WO2023202546A1 - 基于超带宽的感知测量结果反馈方法及装置 - Google Patents

基于超带宽的感知测量结果反馈方法及装置 Download PDF

Info

Publication number
WO2023202546A1
WO2023202546A1 PCT/CN2023/088830 CN2023088830W WO2023202546A1 WO 2023202546 A1 WO2023202546 A1 WO 2023202546A1 CN 2023088830 W CN2023088830 W CN 2023088830W WO 2023202546 A1 WO2023202546 A1 WO 2023202546A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sensing
feedback
control information
measurement results
Prior art date
Application number
PCT/CN2023/088830
Other languages
English (en)
French (fr)
Inventor
彭晓辉
钱彬
李云波
吴宽
杨讯
颜敏
黄磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023202546A1 publication Critical patent/WO2023202546A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds

Definitions

  • the present application relates to the field of communication technology, and in particular to an ultra-bandwidth based sensing measurement result feedback method and device.
  • Ultra-wideband (UWB) technology is a wireless carrier communication technology that can use nanosecond-level non-sinusoidal narrow pulses to transmit data, so it occupies a wide spectrum range. Because its pulses are relatively narrow and the radiation spectrum density is low, UWB has the advantages of strong multipath resolution, low power consumption, and strong confidentiality.
  • UWB pulses can be used for sensing.
  • sensing applications by detecting the echo of UWB signals on the target, information related to the target such as distance, angle or speed can be extracted.
  • the sensing initiator is the transmitter of the UWB signal
  • the sensing responder is the receiving end of the UWB echo signal. If the sensing initiator needs to obtain sensing measurement results, the sensing responder needs to report to the sensing initiator. Feedback perception measurements. For example, the sensing responder can feed back all sensing measurement results to the sensing initiator.
  • This application provides a UWB-based perception measurement result feedback method, which effectively reduces signaling overhead.
  • embodiments of the present application provide an ultra-bandwidth based perception measurement result feedback method.
  • the method includes:
  • Send control information including first control information
  • the first control information is used to indicate a threshold-based feedback method to feedback the sensing measurement results; receive feedback information, the feedback information includes channel impulse response (channel impulse response, CIR) parameter information, the CIR parameter information is obtained by processing the perception measurement result based on the first control information.
  • CIR channel impulse response
  • embodiments of the present application provide an ultra-bandwidth based perception measurement result feedback method.
  • the method includes:
  • Receive control information includes first control information, the first control information is used to indicate a threshold-based feedback method to feedback the sensing measurement results; send feedback information, the feedback information includes channel impulse response CIR parameter information, so The CIR parameter information is obtained by processing the perceptual measurement result based on the first control information.
  • the sending end sends control information to the receiving end, so that the receiving end can process the original CIR parameters based on the control information.
  • the CIR parameter information is obtained based on the threshold-based feedback method, that is, the CIR parameter information is based on The threshold feedback method is obtained.
  • the sensing measurement results such as processing in a threshold-based feedback method
  • the receiving end processes the control information sent by the sending end, and then the receiving end sends feedback information, which effectively improves the sensing process based on UWB pulses and effectively ensures the communication efficiency of both parties.
  • the first control information includes information about a first threshold, and the first threshold is used to determine whether to feedback based on the perceptual measurement results in the reference sampling unit. Perceptual measurements in one or more non-reference sampling units.
  • the first threshold is used to determine whether to feedback each of the one or more non-reference sampling units based on the perceptual measurement results in the reference sampling unit.
  • the value of the first threshold is proportional to the radar cross section (RCS) of the target.
  • the signaling overhead of CIR parameter information is effectively saved by updating the value of the first threshold according to the RCS of the target.
  • the value of the first threshold can be set smaller, such as a low threshold or a lower threshold, so that the receiving end can feedback the sensing measurement results in a more comprehensive and detailed manner.
  • the sending end finds that the RCS of the target is greater than a certain threshold based on the obtained sensing measurement results, the first threshold can be set larger, such as larger than the low threshold or lower threshold.
  • the sensing measurement results of some non-reference sampling units may not need feedback, thereby effectively reducing the signaling overhead of CIR parameter information.
  • the transmitting end can still use the perceptual measurement results of the reference sampling units as the perceptual measurement results of the non-reference sampling units that have not been fed back.
  • the first control information also includes information about a compression method, and the compression method includes any of the following: no compression, a fixed number of sampling points
  • the compression method is based on the unit of a fixed number of taps (the compression method is based on a fixed number of taps), and the compression method is based on a variable number of sampling points (the compression method is based on a variable number of taps).
  • non-compression means that the perceptual measurement results are directly fed back in the form of taps obtained after sampling, without the need to go through the first threshold discrimination.
  • the compression method with a fixed number of taps as a unit or a variable number of taps as a unit means that one or more taps obtained after sampling can be divided into a group, and then based on the first threshold, it is judged whether to feed back a certain group. Perceptual measurement results.
  • the compression method based on a fixed number of sampling points is simple to implement, does not affect the sending end's acquisition of relevant information about the target, and can also effectively reduce the signaling overhead of CIR parameters.
  • the compression method using a variable number of sampling points as a unit allows the receiving end to perform compression processing with a higher degree of freedom, and does not affect the sending end's acquisition of relevant information about the target. It can also effectively reduce the signaling overhead of CIR parameters.
  • the first control information further includes address information of the communication device that receives the control information.
  • each receiving end can clearly obtain the control information, so that each receiving end processes the sensing measurement results according to the control information. , and then feed back the respective perceptual measurement results obtained. Effectively improve communication efficiency.
  • the feedback information further includes information related to the CIR parameter information
  • the information related to the CIR parameter information includes at least one of the following: The number of sampling units corresponding to the CIR parameter information, the number of sampling points included in each sampling unit, the number of antennas used when measuring the perceptual measurement results, and whether the perceptual measurement results in the reference sampling unit are stored.
  • the sending end can clearly understand the parsing method of the CIR parameter information, thereby improving the communication efficiency of both communicating parties.
  • the feedback information when the compression method includes a compression method with a variable number of sampling points as the unit, the feedback information also includes the following information: one sampling unit The number of groups, the starting sampling point and the ending sampling point of each group; or, the feedback information also includes the following information: the number of groups of a sampling unit, the starting sampling point and the number of sampling points of each group.
  • the feedback information includes the above information, so that when the sending end obtains the feedback information, it can clearly understand the grouping situation of the sensing measurement results by the receiving end, thereby quickly recovering the original CIR parameters.
  • the feedback information further includes information of a first bitmap, and each bit in the first bitmap is used to indicate whether to feedback the corresponding Perceptual measurements within groups.
  • the CIR parameter information includes at least one of the following information: path loss, delay, horizontal angle of arrival (azimuth angle of arrival, AOA), vertical arrival Angle (zenith angle of arrival, ZOA).
  • the feedback information further includes a data pattern indicating the path loss information, the data pattern includes a data pattern based on amplitude and phase, or based on in-phase At least one of the data patterns of components and orthogonal components.
  • the forms of the path loss information are more diversified, and different feedback forms of sensing information can be effectively selected for different application scenarios. For example, when the bit width of the path loss information is smaller (that is, the occupied bit length), feedback accuracy using amplitude and phase is higher.
  • the method further includes: grouping the perception measurement results in units of a fixed number of sampling points or a variable number of sampling points, to obtain one or more sets of perception Measurement results; when the differences between the perceptual measurement results of a certain group and the perceptual measurement results of the same delay in the reference sampling unit are both less than or equal to the first threshold, determine not to feed back the perceptual measurement results of the certain group; Alternatively, when the difference between the perceptual measurement results of a certain group and the perceptual measurement results of the same time delay in the reference sampling unit is greater than the first threshold, it is determined to feed back the perceptual measurement results of the certain group, and use the difference as the Values feed back the perceptual measurements of a certain set.
  • embodiments of the present application provide a communication device for performing the method in the first aspect or any possible implementation of the first aspect.
  • the communication device includes means for performing a method in the first aspect or in any possible implementation of the first aspect.
  • embodiments of the present application provide a communication device for performing the method in the second aspect or any possible implementation of the second aspect.
  • the communication device includes means for performing the method of the second aspect or any possible implementation of the second aspect.
  • the above-mentioned communication device and communication device may include a transceiver unit and a processing unit.
  • a transceiver unit and a processing unit may also be made to the device embodiments shown below.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor, configured to execute the method shown in the above-mentioned first aspect or any possible implementation of the first aspect.
  • the processor is configured to execute a program stored in the memory. When the program is executed, the method shown in the above first aspect or any possible implementation of the first aspect is executed.
  • the memory is located outside the communication device.
  • the memory is located within the above communication device.
  • the processor and the memory can also be integrated into one device, that is, the processor and the memory can also be integrated together.
  • the communication device further includes a transceiver, which is used to receive signals or send signals.
  • embodiments of the present application provide a communication device, which includes a processor configured to execute the method shown in the above second aspect or any possible implementation of the second aspect.
  • the processor is configured to execute a program stored in the memory. When the program is executed, the method shown in the above second aspect or any possible implementation of the second aspect is executed.
  • the memory is located outside the communication device.
  • the memory is located within the above communication device.
  • the processor and the memory can also be integrated into one device, that is, the processor and the memory can also be integrated together.
  • the communication device further includes a transceiver, which is used to receive signals or send signals.
  • inventions of the present application provide a communication device.
  • the communication device includes a logic circuit and an interface.
  • the logic circuit is coupled to the interface.
  • the logic circuit is used to output control information through the interface, and input Feedback.
  • the logic circuit is also used to process the feedback information to obtain information related to the target.
  • Information related to the target includes information such as speed, angle or attenuation.
  • inventions of the present application provide a communication device.
  • the communication device includes a logic circuit and an interface.
  • the logic circuit is coupled to the interface.
  • the logic circuit is used to input control information through the interface and output Feedback.
  • the logic circuit is also used to determine feedback information based on the control information.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program. When it is run on a computer, it enables any possible implementation of the first aspect or the first aspect. The method shown in the implementation is executed.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program. When it is run on a computer, it enables any possible implementation of the above second aspect or the second aspect. The method shown in the implementation is executed.
  • inventions of the present application provide a computer program product.
  • the computer program product includes a computer program or computer code. When run on a computer, the computer program product enables the above-mentioned first aspect or any possible implementation of the first aspect. The method shown is executed.
  • inventions of the present application provide a computer program product.
  • the computer program product includes a computer program or computer code. When it is run on a computer, it enables the above-mentioned second aspect or any possible implementation of the second aspect. The method shown is executed.
  • embodiments of the present application provide a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above first aspect or any possible implementation of the first aspect is executed.
  • embodiments of the present application provide a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above second aspect or any possible implementation of the second aspect is executed.
  • inventions of the present application provide a wireless communication system.
  • the wireless communication system includes a sending end and a receiving end.
  • the sending end is configured to perform the above first aspect or any possible implementation of the first aspect.
  • the method, the receiving end is configured to perform the method shown in the above second aspect or any possible implementation of the second aspect.
  • Figure 1a is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 1b is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2a is a schematic diagram of a sensing scene based on a sensing responder provided by an embodiment of the present application
  • Figure 2b is a schematic diagram of a sensing scene based on a sensing responder provided by an embodiment of the present application
  • Figure 2c is a schematic diagram of a sensing scenario based on multiple sensing responders provided by an embodiment of the present application
  • Figure 2d is a schematic diagram of a sensing scene based on multiple sensing responders provided by an embodiment of the present application
  • Figure 2e is a schematic diagram of a sensing scenario based on a sensing requester provided by an embodiment of the present application
  • Figure 2f is a schematic diagram of a sensing scenario based on a sensing requester provided by an embodiment of the present application
  • Figure 3 is a schematic flow chart of a UWB-based sensory measurement result feedback method provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of sampling provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of the relationship between time blocks, time units and time sub-units provided by the embodiment of the present application;
  • Figure 6 is a schematic diagram of the relationship between sensing blocks, sensing wheels and sensing time slots provided by the embodiment of the present application;
  • Figure 7a is a schematic diagram of a sensing process provided by an embodiment of the present application.
  • Figure 7b is a schematic diagram of a sensing process provided by an embodiment of the present application.
  • Figure 7c is a schematic diagram of a sensing process provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a simulation result provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 12a is a schematic diagram of feedback based on the earliest arrival path as a reference provided by the embodiment of the present application.
  • Figure 12b is a schematic diagram of feedback based on the earliest arrival path as a reference provided by the embodiment of the present application.
  • Figure 12c is a schematic diagram of feedback based on the strongest arrival path as a reference provided by the embodiment of the present application.
  • Figure 12d is a schematic diagram of feedback based on the earliest arrival path as a reference provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art will understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (items) means two or three and three
  • “and/or” is used to describe the relationship between associated objects, indicating that there can be three relationships.
  • a and/or B can mean: only A exists, only B exists, and A and B exist simultaneously. In this case, A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items.
  • at least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ".
  • the technical solution provided by this application can be applied to wireless personal area networks (wireless personal area networks) based on UWB technology. area network, WPAN).
  • the method provided in this application can be applied to the Institute of Electrical and Electronics Engineers (IEEE) 802.15 series protocols, such as the 802.15.4a protocol, 802.15.4z protocol or 802.15.4ab protocol, or a future generation of UWB WPAN
  • IEEE Institute of Electrical and Electronics Engineers
  • the standard is medium, so I won’t list them all here.
  • the method provided by this application can also be applied to various communication systems, such as Internet of things (IoT) systems, Vehicle to X (V2X), narrowband Internet of things (NB) -IoT) system, used in devices in the Internet of Vehicles, IoT nodes, sensors, etc.
  • IoT Internet of things
  • V2X Vehicle to X
  • NB narrowband Internet of things
  • LTE frequency division duplex (FDD) system LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), global interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, long term evolution (long term evolution, LTE) system, or fifth generation (5th-generation, 5G) communication system, sixth generation (6th-generation, 6G) communication system, etc. .
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interconnection microwave access
  • WiMAX worldwide interoperability for microwave access
  • LTE long term evolution
  • 5G fifth generation
  • 6th-generation, 6G sixth generation
  • UWB technology is a new type of wireless communication technology. It uses nanosecond-level non-sinusoidal narrow pulses to transmit data. By modulating the impulse pulses with very steep rise and fall times, it occupies a wide spectrum range, making the signal have a gigahertz (GHz) level. bandwidth. The bandwidth used by UWB is usually above 1GHz. Because the UWB system does not need to generate a sinusoidal carrier signal and can directly transmit impulse sequences, the UWB system has a wide spectrum and very low average power. The UWB wireless communication system has strong multipath resolution, low power consumption, and strong confidentiality. and other advantages, which is conducive to coexistence with other systems, thereby improving spectrum utilization and system capacity.
  • GHz gigahertz
  • the transmit power of UWB transmitters can usually be less than 1mW (milliwatt).
  • the interference generated by UWB signals is only equivalent to a wideband white noise. This facilitates good coexistence between UWB and existing narrowband communications. Therefore, the UWB system can work simultaneously with the narrowband (NB) communication system without interfering with each other.
  • the method provided by this application can be implemented by a communication device in a wireless communication system.
  • a module that implements UWB system functions can be called a UWB module (for example, it can be used to send UWB pulses), and a module that implements narrowband communication system functions It can be called a narrowband communication module, and the UWB module and the narrowband communication module can be different devices or chips, etc., which are not limited in the embodiments of the present application.
  • the UWB module and the narrowband communication module can also be integrated on one device or chip. The embodiments of this application do not limit the implementation of the UWB module and the narrowband communication module in the communication device.
  • WPAN wireless local area networks
  • Bluetooth BLUETOOTH
  • HIPERLAN high performance wireless LAN
  • WAN wide area networks
  • the method provided by this application can be implemented by a communication device in a wireless communication system.
  • the communication device may be a device involved in a UWB system.
  • the communication device may include but is not limited to a communication server, router, switch, network bridge, computer, mobile phone, etc.
  • the communication device may include a central control point, such as a personal area network (PAN) or a PAN coordinator.
