5)为4.0~15.5。
  32. 根据权利要求37所述的基质玻璃,其特征在于,其组分按重量百分比表示,还含有:ZnO:0~2%;和/或MgO:0~2%;和/或B2O3:0~4%;和/或K2O:0~3%;和/或Ln2O3:0~2%;和/或澄清剂:0~2%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
  33. 根据权利要求31或32所述的基质玻璃,其特征在于,其组分按重量百分比表示,满足以下5种情形中的一种或多种:
    1)SiO2/ZrO2为5.0~15.0,优选SiO2/ZrO2为6.0~13.0,更优选SiO2/ZrO2为6.5~12.0,进一步优选SiO2/ZrO2为7.0~11.0;
    2)(SiO2+Li2O)/(ZrO2+P2O5)为5.0~13.5,优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~11.5,更优选(SiO2+Li2O)/(ZrO2+P2O5)为6.0~10.5;
    3)(SiO2+Al2O3+Na2O)/Li2O为7.0~18.0,优选(SiO2+Al2O3+Na2O)/Li2O为7.5~15.0,更优选(SiO2+Al2O3+Na2O)/Li2O为8.5~13.0,进一步优选(SiO2+Al2O3+Na2O)/Li2O为8.5~11.0;
    4)(ZrO2+Al2O3)/Li2O为0.85~5.0,优选(ZrO2+Al2O3)/Li2O为0.9~4.0,更优选(ZrO2+Al2O3)/Li2O为1.0~3.5,进一步优选(ZrO2+Al2O3)/Li2O为1.0~3.0;
    5)(Li2O+Na2O)/(SiO2+ZrO2)为0.10~0.27,优选(Li2O+Na2O)/(SiO2+ZrO2)为0.12~0.25,更优选(Li2O+Na2O)/(SiO2+ZrO2)为0.14~0.25,进一步优选(Li2O+Na2O)/(SiO2+ZrO2)为0.15~0.23。
  34. 根据权利要求31或32所述的基质玻璃,其特征在于,其组分按重量百分比表示,含有:SiO2:62~78%,优选SiO2:64~75%;和/或Al2O3:5~12%,优选Al2O3:5~10%;和/或Li2O:大于或等于6%但小于10%;和/或Na2O:4~7.5%,优选Na2O:4.5~7%;和/或P2O5:1~4.5%,优选P2O5:1.5~4%;和/或ZrO2:5.5~13%,优选ZrO2:6~12%;和/或ZnO:0~1.5%,优选ZnO:0~1%;和/或MgO:0~1.5%,优选MgO:0~1%;和/或B2O3:0~3%,优选B2O3:0~2%;和/或K2O:0~2%,优选K2O:0~1%;和/或Ln2O3:0~1%,优选Ln2O3:0~0.5%;和/或澄清剂:0~1%,优选澄清剂:0~0.5%,所述Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3中的一种或多种。
  35. 根据权利要求31或32所述的基质玻璃,其特征在于,所述基质玻璃的折射率为1.510~1.530。
  36. 根据权利要求31或32所述的基质玻璃,其特征在于,所述基质玻璃含有着色剂。
  37. 根据权利要求36所述的基质玻璃,其特征在于,所述着色剂按重量百分比表示,含有:NiO:0~4%;和/或Ni2O3:0~4%;和/或CoO:0~2%;和/或Co2O3:0~2%;和/或Fe2O3:0~7%;和/或MnO2:0~4%;和/或Er2O3:0~8%;和/或Nd2O3:0~8%;和/或Cu2O:0~4%;和/或Pr2O3:0~8%;和/或CeO2:0~4%。
  38. 微晶玻璃成形体,其特征在于,含有权利要求16~30任一所述的微晶玻璃。
  39. 玻璃盖板,其特征在于,含有权利要求1~15任一所述的微晶玻璃制品,和/或权利要求16~30任一所述的微晶玻璃,和/或权利要求31~37任一所述的基质玻璃,和/或权利要求38所述的微晶玻璃成形体。
  40. 玻璃元器件,其特征在于,含有权利要求1~15任一所述的微晶玻璃制品,和/或权利要求16~30任一所述的微晶玻璃,和/或权利要求31~37任一所述的基质玻璃,和/或权利要求38所述的微晶玻璃成形体。
  41. 显示设备,其特征在于,含有权利要求1~15任一所述的微晶玻璃制品,和/或权利要求16~30任一所述的微晶玻璃,和/或权利要求31~37任一所述的基质玻璃,和/或权利要求38所述的微晶玻璃成形体,和/或权利要求39所述的玻璃盖板,和/或权利要求40所述的玻璃元器件。
  42. 电子设备,其特征在于,含有权利要求1~15任一所述的微晶玻璃制品,和/或权利要求16~30任一所述的微晶玻璃,和/或权利要求31~37任一所述的基质玻璃,和/或权利要求38所述的微晶玻璃成形体,和/或权利要求39所述的玻璃盖板,和/或权利要求40所述的玻璃元器件。
