WO2023204482A1 - 이온전도체 분산액, 이로부터 제조된 고분자 전해질 막, 막-전극 어셈블리 및 연료전지 - Google Patents

이온전도체 분산액, 이로부터 제조된 고분자 전해질 막, 막-전극 어셈블리 및 연료전지 Download PDF

Info

Publication number
WO2023204482A1
WO2023204482A1 PCT/KR2023/004413 KR2023004413W WO2023204482A1 WO 2023204482 A1 WO2023204482 A1 WO 2023204482A1 KR 2023004413 W KR2023004413 W KR 2023004413W WO 2023204482 A1 WO2023204482 A1 WO 2023204482A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion conductor
polymer electrolyte
electrolyte membrane
dispersion
conductor dispersion
Prior art date
Application number
PCT/KR2023/004413
Other languages
English (en)
French (fr)
Inventor
박중화
이동훈
송금석
윤성현
염승집
오창훈
이혜송
이은수
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230040450A external-priority patent/KR20230149723A/ko
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2023204482A1 publication Critical patent/WO2023204482A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to ion conductor dispersions, polymer electrolyte membranes produced therefrom, membrane-electrode assemblies, and fuel cells. More specifically, ion conductor dispersions that improve the mechanical and chemical durability of polymer electrolyte membranes, and polymer electrolyte membranes produced therefrom. , membrane-electrode assemblies and fuel cells.
  • a fuel cell is a battery equipped with a power generation system that directly converts chemical reaction energy, such as the oxidation/reduction reaction of hydrogen and oxygen contained in hydrocarbon-based fuel materials such as methanol, ethanol, and natural gas, into electrical energy, and is a high-energy battery. Due to its eco-friendly characteristics of efficiency and low pollutant emissions, it is attracting attention as a next-generation clean energy source that can replace fossil energy.
  • chemical reaction energy such as the oxidation/reduction reaction of hydrogen and oxygen contained in hydrocarbon-based fuel materials such as methanol, ethanol, and natural gas
  • These fuel cells have the advantage of being able to produce a wide range of output through a stack configuration by stacking unit cells, and have an energy density that is 4 to 10 times that of small lithium batteries, so they are attracting attention as a portable power source for small and mobile devices. there is.
  • the stack that actually generates electricity in a fuel cell is a stack of several to dozens of unit cells made up of a membrane-electrode assembly (MEA) and a separator (also called a bipolar plate).
  • MEA membrane-electrode assembly
  • the membrane-electrode assembly generally has an anode electrode (Anode, or fuel electrode) and a cathode electrode (Cathode, or air electrode) formed on both sides of the electrolyte membrane.
  • Fuel cells can be classified into alkaline electrolyte membrane fuel cells and polymer electrolyte membrane fuel cells (PEMFC), etc., depending on the state and type of electrolyte.
  • PEMFC polymer electrolyte membrane fuel cells
  • Polymer electrolyte membrane fuel cells have a low temperature of less than 100°C. Due to its advantages such as operating temperature, fast start-up and response characteristics, and excellent durability, it is attracting attention as a portable, automotive, and home power supply device.
  • polymer electrolyte membrane fuel cells include the Proton Exchange Membrane Fuel Cell (PEMFC), which uses hydrogen gas as fuel, and the Direct Methanol Fuel Cell, which uses liquid methanol as fuel. DMFC), etc. may be mentioned.
  • PEMFC Proton Exchange Membrane Fuel Cell
  • DMFC Direct Methanol Fuel Cell
  • the essential improvement factors are the realization of high performance, long lifespan, and low cost.
  • the component that has the most influence on this is the membrane-electrode assembly, and among them, the polymer electrolyte membrane is one of the key elements that has the greatest impact on the performance and price of MEA.
  • Requirements for the polymer electrolyte membrane required for operation of the polymer electrolyte membrane fuel cell include high hydrogen ion conductivity, chemical stability, low fuel permeability, high mechanical strength, low moisture content, and excellent dimensional stability.
  • the purpose of the present invention is to provide an ion conductor dispersion that improves the chemical and mechanical durability of a polymer electrolyte membrane.
  • Another object of the present invention is to provide a polymer electrolyte membrane manufactured from the ion conductor dispersion.
  • Another object of the present invention is to provide a membrane-electrode assembly including the polymer electrolyte membrane with improved chemical and mechanical durability under high temperature and low humidity conditions.
  • Another object of the present invention is to provide a fuel cell including the membrane-electrode assembly.
  • an ion conductor dispersion which includes an ion conductor, a cross-linking agent, and a solvent, and has a contact angle of 135° or less with respect to a PTFE (Polytetrafluoroethylene) porous film.
  • the contact angle is a contact angle measured 1 second after the ion conductor composition was dropped on the PTFE (polytetrafluoroethylene) porous film under conditions of 25°C and 60% relative humidity.
  • the ion conductor may be any one selected from the group consisting of a fluorine-based ion conductor, a partially fluorine-based ion conductor, a hydrocarbon-based ion conductor, and mixtures thereof.
  • the crosslinking agent in the first or second aspect is a group consisting of salicylic acid-based compounds, coumaric acid-based compounds, terephthalic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, and combinations thereof. It may include any one selected from.
  • the salicylic acid-based compound may include any one selected from the group consisting of salicyl salicylic acid, acetyl salicylic acid, and combinations thereof. .
  • the crosslinking agent may be included in an amount of 0.05 to 20 parts by weight based on 100 parts by weight of the ion conductor.
  • the solvent may be any one selected from the group consisting of polar solvents, non-polar solvents, and mixtures thereof.
  • the polar solvent in the sixth aspect is distilled water, alcohol solvent, tetrahydrofuran, 1,4-dioxane, dimethyl acetamide. It may be any one selected from the group consisting of (Dimethyl acetamide), Dimethyl formamide, Dimethyl sulfoxide, Methylene chloride, and mixtures thereof.
  • the nonpolar solvent is n-hexane, 1,1,2,2-tetrachloroethane (1,1,2,2- It may be any one selected from the group consisting of Tetrachloroethane, 1,2-Dichloroethane, Chloroform, and mixtures thereof.
  • the solubility of the crosslinking agent in the solvent is 0.5 to 400 g/L under conditions of 20 to 30 ° C. and relative humidity of 50 to 70%. It can be.
  • the dielectric constant of the solvent in any one of the first to ninth aspects may be 48 or less.
  • the contact angle of the ion conductor dispersion with respect to the PTFE porous film may be 10 to 130°.
  • a polymer electrolyte membrane manufactured from the ion conductor dispersion according to any one of the first to eleventh aspects can be provided.
  • the polymer electrolyte membrane includes a porous support, and the porous support may be impregnated with the ion conductor dispersion liquid.
  • a membrane-electrode assembly comprising a can be provided.
  • a fuel cell including the membrane-electrode assembly according to the fourteenth aspect can be provided.
  • the present invention not only can the chemical and mechanical durability of the polymer electrolyte membrane be improved, but it can also be easily applied to the manufacturing process of the polymer electrolyte membrane, thereby improving the efficiency and economic efficiency of the process.
  • FIG. 1 is a cross-sectional view showing a polymer electrolyte membrane according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing a membrane-electrode assembly according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram for explaining a fuel cell according to an embodiment of the present invention.
  • the ion conductor dispersion according to an embodiment of the present invention includes an ion conductor, a cross-linking agent, and a solvent, and the contact angle with respect to the PTFE (Polytetrafluoroethylene) porous film may be 135° or less.
  • the contact angle of the ion conductor dispersion with respect to the PTFE porous film was measured 1 second after the ion conductor dispersion was dropped on the PTFE porous film under conditions of 25°C and 60% relative humidity.
  • the ion conductor dispersion according to the present invention includes an ion conductor, a cross-linking agent, and a solvent.
  • the ion conductor according to the present invention may be any one selected from the group consisting of fluorine-based ion conductors, partially fluorine-based ion conductors, hydrocarbon-based ion conductors, and mixtures thereof.
  • the fluorine-based ion conductor is, for example, a fluorine-based polymer containing fluorine in the main chain, such as poly(perfluorosulfonic acid), poly(perfluorocarboxylic acid), tetrafluoroethylene containing a sulfonic acid group, and fluorobinyl ether. It may be any one selected from the group consisting of copolymers and mixtures thereof.
  • the partially fluorine-based ion conductor may be, for example, a polystyrene-graft-ethylenetetrafluoroethylene copolymer, or a polystyrene-graft-polytetrafluoroethylene copolymer.
  • the hydrocarbon-based ion conductor is, for example, sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), and sulfonated polyetheretherketone (Sulfonated polyetheretherketone (S-PEEK), sulfonated polybenzimidazole (S-PBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), Sulfonated polyphosphazene, Sulfonated polyquinoxaline, Sulfonated polyketone, Sulfonated polyphenylene oxide, Sulfonated polyether Sulfonated polyether sulfone, Sulfonated polyether ketone, Sulfonated polyphenylene sulfone, Sulfonated polyphenylene sulfide, Sulfonated polyphenyl Sulfonated polyphenylene
  • the crosslinking agent according to the present invention may include any one selected from the group consisting of salicylic acid-based compounds, coumaric acid-based compounds, terephthalic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, and combinations thereof.
  • the salicylic acid-based compound may include, for example, any one selected from the group consisting of salicyl salicylic acid, acetyl salicylic acid, and combinations thereof.
  • the coumaric acid-based compound may be any one selected from the group consisting of ortho-coumaric acid, meta-coumaric acid, para-coumaric acid, and combinations thereof.
  • a salicylic acid-based compound is not introduced as a crosslinking agent, which causes a problem in that the chemical and mechanical durability of the polymer electrolyte membrane prepared with the ion conductor dispersion is reduced.