  • the communication device may include user equipment (UE), and the user equipment may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, Internet of things (IoT) devices, Computing devices or other processing devices connected to wireless modems, etc., are not listed here.
  • the communication device may include a chip, and the chip may be installed in a communication server, router, switch or user terminal, etc., which will not be listed here.
  • FIG. 1a and FIG. 1b are schematic architectural diagrams of a communication system provided by embodiments of the present application.
  • Figure 1a is a star topology provided by an embodiment of the present application
  • Figure 1b is a point-to-point topology provided by an embodiment of the present application.
  • a central control node can communicate with one or more other devices.
  • Figure 1b in a point-to-point topology, data communication can be carried out between different devices.
  • both full function device full function device
  • low function device reduced function device
  • a low-function device cannot be a PAN coordinator.
  • a low-function device may not have coordination capabilities or may have a lower communication rate than a full-function device.
  • the PAN coordinator shown in Figure 1b is only an example.
  • the other three full-function devices shown in Figure 1b can also serve as PAN coordinators, and will not be shown one by one here.
  • the full-function devices and low-function devices shown in this application are only examples of communication devices. Any communication device that can implement the UWB-based sensory measurement result feedback method provided in this application falls within the protection scope of this application. .
  • the sensing initiator and sensing responder shown below may be full-function devices or low-function devices, which is not limited in this application.
  • the communication device shown in the embodiment of the present application may include a sensing initiator (initiator), a sensing responder (responder), or a sensing requester (also known as a sensing requesting device).
  • the sensing initiator and the sensing responder are relative. If the sensing initiator is the party that initiates the sensing process, the sensing responder can be the party that responds based on the party that initiated the sensing process.
  • the sensing initiator may be the transmitting end of the UWB signal, and the sensing responder may be the receiving end of the UWB echo signal.
  • the sensing initiator may be the receiving end of the UWB echo signal
  • the sensing responder may be the transmitting end of the UWB signal.
  • the sensing requester can be understood as the party that initiates the sensing request to the sensing initiator. It can be understood that since the UWB signal sent by the sensing initiator needs to reach the target first and then reach the sensing responder (for example, the UWB signal reaches the sensing responder after being reflected or scattered by the target), therefore compared to the UWB signal sent by the sensing initiator, The signal received by the sensing responder may be called a UWB echo signal.
  • UWB signals and UWB echo signals may also be collectively referred to as UWB signals below without distinction.
  • the UWB signal shown in this application may also be called a sensing signal or UWB pulse, etc. It can be understood that a sensing packet shown below may include one or more UWB pulses (or UWB signals).
  • Figures 2a and 2b can be understood as a sensing scenario based on one sensing responder, such as bi-static sensing
  • Figure 2c and 2d can be understood as a sensing scenario based on multiple sensing responders. , such as called multi-static sensing.
  • the sensing initiator is the receiving end of the UWB echo signal
  • the sensing responder is the transmitting end of the UWB signal.
  • the sensing initiator is the transmitting end of the UWB signal
  • the sensing responder is the receiving end of the UWB signal.
  • Figure 2e and Figure 2f can be understood as a sensing scenario based on the participation of sensing initiator, sensing responder and sensing requester, which is called sensing by proxy.
  • the sensing initiator since the sensing initiator is the receiving end of the UWB echo signal, the sensing initiator can obtain sensing measurement results and target-related information based on the UWB echo signal. Therefore, there is no need to transmit feedback information through the air interface between the sensing initiator and the sensing responder.
  • the sensing initiator since the sensing initiator is the transmitter of the UWB signal and the sensing responder is the receiving end of the UWB echo signal, the sensing initiator needs to obtain target-related information through the feedback information sent by the sensing responder.
  • multiple sensing responders are transmitters of UWB signals. Similarly, there is no need to transmit feedback information through the air interface between the sensing initiator and multiple sensing responders.
  • the sensing initiator needs to obtain feedback information from multiple sensing responders.
  • the sensing requester can send a sensing request to the initiator.
  • the sensing responder is the transmitter of the UWB signal, and the sensing initiator is the receiver of the UWB echo signal.
  • the sensing requester sends a sensing request to the sensing initiator.
  • the sensing initiator is the transmitter of the UWB signal, and the sensing responder is the receiving end of the UWB echo. After the sensing responder obtains the feedback information, it needs to transmit it over the air interface first. Feedback is given to the sensing initiator, and then the sensing initiator transmits feedback to the sensing requester through air interface transmission.
  • the sensing responder needs to send feedback information to the sensing initiator
  • the sensing initiator needs to send feedback information to the sensing requester
  • the sensing responder Feedback information needs to be sent to the sensing initiator, and feedback information needs to be sent from the sensing initiator to the sensing requester.
  • the sensing packet shown in Figure 2a to Figure 2e can be understood as a UWB signal.
  • the device that receives the sensing packet can obtain sensing measurement results based on the sensing packet.
  • the device that receives the sensing packet can also feed back the sensing measurement result through feedback information.
  • the format of the feedback information can be as shown in Table 1.
  • the signaling overhead of the feedback information is relatively large, and the feedback information cannot effectively utilize temporal similarity and spatial correlation.
  • FIG. 3 is a schematic flowchart of a UWB-based sensory measurement result feedback method provided by an embodiment of the present application.
  • the method shown in Figure 3 can be applied to the sending end and the receiving end.
  • the sending end can be understood as the end that sends control information
  • the receiving end can be understood as the end that receives control information; or the sending end can be understood as the end that receives feedback information.
  • One end, the receiving end can be understood as the end that sends feedback information.
  • the sending end may include a full-function device, and the receiving end may include a low-function device; another example, the sending end may include a low-function device, and the receiving end may include a low-function device; or the sending end may include a low-function device, and the receiving end may include a low-function device.
  • a full-featured device; another example is that both the sender and the receiver are full-featured devices.
  • the sending end may include the sensing initiator shown in Figure 2b and Figure 2d
  • the receiving end may include the sensing responder shown in Figure 2b and Figure 2d
  • the provider of the CIR parameter is the one shown in Figure 2b and Figure 2d.
  • the sending end may include the sensing requester as shown in Figure 2e
  • the receiving end may include the sensing initiator as shown in Figure 2e
  • the provider of the CIR parameter is the sensing initiator as shown in Figure 2e.
  • the sending end may include a sensing initiator as shown in Figure 2f
  • the receiving end may include a sensing responder as shown in Figure 2f
  • the provider of the CIR parameter is the sensing responder or sensing initiator as shown in Figure 2f.
  • the sending end may include the sensing requester as shown in Figure 2f
  • the receiving end may include the sensing initiator as shown in Figure 2f
  • the provider of the CIR parameter is the sensing responder or sensing initiator as shown in Figure 2f.
  • the sending end may include the sensing requester as shown in Figure 2f
  • the receiving end may include the sensing responder as shown in Figure 2f
  • the provider of the CIR parameter is the sensing responder as shown in Figure 2f.
  • Figure 4 is a schematic diagram of sampling provided by an embodiment of the present application.
  • Figure 4 shows different taps sampled based on a perceptual snapshot.
  • the abscissa shown in Figure 4 can be understood as the delay from the sending time to the receiving time.
  • the unit of the delay is nanoseconds (ns).
  • the ordinate can be understood as the path loss information.
  • the unit of the path loss information is decibels (dB). .
  • the path loss information can be understood as information obtained based on the attenuation of the UWB signal during the transmission process from transmission to reception, or information obtained based on the attenuation of the transmission power of the UWB signal.
  • the path loss information shown in Figure 4 is determined based on the sum of the square of the real part and the square of the imaginary part of the path loss.
  • the calculation method of the ordinate in Figure 4 can be 10*log10(Re 2 +Im 2 )-transmitted signal
  • the power of Re can be understood as the real part of the received signal (the received signal is sampled to form a tap), and Im can be understood as the imaginary part of the received signal. This should not be understood as limiting the embodiments of the present application.
  • the tap shown in the embodiment of this application can carry delay and path loss information, or the tap can correspond to path loss information and delay at the same time.
  • snapshot and tap can be understood as: the provider of feedback information (or the generation of feedback information (or understood as a communication device that generates feedback information) can perform sampling based on parameters obtained in one snapshot, thereby obtaining multiple taps.
  • Figure 4 only exemplarily shows that a tap carries delay and path loss information.
  • a tap can also carry ZOA and/or AOA (not shown in Figure 4).
  • a sensing packet can correspond to a snapshot.
  • the parameters obtained based on the sensing packet can be determined as parameters of a snapshot.
  • a snapshot can also be understood as a collection of taps obtained by sampling a sensing packet.
  • sampling can be based on a certain threshold. As shown in Figure 4, samples greater than -160dB are taken as an example to obtain different taps within a perceptual snapshot. It can be understood that the sampling threshold shown in Figure 4 is only an example and should not be understood as limiting the embodiments of the present application.
  • the embodiment of the present application takes the example of one sensing packet corresponding to one snapshot, but the present application can also be applied to the situation where one sensing packet corresponds to multiple snapshots, or multiple sensing packets correspond to one snapshot. That is, according to the situation that one sensing packet corresponds to one snapshot as shown in the embodiment of the present application, those skilled in the art can adaptively change the relationship between the sensing packet and the snapshot.
  • the number of taps included in a snapshot can be determined based on the sampling threshold (-160dB as shown in Figure 4).
  • the duration corresponding to a tap can also be determined based on the sampling frequency. For example, when the sampling frequency is 500MHz and a snapshot is sampled, the interval between two taps is 2ns.
  • the embodiment of this application does not limit the number of taps included in a snapshot.
  • the embodiment of the present application does not limit the number of sensing packets sent by the sensing initiator or the number of sensing packets sent by the sensing responder.
  • the number of sensing packets refers to the sensing packets obtained from the provider of the CIR parameter after obtaining the control information and before obtaining feedback information based on the control information.
  • the embodiment of the present application does not limit the number of snapshots corresponding to the CIR parameter information fed back in the feedback information. That is to say, the embodiment of the present application does not limit the number of non-reference sampling units shown below.
  • a snapshot shown above can be called a sampling unit, and a tap can be called a sampling point, a sampling node, or a sensing sampling point, etc.
  • a tap can be called a sampling point, a sampling node, or a sensing sampling point, etc.
  • the above names will be used in the following introduction of this application, but this should not be understood as a reference to this application. Limitation of application examples.
  • the method includes:
  • the sending end sends control information, and correspondingly, the receiving end receives the control information.
  • the control information includes first control information, which is used to indicate feedback of the sensing measurement results in a threshold-based feedback manner.
  • the control information can be used to control the feedback method of the sensory measurement results.
  • the control information can also be used to control the feedback cycle of the sensing measurement results.
  • the control information can be understood as control information related to the sensing process.
  • the receiving end can feed back the perception measurement results based on the control information, for example, the perception measurement results are fed back in the form of CIR parameter information.
  • the control information may be included in a physical layer (PHY) protocol data unit (PHY protocol data unit, PPDU).
  • the control information can be carried in the physical layer service data unit (PHY service data unit, PSDU) in the PPDU.
  • PHY service data unit PHY service data unit
  • the perceptual measurement results can be understood as the original CIR parameters (or uncompressed CIR parameters, or one or more taps obtained by applying the snapshot) based on the perceptual packets (the CIR parameters shown in Table 8a below show the uncompressed CIR parameters).
  • Compressed CIR parameters the sensing packet may include one or more UWB pulses (also known as UWB signals or sensing signals, etc.). That is to say, based on the sensing packet, the provider of CIR parameters (for example, it can be the receiving end) can obtain sensing measurement results, such as path loss, delay, ZOA, AOA, etc. of the target. It can be understood that the delay may be a delay relative to the UWB pulse transmission time, etc., and the embodiment of the present application does not limit the reference standard of the delay.
  • the first control information includes information about a first threshold, which is used to determine whether to feed back the perceptual measurements in one or more non-reference sampling units based on the perceptual measurement results in the reference sampling unit. result. That is to say, the first threshold is a threshold used to measure whether to feed back the perceptual measurement results in one or more non-reference sampling units.
  • a first threshold is a threshold used to measure whether to feed back the perceptual measurement results in one or more non-reference sampling units.
  • the first threshold shown in the embodiment of this application may include any one of the high threshold, normal threshold, low threshold, and lower threshold as shown in Table 2.
  • Table 2 when the value of the field where the first threshold is located is 00, it means that the first threshold is a high threshold; when the value of the field where the first threshold is located is 01, it means that the first threshold is a normal threshold; If the value of the field where the first threshold is located is 10, it means that the first threshold is a low threshold; if the value of the field where the first threshold is located is 11, it means that the first threshold is a lower threshold.
  • the high threshold, low threshold and lower threshold shown in Table 2 are relative to the normal threshold.
  • the high threshold, normal threshold, low threshold and lower threshold are only one way of dividing. For example, they can also be divided into threshold 1, Threshold 2, threshold 3 and threshold 4; or, the first threshold a, the first threshold b, the first threshold c and the first threshold d; or the first threshold, the second threshold, the third threshold and the fourth threshold, etc., I won’t list them all here.
  • amacCirDifferenceThres shown in Table 2 can be understood as a MAC constant.
  • the specific value of the MAC constant may be defined by the standard, or may be instructed by the sending end, etc., and this is not limited in the embodiments of the present application.
  • the MAC constant may be equal to 5*10 -4 . It can be understood that the MAC constants shown in the embodiments of the present application may be the same for all targets, or different targets may have different MAC constants, which are not limited in the embodiments of the present application.
  • the value of the first threshold can be proportional to the radar cross section (RCS) of the target.
  • RCS radar cross section
  • the first threshold can be set larger (for example, it can be the high threshold or the normal threshold as shown in Table 2).
  • the first threshold can be set smaller (for example, it can be is the low threshold or lower threshold shown in Table 2). It can be understood that the above-mentioned larger and smaller are relative terms.
  • the value of the first threshold can be set smaller, such as a low threshold or a lower threshold, so that the receiving end can be more capable.
  • the first threshold can be set larger, such as larger than the low threshold or lower threshold.
  • the RCS of adults may be 1 square meter
  • the RCS of pets may be 0.1 square meters. Therefore, the first threshold for adults is larger than the first threshold for pets. Since the value of the first threshold becomes larger, the sensing measurement results of some non-reference sampling units may not need feedback, thereby effectively reducing the signaling overhead of CIR parameter information.
  • the transmitting end can still use the perceptual measurement results of the reference sampling units as the perceptual measurement results of the non-reference sampling units that have not been fed back. That is to say, without affecting the sending end's acquisition of target-related information, by updating the value of the first threshold according to the RCS of the target, the signaling overhead of CIR parameter information is effectively saved.
  • the first control information also includes information about a compression method, and the compression method includes any of the following: no compression, a compression method with a fixed number of sampling points as a unit, a compression method with a variable number of sampling points as a unit. Compression method in units of sample points.
  • Taking a fixed number of sampling points as a unit, or taking a variable number of sampling points as a unit, as shown in Table 3, means that when determining whether to feedback the sensory measurement results in non-reference sampling units according to the first threshold, you can A fixed number of sampling points (or a variable number of sampling points) is used as a measure to feedback the perceptual measurement results within one unit.
  • Table 4 if the perceptual measurement results in the unit are fed back, the perceptual measurement results in the unit can be compressed by referring to the perceptual measurement results in the sampling unit, such as based on the perceptual measurement results in the reference sampling unit.
  • the perceptual measurement results within a unit will be called a set of perceptual measurement results. That is to say, using a fixed number of sampling points as the unit, the perceptual measurement results within a sampling unit can be grouped to obtain multiple Group perception measurements.
  • the sensing measurement results include path loss information and delay
  • multiple sets of sensing measurement results can also be called multiple sets of taps.
  • the number of taps in each set of taps can be fixed or variable.
  • the perception measurement results can also include AOA and ZOA (the number of antennas used when measuring the perception measurement results is two or more). In this case, even if multiple sets of perception measurement results include path loss information, delay, AOA and ZOA, however, tap (i.e., delay and path loss) can still be used to measure whether all parameters within this group are fed back.
