WO2023204429A1 - 바이오 센서 카트리지 및 그를 판독하는 바이오 센서 진단기기 - Google Patents

바이오 센서 카트리지 및 그를 판독하는 바이오 센서 진단기기 Download PDF

Info

Publication number
WO2023204429A1
WO2023204429A1 PCT/KR2023/002760 KR2023002760W WO2023204429A1 WO 2023204429 A1 WO2023204429 A1 WO 2023204429A1 KR 2023002760 W KR2023002760 W KR 2023002760W WO 2023204429 A1 WO2023204429 A1 WO 2023204429A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosensor
diagnostic device
cartridge
sensor
sensor chip
Prior art date
Application number
PCT/KR2023/002760
Other languages
English (en)
French (fr)
Inventor
김영환
최태규
공경호
김경화
김성근
김창석
임경택
이영래
여인관
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2023204429A1 publication Critical patent/WO2023204429A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48785Electrical and electronic details of measuring devices for physical analysis of liquid biological material not specific to a particular test method, e.g. user interface or power supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • A61B5/7495User input or interface means, e.g. keyboard, pointing device, joystick using a reader or scanner device, e.g. barcode scanner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/4875Details of handling test elements, e.g. dispensing or storage, not specific to a particular test method
    • G01N33/48771Coding of information, e.g. calibration data, lot number
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/4875Details of handling test elements, e.g. dispensing or storage, not specific to a particular test method
    • G01N33/48778Containers specially adapted therefor, e.g. for dry storage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48785Electrical and electronic details of measuring devices for physical analysis of liquid biological material not specific to a particular test method, e.g. user interface or power supply
    • G01N33/48792Data management, e.g. communication with processing unit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1439Methods for optical code recognition including a method step for retrieval of the optical code
    • G06K7/1447Methods for optical code recognition including a method step for retrieval of the optical code extracting optical codes from image or text carrying said optical code
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/32Payment architectures, schemes or protocols characterised by the use of specific devices or networks using wireless devices
    • G06Q20/322Aspects of commerce using mobile devices [M-devices]
    • G06Q20/3223Realising banking transactions through M-devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/465Identification means, e.g. labels, tags, markings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/08Sensors provided with means for identification, e.g. barcodes or memory chips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/04Exchange or ejection of cartridges, containers or reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/021Identification, e.g. bar codes
    • B01L2300/022Transponder chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/023Sending and receiving of information, e.g. using bluetooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/025Displaying results or values with integrated means
    • B01L2300/027Digital display, e.g. LCD, LED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6683Structural association with built-in electrical component with built-in electronic circuit with built-in sensor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/12Connectors or connections adapted for particular applications for medicine and surgery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/20Connectors or connections adapted for particular applications for testing or measuring purposes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10265Metallic coils or springs, e.g. as part of a connection element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10386Clip leads; Terminals gripping the edge of a substrate