  • a cross-linking agent was introduced into the ion conductor dispersion, there was a problem that cross-linking agents such as hexamethylenediamine and oxydianiline did not mix well with the PFSA polymer.
  • perfluorosulfonic acid polymers such as PFSA had the problem that their physical properties easily changed into rubber at high temperatures and their hydrogen ion conductivity rapidly decreased at low relative humidity.
  • a salicylic acid-based compound as a cross-linking agent, it can exhibit the unique effect of not only dissolving well in solvents but also dissolving well with PFSA polymers, thereby promoting cross-linking reactions between ion conductor compounds.
  • the mechanical durability of the polymer electrolyte membrane can be improved while minimizing the decrease in hydrogen ion conductivity.
  • coumaric acid-based compounds, terephthalic acid, 3-hydroxybenzoic acid, and 4-hydroxybenzoic acid compounds can also perform the same function as the salicylic acid-based compounds.
  • the cross-linking agent according to the present invention may be included in an amount of 0.05 to 20 parts by weight, preferably 0.1 to 5 parts by weight, and more preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the ion conductor. If the content of the crosslinking agent is less than the above numerical range, the chemical and mechanical durability of the polymer electrolyte membrane may not be sufficiently improved, and if it exceeds the above numerical range, the hydrogen ion conductivity becomes too low, and some of it precipitates and acts as a foreign substance. Problems may arise.
  • the solvent according to the present invention may be any one selected from the group consisting of polar solvents, non-polar solvents, and mixtures thereof.
  • the polar solvents include distilled water, alcohol solvents, tetrahydrofuran, 1,4-dioxane, dimethyl acetamide, dimethyl formamide, and dimethyl sulfoxide. It may be any one selected from the group consisting of dimethyl sulfoxide, methylene chloride, and mixtures thereof.
  • the alcohol solvent may be any one selected from the group consisting of methanol, ethanol, propanol, and butanol.
  • the non-polar solvent is n-hexane, 1,1,2,2-Tetrachloroethane, 1,2-Dichloroethane ), chloroform, and mixtures thereof.
  • the solubility of the crosslinking agent in the solvent may be 0.5 to 400 g/L, preferably 1 to 300 g/L, and more preferably 1 to 300 g/L under conditions of 20 to 30° C. and relative humidity (RH) 50 to 70%. may be from 2 to 150 g/L. If the solubility of the cross-linking agent in the solvent is less than the above numerical range, it may precipitate when introduced into the polymer electrolyte membrane and may not act as a cross-linking agent, and if it exceeds the above numerical range, it may be lost during fuel cell operation, resulting in a lower cross-linking degree compared to the intended one. can be shown.
  • the dielectric constant of the solvent may be, for example, 48 or less at 20 to 25°C, specifically 1 to 48, and more specifically 5 to 48.
  • the contact angle of the ion conductor dispersion on the PTFE (Polytetrafluoroethylene) porous film according to the present invention is 135° or less, preferably 10 to 130°, more preferably 20 to 125°, 80 to 120°, or 86 to 118°. You can.
  • the contact angle of the ion conductor dispersion with respect to the PTFE porous film is 0.001 to 120 seconds after the ion conductor dispersion is dropped on the PTFE porous film under conditions of 20 to 30° C. and a relative humidity of 30 to 70%. It may be measured after 0.005 to 60 seconds, more preferably 0.01 to 20 seconds, and specifically after 1 second has elapsed under conditions of 25°C and 60% relative humidity. It may have happened.
  • the contact angle of the ion conductor dispersion may be comprehensively influenced by the type of ion conductor and solvent, the presence or absence of a cross-linking agent, and the content of the cross-linking agent. Therefore, by appropriately controlling the composition and content of the ion conductor, solvent, and crosslinking agent, the contact angle of the ion conductor dispersion that improves the mechanical properties of the polymer electrolyte membrane and the chemical durability of the membrane-electrode assembly can be derived.
  • the PTFE porous film may correspond to a Teflon porous film.
  • a crosslinking reaction can be successfully achieved.
  • the polymer electrolyte membrane prepared from the ion conductor dispersion may be a membrane in which the ion conductor dispersion is dried to remove the solvent, and a cross-linking reaction proceeds to form a cross-linking matrix between the ion conductor and the cross-linking agent.
  • the polymer electrolyte membrane may include a repeating unit derived from an ion conductor and a repeating unit derived from a crosslinking agent.
  • the crosslinking matrix may include a first ion conductor chain, a second ion conductor chain different from the first ion conductor chain, and a molecular structure derived from a crosslinking agent that crosslinks the first and second ion conductor chains.
  • a crosslinking agent that crosslinks the first and second ion conductor chains.
  • the first and second ion conductor chains can be connected to each other.
  • various known analysis methods such as 1 H-NMR, 13 C-NMR, and FT-IR can be used to analyze the polymer electrolyte membrane.
  • the first and second ion conductor chains may include a crosslinking reaction functional group capable of crosslinking reaction with a crosslinking agent in the side chain.
  • the crosslinking reaction functional group may react with the crosslinking agent.
  • the crosslinking reaction functional group may include -SO 2 -OH.
  • the polymer electrolyte membrane may be a single-layer polymer electrolyte membrane.
  • a polymer electrolyte membrane according to another embodiment of the present invention includes a porous support, and the porous support may be impregnated with the ion conductor dispersion.
  • the polymer electrolyte membrane may be a reinforced composite membrane in the form of a composite membrane.
  • 'impregnation' is defined as the penetration of an ion conductor dispersion into the internal pores of a porous support.
  • FIG. 1 is a cross-sectional view showing a polymer electrolyte membrane according to an embodiment of the present invention.
  • the porous support 52 may be a fluorine-based support or a nanoweb support.
  • the fluorine-based support may correspond, for example, to expanded polytetrafluoroethylene (e-PTFE) having a microstructure of polymer fibrils or a microstructure in which nodes are connected to each other by fibrils.
  • e-PTFE expanded polytetrafluoroethylene
  • a film having a fine structure of polymer fibrils without the nodes may also be used as the porous support 52.
  • the fluorine-based support may include a perfluorinated polymer.
  • the porous support 52 may correspond to a more porous and stronger porous support by extruding dispersion polymerized PTFE onto a tape in the presence of a lubricant and stretching the material obtained.
  • the amorphous content of PTFE can be increased by heat-treating the e-PTFE at a temperature exceeding the melting point of PTFE (about 342°C).
  • the e-PTFE film produced by the above method may have micropores with various diameters and porosity.
  • the e-PTFE film produced by the above method may have pores of at least 35%, and the diameter of the fine pores may be about 0.01 to 1 ⁇ m (micrometer).
  • the nanoweb support according to an embodiment of the present invention may be a non-woven fibrous web made of a plurality of randomly oriented fibers.
  • the nonwoven fibrous web refers to a sheet having a structure of individual fibers or filaments that are interlaid, but not in the same way as a woven fabric.
  • the nonwoven fibrous web can be processed by carding, garneting, air-laying, wet-laying, melt blowing, spun bonding and stitch bonding. It can be manufactured by any method selected from the group consisting of (stitch bonding).
  • the fiber may include one or more polymer materials, and any material that is generally used as a fiber-forming polymer material may be used.
  • a hydrocarbon-based fiber-forming polymer material may be used.
  • the fiber-forming polymer materials include polyolefins such as polybutylene, polypropylene and polyethylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides (nylon-6 and nylon-6,6), Polyurethane polybutene, polylactic acid, polyvinyl alcohol, polyphenylene sulfide, polysulfone, fluid crystalline polymer, polyethylene-co-vinylacetate, polyacrylonitrile, cyclic polyolefin, polyoxymethylene, polyolefin-based thermoplastic elastomer, and It may include any one selected from the group consisting of combinations thereof. However, the technical idea of the present invention is not limited thereto.
  • the nanoweb support according to an embodiment of the present invention may be a support in which nanofibers are integrated in the form of a non-woven fabric containing multiple pores.
  • the nanofibers can preferably be made of hydrocarbon-based polymers that exhibit excellent chemical resistance and are hydrophobic, so there is no risk of shape deformation due to moisture in a high-humidity environment.
  • the hydrocarbon polymers include nylon, polyimide, polyaramid, polyetherimide, polyacrylonitrile, polyaniline, polyethylene oxide, polyethylene naphthalate, polybutylene terephthalate, styrene butadiene rubber, polystyrene, polyvinyl chloride, Polyvinyl alcohol, polyvinylidene fluoride, polyvinyl butylene, polyurethane, polybenzoxazole, polybenzimidazole, polyamidoimide, polyethylene terephthalate, polyphenylene sulfide, polyethylene, polypropylene, and copolymers thereof. , and mixtures thereof may be used.
  • the nanoweb support is an aggregate of nanofibers in which nanofibers produced by electrospinning are randomly arranged.
  • the nanofibers measured 50 fiber diameters using a scanning electron microscope (JSM6700F, JEOL) and calculated from the average, 40 to 5000nm (nano It is desirable to have an average diameter of meters).
  • the mechanical strength of the porous support may decrease, and if the average diameter of the nanofibers exceeds the above numerical range, the porosity may significantly decrease and the thickness may become thick. .
  • the thickness of the nonwoven fibrous web may be 10 to 50 ⁇ m (micrometers), specifically 15 to 43 ⁇ m (micrometers). If the thickness of the nonwoven fibrous web is less than the above numerical range, mechanical strength may be reduced, and if it exceeds the above numerical range, resistance loss may increase, and weight reduction and integration may be reduced.