  43. 权利要求1~15任一所述微晶玻璃制品的制造方法,其特征在于,所述方法包括以下步骤:形成基质玻璃,将基质玻璃通过晶化工艺形成微晶玻璃,再将所述微晶玻璃通过化学强化工艺形成微晶玻璃制品。
  44. 根据权利要求43所述的微晶玻璃制品的制造方法,其特征在于,所述晶化工艺包括以下步骤:升温至规定的晶化处理温度,在达到晶化处理温度之后,将其温度保持一定的时间,然后再进行降温,该晶化处理温度为550~700℃,优选为580~650℃,在晶化处理温度下的保持时间为0~8小时,优选为1~6小时。
  45. 根据权利要求43所述的微晶玻璃制品的制造方法,其特征在于,所述晶化工艺包括以下步骤:在第1温度下进行成核工艺的处理,然后在比成核工艺温度高的第2温度下进行晶体生长工艺的处理。
  46. 根据权利要求45所述的微晶玻璃制品的制造方法,其特征在于,所述晶化工艺包括以下步骤:第1温度为450~550℃,第2温度为550~700℃;在第1温度下的保持时间为0~24小时,优选为2~15小时;在第2温度下的保持时间为0~10小时,优选为0.5~6小时。
  47. 根据权利要求43~46任一所述的微晶玻璃制品的制造方法,其特征在于,所述化学强化工艺包括:微晶玻璃浸没于350℃~470℃的温度的熔融Na盐的盐浴中1~36小时,优选温度范围为380℃~460℃,优选时间范围为2~24小时;和/或微晶玻璃浸没于360℃~450℃的温度下熔融K盐的盐浴中1~36小时,优选时间范围为2~24小时;和/或微晶玻璃浸没于360℃~450℃的温度下熔融K盐和Na盐的混合盐浴中1~36小时,优选时间范围为2~24小时。
  48. 权利要求16~30任一所述的微晶玻璃的制造方法,其特征在于,所述方法包括以下 步骤:形成基质玻璃,然后将基质玻璃通过晶化工艺形成微晶玻璃。
  49. 根据权利要求48所述的微晶玻璃的制造方法,其特征在于,所述晶化工艺包括以下步骤:升温至规定的晶化处理温度,在达到晶化处理温度之后,将其温度保持一定的时间,然后再进行降温,该晶化处理温度为550~700℃,优选为580~650℃,在晶化处理温度下的保持时间为0~8小时,优选为1~6小时。
  50. 根据权利要求48所述的微晶玻璃的制造方法,其特征在于,所述晶化工艺包括以下步骤:在第1温度下进行成核工艺的处理,然后在比成核工艺温度高的第2温度下进行晶体生长工艺的处理。
  51. 根据权利要求50所述的微晶玻璃的制造方法,其特征在于,所述晶化工艺包括以下步骤:第1温度为450~550℃,第2温度为550~700℃;在第1温度下的保持时间为0~24小时,优选为2~15小时;在第2温度下的保持时间为0~10小时,优选为0.5~6小时。
  52. 权利要求38所述的微晶玻璃成形体的制造方法,其特征在于,所述方法包括将微晶玻璃研磨或抛光制成微晶玻璃成形体,或在一定温度下将基质玻璃或微晶玻璃通过热弯工艺或压型工艺制成微晶玻璃成形体。
  53. 根据权利要求52所述的微晶玻璃成形体的制造方法,其特征在于,所述方法包括以下步骤:将基质玻璃进行一次晶化热处理过程,包括升温、保温核化、升温、保温晶化、降温至室温,形成预晶化玻璃;将预晶化玻璃进行热加工成型得到微晶玻璃成形体。
  54. 根据权利要求52所述的微晶玻璃成形体的制造方法,其特征在于,所述方法包括以下步骤:
    1)升温预热:将基质玻璃或预晶化玻璃或微晶玻璃放置于模具内,模具在热弯机中依次通过各个升温站点,并在各站点停留一定时间保温,预热区温度为400~800℃,压力为0.01~0.05MPa,时间为40~200s;
    2)加压成型:模具在经过预热后转运到成型站点,热弯机对模具施加一定压力,压力范围为0.1~0.8Mpa,成型站点温度范围为600~850℃,成型时间范围40~200s;
    3)保压降温:将模具转运至降温站点逐站降温,降温温度范围750~500℃,压力为0.01~0.05Mpa,时间为40~200s。
PCT/CN2023/093852 2022-06-24 2023-05-12 微晶玻璃、微晶玻璃制品及其制造方法 WO2023246365A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210722730.7A CN114907016B (zh) 2022-06-24 2022-06-24 微晶玻璃、微晶玻璃制品及其制造方法
CN202210722730.7 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023246365A1 true WO2023246365A1 (zh) 2023-12-28