Definitions

  • This embodiment relates to a biosensor system including a biosensor cartridge including a biosensor and a diagnostic device that diagnoses a disease by reading information from the biosensor trigger.
  • a biosensor generates color, electrical, and optical signals that change by a sensing material that is reactive to a specific target material contained in body fluids such as sweat and saliva, and biological materials such as blood or urine, and the selective response of the target material. do. Therefore, the presence of a specific target material can be confirmed using a biosensor.
  • strip-type rapid kits have been widely used, and simple color development is performed by determining whether a biotarget material is present at a predetermined concentration or higher.
  • a target material is coupled to a channel of a small thin film semiconductor structure, the electrical conductivity of the semiconductor structure is changed by the target material, and the target material is detected through the change in electrical conductivity.
  • the target material combines in the channel, an electrochemical reaction occurs, or when the target material itself has a charge, electrons or holes in the semiconductor structure accumulate due to the electric field effect caused by the combination of the sensing material and the target material.
  • the electrical conductivity changes due to depletion or depletion, it is read as a change in the amount of current.
  • the resistance of the electrode itself and the interface characteristics of the channel where the electrochemical reaction occurs are very important.
  • the electrodes for measuring electrical signals are also manufactured in a dicing unit and are very thin, so the electrodes may be damaged or the channels may be damaged during the process of combining with the measuring equipment for measuring the amount of current. Damage occurs, causing frequent short circuits or contamination.
  • biosensors are provided with a structure that includes a sensor unit that senses a target material and a connection unit for connecting the sensor unit to measurement equipment.
  • the electrode of a conventional biosensor extends from the sensor unit for sensing the target material, extends from the end of the substrate, and may be configured as a connection unit connected to the measurement equipment.
  • Measuring equipment dedicated to biosensors is large, requires expensive precision measuring equipment, has poor reproducibility because the measurement process is performed manually, requires long diagnosis times, and requires expensive equipment to build the system. is needed.
  • a separate reader is required to read the barcode for authenticating each biosensor and receiving sensor information, and information must be transmitted and received between the reader and the measurement device or entered manually.
  • the first task of this embodiment is to provide a biosensor cartridge including a sensor chip to minimize the impact on the sensor chip when combined with a diagnostic device.
  • the second task of this embodiment is to provide an integrated diagnostic device and to provide a compact diagnostic device that can read the detection information of the sensor chip by inserting the terminal of the biosensor cartridge.
  • the third object of this embodiment is to provide a biosensor cartridge that accommodates a circuit board connected to a sensor chip, without mounting a separate memory chip that stores environmental information for authentication of the biosensor on the circuit board.
  • the goal is to provide a biosensor cartridge that can reduce costs by replacing the outer surface of the cartridge with a QR code.
  • the fourth task of this embodiment is to create a biosensor that does not require a separate operation or device to obtain environmental information by reading environmental information of the biosensor cartridge from the diagnostic device when inserting the terminal of the biosensor cartridge into an integrated diagnostic device.
  • the goal is to provide a system.
  • This embodiment includes a circuit board including a connection terminal configured to be electrically connected to an external diagnostic device; A sensor chip that detects a target material from an applied analysis sample and transmits an electrical signal generated in response to the detected target material to the connection terminal of the circuit board; It includes a housing that accommodates the circuit board and the sensor chip and surrounds the circuit board and the sensor chip to expose the connection terminal, and a QR code encrypted and storing sensor information is attached to one side of the housing. Provides a biosensor cartridge characterized in that there is.
  • connection terminal is formed to protrude from one side of the housing, and the QR code may be attached to the lower surface of the housing.
  • the sensor chip includes a sensor area in which a channel is formed to which a reactive material that reacts with the target material is attached; and a pad area that transmits an electrical signal transmitted from the sensor area to the circuit board, wherein the sensor area overlaps a substrate, a channel area in which at least one channel is formed on the substrate, and both ends of each of the channels.
  • a source electrode and a drain electrode formed to be spaced apart from each other, a gate electrode spaced apart from the source electrode and the drain electrode and applying a bias voltage to the analysis sample, and the channel region and the gate electrode covering the entire sensor area. It may include a passivation layer that opens only the upper part of.
  • the housing has an inclined surface that is recessed from the upper surface, and a receiving portion that opens the sensor area of the sensor chip inside and receives the sample from the outside may be formed.
  • the sensor information encoded with the QR code may include at least one of the sensor chip type, linker information, sensing material information, product ID, substrate ID, manufacturer information, manufacturing date, assembly date, inspection date, and manufacturing number. there is.
  • the QR label on which the QR code is printed may be a void label.
  • the embodiment relates to a diagnostic device of a biosensor cartridge that generates an electrical detection signal depending on the target material in the applied sample, the diagnostic device comprising:
  • a cover member accommodating a main board mounting at least one function module in an internal space; a front panel that covers the upper surface of the cover member and provides a display area and an insertion hole for at least one biosensor cartridge; and a control module mounted on the main board, which analyzes a detection signal from the biosensor cartridge through the insertion hole to read the presence or absence of the target material and displays it on the display area. and a QR reading module located at the front of the insertion hole and reading the QR code of the biosensor cartridge when the biosensor cartridge is inserted.
  • the control module can authenticate whether the biosensor cartridge inserted into the insertion hole is genuine by linking with a server through a network.
  • the control module may obtain sensor information about the QR code from the QR reading module and perform product authentication with the server based on the sensor information.
  • the control module may transmit an authentication request to the highest priority server among the plurality of servers, and if a response is not received within a predetermined period of time, may transmit the authentication request to the next highest priority server.
  • the control module may transmit some of the sensor information, obtain linkage information related to the transmitted sensor information, and compare the sensor information decrypted from the QR code to authenticate the biosensor cartridge.
  • control module can read the detection signal from the biosensor cartridge to determine whether the target material is present.
  • control module may receive reading correction data for the biosensor cartridge from the server and update the reading algorithm using the reading correction data.
  • an entry detection signal may be transmitted to the control module.
  • the front panel includes an opening formed in front of the insertion hole to expose the QR reading module located below the front panel, and the QR reading module has a connection terminal inserted into the insertion hole through the opening.
  • the QR code attached to the housing of the biosensor cartridge can be read.
  • the QR reading module may include a QR reader that photographs the QR code and at least one light source module that is disposed around the QR reader and irradiates light toward the opening.
  • the front panel includes a light guide path through which light is transmitted from the opening to the QR reading module.
  • the light guide path is formed to have an inclined surface whose width gradually decreases from the opening, and a light guide plate is disposed on the inclined surface to serve as the light source.
  • the light from the module can be converted into a surface light source and transmitted to the upper part.
  • the sensor information about the biosensor cartridge inserted into the insertion hole and the reading result of the biosensor cartridge can be matched and stored.
  • the biosensor diagnostic device may further include an external case that surrounds the cover member and the front panel and opens and closes to expose the front panel.
  • the biosensor diagnostic device includes a battery that provides power to the plurality of function modules within the cover member, and the biosensor diagnostic device may be provided as a portable, integrated device.
  • this embodiment does not mount a separate memory chip that stores environmental information for authentication of the biosensor on the circuit board of the biosensor cartridge, thereby reducing costs and minimizing the volume of the cartridge. There is.
  • this embodiment can compact the cartridge by attaching a QR code for storing environmental information to the outer surface of the cartridge, and simultaneously inserting the biosensor cartridge, reading the QR code on the outer surface of the cartridge to collect the sensing information and environmental information. Matching errors can be minimized.
  • a QR reader is aligned so that the diagnostic device can read the QR code of the biosensor cartridge, so separate distance or position adjustment is not necessary. This can reduce diagnosis time and simplify the diagnosis process.
  • FIG. 1 is a diagram showing a biosensor system according to this embodiment.
  • FIG. 2 is a configuration diagram of the biosensor diagnostic device and biosensor cartridge of Figure 1.
  • FIG. 3 is a front view of an example of the biosensor diagnostic device of FIG. 1.
  • Figure 4 is an exploded perspective view of the biosensor diagnostic device of Figure 3.
  • FIG. 5A and 5B are top and rear views of an example of the biosensor cartridge of FIG. 1.
  • FIG. 6 is an exploded perspective view of an example of the biosensor cartridge of FIG. 1.
  • Figure 7 is a cross-sectional view of the biosensor cartridge of Figures 5 and 6 taken along lines I-I' and II-II'.
  • Figure 8 is an exploded perspective view of another example of the biosensor cartridge of Figure 1.
  • Figure 9 is a cross-sectional view of the biosensor cartridge of Figure 8 cut along line III-III'.
  • Figure 10 is a top view of an example of a sensor chip applicable to Figures 6 and 8.
  • Figure 11 is a cross-sectional view of the sensor chip of Figure 10 taken along line IV-IV'.
  • FIGS. 12A and 12B are schematic diagrams showing responses according to target materials of the sensor chip of FIG. 11.
  • FIG. 13 is a graph showing changes in output current of the sensor chip according to FIGS. 12A and 12B.
  • FIG. 14 is a diagram illustrating a combination of a biosensor cartridge and a biosensor diagnostic device in the biosensor system of FIG. 1.
  • Figure 15 is a cross-sectional perspective view taken along line V-V' in the combination diagram of Figure 14.
  • Figure 16 is a cross-sectional front view looking straight at the cross section of Figure 15.
  • FIG. 17 is a flowchart explaining the operation of the biosensor diagnostic device according to insertion of the biosensor cartridge in the biosensor system of FIG. 1.
  • each component is exaggerated, omitted, or schematically shown for convenience and clarity of explanation. Additionally, the size and area of each component do not entirely reflect the actual size or area.
  • target materials are biomaterials representing specific substrates and are interpreted to have the same meaning as analytes or analytes (e.g., target materials whose chemical components are identified and measured).
  • the target substance may be an antigen.
  • probe materials are biomaterials that specifically bind to a target material, and are interpreted to have the same meaning as a receptor or acceptor.
  • the sensing material may be an antibody.
  • Electrochemical-based biosensors combine the analytical capabilities of electrochemical methods and the specificity of biological recognition. They are substances with biological specificity such as enzymes, antigens, antibodies, biochemical substances, etc., that is, sensing substances. By fixing or containing on the surface of the electrode, the phenomenon of biological recognition of the target material is detected as a change in current or potential.
  • FIG. 1 is a diagram showing a biosensor system according to this embodiment
  • FIG. 2 is a configuration diagram of the biosensor diagnostic device 200 and the biosensor cartridge 100 of FIG. 1.
  • the biosensor system includes a biosensor diagnostic device 200, a plurality of biosensor cartridges 100, and at least one server 400.
  • the biosensor diagnostic device 200 reads a detection signal from the biosensor cartridges 100 to determine whether a target substance is present.
  • the biosensor diagnostic device 200 is a portable, all-in-one diagnostic device 200 that detects a change in current in response to the presence of a trace amount of target material from the biosensor cartridge 100, and diagnoses the disease accordingly to provide a diagnosis to the user. Results can be delivered.
  • the biosensor diagnostic device 200 can be made portable by integrating each functional block, miniaturizing it, and integrating it into one case.
  • the bio sensor diagnostic device 200 can be moved anywhere, regardless of the presence or absence of an external power source, by mounting a battery 281 therein.
  • the diagnostic device 200 includes a preprocessing process for correcting the detection signal from the biosensor cartridge 100 so that minute signal changes can be read, and includes a function to compensate for the reproducibility and non-uniformity of the sensor.
  • the biosensor diagnostic device 200 reads the QR code placed on the rear of the biosensor cartridge 100 and performs product authentication by receiving environmental information for authentication of the biosensor cartridge 100. It includes a communication module capable of transmitting and receiving signals for product authentication with a QR reader and an external cloud server 400.
  • the biosensor diagnostic device 200 may have a program algorithm or application installed to diagnose a disease by measuring and analyzing the detection signal from the biosensor cartridge 100, and may be installed depending on the type of each biosensor cartridge 100. Depending on the method, different algorithms can be implemented. That is, a plurality of different biosensor cartridges may be used in the biosensor diagnostic device 200, and different algorithms are used for each different biosensor cartridge.
  • the biosensor diagnostic device 200 includes a display unit 290 for directly displaying diagnostic results to the user, and is designed to be directly operated through user interfaces 296, 297, and 294.
  • the biosensor system includes a plurality of biosensor cartridges 100 that are inserted into the biosensor diagnostic device 200 to provide detection signals.
  • Each of the biosensor cartridges 100 is electrically connected to a diagnostic device 200 installed with an algorithm capable of measuring and analyzing the electrical detection signal generated by the biosensor chip 500.
  • the biosensor cartridge 100 may be inserted into the cartridge insertion module 2911 of the integrated biosensor diagnostic device 200 and electrically connected, as shown in FIG. 1 .
  • the biosensor cartridge 100 accommodates a sensor chip 500 corresponding to the biosensor unit 500 in housings 110 and 120, and the housings 110 and 120 include electrode pads of the sensor chip 500 and
  • the circuit board 150 including a circuit pattern extending to the connection terminal 153 that is connected and inserted into the insertion module 2911 of the external bio sensor diagnostic device 200 can be accommodated.
  • the housings 110 and 120 are separated and combined into an upper housing 110 and a lower housing 120, and the upper housing 110 and lower housing 120 accommodate the sensor chip 500 and the circuit board. By being combined and fixed, one biosensor cartridge 100 is formed.
  • the biosensor cartridge 100 has a connection terminal 153 exposed to the outside at one end for physical and electrical connection with the biosensor diagnostic device 200, and a solution for receiving the specimen is provided on the surface of the upper housing 110.
  • a receiving portion 119 is formed.
  • the solution receiving part 119 exposes a portion of the sensor chip 500 inside, and when a specimen is received into the solution receiving part 119, the sensor chip 500 is stored according to the antigen-antibody reaction of the sensor chip 500. As the charge concentration of the channel varies, the current flowing through the electrode of the sensor chip 500 varies. The changed current is read by the diagnostic device 200 through the connection terminal 153.
  • the channel can be implemented using various materials, and in particular, the channel can be implemented using graphene.
  • biosensor cartridge 100 The detailed configuration of the biosensor cartridge 100 will be described in detail later.
  • the biosensor system may include at least one server 400.
  • the server 400 may be a manufacturer server 400, and the server 400 may include a processor capable of processing programs.
  • the functions of the server 400 may be performed by the manufacturer's central computer (cloud).
  • the server 400 may be operated by the manufacturer of the biosensor cartridge 100 and the diagnostic device 200.
  • the server 400 may be installed in a building and store status information about devices in the building or store content required for home appliances in the building.
  • the server 400 may store firmware information and diagnostic information for the diagnostic device 200, and transmit authentication information for the biosensor cartridge 100 requested from the diagnostic device 200.
  • the server 400 in the bio sensor system may be one of the manufacturer's plural cloud servers 400, and a plurality of cloud servers 400 are simultaneously included and can be connected to one bio sensor diagnostic device 200. It may be provided within a sensor system.
  • the biosensor diagnostic device 200 matches the rankings for the multiple cloud servers 400 and sequentially selects the best one. Authentication requests can be sent starting from the ranking. At this time, if a response signal is not received from the priority server 400, an authentication request may be sent to the next priority server 400.
  • the server 400 may perform authentication for the biosensor cartridge 100 and provide the authentication result to the biosensor diagnostic device 200.
  • the server 400 can provide calibration data and update data for products with the corresponding ID, and can transmit them to the communicating biosensor diagnostic device 200.
  • the server 400 can also create and distribute an upgraded version of a program for analysis for each biosensor cartridge 100.
  • the server 400 may receive history information about the manufacturer's manufacturing date, manufacturing conditions, sensor type, test results, etc. of the biosensor cartridge 100 from a separate manufacturer's manufacturing server.
  • the server 400 can periodically generate and distribute upgraded versions of programs that receive and accumulate diagnostic result values for the corresponding product, perform machine learning on them, and provide them to each analysis device 200.
  • the biosensor system of this embodiment may further include a plurality of user terminals 300, but is not limited thereto.
  • the biosensor diagnostic device 200 or the cloud server 400 may transmit data about the diagnosis result to the communicating user terminal 300.
  • a dedicated application for the user terminal 300 can be provided from the manufacturer server 400, and various processing of diagnostic data is possible by storing and executing the application on the user terminal 300.
  • data can be processed to accumulate and display periodic test results, and the processed results can be provided to the user terminal 300 through an application. Accordingly, the user terminal 300 may be able to determine the prognosis and expected treatment time for the disease.
  • the user terminal 300 may be, for example, a laptop equipped with an application, a smart phone, a tablet, or a smart watch.
  • the user terminal 300 can communicate directly with the diagnostic device 200 or the server 400 through a network, and the diagnostic device 200 and the server 400 can also communicate directly through the network.
  • the network can apply wireless communication technologies such as IEEE 802.11 WLAN, IEEE 802.15 WPAN, UWB, Wi-Fi, Zigbee, Z-wave, Blue-Tooth, etc., and each device must apply at least one communication technology. It may include a wireless communication unit 260 (user terminal 300 and diagnostic device 200).
  • the wireless communication unit 260 may vary depending on the communication method of other devices (user terminal 300 and diagnostic device 200) or the server 400 with which it wishes to communicate.
  • the biosensor system reads the detection signal by inserting the connection terminal 153 of the biosensor cartridge 100 containing the specimen into the portable integrated biosensor diagnostic device 200 and electrically connecting it.
  • the functional configuration of the biosensor diagnostic device 200 for reading the detection signal is shown in FIG. 2.
  • the biosensor diagnostic device 200 includes a plurality of function modules.
  • Each function module may be individually packaged and accommodated in the case of one biosensor diagnostic device 200, and a plurality of function modules may be packaged as one module and accommodated in the case 201, 202. there is.
  • the biosensor diagnostic device 200 includes a signal conversion amplification unit 210, a signal filtering unit 220, a signal processing unit, an arithmetic unit 250, a wireless wireless communication unit 260, a power unit 280, a display unit 290, and a QR unit. It includes a reader unit 270 and a sensor control unit 240.
  • the signal conversion amplification unit 210 first receives the detection signal transmitted from the biosensor cartridge 100, and converts and amplifies the current value of the detection signal so that it can be read by the biosensor diagnostic device 200.
  • the signal conversion amplifier 210 may form an analog circuit including a resistor that generates a voltage drop according to the changed current value, which is a detection signal transmitted from the biosensor cartridge 100, and receives such a voltage drop. It may further include an amplifier circuit that amplifies this.
  • the amplified signal is transmitted to the signal filtering unit 220 to remove noise and then transmitted to the signal processing unit 230.
  • the signal processing unit 230 can convert the amplified analog detection value from which noise has been removed into a digital value for diagnostic calculation, and may include an analog-digital converter (ADC) for this purpose.
  • ADC analog-digital converter
  • the signal conversion amplification unit 210, the signal filtering unit 220, and the signal processing unit 230 can all be implemented with a single integrated circuit chip.
  • Such an integrated circuit chip may correspond to the cartridge insertion module 2911 in FIG. 3.
  • the sensor control unit 240 can provide a reference voltage whose level is varied under the control of the calculation unit 250 to the connection terminal 153 of the connected biosensor cartridge 100, and the biosensor cartridge 100 is a sensor.
  • a reference voltage with a variable level is received from the control unit 240, and a current value changed by the variable resistance value of the channel flows to the connection terminal 153.
  • the sensor control unit 240 can be mounted within the integrated circuit chip as a voltage level conversion circuit.
  • the biosensor diagnostic device 200 includes an operation unit 250 for controlling the operation of the diagnostic device 200 and reading the received digitized detection value.
  • Control of the diagnostic device 200 may include a separate controller, but by executing a program stored in one controller, it is possible to simultaneously read whether the detection value is detected and control the operation of the entire diagnostic device.
  • the calculation unit 250 can be implemented as a separate integrated circuit chip and can be mounted within the main board 255.
  • the calculation unit 250 can read the presence or absence of a target material for the detection value according to the reading program, process the result, and provide it to the display unit 290. Additionally, such reading results can be transmitted to the cloud server 400 and the user terminal 300 through the wireless communication unit 260.
  • the calculation unit 250 can also control the operation of the diagnostic device 200 for reading. As an example, when the connection terminal 153 of the biosensor cartridge 100 is inserted into the cartridge insertion module 211, the calculation unit 250 detects the insertion and sends a QR reading command to the QR reader unit 270. Can be transmitted.
  • the QR reader unit 270 performs an operation to read the QR code attached to the rear of the cartridge 100 inserted into the cartridge insertion module 2911 and transmits the information back to the calculation unit 250.
  • the calculation unit 250 receives QR information and accordingly requests authentication to the cloud server 400.
  • authentication information is received from the cloud server 400
  • the biosensor cartridge 100 is authenticated. Reading is performed, and the reading result is processed by matching it with the authentication result of the biosensor cartridge 100.
  • the calculation unit 250 can reduce errors by simultaneously performing the module operation of the diagnostic device 200 and executing the reading program to minimize the time difference in result matching.
  • the calculation unit 250 is a data storage unit (not shown) and may be composed of a memory card, a library file for diagnosis of biomaterials, and an embedded system board equipped with a signal processing device.
  • a memory card capable of storing output signal data (for example, it may be an electronic data storage device such as flash memory) is inserted into the embedded system board, and the memory card includes a system OS, a driving program, and an analysis function. Library files, etc. are saved.
  • signal processing for concentration analysis of biomaterials is calculated through comparative analysis with library files in the CPU of an embedded system board (eg, motherboard or main board), and the analysis results are stored back in the memory card.
  • the wireless communication unit 260 can be mounted together on such an embedded system board, but is not limited to this.
  • the biosensor diagnostic device 200 is a user interface and includes a display unit 290.
  • the display unit 290 includes a liquid crystal display device, a touch panel, etc., and the analysis results detected by creating a program considering user convenience. Displays .
  • display 290 may include an LED or OLED display screen.
  • the terminal 297, dial 296, button 294, etc. turn on/off the operation of the biosensor diagnostic device 200, and are connected to the calculation unit 250 to control the calculation unit 250 according to user commands. there is. That is, as a user's command is input in the interfaces 297, 296, and 294, the diagnosis of the biosensor cartridge 100 can be started. During the diagnosis process, the display unit 290 indicates the progress, and after the diagnosis is completed, the diagnosis is performed. Shows the results.
  • the bio sensor diagnostic device 200 includes a separate power supply unit 280 that can apply power to a plurality of modules, and the power supply unit 280 includes a battery 281. Accordingly, power to the internal module can be supplied from the battery 281 by charging an external power source, and thus the device 200 can be carried.
  • FIG. 3 is a front view of an example of the biosensor diagnostic device 200 of FIG. 1, and FIG. 4 is an exploded perspective view of the biosensor diagnostic device 200 of FIG. 3.
  • the bio sensor diagnostic device 200 is provided as a portable integrated device.
  • integrated may include all states in which the diagnostic device 200 is recognized as a single device in terms of movement, placement, and use.
  • integrated may mean located together inside the same case and integrated by the same case, or it may mean fixed by fitting or attaching to the same member and integrated by the same member.
  • those connected by a separate output cable, etc. may not be considered integrated.
  • the integrated biosensor diagnostic device 200 includes a separate inner cover 205 within the cases 201 and 202, and a plurality of modules accommodated within the receiving portion 208 of the inner cover 205.
  • a front panel 291 is disposed and covers the front of the inner cover 205.
  • the case 201 covers a portion of the front panel 291 to provide access to a plurality of modules. At this time, one of the rear case 202 and the inner cover 205 can be omitted.
  • the left side is defined as the front and the right side is defined as the rear along the X-axis where a plurality of modules overlap, and the Y and Z axes perpendicular to the It is defined by the two axes that make up.
  • the cases 201 and 202 of the biosensor diagnostic device 200 include a front case 201 and a rear case 202.
  • the rear case 202 has a receiving portion 203 inside and is formed to have a bottom surface and a side surface.
  • the front case 201 and the rear case 202 may be arranged with their sides in contact with each other to face the receiving portion 203.
  • the receiving portion 203 formed by the front case 201 and the rear case 202 changes from an open space to a closed space as the front case 201 is opened and closed.
  • An external case can be further formed to accommodate the front case 201 and the rear case 202 at the same time.
  • the external case can be formed in a box type as shown in Figure 3, and a handle is formed for easy carrying, or it can be tilted at a predetermined angle.
  • a field bed on which the diagnostic device 200 can be placed may be formed.
  • the bottom surfaces of the front case 201 and the rear case 202 have the same size and define the total area of the biosensor diagnostic device 200.
  • the bottom surface may be formed in various shapes, and the shape may be square as shown in FIG. 4, but is not limited to this and may be circular, oval, diamond, etc.
  • the area is a portable size.
  • one side can meet 30 cm or less, but it is not limited to this and can be further miniaturized.
  • the biosensor diagnostic device 200 may have any shape, such as a round shape (eg, oval or circular).
  • the height of the side forming the receiving part 203 of the rear case 202 may be greater than the height of the side of the front case 201, and the inner cover 205 is provided within the receiving part 203 of the rear case 202. is formed
  • the inner cover 205 has the same shape as the rear case 202 so that it can be inserted into the receiving portion 203 of the rear case 202, and its bottom may have a smaller area than the rear case 202, but the inner cover 205 has the same shape as the rear case 202. It can be fitted so that the space between the side and bottom of the case 202 and the side and bottom of the inner cover 205 is minimized.
  • the inner cover 205 protects the cases 201 and 202 and functions as a substantially integrated cover. If the cases 201 and 202 are damaged, the inner cover 205 can be separated from the cases 201 and 202. It is replaceable. That is, the inner cover 205 can be separated from the front case 201 and the rear case 202.
  • the inner cover 205 is integrated with the rear case 202, so either one can be omitted.
  • a plurality of modules are accommodated in the receiving portion 203 of the inner cover 205.
  • Supports 2081 and 2082 may be formed on the bottom surface of the inner cover 205 to support the modules while defining the position of each module, and the supports 2081 and 2082 may vary depending on the arrangement of the internal modules. Design is possible.
  • the main board 255 is accommodated in the receiving portion 208 of the inner cover 205.
  • the main board 255 may have internal modules electrically connected to perform a plurality of functions, and as shown in FIG. 4, there is a display module 295 forming the display unit 290 toward the front of the main board 255.
  • a cartridge insertion module 2911 in which the signal conversion amplifier 210 and the sensor control unit 240 are integrated may be disposed.
  • a control switch 2541 for the user interface of the front panel 291 may be disposed on the front.
  • An arithmetic module 251 and a communication module 261 that control the operation of the control device and read detection signals according to a program may be placed on the rear of the main board 255.
  • a QR reading module 271 may be placed on the rear of the main board 255.
  • a battery 281 is disposed to supply power to the main board 255 and each function module, and the battery 281 may be disposed close to the bottom of the inner cover 205.
  • the front panel 291 includes a reference plane exposed to the front of the biosensor diagnostic device 200, as shown in FIG. 3.
  • the front panel 291 includes a first opening 292 for exposing the display module 295 that is disposed on the back of the front panel 291 and displays an image on the front.
  • the first opening 292 may be covered with a transparent film, but is not limited thereto, and the display unit 290 of the display module 295 may be directly exposed.
  • buttons, dials, and terminals 294, 296, 297, etc. for a user interface can be placed around the first opening 291.
  • the plurality of buttons, dials, and terminals 294, 296, and 297 can be adjusted into various shapes depending on design.
  • a control dial 2941 may be disposed below the first opening 292, and a plurality of terminals and dials 296 and 297 may be disposed on the left side of the first opening 292 to provide user convenience. You can receive operation commands directly from.
  • a cartridge insertion module 2911 is disposed on the right side of the first opening 292 and on the right side of the reference plane in the front panel 291.
  • the cartridge insertion module 2911 may be disposed to the left of the first opening 292 of the front panel 291 and to the left of the reference surface.
  • the cartridge insertion module 2911 protrudes from the reference plane to the front and includes a terminal portion for electrical connection by inserting the connection terminal 153 of the cartridge in the Z-axis direction.
  • a terminal portion is formed on the side of the insertion module 2911, and the terminal portion may include at least one insertion hole 2914.
  • the insertion hole 2914 can be implemented in various ways depending on the shape of the connection terminal 153 of the cartridge, and the connection terminal 153 of the cartridge is a USB type such as SD card chip type, USB-A, or USB-C type. , or when formed as a pin (PIN) type, it can be formed so that the electrode of the connection terminal 153 can be read correspondingly.
  • a USB type such as SD card chip type, USB-A, or USB-C type.
  • PIN pin
  • the plurality of insertion holes 2914 are arranged side by side along the X-axis direction on the side of the insertion module 2911. can be placed.
  • a second opening 293 is disposed at the bottom of the insertion module 2911 to expose the QR reading module 271.
  • the second opening 293 is formed between the lower surface of the housing 101 of the cartridge 100 and the It is formed at a position aligned with .
  • the second opening 293 may be covered with a transparent film, and the second opening 293 may have a square shape, but its area may be smaller than that of the first opening 292. Additionally, the second opening 293 may have any shape corresponding to the shape of the QR reading module 271 or the QR area 2553.
  • the second opening 293 functions as a passage for the QR reading module 271 placed at the rear to read the QR code of the cartridge 100 placed at the front, and is located between the QR reading module 271 and the cartridge 100.
  • a light guide portion 2912 is formed that protrudes from the back of the front panel 291 and forms the side wall of the second opening 293, and the biosensor cartridge allows the QR reading module 271 to read the barcode. You can shine light toward (100).
  • the light guide unit 2912 maintains the distance between the QR reading module 271 and functions as a light for photographing the QR reading module 271. That is, the light guide part 2912 may include a light guide plate formed on the side wall of the second opening 293.
  • a main board 255 on which each module is mounted is disposed on the back of the front panel 291, and the main board 255 may also have a shape similar to the bottom surface of the inner cover 205.
  • the main board 255 has a display area 2551 where the display module 295 is arranged in response to the division of the front panel 291, a cartridge area 2552 corresponding to the cartridge insertion module 2911, and a second opening. It is divided into a QR area 2553 corresponding to 293 and a control area 254 corresponding to buttons and dials for the user interface.
  • the main board 255 is a circuit board with circuits patterned on the front and back sides, and connection terminals or connectors for electrical connection are arranged in each area.
  • Each functional module is physically fixed in a defined area and can be integrated on the main board 255 by connecting the connection terminals and connectors of the board and the connection terminals or connectors of each module.
  • the cartridge area 2552 of the main board 255 corresponding to the cartridge insertion module 2911 is a terminal in which the signal conversion amplification unit 210, the filtering unit 220, and the sensor control unit 240 are integrated.
  • the module 241 is mounted.
  • the terminal module 241 may be connected to the terminal module 241 and an insertion hole module 211 into which the connection terminal 153 of the cartridge is inserted by a flexible printed circuit board (FPCB) 2111. It can be implemented as a component.
  • FPCB flexible printed circuit board
  • the display module 295 may be an LCD or LED panel module placed in the display area 2551, and the main board 255 may be connected to the operation module 251 on the back of the main board 255 and the battery 281.
  • a terminal opening 2951 may be formed.
  • the calculation unit 250 and the communication module 261 can also be connected to the main board 255 through a connector at the rear of the main board 255, but their arrangement on the main board 255 is not limited to this.
  • a QR reading module 271 is placed on the rear of the main board 255 to read the QR code through the QR opening 2554 formed in the QR area 2553, and the QR reading module 271 is also placed on a flexible printed circuit board (FPCB). ) is electrically connected to the main board 255 through (2711) and receives power and control signals. That is, the QR reading module 271 includes the FPCB 2711 and can electrically connect the QR reading module 271 to the main board 255.
  • FPCB flexible printed circuit board
  • a side frame 209 is formed to arrange and secure such modules.
  • the side frame 209 fixes the inner cover 205 and the front panel 291, and the inner cover 205 has a screw hole 2061 (or a plurality of screw holes (or a plurality of screw holes) extending from one end 206 of the side). It is fixed to the side frame 209 through 2061)).
  • the side frame 209 is formed with a plurality of screw holes 2091 that overlap the screw holes 2061 of the inner cover 205.
  • a fastener such as a screw or bolt penetrates the screw hole 2091 of the side frame 209 and is fixed to the screw hole 2061 of the inner cover 205.
  • Each module is fixed at a specific position on the main board 255 through a plurality of other fixing parts, and the main board 255 has a plurality of fixing protrusions 2081 and 2082 protruding from the bottom surface of the inner cover 205. and the front panel 291 by combining screws and screw holes.
  • each module and component arranged between them is fixed and does not shake during movement and the electrical connection is maintained.
  • front panel 291 and the inner cover 205 are fixed together and integrated through the screw holes and screws of the side frame 209.
  • Each component is fixed and assembled using screw holes and screws, making disassembly and reassembly easy.
  • the front case 201, rear case 202, inner cover 205, and front panel 291 may be made of resin such as polycarbonate or plastic for portability.
  • Such a biosensor diagnostic device 200 is provided to the user with the front panel 291 exposed in a form that has a space for accommodating a plurality of modules inside as shown in FIG. 3, and can be utilized by applying various external cases.
  • the reference plane of the front panel 291 provided to the user is provided with the screen of the display module 295, and various buttons and dials for the user interface are provided, especially the power button and a plurality of controls. Buttons and USB terminals can be provided.
  • a cartridge insertion module 2911 is provided on one side of the display module 295 to diagnose the biosensor cartridge 100 by inserting the connection terminal 153 into the insertion hole 2914 parallel to the reference plane of the panel 291. This is possible.
  • biosensor cartridge 100 applied to this embodiment will be described with reference to FIGS. 5 to 7.
  • FIGS. 5A and 5B are top and rear views of an example of the biosensor cartridge 100 of FIG. 1
  • FIG. 6 is an exploded perspective view of an example of the biosensor cartridge 100 of FIG. 1
  • FIG. 7 is a cross-sectional view of the biosensor cartridge 100 of FIGS. 5 and 6 cut along lines I-I' and II-II'.
  • the biosensor cartridge 100 accommodates a sensor chip 500 that generates an electrical detection signal depending on the target material, and transmits the detection signal to an external diagnostic device ( It has a structure including a connection terminal 153 that can be transmitted to 200).
  • the biosensor cartridge 100 is formed of bar-type housings 110 and 120, protrudes from the cross sections of the housings 110 and 120, and is connected to an external diagnostic device 200. A portion of the surface 151 of the circuit board 150 including the connection terminal 153 that is inserted and transmits the detection signal is exposed.
  • the biosensor cartridge 100 includes housings 110 and 120, a sensor chip 500, and a circuit board 150.
  • the circuit board 150 is also formed in a bar type, and a connection terminal 153 is formed at one end so that the connection terminal 153 of the circuit board 150 is exposed to the outside of the housings 110 and 120. It forms the overall shape of the cartridge 100.
  • the housings 110 and 120 include a lower housing 120 and an upper housing 110.
  • the lower housing 120 includes a bar type bottom surface 121 (for example, a flat surface or a flat rectangular surface) and a side surface 122 surrounding the bottom surface 121. .
  • the bottom surface 121 includes a plurality of coupling protrusions 127 and 128 protruding toward the upper housing 110, and the coupling protrusions 127 and 128 are fitted into the coupling groove of the upper housing 110.
  • the upper and lower parts of the housings 110 and 120 are combined and integrated.
  • the lower housing 120 may include four engaging protrusions 128 located at the corners of the lower housing 120, which correspond to the grooves of the upper housing 110 located at the corners of the upper housing 110. are combined.
  • a coupling protrusion 127 may emerge from another coupling protrusion 128 (eg, a corner coupling protrusion 128).
  • another coupling protrusion 128 eg, a corner coupling protrusion 128, Alternatively, four or more coupling protrusions 127 may be formed, and the coupling protrusions may be arranged at equal intervals along the circumference of the lower housing 120.
  • the upper housing is located on the bottom surface 121 of the lower housing 120.
  • a substrate protrusion 127 is formed to define a position while fixing the circuit board 150 toward 110, and a plurality of sensors define a chip area 125 on one side of which the sensor chip 500 is disposed.