  • the nonwoven fibrous web may have a basic weight of 5 to 30 mg/cm 2 . If the basis weight of the non-woven fibrous web is less than the above numerical range, visible pores may be formed and it may be difficult to function as a porous support, and if it exceeds the above numerical range, it may be difficult to function as a porous support, and if the basis weight of the nonwoven fibrous web is less than the above numerical range, the basis weight of the nonwoven fibrous web is less than the above numerical range. It can be manufactured like a shape.
  • the porosity can be calculated by the ratio of the air volume in the porous support to the total volume of the porous support according to Equation 1 below.
  • the total volume is calculated by manufacturing a rectangular sample and measuring the width, height, and thickness, and the air volume can be obtained by measuring the mass of the sample and subtracting the polymer volume calculated back from the density from the total volume.
  • the porosity of the porous support 52 according to the present invention may be 30 to 90%, and is preferably 60 to 85%. If the porosity of the porous support 52 is less than the above numerical range, a problem may occur in the impregnability of the ion conductor, and if it exceeds the above numerical range, the post-process may not proceed smoothly as the shape stability is reduced.
  • the polymer electrolyte membrane 50 may include a first resin layer 54 and a second resin layer 56 facing the first resin layer 54.
  • the first resin layer 54 may be disposed on the first side 52a of the porous support 52, and the second resin layer 56 faces the first side 52a. It may be placed on the second surface 52b. Therefore, the ion conductor layer 55 may be formed on the surface of the porous support 52 and may include the ion conductor described above.
  • the tensile strength of the polymer electrolyte membrane 50 may be 25 to 90 MPa, 30 to 85 MPa, 35 to 82 MPa, 40 to 82 MPa, or 50 to 82 MPa.
  • a method of measuring the tensile strength of the polymer electrolyte membrane can be used using a universal testing machine (SHM-C-500, Shamhan Tech, Korea) according to the ASTM D882 method.
  • the means for achieving the tensile strength of the polymer electrolyte membrane may vary depending on the composition of the ion conductor dispersion.
  • Figure 2 is a cross-sectional view showing a membrane-electrode assembly according to an embodiment of the present invention. The above-described parts and repeated explanations will be briefly explained or omitted.
  • the membrane-electrode assembly 100 is a membrane-electrode assembly including the polymer electrolyte membrane 50, and an anode electrode 20 and a cathode electrode 20' positioned opposite to each other. ) and the polymer electrolyte membrane 50 located between the anode electrode 20 and the cathode electrode 20'.
  • the anode and cathode electrodes 20, 20' include an electrode substrate 40, 40' and a catalyst layer 30, 30' formed on the surface of the electrode substrate 40, 40'.
  • a fine pore layer containing conductive fine particles such as carbon powder and carbon black is formed between the catalyst layers 30 and 30' (40') and the catalyst layers (30, 30') to facilitate diffusion of substances in the electrode substrates (40, 40').
  • Poetry may also be included.
  • the catalyst layers 30 and 30' of the anode and cathode electrodes 20 and 20' contain a catalyst.
  • a catalyst any catalyst that participates in the reaction of the battery and can be used as a catalyst for a normal fuel cell can be used.
  • a platinum-based metal can be used.
  • the platinum-based metal is one selected from the group consisting of platinum (Pt), palladium (Pd), ruthenium (Ru), iridium (Ir), osmium (Os), platinum-M alloy, non-platinum alloy, and combinations thereof. It may include, and more preferably, a combination of two or more metals selected from the group of platinum-based catalyst metals may be used, but it is not limited thereto, and any platinum-based catalyst metal available in the present technical field may be used without limitation. there is.
  • the M is palladium (Pd), ruthenium (Ru), iridium (Ir), osmium (Os), gallium (Ga), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron ( Fe), cobalt (Co), nickel (Ni), copper (Cu), silver (Ag), gold (Au), zinc (Zn), tin (Sn), molybdenum (Mo), tungsten (W), lanthanum ( It may correspond to any one or more selected from the group consisting of La) and rhodium (Rh).
  • the platinum alloys include Pt-Pd, Pt-Sn, Pt-Mo, Pt-Cr, Pt-W, Pt-Ru, Pt-Ru-W, Pt-Ru-Mo, Pt-Ru-Rh-Ni, Pt-Ru-Sn-W, Pt-Co, Pt-Co-Ni, Pt-Co-Fe, Pt-Co-Ir, Pt-Co-S, Pt-Co-P, Pt-Fe, Pt-Fe- Ir, Pt-Fe-S, Pt-Fe-P, Pt-Au-Co, Pt-Au-Fe, Pt-Au-Ni, Pt-Ni, Pt-Ni-Ir, Pt-Cr, Pt-Cr- Ir and combinations thereof can be used alone or in combination of two or more.
  • non-platinum alloys include Ir-Fe, Ir-Ru, Ir-Os, Co-Fe, Co-Ru, Co-Os, Rh-Fe, Rh-Ru, Rh-Os, Ir-Ru-Fe, Ir -Ru-Os, and combinations thereof can be used alone or in combination of two or more.
  • the catalyst itself may be used, or it may be used by supporting it on a carrier.
  • Figure 3 is a schematic diagram for explaining a fuel cell according to an embodiment of the present invention.
  • Another embodiment of the present invention is a fuel cell including the membrane-electrode assembly.
  • the fuel cell 200 includes a fuel supply unit 210 that supplies a mixed fuel of fuel and water, and a reforming device that reforms the mixed fuel to generate a reformed gas containing hydrogen gas.
  • Unit 220 a stack 230 in which a reformed gas containing hydrogen gas supplied from the reforming unit 220 undergoes an electrochemical reaction with an oxidant to generate electrical energy, and an oxidant is supplied to the reforming unit 220 and the reforming unit 220.
  • It may include an oxidizing agent supply unit 240 that supplies the stack 230.
  • the stack 230 includes a plurality of unit cells that generate electrical energy by inducing an oxidation/reduction reaction between the reformed gas containing hydrogen gas supplied from the reforming unit 220 and the oxidizing agent supplied from the oxidizing agent supply unit 240. It can be provided.
  • Each unit cell refers to a unit cell that generates electricity, and includes the membrane-electrode assembly that oxidizes/reduces oxygen in the reformed gas containing hydrogen gas and the oxidant, and the reformed gas containing hydrogen gas and the oxidizing agent. It may include a separator plate (also called a bipolar plate, hereinafter referred to as a 'separator plate') for supply to the membrane-electrode assembly. The separator is placed on both sides of the membrane-electrode assembly with the membrane at the center. At this time, the separator plates located on the outermost side of the stack are sometimes called end plates.
  • the end plate includes a first pipe-shaped supply pipe 231 for injecting reformed gas containing hydrogen gas supplied from the reforming unit 220, and a second pipe-shaped supply pipe 231 for injecting oxygen gas.
  • a supply pipe 232 is provided, and the other end plate includes a first discharge pipe 233 for discharging to the outside the reformed gas containing the hydrogen gas that is ultimately unreacted and remaining in the plurality of unit cells, and the unit cell
  • a second discharge pipe 234 may be provided to discharge the unreacted and remaining oxidant to the outside.
  • the separator, fuel supply unit, and oxidant supply unit constituting the electricity generation unit are used in a typical fuel cell, and detailed description thereof will be omitted in this specification.
  • An ion conductor dispersion liquid was prepared as shown in Table 1 below.
  • the contact angle of the ion conductor dispersion according to Preparation Example 1 on a PTFE (polytetrafluoroethylene) porous film (product name: PTFE substrate of Teflon) was measured.
  • the following polymer electrolyte membrane was prepared using the ion conductor dispersion according to Preparation Example 1. In the following comparative examples and examples, drying and crosslinking were carried out simultaneously.
  • the ion conductor dispersion according to Preparation Comparative Example 1 in Table 1 was deposited on a glass substrate, and then dried at 90°C for 12 hours to prepare a polymer electrolyte membrane.
  • the ion conductor dispersion according to Comparative Preparation Example 2 was impregnated into a PPS (polyphenylene sulfide) support with an average pore size of 0.2 ⁇ m and a porosity of 70%, and then the impregnated result was dried at 90°C for 24 hours to form a polymer.
  • An electrolyte membrane (or reinforced composite membrane) was prepared.
  • the ion conductor dispersions according to Preparation Examples 1 and 2 were deposited on glass substrates and then dried at 90°C for 12 hours to prepare polymer electrolyte membranes.
  • the ion conductor dispersions according to Preparation Examples 3 and 4 were deposited on glass substrates and then dried at 90°C for 24 hours to prepare polymer electrolyte membranes.
  • a polymer electrolyte membrane (or reinforced composite membrane) was prepared in the same manner as in Comparative Example 3, but instead of the ion conductor dispersion according to Comparative Preparation Example 1, the ion conductor dispersion according to Preparation Example 1 was used.
  • a polymer electrolyte membrane (or reinforced composite membrane) was prepared in the same manner as in Comparative Example 3, except that instead of the ion conductor dispersion according to Comparative Preparation Example 1, the ion conductor dispersion according to Preparation Example 2 was used.
  • a polymer electrolyte membrane (or reinforced composite membrane) was prepared in the same manner as in Comparative Example 4, but instead of the ion conductor dispersion according to Comparative Preparation Example 2, the ion conductor dispersion according to Preparation Example 3 was used.
  • a polymer electrolyte membrane (or reinforced composite membrane) was prepared in the same manner as in Comparative Example 4, but instead of the ion conductor dispersion according to Comparative Preparation Example 2, the ion conductor dispersion according to Preparation Example 4 was used.
  • the tensile strength of the polymer electrolyte membrane according to Preparation Example 2 was measured according to the ASTM D882 method, using a universal testing machine (SHM-C-500, Shamhan Tech, Korea).
  • the electrode prepared by the decal method was attached to both sides of the polymer electrolyte membrane (or reinforced composite membrane) according to Preparation Example 2 and directly coated with electrode slurry (catalyst: Pt/C, Pt loading content: 0.4 mg/cm 2 ).
  • a membrane-electrode assembly was prepared.
  • the chemical durability of the membrane-electrode assembly was evaluated based on the durability evaluation protocol of the U.S. Department of Energy (DOE). Specifically, the OCV hold method was performed for 500 hours at 120°C and RH 20%, and then the voltage loss was measured, and the measured values are shown in Table 4 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