Family

ID=82772836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093852 WO2023246365A1 (zh) 2022-06-24 2023-05-12 微晶玻璃、微晶玻璃制品及其制造方法

Country Status (3)

Country Link
CN (1) CN114907016B (zh)
TW (1) TW202400535A (zh)
WO (1) WO2023246365A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698082B (zh) * 2021-09-10 2023-03-21 成都光明光电股份有限公司 微晶玻璃成型体的制造方法
CN114907016B (zh) * 2022-06-24 2023-08-01 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120321898A1 (en) * 2010-02-26 2012-12-20 Schott Ag Chemically tempered glass
US20130295523A1 (en) * 2010-11-02 2013-11-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lithium silicate glasses or glass ceramics, method for production thereof and use thereof
CN107001120A (zh) * 2014-10-08 2017-08-01 康宁股份有限公司 具有透锂长石和硅酸锂结构的高强玻璃‑陶瓷
CN111362579A (zh) * 2020-04-07 2020-07-03 科立视材料科技有限公司 玻璃陶瓷、强化玻璃陶瓷及其制备方法
CN111757858A (zh) * 2018-02-27 2020-10-09 Agc株式会社 三维形状的晶化玻璃、三维形状的化学强化玻璃以及它们的制造方法
CN113754290A (zh) * 2021-01-28 2021-12-07 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法
CN114907016A (zh) * 2022-06-24 2022-08-16 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法
CN114988704A (zh) * 2019-02-08 2022-09-02 Agc株式会社 微晶玻璃、化学强化玻璃和半导体支撑基板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396443B2 (ja) * 1998-09-22 2003-04-14 株式会社オハラ 蓄光性蛍光ガラスセラミックス
JP3793401B2 (ja) * 1999-07-07 2006-07-05 Hoya株式会社 結晶化ガラスからなる情報記録媒体用基板及び情報記録媒体
JP5074042B2 (ja) * 2007-01-10 2012-11-14 Hoya株式会社 情報記録媒体基板用素材、情報記録媒体基板、情報記録媒体それぞれの製造方法
CN105271762A (zh) * 2015-11-16 2016-01-27 秦皇岛爱迪特高技术陶瓷有限公司 用于制备二硅酸锂微晶玻璃的组合物及其制备方法
CN112794646B (zh) * 2018-10-26 2022-04-19 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法
CN111268913B (zh) * 2018-10-26 2022-07-29 成都光明光电股份有限公司 电子设备盖板用微晶玻璃制品和微晶玻璃
WO2020261710A1 (ja) * 2019-06-26 2020-12-30 Agc株式会社 化学強化ガラスの製造方法および化学強化ガラス
CN112939469B (zh) * 2021-03-23 2022-03-08 成都光明光电股份有限公司 微晶玻璃和微晶玻璃制品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120321898A1 (en) * 2010-02-26 2012-12-20 Schott Ag Chemically tempered glass
US20130295523A1 (en) * 2010-11-02 2013-11-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lithium silicate glasses or glass ceramics, method for production thereof and use thereof
CN107001120A (zh) * 2014-10-08 2017-08-01 康宁股份有限公司 具有透锂长石和硅酸锂结构的高强玻璃‑陶瓷
CN111757858A (zh) * 2018-02-27 2020-10-09 Agc株式会社 三维形状的晶化玻璃、三维形状的化学强化玻璃以及它们的制造方法
CN114988704A (zh) * 2019-02-08 2022-09-02 Agc株式会社 微晶玻璃、化学强化玻璃和半导体支撑基板
CN111362579A (zh) * 2020-04-07 2020-07-03 科立视材料科技有限公司 玻璃陶瓷、强化玻璃陶瓷及其制备方法
CN113754290A (zh) * 2021-01-28 2021-12-07 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法
CN114907016A (zh) * 2022-06-24 2022-08-16 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法

Also Published As

Publication number Publication date
CN114907016A (zh) 2022-08-16
TW202400535A (zh) 2024-01-01
CN114907016B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
CN114409260B (zh) 微晶玻璃、微晶玻璃制品及其制造方法
TWI806355B (zh) 微晶玻璃、微晶玻璃製品及其製造方法
JP7048767B2 (ja) 電子デバイスカバープレート用ガラスセラミック物品およびガラスセラミック
CN111943514B (zh) 玻璃陶瓷和玻璃陶瓷制品
CN113402173B (zh) 微晶玻璃、微晶玻璃制品及其制造方法
CN114671619B (zh) 微晶玻璃和微晶玻璃制品
TW202400536A (zh) 微晶玻璃、微晶玻璃製品及其製造方法
CN113402172B (zh) 玻璃陶瓷和玻璃陶瓷制品
CN111908793B (zh) 具有尖晶石晶相的玻璃陶瓷和玻璃陶瓷制品
CN112919810B (zh) 玻璃陶瓷、玻璃陶瓷制品及其制造方法
WO2023246365A1 (zh) 微晶玻璃、微晶玻璃制品及其制造方法
WO2024088033A1 (zh) 微晶玻璃、微晶玻璃制品及其制造方法
CN116375345A (zh) 具有尖晶石晶相的微晶玻璃和微晶玻璃制品
CN115028365B (zh) 玻璃陶瓷、玻璃陶瓷制品及其制造方法
CN115259672A (zh) 透明微晶玻璃和透明微晶玻璃制品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826015

Country of ref document: EP

Kind code of ref document: A1