  • the transmitting end can accurately recover the perceptual measurement results in the non-reference sampling unit based on the differential perceptual measurement results and the perceptual measurement results in the reference sampling unit.
  • the difference between each tap in a certain group and the taps with the same delay in the reference sampling unit is less than the first threshold, then all taps in the certain group will not be fed back, or the certain tap will not be fed back. All perceptual measurement results within a group (for example, including path loss information and delay, or may also include AOA and ZOA), or it can be referred to as not feedback when each tap in a certain group is the same as in the reference sampling unit The difference between extended taps.
  • the sending end can still pass the perceptual measurement results in the reference sampling unit
  • the result predicts the perceptual measurement results in a certain group (for example, the perceptual measurement results in the reference sampling unit can be used to replace the perceptual measurement results in a certain group), which not only effectively reduces the signaling overhead, but also does not affect the The sender obtains information related to the target.
  • the "difference" in the difference between each tap in a certain group and the tap with the same delay in the reference sampling unit shown in the embodiment of the present application may refer to the difference in path loss, or may be The difference between the real parts of the path loss, or it can be the difference between the imaginary parts of the path loss, or it can be the difference determined according to Re 2 + Im 2 (as shown in Figure 4), which is no longer the same here. List one.
  • the embodiment of this application does not limit the specific calculation method of this difference.
  • the sending end estimates the perceptual measurement results in a certain group by referring to the perceptual measurement results in the sampling unit, this still does not affect the accuracy of the sending end in obtaining target-related information. The reason is that even if the sensory measurement results are fed back in an uncompressed manner, there will be quantization processing of the data. In this case, the CIR parameter information obtained by the transmitter is the data after quantization processing.
  • the error caused by using the perceptual measurement results in the reference sampling unit to replace the perceptual measurement results in a certain group shown above will be smaller than the error caused by the quantization process, as This will not reduce the accuracy of the sending end in obtaining target-related information, and it will also achieve the purpose of signaling overhead.
  • the difference between a tap in a certain group and a tap with the same delay in the reference sampling unit is greater than the first threshold, then feedback is given that all taps in the group have the same delay as the reference sampling unit.
  • the difference between taps, or the difference between all sensory measurement results in a certain group i.e., the difference between a tap in the above-mentioned group and a tap with the same delay in the reference sampling unit. That is, whenever the difference between a tap in a group and a tap with the same delay in the reference sampling unit is greater than the first threshold, it can be determined that all sensory measurement results in this group will be fed back. The sensing measurement results need to be fed back through difference feedback, which can effectively save signaling overhead.
  • the difference between only a small number of taps in a certain group and the taps with the same delay in the reference sampling unit is greater than the first threshold, only a small number of taps in this group can be fed back. If the number of taps in a group with the above-mentioned difference greater than the first threshold is less than or equal to 5, then only these 5 taps can be fed back, and other taps in the group do not need to be fed back.
  • a small number of taps (or the perceptual measurement results corresponding to a small number of taps) in the certain group can be fed back in the form of differences, thereby effectively reducing the signaling overhead of CIR parameter information. .
  • the sampling unit shown in Figure 4 is a non-reference sampling unit.
  • the path loss at the abscissa 31ns is the same as the path out of the abscissa 31ns in the reference sampling unit.
  • the difference in loss is compared with the first threshold. If the difference is less than or equal to the first threshold, all taps in the group with the abscissa 31ns can not be fed back (that is, the path will not be fed back when the sensing measurement results include path loss and delay).
  • the specific value of the number of taps included in a group is not limited in the embodiment of this application.
  • the embodiment of the present application does not limit whether the perceptual measurement results in a certain group are fed back when the difference shown above is equal to the first threshold. That is to say, if the difference between a tap in a certain group and a tap with the same delay in the reference sampling unit is equal to the first threshold, then there is no need to feed back all taps in the group with the same delay in the reference sampling unit.
  • the difference between the delayed taps, or the difference between all taps in a certain group and the taps with the same delay in the reference sampling unit can also be fed back.
  • the first control information also includes address information of the communication device that receives the control information.
  • the number of communication devices that receive control information may be one or more.
  • each receiving end can clearly obtain the control information, so that each receiving end processes the sensing measurement results according to the control information, and then feeds back the respective obtained Perceptual measurements. Effectively improve communication efficiency.
  • Table 5 is a content representation of control information provided by an embodiment of the present application.
  • the content shown in Table 5 can also be understood as an information element (IE) in the control information.
  • the embodiment of the present application does not limit whether the control information includes other IEs.
  • the IE shown in Table 5 can be called sensing CIR feedback control IE (sensing CIR feedback control IE).
  • the sensing CIR feedback control IE may include a unit identifier (also called an element ID), an address size specifier, a responder number, and first control information.
  • the first control information may also be called CIR feedback control parameter (CIR feedback control parameter).
  • the content of the first control information may be as shown in Table 6.
  • the device address can be understood as the address of the receiving end shown above; the field where the CIR feedback threshold is located can be understood as the field where the first threshold is shown above, as shown in Table 2; the field where the compression method is located It can be understood as the fields shown in Table 3 or Table 5 above.
  • the unit ID may be used to indicate the ID of the sensing CIR feedback control IE.
  • the address size indication can be used to indicate the number of bytes indicated by the device address. If the value of the field where the address size indication is located is 0, it can indicate that the device address uses a 2-byte short address. If the value of the field where the address size indication is located is A value of 1 indicates that the device address uses an 8-byte extended address.
  • the number of responders can represent the number of receivers. For example, for Figure 2b and Figure 2d, the responders refer to the number of sensing responders participating in the sensing process; for example, for Figure 2e, the responders refer to the number of sensing initiators.
  • the responders can be the number of sensing initiators or the number of sensing responders.
  • the first control information may include CIR feedback control parameters required by each respondent. That is to say, the first control information may include control parameters such as the first threshold and compression method required by each respondent.
  • the device address can be used to indicate the address of the responder device, and the value of the CIR feedback threshold can be referred to Table 2.
  • the CIR reference information request can be understood as a request for the perceptual measurement results in the reference sampling unit shown above. If the field where the CIR reference information request is located has a value of 0, it means that the respondent does not need to feedback the perceptual measurements in the reference sampling unit.
  • Result can also be called CIR reference information. If the field where the CIR reference information request is located has a value of 1, it means that the responder needs to feed back the perceptual measurement results in the reference sampling unit.
  • CIR reference information can also be called CIR reference information.
  • the sending end finds that the target's movement speed is greater than a certain threshold, the sending end can set the value of the CIR reference information request to 1, thereby requesting the receiving end to update the perception measurement results in the reference sampling unit; when the target's movement When the speed is less than a certain threshold, the sending end can set the value of the CIR reference information request to 0, thereby indicating that the receiving end does not need to update the sensing measurement results in the reference sampling unit.
  • the receiving end sends feedback information, and correspondingly, the sending end receives the feedback information.
  • the feedback information includes CIR parameter information, which is obtained by processing the perception measurement results based on the first control information.
  • the CIR parameter information refers to information obtained by processing the original CIR parameters based on the first control information.
  • the CIR parameter information may be information obtained by quantizing the original CIR parameter based on the first control information.
  • the CIR parameter information may be information obtained by quantizing and compressing the original CIR parameters based on the first control information.
  • the receiving end receives the feedback information
  • the distance, speed or attenuation of the target can be obtained based on the feedback information.
  • the feedback information may be information directed to one target or may be information directed to multiple targets, which is not limited in the embodiments of the present application.
  • the receiving end can parse the parameters related to the target to obtain information about one or more targets.
  • the feedback information also includes information related to CIR parameter information, and the information related to CIR parameter information includes at least one of the following:
  • the number of sampling units corresponding to the CIR parameter information, the number of sampling points included in each sampling unit, the number of antennas used when measuring the perceptual measurement results, and whether the perceptual measurement results in the reference sampling unit are stored.
  • the sending end can be informed of the total number of sampling points corresponding to the CIR parameter information it has obtained.
  • the sending end can also obtain the total number of groups. For example, by including the number of antennas used when measuring the sensing measurement results, the transmitting end can accurately distinguish the sensing measurement results obtained by different antennas from the CIR parameter information. For example, by including whether the perceptual measurement results in the reference sampling unit are stored (which may also be called reference information or CIR reference information, etc.), the sending end can combine this information to indicate updating the reference sampling unit in the next control information. Perceptual measurement results within (or instructions to update CIR reference information).
  • each of the information shown above may exist in the feedback information in the form of fields.
  • the content shown in Table 7 can be included in the CIR feedback report IE (CIR feedback report IE) in the feedback information.
  • CIR feedback report IE CIR feedback report IE
  • the embodiment of this application does not limit whether the feedback information includes other IEs.
  • the provider refers to the perception responder
  • the provider refers to the perception initiator
  • the requester refers to the sensing initiator.
  • the requester refers to the sensing requester.
  • the requester can be the sensing initiator or Sense the requester. For example, when the sensing responder has learned the address of the sensing requester, the requester may be the sensing requester; when the sensing responder does not know the address of the sensing requester, the requester may be the sensing initiator.
  • the value of the local CIR reference status shown in Table 7 will affect the value of the CIR reference information request in the next control information. For example, when the local CIR reference status is 0, the CIR reference information request in the next control information can only be 1, which means that the receiving end is requested to update the CIR reference information. When the local CIR reference status is 1, the CIR reference information request in the next control information can be set to 0 or 1 according to actual needs.
  • by adding the The CIR reference information request field and local CIR reference status field in the form of "handshake" can enhance the reliability of communication and improve the communication efficiency of both communicating parties.
  • CIR feedback report parameters For description of CIR feedback report parameters, please refer to Table 8a to Table 8d. It can be understood that Tables 8a to 8d take path loss information as an example, but when the receiving end feeds back CIR parameter information, it may also include delay, AOA, ZOA, etc., which will not be shown one by one below.
  • the CIR of sampling point 1 in sampling unit 1 may also include the time delay (that is, the time domain relative to the transmission time), the differential AOA of tap1 in snapshot1, and the differential ZOA of tap1 in snapshot1, which are not included here. List them one by one.
  • the descriptions between the values of each field and the meanings corresponding to the values of each field shown in Table 7 are only examples and should not be understood as limiting the embodiments of the present application.
  • the provider address size indication field and the requester address size indication field can also have the following description: if it is 1, it indicates that a 2-byte short address is used; if it is 0, it indicates that an 8-byte extended address is used.
  • the relationship between the value of the field where the compression method is located and the compression method corresponding to each value may also be different from Table 3 or Table 4, and will not be listed one by one here.
  • the CIR parameter information can be as shown in Table 8a. That is, Table 8a is shown as an example without compression.
  • the CIR parameter information in Table 8a is a tap obtained by sampling the parameters obtained in the snapshot, and the tap does not need to pass the first threshold determination.
  • the feedback information also includes information of a first bitmap, and each bit in the first bitmap is used to indicate whether to feed back the perceptual measurement results in the corresponding group. That is to say, after the perceptual measurement results are grouped, whether to feed back the perceptual measurement results of the corresponding group can be indicated in the form of a bitmap. For example, if the value of a certain bit in the first bitmap is 1, it means that the perceptual measurement result of the group corresponding to the certain bit is not fed back, and at the same time, the pair The difference between the perceptual measurement results in the corresponding group and the perceptual measurement results of the same time delay in the reference sampling unit is less than the first threshold.
  • the value of a certain bit in the first bitmap is 0, it means that the perceptual measurement result in the group corresponding to the certain bit is fed back.
  • the difference between taps with the same delay in the group is greater than the first threshold (it can also be said that the difference between at least one tap in the corresponding group and the corresponding tap of the reference sampling unit is greater than the first threshold).
  • the CIR parameter information may be as shown in Table 8b.
  • bit length of the first bitmap shown in Table 8b can be determined according to the number of taps in each snapshot shown in Table 7 and the number of taps in each group shown in Table 8b, such as the first bit
  • the bit length of the graph the number of taps in each snapshot/the number of taps in each group.
  • the reference sampling unit shown in Table 8b takes snapshot1 as an example, but this should not be understood as limiting the embodiment of the present application.
  • the reference sampling unit can also be snapshot2 or snapshot3, etc. That is, the CIR reference information can be the CIR parameters of snapshot1 or the CIR parameters of other snapshots.
  • the N_tap taps included in snapshot 1 shown in Table 8b may be grouped in units of a fixed number of taps, or may not be grouped. This is not limited in the embodiment of the present application.
  • the CIR parameters of snapshot1 shown in Table 8b are shown as an example without grouping. Therefore, Table 8b shows N_tap taps in snapshot1 respectively.
  • the CIR parameters of snapshot2 shown in Table 8b need to be based on a fixed number of taps. Units are grouped, so Table 8b does not show the N_tap taps included in shapshot2 one by one.
  • the CIR parameter information shown in Table 8b is shown as an example including CIR reference information (that is, the perceptual measurement result of the reference sampling unit).
  • the CIR parameter information shown in Table 8b may not include CIR reference information.
  • the CIR reference information in the previous feedback information with CIR reference information may be used as the CIR reference information in this feedback information.
  • snapshot 1 will also feed back the perception measurement results in the way of other snapshots, that is, feedback the perception measurement results in snapshot 1 in the form of difference.
  • Table 8c and Table 8d are equally applicable to the description of CIR reference information, and will not be described in detail below.
  • the feedback information when the compression method includes a compression method with a variable number of sampling points as the unit, the feedback information also includes the following information: the number of groups of a sampling unit, the starting sampling point and the end of each group. Sampling points; alternatively, the feedback information also includes the following information: the number of groups in a sampling unit, the starting sampling point of each group, and the number of sampling points in each group. That is to say, by including the above information, the sending end can clearly understand the grouping situation of the sensing measurement results by the receiving end when obtaining feedback information, thereby quickly recovering the original CIR parameters.
  • the CIR parameter information may be as shown in Table 8c.
  • Table 8c shows an example in which a snapshot is divided into M groups, where M is a positive integer.
  • the feedback information also includes information of a second bitmap, and each bit in the second bitmap is used to indicate whether to feed back the perceptual measurement result of the corresponding tap.
  • the relevant description of step 301 includes the following method: if the difference between a small number of taps in a certain group and the taps of the same delay in the reference sampling unit is greater than the first threshold, only a small number of taps in this group can be fed back.
  • the value of the bit corresponding to the certain group in the first bit bitmap may be 1, that is, at least one difference between all taps in the certain group and the corresponding tap in the reference sampling unit is greater than the first Threshold.
  • Each bit in the second bitmap may be used to indicate whether there is a perceptual measurement result of the corresponding tap in a certain group.
  • the bit length of the first bitmap is determined based on the total number of groups, or the bit length of the first bitmap may be determined based on the number of sampling points in each sampling unit and the number of taps in each group.
  • the bit length of the second bitmap can be determined based on the compression method: for example, when the compression method is based on a fixed number of sampling points, the bit length of the second bitmap can be a fixed number; or when the compression method is based on a variable number of sampling points. In the unit compression method, the bit length of the second bitmap can be determined based on the number of taps in each group of snapshots.
  • the bits occupied by the CIR parameter information in each snapshot can be simplified with a small number of bits in the second bitmap, thereby further reducing signaling overhead.
  • the second bitmap shown in the embodiment of the present application can be applied to Table 8b and Table 8c, but the second bitmap is shown below by taking Table 8c as an example, but this should not be understood as a reference to this application.
  • the second bitmap can be added after adaptive modification, which will not be shown one by one here.
  • the CIR parameter information may be as shown in Table 8d.
  • Table 8d you can refer to Table 8c, etc., and will not be described in detail here.
  • the group corresponding to the bit with a value of 1 in the first bitmap can have a second bitmap, so Table 8d is only an example of group 1 and group M in snapshot2 in the first bitmap. It is shown that the corresponding bit has a value of 1, but this should not be understood as a limitation on the embodiment of the present application.
  • the CIR parameter information shown in Table 8a to Table 8d of this application can indicate path loss information in the form of amplitude and phase, or indicate path loss information in the form of in-phase components and orthogonal components, which are not limited by the embodiments of this application.