  • a protrusion 126 is formed.
  • the sensor protrusion 126 is arranged to correspond to the size of the sensor chip 500 to define the chip area 125 where the sensor chip 500 is placed, and the sensor chip 500 can be fitted. It is formed with a certain amount of elasticity. However, since the sensor protrusion 126 does not perform electrical connection to the sensor chip 500, it can be implemented in various forms, and may be formed in a rail structure for sliding coupling in addition to fitting coupling.
  • a sensor chip 500 is disposed in the chip area 125.
  • the sensor chip 500 is a semiconductor-based biosensor, and has a sensor area that reacts according to the target material in the sample through contact with the sample and a detection signal generated according to the branch area to transmit to the circuit board 150. It is divided into pad areas.
  • the pad area 510 may be patterned to be placed on one side of the sensor chip 500 as shown in FIG. 6, and thus the electrical connection between the circuit board 150 and the sensor chip 500 is performed in the pad area 510. .
  • the sensor chip 500 may have different sizes depending on the size of the cartridge. For example, it may have a rectangular shape of 8mm*6mm or a square shape of 6mm*6mm.
  • the size of the sensor chip 500 can be implemented in various ways depending on the performance of the sensor chip 500 or the purpose of the sensor chip 500.
  • a circuit board 150 is disposed on the sensor chip 500.
  • the circuit board 150 may be provided as a rigid board, such as a PCB board, and the sensor chip 500 is electrically/physically bonded to the bottom.
  • the circuit board 150 includes a sensor opening 155 for exposing the sensor area 540 of the sensor chip 500, and the opening 155 has a smaller size than the sensor chip 500. Additionally, the opening 155 may have a size corresponding to the sensor area 540 of the sensor chip 500 and has a size that exposes the sensor area 540.
  • the circuit board 150 further includes a protrusion hole 154 through which the substrate protrusion 127 of the lower housing 120 penetrates to secure the circuit board 150, and thus the circuit board 150 and lower housing 120 are fixed.
  • the circuit board 150 has a plurality of connection pads 158 formed on the front surface for connection to the sensor chip 500, and extends from the connection pad 158 to receive a detection signal from the connection pad 158.
  • the electrode layer pattern for transmitting to the external diagnostic device 200 is connected to the connection terminal 153.
  • connection terminals 153 of the circuit board 150 may be equal to or greater than the number of terminals of the sensor chip 500.
  • the number of connection pads 158 of the circuit board 150 also satisfies three, and the number of connection terminals 153 satisfies three or more.
  • connection terminal 153 further includes a terminal that is not electrically connected to each connection pad 158 and can be used as a terminal for ESD blocking, etc.
  • the circuit board 150 includes a plurality of coupling grooves, and the plurality of coupling grooves are formed to enable fitting while specifying the position when the upper housing 110 and the lower housing 120 are coupled.
  • the upper housing 110 has an upper surface 111 and a lower surface having different structures, as shown in FIG. 6 .
  • the upper housing 110 faces the lower housing 120, is coupled to the lower housing 120, and functions as an upper case that can accommodate the circuit board 150 and the sensor chip 500 therein. Additionally, a receiving portion 119 exposing the sensor area 540 of the sensor chip 500 is formed in the upper housing 110 to accommodate a sample to be tested.
  • the upper housing 110 is formed to have rigidity to firmly support the connecting members 140 by pressing them with a predetermined force.
  • the connecting member 140 may be formed in plural, and may be a conductive tab (e.g., a metal tab) for connecting the connection pad 158 disposed on the circuit board 150 and the pad 511 of the sensor chip 500. You can.
  • the upper housing 110 and the lower housing 120 may be configured to surround the sensor chip 500 and the circuit board 150 to protect the sensor chip 500 and the circuit board 150 from the outside.
  • an opening protruding the connection terminal 153 of the circuit board 150 is formed in the cross section on one side, and the connection terminal 153 is exposed in the cross section, thereby forming the cartridge.
  • the connection terminal 153 it is inserted into the insertion hole 2914 of the external diagnostic device 200.
  • the solid coupling of the upper housing 110 and the lower housing 120 can prevent the sample provided to the sensor chip 500 through the receiving portion 119 from leaking into the interior of the housings 110 and 120.
  • a receiving portion 119 that exposes the sensor area 540 of the sensor chip 500 and accommodates a sample is formed on the upper surface 111 of the upper housing 110.
  • the receiving portion 119 is a space for accommodating a sample to be tested in a fluid state, for example, a liquid state, and inducing a reaction with the exposed sensor area 540.
  • the receiving portion 119 is provided from the upper surface 111 to the sensor area ( As it approaches 540), it forms a cone-shaped channel whose diameter becomes narrower.
  • the area of the receiving portion 119 closest to the sensor area 540 is called an end, and the farthest area of the sensor area 540 opposite the end is called an opening or outermost area.
  • the receiving part 119 is formed with an inclined surface 116 such that the diameter w1 of the opening on the upper surface is larger than the diameter w2 of the opening at the end of the receiving part 119.
  • the inclination angle of the inclined surface 116 - When viewed from the cross section in FIG. 7, the angle of the inclined surface 116 with respect to the horizontal direction (x-axis) in which the sensor chip 500 is placed may be uniform, but unlike this, it may have an inflection point. It may be possible.
  • a concave groove is formed whose depth is the height from the upper surface of the upper housing 110 to the sensor area 540, and the sample is collected in the groove and stored below. A reaction is induced with the sensing material in the sensor area 540.
  • the receiving part 119 further includes a guard 114 to prevent the sample in the receiving part 119 from flowing outward, as shown in FIGS. 5A, 6, and 7.
  • the guard 114 may be formed in a cylindrical shape, surrounds the opening of the upper surface 111 of the upper housing 110, and is formed to protrude upward (y-axis) from the upper surface 111.
  • the diameter w1 of the guard 114 may be the same as the diameter of the opening of the upper surface 111.
  • a guard groove 113 of a predetermined depth is formed on the upper surface 111 of the upper housing 110 and surrounds the receiving portion 119.
  • the guard groove 113 is to prevent the sample overflowing from the receiving portion 119 from flowing out of the housing 110, and is formed to be concavely recessed from the upper surface 111 to a predetermined depth.
  • the guard groove 113 may be formed in a circular shape identical to the shape of the guard 114, but may be formed in a square shape with a minimum distance d2 or more from the guard 114 as shown in FIGS. 6 and 7. You can.
  • the guard groove 113 includes a vertical wall 112 forming the outer periphery of the guard groove 113.
  • the receiving portion 119 where the sample and the sensor area 540 come into contact have a primarily concave cup shape to accommodate the sample and provide a space for the target material of the sample and the sensing material of the sensor area 540 to react with each other.
  • the receiving part 119 forms a guard 114 surrounding the opening of the upper surface 111 to secondarily receive the overflowing sample, thereby securing the amount of the sample and preventing the risk of the sample being exposed to the outside. there is.
  • a guard groove 113 is formed around the third guard 114 to accommodate the sample when it overflows the guard 114 or flows outside the guard 114, thereby preventing samples that may contain hazardous substances from being exposed to the outside. Exposure can be prevented.
  • the test can be safely performed by modifying the shape of the receiving portion 119 for accommodating the sample in the upper housing 110.
  • the lower surface of the upper housing 110 may include an inclined portion to form an inclined surface 116 of the receiving portion 119.
  • the sensor area 540 of the sensor chip 500 is exposed upwardly through the sensor opening 115 of the circuit board 150, and the accommodating part is aligned with the exposed sensor area 540.
  • the lower opening of 119 is aligned.
  • the opening 115 of the circuit board 150 is fitted to surround the lower surface of the inclined surface 116 of the receiving portion 119, thereby fixing the positions of the circuit board 150 and the upper housing 110.
  • the rear surface of the inclined surface 116 of the receiving portion 119 is formed to have a vertical step 117 in the area where it meets the opening 115 of the circuit board 150.
  • the circuit board 150 is primarily fixed by fitting the step 117 on the back of the receiving portion 119 and the sensor opening 115 of the circuit board 150, and the fixing protrusion ( 127) and the fixing hole 154 of the circuit board 150 are combined to be secondarily fixed and the position is specified.
  • a sealing portion 130 may be further formed between the upper housing 110 and the sensor area 540.
  • the sealing portion 130 is formed as a separate element as shown in FIG. 6 and is coupled and compressed together when the housings 110 and 120 are combined to prevent the sample from flowing outside the sensor area 540.
  • the sealing part 130 may have a sealing opening 131 having a diameter (w3) larger than the diameter (w2) of the lower surface opening of the receiving part 119, as shown in Figure 7, and the lower surface opening and the sealing opening ( 131) can be arranged to have concentric circles. Accordingly, as shown in FIG. 7, during assembly, the sealing portion 130 is disposed outside the lower opening of the receiving portion 119 to form a concave groove.
  • the sealing portion 130 may be an elastic material and may be formed of rubber, fluoroelastomer, silicone, neoprene, nitrile, polyvinyl chloride (PVC), thermoplastic polyurethane, polytetrafluoroethylene, etc.
  • sealing opening 131 of the sealing part 130 and the opening of the receiving part 119 sealing of the sample can be guaranteed while securing the area of the sensor area 540.
  • the sealing portion 130 may be an elastic closed cell type waterproof pad, but is not limited thereto.
  • Such upper housing 110 and lower housing 120 can be manufactured and produced by molding (eg, injection molding, compression molding, transfer molding, etc.).
  • the upper housing 110 and the lower housing 120 are made of at least one material selected from polymethyl methacrylate, polycarbonate, cyclic olefine copolymer, polyethylene sulfone, and polystyrene. , it can be prepared from a combination of at least two or more of these.
  • the material of the housing 125 is not necessarily limited to this, and may be made of polydimethylsiloxane, a silicon-based organic polymer.
  • connection pads 158 formed on the lower surface of the circuit board 150 are formed in the same number as the pads 510 of the sensor chip 500, and the connection pads 158 of the circuit board 150 and the sensor A connecting member 140 is disposed to electrically and physically connect the pad 510 of the chip 500.
  • the connecting member 140 may be formed separately for each pad 158 and may be formed as a clip-type elastic contact piece. This connecting member 140 may be a C-clip or spring terminal.
  • Each connecting member 140 has a first surface in contact with the pad 158 of the circuit board 150 and a second surface configured to be elastically deformable by bending from one side of the first surface in the longitudinal direction of the first surface. may include.
  • the first surface is formed to have a predetermined length so that the free end contacts the pad area 510 of the circuit board 150, and the second surface contacts the pad of the lower sensor chip 500 and is elastically deformed.
  • This connecting member is elastically deformed at the bending portion, which is a bent portion between the first surface and the second surface, and when pressure is applied up and down between the lower part of the first surface and the upper part of the second surface, the first surface and the circuit board ( The connection pad 158 of 150 is in contact with the second surface and the pad 510 of the sensor chip 500 is in contact with it.
  • the second surface is in contact with the pad 510 of the sensor chip 500 and is maintained in an energized state, and physical and electrical coupling are achieved simultaneously.
  • the sensing material in the sensor chip 500 is not exposed to the high temperature in the bonding process, causing protein deformation. can be prevented.
  • the characteristics of the sensing material can be maintained by excluding the heating process, and electrical connection between the sensor chip 500 and the circuit board 150 is possible.
  • the lower surface 129 of the lower housing 120 of the biosensor cartridge 100 that is, the lower surface 129 of the cartridge 100 exposed to the outside, has a product ID for authenticating the biosensor cartridge 100. and a QR label 160 containing a QR code storing sensor information including a manufacturing serial number, etc. is attached.
  • the QR label 160 may have a rectangular shape, with a width of 11 to 13 mm and a length of 14 to 16 mm.
  • the QR label 160 may have a size of 12*15mm, and the size of the QR label 160 is smaller than 25mm*18mm, which is the size of the second opening 293 of the diagnostic device 200. It can have a value.
  • the QR label 160 is formed when the cartridge 100 is combined with an external diagnostic device 200, and the lower surface 129 of the lower housing 120 of the cartridge 100 has a second opening 293, which is the QR opening. ) It can be attached to the central area of the lower surface 129 of the lower housing 120 so that it can be aligned on top.
  • the distance from the side end where the connection terminal 153 of the lower housing 120 protrudes to the QR label 160 satisfies 11 to 12 mm. Therefore, since it has a value smaller than 18 to 19 mm, which is the distance from the insertion hole 2914 of the diagnostic device 200 to the center of the second opening 293, the QR label 160 is outside the second opening 293. Sort without deviating from .
  • the QR code may include all sensor information for genuine product authentication. For example, it may include not only the product ID and manufacturing serial number, but also all sensor chip 500 information and cartridge information, and the sensor chip 500
  • the information may include the sensing material activated in the sensor chip 500, the disease to be diagnosed, the manufacturing date of the sensor chip 500, manufacturing location, and manufacturing serial number. Additionally, the cartridge information may include the assembly date, inspection date, and sensor ID of the biosensor cartridge 100.
  • the QR code stored in this way When the QR code stored in this way is inserted into the diagnostic device 200, it can be simultaneously read from the QR reading module 271 of the diagnostic device 200 and a process for product authentication can be performed with the cloud server 400.
  • biosensor cartridge 100 through this authentication process, it is possible to check for errors containing risks to the current type of biosensor cartridge 100.
  • the biosensor cartridge 100 does not include a separate memory chip for storing sensor-specific information for such an authentication process.
  • the size of the circuit board 150 increases, and the size of the housings 110 and 120 increases depending on the size of the circuit board 150.
  • the circuit of the circuit board 150 becomes more complex and the number of pins used in the connection terminal 153 increases, causing problems with miniaturization and cost of the cartridge 100.
  • Such a memory chip can be replaced by attaching a QR label 160 with a QR code printed on the bottom of the housing, such as the biosensor cartridge 100 according to this embodiment, and the cartridge 100 and the diagnostic device 200 By combining and reading the QR code almost simultaneously, the time difference between sensor result reading and authentication can be minimized.
  • Such a QR code can be prevented from being arbitrarily attached or detached by attaching a security label 160, such as a VOID label, to the bottom of the lower housing 120.
  • a security label 160 such as a VOID label
  • Such a biosensor cartridge 100 has an upper housing 110 coupled to a circuit board 150 to which a connecting member 140 is attached, with the sensor chip 500 placed in the lower housing 120. ) and pressurized for assembly, the sensor chip 500 and the circuit board 150 are physically and electrically attached and fixed.
  • This biosensor cartridge 100 can be changed to the configuration shown in FIGS. 8 and 9.
  • the biosensor cartridge 100 according to the second embodiment may be configured as shown in FIGS. 8 and 9.
  • FIG. 8 is an exploded perspective view of another example of the biosensor cartridge 100 of FIG. 1, and FIG. 9 is a cross-sectional view of the biosensor cartridge 100 of FIG. 8 cut along line III-III'.
  • the biosensor cartridge 100 of FIGS. 8 and 9 has the same configuration of the lower housing 120, sensor chip 500, and circuit board 150 as the biosensor cartridge 100 of FIGS. 6 and 7. The explanation is omitted.
  • the biosensor cartridge 100 of the second embodiment may have a receiving portion 119 formed differently from that of the first embodiment.
  • the biosensor cartridge 100 includes a receiving portion 119 for receiving a sample in the upper housing 110 and guiding it to the sensor area of the lower sensor chip 500. ) is formed.
  • the receiving portion 119 is a space for accommodating a sample to be tested in a fluid state, for example, a liquid state, and inducing a reaction with the exposed sensor area 540.
  • the receiving portion 119 is concave from the upper surface. It is depressed to form a cone-shaped passage, or channel, whose diameter becomes narrower as it approaches the sensor area 540.
  • the accommodating part 119 is formed with an inclined surface 118 such that the diameter W1 of the opening on the upper surface is larger than the diameter of the opening W2 at the end of the accommodating part 119.
  • the receiving part 119 is expanded so that the diameter W1 of the opening on the upper surface is wider than the area of the sensor chip 500, so that the diameter W1 of the opening on the upper surface and the diameter of the opening at the end of the receiving part 119 ( The difference in W2) is very large.
  • the diameter W1 of the opening on the upper surface may be 2 to 3 times the diameter W2 of the opening at the end of the receiving portion 119.
  • the diameter of the opening on the upper surface (W1) and the diameter of the opening at the end of the receiving part 119 (W2) The larger the difference, the larger the accommodating volume of the accommodating part 119, so that a larger amount of sample can be accommodated.
  • the inclination angle of the inclined surface 118 - When viewed from the cross section in FIG. 9, the angle of the inclined surface with respect to the horizontal direction in which the sensor chip 500 is placed may be uniform, but may otherwise have an inflection point.
  • a concave groove is formed whose depth is the height from the upper surface of the upper housing 110 to the channel area, and the sample is collected in the groove to be stored in the sensor area below ( 540) A reaction is induced with the sensing material.
  • the biosensor cartridge 100 accommodates the biosensor chip 500 inside the housings 110 and 120, and includes a circuit board ( 150) is provided to accommodate.
  • bio sensor chip 500 of this embodiment will be described with reference to FIGS. 10 to 13.
  • FIG. 10 is a top view of an example of the sensor chip 500 applicable to FIGS. 6 and 8, and FIG. 11 is a cross-sectional view of the sensor chip 500 of FIG. 10 taken along line IV-IV', and FIGS. 12A and 12B.
  • FIG. 12A and 12B is a schematic diagram showing the response of the sensor chip 500 of FIG. 11 according to the target material, and
  • FIG. 13 is a graph showing the change in output current of the sensor chip 500 according to FIGS. 12A and 12B.
  • the biosensor chip 500 detects a target material from the analysis sample introduced inside by the receiving portion 119 of the biosensor cartridge 100, and transmits an electrical signal generated in response to the detected target material to the electrode pad. It is transmitted to the pad 158 of the circuit board 150 through 511.
  • the sample may be a biological material, such as body fluids including saliva and sweat, blood, and a solution diluted with serum or plasma.
  • body fluids including saliva and sweat, blood, and a solution diluted with serum or plasma.
  • the bio sensor chip 500 is a semiconductor-based sensor chip 500 and can be manufactured as a bio sensor chip 500 to which graphene is applied.
  • the sensor chip 500 may have various sizes depending on the type of target material, the number of target materials, and the size of the cartridge 100. For example, it may be designed to have a size of 6*6mm or 6*8mm.
  • the bio sensor chip 500 has a square-shaped plane, and a sensor area 540 exposed to the outside through the receiving portion 119 is formed on the front, A pad area 510 spaced apart from the sensor area 540 and connected to the pad 158 of the circuit board 150 through a connecting member 140, and a pad area 510 connecting the sensor area 540 and the pad area 510. It may be divided into a connection portion 530.
  • the sensor area 540 is attached to a sensing material, such as an antigen, an antibody, an enzyme, etc., that detects a target material from a contacted analysis sample and generates an electrical signal by reacting with the target material.
  • a sensing material such as an antigen, an antibody, an enzyme, etc.
  • the external diagnostic device 200 connected to the biosensor 100 can detect the presence or concentration of the target substance by analyzing the electrical signal generated by the biosensor 100.
  • the sensor area 540 includes a transistor structure, and has a structure in which a sensing material is attached to the channel area 550 of the transistor.
  • the sensor area 540 includes a plurality of concentric circular or ring-shaped electrodes 535S, 535D, and 535G, and between the plurality of electrodes 535S, 535D, and 535G, especially the source electrode 535S.
  • a plurality of channel regions 550 are formed between the and drain electrodes 535D.
  • An insulating layer 532 is formed on the semiconductor substrate 530, and the insulating layer 532 may be formed of oxide or nitride.
  • the semiconductor substrate 530 is a silicon substrate
  • the insulating layer 532 may be formed of silicon oxide or silicon nitride, and may be formed by various methods. For example, a silicon oxide layer may be formed on the surface through heat treatment.
  • a plurality of channels 533 are formed on the insulating layer 532 to be spaced apart from each other.
  • the plurality of channels 533 are arranged at a predetermined distance from the center (O) of the circle of the sensor area 540, and the center area is exposed to form the channel area 550.
  • the plurality of channels 533 are arranged to be spaced apart from each other on an imaginary circumference whose radius is a predetermined distance from the center (O) of the circle.
  • the plurality of channels 533 may be arranged to be spaced apart by the same angle. For example, seven channels 533 may be formed as shown in FIG. 10, and each channel 533 may be spaced apart at an angle of 45 degrees. You can.
  • each channel 533 may be spaced apart at an angle of 60 degrees.
  • channels 533 may be spaced at any angle.
  • One channel 533 may be patterned into a specific shape and may be made of a semiconductor material, but alternatively, it may be made of a highly reactive graphene-based material that is a highly conductive material.
  • the channel 533 includes a region overlapping the source electrode and the drain electrode 535S and 535D, and a channel region 550 exposed to the outside through the receiving portion 119 between the two overlapping regions.
  • the channel region 550 may have a lower resistance in the channel region 550 as the channel 533 is formed in an I-shape to have a narrower width than the overlapping region as shown in FIG. 10, but is not limited to this. It may be formed in a bar type to have the same width from the area to the channel 533.
  • a source electrode 535S having the shape of the smallest circle may be formed on the center O of the sensor area 540.
  • the source electrode 535S may be formed as a circle with the smallest diameter, and is formed to overlap one end of the channel 533, and simultaneously overlaps with a plurality of channels 533 to simultaneously transmit the source voltage to the plurality of channels 533. Deliver.
  • a drain electrode 535D may be formed outside the channel region 550 and spaced apart from the source electrode 535S.
  • the drain electrode 535D may be formed in a ring shape, and is formed along the circumference of an imaginary circle surrounding the channel region 550 and having a larger diameter than the channel region 550.
  • the drain electrode 535D can also simultaneously overlap the plurality of channels 533 and receive current from the plurality of channels 533 at the same time.
  • One end of the drain electrode 535D is cut to form a passage through which the connection portion 521 of the source electrode 535D passes.
  • a gate electrode 535G is formed along the circumference of an imaginary circle with a larger diameter surrounding the drain electrode 535D.
  • the gate electrode 535G has the largest area and may occupy 1/2 to 2/3 of the sensor area 540.
  • the gate electrode 535G is formed to be spaced apart from the source electrode, gate electrodes 535S and 535D, and the channel region 550.
  • the gate electrode 535G also forms a passage so that the connection portion 521 of the drain electrode and the source electrodes 535S and 535D is connected to the pad 511, and one end is cut off.
  • the electrodes 535S, 535D, and 535G of the sensor area 540 designed as shown in FIG. 10 are formed of the same layer.
  • the source electrode, drain electrode, and gate electrodes 535S, 535D, and 535G are all formed of the same layer and formed in one process.
  • an electrode layer may be formed and the corresponding electrode layer may be simultaneously patterned to form a source electrode, a drain electrode, and a gate electrode 535S, 535D, and 535G, respectively.
  • the metal layer may be made of at least one of Ni, Zn, Pd, Ag, Cd, Pt, Ga, In, and Au, but is not limited thereto.
  • a passivation layer 536 is formed on the electrodes 535S, 535D, and 535G.
  • the passivation layer 536 is formed on the entire sensor chip 500 to protect the sensor area 540 and the electrodes 535S, 535D, and 535G.
  • the passivation layer 536 may be formed of a moisture-resistant material, for example, an oxide layer, a nitride layer, or a carbide layer.
  • the passivation layer 536 can be made of polymer resin, but is not limited thereto.
  • the passivation layer 536 exposes only the plurality of channel regions 550, the gate electrode 540, and the plurality of pads 511 within the sensor chip 500 and covers all remaining regions. Specifically, as shown in FIG. 8, the source electrode 535S is electrically connected to the source pad 511S, the drain electrode 535D is electrically connected to the drain pad 511D, and the gate electrode 535G is connected to the gate pad 511G.
  • the gate electrode 535G and the channel area 550 are exposed, so that a reaction can be induced by direct contact with the sample.
  • each pad 511 is exposed in an insulated state and electrically contacts each pad 158 of the circuit board 150 through the upper connection member 140.
  • a sensing material 610 is attached to each exposed channel area 550, thereby activating the sensor.
  • the sensing material 610 is a material that specifically reacts to the target material that the sensor wishes to detect. If the target material is an antigen, an antibody may be attached. If the target material is an antibody, an antigen may be attached thereto.
  • a linker material (not shown) may be attached to ensure a smooth connection between the sensing material 610 and the graphene, and the linker material may be attached on the graphene.
  • the process of attaching the sensing material 610 is defined as an activation process.
  • the linker material varies depending on the material forming the channel 533 and the sensing material 610.
  • it may be a nano-sized polymer structure, for example, polyurethane, polydimethylsiloxane, NOA (Norland Optical Adhesives), epoxy, polyethylene terephthalate, polymethyl methacrylate, polyimide, polystyrene, polyethylene naphthalate, polycarbonate, and combinations thereof.
  • linker material may be comprised of a combination of polyurethane and NOA (eg, NOA 68).
  • NOA eg, NOA 68
  • the linker material is not limited to this and may be made of various flexible polymers.
  • the source electrode 535S receives the source voltage and the gate electrode 535G receives the gate voltage due to the voltage applied to each pad 511.
  • the gate electrode 535G is exposed to the receiving portion 119 and comes into contact with a sample provided from the outside to apply a bias voltage to the sample. Therefore, the sample exists in a partially charged state with respect to the voltage of the gate electrode 535G.
  • the drain current (I DS ) read from the drain electrode 535D is as shown in FIG. 13 .
  • the drain current I DS has a first value I1, which is defined as the reference current.
  • the target material 650 and the sensing material 610 react so that the channel 533 is charged with a specific carrier.
  • a depletion state may occur in which charges accumulate in the channel 533.
  • the drain current (I DS ) read from the drain electrode 535D increases and has the second value (I2) of FIG. 13 .
  • the amount of accumulated charge is proportional to the area of the channel 533, so when the number of channels 533 is 1 and the drain current (I DS ) has the second value (I2), the number of channels 533 is If there are two or more, the third value (I3) is greater than the second value (I2). Accordingly, the value of the drain current (I DS ) read from the drain electrode 535D has the effect of being amplified.
  • the plurality of channels 533 are spaced apart from each other, even when one channel 533 is not operating, the presence of the target material can be recognized by causing the drain current (I DS ) to rise and fall in the other channel 533. You can.
  • the graphene channel sensor chip 500 has the effect of amplifying drain current and compensating for malfunctioning channels by having a multi-channel structure with a plurality of channels spaced apart from each other.
  • both the gate electrode 535G and the channel region 550 can be exposed through an opening at the end of the receiving portion 119, which has a circle larger than the circumference of the gate electrode 535G.
  • a plurality of channel regions 550 are formed at the same distance and at the same angle from the center (O) of the sensor region 540 opened by the receiving portion 119, so that the sample comes into uniform contact, and the source and drain
  • the structure can be optimized by forming a shape that surrounds the source and drain electrodes 535S and 535D to place the channel 533 between the electrodes 535S and 535D.
  • each electrode connection part 521 is connected from one end of each electrode 535S, 535D, and 535G to the pad 511, and each electrode connection part 521 is made of the same metal layer as the electrodes 535S, 535D, and 535G. formed so that they do not overlap with each other.
  • the pad 511 is shown as being formed in a line at one end of the sensor chip 500, but the present invention is not limited thereto.
  • the design of the sensor chip 500 can be changed in various ways as long as the transistor with the gate electrode 535G and the plurality of channels 533 exposed is maintained in the receiving portion 119.
  • the position of the pad 511 can also be changed in various ways. However, as the position of the pad 511 changes, the position of the connection pad 158 between the connection member 140 and the circuit board 150 also changes.
  • the biosensor cartridge 100 accommodating the graphene-based multi-channel sensor chip 500 and the biosensor diagnostic device 200 coupled therewith form one biosensor system environment.
  • the biosensor diagnostic device 200 and the biosensor cartridge 100 connect the connection terminal 153 of the biosensor cartridge 100 to the insertion hole 2914 of the cartridge insertion module 2911 of the biosensor diagnostic device 200. ), diagnosis and sensor authentication are performed simultaneously.
  • FIG. 14 is a combined diagram of the biosensor cartridge 100 combined with the biosensor diagnostic device 200 in the biosensor system of FIG. 1, and FIG. 15 is a cross-sectional perspective view taken along line V-V' in the combined diagram of FIG. 14. , and FIG. 16 is a cross-sectional front view looking directly at the cut surface of FIG. 15.
  • connection terminal of the biosensor cartridge 100 is inserted into the insertion hole 2914 of the cartridge insertion module 2911 of the biosensor diagnostic device 200.
  • the sample may be body fluid such as saliva or sweat, or blood.
  • connection terminal 153 is inserted into the insertion hole 2914 of a type matching the type of the connection terminal 153.
  • Insertion of the cartridge connection terminal 153 can be performed in the same way as insertion of a USB memory, as the cartridge connection terminal 153 is similar to a USB terminal.
  • the receiving portion 119 which accommodates the sample to be tested, is located outside the diagnostic device 200, and only the connection terminal 153 enters the diagnostic device 200 through the insertion hole 2914 and transmits an electrical signal. Deliver.
  • the cartridge 100 when the diagnostic device 200 and the cartridge 100 are combined, the cartridge 100 may be spaced a predetermined distance away from the front panel 291, but in contrast, it is aligned with the front panel 291. It may be in contact.
  • the lower surface 129 of the lower housing 120 of the cartridge 100 faces the front panel 291, and the QR label 160 attached to the lower surface 129 of the lower housing 120 is Aligns with QR opening 293 of front panel 291.
  • the QR opening 293 is aligned with the QR reading module 271 disposed below through the light guide path, and the QR reading module 271 includes a QR camera module 272 and at least one light source in the case as shown in FIG. 16. Includes module 273.
  • Two light source modules 273 may be provided, and the QR camera module 272 is disposed between the two light source modules 273. However, two or more light source modules 273 may be provided so that each light source module 273 faces the QR opening 293. .
  • the QR reading module 271 is disposed below the light guide path 2912, and is directed toward the second opening 293, which is the upper part of the light guide path 2912, and includes a QR camera module 272 and at least one light source module 273. ) is placed.
  • a QR reader 272 which is a QR camera module, is arranged aligned with the center line of the second opening 293, and at least one light source module 273 is arranged around the QR reader 272.
  • the plurality of light source modules 273 may be arranged to be spaced apart from each other while maintaining the same distance around the QR reader 272.
  • the light source module 273 may be an LED module, but is not limited thereto.
  • the light guide path 2912 may have an inclined surface whose diameter becomes narrower as it approaches the QR reading module 271.
  • the opening closest to the QR reading module 271 has the smallest diameter, and the opening on the upper surface of the front panel 291 has the smallest diameter. 2
  • the diameter of the opening 293 has the largest value. Accordingly, when viewed from the top of the front panel 291, a light guide path 2912 whose diameter converges toward the QR reading module 271 is formed.
  • a light guide plate 2931 may be disposed on the inclined surface of the light guide path 2912 as shown in FIG. 16 . Accordingly, when viewed from the top of the front panel 291, a tunnel structure surrounded by the light guide plate 2931 whose diameter converges toward the QR reading module 271 is provided.
  • the light guide plate 2931 formed in this way collects the light of the light source module 273 emitted from the bottom and transmits it to the top, so that when the QR reader 272 reads the code on the QR label 160 of the cartridge 100, It can provide light and functions as a lighting unit that provides uniform light by expanding light from the light source module 273, which is a point light source that emits straight light toward the QR label 160.
  • a protection sheet 2552 may be attached to the upper surface of the QR reading module 271 as shown in FIG. 16, and the protection sheet 2552 protects the lower QR reader 272 from external foreign substances or dust. Contamination can be prevented. That is, the protection sheet 2552 can be placed directly on the QR reader 272.
  • the diagnostic device 200 connects the inserted biosensor cartridge before performing the diagnosis through the connection terminal 153. Perform 100 product authentication.
  • FIG. 17 is a flowchart explaining the operation of the biosensor diagnostic device 200 upon insertion of the biosensor cartridge 100 in the biosensor system of FIG. 1.
  • the bottom surface of the biosensor cartridge 100 that is, the bottom surface 129 of the cartridge 100 exposed to the outside, includes a product ID and a manufacturing serial number for authenticating the biosensor cartridge 100.
  • a QR label 160 storing sensor information is attached.
  • the biosensor diagnostic device 200 When the biosensor cartridge 100 is inserted into the insertion module 2911 of the biosensor diagnostic device 200, the biosensor diagnostic device 200 connects the connection terminal 153 of the biosensor cartridge 100 to the insertion hole 2914. ), and transmits a cartridge detection signal to the calculation unit 250 (S10).
  • the calculation unit 250 functions as a processor that controls all modules of the biosensor diagnostic device 200, and when a cartridge monitoring signal is transmitted from the cartridge insertion module 2911, the calculation unit 250 operates as a QR reading module 271. Transmit an operation command (S20).
  • the QR reader 272 and the light source module 273 of the QR reading module 271 are turned on and transmit light to the upper part of the front panel 291 through the light guide plate 2931, and the camera of the QR reader 272 is positioned at the QR opening. (293) The QR code on the QR label 160 on the bottom 129 of the upper cartridge 100 is read.
  • the QR information read from the QR reader 273 is transmitted to the calculation unit 250.
  • the calculation unit 250 decodes the QR information and extracts sensor information stored as QR information.
  • the sensor information may include linker information, target material information, product ID, sensor chip ID, seller information, manufacturer information, manufacturing date, assembly date, inspection date, etc.
  • the calculation unit 250 transmits an authentication request for the biosensor cartridge 100 to at least one cloud server 400 connectable through the wireless communication module 261 (S30).
  • the calculation unit 250 first transmits an authentication request to the highest priority cloud server 400 among the plurality of connectable cloud servers 400 and waits for an authentication response for a predetermined period of time.
  • the priority can be set for each diagnostic device 200, and the seller server can be set as the top priority. If the seller server is divided into multiple regions, the distance or response to the diagnostic device 200 It can be set according to time. At this time, if an authentication response is not received from the highest priority cloud server 400 within a predetermined period, the authentication request may be transmitted again to the next priority cloud server 400.
  • the calculation unit 250 transmits an authentication request to the cloud server 400 of a higher priority for the plurality of cloud servers 400, and if an authentication response is not received within a predetermined waiting period, the cloud server 400 of a different priority is sent.
  • the method of transmitting the authentication request it is possible to prevent authentication responses and authentication from being performed simultaneously on a plurality of cloud servers 400.
  • the calculation unit 250 stops the authentication request and receives genuine authentication of the cartridge while transmitting and receiving the response to the cloud server 400 (S50).
  • the calculation unit 250 transmits all QR information to the cloud server 400 that transmitted the authentication response, and the cloud server 400 compares the QR information with the information on the manufacturer's server to authenticate the cartridge. do.
  • the calculation unit 250 receives an authentication result from the cloud server 400 as to whether the currently inserted biosensor cartridge 100 is genuine.
  • correction data is downloaded from the cloud server 400 (S60), and the cartridge insertion module 2911 is driven to operate the sensor control unit 240 and the signal conversion amplifier 210. And the detection signal of the cartridge connection terminal 153 is read from the filtering unit 220.
  • the gate voltage and source voltage are transmitted to the cartridge 100 through the sensor control unit 260, and the drain current that varies accordingly is read from the signal conversion amplifier 210.
  • the drain current value read in this way is amplified, noise removed, digitized, and transmitted to the calculation unit 250.
  • the calculation unit 250 downloads the correction data for the corresponding cartridge from the cloud server 400 after authentication, and upgrades the algorithm accordingly to apply the optimized algorithm for the accumulated results of the same type of cartridge to the analysis. there is.
  • the calculation unit 250 reads the detection signal by performing an upgraded algorithm and transmits the result to the display module 295 for visualization (S70).
  • the corresponding reading result can be transmitted to the cloud server 400 and the connected user terminal 300 so that an alarm can be sent to the user from the designated user terminal 300.
  • the operation is stopped and the display module 295 notifies that the currently inserted cartridge 100 is a counterfeit product.
  • biosensor cartridge 100 in which an error occurred before testing is performed. A classification process is required.
  • the biosensor system of this embodiment can confirm errors including risks to the current type of biosensor cartridge 100 through this authentication process.
  • embodiments described herein may be implemented in a computer-readable medium, for example, using software, hardware, or some combination thereof.
  • embodiments described herein include Application Specific Integrated Circuits (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), and Field Programmable Gate Array (FPGA) processors.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller may be implemented within one or more of a controller, microcontroller, microprocessor, other electronic device designed to perform the functions described herein, or optional combinations thereof.
  • these embodiments are implemented by a controller.
  • a controller has sufficient structure because it is a hardware-embedded processor that executes appropriate algorithms (e.g., flowcharts) to perform the described functions.
  • embodiments such as procedures and functions may be implemented with separate software modules that perform at least one of the respective functions and operations.
  • Software code can be implemented as a software application written in an appropriate programming language. Additionally, software code can be stored in memory and executed by the controller, making the controller a type of special-purpose controller specifically configured to perform the described functions and algorithms. Accordingly, the components shown in the figures have sufficient structure to implement appropriate algorithms for performing the described functions.
  • the present invention includes various modifications to each embodiment and embodiments discussed herein. According to the present invention, at least one or more features described above in one embodiment or example may be equally applied to other embodiments or examples described above. Features of one or more embodiments or examples described above may be combined with each of the embodiments or examples described above. One or more embodiments or combinations of embodiments, in whole or in part, of the invention are also part of the invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Medical Informatics (AREA)
  • Biochemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)