고분자 전해질 막의 화학적 및 기계적 내구성을 개선시킬 수 있는 이온전도체 분산액이 제공된다. 본 발명에 따른 이온전도체 분산액은, 이온전도체, 가교제 및 용매를 포함하고, PTFE(Polytetrafluoroethylene) 다공막에 대한 접촉각이 135°이하이다. 여기서 상기 접촉각은 25℃ 및 상대습도 60% 조건에서 상기 이온전도체 조성물이 상기 PTFE(Polytetrafluoroethylene) 다공막에 투하된 뒤 1초가 경과한 이후 측정된 접촉각이다.

Description

이온전도체 분산액, 이로부터 제조된 고분자 전해질 막, 막-전극 어셈블리 및 연료전지
본 발명은 이온전도체 분산액, 이로부터 제조된 고분자 전해질 막, 막-전극 어셈블리 및 연료전지에 관한 것으로, 보다 구체적으로 고분자 전해질 막의 기계적 및 화학적 내구성을 개선하는 이온전도체 분산액, 이로부터 제조된 고분자 전해질 막, 막-전극 어셈블리 및 연료전지에 관한 것이다.
연료전지는 메탄올, 에탄올, 천연 기체와 같은 탄화수소 계열의 연료물질 내에 함유되어 있는 수소와 산소의 산화/환원반응과 같은 화학 반응 에너지를 직접 전기 에너지로 변환시키는 발전 시스템을 구비한 전지로서, 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 인해 화석 에너지를 대체할 수 있는 차세대 청정 에너지원으로 각광받고 있다.
이러한 연료전지는 단위 전지의 적층에 의한 스택 구성으로 다양한 범위의 출력을 낼 수 있는 장점을 갖고 있으며, 소형 리튬 전지에 비하여 4 내지 10 배의 에너지 밀도를 나타내기 때문에 소형 및 이동용 휴대전원으로 주목받고 있다.
연료전지에서 전기를 실질적으로 발생시키는 스택은 막-전극 어셈블리(Membrane-Electrode Assembly, MEA)와 세퍼레이터(Separator)(또는 바이폴라 플레이트(Bipolar plate)라고도 함)로 이루어진 단위 셀이 수 개 내지 수십 개로 적층된 구조를 가지며, 막-전극 어셈블리는 일반적으로 전해질 막을 사이에 두고 그 양쪽에 애노드 전극(Anode, 또는, 연료극)과 캐소드 전극(Cathode, 또는 공기극)이 각각 형성된 구조를 이룬다.
연료전지는 전해질의 상태 및 종류에 따라 알칼리 전해질 막 연료전지, 고분자 전해질 막 연료전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC) 등으로 구분될 수 있는데, 그 중에 고분자 전해질 막 연료전지는 100℃ 미만의 낮은 작동 온도, 빠른 시동과 응답특성 및 우수한 내구성 등의 장점으로 인하여 휴대용, 차량용 및 가정용 전원장치로 각광을 받고 있다.
고분자 전해질 막 연료전지의 대표적인 예로는 수소 가스를 연료로 사용하는 수소이온 교환 막 연료전지(Proton Exchange Membrane Fuel Cell, PEMFC), 액상의 메탄올을 연료로 사용하는 직접 메탄올 연료전지(Direct Methanol Fuel Cell, DMFC) 등을 들 수 있다.
고분자 전해질 막 연료전지에서 일어나는 반응을 요약하면, 우선, 수소 가스와 같은 연료가 산화극에 공급되면, 산화극에서는 수소 가스의 산화반응에 의해 수소이온(H+)과 전자(e-)가 생성된다. 생성된 수소이온은 고분자 전해질 막을 통해 환원극으로 전달되고, 생성된 전자는 외부회로를 통해 환원극에 전달된다. 환원극에서는 산소 가스가 공급되고, 산소가 수소이온 및 전자와 결합하여 산소의 환원반응에 의해 물이 생성된다.
한편, 고분자 전해질 막 연료전지의 상업화를 실현하기 위해서는 아직까지 해결해야 할 많은 기술적 장벽들이 존재하고 있고, 필수적인 개선 요인은 고성능, 긴 수명, 저가격화의 실현이다. 이에 가장 많은 영향을 미치는 구성요소가 막-전극 어셈블리이며, 그 중에서도 고분자 전해질 막은 MEA의 성능과 가격에 가장 큰 영향을 미치는 핵심 요소 중 하나이다.
상기 고분자 전해질 막 연료전지의 운전에 필요한 고분자 전해질 막의 요구조건으로는 높은 수소 이온전도도, 화학적 안정성, 낮은 연료 투과성, 높은 기계적 강도, 낮은 함수율, 우수한 치수 안정성 등이 있다.
고분자 전해질 막을 제조하기 위한 종래의 이온전도체 분산액을 제조하는 과정에서는 가교제가 도입되지 않아 연료전지 운전 시, 고분자 전해질 막의 화학적 및 기계적 내구성이 저하되는 문제점이 발생하였다. 설사 가교제가 도입되더라도 헥사메틸렌디아민과 옥시디아닐린 등의 가교제의 경우, PFSA 고분자와 잘 혼합되지 않는 문제점이 있었다. 특히, 고온 및 저가습 조건에서 PFSA와 같은 과불화술폰산 고분자들은 높은 온도에서 쉽게 고무 형태로 물성이 변이하고 낮은 상대 습도에서 수소이온 전도도가 급격히 낮아지는 문제점이 있었다.
본 발명의 목적은 고분자 전해질 막의 화학적 및 기계적 내구성을 개선하는 이온전도체 분산액을 제공하는 것이다.
본 발명의 다른 목적은, 상기 이온전도체 분산액으로 제조된 고분자 전해질 막을 제공하는 것이다.
본 발명의 또 다른 목적은, 고온 및 저가습 조건에서 화학적 및 기계적 내구성이 개선된 상기 고분자 전해질 막을 포함하는 막-전극 어셈블리를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 막-전극 어셈블리를 포함하는 연료전지를 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명의 제1 측면에 따르면, 이온전도체, 가교제 및 용매를 포함하고, PTFE(Polytetrafluoroethylene) 다공막에 대한 접촉각이 135°이하인 이온전도체 분산액을 제공한다. 여기서 상기 접촉각은 25℃ 및 상대습도 60% 조건에서 상기 이온전도체 조성물이 상기 PTFE(Polytetrafluoroethylene) 다공막에 투하된 뒤 1초가 경과한 이후 측정된 접촉각이다.
본 발명의 제2 측면에 따르면, 상기 제1 측면에 있어서 상기 이온전도체는 불소계 이온전도체, 부분불소계 이온전도체, 탄화수소계 이온전도체 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명의 제3 측면에 따르면, 상기 제1 또는 제2 측면에 있어서 상기 가교제는, 살리실산계 화합물, 쿠마르산계 화합물, 테레프탈산, 3-하이드록시벤조산, 4-하이드록시벤조산 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함할 수 있다.
본 발명의 제4 측면에 따르면, 상기 제3 측면에 있어서 상기 살리실산계 화합물은 살리실 살리실산(Salicylsalicylic acid), 아세틸 살리실산(Acetylsalicylic acid) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함할 수 있다.
본 발명의 제5 측면에 따르면, 상기 제1 내지 제4 측면 중 어느 하나에 있어서 상기 가교제는, 상기 이온전도체 100 중량부를 기준으로 0.05 내지 20 중량부로 포함될 수 있다.
본 발명의 제6 측면에 따르면, 상기 제1 내지 제5 측면 중 어느 하나에 있어서 상기 용매는, 극성 용매, 무극성 용매 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명의 제7 측면에 따르면, 상기 제6 측면에 있어서 상기 극성 용매는, 증류수, 알코올류 용매, 테트라하이드로퓨란(Tetrahydrofuran), 1,4-다이옥세인(1,4-Dioxane), 디메틸 아세트아미드(Dimethyl acetamide), 디메틸 포름아미드(Dimethyl formamide), 디메틸 설폭사이드(Dimethyl sulfoxide), 염화메틸렌(Methylene chloride) 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명의 제8 측면에 따르면, 상기 제6 측면에 있어서 상기 무극성 용매는, n-헥세인(n-hexane), 1,1,2,2-테트라클로로에탄(1,1,2,2-Tetrachloroethane), 1,2-디클로로에탄(1,2-Dichloroethane), 클로로포름(Chloroform) 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명의 제9 측면에 따르면, 상기 제1 내지 제8 측면 중 어느 하나에 있어서 상기 용매에 대한, 상기 가교제의 용해도는 20 내지 30℃ 및 상대습도 50 내지 70% 조건에서 0.5 내지 400 g/L일 수 있다.
본 발명의 제10 측면에 따르면, 상기 제1 내지 제9 측면 중 어느 하나에 있어서 상기 용매의 유전상수는 48 이하일 수 있다.
본 발명의 제11 측면에 따르면, 상기 제1 내지 제10 측면 중 어느 하나에 있어서 상기 PTFE 다공막에 대한 상기 이온전도체 분산액의 접촉각은 10 내지 130°일 수 있다.
본 발명의 제12 측면에 따르면, 상기 제1 내지 제11 측면 중 어느 하나에 따른 이온전도체 분산액으로 제조된 고분자 전해질 막을 제공할 수 있다.
본 발명의 제13 측면에 따르면, 상기 제12 측면에 있어서 상기 고분자 전해질 막은, 다공성 지지체를 포함하고, 상기 다공성 지지체는, 상기 이온전도체 분산액이 함침된 것일 수 있다.
본 발명의 제14 측면에 따르면, 상기 제12 또는 제13 측면에 따른 고분자 전해질 막 및 상기 고분자 전해질 막의 적어도 일면 상에 배치된 촉매층; 을 포함하는 막-전극 어셈블리를 제공할 수 있다.
본 발명의 제15 측면에 따르면, 상기 제14 측면에 따른 막-전극 어셈블리를 포함하는 연료전지를 제공할 수 있다.
본 발명의 일 실시예에 따르면, 고분자 전해질 막의 화학적 및 기계적 내구성이 개선될 수 있을 뿐만 아니라, 고분자 전해질 막의 제조 공정에 쉽게 적용될 수 있어, 공정의 효율성 및 경제성이 도모될 수 있다. 특히, 본 발명의 일 실시예에 따르면 고온 및 저가습 조건에서 내구성이 개선된 고분자 전해질 막을 제공할 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 내용을 설명하면서 함께 기술한다.
도 1은 본 발명의 일 실시예에 따른 고분자 전해질 막을 나타낸 단면도이다.
도 2는 본 발명의 일 실시예에 따른 막-전극 어셈블리를 나타내 단면도이다.
도 3은 본 발명의 일 실시예에 따른 연료전지를 설명하기 위한 모식도이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 각 구성을 보다 상세히 설명하나, 이는 하나의 예시에 불과할 뿐, 본 발명의 권리범위가 다음 내용에 의해 제한되지 아니한다.