  • the feedback information may also include information indicating the data pattern of the path loss information. For example, if the value of the field in which the data pattern of the path loss information is located is 0, it means that the path loss information is fed back in the form of in-phase components and quadrature components (it can also be called feedback of path loss information in the form of real parts and imaginary parts). , the value of the field indicating the data pattern of the path loss information is 1, which means that the path loss information is fed back in the form of amplitude and phase.
  • the forms of the path loss information can be made more diverse, and different feedback forms of sensing information can be effectively selected for different application scenarios. For example, when the bit width of the path loss information is smaller (that is, the occupied bit length), feedback accuracy using amplitude and phase is higher.
  • the feedback information may not include the first bitmap.
  • the sending end can continue to read the second bit bitmap corresponding to the subsequent group.
  • the sending end can learn according to the second bitmap whether the group corresponding to each second bitmap has fed back the perceptual measurement result.
  • the feedback information may also include information indicating the bitmap included in the feedback information, That is, the information can indicate that the feedback information includes the first bitmap; or includes the second bitmap; or includes the first bitmap and the second bitmap. They will not be shown one by one here.
  • Table 9 is a comparison diagram provided by the embodiment of the present application when the compression method includes no compression and a compression method with a fixed number of sampling points as the unit. In an office environment, a moving chair is selected as the sensing target. Use the above two pressures Report the perception measurement results of 10 snapshots in a compressed manner. As shown in Table 9, when the compression method is no compression, the perceptual measurement results within these 10 snapshots require a length of 3000 bytes (the real and imaginary parts of each Tap are represented by 12 bits), and the compression rate is 1. That is, no compression.
  • the compression method is a compression method with a fixed number of sampling points as the unit (in this simulation, each group of Taps only contains 1, the real part and imaginary part of the reference Tap are both represented by 12 bits, and the real part difference and imaginary part of the differential information are (all differences are represented by 8 bits)
  • the first threshold is 10-5 (i.e. 1e-5)
  • the perceptual measurement results within these 10 snapshots require a length of 985 bytes, and the compression rate is 0.3283
  • the first threshold When the threshold is 5*10-5 (i.e. 5e-5), the perceptual measurement results within these 10 snapshots require a length of 550 bytes, and the compression rate is 0.1833.
  • the lower the compression rate the smaller the bit overhead used when feeding back CIR parameters. It can be seen from Table 9 that the method provided by this application effectively reduces the signaling overhead of CIR parameters.
  • Figure 8 is a schematic diagram of simulation results provided by an embodiment of the present application.
  • the line with a black circle represents the situation without compression (No compression as shown in Figure 8)
  • the line with a black asterisk represents the compression method of sampling a fixed number of sampling points. , if the number of taps in each group is 1, the threshold is 1e-5.
  • the perceptual measurement results shown in Figure 8 were measured with a single antenna.
  • the abscissa represents the bit width of the real part and the imaginary part, which can also be understood as the bit width (IQ bitwidth) of the in-phase component (in-phase component) and the quadrature component (quadrature component).
  • the abscissa represents the bit width of the real and imaginary parts of the differential information, or the bit width of the in-phase component and quadrature component of the differential information (Reference IQ bitwidth as shown in Figure 8) .
  • the reference information in this solution uses 12 bits.
  • the ordinate represents the maximum quantization error.
  • the maximum quantization error of the uncompressed scheme is 2e-5, and when this scheme uses 8 bits to represent the bit width of the real and imaginary parts of the differential information, the maximum quantization error is 1.6e-5. Therefore, this solution significantly reduces the feedback overhead without increasing the quantization error.
  • the sending end sends control information to the receiving end, so that the receiving end can process the original CIR parameters based on the control information.
  • the CIR parameter information is obtained based on the threshold-based feedback method, that is, the CIR parameter information is based on The threshold feedback method is obtained.
  • the sensing measurement results such as processing in a threshold-based feedback method
  • the receiving end processes the control information sent by the sending end, and then the receiving end sends feedback information, which effectively improves the sensing process based on UWB pulses and effectively ensures the communication efficiency of both parties.
  • the control information also includes second control information
  • the second control information may include information indicating the number of time sub-units included in a time unit.
  • This time unit can be understood as the interaction duration between a control information and a feedback information.
  • the process in which the receiving end completes an independent perception measurement and reports feedback information can be called a time unit.
  • a time unit can be understood as a period of time during which the sender initiates the sensing process and obtains feedback information.
  • a time unit may include multiple time sub-units. In other words, multiple time subunits can form a time unit.
  • a time unit may include T time sub-units, where T is a positive integer.
  • the number of time sub-units can be used to indicate the period of feedback information, for example, the number of time sub-units is proportional to the period of feedback information.
  • the number of time subunits can also be used to indicate the sending time of feedback information,
  • the sending time of feedback information may be located in the last or multiple time subunits in a time unit.
  • the number of time subunits can also be used to indicate the period of the sensing process performed by the sending end and the receiving end.
  • the time unit may also be called a sensing time unit or a sensing round
  • the time subunit may also be called a sensing time subunit or a sensing slot.
  • a time block can include N time units, N is a positive integer, and a time unit can include M time sub-units. It can be understood that the time block may also be called a sensing time block or a UWB-based sensing time block or a sensing block.
  • the embodiment of the present application does not limit the specific name of the time block.
  • the following uses the sensing block, sensing wheel and sensing time slot shown in Figure 6 as an example to illustrate the method provided by the embodiment of the present application. It can be understood that for the description of FIG. 6 , reference can be made to FIG. 5 .
  • a sensing block can be a period of time dedicated to sensing, and each sensing block can be divided into several sensing rounds. Each sensing round can be used to complete an independent sensing measurement and report the results. And each sensing round can be divided into several sensing time slots, and each sensing time slot can be used to transmit at least one sensing packet (for sensing).
  • One sensing slot can correspond to one or more sensing packets, so the receiving end can sense the target multiple times in one sensing round. Based on the sensing packet, the receiving end can obtain path loss information, delay, AOZ, AOA and other information. It can be understood that each sensing packet may include one or more UWB pulses.
  • the content of the second control information may be as shown in Table 10a.
  • the second control information may include the duration of the sensing block, the duration of the sensing wheel, the duration of the sensing slot and the pulse repetition frequency (PRF).
  • the duration of each sensing slot can be the same, and the duration of each sensing round can be the same.
  • the duration shown in the embodiments of this application may also be called duration, duration, duration, time length, etc.
  • a sensing block can include N sensing rounds, and N is a positive integer.
  • the duration of the sensing round and the duration of the sensing slot the number of sensing slots included in a sensing round can be known.
  • a sensing round can include T sensing slots, and T is positive integer.
  • the perception measurement results fed back by the above feedback information may be the perception measurement results obtained by the receiving end perceiving the target in a perception round. That is, the feedback information may be the perception measurement results obtained in this perception round.
  • the feedback information fed back in this sensing round can include the sensing measurement results in the reference sampling unit in this sensing round.
  • the sensing measurement results in snapshot1 can be used as the reference information of the sensing measurement results fed back in this sensing round.
  • the feedback information fed back in this sensing round may not include the sensing measurement in the reference sampling unit.
  • the perception measurement results in the reference sampling unit included in the feedback information fed back in the previous sensing round are used as the reference information for the perception measurement results fed back in this sensing round.
  • the perception measurement results fed back by the above feedback information may also be the perception measurement results obtained by the receiving end perceiving the target in multiple perception rounds.
  • the receiving end can feed back the sensing measurement results in multiple sensing wheels through one feedback information.
  • the feedback information may also include reference information or may not include reference information, which will not be described in detail here.
  • the second control information may also include information indicating whether to feedback the sensing measurement results in this sensing round. By indicating whether this sensing round feeds back sensing measurement results, the receiving end can effectively learn whether this sensing round feeds back sensing measurement results. If the sensing measurement results of this sensing round do not need to be fed back, the receiving end can first cache the sensing measurement results of this sensing round, and when receiving an indication that the sensing measurement results need to be fed back, the sensing measurement results that have not been fed back can be stored in a feedback message. feedback to the sending end. Therefore, in Tables 8a to 8d, the indication of the sensing wheel can also be added.
  • the leftmost part in Tables 8a to 8d can be replaced with: snapshot of sensing wheel N_round, tap of N_snapshot, CIR of N_tap.
  • Num_round represents the number of sensing wheels.
  • N_snapshot represents the number of snapshots in each perception round
  • N_tap represents the number of taps in each snapshot. Assume that each perception round includes the same number of snapshots, and each snapshot includes the same number of taps.
  • the second control information may be as shown in Table 10b.
  • the last two rows in Table 10b are parallel solutions. Only one of the solutions can be used in a certain feedback information, and it does not mean that both of them must exist. For example, when the value of the field where the CIR update indication is located is 00, both of these solutions represent the differential information of the feedback CIR. That is to say, the feedback information does not need to include the perceptual measurement results of the reference sampling unit, that is, the above one has reference information.
  • the reference information in the feedback information is the reference information of this feedback information.
  • the CIR update indication is 00
  • the measurement reporting stage is shown in Figure 7b.
  • the feedback information uses differential information to indicate the perceptual measurement results obtained by the receiving end. For example, the CIR parameter information is determined based on the reference information and the original CIR parameters in the feedback information earlier than the feedback information.
  • both solutions represent feedback of the differential information and difference value of the CIR.
  • the CIR update indication is 01
  • the measurement reporting stage is shown in Figure 7c.
  • the feedback information indicates the perceptual measurement results obtained by the receiving end through differential information and reference information.
  • the CIR parameter information is determined based on the reference information and original CIR parameters in the feedback information.
  • the corresponding compression method may include any one of a threshold-based compression method, a snapshot-based compression method, or a clustering-based compression method.
  • information indicating any one of a threshold-based compression method, a snapshot-based compression method, or a clustering-based compression method may be added to the first control information shown in Table 6. If the added information indicates a threshold-based compression method, the first control information may be as shown in Table 6; if the added information indicates a snapshot-based compression method or a cluster-based compression method, the embodiment of the present application will Other contents of the control information are not limited.
  • both solutions indicate that the CIR will not be fed back in this sensing round, which means that sensing measurement results may not be fed back in the sensing round where the control information is located.
  • the first solution can be reserved, and the second solution indicates that the compression method used in this sensing round is a threshold-based compression method. Therefore, the corresponding first control information may be as shown in Table 6.
  • An exemplary snapshot-based compression method is as follows:
  • a snapshot of any one of one or more sensing wheels that needs feedback from one or more antennas can be used as a reference sampling unit (such as the antenna used when measuring sensing measurement results) Snapshot 1) of the first antenna in , the parameter information in the reference sampling unit is used as reference information.
  • the receiving end receives UWB signals through multiple antennas and needs to feed back the sensing measurement results in this sensing round (such as a sensing wheel). Therefore, the receiving end can use a local sensing wheel that a certain antenna needs to feed back.
  • the perceptual measurement results in the first snapshot are used as reference information.
  • the difference between the perceptual measurement results in other snapshots and the reference information is used as differential information.
  • Cluster the CIRs of all snapshots For example, you can cluster the paths based on dynamic range, K-mean or density-based spatial clustering of applications with noise (DBSCAN) in noisy environments.
  • the loss information is clustered, and the embodiment of this application does not limit the specific implementation of clustering.
  • select a tap (i.e. reference Tap) in each cluster as the reference sampling unit.
  • the perceptual measurement results in the reference sampling unit are used as reference information.
  • the remaining taps (i.e. Normal Tap) in each cluster are the same as the reference information.
  • the difference value of tap (referring to the difference value of the parameters corresponding to tap) is used as differential information.
  • other taps in cluster 2 are differentiated from the reference tap, which will not be listed one by one here.
  • Figure 7a is a schematic diagram of executing the sensing process in the sensing wheel provided by the embodiment of the present application.
  • the sending end in the sensing control phase (sensing control phase), the sending end can send control information (also called sensing control message) to the receiving end; in the sensing phase (sensing phase), the sending end can Send multiple sensing packets to the receiving end; in the measurement report phase, the receiving end can send feedback information (also called measurement information or measurement report information, etc.) to the sending end.
  • the sensing control phase can correspond to a Or multiple sensing time slots
  • the sensing phase can correspond to multiple sensing time slots
  • the measurement reporting phase can correspond to one or more sensing time slots.
  • P in Figure 7a is a positive integer less than Q
  • Q is a positive integer less than M.
  • P+1 is less than Q
  • Q+1 is less than or equal to M-1.
  • the receiving end when the target moves faster, the receiving end can provide feedback more frequently, so that the sending end can obtain information related to the target in a timely manner.
  • the feedback frequency of the perceptual measurement results can be reduced. Since feedback information needs to be fed back in the last or last multiple sensing time slots in a sensing round, the period of feedback information or the feedback of feedback information can be indicated by the number of sensing time slots included in a sensing round in the control information. frequency.
  • the number of sensing time slots is directly proportional to the period of feedback information, and the number of sensing time slots is inversely proportional to the feedback frequency of feedback information. The greater the number of sensing time slots, the longer the cycle of feedback information, or the lower the feedback frequency of feedback information.
  • the sending end when the sending end requires the receiving end to feedback sensing measurement results more frequently, the number of sensing time slots included in a sensing round indicated in the control information can be reduced, thereby making the feedback information cycle shorter or feedback
  • the frequency of feedback of information increases.
  • the sending end can obtain the relationship between the period of feedback information and the change frequency of the target through a certain detection algorithm, so that after receiving the feedback information, it determines the feedback period of subsequent feedback information according to the detection algorithm.
  • the feedback information in the embodiment of the present application includes the first bitmap and/or the second bitmap, so the first control information can also be understood as indicating feedback based on the bitmap.
  • Perceptual measurements Feedback of perceptual measurement results in a bitmap-based manner as shown in the embodiments of the present application may include: feedback of differential perceptual measurement results in a bitmap-based manner (such as a bitbitmap-based manner, and reference information feedback of the original CIR parameters), Alternatively, the undifferentiated perceptual measurement results are fed back in a bitmap-based manner (that is, the original CIR parameters are fed back in a bitmap-based manner).
  • the first control information may include indication information, the indication information being used to indicate whether to feedback the sensing measurement results based on a bitmap.
  • the first control information may include indication information.
  • the value of the indication information when the value of the indication information is 0, it means that the sensory measurement results are not fed back in the form of bitmaps (or the CIR feedback is not used in the form of bitmaps); and when the value of the indication information is 1, it means that The perceptual measurement results are fed back in the form of bitmaps (or CIR feedback is performed in the form of bitmaps).
  • the first control information may not include indication information, for example, the first control information may be used to indicate feedback of the perception measurement results based on a bitmap.
  • the first control information may include information about the first threshold.
  • the first control information may include multiple first thresholds, and after receiving the first control information, the receiving end may select a first threshold from the multiple first thresholds.
  • the feedback information may include the first threshold selected by the receiving end.
  • the first threshold may also be determined by the receiving end.
  • the first threshold value when the bandwidth B is larger or the temperature T is higher, the first threshold value can be set larger; when the bandwidth B is smaller or the temperature T is lower, the first threshold value can be set smaller.
  • the feedback information may include information about the first threshold.
  • the first control information it is also possible Includes a first threshold.
  • the first threshold shown in the embodiment of this application may be greater than or equal to 0.
  • the first threshold can also be used to determine whether to feedback a sample. Perceptual measurement results for a certain set of sampling points in the unit. The perceptual measurement results of a certain group of sampling points can be the original CIR parameter information, or the CIR parameter information obtained based on the difference. Alternatively, the first threshold can also be used to determine whether to feed back perception measurement results based on certain sampling points corresponding to the reference path (as shown in Figures 12a to 12d below).
  • the first control information can also include the length information of the bitmap and the position information of the corresponding sampling point.
  • the length information of the bitmap may include the window length (W length )
  • the position information of the corresponding sampling point includes: a reference path (or the position of the reference path, a reference sampling point, etc.), the start of the window
  • the position of the reference sampling point may include the position of the earliest arrival path, or, as shown in Figure 12c, the position of the reference sampling point may include the position of the strongest arrival path.