Abstract

본 실시예는 외부의 진단기기와 전기적으로 연결 가능하도록 구성되는 접속단자를 포함하는 회로기판; 적용된 분석 시료로부터 타겟 물질을 감지하고, 감지된 상기 타겟 물질과 반응하여 발생된 전기적인 신호를 상기 회로기판의 상기 접속 단자로 전송하는 센서칩; 상기 회로기판과 상기 센서칩을 수용하며 상기 접속 단자를 노출되도록 상기회로기판과 상기 센서칩을 둘러싸는 하우징을 포함하며, 상기 하우징의 일 면에 센서 정보를 암호화하여 저장하고 있는 QR 코드가 부착되어 있는 것을 특징으로 하는 바이오 센서 카트리지를 제공한다. 따라서, 바이오 센서 카트리지의 상기 회로 기판 위에 상기 바이오 센서의 정품 인증 등을 위한 환경 정보를 저장하는 별도의 메모리칩을 실장하지 않아 비용이 절감되고, 카트리지의 부피를 최소화할 수 있는 효과가 있다.

Description

바이오 센서 카트리지 및 그를 판독하는 바이오 센서 진단기기
본 실시예는 바이오 센서를 포함하는 바이오 센서 카트리지 및 바이오 센서 트리지의 정보를 읽어 질병을 진단하는 진단 기기를 포함하는 바이오 센서 시스템에 관한 것이다.
최근 전파력이 높은 질병이 확산됨에 따라 가정이나 병원, 보건소 등의 의료 현장에서 해당 질병에 대한 신속한 진단 및 자가 진단의 필요성이 증가하고 있다.
따라서, 전문지식이나 복잡한 과정이 요구되지 않고 분석 시간이 짧은 면역 분석 플랫폼의 개발이 요구된다.
바이오 센서는 땀 및 타액 등의 체액, 혈액 또는 배뇨와 같은 생체 물질에 포함되어 있는 특정 타겟 물질에 대하여 반응성을 가지는 감지 물질과 상기 타겟 물질의 선택적 반응에 의해 변화하는 칼라, 전기적, 광학적 신호를 발생한다. 따라서, 바이오 센서를 이용하여 특정 타겟 물질의 존재에 대하여 확인가능하다.
종래에는 스트립 방식의 신속 키트가 많이 사용되어 왔으며, 소정 농도 이상의 바이오 타겟 물질이 존재하는지를 판별하여 단순 발색을 수행한다.
그러나, 발색으로 타겟 물질을 표지하는 경우, 타겟 물질의 농도에 따라 발색의 전환이 부정확할 수 있으며, 발색 여부를 육안으로 판별하여야 하므로 식별하는 사용자에 따라 정확도가 서로 상이하다.
이를 보완하기 위해 전기적 신호를 발생하는 바이오 센서가 제시되고 있다.
전기적 신호를 발생하는 바이오 센서는 소형 박막 반도체 구조체의 채널에 타겟 물질이 결합되며, 타겟 물질에 의해 반도체 구조체의 전기 전도도가 변화되고, 전기전도도 변화를 통하여 타겟 물질을 검출한다. 즉, 타겟 물질이 채널에서 결합할 때 전기화학적인 반응이 일어나거나, 타겟 물질 자체가 전하를 갖는 경우, 감지 물질과 타겟 물질의 결합으로 인한 전계 효과로 반도체 구조체의 전자 또는 정공이 축적(accumulation)되거나 공핍(depletion)되어 전기전도도가 가변하여 전류량 변화로 읽혀진다. 이러한 전기화학 기반의 바이오 센서는 전극 자체의 저항과 전기 화학 반응이 일어나는 채널의 계면 특성이 매우 중요하다.
한편, 이와 같이 반도체 구조체의 채널을 구비하는 바이오 센서는 전기적 신호를 측정하기 위한 전극 또한 다이싱 단위에서 제작되어 두께가 매우 얇기 때문에, 전류량 측정을 위한 측정 장비와의 결합 과정 중 전극의 손상 또는 채널의 손상이 발생하여 단락 또는 오염이 빈번하게 발생한다.
이를 방지하기 위하여, 종래의 바이오 센서에는 타겟 물질을 센싱하는 센서부와 센서부와 측정 장비와의 연결을 위한 연결부를 포함하는 구조체로 제공된다.
즉, 종래의 바이오 센서의 전극은 타겟 물질을 센싱하기 위한 센서부로부터연장되어 기판의 단부에서 확장되어 측정장비와 연결되는 연결부로 구성될 수 있다.
그러나, 이와 같은 전극이 확장되어 형성되어도 다이싱 단계(예를 들어, 전극 시트를 다이싱하거나 개별 전극으로 절단하는 공정으로, 일 예로 레이저를 사용하여 수행할 수 있음)에서 형성되므로, 센서칩 자체의 크기가 커지게 되며 이는 반도체 웨이퍼가 불필요하게 커지는 문제가 발생하여 칩 수율이 저하된다.
또한, 종래의 바이오 센서가 측정장비와 직접 접하면서 전극으로부터 신호를감지하면 직접적으로 바이오 센서칩에 외력이 가해져 센서칩의 크랙이 발생할 우려가 있다.
또한, 종래에는 바이오 센서의 신호를 측정하기 위하여 전용 측정장비를 이용하였다.
바이오 센서에 대한 전용 측정 장비는 그 측정 장비가 거대하고, 고가의 정밀 계측장비를 필요로 하며, 측정 과정이 수동으로 이루어지기 때문에 재현성이 떨 어지고, 진단 시간이 길며, 시스템 구축에 고가의 장비가 필요하다.
특히, 각 바이오 센서의 정품 인증 및 센서 정보를 수신하기 위한 바코드 등을 읽어내기 위해 별도의 리더기가 요구되며 리더기와 측정 장비 사이의 정보 송수신 또는 수기로 입력이 진행되어야 한다.
또한, 혈당, 당뇨, 혈압과 같이 주기적으로 농도를 측정해야 하는 경우나, 치료 후 질병 재발을 주기적으로 관찰해야 하는 경우, 체액 내에 소량으로 존재하는 바이오 물질의 고감도 측정이 필요하며, 새로운 질병이 대두될 때마다 그에 대한 시스템 개발이 요구되어 범용 사용이 어려운 단점이 있다.
이를 위해 간소화된 측정 장치가 제시된 바 있으나, 간소화된 측정 장치의 경우, 측정 장치가 센서와 결합된 상태로 감지를 위한 바이오 타겟 물질의 접촉이 발생하여 측정 장치에 대한 오염 및 센서 교체 시의 정확도에 대한 신뢰성 문제가 발생한다.
이와 같은 전용 측정장비는 개인 병원 또는 가정에서 전용 측정장비를 구비하여 바이오 센서의 분석을 수행하는 것이 실질적으로 용이하지 못하며, 간소화된 측정 장치의 경우 신뢰성이 문제되어 적극적인 활용이 어렵다.
[특허문헌]
한국공개특허공보 제2010-0136159호 (공개일 : 2010.12.28.)
한국공개특허공보 제2020-0144550호 (공개일 : 2020.12.29.)
본 실시예는 센서칩을 포함하는 바이오 센서 카트리지를 제공하여 진단기기와의 결합 시에 센서칩에 미치는 영향을 최소화하는데 제1 과제가 있다.
본 실시예의 제2 과제는 일체화된 진단기기를 제공하고, 바이오 센서 카트리지의 단자 삽입에 의해 상기 센서칩의 감지 정보를 읽어낼 수 있는 콤팩트한 진단기기를 제공하는데 있다.
본 실시예의 제3 과제는 센서칩과 연결되는 회로 기판을 수용하는 바이오 센서 카트리지를 제공하며, 상기 회로 기판 위에 상기 바이오 센서의 정품 인증 등을 위한 환경 정보를 저장하는 별도의 메모리칩을 실장하지 않고 카트리지 외부면에 QR 코드로 대체함으로써 비용을 절감할 수 있는 바이오 센서 카트리지를 제공하는 것이다.
본 실시예의 제4 과제는 일체화된 진단기기에 상기 바이오 센서 카트리지의 단자 삽입 시에 상기 진단기기에서 상기 바이오 센서 카트리지의 환경 정보를 읽어 별도의 환경 정보 수득을 위한 동작 및 기기가 요구되지 않는 바이오센서 시스템을 제공하는데 있다.
본 실시예는 외부의 진단기기와 전기적으로 연결 가능하도록 구성되는 접속단자를 포함하는 회로기판; 적용된 분석 시료로부터 타겟 물질을 감지하고, 감지된 상기 타겟 물질과 반응하여 발생된 전기적인 신호를 상기 회로기판의 상기 접속 단자로 전송하는 센서칩; 상기 회로기판과 상기 센서칩을 수용하며 상기 접속 단자를 노출되도록 상기회로기판과 상기 센서칩을 둘러싸는 하우징을 포함하며, 상기 하우징의 일 면에 센서 정보를 암호화하여 저장하고 있는 QR 코드가 부착되어 있는 것을 특징으로 하는 바이오 센서 카트리지를 제공한다.
상기 접속 단자는 상기 하우징의 일 측면으로부터 돌출되어 형성되며, 상기 QR 코드는 상기 하우징의 하면에 부착될 수 있다.
상기 센서칩은 상기 타겟 물질과 반응하는 반응 물질이 부착되어 있는 채널이 형성되어 있는 센서 영역; 및 상기 센서 영역으로부터 전달되는 전기적 신호를 상기 회로 기판에 전송하는 패드 영역을 포함하며, 상기 센서 영역은 기판, 상기 기판 위에 상기 채널이 적어도 하나 형성되어 있는 채널 영역, 각각의 상기 채널의 양 단과 중첩하며 서로 이격하여 형성되어 있는 소스 전극 및 드레인 전극, 상기 소스 전극 및 드레인 전극과 이격되며, 상기 분석 시료에 바이어스 전압을 인가하는 게이트 전극, 및 상기 센서 영역 전체를 커버하며 상기 채널 영역과 상기 게이트 전극의 상부만을 개방하는 패시베이션층을 포함할 수 있다.
상기 하우징은 상면으로부터 함몰되는 경사면을 가지며, 내부의 상기 센서칩의 상기 센서 영역을 개방하며 외부로부터 상기 시료를 수용하는 수용부가 형성될 수 있다.
상기 QR 코드로 암호화되어 있는 상기 센서 정보는 상기 센서칩 종류, 링커 정보, 감지 물질 정보, 제품 ID , 기판 ID, 제조사 정보, 제조 일자, 조립 일자, 검사 일자, 제조 번호 중 적어도 하나를 포함할 수 있다.
상기 QR 코드가 인쇄되어 있는 상기 QR 라벨은 보이드 라벨일 수 있다.
한편, 실시예는 적용된 시료 내의 타겟 물질에 따라 전기적인 감지 신호를 발생하는 바이오 센서 카트리지의 진단기기에 있어서, 상기 진단기기는,
내부 공간에 적어도 하나의 기능 모듈을 실장하는 메인 보드를 수용하는 커버부재; 상기 커버부재의 상면을 덮으며 디스플레이 영역 및 적어도 하나의 상기 바이오 센서 카트리지의 삽입홀을 제공하는 전면 패널; 및 상기 메인 보드에 실장되며, 상기 삽입홀로부터 상기 바이오 센서 카트리지로부터의 감지 신호를 분석하여 상기 타겟 물질의 유무를 판독하여 상기 디스플레이 영역에 표시하는 제어 모듈; 및 상기 삽입홀 전단에 위치하며, 상기 바이오 센서 카트리지가 삽입될 때, 상기 바이오 센서 카트리지의 QR 코드를 읽는 QR 리딩 모듈을 포함한다.
상기 제어 모듈은 네트워크를 통해 서버와 연동하여, 상기 삽입홀에 삽입되어 있는 상기 바이오 센서 카트리지의 정품 여부를 인증할 수 있다.
상기 제어 모듈은 상기 QR 리딩 모듈로부터 상기 QR 코드에 대한 센서 정보를 수득하고, 상기 센서 정보를 기초로 상기 서버와 정품 인증을 수행할 수 있다.
상기 제어 모듈은 복수의 서버 중 최선순위 서버로 인증 요청을 전송하고, 소정 기간 내에 응답이 수신되지 않으면, 차순위 서버로 상기 인증 요청을 전송할 수 있다.
상기 제어 모듈은 상기 센서 정보 중 일부를 전송하고, 전송된 센서 정보와 관련된 연계 정보를 수득하여 상기 QR 코드로부터 복호화한 상기 센서 정보와 비교하여 상기 바이오 센서 카트리지에 대한 정품 인증을 수행할 수 있다.
상기 제어 모듈은 상기 삽입홀에 삽입되어 있는 바이오 센서 카트리지가 정품으로 인증된 때, 상기 바이오 센서 카트리지로부터 상기 감지 신호를 읽어들여 상기 타겟 물질의 존재 여부를 판독할 수 있다.
상기 제어 모듈은 정품 인증이 완료되면 상기 바이오 센서 카트리지에 대한 판독 보정 데이터를 상기 서버로부터 수신하고, 상기 판독 보정 데이터에 의해 판독 알고리즘을 업데이트할 수 있다.
상기 삽입홀에 상기 바이오 센서 카트리지의 접속 단자가 인입되면 인입 감지 신호가 상기 제어 모듈로 전송될 수 있다.
상기 전면 패널은 상기 삽입홀 전단에 형성되어, 상기 전면 패널의 아래에 위치하는 상기 QR 리딩 모듈을 노출하는 개구를 포함하며, 상기 QR 리딩 모듈은 상기 개구를 통하여 삽입홀에 접속 단자가 인입되어 있는 상기 바이오 센서 카트리지의 하우징에 부착되어 있는 상기 QR 코드를 읽어 들일 수 있다.
상기 QR 리딩 모듈은 상기 QR 코드를 촬영하는 QR 리더기 및 상기 QR 리더기 주위에 배치되며 상기 개구를 향해 빛을 조사하는 적어도 하나의 광원 모듈을 포함할 수 있다.
상기 전면 패널은 상기 개구로부터 상기 QR 리딩 모듈까지 빛이 전달되는 도광로를 포함하며, 상기 도광로는 상기 개구로부터 폭이 점차적으로 감소하는 경사면을 갖도록 형성되고, 상기 경사면은 도광판이 배치되어 상기 광원 모듈로부터의 빛을 면광원으로 변화하여 상부에 전달할 수 있다.
상기 삽입홀에 인입되어 있는 상기 바이오 센서 카트리지에 대한 센서 정보와 상기 바이오 센서 카트리지의 판독 결과를 매칭하여 저장할 수 있다.
상기 바이오 센서 진단기기는 상기 커버 부재와 상기 전면 패널을 둘러싸며 개폐하여 상기 전면 패널을 노출하는 외부 케이스를 더 포함할 수 있다.
상기 바이오 센서 진단기기는 상기 커버부재 내에 상기 복수의 기능 모듈로 전원을 제공하는 배터리를 포함하며, 상기 바이오 센서 진단기기는 휴대 가능한 일체화된 장치로 제공될 수 있다.
상기 해결 수단을 통하여, 센서칩과 연결되는 회로 기판의 단자를 통해 진단기기와 결합하는 바이오 센서 카트리지를 제공하여 진단기기와의 결합 시에 센서칩에 미치는 영향을 최소화할 수 있다.
또한, 본 실시예는 바이오 센서 카트리지의 상기 회로 기판 위에 상기 바이오 센서의 정품 인증 등을 위한 환경 정보를 저장하는 별도의 메모리칩을 실장하지 않아 비용이 절감되고, 카트리지의 부피를 최소화할 수 있는 효과가 있다.
또한, 본 실시예는 환경 정보를 저장하기 위한 QR 코드를 카트리지의 외부면에 부착함으로써 카트리지를 콤팩트화할 수 있으며, 바이오 센서 카트리지의 삽입과 동시에 카트리지 외부면의 QR 코드를 읽어 감지 정보와 환경 정보의 매칭 오류를 최소화할 수 있다.
그리고, 본 실시예의 일체화된 진단기기에 상기 바이오 센서 카트리지의 단자 삽입 시에 상기 진단기기에서 상기 바이오 센서 카트리지의 QR 코드를 읽어낼 수 있도록 QR 리더기를 얼라인하여 제공함으로써 별도의 거리 또는 위치 조정이 불필요하여 진단 시간이 절감되고 진단 과정이 단순화될 수 있다.
도 1은 본 실시예에 따른 바이오 센서 시스템을 나타내는 도면이다.
도 2는 도 1의 바이오 센서 진단기기와 바이오 센서 카트리지의 구성도이다.
도 3은 도 1의 바이오 센서 진단기기의 일 예에 대한 전면도이다.
도 4는 도 3의 바이오 센서 진단기기의 분해 사시도이다.
도 5a 및 도 5b는 도 1의 바이오 센서 카트리지의 일 예에 대한 상면도 및 배면도이다.
도 6은 도 1의 바이오 센서 카트리지의 일 예에 대한 분해 사시도이다.
도 7은 도 5 및 도 6의 바이오 센서 카트리지를 Ⅰ-Ⅰ' 및 Ⅱ-Ⅱ'으로 절단한 단면도이다.
도 8은 도 1의 바이오 센서 카트리지의 다른 예에 대한 분해 사시도이다.
도 9는 도 8의 바이오 센서 카트리지를 Ⅲ-Ⅲ'으로 절단한 단면도이다.
도 10은 도 6 및 도 8에 적용가능한 센서칩의 일 예의 상면도이다.
도 11은 도 10의 센서칩을 Ⅳ-Ⅳ'으로 절단한 단면도이다.
도 12a 및 도 12b는 도 11의 센서칩의 타겟 물질에 따른 반응을 나타내는 도식도이다.
도 13은 도 12a 및 도 12b에 의한 센서칩의 출력 전류 변화를 나타내는 그래프이다.
도 14는 도 1의 바이오 센서 시스템에서 바이오 센서 카트리지가 바이오 센서 진단기기와 결합되는 결합도이다.
도 15는 도 14의 결합도에서 Ⅴ-Ⅴ'를 따라 절단한 단면사시도이다.
도 16은 도 15의 절단면을 정면으로 바라본 단면정면도이다.
도 17은 도 1의 바이오 센서 시스템에서 바이오 센서 카트리지의 삽입에 따른 바이오 센서 진단기기의 동작을 설명하는 순서도이다.
이하에서 언급되는 “전(F)/후(R)/좌(Le)/우(Ri)/상(U)/하(D)” 등의 방향을 지칭하는 표현은 도면에 표시된 바에 따라 정의하나, 이는 어디까지나 본 실시예가 명확하게 이해될 수 있도록 설명하기 위한 것이며, 기준을 어디에 두느냐에 따라 각 방향들을 다르게 정의할 수도 있음은 물론이다.
이하에서 언급되는 구성요소 앞에 ‘제1, 제2' 등의 표현이 붙는 용어 사용은, 지칭하는 구성요소의 혼동을 피하기 위한 것일 뿐, 구성요소 들 사이의 순서, 중요도 또는 주종관계 등과는 무관하다. 예를 들면, 제1 구성요소 없이 제2 구성요소만을 포함하는 실시예도 구현 가능하다.
도면에서 각 구성의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다.
또한, 본 실시예의 구조를 설명하는 과정에서 언급하는 각도와 방향은 도면에 기재된 것을 기준으로 한다. 명세서에서 구조에 대한 설명에서, 각도에 대한 기준점과 위치관계를 명확히 언급하지 않은 경우, 관련 도면을 참조하도록 한다.
본 명세서에서, 타겟 물질(target materials)은 특정 기질을 나타내는 바이오 물질로서, 분석체 또는 애널라이트(analytes) (일 예: 화학 성분이 확인되고 측정되는 대상 물질)와 동일한 의미로 해석된다. 본 실시예에서 타겟 물질은 항원(antigen)일 수 있다. 본 명세서에서 감지 물질(probe materials)은 타겟 물질과 특이 결합(specific binding)하는 바이오 물질로서, 수용체(receptor) 또는 억셉터(acceptor)와 동일한 의미로 해석된다. 본 실시예에서 감지 물질은 항체(antibody)일 수 있다.
전기 화학 기반의 바이오 센서는 전기 화학적 방법이 지니는 분석 능력과 생물학적인 인식(biological recognition)의 특이성(specificity)이 결합된 것으로서, 효소, 항원, 항체, 생화학 물질 등에 생물학적 특이성을 지니는 물질, 즉 감지 물질을 전극 표면에 고정시키거나 함유하게 함으로써, 타겟 물질에 대한 생물학적 인식 현상을 전류 혹은 전위 변화로 검출한다.
이하에서는 도 1 및 도 2를 참고하여 본 실시예에 따른 바이오 센서 시스템을 설명한다.
도 1은 본 실시예에 따른 바이오 센서 시스템을 나타내는 도면이고, 도 2는 도 1의 바이오 센서 진단기기(200)와 바이오 센서 카트리지(100)의 구성도이다.
도 1을 참고하면, 본 실시예에 따른 바이오 센서 시스템은 바이오 센서 진단기기(200), 복수의 바이오 센서 카트리지(100) 및 적어도 하나의 서버(400)를 포함한다.
바이오 센서 진단기기(200)는 복수의 바이오 센서 카트리지(100)가 삽입되면 상기 바이오 센서 카트리지(100)로부터 감지 신호를 읽어들여 타겟 물질의 존재 여부를 판독한다.
상기 바이오 센서 진단기기(200)는 휴대가능한 일체형의 진단기기(200)로서, 바이오 센서 카트리지(100)로부터 미량의 타겟 물질의 존재에 대한 전류 변화를 감지하고, 이에 따라 질병을 진단하여 사용자에게 진단 결과를 전달가능하다.
이를 위해 상기 바이오 센서 진단기기(200)는 각각의 기능 블록들을 집적하고, 소형화하여 하나의 케이스 내에 일체화함으로써 휴대가능하도록 제공될 수 있다.
상기 바이오 센서 진단기기(200)는 내부에 배터리(281)를 실장함으로써 외부 전원 유무에 관계없이, 장소에 구애받지 않고 이동 가능하다. 또한, 진단기기(200)는 미세 신호 변화를 판독가능하도록 바이오 센서 카트리지(100)로부터의 감지 신호를 보정하는 전처리 과정을 포함하여 센서의 재현성 및 불균일성을 보완하는 기능을 포함한다.
또한, 상기 바이오 센서 진단기기(200)는 바이오 센서 카트리지(100)의 후면에 배치되어 있는 QR 코드를 읽어 들여 상기 바이오 센서 카트리지(100)의 정품 인증 등을 위한 환경 정보를 수신하여 정품 인증을 수행할 수 있는 QR 리더기 및 외부 클라우드 서버(400)와 정품 인증을 위한 신호를 송수신할 수 있는 통신 모듈을 포함한다.
상기 바이오 센서 진단기기(200)는 바이오 센서 카트리지(100)로부터의 감지 신호를 측정 및 분석하여 질병을 진단하기 위한 프로그램 알고리즘 또는 어플리케이션이 설치되어 있을 수 있으며, 각 바이오 센서 카트리지(100)의 종류에 따라 서로 다른 알고리즘이 실행가능하다. 즉, 바이오센서 진단 기기(200)에는 서로 다른 복수의 바이오센서 카트리지가 사용될 수 있으며, 서로 다른 바이오센서 카트리지마다 서로 다른 알고리즘이 사용된다.
또한, 상기 바이오 센서 진단기기(200)는 진단 결과를 사용자에게 직접적으로 표시하기 위한 표시부(290)를 포함하며, 사용자 인터페이스(296, 297, 294)를 통해 직접 조작 가능하도록 설계되어 있다.
이와 같은 일체형의 바이오 센서 진단기기(200)의 상세 구성에 대하여는 이후에 설명한다.
한편, 바이오 센서 시스템은 상기 바이오 센서 진단기기(200)에 삽입되어 감지 신호를 제공하기 위한 복수의 바이오 센서 카트리지(100)를 포함한다.
각각의 상기 바이오 센서 카트리지(100)는 바이오 센서칩(500)에서 발생된 전기적 감지 신호를 측정 및 분석 가능한 알고리즘이 설치된 진단기기(200)와 전기적으로 연결된다.
구체적으로, 바이오 센서 카트리지(100)는 도1에 도시된 바와 같이 일체형 바이오 센서 진단기기(200)의 카트리지 삽입모듈(2911)에 삽입되어 전기적으로 연결될 수 있다.
바이오 센서 카트리지(100)는 하우징(110, 120) 내에 바이오 센서부(500)로 대응되는 센서칩(500)을 수용하며, 상기 하우징(110, 120)은 상기 센서칩(500)의 전극 패드와 접속하여 외부의 바이오 센서 진단기기(200)의 삽입모듈(2911)에 삽입되는 접속단자(153)까지 연장되는 회로 패턴을 포함하는 회로 기판(150)을 수용할 수 있다.
상기 하우징(110, 120)은 상부 하우징(110) 및 하부 하우징(120)으로 분리결합되며, 상부 하우징(110)과 하부 하우징(120)이 센서칩(500)과 상기 회로기판을 수용한 상태로 결합고정됨으로써 하나의 바이오 센서 카트리지(100)를 구성한다.
상기 바이오 센서 카트리지(100)는 일단에서 외부로 바이오 센서 진단기기(200)와의 물리적 및 전기적 결합을 위한 접속단자(153)가 노출되어 있으며, 상부 하우징(110)의 표면에 검체 시료를 수용하는 용액 수용부(119)가 형성되어 있다.
상기 용액 수용부(119)는 내부의 센서칩(500)의 일부를 노출하며, 상기 용액 수용부(119)로 검체 시료가 수용되면 센서칩(500)의 항원 항체 반응에 따라 센서칩(500)의 채널의 전하 농도가 가변함으로써 센서칩(500)의 전극에 흐르는 전류가 가변한다. 상기 가변된 전류는 접속단자(153)를 통해 진단기기(200)에서 읽혀진다.
이때, 센서칩(500)의 전하이동도를 확보하기 위해 다양한 물질로 채널이 구현 가능하며, 특히 그래핀(Graphene)을 이용한 채널 구현이 가능하다.
바이오 센서 카트리지(100)의 상세 구성은 이후에 상세히 설명한다.
한편, 바이오 센서 시스템은 적어도 하나의 서버(400)를 포함할 수 있다.
상기 서버(400)는 제조사 서버(400)일 수 있으며, 서버(400)는 프로그램의 처리가 가능한 프로세서를 포함할 수 있다. 서버(400)의 기능은 제조사의 중앙컴퓨터(클라우드)가 수행할 수도 있다.
일 예로, 서버(400)는 바이오 센서 카트리지(100) 및 진단기기(200)의 제조자가 운영하는 서버(400)일 수 있다. 또 다른 예로, 서버(400)는 건물 내에 구비되며, 건물 내 기기들에 대한 상태 정보를 저장하거나, 건물 내 가전 기기에서 요구되는 컨텐츠를 저장하는 서버(400)일 수도 있다.
서버(400)는 진단기기(200)에 대한 펌웨어 정보, 진단 정보를 저장하고, 진단기기(200)로부터 요청되는 바이오 센서 카트리지(100)에 대한 인증 정보를 전송할 수 있다.
바이오 센서 시스템 내의 서버(400)는 제조자의 복수의 클라우드 서버(400) 중 하나일 수 있으며, 복수의 클라우드 서버(400)가 동시 포함되어 하나의 바이오 센서 진단기기(200)에 접속 가능한 상태로 바이오 센서 시스템 내에 제공될 수 있다.
이와 같이 복수의 클라우드 서버(400)가 하나의 바이오 센서 진단기기(200)에 동시 접속 가능한 경우, 바이오 센서 진단기기(200)는 복수의 클라우드 서버(400)에 대하여 순위를 매칭하며, 순차적으로 최선순위부터 인증 요청을 발송할 수 있다. 이때, 선순위 서버(400)로부터 응답 신호가 수신되지 않으면 다음 순위의 서버(400)에 인증 요청을 발송할 수 있다.
상기 서버(400)는 상기 바이오 센서 카트리지(100)에 대한 인증을 수행하고, 인증 결과를 상기 바이오 센서 진단기기(200)로 제공할 수 있다.
또한, 상기 서버(400)는 해당 ID의 제품에 대한 보정 데이터(calibration data) 및 업데이트 데이터를 제공가능하며, 통신하는 바이오 센서 진단기기(200)로 전송 가능하다.
상기 서버(400)는 각 바이오 센서 카트리지(100)에 대하여 분석을 위한 프로그램의 업그레이드버전 또한 생성 배포 가능하다.
이를 위해, 상기 서버(400)는 제조사의 상기 바이오 센서 카트리지(100) 제조 일자, 제조 조건, 센서 종류, 검사결과 등에 대한 히스토리 정보를 별도의 제조사의 제조 서버로부터 수신할 수 있다.
또한, 서버(400)는 해당 제품에 대한 진단 결과 값을 수신하고 누적하고 이를 머신 러닝하여 각각의 분석기기(200)에 제공하는 프로그램의 업그레이드 버전을 주기적으로 생성 배포 가능하다.
한편, 본 실시예의 바이오 센서 시스템은 복수의 사용자 단말(300)을 더 포함할 수 있으나, 이에 한정되는 것은 아니다.
사용자 단말(300)이 시스템에 포함되는 경우, 상기 바이오 센서 진단기기(200) 또는 클라우드 서버(400)는 진단 결과에 대한 데이터를 통신하는 사용자 단말(300)로 전송할 수 있다.