본 발명의 일 실시예에 따른 이온전도체 분산액은, 이온전도체, 가교제 및 용매를 포함하고, PTFE(Polytetrafluoroethylene) 다공막에 대한 접촉각이 135°이하일 수 있다. 상기 PTFE 다공막에 대한 상기 이온전도체 분산액의 접촉각은, 25℃ 및 상대습도 60% 조건에서 상기 이온전도체 분산액이 상기 PTFE 다공막에 투하된 뒤, 1초가 경과한 이후에 측정된 것이다.
이하에서는, 본 발명의 구성을 보다 상세히 설명한다.
1. 이온전도체 분산액
본 발명에 따른 이온전도체 분산액은 이온전도체, 가교제 및 용매를 포함한다.
본 발명에 따른 이온전도체는, 불소계 이온전도체, 부분 불소계 이온전도체, 탄화수소계 이온전도체 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 불소계 이온전도체는, 예를 들어 주쇄에 불소를 포함하는 불소계 고분자로 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 부분 불소계 이온전도체는, 예를 들어, 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체일 수 있다.
상기 탄화수소계 이온전도체는, 예를 들어, 술폰화된 폴리이미드(Sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(Sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(Sulfonated polyetheretherketone, S-PEEK), 술폰화된 폴리벤즈이미다졸(Sulfonated polybenzimidazole, S-PBI), 술폰화된 폴리술폰(Sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(Sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(Sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(Sulfonated polyquinoxaline), 술폰화된 폴리케톤(Sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(Sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(Sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(Sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(Sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(Sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(Sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(Sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(Sulfonated polyarylene ether), 술폰화된 폴리아릴렌에테르니트릴(Sulfonated polyarylene ether nitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(Sulfonated polyarylene ether ether nitrile), 술폰화된 폴리아릴렌에테르술폰케톤(Sulfonated polyarylene ether sulfone ketone) 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에 따른 가교제는, 살리실산계 화합물, 쿠마르산계 화합물, 테레프탈산, 3-하이드록시벤조산, 4-하이드록시벤조산 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함할 수 있다. 구체적으로, 상기 살리실산계 화합물은 예를 들어, 살리실 살리실산(Salicylsalicylic acid), 아세틸 살리실산(Acetylsalicylic acid) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함할 수 있다. 상기 쿠마르산계 화합물은 예를 들어, 오르쏘-쿠마르산, 메타-쿠마르산, 파라-쿠마르산 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다.
종래의 이온전도체 분산액을 제조하는 과정에서는 살리실산계 화합물이 가교제로 도입되지 않아 이온전도체 분산액으로 제조된 고분자 전해질 막의 화학적 및 기계적 내구성이 저하되는 문제점이 발생하였다. 설사 가교제가 이온전도체 분산액에 도입되더라도, 헥사메틸렌디아민과 옥시디아닐린 등의 가교제는 PFSA 고분자와 잘 혼합되지 않는 문제점이 있었다. 특히, 고온 및 저가습 조건에서 PFSA와 같은 과불화술폰산 고분자들은 높은 온도에서 쉽게 고무 형태로 물성이 변이하고 낮은 상대 습도에서 수소이온 전도도가 급격히 낮아지는 문제점이 있었다. 본 발명의 일 실시예에 따르면 가교제로 살리실산계 화합물을 도입함으로써, 용매에 잘 용해될 뿐만 아니라, PFSA 고분자와 잘 용해되는 특유의 효과를 보일 수 있고, 이에 따라 이온전도체 화합물 간의 가교 반응을 촉진하여 수소이온 전도도가 낮아지는 것을 최소화하면서, 고분자 전해질 막의 기계적 내구성을 개선할 수 있다. 상기 살리실산계 화합물뿐만 아니라, 각각의 쿠마르산계 화합물, 테레프탈산, 3-하이드록시벤조산, 4-하이드록시벤조산 화합물도 상기 살리실산계 화합물과 동일한 기능을 수행할 수 있다.
본 발명에 따른 가교제는, 상기 이온전도체 100 중량부를 기준으로 0.05 내지 20 중량부, 바람직하게는 0.1 내지 5 중량부, 더욱 바람직하게는 0.5 내지 3 중량부로 포함될 수 있다. 상기 가교제의 함량이 상기 수치 범위 미만일 경우, 고분자 전해질 막의 화학적 및 기계적 내구성이 충분히 개선되지 못할 수 있고, 상기 수치 범위를 초과할 경우, 수소이온 전도도가 너무 낮아지고, 일부가 석출되어 이물질로 작용하는 문제점이 생길 수 있다.
본 발명에 따른 용매는, 극성 용매, 무극성 용매 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 극성 용매는, 증류수, 알코올류 용매, 테트라하이드로퓨란(Tetrahydrofuran), 1,4-다이옥세인(1,4-Dioxane), 디메틸 아세트아미드(Dimethyl acetamide), 디메틸 포름아미드(Dimethyl formamide), 디메틸 설폭사이드(Dimethyl sulfoxide), 염화메틸렌(Methylene chloride) 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 알코올류 용매는 예를 들어, 메탄올, 에탄올, 프로판올 및 부탄올로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 무극성 용매는, n-헥세인(n-hexane), 1,1,2,2-테트라클로로에탄(1,1,2,2-Tetrachloroethane), 1,2-디클로로에탄(1,2-Dichloroethane), 클로로포름(Chloroform) 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 용매에 대한 상기 가교제의 용해도는 20 내지 30℃ 및 상대습도(Relative Humidity; RH) 50 내지 70% 조건에서 0.5 내지 400g/L일 수 있고, 바람직하게는 1 내지 300 g/L, 더욱 바람직하게는 2 내지 150 g/L일 수 있다. 상기 용매에 대한 상기 가교제의 용해도가 상기 수치 범위 미만일 경우 고분자 전해질 막 내 도입 시 석출되어 가교제로 작용하지 않을 수 있고, 상기 수치 범위를 초과할 경우 연료전지 운전 중 유실되어 의도한 것과 비교하여 낮은 가교도를 보일 수 있다.
달리 설명하면, 상기 용매의 유전상수는 예를 들어, 20 내지 25℃에서 48 이하 일 수 있고, 구체적으로 1 내지 48일 수 있고, 더욱 구체적으로 5 내지 48일 수 있다.
본 발명에 따른 PTFE(Polytetrafluoroethylene) 다공막에 대한 상기 이온전도체 분산액의 접촉각은 135°이하, 바람직하게는 10 내지 130°, 더욱 바람직하게는 20 내지 125°, 80 내지 120° 또는 86 내지 118°일 수 있다. 상기 PTFE 다공막에 대한 상기 이온전도체 분산액의 접촉각은, 20 내지 30℃ 및 상대습도 30 내지 70% 조건에서, 상기 이온전도체 분산액이 상기 PTFE 다공막에 투하된 뒤, 0.001 내지 120초가 경과한 이후에 측정된 것일 수 있고, 바람직하게는 0.005 내지 60초, 더욱 바람직하게는 0.01 내지 20초가 경과한 이후에 측정된 것일 수 있고, 구체적으로 25℃ 및 상대습도 60% 조건에서 1초가 경과한 이후에 측정된 것일 수 있다. 예를 들어 상기 이온전도체 분산액의 접촉각은, 이온전도체 및 용매의 종류, 가교제의 유무 및 가교제의 함량이 종합적으로 영향을 미칠 수 있다. 따라서 이온전도체와 용매 및 가교제 각각의 조성과 함량을 적절히 조절함으로써, 고분자 전해질 막의 기계적 물성을 개선함과 동시에, 막-전극 어셈블리의 화학적 내구성을 개선하는 이온전도체 분산액의 접촉각을 도출할 수 있다.
상기 PTFE 다공막은 예를 들어, 테플론 다공막에 해당할 수 있다. 상기 이온전도체 분산액의 PTFE 다공막에 대한 접촉각이 상기 수치 범위를 만족함으로써, 가교 반응이 잘 이루어질 수 있다.
2. 고분자 전해질 막
본 발명의 또 다른 실시예는 상기 이온전도체 분산액으로 제조된 고분자 전해질 막이다. 여기서 이온전도체 분산액으로 제조된 고분자 전해질 막은 이온전도체 분산액이 건조되어 용매가 제거되고, 가교반응이 진행되어 이온전도체와 가교제 간의 가교 매트릭스가 형성된 막일 수 있다. 본 발명의 다른 측면에 따르면, 상기 고분자 전해질 막은 이온전도체에서 유도된 반복단위 및 가교제에서 유도된 반복단위를 포함할 수 있다. 예를 들어, 상기 가교 매트릭스는 제1 이온전도체 사슬, 상기 제1 이온전도체 사슬과 상이한 제2 이온전도체 사슬 및 상기 제1 및 제2 이온전도체 사슬을 가교시키는 가교제에서 유도된 분자구조를 포함할 수 있다. 여기서 상기 가교제에서 유도된 분자구조를 통해, 상기 제1 및 제2 이온전도체 사슬은 서로 연결될 수 있다. 예를 들어 상기 고분자 전해질 막을 분석하기 위한 방법으로 1H-NMR, 13C-NMR, FT-IR 등의 공지된 다양한 분석법을 이용할 수 있다.