  • the position of the strongest arrival meridian may be within the window or outside the window, which is not limited in the embodiment of the present application.
  • a feasible example is the acquisition method of the strongest arrival path or the earliest arrival path, as shown below: For example, when both communicating parties perform sensing measurements for the first time, the length of the window can be greater than or equal to a certain value.
  • the length of the window can be a fixed value, such as a compression method with a fixed number of sample points as the unit (or a fixed number of sample points as feedback).
  • the length of the window can be a variable value, such as a compression method with a variable number of sample points as the unit (or a variable number of sample points as feedback).
  • the feedback information when the windowing method is used to feedback the perception measurement results, as an example, when the first control information includes the length of the bitmap and the position information of the corresponding sampling point, the feedback information may not include the length information. As another example, when the first control information does not include the length of the bitmap and the position information of the corresponding sampling point, the feedback information may include the length of the bitmap and the position information of the corresponding sampling point. . As another example, regardless of whether the first control information includes the above information, the feedback information may include the length of the bitmap and the position information of the corresponding sampling point.
  • the first control information may also include N and P, where N may be the total number of taps that need to be fed back (when feedback in a windowed manner is used, N is equal to the window length), P is the number of groups.
  • N may be the total number of taps that need to be fed back (when feedback in a windowed manner is used, N is equal to the window length)
  • P is the number of groups.
  • the receiving end can divide N taps into P groups based on the first control information. Each group contains M taps. When P cannot be divided by N, N can be filled with zero values.
  • An integer multiple of P that is, in the bitmap corresponding to the last group, the bits representing the last P-Q Taps are 0, Q is N modulo P), and then divided into P groups.
  • the feedback information may not include N and P information, or when the first control information does not include N and P information, the feedback information may The information of N and P is included, or, regardless of whether the first control information includes the information of N and P, the feedback information may include the information of N and P.
  • the first control information may include compression mode information. Based on the above Table 4, Table 12 can be further obtained.
  • a tap in a snapshot which can be a windowed CIR (such as a CIR determined based on the window length and window offset shown above) or an unwindowed CIR) If it is less than the first threshold, the corresponding tap will not be fed back, or the sensing measurement result corresponding to the tap will not be fed back (for example, including path loss information and delay, or may also include AOA and ZOA). That is to say, when it is determined not to feed back the perception measurement results of a certain tap, it means that the amplitude corresponding to the tap is too small and has almost no impact on the perception results. Therefore, no feedback can be given, effectively reducing signaling overhead without affecting The sender obtains information related to the target. It can be understood that the description that the tap is smaller than the first threshold shown in the embodiment of the present application can be understood as: the CIR parameter corresponding to the tap is smaller than the first threshold.
  • the taps in a snapshot are divided into P groups.
  • Each group contains M taps. If there are T taps in a group smaller than the If a threshold is reached, the taps of the corresponding group will not be fed back, or the perceptual measurement results corresponding to this group will not be fed back (for example, including path loss information and delay, or AOA and ZOA). That is to say, when it is determined not to feed back the perception measurement results of the taps in a certain group, it means that the amplitude corresponding to the tap in the group is too small and has almost no impact on the perception results. Therefore, no feedback can be given, effectively reducing the signaling overhead, and It also does not affect the sending end's ability to obtain target-related information.
  • T may be a positive integer less than or equal to M.
  • the feedback information may include a first bitmap
  • the first bitmap may be used to indicate whether to feedback the perceptual measurement results of the corresponding taps in the group.
  • the receiving end can determine the starting position of the window based on the position of the earliest arrival path and the window offset, and then determine the position of the window based on the length of the window and the starting position of the window.
  • the taps in this window are the taps in the group.
  • the first tap, second tap, third tap, fourth tap, seventh tap, ninth tap and tenth tap in the window are all greater than the first threshold. Therefore, the value of the first bit bitmap can be 1111 0010 11.
  • the receiving end can also group the taps in the window. For example, two taps are divided into one group (only an example), such as the first group of taps and the second group of taps. , the fifth group of taps are all greater than the first threshold, so the value of the first bitmap can be 11001.
  • taps in a snapshot are divided into P groups, each group containing M taps.
  • a two-bit bitmap is used to indicate CIR parameter information.
  • the value of the first bitmap is 10011, indicating that the receiving end feeds back the taps in the first, fourth and fifth groups
  • the value of the second bitmap is 11 10 11 means the first group, the fourth group and the fifth group respectively. Whether tao in the group is fed back.
  • the scaling factor ⁇ can be used for normalization.
  • the scaling factor is related to the transceiver antenna pair. Each transceiver antenna pair requires a scaling factor. Based on this, the table corresponding to Table 8a above can be adaptively modified as shown in Table 13a.
  • Table 8b the table corresponding to Table 8b above can be adaptively modified as shown in Table 13b.
  • Table 8c the table corresponding to Table 8c above can be adaptively modified as shown in Table 13c.
  • Table 8d the table corresponding to Table 8d above can be adaptively modified as shown in Table 13d.
  • This application divides the communication device into functional modules according to the above method embodiments.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in this application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIGS. 9 to 11 .
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application. As shown in Figure 9, the communication device includes a processing unit 901 and a transceiver unit 902.
  • the communication device may be the sending end or chip shown above, and the chip may be applied to the sending end or the like. That is, the communication device can be used to perform the steps or functions performed by the sending end in the above method embodiments.
  • the transceiver unit 902 is used to output control information and input feedback information.
  • the processing unit 901 is used to determine control information; and output the control information through the transceiver unit 902 and input feedback information.
  • processing unit 901 can also perform processing based on the feedback information to obtain information such as the speed, distance or attenuation of the target.
  • transceiver unit and the processing unit shown in the embodiments of the present application are only examples.
  • specific functions or steps performed by the transceiver unit and the processing unit reference may be made to the above method embodiments, which will not be described in detail here.
  • the communication device may be the receiving end shown above or a chip in the receiving end, etc. That is, the communication device can be used to perform the steps or functions performed by the receiving end in the above method embodiments.
  • the transceiver unit 902 is used to input control information; the transceiver unit 902 is also used to output feedback information.
  • the processing unit 901 is used to determine feedback information according to the control information.
  • transceiver unit and the processing unit shown in the embodiments of the present application are only examples.
  • specific functions or steps performed by the transceiver unit and the processing unit reference may be made to the above method embodiments, which will not be described in detail here.
  • control information feedback information, first control information, second control information, first bit bitmap, second bit bitmap, reference sampling unit, etc.
  • the processing unit 901 may be one or more processors, the transceiving unit 902 may be a transceiver, or the transceiving unit 902 may also be a sending unit and a receiving unit.
  • the sending unit may be a transmitter
  • the receiving unit may be a receiver
  • the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the embodiment of the present application does not limit the connection method between the processor and the transceiver.
  • the process of sending information in the above method can be understood as the process of outputting the above information by the processor.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver for transmission by the transceiver. After the above information is output by the processor, it may also need to undergo other processing before reaching the transceiver. Similarly, the process of receiving information in the above method can be understood as the process of the processor receiving the input information.
  • the processor receives the incoming information
  • the transceiver receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to undergo other processing before being input to the processor.
  • the communication device 100 includes one or more processors 1020 and a transceiver 1010 .
  • the processor 1020 is used to determine the control information; the transceiver 1010 is used to send the control information to the receiving end, and receive the control information from the receiving end. end feedback information.
  • the transceiver 1010 is used to receive control information from the sending end; the processor 1020 is used to determine feedback information according to the control information; transceiver Device 1010 is also used to send feedback information to the sending end.
  • control information feedback information, first control information, second control information, first bit bitmap, second bit bitmap, reference sampling unit, etc.
  • the transceiver may include a receiver and a transmitter.
  • the receiver is configured to perform a function (or operation) of receiving.
  • the transmitter is configured to perform a function (or operation) of transmitting. ). and transceivers for communication over transmission media and other equipment/devices.
  • the communication device 100 may also include one or more memories 1030 for storing program instructions and/or data.
  • Memory 1030 and processor 1020 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 1020 may cooperate with the memory 1030.
  • Processor 1020 may execute program instructions stored in memory 1030 .
  • at least one of the above one or more memories may be included in the processor.
  • connection medium between the above-mentioned transceiver 1010, processor 1020 and memory 1030 is not limited in the embodiment of the present application.
  • the memory 1030, the processor 1020 and the transceiver 1010 are connected through a bus 1040 in Figure 10.
  • the bus is represented by a thick line in Figure 10.
  • the connection methods between other components are only schematically explained. , is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 10, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc., which can be implemented Or execute the disclosed methods, steps and logical block diagrams in the embodiments of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor, etc.
  • the memory may include but is not limited to non-volatile memories such as hard disk drive (HDD) or solid-state drive (SSD), random access memory (Random Access Memory, RAM), Erasable Programmable ROM (EPROM), Read-Only Memory (ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM), etc.
  • Memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures, and that can be read and/or written by a computer (such as the communication device shown in this application), but is not limited thereto.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • reference information that is, the sensing measurement results in the sampling unit
  • the reference information can also be stored in its memory.
  • the processor 1020 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • Memory 1030 is mainly used to store software programs and data.
  • the transceiver 1010 may include a control circuit and an antenna.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals. and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor 1020 can read the software program in the memory 1030, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1020 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1020.
  • the processor 1020 converts the baseband signal into data and performs processing on the data. deal with.
  • the radio frequency circuit and antenna can be arranged independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely and independently of the communication device. .
  • the communication device shown in the embodiment of the present application may also have more components than in Figure 10 , and the embodiment of the present application does not limit this.
  • the methods performed by the processor and transceiver shown above are only examples. For specific steps performed by the processor and transceiver, please refer to the method introduced above.
  • the processing unit 901 may be one or more logic circuits, and the transceiver unit 902 may be an input-output interface, also known as a communication interface, or an interface circuit. , or interface, etc.
  • the transceiver unit 902 may also be a sending unit and a receiving unit.
  • the sending unit may be an output interface
  • the receiving unit may be an input interface.
  • the sending unit and the receiving unit may be integrated into one unit, such as an input-output interface.
  • the communication device shown in FIG. 11 includes a logic circuit 1101 and an interface 1102 .
  • the above-mentioned processing unit 901 can be implemented by the logic circuit 1101, and the transceiver unit 902 can be implemented by the interface 1102.
  • the logic circuit 1101 can be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 1102 can be a communication interface, an input/output interface, a pin, etc.
  • FIG. 11 takes the above communication device as a chip, and the chip includes a logic circuit 1101 and an interface 1102.
  • the chips shown in the embodiments of the present application may include narrowband chips or ultra-bandwidth chips, etc., which are not limited by the embodiments of the present application.
  • the step of sending the sensing packet as shown above can be performed by the ultra-bandwidth chip. Whether the remaining steps are performed by the ultra-bandwidth chip is not limited by the embodiments of this application.
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiments of this application do not limit the specific connection methods of the logic circuits and interfaces.
  • the logic circuit 1101 is used to determine the control information; the interface 1102 is used to output the control information and input feedback information.
  • the logic circuit 1101 is also used to process feedback information and obtain information related to the target.
  • the interface 1102 is used to input control information; the logic circuit 1101 is used to determine feedback information according to the control information; the interface 1102 is also used to Output this feedback information.
  • the communication device shown in the embodiments of the present application can be implemented in the form of hardware to implement the methods provided in the embodiments of the present application, or can be implemented in the form of software to implement the methods provided in the embodiments of the present application. This is not limited by the embodiments of the present application.
  • control information feedback information, first control information, second control information, first bit bitmap, second bit bitmap, reference sampling unit, etc.
  • An embodiment of the present application also provides a wireless communication system.
  • the wireless communication system includes a sending end and a receiving end.
  • the sending end and the receiving end can be used to perform the method in any of the foregoing embodiments (as shown in Figure 3).
  • this application also provides a computer program, which is used to implement the operations and/or processing performed by the sending end in the method provided by this application.
  • This application also provides a computer program, which is used to implement the operations and/or processing performed by the receiving end in the method provided by this application.
  • This application also provides a computer-readable storage medium, which stores computer code.
  • the computer code When the computer code is run on a computer, it causes the computer to perform the operations performed by the sending end in the method provided by this application and/ or processing.
  • This application also provides a computer-readable storage medium, which stores computer code.
  • the computer code When the computer code is run on a computer, it causes the computer to perform the operations performed by the receiving end in the method provided by this application and/ or processing.
  • the computer program product includes computer code or computer program.
  • the computer code or computer program When the computer code or computer program is run on a computer, it causes the operations performed by the sending end in the method provided by this application and/or Processing is performed.
  • the computer program product includes computer code or computer program.