이를 위해 상기 사용자 단말(300)을 위한 전용 어플리케이션이 상기 제조자 서버(400)로부터 제공 가능하며, 상기 사용자 단말(300)에 상기 어플리케이션을 저장 실행함으로써 진단 데이터에 대한 다양한 가공이 가능하다.
일 예로, 사용자가 장기간 동일 질병에 감염되어 있는 경우, 주기적인 검사 결과를 누적하여 표시할 수 있도록 데이터 가공이 가능하며, 상기 가공된 결과를 어플리케이션을 통해 사용자 단말(300)로 제공 가능하다. 따라서, 사용자 단말(300)은 상기 질병에 대한 예후, 예상 치료 시간을 판단 가능할 수 있다.
사용자 단말(300)은 예를 들면, 애플리케이션(application)이 탑재된 랩탑(laptop), 스마트 폰, 태블릿, 스마트 워치 등을 예로 들 수 있다.
사용자 단말(300)은 네트워크를 통해 진단기기(200) 또는 서버(400)와 직접 통신 가능하며, 진단기기(200)와 서버(400) 또한 네트워크를 통해 직접 통신 가능하다.
이때, 네트워크는 예를 들어, IEEE 802.11 WLAN, IEEE 802.15 WPAN, UWB, Wi-Fi, Zigbee, Z-wave, Blue-Tooth 등과 같은 무선 통신 기술을 적용가능하며, 적어도 하나 이상의 통신 기술 적용하도록 각 기기(사용자 단말(300) 및 진단기기(200))의 무선 통신부(260)를 포함할 수 있다.
무선 통신부(260)는 통신하고자 하는 다른 기기(사용자 단말(300) 및 진단기기(200)) 또는 서버(400)의 통신 방식이 무엇인지에 따라 달라질 수 있다.
이와 같이 바이오 센서 시스템은 휴대가능한 일체화된 바이오센서 진단기기(200)에 검체 시료가 수용된 바이오 센서 카트리지(100)의 접속단자(153)를 삽입하여 전기적으로 접속함으로써 감지 신호의 판독이 이루어진다.
감지 신호의 판독을 위한 바이오 센서 진단기기(200)의 기능적 구성은 도 2와 같다.
도 2를 참고하면, 바이오 센서 진단기기(200)는 복수의 기능 모듈을 포함한다.
각각의 기능 모듈은 개별적으로 패키징되어 하나의 바이오 센서 진단기기(200)의 케이스 내에 수용되어 있을 수 있으며, 복수의 기능 모듈이 하나의 모듈로 패키징되어 상기 케이스(201, 202) 내에 수용되어 있을 수 있다.
상기 바이오 센서 진단기기(200)는 신호변환증폭부(210), 신호 여과부(220), 신호처리부, 연산부(250), 무선 무선 통신부(260), 전원부(280), 표시부(290), QR리더부(270), 센서 제어부(240)를 포함한다.
신호변환증폭부(210)는 바이오 센서 카트리지(100)로부터 전송되는 감지 신호를 가장 먼저 수신하고, 그 감지 신호의 전류값을 바이오 센서 진단기기(200)에서 판독 가능하도록 변환하고 증폭한다.
신호변환증폭부(210)는 바이오 센서 카트리지(100)로부터 전송되는 감지 신호인 변화된 전류 값에 따라 전압 강하를 발생하는 저항 등을 포함하는 아날로그 회로가 형성될 수 있으며, 이와 같은 전압 강하를 전달받아 이를 증폭하는 증폭회로를 더 포함할 수 있다.
이와 같이 증폭된 신호는 신호 여과부(220)에 전달되어 노이즈를 제거하고 신호 처리부(230)로 전달된다. 신호 처리부(230)에서는 노이즈가 제거된 증폭된 아날로그 감지 값을 진단 연산을 위한 디지털 값으로 전환할 수 있으며, 이를 위한 ADC(Analog-Digital Converter)를 포함할 수 있다.
앞서 설명한 바와 같이, 상기 신호변환증폭부(210), 신호 여과부(220) 및 신호 처리부(230)는 모두 하나의 집적회로칩으로 구현 가능하다. 이와 같은 집적회로칩은 도 3에서의 카트리지 삽입모듈(2911)로 대응될 수 있다.
센서 제어부(240)는 연산부(250)의 제어에 따라 레벨이 가변된 기준 전압을 연결되어 있는 바이오 센서 카트리지(100)의 접속단자(153)에 제공할 수 있으며, 바이오 센서 카트리지(100)는 센서 제어부(240)로부터 레벨이 가변된 기준 전압을 인가받고 채널의 가변된 저항값에 의해 변경되는 전류값을 접속단자(153)로 흘린다. 상기 집적회로칩 내에 샌서 제어부(240)가 전압 레벨 변환 회로로서 함께 실장 가능하다.
한편, 바이오 센서 진단기기(200)는 상기 진단기기(200)의 동작 제어 및 수신되는 디지털화된 감지값에 대한 판독을 수행하기 위한 연산부(250)를 포함한다.
상기 진단기기(200)의 제어는 별도의 컨트롤러를 포함할 수 있으나, 하나의 컨트롤러에서 저장되는 프로그램을 수행하여 감지값에 대한 감지 여부의 판독 및 진단 기기 전체의 동작 제어를 동시 진행 가능하다.
이때, 상기 연산부(250)는 별도의 집적회로칩으로 구현 가능하며, 메인 보드(255) 내에 실장될 수 있다.
상기 연산부(250)는 상기 판독 프로그램에 따라 감지값에 대한 타겟 물질의존재 여부를 판독하고, 그 결과를 가공하여 표시부(290)에 제공 가능하다. 또한, 이와 같은 판독 결과는 무선 통신부(260)를 통해 클라우드 서버(400) 및 사용자 단말(300)에 전송 가능하다.
상기 연산부(250)는 상기 판독을 위한 진단기기(200)의 동작 제어도 수행할 수 있다. 일 예로 상기 연산부(250)는 상기 바이오 센서 카트리지(100)의 접속단자(153)가 상기 카트리지 삽입모듈(211)에 인입되면, 상기 인입을 감지하여 상기 QR리더부(270)로 QR 리딩 명령을 전송할 수 있다.
이에 따라 QR리더부(270)는 카트리지 삽입모듈(2911)에 인입되어 있는 카트리지(100)의 후면에 부착된 QR코드를 읽기위한 동작을 수행하고, 그 정보를 연산부(250)로 다시 전송한다.
상기 연산부(250)는 QR 정보를 수신하고, 그에 따라 클라우드 서버(400)에 인증 요청을 수행하고, 상기 클라우드 서버(400)로부터 인증 정보가 수신되면, 정품 인증 후 바이오 센서 카트리지(100)에 대한 판독을 진행하고, 그 판독 결과를 바이오 센서 카트리지(100)의 인증 결과와 매칭하여 가공한다.
따라서, 연산부(250)는 진단 기기(200)의 모듈 동작과 판독 프로그램 실행을 동시 진행하여 결과 매칭의 시간차를 최소화함으로써 오류를 줄일 수 있다.
연산부(250)는 데이터 저장부(도시하지 않음)로서 메모리 카드, 바이오 물질의 진단을 위한 라이브러리 파일, 신호처리 장치를 갖춘 임베디드 시스템 보드로 구성될 수 있다. 예를 들어, 임베디드 시스템 보드에는 출력신호 데이터를 저장할 수 있는 메모리카드(일 예로, 플래시 메모리와 같은 전자 데이터 저장 장치일 수 있음)가 삽입되며, 메모리카드에는 시스템 OS와, 구동 프로그램, 분석을 위한 라이브러리 파일 등이 저장된다. 또한, 바이오 물질의 농도 분석을 위한 신호 처리는 임베디드 시스템 보드(일 예로, 마더보드나 메인보드)의 CPU에서 라이브러리 파일과 비교 분석을 통해 계산되며, 분석된 결과는 다시 메모리 카드에 저장된다. 또한, 이와 같은 임베디드 시스템 보드 내에 무선 통신부(260)가 함께 실장 가능하나 이에 한정되지 않는다.
상기 바이오 센서 진단기기(200)는 사용자 인터페이스로서, 표시부(290)를 포함하며, 표시부(290)는 액정 표시 장치, 터치 패널 등을 포함하여, 사용자의 편의성을 고려한 프로그램을 제작하여 검출된 분석 결과를 표시한다. 대안적으로, 표시부(290)는 LED 또는 OLED 디스플레이 스크린을 포함할 수 있다. 사용자 인터페이스로서, 그 외에 다양한 방식의 단자, 다이얼, 버튼 등을 포함할 수 있다.
단자(297), 다이얼(296), 버튼(294) 등은 바이오 센서 진단기기(200)의 동작을 온/오프하며, 연산부(250)와 연결되어 사용자 명령에 따라 연산부(250)를 제어할 수도 있다. 즉, 인터페이스(297, 296, 294)에서 사용자의 명령이 입력됨에 따라, 바이오 센서 카트리지(100)의 진단이 시작될 수 있으며, 진단 과정 중 표시부(290)에서는 진행 과정을 나타내며, 진단 종료 후에는 진단 결과를 나타낸다.
상기 바이오 센서 진단기기(200)는 복수의 모듈에 전원을 인가할 수 있는 별도의 전원부(280)를 포함하며, 상기 전원부(280)는 배터리(281)를 포함한다. 따라서, 외부 전원을 충전하여 상기 배터리(281)로부터 내부 모듈의 전원을 공급할 수 있으며, 그에 따라 기기(200)의 휴대가 가능하다.
이하에서는 도 3 및 도 4를 참고하여, 바이오 센서 진단기기(200)의 일 예에 따른 상세 구조를 설명한다.
도 3은 도 1의 바이오 센서 진단기기(200)의 일 예에 대한 전면도이고, 도 4는 도 3의 바이오 센서 진단기기(200)의 분해 사시도이다.
도 3 및 도 4를 참고하면, 본 실시예에 따른 바이오 센서 진단기기(200)는 휴대가능한 일체화된 장치(potable integrated device)로서 제공된다.
여기서, 일체화되었다고 함은, 본 진단기기(200)의 이동, 배치, 사용에 있어 단일 장치로 인식되는 모든 상태를 포함할 수 있다. 예를 들어, 일체화되었다고 함은, 동일한 케이스 내부에 함께 위치하여 동일한 케이스에 의하여 일체화되는 것을 의미할 수도 있고, 동일한 부재에 끼워지거나 부착되는 등에 의하여 고정되어 동일한 부재에 의하여 일체화되는 것을 의미할 수도 있고, 동일한 부재의 일부를 구성하도록 동일한 부재에 함께 형성된 것을 의미할 수도 있고, 동일한 부재에 의하여 함께 감싸지거나 고정되는 것을 의미할 수도 있다. 반대로, 별도의 출력 케이블 등에 의하여 연결된 것은 일체화되었다고 보기 힘들 수 있다.
본 실시예에 따른 일체형의 바이오 센서 진단기기(200)는 케이스(201, 202) 내에 별도의 내부 커버(205)를 포함하며, 내부 커버(205)의 수용부(208) 내에 수용되는 복수의 모듈들과 상기 내부 커버(205)의 전면을 덮으며 전면 패널(291)이 배치된다. 케이스(201)는 전면 패널(291)의 일부를 덮어 복수의 모듈에 접근할 수 있도록 한다. 이때, 후면 케이스(202)와 내부 커버(205) 중 하나는 생략 가능하다.
도 4의 분해 사시도에서 복수의 모듈이 중첩되는 X축을 따라 왼쪽을 전면으로, 오른쪽을 후면으로 정의하며, X축과 수직한 Y축과 Z축이 사용자에게 제공되는 전면 패널(291)의 기준 평면을 이루는 두 축으로 정의된다.
본 실시예에 따른, 바이오 센서 진단기기(200)의 케이스(201, 202)는 전면 케이스(201) 및 후면 케이스(202)를 포함한다. 상기 후면 케이스(202)는 내부에 수용부(203)를 가지며, 바닥면과 측면을 갖도록 형성된다.
상기 전면 케이스(201)와 후면 케이스(202)가 수용부(203)를 마주하도록 서로 측면을 맞닿으며 배치될 수 있다.
전면 케이스(201)와 후면 케이스(202)가 이루는 수용부(203)는 전면 케이스(201)의 개폐에 따라 개방된 공간에서 폐공간으로 변경된다.
상기 전면 케이스(201)와 후면 케이스(202)를 동시에 수용하는 외부 케이스가 더 형성될 수 있으며, 외부 케이스는 도3과 같이 박스 타입으로 형성 가능하며, 휴대 용이하도록 핸들이 형성되거나, 소정 각도로 상기 진단기기(200)를 배치가능한 밭침대가 형성되어 있을 수 있다.
전면 케이스(201)와 후면 케이스(202)의 바닥면은 서로 동일한 크기를 가지며 바이오 센서 진단기기(200)의 전체 면적을 정의한다.
상기 바닥면은 다양한 형상으로 형성될 수 있으며, 그 형상은 도 4와 같이 사각형일 수 있으나 이에 한정되지 않고, 원형, 타원형, 마름모 등일 수 있다.
한편, 도 4와 같이 바닥면의 형상이 사각형인 경우, 그 면적은 휴대가능한 크기로서, 다각형의 경우, 일 변이 30cm 이하를 충족할 수 있으나, 이에 한정되지 않고 더욱 소형화 가능하다. 그러나, 바이오센서 진단기기(200)는 둥근 형태(예를 들어, 타원형 또는 원형) 등 임의의 형태를 가질 수 있다.
상기 후면 케이스(202)의 수용부(203)를 이루는 측면의 높이는 전면 케이스(201)의 측면의 높이보다 더 클 수 있으며, 상기 후면 케이스(202)의 수용부203) 내에 내부 커버(205)가 형성된다.
내부 커버(205)는 후면 케이스(202)의 수용부(203) 내에 삽입 가능하도록 상기 후면 케이스(202)와 동일한 형상으로서, 그 바닥면이 후면 케이스(202)보다 작은 면적을 가질 수 있으나, 후면 케이스(202)의 측면 및 바닥면과 내부 커버(205)의 측면 및 바닥면 사이에 이격 공간이 최소화할 수 있도록 끼움결합될 수 있다.
내부 커버(205)가 케이스(201, 202)를 보호하며 실질적인 일체화를 이루는 커버로서 기능하며, 케이스(201, 202)가 손상되는 경우, 내부 커버(205)를 케이스(201, 202)와 분리하여 교체 가능하다. 즉, 내부 커버(205)는 전면 케이스(201) 및 후면 케이스(202)와 분리될 수 있다.
또한, 내부 커버(205)는 후면 케이스(202)와 일체화되어 둘 중 하나가 생략 가능하다.
상기 내부 커버(205)의 수용부(203) 내에 복수의 모듈이 수용되어 있다.
상기 내부 커버(205)의 바닥면에 각 모듈의 위치를 정의하면서 모듈을 지지하기 위한 지지체(2081, 2082)가 형성될 수 있으며, 상기 지지체(2081, 2082)는 내부 모듈의 배치에 따라 다양하게 설계 가능하다.
상기 내부 커버(205)의 수용부(208)에는 메인 보드(255)가 수용된다.
상기 메인 보드(255)는 복수의 기능을 실행하기 위한 내부 모듈들이 전기적으로 연결되어 있을 수 있으며, 도 4와 같이 메인 보드(255)의 전면 방향으로 표시부(290)를 이루는 디스플레이 모듈(295)과 신호변환증폭부(210) 및 센서 제어부(240)가 일체화되어 있는 카트리지 삽입모듈(2911)이 배치되어 있을 수 있다. 또한, 전면에 전면 패널(291)의 사용자 인터페이스의 제어 스위치(2541)가 배치되어 있을 수 있다.
상기 메인 보드(255)의 후면으로 본 제어기기의 동작을 제어하고 프로그램에 따라감지 신호를 판독하는 연산모듈(251) 및 통신 모듈(261)이 배치될 수 있다.
또한, 상기 메인 보드(255)의 후면으로 QR 리딩 모듈(271)이 배치될 수 있다.
이와 같은 메인 보드(255) 및 상기 각 기능 모듈에 전원을 인가하기 위한 배터리(281)가 배치되어 있으며, 상기 배터리(281)는 내부 커버(205)에서 바닥면에 근접하게 배치될 수 있다.
구체적으로, 전면 패널(291)은 도 3과 같이 바이오 센서 진단기기(200)의 전면에 노출되는 기준 평면을 포함한다.
상기 전면 패널(291)은 전면 패널(291)의 뒷면에 배치되어 전면으로 영상을 표시하는 디스플레이 모듈(295)을 노출하기 위한 제1 개구부(292)를 포함한다.
상기 제1 개구부(292)는 투명 필름으로 커버되어 있을 수 있으나 이에 한정되지 않고, 디스플레이 모듈(295)의 표시부(290)가 직접 노출될 수 있다.
상기 제1 개구부(291)의 주변부로 사용자 인터페이스를 위한 복수의 버튼, 다이얼 및 단자(294, 296, 297) 등이 배치가능하다.
상기 복수의 버튼, 다이얼 및 단자(294, 296, 297) 등은 디자인에 따라 다양한 형태로 조절 가능하다. 일 예로, 도 3과 같이 제1 개구부(292) 하부로 제어 다이얼(2941)이 배치되어 있을 수 있으며, 제1 개구부(292) 좌측으로도 복수의 단자 및 다이얼(296, 297)이 배치되어 사용자로부터 직접 동작 명령을 수신할 수 있다.
한편, 전면 패널(291)에서 제1 개구부(292)의 우측, 기준 평면의 우측에 카트리지 삽입 모듈(2911)이 배치되어 있다. 대안적으로, 카트리지 삽입 모듈(2911)은 전면 패널(291)의 제1 개구부(292)의 좌측 및 기준면의 좌측에 배치될 수 있다.
상기 카트리지 삽입 모듈(2911)은 기준 평면에서 전면으로 돌출되어 있으며, Z축 방향으로 카트리지의 접속단자(153)를 삽입하여 전기적으로 연결할 수 있도록 단자부를 포함한다.
따라서, 삽입 모듈(2911)의 측면에 단자부가 형성되어 있으며, 상기 단자부는 적어도 하나의 삽입홀(2914)을 포함할 수 있다.
상기 삽입홀(2914)은 카트리지의 접속단자(153)의 형태에 따라 다양하게 구현 가능하며, 상기 카트리지의 접속단자(153)가 SD 카드칩 타입, USB-A, USB-C 타입 등의 USB 타입, 또는 핀(PIN) 타입으로 형성될 때, 그에 대응하여 상기 접속단자(153)의 전극을 읽어 들일 수 있도록 형성될 수 있다.
또한, 다양한 종류의 접속단자(153)를 읽을 수 있도록 복수의 삽입홀(2914)이 형성될 때, 복수의 삽입홀(2914)은 상기 삽입 모듈(2911)의 측면에서 X 축방향을 따라 나란하게 배치될 수 있다.
상기 삽입 모듈(2911)의 하부에 QR 리딩 모듈(271)을 노출하기 위한 제2 개구부(293)가 배치되어 있다.
상기 제2 개구부(293)는 카트리지의 접속단자(153)가 상기 카트리지 삽입 모듈(2911)의 삽입홀(2914)에 삽입된 상태에서 상기 카트리지(100)의 하우징(101)의 하면과 X축 방향으로 정렬하는 위치에 형성된다.
상기 제2 개구부(293)는 투명 필름으로 덮여 있을 수 있으며, 제2 개구부(293)는 사각형을 가질 수 있으나 그 면적은 제1 개구부(292)보다 작을 수 있다. 또한, 제2 개구부(293)는 QR 리딩 모듈(271) 또는 QR 영역(2553)의 형상에 대응되는 임의의 형상을 가질 수 있다.
상기 제2 개구부(293)는 후면에 배치되는 QR 리딩 모듈(271)이 전면에 놓여지는 카트리지(100)의 QR 코드를 읽기 위한 통로로서 기능하며, QR 리딩 모듈(271)과 카트리지(100) 사이의 거리를 유지하기 위해 전면 패널(291)의 후면으로부터 돌출되어 제2 개구부(293)의 측벽을 이루는 광유도부(2912)가 형성되어 있으며, QR 리딩 모듈(271)이 바코드를 판독하도록 바이오센서 카트리지(100)를 향해 빛을 비출 수 있다.다.
상기 광유도부(2912)는 상기 QR 리딩 모듈(271)의 거리를 유지하는 한편, QR 리딩 모듈(271)의 촬영을 위한 조명으로서 기능할 수 있다. 즉 광유도부(2912)는 제2 개구부(293)의 측벽에 형성되는 도광판을 포함할 수 있다.
상기 전면 패널(291)의 후면으로 각 모듈이 실장되는 메인 보드(255)가 배치되며, 상기 메인 보드(255) 또한 내부 커버(205)의 바닥면과 유사한 형상을 가질 수 있다.
상기 메인 보드(255)는 전면 패널(291)의 영역 분할에 대응하여 디스플레이 모듈(295)이 배치되는 디스플레이 영역(2551) 및 카트리지 삽입 모듈(2911)과 대응되는 카트리지 영역(2552), 제2 개구부(293)에 대응하는 QR 영역(2553) 및 사용자 인터페이스를 위한 버튼 및 다이얼에 대응하는 제어 영역(254)으로 구획된다.
상기 메인 보드(255)는 전면 및 후면에 회로가 패터닝되어 있는 회로 기판으로서, 각 영역에 전기적 연결을 위한 연결단자 또는 커넥터가 배치되어 있다. 각 기능 모듈은 정의되어 있는 영역에 물리적으로 고정되면서 보드의 연결단자 및 커넥터와 각 모듈의 연결단자 또는 커넥터를 연결하면 메인 보드(255) 상에서 일체화될 수 있다.
도 4와 같이, 카트리지 삽입 모듈(2911)과 대응되는 메인 보드(255)의 카트리지 영역(2552)에는 신호변환증폭부(210), 여과부(220) 및 센서 제어부(240)가 일체화되어 있는 단자모듈(241)이 실장되어 있다. 단자모듈(241)는 연성회로기판(FPCB)(2111)에 의해 카트리지의 접속단자(153)가 삽입되는 삽입홀 모듈(211)과 단자모듈(241)로 연결되어 있을 수 있으며, 이와 달리 하나의 컴포넌트로 구현 가능하다.
또한, 디스플레이 모듈(295)은 디스플레이 영역(2551)에 배치되는 LCD, LED 패널 모듈일 수 있으며, 메인 보드(255) 후면의 연산 모듈(251)과 배터리(281)와의 연결을 위해 메인 보드(255)에 단자개구(2951)가 형성될 수 있다.
상기 연산부(250)와 통신 모듈(261) 또한 메인 보드(255) 후면에서 메인 보드(255)와 커넥터로 연결가능하나 메인 보드(255) 상에서의 배치는 이에 한정되지 않는다.
한편, 메인 보드(255)의 후면에 QR 영역(2553)에 형성된 QR 개구(2554)로 QR 코드를 읽어내는 QR 리딩 모듈(271)이 배치되며, QR 리딩 모듈(271) 역시 연성회로기판(FPCB)(2711)를 통해 메인 보드(255)와 전기적으로 연결되어 전원 및 제어 신호를 인가받는다. 즉, QR 리딩 모듈(271)은 FPCB(2711)를 포함하여 QR 리딩 모듈(271)을 메인 보드(255)에 전기적으로 연결할 수 있다.
이와 같은 모듈들의 배치 및 고정을 위해 측면 프레임(209)이 형성된다. 측면 프레임(209)은 상기 내부 커버(205)와 전면 패널(291)을 고정하고, 내부 커버(205)는측면의 일단부(206)에서 확장된 나사홀(2061) (또는 복수의 나사홀(2061))을 통하여 측면 프레임(209)과 고정된다. 또한, 측면 프레임(209)에는 내측 커버(205)의 나사홀(2061)과 중첩되는 다수의 나사홀(2091)이 형성되어 있다. 측면 프레임(209)의 나사 홀(2091)에는 나사나 볼트 등의 체결구가 관통하여 내부 커버(205)의 나사홀(2061)에 고정된다. 기타 복수의 고정부를 통해 각 모듈이 메인 보드(255)의 특정 위치에서 고정되어 있으며, 메인 보드(255)는 내부 커버(205)의 바닥면으로부터 돌출되어 있는 복수의 고정돌기(2081, 2082) 및 전면 패널(291)과의 사이에서 나사 및 나사홀의 결합으로 물리적으로 고정된다.
메인 보드(255)와 전면 패널(291) 및 내부 커버(205)의 고정에 의해 사이에 배치되어 있는 각 모듈 및 컴포턴트가 고정되어 이동 시에 흔들리지 않고 전기적 연결이 유지된다.
또한, 측면 프레임(209)의 나사홀 및 나사를 통해 전면 패널(291)과 내부 커버(205)가 함께 고정되어 일체화된다. 각 구성 요소의 고정 및 조립이 나사홀 및 나사에 의해 진행되어 분해 및 재조립에 용이하다.
이와 같은 전면 케이스(201) 및 후면 케이스(202), 내부 커버(205) 및 전면 패널(291)은 휴대를 위해 폴리카보네이트 또는 플라스틱과 같은 수지로 형성될 수 있다.
이와 같은 바이오 센서 진단기기(200)는 도 3과 같이 내부에 복수의 모듈을 수용하는 공간을 가진 형태로 전면 패널(291)이 노출되어 사용자에게 제공되며, 다양한 외부 케이스가 적용되어 활용 가능하다.
특히, 도 3과 같이 사용자에게 제공되는 전면 패널(291)의 기준 평면은 디스플레이 모듈(295)의 화면이 제공되고, 사용자 인터페이스를 위한 각종 버튼 및 다이얼이 제공되며, 특히, 전원 버튼, 복수의 제어 버튼 및 USB 단자 등을 제공할 수 있다. 또한 디스플레이 모듈(295)의 일측으로 카트리지 삽입 모듈(2911)이 제공되어 패널(291)의 기준 평면과 평행하게 삽입홀(2914)로 접속단자(153)를 삽입함으로써 바이오 센서 카트리지(100)의 진단이 가능하다.
이하에서는 도 5 내지 도 7을 참고하여 본 실시예에 적용되는 바이오 센서 카트리지(100)를 설명한다.
도 5a 및 도 5b는 도 1의 바이오 센서 카트리지(100)의 일 예에 대한 상면도 및 배면도이고, 도 6은 도 1의 바이오 센서 카트리지(100)의 일 예에 대한 분해 사시도이며, 도 7은 도 5 및 도 6의 바이오 센서 카트리지(100)를 Ⅰ-Ⅰ' 및 Ⅱ-Ⅱ'으로 절단한 단면도이다.
도 5a 내지 도 7을 참고하면, 본 실시예에 따른 바이오 센서 카트리지(100)는 타겟 물질에 따라 전기적인 감지 신호를 발생하는 센서칩(500)을 수용하며, 상기 감지 신호를 외부의 진단기기(200)로 전달가능한 접속단자(153)를 포함하는 구조를 가진다.
구체적으로, 상기 바이오 센서 카트리지(100)는 바 타입(bar type)의 하우징(110, 120)으로 형성되어 있으며, 상기 하우징(110, 120)의 단면으로부터 돌출되며, 외부의 진단기기(200)로 삽입되어 상기 감지 신호를 전달하는 접속단자(153)를 포함하는 회로기판(150)의 일부면(151)이 노출되어 있다.
바이오 센서 카트리지(100)는 하우징(110, 120), 센서칩(500) 및 회로기판(150)을 포함한다.
회로기판(150) 역시 바 타입(bar type)으로 형성되며, 일단에 접속단자(153)가 형성되어 회로기판(150)의 접속단자(153)가 하우징(110, 120) 외부로 노출되도록 결합됨으로써 카트리지(100) 전체의 형상을 이룬다.
구체적으로, 상기 하우징(110, 120)은 하부 하우징(120) 및 상부 하우징(110)을 포함한다.