한편, 상기 제1 및 제2 이온전도체 사슬은 측쇄에 가교제와 가교 반응이 가능한 가교반응 작용기를 포함할 수 있다. 여기서 상기 가교반응 작용기는 상기 가교제와 반응할 수 있다. 예를 들어 상기 가교반응 작용기는 -SO2-OH를 포함할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 고분자 전해질 막은 단일막 형태의 고분자 전해질 막일 수 있다.
본 발명의 또 다른 실시예에 따른 고분자 전해질 막은 다공성 지지체를 포함하고, 상기 다공성 지지체는 상기 이온전도체 분산액이 함침된 것일 수 있다. 상기 고분자 전해질 막은 복합막 형태의 강화복합막일 수 있다. 본 명세서에서 '함침'은 이온전도체 분산액이 다공성 지지체의 내부 기공에 침투된 것으로 정의된다. 이하, 도 1을 참고하여 본 발명의 구성을 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 고분자 전해질 막을 나타낸 단면도이다.
도 1을 참고하면, 본 발명에 따른 다공성 지지체(52)는 불소계 지지체 또는 나노 웹 지지체일 수 있다.
상기 불소계 지지체는 예를 들어, 고분자 피브릴의 미세 구조, 또는 피브릴에 의해서 마디가 서로 연결된 미세 구조를 가지는 확장된 폴리테트라플루오로에틸렌(Expanded Polytetrafluoroethylene; e-PTFE)에 해당할 수 있다. 또한, 상기 다공성 지지체(52)로 상기 마디가 존재하지 않는 고분자 피브릴의 미세 구조를 가지는 필름도 이용될 수 있다.
상기 불소계 지지체는 과불소화 중합체를 포함할 수 있다. 상기 다공성 지지체(52)는 분산 중합 PTFE를 윤활제의 존재 하에서 테이프에 압출 성형하고, 이에 의하여 얻어진 재료를 연신하여 보다 다공질이며, 보다 강한 다공성 지지체에 해당할 수 있다.
또한, 상기 PTFE의 융점(약 342℃)을 초과하는 온도에서 상기 e-PTFE를 열처리함으로써 PTFE의 비정질 함유율을 증가시킬 수도 있다. 상기 방법으로 제조된 e-PTFE 필름은 다양한 지름을 가지는 미세 기공 및 공극율을 가질 수 있다. 상기 방법으로 제조된 e-PTFE 필름은 적어도 35 %의 공극을 가질 수 있으며, 상기 미세 기공의 지름은 약 0.01 내지 1 ㎛(마이크로미터)일 수 있다.
본 발명의 일 실시예에 따른 나노 웹 지지체는 무작위로 배향된 복수개의 섬유로 이루어지는 부직포 섬유질 웹(non-woven fibrous web)일 수 있다. 상기 부직포 섬유질 웹은 인터레이드(interlaid)되지만, 직포 천과 동일한 방식이 아닌, 개개의 섬유 또는 필라멘트의 구조를 갖는 시트를 의미한다. 상기 부직포 섬유질 웹은 카딩(carding), 가네팅(garneting), 에어-레잉(air-laying), 웨트-레잉(wet-laying), 멜트 블로잉(melt blowing), 스펀본딩(spun bonding) 및 스티치 본딩(stitch bonding)으로 이루어진 군에서 선택되는 어느 하나의 방법에 의하여 제조될 수 있다.
상기 섬유는 하나 이상의 중합체 재료를 포함할 수 있고, 일반적으로 섬유 형성 중합체 재료로 사용되는 것이면 어느 것이나 사용 가능하고, 구체적으로 탄화수소계 섬유 형성 중합체 재료를 사용할 수 있다. 예를 들어, 상기 섬유 형성 중합체 재료는 폴리올레핀, 예컨대 폴리부틸렌, 폴리프로필렌 및 폴리에틸렌, 폴리에스테르, 예컨대 폴리에틸렌 테레프탈레이트 및 폴리부틸렌 테레프탈레이트, 폴리아미드(나일론-6 및 나일론-6,6), 폴리우레탄 폴리부텐, 폴리락트산, 폴리비닐 알코올, 폴리페닐렌 설파이드, 폴리설폰, 유체 결정질 중합체, 폴리에틸렌-코-비닐아세테이트, 폴리아크릴로니트릴, 사이클릭 폴리올레핀, 폴리옥시메틸렌, 폴리올레핀계 열가소성 탄성중합체 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나를 포함할 수 있다. 다만 본 발명의 기술사상이 이에 제한되는 것은 아니다.
본 발명의 일 실시예에 따른 나노 웹 지지체는 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 지지체일 수 있다.
상기 나노 섬유는 우수한 내화학성을 나타내고, 소수성을 가져 고습의 환경에서 수분에 의한 형태 변형 우려가 없는 탄화수소계 고분자를 바람직하게 사용할 수 있다. 구체적으로 상기 탄화수소계 고분자로는 나일론, 폴리이미드, 폴리아라미드, 폴리에테르이미드, 폴리아크릴로니트릴, 폴리아닐린, 폴리에틸렌옥사이드, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트, 스티렌 부타디엔 고무, 폴리스티렌, 폴리비닐 클로라이드, 폴리비닐알코올, 폴리비닐리덴 플루오라이드, 폴리비닐 부틸렌, 폴리우레탄, 폴리벤즈옥사졸, 폴리벤즈이미다졸, 폴리아미드이미드, 폴리에틸렌테레프탈레이트, 폴리페닐렌설파이드, 폴리에틸렌, 폴리프로필렌, 이들의 공중합체, 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 나노 웹 지지체는 전기 방사에 의해 제조된 나노 섬유가 랜덤하게 배열된 나노 섬유의 집합체이다. 이때 상기 나노 섬유는 상기 나노 웹의 다공도 및 두께를 고려하여, 전자주사현미경(Scanning Electron Microscope, JSM6700F, JEOL)을 이용하여 50 개의 섬유 직경을 측정하여 그 평균으로부터 계산했을 때, 40 내지 5000nm(나노미터)의 평균 직경을 갖는 것이 바람직하다.
만일 상기 나노 섬유의 평균 직경이 상기 수치 범위 미만일 경우, 상기 다공성 지지체의 기계적 강도가 저하될 수 있고, 상기 나노 섬유의 평균 직경이 상기 수치 범위를 초과할 경우 다공도가 현저히 떨어지고 두께가 두꺼워질 수 있다.
상기 부직포 섬유질 웹의 두께는 10 내지 50 ㎛(마이크로미터)일 수 있고, 구체적으로 15 내지 43 ㎛(마이크로미터)일 수 있다. 상기 부직포 섬유질 웹의 두께가 상기 수치 범위 미만인 경우 기계적 강도가 떨어질 수 있고, 상기 수치 범위를 초과할 경우 저항손실이 증가하고, 경량화 및 집적화가 떨어질 수 있다.
상기 부직포 섬유질 웹은 평량(basic weight)이 5 내지 30 mg/cm2일 수 있다. 상기 부직포 섬유질 웹의 평량이 상기 수치 범위 미만일 경우 눈에 보이는 기공이 형성되어 다공성 지지체로서 기능을 하기 어려울 수 있고, 상기 수치 범위를 초과하는 경우에는 포어(pore)가 거의 형성되지 않는 종이 또는 직물의 형태처럼 제조될 수 있다.
상기 다공도는 하기 수학식 1에 따라 상기 다공성 지지체의 전체 부피 대비 다공성 지지체 내 공기 부피의 비율에 의하여 계산할 수 있다. 이때, 상기 전체 부피는 직사각형 형태의 샘플을 제조하여 가로, 세로, 두께를 측정하여 계산하고, 공기부피는 샘플의 질량을 측정 후 밀도로부터 역산한 고분자 부피를 전체 부피에서 빼서 얻을 수 있다.
[수학식 1]
다공도(%)=(다공성 지지체 내 공기 부피/다공성 지지체의 전체 부피) X 100
본 발명에 따른 다공성 지지체(52)의 다공도는 30 내지 90 %에 해당할 수 있고, 바람직하게는 60 내지 85%에 해당함이 바람직하다. 상기 다공성 지지체(52)의 다공도가 상기 수치 범위 미만일 경우 이온전도체의 함침성 저하 문제가 생길 수 있고, 상기 수치 범위를 초과할 경우 형태 안정성이 저하됨으로써 후공정이 원활하게 진행되지 않을 수 있다.
본 발명에 따른 고분자 전해질 막(50)은 제1 수지층(54) 및 상기 제1 수지층(54)과 대향되는 제2 수지층(56)을 포함할 수 있다. 구체적으로, 상기 제1 수지층(54)은 상기 다공성 지지체(52)의 제1 면(52a) 상에 배치될 수 있고, 상기 제2 수지층(56)은 상기 제1 면(52a)과 대향되는 상기 제2 면(52b) 상에 배치될 수 있다. 따라서, 상기 이온전도체층(55)은 상기 다공성 지지체(52)의 표면 상에 형성된 것일 수 있고, 전술한 이온전도체를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 고분자 전해질 막(50)의 인장강도는 25 내지 90MPa, 30 내지 85MPa, 35 내지 82MPa, 40 내지 82MPa, 또는 50 내지 82MPa일 수 있다. 예를 들어 상기 고분자 전해질 막의 인장강도를 측정하는 방법으로 ASTM D882 방법에 의거하여 만능시험기(SHM-C-500, Shamhan Tech, 한국)를 이용하는 방법이 이용될 수 있다. 구체적으로 상기 고분자 전해질 막의 인장강도를 달성하기 위한 수단은 이온전도체 분산액의 조성에 따라 달라질 수 있다.
3. 막-전극 어셈블리
도 2는 본 발명의 일 실시예에 따른 막-전극 어셈블리를 나타내 단면도이다. 전술한 부분과 반복된 설명은 간략히 설명하거나 생략한다.
도 2를 참고하면, 본 발명에 따른 막-전극 어셈블리(100)는 상기 고분자 전해질 막(50)을 포함하는 막-전극 어셈블리로서, 서로 대향하여 위치하는 애노드 전극(20)과 캐소드 전극(20') 및 상기 애노드 전극(20)과 상기 캐소드 전극(20') 사이에 위치하는 상기 고분자 전해질 막(50)을 포함한다.
상기 애노드 및 캐소드 전극(20, 20')은 전극 기재(40, 40')와 상기 전극 기재(40, 40') 표면에 형성된 촉매층(30, 30')을 포함하며, 상기 전극 기재(40, 40')와 상기 촉매층(30, 30') 사이에 상기 전극 기재(40, 40')에서의 물질 확산을 용이하게 하기 위해 탄소분말, 카본 블랙 등의 도전성 미세 입자를 포함하는 미세 기공층(미도시)을 더 포함할 수도 있다.
상기 애노드 및 캐소드 전극(20, 20')의 촉매층(30, 30')은 촉매를 포함한다. 상기 촉매로는 전지의 반응에 참여하여, 통상 연료전지의 촉매로 사용 가능한 것은 어떠한 것도 사용할 수 있다. 바람직하게는 백금계 금속을 사용할 수 있다.
상기 백금계 금속은 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 백금-M 합금, 비백금 합금 및 이들의 조합으로 이루어진 군에서 선택되는 하나를 포함할 수 있으며, 보다 바람직하게는 상기 백금계 촉매 금속 군에서 선택된 2종 이상의 금속을 조합한 것을 사용할 수 있으나, 이에 한정되는 것은 아니고, 본 기술 분야에서 사용 가능한 백금계 촉매 금속이라면 제한 없이 사용할 수 있다.