  • the computer code or computer program When the computer code or computer program is run on a computer, it causes the operations performed by the receiving end in the method provided by this application and/or Processing is performed.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be an indirect coupling or communication connection through some interfaces, devices or units, or may be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided by the embodiments of the present application.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a readable
  • the storage medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned readable storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc. that can store program code medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于UWB的感知测量结果反馈方法及装置,应用于基于UWB的WPAN系统如802.15系列协议中的802.15.4a协议、802.15.4z协议或802.15.4ab协议等。还可以应用于IEEE 802.11ax下一代Wi-Fi协议如802.11be,Wi-Fi 7或EHT,再如802.11be下一代,Wi-Fi 8等802.11系列协议的无线局域网系统,感知系统等。该方法包括:发送端发送控制信息,对应的,接收端接收该控制信息。然后接收端发送反馈信息,对应的,发送端接收该反馈信息。本申请提供的技术方案,能够有效节省信令开销。

Description

基于超带宽的感知测量结果反馈方法及装置
本申请要求于2022年04月20日提交中国专利局、申请号为202210418108.7、申请名称为“基于超带宽的感知测量结果反馈方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。本申请要求于2022年12月28日提交中国专利局、申请号为202211698165.1、申请名称为“基于超带宽的感知测量结果反馈方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于超带宽的感知测量结果反馈方法及装置。
背景技术
超宽带技术(ultra wideband,UWB)是一种无线载波通信技术,如可以利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。由于其脉冲比较窄,且辐射谱密度低,因此UWB具有多径分辨能力强,功耗低,保密性强等优点。
基于UWB的特点,因此可以利用UWB脉冲进行感知。在感知应用中,通过探测UWB信号在目标上的回波,可以提取与目标相关的信息如距离、角度或速度等。在感知应用的一种场景中,感知发起者是UWB信号的发射端,感知应答者是UWB回波信号的接收端,如果感知发起者需要获得感知测量结果,感知应答者就需要向感知发起者反馈感知测量结果。例如,感知应答者可以将感知测量结果全部反馈给感知发起者。
然而,以上所示的反馈方式的信令开销还可以进一步被降低。
发明内容
本申请提供一种基于UWB的感知测量结果反馈方法,有效减少了信令开销。
第一方面,本申请实施例提供一种基于超带宽的感知测量结果反馈方法,所述方法包括:
发送控制信息,所述控制信息包括第一控制信息,所述第一控制信息用于指示基于门限的反馈方式反馈感知测量结果;接收反馈信息,所述反馈信息包括信道冲击响应(channel impulsive response,CIR)参数信息,所述CIR参数信息基于所述第一控制信息对所述感知测量结果处理得到。
第二方面,本申请实施例提供一种基于超带宽的感知测量结果反馈方法,所述方法包括:
接收控制信息,所述控制信息包括第一控制信息,所述第一控制信息用于指示基于门限的反馈方式反馈感知测量结果;发送反馈信息,所述反馈信息包括信道冲击响应CIR参数信息,所述CIR参数信息基于所述第一控制信息对所述感知测量结果处理得到。
本申请实施例中,发送端通过向接收端发送控制信息,可使得接收端能够基于该控制信息对原始CIR参数进行处理,如基于门限的反馈方式获得CIR参数信息,即该CIR参数信息是基于门限的反馈方式得到的。通过对感知测量结果进行处理(如基于门限的反馈方式进行处理),获得CIR参数信息,然后再反馈CIR参数信息,可以有效减少信令开销。同时接收端基于发送端所发送的控制信息进行处理,然后接收端发送反馈信息,有效完善了基于UWB脉冲进行感知的流程,而且还有效保证了通信双方的通信效率。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一控制信息包括第一门限的信息,所述第一门限用于基于参考采样单元中的感知测量结果判定是否反馈一个或多个非参考采样单元中的感知测量结果。
结合第一方面或第二方面,在一种可能的实现方式中,第一门限用于基于参考采样单元中的感知测量结果判断是否反馈一个或多个非参考采样单元中每个非参考采样单元中的一组或多组感知测量结果。
结合第一方面或第二方面,在一种可能的实现方式中,第一门限的取值与目标的雷达发射截面积(radar cross section,RCS)成正比。
本申请实施例中,在不影响发送端获取与目标相关的信息的前提下,通过根据目标的RCS更新第一门限的取值,有效节省了CIR参数信息的信令开销。如发送端在未获得目标的RCS时,该第一门限的取值可以设置较小,如低门限或更低门限,从而使得接收端能够更全面详细地反馈感知测量结果。当发送端基于已获得的感知测量结果发现目标的RCS大于一定的阈值时,则第一门限可以设置较大,如比低门限或更低门限大。由于第一门限的取值变大了,由此一些非参考采样单元的感知测量结果可能就不需要反馈,从而有效减少了CIR参数信息的信令开销。对应的,发送端接收到反馈信息之后,即使一些非参考采样单元的感知测量结果未被反馈,发送端仍可以利用参考采样单元的感知测量结果作为未反馈的非参考采样单元的感知测量结果。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一控制信息还包括压缩方式的信息,所述压缩方式包括以下任一项:不压缩、以固定数量的采样点为单位的压缩方式(以固定数量的tap为单位的压缩方式)、以可变数量的采样点为单位的压缩方式(以可变数量的tap为单位的压缩方式)。
示例性的,不压缩指的是感知测量结果以经过采样后得到的tap的方式直接被反馈,不需要经过第一门限的判别。而以固定数量的tap为单位或以可变数量的tap为单位的压缩方式指的是经过采样后得到的一个或多个tap可以划分为一组,然后基于第一门限判别是否反馈某一组的感知测量结果。
本申请实施例中,以固定数量的采样点为单位的压缩方式,实现简单,且不影响发送端获取与目标的相关信息,还能够有效减少CIR参数的信令开销。以可变数量的采样点为单元的压缩方式,接收端进行压缩处理的自由度更高,且不影响发送端获取与目标的相关信息,还能够有效减少CIR参数的信令开销。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一控制信息还包括接收所述控制信息的通信装置的地址信息。
本申请实施例中,第一控制信息中通过包括一个或多个接收端的地址信息,可使得每个接收端能够明确获知该控制信息,从而每个接收端根据该控制信息对感知测量结果进行处理,进而反馈各自获得的感知测量结果。有效提高了通信效率。
结合第一方面或第二方面,在一种可能的实现方式中,所述反馈信息还包括与所述CIR参数信息相关的信息,与所述CIR参数信息相关的信息包括以下至少一项:与所述CIR参数信息对应的采样单元的数量、每个采样单元包括的采样点的数量、测量所述感知测量结果时采用的天线数量、是否存储有参考采样单元中的感知测量结果。
本申请实施例中,反馈信息中通过包括上述信息,可使得发送端能够明确获知CIR参数信息的解析方式,提高通信双方的通信效率。
结合第一方面或第二方面,在一种可能的实现方式中,在所述压缩方式包括以可变数量的采样点为单位的压缩方式时,所述反馈信息还包括如下信息:一个采样单元的分组数、每组的起始采样点和结束采样点;或者,所述反馈信息还包括如下信息:一个采样单元的分组数、每组的起始采样点和采样点数量。
本申请实施例中,反馈信息通过包括上述信息,可使得发送端在获得反馈信息时,能够明确获知接收端对感知测量结果的分组情况,从而快速地恢复出原始CIR参数。
结合第一方面或第二方面,在一种可能的实现方式中,所述反馈信息还包括第一比特位图的信息,所述第一比特位图中的每个比特用于指示是否反馈对应组内的感知测量结果。
结合第一方面或第二方面,在一种可能的实现方式中,所述CIR参数信息包括以下至少一项信息:路径损耗、时延、水平到达角(azimuth angle of arrival,AOA)、垂直到达角(zenith angle of arrival,ZOA)。
结合第一方面或第二方面,在一种可能的实现方式中,所述反馈信息还包括指示所述路径损耗信息的数据模式,所述数据模式包括基于幅度和相位的数据模式,或者基于同相分量和正交分量的数据模式中的至少一项。
本申请实施例中,通过指示路径损耗信息的数据模式,使得路径损耗信息的形式更加多样化,能够针对不同的应用场景,有效的选择不同的感知信息的反馈形式。示例性的,在路径损耗信息的比特位宽较小(即占用的比特长度)时,用幅度和相位的反馈精度更高。
结合第二方面,在一种可能的实现方法中,所述方法还包括:以固定数量的采样点或者以可变数量的采样点为单位对感知测量结果进行分组,获得一组或多组感知测量结果;在某一组的感知测量结果与参考采样单元内相同时延的感知测量结果的差值均小于或等于第一门限的情况下,确定不反馈所述某一组的感知测量结果;或者,在某一组的感知测量结果与参考采样单元内相同时延的感知测量结果的差值大于第一门限的情况下,确定反馈所述某一组的感知测量结果,并以所述差值反馈所述某一组的感知测量结果。
第三方面,本申请实施例提供一种通信装置,用于执行第一方面或第一方面的任意可能的实现方式中的方法。该通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,本申请实施例提供一种通信装置,用于执行第二方面或第二方面的任意可能的实现方式中的方法。该通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
在第三方面或第四方面中,上述通信装置和通信装置可以包括收发单元和处理单元。对于收发单元和处理单元的具体描述还可以参考下文示出的装置实施例。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第七方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述逻辑电路,用于通过所述接口输出控制信息,以及输入反馈信息。
可理解,逻辑电路还用于根据反馈信息进行处理,获得与目标相关的信息。与目标相关的信息如包括速度、角度或衰减等信息。
第八方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述逻辑电路,用于通过所述接口输入控制信息,以及输出反馈信息。
可理解,逻辑电路,还用于根据控制信息确定反馈信息。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十二方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十三方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十四方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十五方面,本申请实施例提供一种无线通信系统,该无线通信系统包括发送端和接收端,所述发送端用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,所述接收端用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
上述第三方面至第十五方面达到的技术效果可以参考第一方面或第二方面的技术效果或下文所示的方法实施例中的有益效果,此处不再重复赘述。
附图说明
图1a是本申请实施例提供的一种通信系统的架构示意图;
图1b是本申请实施例提供的一种通信系统的架构示意图;
图2a是本申请实施例提供的一种基于一个感知应答者的感知场景示意图;
图2b是本申请实施例提供的一种基于一个感知应答者的感知场景示意图;
图2c是本申请实施例提供的一种基于多个感知应答者的感知场景示意图;
图2d是本申请实施例提供的一种基于多个感知应答者的感知场景示意图;
图2e是本申请实施例提供的一种基于感知请求者的感知场景示意图;
图2f是本申请实施例提供的一种基于感知请求者的感知场景示意图;
图3是本申请实施例提供的一种基于UWB的感知测量结果反馈方法的流程示意图;
图4是本申请实施例提供的一种采样示意图;
图5是本申请实施例提供的时间块、时间单元和时间子单元之间的关系示意图;
图6是本申请实施例提供的感知块、感知轮和感知时隙之间的关系示意图;
图7a是本申请实施例提供的一种感知流程示意图;
图7b是本申请实施例提供的一种感知流程示意图;
图7c是本申请实施例提供的一种感知流程示意图;
图8是本申请实施例提供的一种仿真结果示意图;
图9是本申请实施例提供的一种通信装置的结构示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的一种通信装置的结构示意图;
图12a是本申请实施例提供的一种基于最早到达径作为参考进行反馈的示意图;
图12b是本申请实施例提供的一种基于最早到达径作为参考进行反馈的示意图;
图12c是本申请实施例提供的一种基于最强到达径作为参考进行反馈的示意图;
图12d是本申请实施例提供的一种基于最早到达径作为参考进行反馈的示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请提供的技术方案可以适用于基于UWB技术的无线个人局域网(wireless personal  area network,WPAN)。如本申请提供的方法可以适用于电气及电子工程师学会(institute of electrical and electronics engineers,IEEE)802.15系列协议,例如802.15.4a协议、802.15.4z协议或802.15.4ab协议,或者未来某代UWB WPAN标准中等,这里不再一一列举。本申请提供的方法还可以应用于各类通信系统,例如,可以是物联网(internet of things,IoT)系统、车联网(Vehicle to X,V2X)、窄带物联网(narrow band internet of things,NB-IoT)系统,应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。还可以适用于LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统、第六代(6th-generation,6G)通信系统等。
UWB技术是一种新型的无线通信技术。它利用纳秒级的非正弦波窄脉冲传输数据,通过对具有很陡上升和下降时间的冲激脉冲进行调制,因此其所占用的频谱范围很宽,使信号具有吉赫(GHz)量级的带宽。UWB使用的带宽通常在1GHz以上。因为UWB系统不需要产生正弦载波信号,可以直接发射冲激序列,所以UWB系统具有很宽的频谱和很低的平均功率,UWB无线通信系统具有多径分辨能力强、功耗低、保密性强等优点,有利于与其他系统共存,从而提高频谱利用率和系统容量。另外,在短距离的通信应用中,UWB发射机的发射功率通常可做到低于1mW(毫瓦),从理论上来说,UWB信号所产生的干扰仅相当于一宽带的白噪声。这样有助于超宽带与现有窄带通信之间的良好共存。因此,UWB系统可以实现与窄带(narrowband,NB)通信系统同时工作而互不干扰。本申请提供的方法可以由无线通信系统中的通信装置实现,一个通信装置中,实现UWB系统功能的模块可以被称为UWB模块(如可以用于发送UWB脉冲),实现窄带通信系统功能的模块可以被称为窄带通信模块,UWB模块和窄带通信模块可以为不同的装置或芯片等,本申请实施例对此不作限定。当然UWB模块和窄带通信模块也可以集成在一个装置或芯片上,本申请实施例不限制UWB模块和窄带通信模块在通信装置中的实现方式。
虽然本申请实施例主要以WPAN为例,尤其是应用于IEEE 802.15系列标准的网络为例进行说明。但是,本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络。例如,无线局域网(wireless local area networks,WLAN)、蓝牙(BLUETOOTH)、高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