상기 하부 하우징(120)은 바 타입(bar type)의 바닥면(121)(일 예로, 평평한 모양의 표면 또는 평평한 직사각형 모양의 표면) 및 바닥면(121)을 둘러싸는 측면(122)을 포함한다. 상기 바닥면(121)은 상부 하우징(110)을 향하여 돌출되어 있는 복수의 결합 돌기(127, 128)를 포함하고 상기 결합 돌기(127, 128)가 상부 하우징(110)의 결합 홈과 끼움 결합함으로써 하우징(110, 120)의 상부와 하부가 결합되어 일체화된다. 하부 하우징(120)은 하부 하우징(120)의 모서리에 위치하는 4개의 결합 돌기(128)를 포함할 수 있으며, 이들은 상부 하우징(110)의 모서리에 위치하는 상부 하우징(110)의 홈에 대응하여 결합된다. 결합 돌기(127)(예를 들어, 기판 돌기)는 다른 결합 돌기(128)(예를 들어, 코너 결합 돌기(128))로부터 나올 수 있다. 또는 결합 돌기(127)는 4개 이상 형성될 수 있으며, 결합 돌기들은 하부 하우징(120)의 둘레를 따라 등간격으로 배치될 수 있다.상기 하부 하우징(120)의 바닥면(121)에는 상부 하우징(110)을 향하여 상기 회로 기판(150)을 고정하면서 위치를 정의하는 기판 돌기(127)가 형성되어 있으며, 그 일측으로 센서칩(500)이 배치되는 칩영역(125)을 정의하는 복수의 센서돌기(126)가 형성되어 있다.
상기 센서돌기(126)는 상기 센서칩(500)이 배치되는 칩영역(125)을 정의하도록 상기 센서칩(500)의 크기에 대응하여 배치되어 있으며, 상기 센서칩(500)이 끼움결합될 수 있도록 소정의 탄성을 가지며 형성된다. 다만, 센서돌기(126)는 센서칩(500)의 전기적 연결을 수행하지 않으므로 다양한 형태로 구현 가능하며, 끼움 결합 이외에도 슬라이딩 결합을 위한 레일 구조로 형성될 수도 있다.
상기 칩영역(125)에 센서칩(500)이 배치된다.
상기 센서칩(500)은 반도체 베이스의 바이오 센서로서, 시료와의 접촉을 통해 시료 내의 타겟 물질에 따라 반응하는 센서 영역 및 상기 가지 영역에 따라 발생하는 감지 신호를 회로 기판(150)으로 전달하기 위한 패드 영역으로 구분된다.
패드 영역(510)은 도 6과 같이 센서칩(500)의 일측에 배치되도록 패터닝될 수 있으며, 그에 따라 회로 기판(150)과 센서칩(500)의 전기적 연결이 패드 영역(510)에서 수행된다.
상기 센서칩(500)은 카트리지의 크기에 따라 서로 다른 크기를 가질 수 있으며, 일 예로 8mm*6mm의 직사각형 형상을 가질 수 있고, 6mm*6mm의 정사각형 형상도 가질 수 있다. 이와 같은 센서칩(500)의 크기는 센서칩(500)의 성능 또는 센서칩(500)의 용도에 따라 다양하게 구현 가능하다.
센서칩(500)의 상세 구조는 뒤에서 상세히 설명한다.
상기 센서칩(500) 상에 회로 기판(150)이 배치된다.
상기 회로 기판(150)은 PCB 기판과 같이 강성 기판으로 제공될 수 있으며, 하부에 센서칩(500)이 전기적/물리적으로 접합된다.
상기 회로 기판(150)은 센서칩(500)의 센서 영역(540)이 노출되기 위한 센서 개구부(155)를 포함하며, 상기 개구부(155)는 센서칩(500)보다 작은 크기를 가진다. 또한 상기 개구부(155)는 상기 센서칩(500)의 센서 영역(540)과 대응되는 크기를 가질 수 있으며, 상기 센서 영역(540)을 노출하는 크기를 가진다.
상기 회로 기판(150)은 상기 하부 하우징(120)의 기판 돌기(127)가 관통되어 상기 회로 기판(150)을 고정할 수 있도록 돌기홀(154)을 더 포함하며, 그에 따라 회로 기판(150)과 하부 하우징(120)이 고정된다.
상기 회로 기판(150)은 전면에 상기 센서칩(500)과 접속하기 위한 복수의 접속 패드(158)가 형성되어 있으며, 상기 접속 패드(158)와 연장되어 상기 접속 패드(158)로부터의 감지 신호를 외부 진단 기기(200)로 전달하기 위한 전극층 패턴이 접속단자(153)까지 연결되어 있다.
따라서, 상기 회로 기판(150)의 접속단자(153)의 수효는 센서칩(500)의 단자수보다 같거나 큰 값을 가질 수 있다.
일 예로, 상기 센서칩(500)의 단자가 3개인 경우, 회로 기판(150)의 접속 패드(158)의 수효 또한 3개를 충족하고, 접속단자(153)의 수효는 3 이상을 충족한다.
상기 접속단자(153)는 각 접속 패드(158)와 전기적으로 연결되지 않은 상태의 단다즐을 더 포함하며 ESD 차단 등을 위한 단자로 활용 가능하다.
회로 기판(150)에는 복수의 결합 홈을 포함하며, 이와 같은 복수의 결합 홈은 상부 하우징(110)과 하부 하우징(120)의 결합 시에 위치를 특정하면서 끼움 결합 가능하도록 형성된다
한편, 상부 하우징(110)은 도 6과 같이 상면(111)과 하면이 서로 다른 구조를 가진다.
상부 하우징(110)은 하부 하우징(120)과 대향하며 하부 하우징(120)과 결합하며 내부에 회로 기판(150)과 센서칩(500)을 수용할 수 있는 상부 케이스로서 기능한다. 또한 상부 하우징(110)에 센서칩(500)의 센서 영역(540)을 노출하는 수용부(119)가 형성되어 검사하고자 하는 시료를 수용할 수 있다.
상부 하우징(110)은 연결부재(140)를 소정의 힘으로 가압하여 이들을 견고하게 지지할 수 있는 강성을 갖도록 형성된다. 연결부재(140)는 복수로 형성될 수 있으며, 회로 기판(150)에 배치된 연결 패드(158)와 센서 칩(500)의 패드(511)를 연결하기 위한 도전성 탭(예: 금속 탭)일 수 있다.
상부 하우징(110)과 하부 하우징(120)이 센서칩(500) 및 회로 기판(150)의 둘레를 감싸 센서칩(500) 및 회로 기판(150)을 외부로부터 보호하도록 구성될 수 있다. 이때, 상부 하우징(110)과 하부 하우징(120)의 결합 시에 단측에 회로 기판(150)의 접속단자(153)를 돌출하는 개구가 단면에 형성되어 접속 단자(153)가 단면으로 노출됨으로써 카트리지의 접속단자(153)로서 외부의 진단 기기(200)의 삽입홀(2914)에 삽입된다. 상부 하우징(110)과 하부 하우징(120)의 견고한 결합에 의해 수용부(119)를 통해 센서칩(500)으로 제공된 시료가 하우징(110, 120)의 내부로 누수되는 것을 방지할 수 있다.
상부 하우징(110)의 상면(111)에는 센서칩(500)의 센서 영역(540)을 노출하며 시료를 수용하는 수용부(119)가 형성된다. 수용부(119)는 유체 상태, 일 예로 액체 상태의 검사 대상인 시료를 수용하여 노출된 센서 영역(540)과 반응을 유도하기 위한 공간으로서, 수용부(119)는 상면(111)으로부터 센서 영역(540)에 다다를수록 직경이 좁아지는 원뿔 형태의 통로(channel)를 형성한다. 수용부(119)에서 센서 영역(540)에 가장 가까운 영역을 끝단이라고 하고, 센서 영역(540)에서 끝단에 대향하는 가장 먼 영역을 개구 또는 최외곽 영역이라고 한다.
따라서, 상기 수용부(119)는 상면의 개구의 직경(w1)이 수용부(119) 끝단의 개구의 직경(w2)보다 크도록 경사면(116)을 가지며 형성된다.
이때, 경사면(116)의 경사각- 도 7에서의 단면에서 볼 때, 센서칩(500)이 놓이는 수평 방향(x축)에 대한 경사면(116)의 각도는 균일할 수 있으나, 이와 달리 변곡점을 가질 수도 있다.
즉, 센서 영역(540)에 근접할수록 경사각이 커지면서 센서 영역(540)에 가장 근접한 최외각 영역에서는 수직을 이루어 원통형태의 통로로 변경될 수 있다.
이와 같이 수용부(119)가 경사면(116)을 가짐으로써 상부 하우징(110)의 상면으로부터 센서 영역(540)에 이르는 높이를 깊이로 가지는 오목한 홈이 형성되며, 상기 홈에 시료가 포집되어 아래의 센서 영역(540)의 감지 물질과 반응이 유도된다.
한편, 상기 수용부(119)는 도 5a, 도 6 및 도 7과 같이 수용부(119)의 시료가 외부로 흐르는 것을 방지하기 위한 방지하기 위한 가드(114)를 더 포함한다. 상기 가드(114)는 원통형으로 형성될 수 있으며, 상기 상부 하우징(110)의 상면(111)의 개구를 둘러싸며 상면(111)으로부터 위로(y축으로) 돌출되도록 형성된다.
따라서, 상기 가드(114)의 직경(w1)은 상기 상면(111)의 개구의 직경과 동일할 수 있다.
상기 상부 하우징(110)의 상면(111)에는 상기 수용부(119)를 둘러싸며 소정 깊이의 가드홈(113)이 형성되어 있다. 상기 가드홈(113)은 상기 수용부(119)로부터 흘러넘치는 시료가 하우징(110) 외부로 흐르는 것을 방지하기 위한 것으로 상면(111)으로부터 소정 깊이만큼 오목하게 함몰되도록 형성된다.
상기 가드홈(113)은 가드(114)의 형상과 동일하게 원형으로 형성될 수 있으나, 도 6 및 도 7과 같이 상기 가드(114)로부터 최소 거리(d2) 이상을 가지는 사각형의 형상으로 형성될 수 있다. 가드홈(113)은 가드홈(113)의 외주를 형성하는 수직벽(112)을 포함한다.
이와 같이 시료과 센서 영역(540)이 맞닿는 수용부(119)는 1차로 오목한 컵 형상을 가지게 되어 시료를 수용하고 시료의 타겟 물질과 센서 영역(540)의 감지 물질이 서로 반응할 공간을 제공하게 된다. 또한, 상기 수용부(119)는 상면(111)의 개구를 둘러싸는 가드(114)를 형성하여 넘치는 시료를 2차로 수용함으로써 시료의 양을 확보하고, 외부로 시료가 노출되는 위험을 방지할 수 있다.
또한, 3차로 가드(114) 주변에 가드 홈(113)을 형성하여 시료가 가드(114)를 넘치거나 가드(114) 외부로 흐르는 경우 이를 수용함으로써 위험 물질이 함유되어 있을 수 있는 시료가 외부에 노출되는 것을 방지할 수 있다.
이와 같이, 상부 하우징(110)에 시료를 수용하기 위한 수용부(119)의 형상을 변형함으로써 안전하게 검사를 진행할 수 있다.
한편, 상부 하우징(110)의 하면은 상기 수용부(119)의 경사면(116)이 형성되도록 경사진 부분을 포함할 수 있다.
따라서, 도 7과 같이 센서칩(500)의 센서 영역(540)이 회로 기판(150)의 센서개구(115)에 의해 상부로 노출되고, 상기 노출된 센서 영역(540)과 정렬하도록 상기 수용부(119)의 하부 개구가 정렬한다.
따라서, 상기 회로 기판(150)의 개구(115)가 상기 수용부(119)의 경사면(116)의 하면을 둘러싸도록 끼워짐으로써 회로 기판(150)과 상부 하우징(110)의 위치 고정이 이루어진다.
또한, 이를 위해 상기 수용부(119)의 경사면(116)의 배면은 상기 회로 기판(150)의 개구(115)와 만나는 영역에서 수직하게 단차(117)를 갖도록 형성된다.
따라서, 회로 기판(150)은 상기 수용부(119) 배면의 단차(117)와 상기 회로 기판(150)의 센서 개구(115)가 끼워지면서 1차로 고정되고, 하부 하우징(120)의 고정돌기(127)와 회로 기판(150)의 고정홀(154)이 결합하면서 2차로 고정되어 위치가 특정된다.
한편, 상부 하우징(110)과 상기 센서 영역(540) 사이에 밀봉부(130)가 더 형성될 수 있다.
상기 밀봉부(130)는 도 6과 같이 별도의 소자로 형성되어 하우징(110, 120) 결합 시에 함께 결합되고 압착되어 상기 센서 영역(540)의 외부로 시료가 흐르는 것을 방지할 수 있다.
이때, 상기 밀봉부(130)는 도 7과 같이 수용부(119)의 하면 개구의 직경(w2)보다 큰 직경(w3)을 가지는 밀봉개구(131)를 가질 수 있으며, 하면 개구와 밀봉 개구(131)가 동심원을 갖도록 배치될 수 있다. 따라서, 도 7과 같이 조립 시에 밀봉부(130)가 수용부(119)의 하부 개구 바깥으로 배치되어 오목한 홈을 형성한다. 밀봉부(130)는 탄성체일 수 있으며, 고무, 불소고무, 실리콘, 네오프렌, 니트릴, 폴리염화비닐(PVC), 열가소성 폴리우레탄, 폴리테트라플루오르에틸렌 등으로 형성될 수 있다.
이는 밀봉부(130)의 압착 시에 공차를 둠으로써 밀봉부(130)의 압착에 의해 탄성을 가지는 밀봉부(130)가 센서 영역(540)으로 밀려나가 시료와 접하는 센서 영역(540)을 덮는 위험을 방지하기 위한 것이다.
이와 같이 밀봉부(130)의 밀봉 개구(131)와 수용부(119)의 개구 크기를 조절함으로써 센서 영역(540)의 면적을 확보하면서도 시료의 밀봉을 보장할 수 있다.
한편, 상기 밀봉부(130)는 탄성을 가지는 닫힌 셀 타입(closed cell type)의 방수 패드가 적용될 수 있으나, 이에 한정되는 것은 아니다.
이와 같은 상부 하우징(110) 및 하부 하우징(120)은 몰딩(예를 들어, 사출 성형, 압축 성형, 트랜스퍼 성형 등)에 의해 제조 및 생산 가능하다. 이때, 상부 하우징(110) 및 하부 하우징(120)은 폴리메칠메타크릴레이트, 폴리카보네이트, 시클릭올레핀코폴리머(Cyclic olefine copolymer), 폴리에틸렌술폰(Polyethylene sulfone) 및 폴리스티렌 중 적어도 하나의 재질로 마련되거나, 이들 중 적어도 둘 이상이 조합된 물질로 마련될 수 있다. 그러나, 하우징(125)의 물질은 반드시 이에 한정되는 것은 아니며, 실리콘 기반의 유기폴리머인 폴리디메틸실록산 재질로 구성될 수도 있다.
한편, 회로 기판(150)의 하면에 형성되는 접속 패드(158)는 상기 센서칩(500)의 패드(510)와 동일한 수효로 형성되며, 상기 회로 기판(150)의 접속 패드(158)과 센서칩(500)의 패드(510)의 전기적 물리적 연결을 위해 연결부재(140)가 배치되어 있다.
상기 연결부재(140)는 각 패드(158)마다 별도로 형성될 수 있으며, 클립형 탄성 접촉편으로 형성될 수 있다. 이와 같은 연결부재(140)는 C-클립 또는 스프링 단자일 수 있다.
각각의 연결부재(140)는 회로 기판(150)의 패드(158)과 맞닿는 제1면과 상기 제1 면의 일측면으로부터 상기 제1 면의 길이 방향으로 절곡되어 탄성 변형 가능하도록 이루어진 제2면을 포함할 수 있다.
상기 제1 면이 소정 길이를 가지며 형성되어 자유단이 회로 기판(150)의 패드 영역(510)과 맞닿고, 제2 면이 하부의 센서칩(500)의 패드와 맞닿으며 탄성 변형한다.
이와 같은 연결 부재는 제1 면과 제2 면 사이의 절곡된 부분인 벤딩부에서 탄성 변형되면서 제1면의 하부와 제2 면의 상부 사이에 상하로 압력이 가해지면 제1 면과 회로 기판(150)의 접속 패드(158)가 접하고, 제2 면과 센서칩(500)의 패드(510)가 접하게 된다.
이를 위해, 회로 기판(150)의 접속 패드(158)과 제1 면이 용접 등을 통해 접해진 상태로 센서칩(500)이 배치된 하부 하우징(120) 내에 회로 기판(150)이 배치되면, 상부 하우징(110)과 하부 하우징(120)의 조립에 의해 상기 연결 부재에 상하로 압력이 가해지면서 벤딩부가 탄성변형된다.
따라서, 제2면이 센서칩(500)의 패드(510)와 접하여 통전 상태를 유지하게 되며, 물리적 결합과 전기적 결합이 동시에 이루어진다.
이와 같이, 센서칩(500)에 별도의 본딩 공정 없이 회로 기판(150)과 전기적 연결을 수행함으로써, 센서칩(500) 내의 감지 물질이 본딩 공정에서의 고온에 노출되지 않아 단백질 변형이 발생하는 문제점을 방지할 수 있다.
따라서, 바이오 센서의 특성상 열에 취약한 감지 물질의 존재 하에서, 가열공정을 배재함으로써 감지 물질의 특성을 유지할 수 있으며, 센서칩(500)과 회로 기판(150)의 전기적 연결이 가능해진다.
한편, 상기 바이오 센서 카트리지(100)의 하부 하우징(120)의 하면(129), 즉 외부로 노출되는 카트리지(100)의 하면(129)에는 상기 바이오 센서 카트리지(100)의 정품 인증을 위한 제품 ID 및 제조 시리얼 번호 등을 포함하는 센서 정보가 저장되어 있는 QR 코드를 포함하는 QR 라벨(160)이 부착되어 있다.
상기 QR 라벨(160)은 사각형의 형상을 가질 수 있으며, 폭이 11 내지 13mm 이고, 길이가 14 내지 16mm인 직사각형 형상일 수 있다. 바람직하게는 QR 라벨(160)는 12*15mm의 크기를 가질 수 있으며, 이와 같은 QR 라벨(160)의 크기는 상기 진단기기(200)의 제2 개구부(293)의 크기인 25mm*18mm 보다 작은 값을 가질 수 있다.
상기 QR 라벨(160)은 상기 카트리지(100)가 외부의 진단기기(200)와 결합할 때, 상기 카트리지(100)의 하부 하우징(120) 하면(129)이 상기 QR 개구인 제2 개구부(293) 위에 정렬할 수 있도록 상기 하부 하우징(120)의 하면(129) 중앙 영역에 부착될 수 있다. 하부 하우징(120)의 접속단자(153)가 돌출되는 측단부로부터 QR 라벨(160)까지의 거리는 11 내지 12mm를 충족한다. 따라서, 진단기기(200)의 삽입구(2914)로부터 제2 개구부(293)의 중심까지의 거리인 18 내지 19mm 보다 작은 값을 가지므로, 상기 QR 라벨(160)은 상기 제2 개구부(293) 외부로 벗어나지 않고 정렬한다.
상기 QR 코드는 정품 인증을 위한 센서 정보를 모두 포함할 수 있으며, 일 예로, 제품 ID 및 제조 시리얼 번호뿐만 아니라 센서칩(500) 정보 및 카트리지 정보를 모두 포함할 수 있고, 센서칩(500)의 정보로는 센서칩(500)에 활성화되어 있는 감지 물질, 진단하고자 하는 질병, 센서칩(500) 제조 일자, 제조 위치, 제조 시리얼 번호를 포함할 수 있다. 또한 카트리지 정보로는 상기 바이오 센서 카트리지(100)의 조립 일자, 검사 일자 및 센서 ID를 포함할 수 있다.
이와 같이 저장되어 있는 QR 코드는 진단 기기(200)에 삽입 시 동시에 진단 기기(200)의 QR 리딩 모듈(271)로부터 읽어들여 클라우드 서버(400)로 정품 인증을 위한 과정을 진행할 수 있다.
바이오 센서는 가품인지 여부를 확인할 수 없고, 진품이라 할지라도 센서의 오류가 제조 및 판매 이후에 누적된 검사 데이터로부터 발견 또는 확정되는 경우가 많아 검사 진행 이전에 오류가 발생한 바이오 센서 카트리지(100)를 분류하는 과정이 요구된다.
바이오 센서 카트리지(100)의 경우, 이와 같은 인증 절차를 통해 현재 해당 종류의 바이오 센서 카트리지(100)에 대한 위험을 포함하는 오류에 대한 확인을 수행할 수 있다.
본 실시예에 따른 바이오 센서 카트리지(100)는 이와 같은 인증 절차를 위한 센서 고유의 정보를 저장하기 위한 별도의 메모리칩을 포함하지 않는다.
이와 같은 메모리칩이 별도로 포함되는 경우, 회로 기판(150)의 크기가 커지고, 회로 기판(150)의 크기에 따라 하우징(110, 120)의 크기가 커지게 된다. 또한 회로 기판(150)의 회로가 복잡해지며 접속단자(153)에서 사용되는 핀 수가 증가하게 되어 카트리지(100)의 소형화 및 비용에 문제가 발생한다.
본 실시예에 따른 바이오 센서 카트리지(100)와 같이 하우징의 하면에 QR 코드가 인쇄된 QR 라벨(160)을 부착함으로써 이와 같은 메모리칩을 대체할 수 있으며, 카트리지(100)와 진단기기(200)의 결합과 거의 동시에 QR 코드를 읽음으로써 센서 결과 판독과 인증의 시간차를 최소화할 수 있다.
이와 같은 QR 코드는 하부 하우징(120)의 하면에 보이드(VOID) 라벨과 같은 보안 라벨(160)로 부착함으로써 임의로 탈부착하는 것을 방지할 수 있다.
이와 같은 바이오 센서 카트리지(100)는 하부 하우징(120)에 센서칩(500)이 놓여진 상태로 연결 부재(140)가 부착된 회로 기판(150)이 결합된 상부 하우징(110)을 하부 하우징(120)과 조립을 위해 가압됨으로서 센서칩(500)과 회로기판(150)이 물리적으로 전기적으로 부착되면서 고정된다.
이와 같은 바이오 센서 카트리지(100)는 도 8 및 도 9와 같은 구성으로 변경 가능하다.
제2 실시예에 따른 바이오 센서 카트리지(100)는 도 8 및 도 9와 같이 구성될 수 있다.
도 8은 도 1의 바이오 센서 카트리지(100)의 다른 예에 대한 분해 사시도이고, 도 9는 도 8의 바이오 센서 카트리지(100)를 Ⅲ-Ⅲ'으로 절단한 단면도이다.
도 8 및 도 9의 바이오 센서 카트리지(100)는 하부 하우징(120), 센서칩(500) 및 회로 기판(150)의 구성은 도 6 및 도 7의 바이오 센서 카트리지(100)와 동일하므로 이에 대한 설명은 생략한다.
상기 제2 실시예의 바이오 센서 카트리지(100)는 수용부(119)가 제1 실시예와 상이하게 형성될 수 있다.
도 8 및 도 9를 참고하면, 제2 실시예에 따른 바이오 센서 카트리지(100)는 상부 하우징(110)에 시료를 수용하여 하부의 센서칩(500)의 센서 영역까지 유도하기 위한 수용부(119)가 형성되어 있다.
구체적으로, 상기 수용부(119)는 유체 상태, 일 예로 액체 상태의 검사 대상인 시료를 수용하여 노출된 센서 영역(540)과 반응을 유도하기 위한 공간으로서, 수용부(119)는 상면으로부터 오목하게 함몰되어 센서 영역(540)에 다다를수록 직경이 좁아지는 원뿔형태의 통로, 즉 채널을 형성한다.
따라서, 상기 수용부(119)는 상면의 개구의 직경(W1)이 수용부(119) 끝단의 개구(W2)의 직경보다 크도록 경사면(118)을 가지며 형성된다.
상기 수용부(119)는 상면의 개구의 직경(W1)이 센서칩(500)의 면적보다 넓도록 확장되어 있어 상기 상면의 개구의 직경(W1)과 수용부(119) 끝단의 개구의 직경(W2)의 차가 매우 크다.
일 예로, 상면의 개구의 직경(W1)은 수용부(119) 끝단의 개구의 직경(W2)의 2 내지 3배를 충족할 수 있다.
상면의 개구의 직경(W1)과 수용부(119) 끝단의 개구의 직경(W2)의 차가 클수록 수용부(119)의 수용 부피가 커짐으로써 많은 양의 시료를 수용할 수 있다.
이때, 경사면(118)의 경사각- 도 9에서의 단면에서 볼 때, 센서칩(500)이 놓이는 수평 방향에 대한 경사면의 각도는 균일할 수 있으나, 이와 달리 변곡점을 가질 수도 있다.
즉, 센서 영역(540)에 근접할수록 경사각이 커지면서 센서 영역에 가장 근접한 최외각 영역에서는 수직을 이루어 원통형태의 통로로 변경될 수 있다.
이와 같이 수용부(119)가 경사면(118)을 가짐으로써 상부 하우징(110)의 상면으로부터 채널 영역에 이르는 높이를 깊이로 가지는 오목한 홈이 형성되며, 상기 홈에 시료가 포집되어 아래의 센서 영역(540)의 감지 물질과 반응이 유도된다.
이와 같이 바이오 센서 카트리지(100)는 하우징(110, 120) 내부에 바이오 센서칩(500)을 수용하고, 상기 센서칩(500)의 감지 정보를 외부 진단기기(200)로 전달하기 위한 회로 기판(150)을 수용하도록 제공된다.
이하에서는 도 10 내지 도 13을 참고하여 본 실시예의 바이오 센서칩(500)에 대하여 설명한다.
도 10은 도 6 및 도 8에 적용가능한 센서칩(500)의 일 예의 상면도이고, 도 11은 도 10의 센서칩(500)을 Ⅳ-Ⅳ'으로 절단한 단면도이고, 도 12a 및 도 12b는 도 11의 센서칩(500)의 타겟 물질에 따른 반응을 나타내는 도식도이며, 도 13은 도 12a 및 도 12b에 의한 센서칩(500)의 출력 전류 변화를 나타내는 그래프이다.
상기 바이오 센서칩(500)은 바이오 센서 카트리지(100)의 수용부(119)에 의해 내부로 유입된 분석 시료로부터 타겟 물질을 감지하고, 감지된 타겟 물질과 반응하여 발생된 전기적인 신호를 전극 패드(511)를 통해 회로 기판(150)의 패드(158)로 전달한다.
일 예로, 상기 시료는 생체 물질로서 타액, 땀을 포함하는 체액, 혈액, 혈청 또는 혈장에 의해 희석된 용액 등을 의미할 수 있다.
상기 바이오 센서칩(500)은 반도체 기반 센서칩(500)으로서, 그래핀이 적용된 바이오 센서칩(500)으로 제조 가능하다.
상기 센서칩(500)은 타겟 물질의 종류, 타겟 물질의 수효, 상기 카트리지(100)의 크기에 따라 다양한 크기를 가질 수 있으며, 일 예로 6*6mm 또는 6*8mm의 크기로 디자인될 수 있다.
도 10 및 도 11을 참고하면, 본 실시예에 따른 바이오 센서칩(500)은 사각형 형상의 평면을 가지며, 전면에 수용부(119)를 통해 외부로 노출되는 센서 영역(540)이 형성되고, 상기 센서 영역(540)과 이격되어 연결부재(140)를 통해 회로 기판(150)의 패드(158)과 연결되는 패드 영역(510) 및 상기 센서 영역(540)과 패드 영역(510)을 연결하는 연결부(530)로 구획될 수 있다.
상기 센서 영역(540)은 접촉된 분석 시료로부터 타겟 물질을 감지하고, 타겟 물질과 반응하여 전기적인 신호를 발생시키는 감지 물질, 예를 들어 항원, 항체, 효소 등이 부착되어 있다.
센서 영역은 분석 시료와 접촉하게 될 경우, 분석 시료에 포함된 타겟 물질과 상호 반응하여 전기적인 신호를 발생시킨다. 따라서, 바이오 센서(100)와 연결된 외부의 진단기기(200)는 바이오 센서(100)에서 발생되는 전기적인 신호를 분석하여 타겟 물질의 존재 또는 농도 등을 검출할 수 있다.
상기 센서 영역(540)은 트랜지스터 구조를 포함하며, 상기 트랜지스터의 채널 영역(550)에 감지 물질이 부착되어 있는 구조를 가진다.
구체적으로, 상기 센서 영역(540)은 동심원을 이루는 원형 또는 링형의 복수의 전극(535S, 535D, 535G)을 포함하며, 상기 복수의 전극(535S, 535D, 535G) 사이, 특히 소스 전극(535S)과 드레인 전극(535D) 사이에 복수의 채널 영역(550)이 형성되어 있다.