상기 M은 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 갈륨(Ga), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 은(Ag), 금(Au), 아연(Zn), 주석(Sn), 몰리브덴(Mo), 텅스텐(W), 란탄(La) 및 로듐(Rh)으로 이루어진 군에서 선택되는 어느 하나 이상에 해당할 수 있다. 구체적으로 상기 백금 합금으로 Pt-Pd, Pt-Sn, Pt-Mo, Pt-Cr, Pt-W, Pt-Ru, Pt-Ru-W, Pt-Ru-Mo, Pt-Ru-Rh-Ni, Pt-Ru-Sn-W, Pt-Co, Pt-Co-Ni, Pt-Co-Fe, Pt-Co-Ir, Pt-Co-S, Pt-Co-P, Pt-Fe, Pt-Fe-Ir, Pt-Fe-S, Pt-Fe-P, Pt-Au-Co, Pt-Au-Fe, Pt-Au-Ni, Pt-Ni, Pt-Ni-Ir, Pt-Cr, Pt-Cr-Ir 및 이들의 조합으로 이루어진 군에서 선택되는 단독 또는 2종 이상을 혼합하여 사용할 수 있다.
또한, 상기 비백금 합금으로 Ir-Fe, Ir-Ru, Ir-Os, Co-Fe, Co-Ru, Co-Os, Rh-Fe, Rh-Ru, Rh-Os, Ir-Ru-Fe, Ir-Ru-Os, Rh-Ru-Fe, Rh-Ru-Os 및 이들의 조합으로 이루어진 군에서 선택되는 단독 또는 2종 이상을 혼합하여 사용할 수 있다.
상기 촉매로 촉매 자체(black)를 사용할 수도 있고, 담체에 담지시켜 사용할 수도 있다.
4. 연료전지
도 3은 본 발명의 일 실시예에 따른 연료전지를 설명하기 위한 모식도이다.
본 발명의 또 다른 실시예는, 상기 막-전극 어셈블리를 포함하는 연료전지이다.
도 3을 참고하면, 본 발명에 따른 연료전지(200)는 연료와 물이 혼합된 혼합 연료를 공급하는 연료 공급부(210), 상기 혼합 연료를 개질하여 수소 가스를 포함하는 개질 가스를 발생시키는 개질부(220), 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스가 산화제와 전기 화학적인 반응을 일으켜 전기 에너지를 발생시키는 스택(230) 및 산화제를 상기 개질부(220) 및 상기 스택(230)으로 공급하는 산화제 공급부(240)를 포함할 수 있다.
상기 스택(230)은 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스와 산화제 공급부(240)로부터 공급되는 산화제의 산화/환원 반응을 유도하여 전기 에너지를 발생시키는 복수의 단위 셀을 구비할 수 있다.
각각의 단위 셀은 전기를 발생시키는 단위의 셀을 의미하는 것으로서, 수소 가스를 포함하는 개질 가스와 산화제 중의 산소를 산화/환원시키는 상기 막-전극 접합체와, 수소 가스를 포함하는 개질 가스와 산화제를 막-전극 접합체로 공급하기 위한 분리판(또는 바이폴라 플레이트(bipolar plate)라고도 하며, 이하 '분리판'이라 칭한다)을 포함할 수 있다. 상기 분리판은 상기 막-전극 접합체를 중심에 두고, 그 양측에 배치된다. 이 때, 상기 스택의 최외측에 각각 위치하는 분리판을 특별히 엔드 플레이트라 칭하기도 한다.
상기 분리판 중 상기 엔드 플레이트에는 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스를 주입하기 위한 파이프 형상의 제1 공급관(231)과, 산소 가스를 주입하기 위한 파이프 형상의 제2 공급관(232)이 구비되고, 다른 하나의 엔드 플레이트에는 복수의 단위 셀에서 최종적으로 미반응되고 남은 수소 가스를 포함하는 개질 가스를 외부로 배출시키기 위한 제1 배출관(233)과, 상기한 단위 셀에서 최종적으로 미 반응되고 남은 산화제를 외부로 배출시키기 위한 제2 배출관(234)이 구비될 수 있다.
상기 연료전지에 있어서, 상기 전기 발생부를 구성하는 세퍼레이터, 연료 공급부 및 산화제 공급부는 통상의 연료전지에서 사용되는 것이므로, 본 명세서에서 상세한 설명은 생략한다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명하나, 이는 하나의 예시에 불과할 뿐, 본 발명의 권리범위가 다음 내용에 의해 제한되지 아니한다.
[제조예 1: 이온전도체 분산액의 제조]
하기 표 1과 같은 이온전도체 분산액을 제조하였다.
단위: 중량부 제조비교예 1 제조비교예 2 제조실시예 1 제조실시예 2 제조실시예 3 제조실시예 4
불소계 이온전도체1) 100 - 100 100 - -
탄화수소계 이온전도체2) - 100 - - 100 100
살리실 살리실산 - - 1 - 1 -
아세틸 살리실산 - - - 1 - 1
프로판-1-올 : 에탄올 : 증류수(1:1:1 중량비) 300 - 300 300 - -
디메틸 아세트아미드(DMAc) - 650 - - 650 650
1) PFSA (perfluorosulfonic acid)
2)술폰화도가 60%이고, 이온교환용량이 1.6meq/g인 S-PES(Sulfonated poly(ether sulfone))
[실험예 1: PTFE(Polytetrafluoroethylene) 다공막에 대한 접촉각]
PTFE(Polytetrafluoroethylene) 다공막(상품명: Teflon의 PTFE substrate)에 대한 상기 제조예 1에 따른 이온전도체 분산액의 접촉각(contact angle)을 측정하였다.
25°C 및 RH 60%를 유지한 상태에서 상기 제조예 1에 따른 이온전도체 분산액을 주사기에 충전하여 상기 PTFE 다공막에 부피 5㎕의 액체 방울을 떨어뜨린 후 1초 동안 액체 방울이 퍼지기를 기다려, 1초가 경과하였을 때, 상기 PTFE 다공막과 액체 방울이 이루는 접촉각(contact angle)을 접촉각 측정기(측정기: (주)태크녹스의 Model 190)를 이용하여 측정하였다.
시료 제조비교예 1 제조비교예 2 제조실시예 1 제조실시예 2 제조실시예 3 제조실시예 4
접촉각(°) 118 87 117 118 88 86
[제조예 2: 고분자 전해질 막의 제조]
상기 제조예 1에 따른 이온전도체 분산액으로 하기와 같은 고분자 전해질 막을 제조하였다. 하기 비교예 및 실시예에서 건조와 가교는 동시에 진행되었다.
<비교예 1>
상기 표 1 중 제조비교예 1에 따른 이온전도체 분산액을 유리 기재에 제막한 후, 이를 90℃에서 12 시간 동안 건조하여 고분자 전해질 막을 제조하였다.
<비교예 2>
상기 제조비교예 2에 따른 이온전도체 분산액을 유리 기재에 제막한 후, 이를 90℃에서 24 시간 동안 건조하여 고분자 전해질 막을 제조하였다.
<비교예 3>
상기 제조비교예 1에 따른 이온전도체 분산액을 기공의 평균 크기가 0.2㎛이고, 기공도가 75%인 e-PTFE(expanded-polytetrafluoroethylene) 지지체에 함침시킨 후, 함침된 상기 PTFE(polytetrafluoroethylene) 지지체를 90℃에서 12시간 동안 건조하여 고분자 전해질 막(또는 강화복합막)을 제조하였다.
<비교예 4>
상기 제조비교예 2에 따른 이온전도체 분산액을 기공의 평균 크기가 0.2㎛이고, 기공도가 70%인 PPS(polyphenylene sulfide) 지지체에 함침시킨 후, 함침된 결과물을 90℃에서 24시간 동안 건조하여 고분자 전해질 막(또는 강화복합막)을 제조하였다.
<실시예 1, 2>
상기 제조실시예 1 내지 2에 따른 이온전도체 분산액을 각각 유리 기재에 제막한 후, 이를 90℃에서 12 시간 동안 건조하여 고분자 전해질 막을 각각 제조하였다.
<실시예 3, 4>
상기 제조실시예 3 내지 4에 따른 이온전도체 분산액을 각각 유리 기재에 제막한 후, 이를 90℃에서 24 시간 동안 건조하여 고분자 전해질 막을 각각 제조하였다.
<실시예 5>
비교예 3과 동일한 방법으로 고분자 전해질 막(또는 강화복합막)을 제조하되, 상기 제조비교예 1에 따른 이온전도체 분산액 대신, 상기 제조실시예 1에 따른 이온전도체 분산액을 사용하였다.
<실시예 6>
비교예 3과 동일한 방법으로 고분자 전해질 막(또는 강화복합막)을 제조하되, 상기 제조비교예 1에 따른 이온전도체 분산액 대신, 상기 제조실시예 2에 따른 이온전도체 분산액을 사용하였다.
<실시예 7>
비교예 4와 동일한 방법으로 고분자 전해질 막(또는 강화복합막)을 제조하되, 상기 제조비교예 2에 따른 이온전도체 분산액 대신, 상기 제조실시예 3에 따른 이온전도체 분산액을 사용하였다.
<실시예 8>
비교예 4와 동일한 방법으로 고분자 전해질 막(또는 강화복합막)을 제조하되, 상기 제조비교예 2에 따른 이온전도체 분산액 대신, 상기 제조실시예 4에 따른 이온전도체 분산액을 사용하였다.
[실험예 2: 고분자 전해질 막의 인장강도 평가]
상기 제조예 2에 따른 고분자 전해질 막의 인장강도는 ASTM D882 방법에 의거하여 측정되었고, 만능시험기(SHM-C-500, Shamhan Tech, 한국)를 사용하였다.
인장강도(MPa)
비교예 1 23.7
비교예 2 47.9
비교예 3 50.1
비교예 4 71.2
실시예 1 28.5
실시예 2 27.2
실시예 3 54.9
실시예 4 55.3
실시예 5 53.6
실시예 6 54.6
실시예 7 80.6
실시예 8 81.0
상기 표 3을 참고하면, 실시예들은 비교예 대비, 인장강도가 현저히 개선되었음을 확인할 수 있다. 이를 통해, 가교제의 도입으로 고분자 전해질 막 또는 강화복합막의 기계적 내구성이 현저해 개선되었음을 유추할 수 있다.
[실험예 3: 막-전극 어셈블리의 DOE 화학적 내구성 평가 결과 OCV 감소율]
상기 제조예 2에 따른 고분자 전해질 막(또는 강화복합막)의 양면 위에 데칼법으로 제조된 전극을 부착하여 전극 슬러리(촉매: Pt/C, Pt 로딩 함량: 0.4mg/cm2)를 직접 코팅하여 막-전극 어셈블리를 제조하였다. 상기 막-전극 어셈블리의 화학적 내구성을 미국 에너지부(Department of Energy: DOE)의 내구성 평가 프로토콜에 기반하여 평가하였다. 구체적으로, 120℃, RH 20% 조건에서 OCV 유지법(OCV hold method)을 500 시간 동안 수행한 후 전압 손실(Voltage loss)을 각각 측정하였고, 그 측정 값들을 하기 표 4에 나타냈다.
OCV 전압 손실(%)
비교예 1 23.7
비교예 2 30.8
비교예 3 20.5
비교예 4 24.4
실시예 1 19.2
실시예 2 19.1
실시예 3 17.6
실시예 4 17.8
실시예 5 15.6
실시예 6 15.4
실시예 7 19.4
실시예 8 20.2
상기 표 4를 참고하면, 실시예들은 비교예 대비, OCV 전압 손실이 상대적으로 적어 화학적 내구성이 전반적으로 개선되었음을 유추할 수 있다.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.