本申请提供的方法可以由无线通信系统中的通信装置实现。该通信装置可以是UWB系统中涉及的装置。例如,该通信装置可以包括但不限于通信服务器、路由器、交换机、网桥、计算机、手机等。又例如,该通信装置可以包括中心控制点,如个人局域网(personal area network,PAN)或PAN协调者等。又例如,该通信装置可以包括用户设备(user equipment,UE),该用户设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、物联网(internet of things,IoT)设备、计算设备或连接到无线调制解调器的其它处理设备等,这里不再一一列举。又例如,该通信装置可以包括芯片,该芯片可以设置于通信服务器、路由器、交换机或用户终端中等,这里不再一一列举。
作为示例,图1a和图1b是本申请实施例提供的一种通信系统的架构示意图。图1a是本申请实施例提供的一种星型拓扑结构,图1b是本申请实施例提供的一种点对点拓扑结构。如图1a所示,在星型拓扑中,一个中心控制节点可以与一个或多个其他设备之间进行数据通信。如图1b所示,在点对点拓扑结构中,不同设备之间可以进行数据通信。图1a和图1b中,全功能设备(full function device)和低功能设备(reduced function device)都可以理解为本申请所示的通信装置。其中,全功能设备与低功能设备之间是相对而言的,如低功能设备不能是PAN协调者(coordinator)。又如低功能设备与全功能设备相比,该低功能设备可以没有协调能力或通信速率相对全功能设备较低等。可理解,图1b所示的PAN协调者仅为示例,图1b所示的其他三个全功能设备也可以作为PAN协调者,这里不再一一示出。
可理解,本申请所示的全功能设备和低功能设备仅为通信装置的一种示例,但凡通信装置能够实现本申请所提供的基于UWB的感知测量结果反馈方法,均属于本申请的保护范围。下文所示的感知发起者和感知应答者等可以是全功能设备,也可以是低功能设备,本申请对此不作限定。
作为示例,本申请实施例所示的通信装置可以包括感知发起者(initiator)、感知应答者(responder)或感知请求者(或称为感知请求设备(requesting device))。感知发起者和感知应答者是相对而言的,如感知发起者为发起感知流程的一方,则感知应答者可以为根据发起感知流程的一方所作出应答的一方。例如,感知发起者可以是UWB信号的发射端,感知应答者是UWB回波信号的接收端。又例如,感知发起者可以是UWB回波信号的接收端,感知应答者是UWB信号的发射端。感知请求者可以理解为向感知发起者发起感知请求的一方。可理解,由于感知发起者发送的UWB信号需要先到达目标,然后到达感知应答者(如UWB信号经过目标反射或散射后到达感知应答者),因此相对于感知发起者发送的UWB信号而言,感知应答者所接收到的信号可以称为UWB回波信号。可理解,为便于描述,下文也可以将把UWB信号和UWB回波信号统称为UWB信号,不做区分。本申请所示的UWB信号也可以称为感知信号或UWB脉冲等。可理解,下文所示的一个感知包可以包括一个或多个UWB脉冲(或UWB信号)。
基于以上所示的感知发起者、感知应答者和感知请求者,本申请实施例提供了以下六种场景。可理解,图2a和图2b可以理解为基于一个感知应答者的感知场景,如称为双站感知(bi-static sensing),图2c和图2d可以理解为基于多个感知应答者的感知场景,如称为多站感知(multi-static sensing)。同时,图2a和图2c中,感知发起者是UWB回波信号的接收端,感知应答者是UWB信号的发射端。图2b和图2d中,感知发起者是UWB信号的发射端,感知应答者是UWB信号的接收端。图2e和图2f可以理解为基于感知发起者、感知应答者和感知请求者参与的感知场景,如称为代理感知(sensing by proxy)。
如图2a所示,由于感知发起者是UWB回波信号的接收端,因此感知发起者可以根据该UWB回波信号获得感知测量结果,以及与目标的相关信息。由此,感知发起者与感知应答者之间无需通过空口传输反馈信息。如图2b所示,由于感知发起者是UWB信号的发射端,感知应答者是UWB回波信号的接收端,因此感知发起者需要通过感知应答者发送的反馈信息获得与目标相关的信息。如图2c所示,多个感知应答者都是UWB信号的发射端,类似的,感知发起者与多个感知应答者之间无需通过空口传输反馈信息。然而,图2d所示的场景中,感知发起者需要获得来自多个感知应答者的反馈信息。如图2e所示,感知请求者可以向发起者发送感知请求,感知应答者是UWB信号的发射端,感知发起者是UWB回波信号的接收 端,感知发起者得到反馈信息之后,需要空口传输反馈给感知请求者。如图2f所示,感知请求者向感知发起者发送感知请求,感知发起者是UWB信号的发射端,感知应答者是UWB回波的接收端,感知应答者得到反馈信息之后,需要先空口传输反馈给感知发起者,然后感知发起者通过空口传输反馈给感知请求者。
总的来说,在图2b和图2d中,感知应答者需要向感知发起者发送反馈信息,在图2e中,感知发起者需要向感知请求者发送反馈信息,在图2f中,感知应答者需要向感知发起者发送反馈信息,以及感知发起者需要向感知请求者发送反馈信息。
图2a至图2e中所示的感知包(sensing packet)可以理解为一种UWB信号,接收到该感知包的装置,可以基于该感知包获得感知测量结果。可选的,接收到感知包的装置还可以通过反馈信息反馈该感知测量结果。
在一种基于UWB的感知测量结果反馈方法中,反馈信息的格式可以如表1所示。
表1

根据表1所示的反馈信息,该反馈信息的信令开销较大,而且该反馈信息无法有效利用时间上的相似性和空间上的相关性。
鉴于此,本申请提供了一种基于UWB的测量结果反馈方法及装置,不仅可以尽可能地减少反馈信息的信令开销,而且还能够有效利用反馈信息中的参数在时间上的相似性和空间上的相关性。图3是本申请实施例提供的一种基于UWB的感知测量结果反馈方法的流程示意图。
图3所示的方法可以应用于发送端和接收端,该发送端可以理解为是发送控制信息的一端,接收端可以理解为接收控制信息的一端;或者,发送端可以理解为接收反馈信息的一端,接收端可以理解为发送反馈信息的一端。示例性的,如发送端可以包括全功能设备,接收端可以包括低功能设备;又如发送端可以包括低功能设备,接收端包括低功能设备;又如发送端包括低功能设备,接收端包括全功能设备;又如发送端和接收端都是全功能设备。示例性的,发送端可以包括图2b和图2d所示的感知发起者,接收端可以包括图2b和图2d所示的感知应答者,CIR参数的提供者为图2b和图2d所示的感知应答者。又例如,发送端可以包括如图2e所示的感知请求者,接收端可以包括如图2e所示的感知发起者,CIR参数的提供者为图2e所示的感知发起者。又例如,发送端可以包括如图2f所示的感知发起者,接收端可以包括如图2f所示的感知应答者,CIR参数的提供者为图2f所示的感知应答者或感知发起者。又例如,发送端可以包括如图2f所示的感知请求者,接收端可以包括如图2f所示的感知发起者,CIR参数的提供者为图2f所示的感知应答者或感知发起者。又例如,发送端可以包括如图2f所示的感知请求者,接收端可以包括如图2f所示的感知应答者,CIR参数的提供者为图2f所示的感知应答者。可理解,基于图2b、图2d、图2e和图2f所列举的发送端和接收端仅为示例,但凡能够实现本申请实施例提供的方法的装置均属于本申请的保护范围,因此不应将上述列举示出的发送端和接收端理解为对本申请实施例的限定。可理解,本申请是以发送端和接收端两侧来描述本申请实施例提供的方法的,但是该发送端和接收端在传输信息的过程中,还可以有其他装置的存在,如通过转发装置来转发发送端与接收端之间的信息等。因此,本申请中信息的互相传递以本领域技术人员可以完成的技术手段实现即可,本申请对于发送端和接收端之外的其他装置不作限定。
在介绍图3所示的方法之前,以下详细介绍本申请实施例涉及的采样单元和采样点。
图4是本申请实施例提供的一种采样示意图。图4示出的是基于一个感知快照(snapshot)进行采样得到的不同tap。图4所示的横坐标可以理解为从发送时间到接收时间的时延,时延的单位为纳秒(ns),纵坐标可以理解为路径损耗信息,路径损耗信息的单位为分贝(dB)。路径损耗信息可以理解为根据UWB信号从发送到接收的传输过程中的衰减得到的信息,或者,是根据UWB信号的发送功率的衰减得到的信息。例如,图4所示的路径损耗信息是根据路径损耗的实部平方和虚部平方的和确定的,如图4纵坐标的计算方法可以为10*log10(Re2+Im2)-发射信号的功率,Re可以理解为接收到的信号(接收到的信号经过采样形成tap)的实部,Im可以理解为接收到的信号的虚部。不应将其理解为对本申请实施例的限定。本申请实施例所示的tap可以携带时延和路径损耗信息,或者,tap可以同时对应路径损耗信息和时延。总的来说,snapshot和tap的关系可以理解为:反馈信息的提供者(或反馈信息的生成 者,或理解为生成反馈信息的通信装置)可以基于一个snapshot内获得的参数进行采样,从而得到多个tap。可理解,图4仅示例性地示出了tap携带时延和路径损耗信息,可选的,一个tap还可以携带ZOA和/或AOA等(图4未示出)。
示例性的,一个感知包可以对应一个snapshot。例如,接收端(如图2b和图2d所示的感知应答者等)接收到一个感知包后,可以将基于该一个感知包得到的参数确定为一个snapshot的参数。或者,snapshot也可以理解为是对一个感知包进行采样得到的tap的集合。在对一个感知快照内的参数进行采样时,可以基于一定的阈值进行采样。如图4是以大于-160dB为例进行采样,从而得到一个感知快照内的不同tap。可理解,图4所示的采样阈值仅为示例,不应将其理解为对本申请实施例的限定。可理解,本申请实施例是以一个感知包对应一个snapshot为例说明的,但是本申请还可以适用于一个感知包对应多个snapshot,或多个感知包对应一个snapshot的情况。即根据本申请实施例所示的一个感知包对应一个snapshot的情况,本领域技术人员可以适应性改变感知包与snapshot的关系。
可选的,一个snapshot内包括的tap数量可以依据采样阈值(如图4所示的-160dB)确定。可选的,当不设置采样阈值时,一个tap所对应的时长还可以是基于采样频率确定。例如,当采样频率是500MHz时,对一个snapshot进行采样,两个tap之间的间隔是2ns。本申请实施例对于一个snapshot内所包括的tap的数量不作限定。类似的,对于感知发起者所发送的感知包的数量,或感知应答者所发送的感知包的数量,本申请实施例不作限定。示例性的,感知包的数量指的是从CIR参数的提供者在得到控制信息之后,根据该控制信息得到反馈信息之前所获取的感知包。对于反馈信息中所反馈的CIR参数信息对应的snapshot的数量,本申请实施例不作限定。也就是说,本申请实施例对于下文所示的非参考采样单元的数量不作限定。
以上所示的一个snapshot可以称为一个采样单元,一个tap可以称为一个采样点、一个采样节点或一个感知采样点等,本申请下述介绍中以上述名称进行介绍,但不应理解为对本申请实施例的限定。
如图3所示,该方法包括:
301、发送端发送控制信息,对应的,接收端接收该控制信息。
控制信息包括第一控制信息,该第一控制信息用于指示基于门限的反馈方式反馈感知测量结果。控制信息可以用于控制感知测量结果的反馈方式。可选的,控制信息还可以用于控制感知测量结果的反馈周期。或者,该控制信息可以理解为与感知流程相关的控制信息。接收端可以基于该控制信息反馈感知测量结果,如感知测量结果以CIR参数信息的形式反馈。示例性的,控制信息可以包含于物理层(physical layer,PHY)协议数据单元(PHY protocol data unit,PPDU)。例如,控制信息可以承载于PPDU中的物理层服务数据单元(PHY service data unit,PSDU)中。本申请实施例对于该控制信息的具体位置不作限定。
感知测量结果可以理解为基于感知包得到的原始CIR参数(或未经压缩的CIR参数,或对snapshot采用得到的一个或多个tap)(如下文表8a所示的CIR参数示出的是未经过压缩的CIR参数),该感知包可以包括一个或多个UWB脉冲(或称为UWB信号或感知信号等)。也就是说,基于感知包,CIR参数的提供者(如可以是接收端)可以获得感知测量结果,如包括目标的路径损耗、时延、ZOA、AOA等。可理解,时延可以是相对于UWB脉冲发送时间的时延等,本申请实施例对于该时延的参考标准不作限定。
在一种可能的实现方式中,第一控制信息包括第一门限的信息,该第一门限用于基于参考采样单元中的感知测量结果判定是否反馈一个或多个非参考采样单元中的感知测量结果。 也就是说,该第一门限是用于衡量是否反馈一个或多个非参考采样单元中的感知测量结果的门限。关于第一门限的说明还可以参考下文关于压缩方式的描述,这里先不详述。
示例性的,本申请实施例所示的第一门限可以包括如表2所示的高门限、正常门限、低门限、更低门限中的任一项。如表2所示,当第一门限所在的字段取值为00时,则表示第一门限为高门限;当第一门限所在的字段取值为01时,则表示第一门限为正常门限;若第一门限所在的字段取值为10时,则表示第一门限为低门限;若第一门限所在的字段取值为11时,则表示第一门限为更低门限。可理解,表2所示的第一门限所在的字段取值与描述之间的对应关系仅为示例,不应将其理解为对本申请实施例的限定。表2所示的高门限、低门限和更低门限是相对于正常门限而言的,高门限、正常门限、低门限和更低门限仅为一种划分方式,如还可以划分为门限1、门限2、门限3和门限4;或者,第一门限a、第一门限b、第一门限c和第一门限d;或者,第一门限、第二门限、第三门限和第四门限等,这里不再一一列举。
表2
需要说明的是,表2所示的amacCirDifferenceThres可以理解为一个MAC常数。该MAC常数的具体取值可以由标准定义,或者由发送端指示等,本申请实施例对此不作限定。示例性的,该MAC常数可以等于5*10-4。可理解,本申请实施例所示的MAC常数对于所有的目标可以相同,或者,不同的目标可以有不同的MAC常数,本申请实施例对此不作限定。
在一种可能的实现方式中,第一门限的取值可以与目标的雷达发射截面积(radar cross section,RCS)成正比。例如,当目标的RCS较大时,第一门限可以设置较大(如可以是表2所示的高门限或正常门限),当目标的RCS较小时,第一门限可以设置较小(如可以是表2所示的低门限或更低门限)。可理解,上述较大和较小是相对而言,如发送端在未获得目标的RCS时,该第一门限的取值可以设置较小,如低门限或更低门限,从而使得接收端能够更全面详细地反馈感知测量结果。当发送端基于已获得的感知测量结果发现目标的RCS大于一定的阈值时,则第一门限可以设置较大,如比低门限或更低门限大。示例性的,成人的RCS可以是1平方米,宠物的RCS可以是0.1平方米,因此成人的第一门限比宠物的第一门限大。由于第一门限的取值变大了,由此一些非参考采样单元的感知测量结果可能就不需要反馈,从而有效减少了CIR参数信息的信令开销。对应的,发送端接收到反馈信息之后,即使一些非参考采样单元的感知测量结果未被反馈,发送端仍可以利用参考采样单元的感知测量结果作为未反馈的非参考采样单元的感知测量结果。也就是说,在不影响发送端获取目标的相关信息的前提下,通过根据目标的RCS更新第一门限的取值,有效节省了CIR参数信息的信令开销。
在一种可能的实现方式中,第一控制信息还包括压缩方式的信息,所述压缩方式包括以下任一项:不压缩、以固定数量的采样点为单位的压缩方式、以可变数量的采样点为单位的压缩方式。
表3

表3所示的以固定数量的采样点为单位,或者,以可变数量的采样点为单位,指的是在根据第一门限判定是否反馈非参考采样单位中的感知测量结果时,可以以固定数量的采样点(或以可变数量的采样点)为单位衡量是否反馈一个单位内的感知测量结果。如表4所示,如果反馈该一个单位内的感知测量结果,则可以通过参考采样单元中的感知测量结果对该一个单位内的感知测量结果进行压缩,如基于参考采样单元中的感知测量结果(如某一个参数)与该一个单位内对应时延的感知测量结果(如相同的参数)进行差分(指的是同一个参数的差分),得到差分的感知测量结果(也可以理解为该一个单位内的感知测量结果与参考采样单元中相同时延的感知测量结果的差值),从而包含于CIR参数信息中。可理解,表4与表3可以理解为以不同方式描述的压缩方式的表格,表4可以理解为是在表3的基础上进一步详细描述压缩方式。
表4
为便于描述,下文将以一个单位内的感知测量结果称为一组感知测量结果,也就是说以固定数量的采样点为单位,可以将一个采样单位内的感知测量结果进行分组,从而得到多组感知测量结果。如果感知测量结果包括路径损耗信息和时延,则多组感知测量结果也可以称为多组tap,每组tap中的tap数量可以是固定的,也可以是可变的。当然,感知测量结果还可以包括AOA和ZOA(测量感知测量结果时采用的天线数为两个或两个以上),该情况下,即使多组感知测量结果中包括路径损耗信息、时延、AOA和ZOA,但是,仍可以利用tap(即时延和路径损耗)来衡量是否反馈这一组内的所有参数。
可理解,由于非参考采样单元中的感知测量结果可能大于参考采样单元中对应时延的感知测量结果,也可能小于参考采样单元中对应时延的感知测量结果,因此差分的感知测量结果可以包括正负之分。从而,可使得发送端能够准确地基于该差分的感知测量结果以及参考采样单元中的感知测量结果恢复出非参考采样单元中的感知测量结果。
以下结合第一门限和压缩方式进行说明。
作为一个示例,若某一个组内的每个tap与参考采样单元中相同时延的tap的差值均小于第一门限,则不反馈该某一个组内的所有tap,或者,不反馈该某一个组内的所有感知测量结果(如包括路径损耗信息和时延,或还可以包括AOA和ZOA),或者,可以称为不反馈该某一个组内的每个tap与参考采样单元中相同时延的tap的差值。也就是说,在确定不反馈该某一个组内的感知测量结果时,即使CIR参数信息中不包括该某一个组内的感知测量结果的信息,发送端仍可以通过参考采样单元中的感知测量结果预估出该某一个组内的感知测量结果(如可以用参考采样单元中的感知测量结果替代该某一个组内的感知测量结果),从而不仅可以有效减少信令开销,而且还不影响发送端获得与目标相关的信息。
可理解,本申请实施例所示的某一个组内的每个tap与参考采样单元中相同时延的tap的差值中的“差值”可以指的是路径损耗的差值,或可以是路径损耗的实部之间的差值,或可以是路径损耗的虚部之间的差值,或可以是根据Re2+Im2确定的差值(如图4)所示,这里不再一一列举。本申请实施例对于这个差值的具体计算方式不作限定。