반도체 기판(530) 위에 절연층(532)이 형성되어 있으며, 절연층(532)은 산화물 또는 질화물로 형성될 수 있다. 반도체 기판(530)이 실리콘 기판인 경우, 절연층(532)은 실리콘 산화물 또는 실리콘 질화물로 형성될 수 있으며, 다양한 방법으로 형성 가능하다. 일 예로 열처리를 통해 표면에 실리콘 산화물층이 형성될 수 있다.
상기 절연층(532) 위에 복수의 채널(533)이 서로 이격되도록 형성되어 있다.
복수의 채널(533)은 센서 영역(540)의 원의 중심(O)에서 소정 거리만큼 이격되어 배치되어 있으며, 중심 영역이 노출되어 채널 영역(550)을 이룬다.
상기 복수의 채널(533)은 상기 원의 중심(O)에서 소정 거를 반지름으로 하는 가상의 원주 위에 서로 이격되어 배치된다.
상기 복수의 채널(533)은 동일한 각도만큼 이격되어 배치될 수 있으며, 일 예로 도 10과 같이 7개의 채널(533)이 형성되어 있을 수 있으며, 각 채널(533)은 45도 각도로 이격되어 있을 수 있다.
이와 달리 5개의 채널(533)이 배치되어 각 채널(533)이 60도 각도로 이격되어 있을 수 있다. 그러나, 채널(533)은 임의의 각도로 이격될 수 있다.
하나의 채널(533)은 특정 형상으로 패터닝될 수 있으며, 반도체 물질로 이루어질 수 있으나, 이와 달리 고전도물질로서 반응성이 매우 빠른 그래핀계 물질로 형성될 수 있다.
상기 채널(533)은 소스 전극과 드레인 전극(535S, 535D)과 중첩되는 영역과 두 중첩되는 영역 사이에 수용부(119)를 통해 외부로 노출되어 있는 채널 영역(550)을 포함한다.
상기 채널 영역(550)은 도 10과 같이 중첩되는 영역보다 좁은 폭을 갖도록 채널(533)이 I자 형태로 형성되어 채널 영역(550)에서 더 낮은 저항을 가질 수 있으나, 이에 한정되지 않고, 중첩 영역으로부터 채널(533)까지 동일한 폭을 갖도록 바 타입(Bar type)으로 형성될 수 있다.
상기 센서 영역(540)의 원의 중심(O) 위에 가장 작은 원의 형상을 가지는 소스 전극(535S)이 형성될 수 있다. 소스 전극(535S)은 직경이 가장 작은 원으로 형성될 수 있으며, 채널(533)의 일단과 중첩되도록 형성되고, 복수의 채널(533)과 동시에 중첩되어 복수의 채널(533)로 소스 전압을 동시 전달한다.
상기 채널 영역(550)의 외부로 상기 소스 전극(535S)과 이격하여 드레인 전극(535D)이 형성될 수 있다.
상기 드레인 전극(535D)은 링 형상으로 형성될 수 있으며, 채널 영역(550)을 둘러싸며 채널 영역(550)보다 더 큰 직경을 가지는 가상의 원의 원주를 따라 형성된다.
드레인 전극(535D) 또한 복수의 채널(533)과 동시에 중첩되어 복수의 채널(533)로부터 전류를 동시에 전달받을 수 있다.
상기 드레인 전극(535D)의 일단은 절단되어 소스 전극(535D)의 연결부(521)가 지나가는 통로를 형성한다.
상기 드레인 전극(535D)을 둘러싸는 더 큰 직경을 가지는 가상의 원의 원주를 따라 게이트 전극(535G)이 형성된다.
상기 게이트 전극(535G)은 가장 넓은 면적을 가지며 상기 센서 영역(540)의 1/2 내지 2/3 의 면적을 차지할 수 있다. 상기 게이트 전극(535G)은 소스 전극, 게이트 전극(535S, 535D) 및 채널 영역(550)과 이격된 상태로 형성된다.
상기 게이트 전극(535G)도 드레인 전극 및 소스 전극(535S, 535D)의 연결부(521)가 패드(511)와 연결되도록 통로를 형성하며 일 단이 단절되어 있다.
도 10과 같이 디자인되어 있는 센서 영역(540)의 전극(535S, 535D, 535G)은 동일 층으로 형성된다.
따라서, 소스 전극, 드레인 전극 및 게이트 전극(535S, 535D, 535G)이 모두 동일 층으로 형성되어 한 공정으로 형성된다.
일 예로, 전극층을 형성하고, 해당 전극층을 동시 패터닝하여 소스 전극, 드레인 전극 및 게이트 전극(535S, 535D, 535G)을 각각 형성할 수 있다.
이와 같이 서로 중첩되지 않는 세 전극(535S, 535D, 535G)을 동시 형성하여 공정 단계를 줄이고 공정 시간 및 비용을 절감할 수 있다.
상기 금속층으로는 Ni, Zn, Pd, Ag, Cd, Pt, Ga, In 및 Au 중 적어도 하나로 이루어질 수 있으나, 이에 제한되는 것은 아니다.
상기 전극(535S, 535D, 535G) 위에 패시베이션층(536)이 형성되어 있다.
상기 패시베이션층(536)은 상기 센서칩(500) 전체에 형성되어 센서 영역(540)과 전극(535S, 535D, 535G)을 보호한다.
상기 패시베이션층(536)은 습기에 강한 물질로 형성될 수 있으며, 일 예로 산화층, 질화층 또는 탄화물층으로 형성될 수 있다.
또한, 패시베이션층(536)은 고분자 수지로 적용 가능하나 이에 한정되지 않는다.
상기 패시베이션층(536)은 센서칩(500) 내에서 복수의 채널 영역(550), 게이트 전극(540), 복수의 패드(511) 만을 노출하며 나머지 영역을 모두 커버한다. 구체적으로, 도 8에 도시된 바와 같이, 소스 전극(535S)은 소스 패드(511S)에 전기적으로 연결되고, 드레인 전극(535D)은 드레인 패드(511D)에 전기적으로 연결되며, 게이트 전극(535G)은 게이트 패드(511G)에 연결된다.
따라서, 패시베이션층(536)에 의해 노출되는 영역은 매우 한정적이다.
특히, 센서 영역(540)에서는 게이트 전극(535G)과 채널 영역(550)만이 노출되어 시료와 직접 접촉함으로써 반응을 유도할 수 있다.
패드 영역(510)에서는 각 패드(511)가 서로 절연된 상태로 노출되어 상부의 연결 부재(140)를 통해 회로 기판(150)의 각 패드(158)와 전기적으로 접촉한다.
이와 같이 노출된 각각의 채널 영역(550)에 도 12a와 같이 감지 물질(610)이 부착되어 센서가 활성화된다.
상기 감지 물질(610)은 상기 센서가 감지하고자 하는 타겟 물질에 특이 반응하는 물질로서, 타겟 물질이 항원인 경우, 항체, 타겟 물질이 항체인 경우 항원이 부착되어 있을 수 있다.
상기 채널(533)이 그래핀으로 형성되어 있는 경우, 감지 물질(610)과 그래핀 사이의 원활한 연결을 위해 링커 물질(도시하지 않음)이 부착되어 있을 수 있으며, 그래핀 위에 링커 물질을 부착한 후 상기 감지 물질(610)을 부착하는 공정을 활성화 공정으로 정의한다.
상기 링커 물질은 채널(533)을 이루는 물질과 감지 물질(610)에 따라 상이하며, 그래핀의 경우, 나노 크기를 가지는 폴리머 구조물일 수 있으며, 일 예로 폴리우레탄, 폴리디메틸실록산, NOA(Norland Optical Adhesives), 에폭시, 폴리에틸렌 테레프타레이트, 폴리메칠메타크릴레이트, 폴리이미드, 폴리스티렌, 폴리에틸렌 나프타레이트, 폴리카보네이트 및 이들의 조합 중 적어도 하나로 이루어질 수 있다.
또한, 링커 물질은 폴리우레탄과 NOA(예컨대, NOA 68)의 조합으로 이루어질 수도 있다. 그러나, 링커 물질은 이에 제한되는 것은 아니며, 유연성을 갖는 다양한 고분자로 이루어질 수 있다.
도 12a 및 도 12b를 참고하면 센서칩(500)의 반응에 따른 전기적 감지 신호를 설명할 수 있다.
도 12a와 같이 시료에 타겟 물질이 존재하지 않는 경우, 각 패드(511)에 인가되는 전압에 의해 소스 전극(535S)은 소스 전압을 인가받고, 게이트 전극(535G)은 게이트 전압을 인가받는다.
상기 게이트 전극(535G)은 수용부(119)에 노출되어 외부에서 제공되는 시료와 맞닿음으로써 상기 시료에 바이어스 전압을 인가한다. 따라서, 상기 시료는 게이트 전극(535G)의 전압에 대하여 일부 대전된 상태로 존재한다.
이때, 드레인 전극(535D)로부터 읽어들이는 드레인 전류(IDS)는 도 13과 같다.
즉, 시료(600) 내에 감지 물질(610)과 반응하는 타겟 물질이 없는 경우, 드레인 전류(IDS)는 제1 값(I1)을 가지며, 이는 기준 전류으로 정의된다.
이때, 도 12b와 같이, 시료(600)에 타겟 물질(650)이 존재하는 경우, 타겟 물질(650)과 감지 물질(610)이 반응함으로써 채널(533)이 특정 캐리어로 대전된다. 일 예로, 도 12b와 같이 채널(533)에 전하가 축적되는 공핍 상태가 진행될 수 있다.
이에 따라 드레인 전극(535D)에서 읽혀지는 드레인 전류(IDS)가 커짐으로써 도 13의 제2 값(I2)을 가진다.
이때, 축적되는 전하의 양은 채널(533)의 면적에 비례하므로 채널(533)의 수효가 1개인 경우, 드레인 전류(IDS)가 제2 값(I2)을 가지면, 채널(533)의 수효가 2개 이상인 경우, 제2 값(I2)보다 더 큰 제3 값(I3)을 갖게 된다. 따라서, 드레인 전극(535D)에서 읽히는 드레인 전류(IDS)의 값이 증폭되는 효과를 가진다.
이때, 복수의 채널(533)이 서로 이격되어 있음으로써 하나의 채널(533)이 동작하지 않는 경우에도 다른 채널(533)에서 드레인 전류(IDS)의 승강을 유발함으로써 타겟 물질의 존재를 인식할 수 있다.
이와 같이, 그래핀 채널 센서칩(500)에서 채널을 서로 이격된 복수의 채널을 가지는 멀티채널 구조를 가짐으로써 드레인 전류를 증폭하고, 오작동하는 채널을 보완할 수 있는 효과를 가진다.
이와 같은 센서칩(500)은 게이트 전극(535G)의 원주보다 큰 원을 가지는 수용부(119)의 끝단 개구에 의해 게이트 전극(535G)과 채널 영역(550)이 모두 노출될 수 있다.
또한, 복수의 채널 영역(550)이 수용부(119)에 의해 개방되는 센서 영역(540)의 중심(O)으로부터 동일한 거리에서 동일한 각도로 이격되어 형성됨으로써 시료가 균일하게 접촉하게 되며, 소스 드레인 전극(535S, 535D) 사이에 채널(533) 배치를 위해 소스 드레인 전극(535S, 535D)을 둘러싸는 형상으로 형성함으로써 구조를 최적화할 수 있다.
도 10에서는 각 전극(535S, 535D, 535G)의 일단으로부터 패드(511)까지 연결되는 전극 연결부(521)를 각각 포함하며 각 전극 연결부(521)는 전극(535S, 535D, 535G)과 동일 금속층으로 형성되므로 서로 중첩되지 않는다.
도 10에서는 패드(511)가 센서칩(500)의 일단에 일렬로 형성되는 것으로 도시하였으나 이에 한정되지 않는다.
센서칩(500)의 설계는 수용부(119) 내에 게이트 전극(535G)과 복수의 채널(533)이 노출되는 트랜지스터를 유지하는한 다양하게 변경 가능하다.
이에 따라 패드(511)의 위치 또한 다양하게 변경 가능하다. 다만 패드(511)의 위치 변화에 따라 연결 부재(140)와 회로 기판(150)의 접속 패드(158)의 위치 또한 변경된다.
이와 같이, 그래핀 기반 멀티 채널 센서칩(500)을 수용하는 바이오 센서 카트리지(100)와 이와 결합하는 바이오 센서 진단기기(200)는 하나의 바이오 센서 시스템 환경을 형성한다.
이때, 상기 바이오 센서 진단기기(200) 및 바이오 센서 카트리지(100)는 바이오 센서 카트리지(100)의 접속단자(153)를 바이오 센서 진단기기(200)의 카트리지 삽입모듈(2911)의 삽입홀(2914)에 삽입함으로써 진단과 센서 인증을 동시 진행한다.
이하에서는 도 14 내지 도 17을 참고하여 본 실시예의 진단 방법을 설명한다.
도 14는 도 1의 바이오 센서 시스템에서 바이오 센서 카트리지(100)가 바이오 센서 진단기기(200)와 결합되는 결합도이고, 도 15는 도 14의 결합도에서 Ⅴ-Ⅴ'를 따라 절단한 단면 사시도이며, 도 16은 도 15의 절단면을 정면으로 바라본 단면정면도이다.
도 14 내지 도 16을 참고하면, 본 실시예에 따른 바이오 센서 시스템 내에서 상기 바이오 센서 카트리지(100)의 수용부(119)에 검체 대상인 시료가 수용되면, 상기 바이오 센서 카트리지(100)의 접속단자(153)를 바이오 센서 진단기기(200)의 카트리지 삽입 모듈(2911)의 삽입홀(2914)에 인입한다.
상기 시료는 앞서 설명한 바와 같이, 타액, 땀 등의 체액이나 혈액 등일 수 있다.
삽입홀(2914)이 복수개 배치되어 있는 경우, 상기 접속단자(153)의 타입과 매칭되는 타입의 삽입홀(2914)에 상기 접속단자(153)가 인입된다.
이와 같은 카트리지 접속단자(153)의 인입은 카트리지 접속단자(153)가 usb 단자와 유사한 바, usb 메모리 삽입과 동일하게 진행될 수 있다.
이와 같이 바이오 센서 카트리지(100)와 상기 바이오 센서 진단기기(200)가 분석을 위해 결합되면, 도 14 내지 도 16과 같은 상태가 유지된다.
즉, 검사 대상인 시료가 수용된 수용부(119)는 진단기기(200)의 외부에 위치하고, 접속단자(153)만이 삽입홀(2914)을 통해 진단기기(200) 내로 진입되어 있는 상태에서 전기적 신호를 전달한다.
도 15를 참고하면, 진단기기(200)와 카트리지(100)가 결합한 상태에서는, 카트리지(100)는 전면 패널(291)로부터 소정 거리 이격된 상태일 수 있으나, 이와 달리 전면 패널(291)과 맞닿아 있을 수 있다.
이때, 상기 카트리지(100)의 하부 하우징(120)의 하면(129)이 상기 전면 패널(291)에 대향하며, 상기 하부 하우징(120)의 하면(129)에 부착되어 있는 QR 라벨(160)이 전면 패널(291)의 QR 개구부(293)와 정렬한다.
상기 QR 개구부(293)는 도광로를 통해 아래 배치되어 있는 QR 리딩 모듈(271)과 정렬하며, 상기 QR 리딩 모듈(271)은 도 16과 같이 케이스 내에 QR 카메라 모듈(272) 및 적어도 하나의 광원 모듈(273)을 포함한다. 2개의 광원 모듈(273)이 제공될 수 있으며, QR 카메라 모듈(272)은 2개의 광원 모듈(273) 사이에 배치된다. 그러나, 각각의 광원 모듈(273)이 QR 개구부(293)를 향하도록 2개 이상의 광원 모듈(273)이 제공될 수도 있다. .
상기 QR 리딩 모듈(271)은 상기 도광로(2912)의 하부에 배치되며, 도광로(2912)의 상부인 제2 개구부(293)를 향하여 QR 카메라 모듈(272)과 적어도 하나의 광원 모듈(273)이 배치되어 있다.
이때, 제2 개구부(293)의 중심선과 정렬하여 QR 카메라 모듈인 QR 리더기(272)가 배치되어 있으며 적어도 하나의 광원 모듈(273)이 QR 리더기(272)의 주변으로 배치되어 있다.
광원 모듈(273)이 복수개로 배치되는 경우, QR 리더기(272)를 중심으로 동일 거리를 유지하며 복수개의 광원 모듈(273)이 이격하여 배치될 수 있다. 이때, 광원 모듈(273)은 LED 모듈이 적용될 수 있으나, 이에 한정되는 것은 아니다.
상기 도광로(2912)는 QR 리딩 모듈(271)에 근접할수록 직경이 좁아지는 경사면을 가질 수 있으며, QR 리딩 모듈(271)과 근접한 개구가 가장 작은 직경을 가지며, 전면 패널(291) 상면의 제2 개구부(293)의 직경이 가장 큰 값을 가진다. 따라서, 전면 패널(291)의 상면에서 바라볼 때, QR 리딩 모듈(271)로 직경이 수렴하는 도광로(2912)가 형성되어 있다.
상기 도광로(2912)의 상기 경사면에 도 16과 같이 도광판(2931)이 배치되어 있을 수 있다. 따라서, 전면 패널(291)의 상면에서 바라볼 때, QR 리딩 모듈(271)로 직경이 수렴하는 도광판(2931)으로 둘러싸인 터널 구조가 제공된다.
이와 같이 형성되는 도광판(2931)은 하부에서 방사되는 광원 모듈(273)의 빛을 수집하고 상부로 전달함으로써 QR 리더기(272)가 카트리지(100)의 QR 라벨(160)의 코드를 읽을 때, 부족한 빛을 제공할 수 있으며, QR 라벨(160)을 향해 직선광을 방출하는 점광원인 광원 모듈(273)로부터의 빛을 확장시킴으로써 균일한 광을 제공하는 조명부로서 기능한다.
이때, QR 리딩 모듈(271)의 상면은 도 16과 같이 보호 시트(2552)가 부착되어 있을 수 있으며, 상기 보호 시트(2552)에 의해 하부의 QR 리더기(272)가 외부의 이물질이나 먼지에 의해 오염되는 것을 방지할 수 있다. 즉, 보호 시트(2552)는 QR 리더기(272) 상에 직접 배치될 수 있다.
이와 같이, QR 라벨(160)이 부착되어 있는 카트리지(100)가 진단기기(200)에 삽입되면, 진단기기(200)는 접속단자(153)를 통해 진단을 수행하기 전 인입되어 있는 바이오 센서 카트리지(100)의 정품 인증을 수행한다.
이하에서는 바이오 센서 시스템에서 바이오 센서 카트리지(100)의 삽입에 따른 바이오 센서 진단기기(200)의 진단 및 카트리지 인증 방법을 설명한다.
도 17은 도 1의 바이오 센서 시스템에서 바이오 센서 카트리지(100)의 삽입에 따른 바이오 센서 진단기기(200)의 동작을 설명하는 순서도이다.
앞서 설명한 바와 같이, 바이오 센서 카트리지(100)의 하면 즉 외부로 노출되는 카트리지(100)의 하면(129)에는 상기 바이오 센서 카트리지(100)의 정품 인증을 위한 제품 ID 및 제조 시리얼 번호 등을 포함하는 센서 정보가 저장되어 있는 QR 라벨(160)이 부착되어 있다.
상기 바이오 센서 카트리지(100)가 바이오 센서 진단기기(200)의 삽입 모듈(2911)에 인입되면, 바이오 센서 진단기기(200)는 바이오 센서 카트리지(100)의 접속단자(153)가 삽입홀(2914)에 인입되어 결합됨을 인지하고, 카트리지 감지 신호를 연산부(250)로 전송한다(S10).
상기 연산부(250)는 바이오 센서 진단기기(200)의 전체 모듈을 제어하는 프로세서로서 기능하며, 카트리지 감시 신호가 카트리지 삽입 모듈(2911)로부터 전송되면 상기 연산부(250)는 QR 리딩 모듈(271)로 동작 명령을 전송한다(S20).
상기 QR 리딩 모듈(271)의 QR 리더기(272) 및 광원 모듈(273)이 턴온되어 도광판(2931)을 통해 전면 패널(291)의 상부로 빛을 전송하면서 QR 리더기(272)의 카메라가 QR 개구부(293) 상의 카트리지(100) 하면(129)의 QR 라벨(160)의 QR 코드를 읽어들인다.
QR 리더기(273)에서 읽어들이는 QR 정보를 연산부(250)로 전송한다.
상기 연산부(250)는 QR 정보를 복호화하여 QR 정보로 저장되어 있는 센서 정보를 추출한다. 이때, 센서 정보는 , 링커 정보, 타겟 물질 정보, 제품 ID, 센서칩 ID, 판매사 정보, 제조사 정보, 제조 일자, 조립 일자, 검사 일자 등을 포함할 수 있다.
연산부(250)는 무선통신모듈(261)을 통해 연결가능한 적어도 하나의 클라우드 서버(400)로 상기 바이오 센서 카트리지(100)의 인증 요청을 전송한다(S30).
연산부(250)는 연결가능한 복수의 클라우드 서버(400) 중 우선 순위가 높은 최우선 클라우드 서버(400)로 인증 요청을 먼저 전송하고, 소정 기간 동안 인증 응답을 대기한다.
이때, 우선 순위는 각각의 진단기기(200)마다 설정가능하며, 판매자 서버를 최우선으로 설정할 수 있으며, 상기 판매자 서버가 복수의 지역으로 분할배치되어 있는 경우, 상기 진단기기(200)와의 거리 또는 응답 시간에 따라 설정 가능하다. 이때, 최우선 클라우드 서버(400)로부터 소정 기간 내에 인증 응답이 수신되지 않으면, 차순위 클라우드 서버(400)로 다시 인증 요청을 전송할 수 있다.
이와 같이, 연산부(250)는 복수의 클라우드 서버(400)에 대하여 우선 순위의 클라우드 서버(400)로 인증 요청을 전송하고, 소정 대기 기간 내에 인증 응답이 수신되지 않으면 다름 순위의 클라우드 서버(400)로 인증 요청을 전송하는 방식을 적용하여 복수의 클라우드 서버(400)에서 동시에 인증 응답 및 인증을 진행하는 것을 방지할 수 있다.
상기 연산부(250)는 하나의 클라우드 서버(400)에서 인증 응답이 수신되면, 인증 요청을 중단하고, 응답이 수신된 클라우드 서버(400)와 송수신하면서 해당 카트리지의 정품 인증을 수신한다(S50).
즉, 인증 응답을 전송한 클라우드 서버(400)로 상기 연산부(250)는 QR 정보를 모두 전송하고, 클라우드 서버(400)는 상기 QR 정보를 제조사 서버의 정보와 비교하여 상기 카트리지에 대한 인증을 수행한다.
연산부(250)는 상기 클라우드 서버(400)로부터 현재 삽입된 바이오 센서 카트리지(100)가 정품인지에 대한 인증 결과를 수신한다.
상기 바이오 센서 카트리지(100)가 정품인 경우, 상기 클라우드 서버(400)로부터 보정 데이터를 다운로드하고(S60), 카트리지 삽입 모듈(2911)을 구동하여 센서 제어부(240), 신호변환증폭부(210) 및 여과부(220)로부터 카트리지 접속단자(153)의 감지 신호를 읽어들인다.
이때, 센서 제어부(260)를 통해 카트리지(100)로 게이트 전압과 소스 전압을 전송하고, 그에 따라 가변되는 드레인 전류를 신호변환증폭부(210)에서 읽어들인다.
이와 같이 읽어들인 드레인 전류 값은 증폭하고 노이즈 제거한 후, 디지털화하여 연산부(250)로 전달된다.
상기 전송된 디지털화된 감지 신호인 드레인 전류 값을 저장되어 있는 알고리즘을 실행하여 해당 감지 신호를 해독함으로써 현재 카트리지(100)에 수용되어 있는 시료 내에 타겟 물질이 존재하는지 여부를 판독한다.
이때, 연산부(250)는 정품 인증 후 클라우드 서버(400)로부터 해당 카트리지에 대한 보정 데이터를 다운로드하고, 그에 따라 해당 알고리즘을 업그레이드함으로써 누적된 동종의 카트리지 결과에 대한 최적화된 알고리즘을 분석에 적용할 수 있다.
연산부(250)는 업그레이드된 알고리즘을 수행하여 감지 신호를 판독하고 그 결과를 디스플레이 모듈(295)로 전달하여 시각화한다(S70).
또한, 해당 판독 결과를 클라우드 서버(400)에 전송하고, 연결되어 있는 사용자 단말(300)에 전송하여 지정된 사용자 단말(300)로부터 사용자에게 알람할 수 있도록 동작할 수 있다.
한편, 해당 카트리지(100)가 정품이 아닌 경우, 동작을 정지하고, 디스플레이 모듈(295)을 통해 현재 인입되어 있는 카트리지(100)가 가품임을 알림한다.
바이오 센서는 가품인지 여부를 확인하기 용이하지 않고, 진품이라 할지라도 센서의 오류가 제조 및 판매 이후에 누적된 검사 데이터로부터 발견되는 경우가 많아 검사 진행 이전에 오류가 발생한 바이오 센서 카트리지(100)를 분류하는 과정이 요구된다.
본 실시예의 바이오 센서 시스템은 이와 같은 인증 절차를 통해 현재 해당 종류의 바이오 센서 카트리지(100)에 대한 위험을 포함하는 오류에 대한 확인을 수행할 수 있다.
또한, 카트리지(100) 삽입과 동시에 정품 인증이 수행됨으로써, 별도의 QR 리더기를 활용하여 인증을 수행한 후, 정품 인증된 카트리지를 진단기기(200)에 적용하여 진단을 하는 2 단계의 동작이 하나의 동작으로 융합될 수 있다. 따라서, 사용자의 편의성이 증대되며, 카트리지의 정품 인증과 카트리지의 진단이 거의 동시에 이루어지고, 카트리지가 삽입된 상태에서 진행되므로 해당 카트리지의 진단 결과와 카트리지의 정보가 혼합되지 않고, 명확하게 매칭될 수 있다.
본 명세서에 기술된 다양한 실시예는 예를 들어 소프트웨어, 하드웨어 또는 이들의 일부 조합을 사용하여 컴퓨터 판독 가능 매체로 구현될 수 있다. 예를 들어, 본 명세서에 기술된 실시예는 ASIC(Application Specific Integrated Circuits), DSP(Digital Signal Processor), DSPD(Digital Signal Processing Device), PLD(Programmable Logic Device), FPGA (Field Programmable Gate Array) 프로세서, 컨트롤러, 마이크로컨트롤러, 마이크로프로세서, 여기에 설명된 기능을 수행하도록 설계된 기타 전자 장치 또는 이들의 선택적인 조합 중 하나 이상 내에서 구현될 수 있다. 일부 경우에, 이러한 실시예는 컨트롤러에 의해 구현된다. 예를 들어, 컨트롤러는 설명된 기능을 수행하기 위한 적절한 알고리즘(예: 순서도)을 실행하는 하드웨어 내장형 프로세서이므로 충분한 구조를 가지고 있다. 또한, 절차 및 기능 등의 실시예는 각각의 기능 및 동작 중 적어도 하나를 수행하는 별도의 소프트웨어 모듈과 함께 구현될 수 있다. 소프트웨어 코드는 적절한 프로그래밍 언어로 작성된 소프트웨어 애플리케이션으로 구현될 수 있다. 또한 소프트웨어 코드는 메모리에 저장되고 컨트롤러에 의해 실행될 수 있으므로 컨트롤러는 설명된 기능 및 알고리즘을 수행하도록 특별히 구성된 일종의 특수 목적 컨트롤러가 된다. 따라서, 도면에 도시된 컴포넌트는 기술된 기능을 수행하기 위한 적절한 알고리즘을 구현하기에 충분한 구조를 갖는다.
본 발명은 본 명세서에서 논의된 각각의 실시예 및 실시예에 대한 다양한 변형을 포함한다. 본 발명에 따르면, 하나의 실시예 또는 예시에서 상술한 적어도 하나 이상의 특징들은 상술한 다른 실시예 또는 예시에도 동일하게 적용될 수 있다. 전술한 하나 이상의 실시예 또는 예시의 특징은 전술한 실시예 또는 예시 각각에 결합될 수 있다. 본 발명의 하나 이상의 실시예 또는 실시예의 전체 또는 부분 조합도 본 발명의 일부이다.
[부호의 설명]
100: 바이오 센서 카트리지
200: 바이오 센서 진단기기
400: 클라우드 서버
500: 센서칩