Claims (14)

  1. 이온전도체;
    가교제; 및
    용매; 를 포함하는 이온전도체 분산액으로,
    25℃ 및 상대습도 60% 조건에서 상기 이온전도체 분산액이 PTFE(Polytetrafluoroethylene) 다공막에 투하된 뒤 1초가 경과한 이후 측정된 접촉각이 135°이하인
    이온전도체 분산액.
  2. 제1항에 있어서,
    상기 이온전도체는,
    불소계 이온전도체, 부분불소계 이온전도체, 탄화수소계 이온전도체 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나인
    이온전도체 분산액.
  3. 제1항에 있어서,
    상기 가교제는,
    살리실산계 화합물, 쿠마르산계 화합물, 테레프탈산, 3-하이드록시벤조산, 4-하이드록시벤조산 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는
    이온전도체 분산액.
  4. 제3항에 있어서,
    상기 살리실산계 화합물은,
    살리실 살리실산(Salicylsalicylic acid), 아세틸 살리실산(Acetylsalicylic acid) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나를 포함하는
    이온전도체 분산액.
  5. 제1항에 있어서,
    상기 가교제는,
    상기 이온전도체 100 중량부를 기준으로 0.05 내지 20 중량부로 포함되는
    이온전도체 분산액.
  6. 제1항에 있어서,
    상기 용매는,
    극성 용매, 무극성 용매 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나인
    이온전도체 분산액.
  7. 제6항에 있어서,
    상기 극성 용매는,
    증류수, 알코올류 용매, 테트라하이드로퓨란(Tetrahydrofuran), 1,4-다이옥세인(1,4-Dioxane), 디메틸 아세트아미드(Dimethyl acetamide), 디메틸 포름아미드(Dimethyl formamide), 디메틸 설폭사이드(Dimethyl sulfoxide), 염화메틸렌(Methylene chloride) 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나인
    이온전도체 분산액.
  8. 제6항에 있어서,
    상기 무극성 용매는,
    n-헥세인(n-hexane), 1,1,2,2-테트라클로로에탄(1,1,2,2-Tetrachloroethane), 1,2-디클로로에탄(1,2-Dichloroethane), 클로로포름(Chloroform) 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나인
    이온전도체 분산액.
  9. 제1항에 있어서,
    상기 용매에 대한, 상기 가교제의 용해도는 20 내지 30℃ 및 상대습도 50 내지 70% 조건에서 0.5 내지 400 g/L인
    이온전도체 분산액.
  10. 제1항에 있어서,
    상기 용매의 유전상수는 48 이하인,
    이온전도체 분산액.
  11. 제1항에 따른 이온전도체 분산액으로 제조된 고분자 전해질 막.
  12. 제11항에 있어서,
    상기 고분자 전해질 막은,
    다공성 지지체를 포함하고,
    상기 다공성 지지체는, 상기 이온전도체 분산액이 함침된 것인,
    고분자 전해질 막.
  13. 제11항에 따른 고분자 전해질 막; 및
    상기 고분자 전해질 막의 적어도 일면 상에 배치된 촉매층; 을 포함하는 막-전극 어셈블리.
  14. 제13항에 따른 막-전극 어셈블리를 포함하는 연료전지.
PCT/KR2023/004413 2022-04-20 2023-03-31 이온전도체 분산액, 이로부터 제조된 고분자 전해질 막, 막-전극 어셈블리 및 연료전지 WO2023204482A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220048833 2022-04-20
KR10-2022-0048833 2022-04-20
KR10-2023-0040450 2023-03-28
KR1020230040450A KR20230149723A (ko) 2022-04-20 2023-03-28 이온전도체 분산액, 이로부터 제조된 고분자 전해질 막, 막-전극 어셈블리 및 연료전지

Publications (1)

Publication Number Publication Date
WO2023204482A1 true WO2023204482A1 (ko) 2023-10-26

Family

ID=88420333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004413 WO2023204482A1 (ko) 2022-04-20 2023-03-31 이온전도체 분산액, 이로부터 제조된 고분자 전해질 막, 막-전극 어셈블리 및 연료전지

Country Status (1)

Country Link
WO (1) WO2023204482A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709220B1 (ko) * 2005-11-30 2007-04-18 삼성에스디아이 주식회사 연료 전지용 고분자 전해질 막, 이의 제조방법 및 이를포함하는 연료 전지 시스템
KR20110073109A (ko) * 2009-12-23 2011-06-29 한국화학연구원 강도가 개선된 다공성 지지체, 그를 이용한 강화 복합전해질 막, 그 막을 구비한 막-전극 어셈블리 및 연료전지
KR20130047807A (ko) * 2011-10-31 2013-05-09 강원대학교산학협력단 연료 전지용 전극, 이의 제조 방법, 및 이를 포함하는 연료 전지용 막-전극 접합체 및 연료 전지 시스템
KR20140076475A (ko) * 2012-12-12 2014-06-20 삼성전자주식회사 전해질막과 그 제조방법, 및 이를 포함하는 막전극 접합체와 연료전지
KR20210006284A (ko) * 2019-07-08 2021-01-18 코오롱인더스트리 주식회사 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709220B1 (ko) * 2005-11-30 2007-04-18 삼성에스디아이 주식회사 연료 전지용 고분자 전해질 막, 이의 제조방법 및 이를포함하는 연료 전지 시스템
KR20110073109A (ko) * 2009-12-23 2011-06-29 한국화학연구원 강도가 개선된 다공성 지지체, 그를 이용한 강화 복합전해질 막, 그 막을 구비한 막-전극 어셈블리 및 연료전지
KR20130047807A (ko) * 2011-10-31 2013-05-09 강원대학교산학협력단 연료 전지용 전극, 이의 제조 방법, 및 이를 포함하는 연료 전지용 막-전극 접합체 및 연료 전지 시스템
KR20140076475A (ko) * 2012-12-12 2014-06-20 삼성전자주식회사 전해질막과 그 제조방법, 및 이를 포함하는 막전극 접합체와 연료전지
KR20210006284A (ko) * 2019-07-08 2021-01-18 코오롱인더스트리 주식회사 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치

Similar Documents

Publication Publication Date Title
WO2014104785A1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
WO2011025259A2 (ko) 연료전지용 고분자 전해질막 및 그 제조방법
WO2017052248A1 (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템
WO2011078465A4 (ko) 강도가 개선된 다공성 지지체, 그를 이용한 강화 복합전해질 막, 그 막을 구비한 막-전극 어셈블리 및 연료전지
KR102473497B1 (ko)
WO2019004712A1 (ko) 나노 섬유 방사층을 포함하는 연료전지용 전해질막
KR20170036632A (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템
WO2021066544A1 (ko) 높은 분산 안정성을 갖는 이오노머 분산액, 그 제조방법, 및 그것을 이용하여 제조된 고분자 전해질막
WO2021006496A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
WO2017171471A1 (ko) 강화막, 이를 포함하는 전기화학 전지 및 연료 전지, 및 상기 강화막의 제조방법
WO2023204482A1 (ko) 이온전도체 분산액, 이로부터 제조된 고분자 전해질 막, 막-전극 어셈블리 및 연료전지
KR101630212B1 (ko) Pai-ptm 부직포에 탄화수소계 고분자 전해질을 함침시켜 제조한 복합막 및 이의 용도
WO2021006551A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
WO2023101308A1 (ko) 강화복합막, 이를 포함하는 막-전극 어셈블리 및 연료전지
WO2023101309A1 (ko) 연료전지용 촉매, 그의 제조방법, 그를 포함하는 촉매층, 막-전극 어셈블리 및 연료전지
WO2023096207A1 (ko) 이온전도체 조성물, 이를 포함하는 고분자 전해질 막, 막-전극 어셈블리 및 연료전지
KR20230149723A (ko) 이온전도체 분산액, 이로부터 제조된 고분자 전해질 막, 막-전극 어셈블리 및 연료전지
WO2023096355A1 (ko) 다기능성 라디칼 스캐빈저, 이를 포함하는 고분자 전해질 막, 촉매층, 막-전극 어셈블리 및 연료전지
WO2023101310A1 (ko) 연료전지용 강화복합막, 이의 제조방법, 및 이를 포함하는 연료전지용 막-전극 어셈블리
WO2022071732A1 (ko) 고분자 전해질 막의 제조 방법 및 이로 제조된 전해질 막
WO2023195623A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 전기 화학 장치
WO2023243902A1 (ko) 막-전극 어셈블리 및 이를 포함하는 연료전지
WO2022071731A1 (ko) 고분자 전해질 막 및 이를 포함하는 막 전극 어셈블리
WO2024019357A1 (ko) 막-전극 어셈블리 및 이를 포함하는 연료전지
KR20240001501A (ko) 강화복합막, 막-전극 어셈블리 및 이를 포함하는 연료전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23792062

Country of ref document: EP

Kind code of ref document: A1