Claims (20)

  1. 외부의 진단기기와 전기적으로 연결되며, 접속단자를 포함하는 회로기판;
    적용된 분석 시료로부터 타겟 물질을 감지하고, 상기 감지된 타겟 물질과 반응하여 발생된 전기적인 신호를 상기 회로기판의 상기 접속 단자로 전송하는 센서칩;
    상기 회로기판과 상기 센서칩을 수용하며 상기 접속 단자를 노출되도록 상기회로기판과 상기 센서칩을 둘러싸는 하우징
    을 포함하며,
    상기 하우징은 일 면에 센서 정보를 암호화하여 저장하고 있는 QR 코드를 포함하는 바이오 센서 카트리지.
  2. 제1항에 있어서,
    상기 접속 단자는 상기 하우징의 일 측면으로부터 돌출되어 형성되며,
    상기 QR 코드는 상기 하우징의 하면에 부착되어 있는 바이오 센서 카트리지.
  3. 제1항에 있어서,
    상기 센서칩은
    상기 타겟 물질과 반응하는 반응 물질이 부착되어 있는 채널이 형성되어 있는 센서 영역; 및
    상기 센서 영역으로부터 전달되는 전기적 신호를 상기 회로 기판에 전송하는 패드 영역
    을 포함하는 바이오 센서 카트리지.
  4. 제3항에 있어서, 상기 센서 영역은
    기판,
    상기 기판 위에 상기 채널이 적어도 하나 형성되어 있는 채널 영역,
    적어도 하나의 상기 채널에 의해 서로 이격하여 형성되어 있는 소스 전극 및 드레인 전극,
    상기 소스 전극 및 드레인 전극과 이격되며, 상기 분석 시료에 바이어스 전압을 인가하는 게이트 전극, 및
    상기 소스 전극, 상기 드레인 전극 및 상기 게이트 전극 위에 형성되는 패시베이션층
    을 포함하는 바이오 센서 카트리지.
  5. 제4항에 있어서,
    상기 하우징은 상면으로부터 함몰되는 경사면을 가지는 홀 형태의 수용부를 가지고, 상기 수용부는 내부의 상기 센서칩의 상기 센서 영역을 개방하며 외부로부터 상기 시료를 수용하는 바이오 센서 카트리지.
  6. 제1항에 있어서,
    상기 QR 코드로 암호화되어 있는 상기 센서 정보는 상기 센서칩 종류, 링커 정보, 감지 물질 정보, 제품 ID, 기판 ID, 제조사 정보 중 적어도 하나를 포함하는 바이오 센서 카트리지.
  7. 적용된 시료 내의 타겟 물질에 따라 전기적인 감지 신호를 발생하는 바이오 센서 카트리지의 진단기기에 있어서,
    상기 진단기기는,
    내부 공간에 적어도 하나의 기능 모듈을 실장하는 메인 보드;
    상기 메인 보드를 수용하는 커버부재;
    상기 커버부재의 상면을 덮으며, 디스플레이 영역을 제공하고, 적어도 하나의 상기 바이오 센서 카트리지의 삽입홀을 포함하는 전면 패널; 및
    상기 메인 보드에 실장되며, 상기 삽입홀로부터 상기 바이오 센서 카트리지로부터의 감지 신호를 분석하여 상기 타겟 물질의 유무를 상기 디스플레이 영역에 표시하는 제어 모듈; 및
    상기 삽입홀 전단에 위치하며, 상기 바이오 센서 카트리지의 QR 코드를 읽는 QR 리딩 모듈
    을 포함하는 바이오 센서 진단기기.
  8. 제7항에 있어서,
    상기 제어 모듈은 네트워크를 통해 서버와 통신하여, 상기 삽입홀에 삽입되어 있는 상기 바이오 센서 카트리지의 정품 여부를 인증하는 바이오 센서 진단기기.
  9. 제8항에 있어서,
    상기 제어 모듈은 상기 QR 리딩 모듈로부터 상기 QR 코드에 대한 센서 정보를 수득하고, 상기 센서 정보를 기초로 상기 서버와 정품 인증을 수행하는 바이오 센서 진단기기.
  10. 제9항에 있어서,
    상기 제어 모듈은 복수의 서버 중 최선순위 서버로 인증 요청을 전송하고, 소정 기간 내에 응답이 수신되지 않으면, 차순위 서버로 상기 인증 요청을 전송하는 바이오 센서 진단기기.
  11. 제10항에 있어서,
    상기 제어 모듈은 상기 바이오 센서 카트리지가 정품으로 인증되면, 상기 바이오 센서 카트리지로부터 상기 감지 신호를 읽어들여 상기 타겟 물질의 존재 여부를 판독하는 바이오 센서 진단기기.
  12. 제11항에 있어서,
    상기 제어 모듈은 정품 인증이 완료되면 상기 바이오 센서 카트리지에 대한 판독 보정 데이터를 상기 서버로부터 수신하고, 상기 판독 보정 데이터에 의해 판독 알고리즘을 업데이트하는 바이오 센서 진단기기.
  13. 제7항에 있어서,
    상기 QR 리딩 모듈은 상기 QR 코드를 촬영하는 QR 리더기 및 상기 QR 리더기 주위에 배치되며 상기 전면 패널의 상기 개구를 향해 빛을 조사하는 적어도 하나의 광원 모듈을 포함하는 바이오 센서 진단기기.
  14. 제13항에 있어서,
    상기 전면 패널은 상기 광원 모듈로부터 상기 QR 리딩 모듈까지 빛이 전달되는 도광로를 포함하며, 상기 도광로는 상기 전면 패널의 상기 개구로부터 폭이 좁아지는 경사면을 포함하고,
    상기 도광부의 경사면에 배치되어 상기 광원 모듈로부터의 빛을 면광원으로 변환하여 상기 전면 패널의 상부로 전달하는 도광판을 더 포함하는 바이오 센서 진단기기.
  15. 제7항에 있어서,
    상기 제어 모듈은 상기 삽입홀에 인입되어 있는 상기 바이오 센서 카트리지에 대한 센서 정보와 상기 바이오 센서 카트리지의 판독 결과를 매칭하여 저장하는 바이오 센서 진단기기.
  16. 제15항에 있어서,
    상기 바이오 센서 진단기기는
    상기 복수의 기능 모듈 중 적어도 하나에 전원을 제공하는 배터리를 더 포함하며, 상기 바이오 센서 진단기기는 휴대 가능한 일체화된 장치로 제공되는 바이오 센서 진단기기.
  17. 경사진 원추형 채널의 수용부를 포함하는 상부 하우징;
    칩 영역을 포함하는 하부 하우징;
    상기 하부 하우징의 상기 칩 영역에 배치되며, 진단 기기와 연결하기 위한 연결 단자를 포함하는 회로 기판; 및
    상기 수용부에 중첩되며, 전극조립체 및 반응물을 포함하는 센서칩
    을 포함하고,
    상기 센서칩은,
    상기 수용부에 적용된 분석 시료로부터 타겟 물질을 검출하고,
    상기 반응물에 의해 검출된 상기 타겟 물질과 반응하여 전극을 통해 흐르는 전류를 변화시키고,
    상기 연결 단자를 통해 전기 신호를 상기 진단 기기로 전송하는 바이오센서 카트리지.
  18. 제17항에 있어서,
    상기 수납부를 둘러싸며 상기 상부 하우징의 상면으로부터 함몰된 가드홈을 더 포함하고,
    상기 수용부는 상기 센서 칩에 인접한 제1 단부에서 상기 제1 단부와 대향하는 제2 단부로 갈수록 넓어지는 폭을 갖는 바이오센서 카트리지.
  19. 제17항에 있어서,
    상기 센서 칩의 상기 전극조립체는,
    소스 전극;
    드레인 전극;
    게이트 전극; 및
    상기 소스 전극, 상기 드레인 전극 및 상기 게이트 전극은 원형인 바이오센서 카트리지.
  20. 제19항에 있어서,
    서로 이격되어 상기 소스 전극 및 상기 드레인 전극과 중첩되며 상기 수용부를 통해 외부로 노출되는 복수의 채널을 더 포함하는 바이오센서 카트리지.
PCT/KR2023/002760 2022-04-19 2023-02-28 바이오 센서 카트리지 및 그를 판독하는 바이오 센서 진단기기 WO2023204429A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0047913 2022-04-19
KR20220047913 2022-04-19
US17/993,833 2022-11-23
US17/993,833 US20230330662A1 (en) 2022-04-19 2022-11-23 Biosensor cartridge and biosensor diagnostic device for reading same

Publications (1)

Publication Number Publication Date
WO2023204429A1 true WO2023204429A1 (ko) 2023-10-26

Family

ID=88308550

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/KR2022/016651 WO2023204366A1 (en) 2022-04-19 2022-10-28 Biosensor chip and biosensor cartridges having the same
PCT/KR2023/001423 WO2023204403A1 (en) 2022-04-19 2023-01-31 Terminal and biosensor system including the same
PCT/KR2023/001417 WO2023204402A1 (en) 2022-04-19 2023-01-31 Biosensor diagnostic device and biosensor system including the same
PCT/KR2023/002760 WO2023204429A1 (ko) 2022-04-19 2023-02-28 바이오 센서 카트리지 및 그를 판독하는 바이오 센서 진단기기
PCT/KR2023/002764 WO2023204431A1 (ko) 2022-04-19 2023-02-28 바이오 센서 카트리지 및 그를 포함하는 바이오 센서 시스템
PCT/KR2023/002765 WO2023204432A1 (ko) 2022-04-19 2023-02-28 바이오 센서 카트리지 및 그를 포함하는 바이오 센서 시스템
PCT/KR2023/002762 WO2023204430A1 (ko) 2022-04-19 2023-02-28 바이오 센서 카트리지 및 그의 검사 장치

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/KR2022/016651 WO2023204366A1 (en) 2022-04-19 2022-10-28 Biosensor chip and biosensor cartridges having the same
PCT/KR2023/001423 WO2023204403A1 (en) 2022-04-19 2023-01-31 Terminal and biosensor system including the same
PCT/KR2023/001417 WO2023204402A1 (en) 2022-04-19 2023-01-31 Biosensor diagnostic device and biosensor system including the same

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/KR2023/002764 WO2023204431A1 (ko) 2022-04-19 2023-02-28 바이오 센서 카트리지 및 그를 포함하는 바이오 센서 시스템
PCT/KR2023/002765 WO2023204432A1 (ko) 2022-04-19 2023-02-28 바이오 센서 카트리지 및 그를 포함하는 바이오 센서 시스템
PCT/KR2023/002762 WO2023204430A1 (ko) 2022-04-19 2023-02-28 바이오 센서 카트리지 및 그의 검사 장치

Country Status (2)

Country Link
US (7) US20230333050A1 (ko)
WO (7) WO2023204366A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117288824B (zh) * 2023-11-23 2024-03-19 有研(广东)新材料技术研究院 一种基于硅纳米线场效应传感器的测试系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149192A (ja) * 2001-08-29 2003-05-21 F Hoffmann La Roche Ag バイオセンサー
KR20100103932A (ko) * 2009-03-16 2010-09-29 영동제약 주식회사 전극을 이용한 질병진단용 바이오센서 및 이의 측정장치
KR20140120138A (ko) * 2013-04-02 2014-10-13 (주)에스팩솔루션 바이오물질 감지용 반도체칩 패키지
KR102030272B1 (ko) * 2018-04-27 2019-10-08 재단법인 구미전자정보기술원 당뇨병 진단을 위한 전기화학 방식의 바이오-마커 검출 방법 및 장치
JP2020126077A (ja) * 2014-12-11 2020-08-20 クリティカル ケア ダイアグノスティクス インコーポレイテッド St2心臓バイオマーカのための検査装置および方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258493A (ja) * 1999-03-08 2000-09-22 Hitachi Ltd 半導体素子検査装置
KR200311804Y1 (ko) * 2003-02-12 2003-05-09 리노공업주식회사 칩 검사용 소켓장치
JP4458077B2 (ja) * 2006-08-21 2010-04-28 ヤマハ株式会社 検査用チップソケット
KR100903946B1 (ko) * 2007-06-15 2009-06-25 주식회사 인포피아 바이오센서
KR101179555B1 (ko) * 2008-12-22 2012-09-05 한국전자통신연구원 바이오 센서 칩
CN104374932A (zh) * 2009-01-13 2015-02-25 Fio公司 与电子设备和快速诊断测试中的测试盒结合使用的手持诊断测试设备
KR101144064B1 (ko) * 2009-12-09 2012-05-23 (주)유 바이오메드 마이크로어레이 칩 및 그의 제조방법
KR101323373B1 (ko) * 2011-07-26 2013-10-29 김수동 뇨, 혈액, 타액, 생체분비물 등의 체액으로 질병을 진단할 수 있는 휴대용 디지털멀티리더기
JP5828734B2 (ja) * 2011-10-07 2015-12-09 株式会社エンプラス 電気部品用ソケット
EP3049810A4 (en) * 2013-09-24 2017-04-26 Apollodx LLC Systems and methods for diagnostic testing
KR101650730B1 (ko) * 2014-07-31 2016-09-06 대윤계기산업 주식회사 칩센서를 이용한 다항목 측정용 스마트폰 측정시스템
KR101645450B1 (ko) * 2014-12-01 2016-08-04 (주)씨투와이드 반도체 칩 검사용 커넥터핀
KR101591379B1 (ko) * 2015-12-02 2016-02-04 경희대학교 산학협력단 바이오 센서
EP3408220A4 (en) * 2016-01-28 2019-09-04 Roswell Biotechnologies, Inc METHOD AND DEVICE FOR MEASURING ANALYTES USING LARGE CALCULAR MOLECULAR ELECTRONIC SENSOR ARRAYS
KR101779705B1 (ko) * 2016-03-16 2017-09-20 한양대학교 산학협력단 사물인터넷기반 신종 감염병 예측 대응 플랫폼 시스템
KR102059811B1 (ko) * 2018-05-31 2019-12-27 주식회사 엑스와이지플랫폼 Rgo 기반의 바이오 센서 및 그 제조 방법, 바이오 물질 검출 방법
GB2583149B (en) * 2019-07-19 2021-03-17 Forsite Diagnostics Ltd Assay reading method
US11648562B2 (en) * 2019-11-01 2023-05-16 International Business Machines Corporation Anonymized diagnosis via lateral flow assays
CA3098079C (en) * 2019-12-13 2023-06-20 Autonomous Medical Devices Inc. Apparatus and method for point-of-care, rapid, field-deployable diagnostic testing of covid-19, viruses, antibodies and markers
JP2023525065A (ja) * 2020-05-06 2023-06-14 タイト ケア リミテッド 遠隔検診システムおよび方法
KR102364451B1 (ko) * 2020-06-05 2022-02-17 국민대학교산학협력단 바이오 센싱 모듈, 바이오 센싱 장치, 및 이를 포함하는 바이오 센싱 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149192A (ja) * 2001-08-29 2003-05-21 F Hoffmann La Roche Ag バイオセンサー
KR20100103932A (ko) * 2009-03-16 2010-09-29 영동제약 주식회사 전극을 이용한 질병진단용 바이오센서 및 이의 측정장치
KR20140120138A (ko) * 2013-04-02 2014-10-13 (주)에스팩솔루션 바이오물질 감지용 반도체칩 패키지
JP2020126077A (ja) * 2014-12-11 2020-08-20 クリティカル ケア ダイアグノスティクス インコーポレイテッド St2心臓バイオマーカのための検査装置および方法
KR102030272B1 (ko) * 2018-04-27 2019-10-08 재단법인 구미전자정보기술원 당뇨병 진단을 위한 전기화학 방식의 바이오-마커 검출 방법 및 장치

Also Published As

Publication number Publication date
WO2023204432A1 (ko) 2023-10-26
WO2023204366A1 (en) 2023-10-26
US20230329679A1 (en) 2023-10-19
US20230333085A1 (en) 2023-10-19
US20230333050A1 (en) 2023-10-19
US20230329573A1 (en) 2023-10-19
WO2023204402A1 (en) 2023-10-26
WO2023204431A1 (ko) 2023-10-26
WO2023204403A1 (en) 2023-10-26
US20230330661A1 (en) 2023-10-19
WO2023204430A1 (ko) 2023-10-26
US20230333100A1 (en) 2023-10-19
US20230330662A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2016072756A1 (en) Method of and apparatus for measuring biometric information
WO2016195236A1 (en) Strip for analysis and apparatus and system using strip for analysis
WO2023204429A1 (ko) 바이오 센서 카트리지 및 그를 판독하는 바이오 센서 진단기기
WO2016153313A1 (en) Wearable electronic device
WO2017155279A1 (ko) 안테나를 포함하는 전자 장치
WO2017105092A1 (en) Electronic device including shield structure
WO2017026682A1 (en) Device and method for executing application
WO2020153826A1 (ko) 전기 주전자
WO2017086719A1 (ko) 혼돈파 센서를 이용한 시료 특성 탐지 장치
WO2016117745A1 (ko) 전자 디바이스 및 그 제어방법
WO2020230952A1 (ko) 통증 모니터링 장치 및 방법
WO2017164717A1 (ko) 센서 모듈 및 이의 동작 방법
EP3273849A1 (en) Wearable electronic device
WO2018034496A1 (ko) 스타일러스 펜, 터치 센싱 시스템, 터치 센싱 콘트롤러 및 터치 센싱 방법
WO2017061722A1 (ko) 이동단말기 및 그 제어방법
WO2016126050A4 (en) Cooking apparatus and touch sensor assembly for cooking apparatus
WO2018139790A1 (ko) 이동 단말기
WO2015084091A1 (ko) 채혈횟수를 최소화한 혈당 측정 시스템 및 그 방법
WO2016186474A1 (ko) 전자 장치 및 전자 장치의 동작 방법
WO2019050212A1 (ko) 지문을 인식하기 방법, 전자 장치 및 저장 매체
WO2018216956A1 (ko) 바이오 센서, 바이오 센서의 제조방법 및 생체신호 측정장치
WO2019088448A1 (ko) 조도를 측정하기 위한 전자 장치 및 그의 동작 방법
WO2020027500A1 (ko) 모듈형 유체 칩 및 이를 포함하는 유체 유동 시스템
WO2011081281A1 (ko) 터치 패널
WO2017171194A1 (ko) 체크 카세트, 측정 장치, 측정 장치용 광원의 광량 보정 시스템, 측정 장치용 광원의 광량 보정 방법 및 기록매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23792010

Country of ref document: EP

Kind code of ref document: A1