需要说明的是,虽然发送端是通过参考采样单元中的感知测量结果预估出该某一个组内的感知测量结果,但是仍不会影响发送端获得与目标相关信息的精度。原因在于:即使是通过不压缩的方式反馈感知测量结果,也会有数据的量化处理,该情况下发送端所获取的CIR参数信息是经过量化处理之后的数据。通过本申请实施例所示的第一门限的判定,利用参考采样单元中的感知测量结果替代上述所示的某一个组内的感知测量结果所带来的误差会小于量化处理产生的误差,由此不会降低发送端获得与目标相关的信息的精度,以及还能达到信令开销的目的。
作为另一个示例,若某一个组内的某个tap与参考采样单元中相同时延的tap的差值大于第一门限,则反馈该某一个组内的所有tap与参考采样单元中相同时延的tap的差值,或反馈该某一个组内的所有感知测量结果的差值(即上述某一个组内的某个tap与参考采样单元中相同时延的tap的差值)。即但凡一个组内有一个tap与参考采样单位中相同时延的tap的差值大于第一门限,就可以确定反馈这一个组内的所有感知测量结果。通过差值的方式反馈需要反馈感知测量结果,可以有效节省信令开销。
作为又一个示例,若某一个组内只有少量的tap与参考采样单元中相同时延的tap的差值大于第一门限,则可以只反馈这一个组内少量的tap。如某一个组内上述所示的差值大于第一门限的tap数量小于或等于5,则可以只反馈这5个tap,该某一个组内的其他tap可以不反馈。在确定反馈某一个组内的感知测量结果时,可以以差值的方式反馈该某一个组内的少量tap(或少量tap对应的感知测量结果),从而可以有效减少CIR参数信息的信令开销。
举例来说,如以图4所示的一个采样单元为例,假设图4所示的采样单元为非参考采样单元,如横坐标31ns处的路径损耗与参考采样单元中横坐标31ns出的路径损耗的差值与第一门限进行对比,如果差值小于或等于第一门限,则可以不反馈横坐标31ns所在组内的所有tap(即在感知测量结果包括路径损耗和时延时不反馈路径损耗和时延),或者不反馈横坐标31ns所在组内的每个tap对应的感知测量结果(即在感知测量结果包括路径损耗、时延、AOA和ZOA时,不反馈路径损耗、时延、AOA和ZOA)等。
可理解,一个组内所包括的tap数量的具体取值,本申请实施例不作限定。本申请实施例对于上述所示的差值等于第一门限时,是否反馈某一个组内的感知测量结果不作限定。也就是说,若某一个组内的某个tap与参考采样单元中相同时延的tap的差值等于第一门限,则可以不反馈该某一个组内的所有tap与参考采样单元中相同时延的tap的差值,或者,也可以反馈该某一个组内的所有tap与参考采样单元中相同时延的tap的差值。
在一种可能的实现方式中,第一控制信息还包括接收控制信息的通信装置的地址信息。
本申请实施例中,接收控制信息的通信装置即接收端的数量可以是一个或多个。第一控制信息中通过包括一个或多个接收端的地址信息,可使得每个接收端能够明确获知该控制信息,从而每个接收端根据该控制信息对感知测量结果进行处理,进而反馈各自获得的感知测量结果。有效提高了通信效率。
举例来说,表5是本申请实施例提供的一种控制信息的内容示意。表5所示的内容还可以理解为控制信息中的一个信息单元(information element,IE),对于该控制信息中是否包括其他IE,本申请实施例不作限定。示例性的,表5所示的IE可以称为感知CIR反馈控制IE(sensing CIR feedback control IE)。如表5所示,该感知CIR反馈控制IE可以包括单元标识(也可以称为元素ID)(element ID)、地址大小指示(address size specifier)、应答者数目(responder number)和第一控制信息。该第一控制信息还可以称为CIR反馈控制参数(CIR feedback control parameter)。该第一控制信息中的内容可以如表6所示。如表6所示,设备地址可以理解为上文所示的接收端的地址;CIR反馈门限所在的字段可以理解为上文所示的第一门限所在的字段,如表2;压缩方式所在的字段可以理解为上文表3或表5所示的字段。
表5
表6
示例性的,如表5所示,单元ID可以用于指示该感知CIR反馈控制IE的ID。地址大小指示可以用于指示设备地址所指示的字节数,如果该地址大小指示所在字段的取值为0,则可以表示设备地址使用2字节的短地址,如果该地址大小指示所在字段的取值为1,则可以表示设备地址使用8字节的扩展地址。应答者数目可以表示接收端的数目,如对于图2b和图2d来说,应答者指的是参与感知过程的感知应答者数目;如对于图2e来说,应答者指的是感知发起者的数目;如对于图2f来说,应答者可以是感知发起者的数目,也可以是感知应答者的数目。第一控制信息可以包括每一个应答者所需要的CIR反馈控制的参数,也就是说,该第一控制信息中可以包括每一个应答者所需要的第一门限、压缩方式等控制参数。示例性的,如表6所示,设备地址可以用于指示应答者设备的地址,CIR反馈门限的取值可以参考表2。CIR参考信息请求可以理解为上文所示的参考采样单元内的感知测量结果的请求,如CIR参考信息请求所在的字段取值为0,则表示应答者不需要反馈参考采样单元内的感知测量结果(也可以称为CIR参考信息),如CIR参考信息请求所在的字段取值为1,则表示应答者需要反馈参考采样单元内的感知测量结果。压缩方式的取值可以参考表3或表4,这里不再一一详述。
需要说明的是,当目标的运动速度较大时,可以更频繁地更新参考采样单元内的感知测量结果,当目标运动速度较慢时,可以降低参考采样单元内的感知测量结果的更新频率。也 就是说,在发送端发现目标的运动速度大于某一阈值时,发送端可以将CIR参考信息请求的取值设置为1,从而请求接收端更新参考采样单元内的感知测量结果;当目标的运动速度小于某一阈值时,发送端可以将CIR参考信息请求的取值设置为0,从而表示接收端不需要更新参考采样单元内的感知测量结果。可理解,当目标的运动速度较大时,原始CIR参数的变化也比较大,通过更频繁地更新参考采样单元内的感知测量结果即CIR参考信息,可以减少本申请实施例所示的差值即差分信息的动态范围,从而实现用较少比特数表达差分信息的目的。
302、接收端发送反馈信息,对应的,发送端接收该反馈信息。
该反馈信息包括CIR参数信息,该CIR参数信息基于第一控制信息对感知测量结果处理得到。该CIR参数信息指的是基于第一控制信息对原始CIR参数处理得到的信息。例如,该CIR参数信息可以是基于第一控制信息对原始CIR参数进行量化处理后得到的信息。又例如,该CIR参数信息可以是基于第一控制信息对原始CIR参数进行量化及压缩处理后得到的信息。
可理解,当接收端接收到反馈信息之后,可以基于反馈信息获得目标的距离、速度或衰减等信息。反馈信息可以是针对一个目标的信息,也可以是针对多个目标的信息,本申请实施例对此不作限定。例如,接收端接收到反馈信息之后,可以解析与目标相关的参数,从而获得一个或多个目标的信息。
在一种可能的实现方式中,反馈信息还包括与CIR参数信息相关的信息,与CIR参数信息相关的信息包括以下至少一项:
与CIR参数信息对应的采样单元的数量、每个采样单元包括的采样点的数量、测量感知测量结果时采用的天线数量、是否存储有参考采样单元中的感知测量结果。
示例性的,通过包括与CIR参数信息对应的采样单元的数量以及每个采样单元包括的采样点的数量,可使得发送端获知其所获得的CIR参数信息所对应的采样点总数。可选的,如果是以固定数量的采样点为单位进行分组,则发送端还可以获得总共的分组数。示例性的,通过包括测量感知测量结果时采用的天线数量,可使得发送端能够从CIR参数信息中准确地区分出不同天线所获得的感知测量结果。示例性的,通过包括是否存储有参考采样单元中的感知测量结果(也可以称为参考信息或CIR参考信息等),可使得发送端能够结合该信息在下一次的控制信息中指示更新参考采样单元内的感知测量结果(或指示更新CIR参考信息)。
示例性的,以上所示的各个信息可以以字段的形式存在于反馈信息中。表7所示的内容可以包含于反馈信息中的CIR反馈报告IE(CIR feedback report IE)中。对于该反馈信息中是否包括其他IE,本申请实施例不作限定。
表7

可理解,对于图2b、图2d和图2f来说,提供者指的是感知应答者,对于图2e来说,提供者指的是感知发起者。对于图2b和图2d来说,请求者指的是感知发起者,对于图2e来说,请求者指的是感知请求者,对于图2f来说,请求者可以是感知发起者,也可以是感知请求者。例如,当感知应答者已经获知感知请求者的地址时,该请求者可以是感知请求者;当感知应答者不知道感知请求者的地址时,该请求者可以是感知发起者。
需要说明的是,表7所示的本地CIR参考状态的取值会影响下一个控制信息中CIR参考信息请求的取值。例如,当本地CIR参考状态为0时,下一个控制信息中CIR参考信息请求只能取1,即表示请求接收端更新CIR参考信息。当本地CIR参考状态为1时,下一个控制信息中CIR参考信息请求可以根据实际需求设置为0或者1。本申请实施例中,通过增加该 “握手”形式的CIR参考信息请求字段和本地CIR参考状态字段,可以增强通信的可靠性,提供通信双方的通信效率。
关于CIR反馈报告参数的说明可以参考表8a至表8d。可理解,表8a至表8d是以路径损耗信息为例示出的,但是在接收端反馈CIR参数信息时,还可以包括时延、AOA和ZOA等,下文不再一一示出。示例性的,在采样单元1中的采样点1的CIR中还可以包括时延(即相对于发送时间的时域)、snapshot1中的tap1的差分AOA和snapshot1中的tap1的差分ZOA,这里不再一一列举。
可理解,表7所示的各个字段的取值与各个字段的取值所对应的含义之间的描述仅为示例,不应将其理解为对本申请实施例的限定。例如,对于提供者地址大小指示字段和请求者地址大小指示字段也可以有如下说明:如果是1,则指示用2字节的短地址;如果是0,则指示用8字节的扩展地址。同时,压缩方式所在字段的取值与每个取值对应的压缩方式之间的关系也可以与表3或表4不同,这里不再一一列举。
在一种可能的实现方式中,当压缩方式的取值为00时,CIR参数信息可以如表8a所示。即表8a是不压缩为例示出的,如表8a中的CIR参数信息是对snapshot内获得的参数经过采样得到的tap,且该tap不需要经过第一门限的判别。
表8a
表8a所示的各个参数以及比特长度仅为示例,不应将其理解为对本申请实施例的限定。可理解,以上所示的N_snapshot、N_tap均为正整数。
在一种可能的实现方式中,反馈信息还包括第一比特位图的信息,该第一比特位图中的每个比特用于指示是否反馈对应组内的感知测量结果。也就是说,在对感知测量结果进行分组后,可以以比特位图的方式指示是否反馈对应组的感知测量结果。例如,第一比特位图中的某个比特的取值为1,则表示未反馈该某个比特对应的组内的感知测量结果,同时,该对 应的组内的感知测量结果与参考采样单元中相同时延的感知测量结果的差值均小于第一门限。又例如,第一比特位图中的某个比特的取值为0,则表示反馈该某个比特对应的组内的感知测量结果,同时,该对应的组内至少有一个tap与参考采样单元中相同时延的tap的差值大于第一门限(也可以称为该对应的组内至少有一个tap与参考采样单元相应tap的差值大于第一门限)。
示例性的,当压缩方式的取值为01时,CIR参数信息可以如表8b所示。
表8b

可理解,表8b所示的第一比特位图的比特长度可以根据表7所示的每个snapshot中的tap数目以及表8b所示的每组中的Tap数来确定,如第一比特位图的比特长度=每个snapshot中的tap数目/每组中的Tap数。
可理解,表8b所示的参考采样单元是以snapshot1为例示出的,但是,不应将其理解为对本申请实施例的限定。如参考采样单位还可以是snapshot2或snapshot3等,即CIR参考信息可以是snapshot1的CIR参数,也可以是其他snapshot的CIR参数。可选的,表8b所示的snapshot1包括的N_tap个tap可以按照固定数量的tap为单位进行分组,也可以不进行分组,本申请实施例对此不作限定。表8b所示的snapshot1的CIR参数是以不分组为例示出的,因此表8b中分别示出了snapshot1中的N_tap个tap,表8b所示的snapshot2的CIR参数需要以固定数量的tap数为单位进行分组,因此表8b未一一展示出shapshot2包括的N_tap个tap。
表8b所示的CIR参数信息中是以包括CIR参考信息(即参考采样单位的感知测量结果)为例示出的。示例性的,表8b所示的CIR参数信息中还可以不包括CIR参考信息,该情况下,可以以上一个有CIR参考信息的反馈信息中的CIR参考信息作为本次反馈信息中的CIR参考信息。如果本次反馈不需要CIR参考信息(即CIR参数信息中不包括CIR参数信息),则snapshot 1也按照其他snapshot的方式反馈感知测量结果,即以差值的方式反馈snapshot 1内的感知测量结果。可理解,关于CIR参考信息的说明,表8c和表8d同样适用,下文不再一一赘述。
在一种可能的实现方式中,在压缩方式包括以可变数量的采样点为单位的压缩方式时,反馈信息还包括如下信息:一个采样单元的分组数、每组的起始采样点和结束采样点;或者,反馈信息还包括如下信息:一个采样单元的分组数、每组的起始采样点和每组的采样点数量。也就是说,通过包括上述信息,可使得发送端在获得反馈信息时,能够明确获知接收端对感知测量结果的分组情况,从而快速地恢复出原始CIR参数。
示例性的,当压缩方式的取值为10时,CIR参数信息可以如表8c所示。
表8c

需要说明的是,表8c是以一个snapshot被划分为M组为例示出的,该M为正整数。在对snapshot进行采样时,由于接收端适用的采样频率固定,因此snapshot中每个tap的时延是确定的。由此,本申请上文所示的差值通俗的可以理解为:一个时延的Tap与作为CIR参考信息的snapshot中该时延的Tap的差值。表8c所示出的snapshot1的分组方式同样适用于剩余的M-1个snapshot的分组方式。也就是说,假设在一个反馈信息中,所有snapshot的tap分组方式保持不变。或者,本次反馈信息中的snapshot的tap分组方式可以与上一个有CIR 参考信息的反馈信息中的CIR参考信息的tap分组方式相同。
可选的,反馈信息还包括第二比特位图的信息,该第二比特位图中的每个比特用于指示是否反馈对应tap的感知测量结果。在步骤301的相关说明中有如下方法:若某一个组内只有少量的tap与参考采样单元中相同时延的tap的差值大于第一门限,则可以只反馈这一个组内少量的tap。该情况下,第一比特位图中与该某一个组对应的比特的取值可以为1,即该某一个组中的所有tap与参考采样单元中相应Tap的差值至少有一个大于第一门限。第二比特位图中的每个比特可以用于指示是否该某一个组内的对应tap的感知测量结果。上述第一比特位图的比特长度是基于总的分组数确定的,或者,上述第一比特位图的比特长度可以是基于每个采样单元中的采样点数以及每组tap数确定的。第二比特位图的比特长度可以基于压缩方式确定:如以固定数量的采样点为单位的压缩方式时,第二比特位图的比特长度可以是固定数量;又如以可变数量的采样点为单位的压缩方式时,第二比特位图的比特长度可以依据每个snapshot分组时的每组tap数确定。通过增加第二比特位图,可以以第二比特位图的少量比特简化每个snapshot内的CIR参数信息所占用的比特,从而可以进一步减少信令开销。可理解,本申请实施例所示的第二比特位图可以适用于表8b和表8c,只是下文示例性地以表8c为例示出了第二比特位图,但是不应将其理解为对本申请实施例的限定,比如可以根据表8b,适应性的修改后加入第二比特位图,在此不再一一展示。
示例性的,当压缩方式的取值为10时,CIR参数信息可以如表8d所示。关于表8d的说明,可以参考表8c等,这里不再一一详述。
表8d


可理解,第一比特位图中比特取值为1的比特对应的组可以有第二比特位图,因此表8d仅示例性地是以snapshot2中的组1和组M在第一比特位图对应比特取值为1示出的,但是,不应将其理解为对本申请实施例的限定。
可理解,本申请表8a至表8d所示的CIR参数信息可以以幅度和相位的方式指示路径损耗信息,或者,以同相分量和正交分量的方式指示路径损耗信息,本申请实施例不作限定。可选的,反馈信息中还可以包括指示路径损耗信息的数据模式的信息。例如,指示路径损耗信息的数据模式所在字段的取值为0,则表示以同相分量和正交分量的形式反馈路径损耗信息(也可以称为以实部和虚部的形式反馈路径损耗信息),指示路径损耗信息的数据模式所在字段的取值为1,则表示以振幅和相位的形式反馈路径损耗信息。
反馈信息中通过包括指示路径损耗信息的数据模式的信息,可以使得路径损耗信息的形式更加多样化,能够针对不同的应用场景,有效的选择不同的感知信息的反馈形式。示例性的,在路径损耗信息的比特位宽较小(即占用的比特长度)时,用幅度和相位的反馈精度更高。
需要说明的是,在反馈信息中包括第二比特位图时,该反馈信息中还可以不包括第一比特位图。示例性的,当第二比特位图中的全部比特取值都为0时,则可以指示未反馈该第二比特位图对应的组的感知测量结果。如果某一个第二比特位图的全部比特取值都为0,则发送端可以继续读取后续组对应的第二比特位图。示例性的,当第二比特位图中有一个或多个比特的取值为1,则表示反馈该第二比特位图对应的组的感知测量结果。也就是说,发送端可以根据第二比特位图获知与每个第二比特位图对应的组是否反馈了感知测量结果。
当然,为便于发送端获知反馈信息中包括的是第一比特位图和第二比特位图,可选的,反馈信息中还可以包括用于指示反馈信息中所包括的比特位图的信息,即通过该信息可以指示反馈信息中包括第一比特位图;或者,包括第二比特位图;或者,包括第一比特位图和第二比特位图。这里不再一一展示。
表9是本申请实施例提供的当压缩方式包括不压缩和以固定数量的采样点为单位的压缩方式时的对比示意。选取办公室环境下,以一把移动的椅子作为感知目标。使用上述两种压 缩方式对10个snapshot的感知测量结果进行上报。如表9所示,压缩方式为不压缩时,这10个snapshot内的感知测量结果需要3000字节的长度(每个Tap的实部和虚部均用12比特表示),压缩率为1,即不压缩。压缩方式为以固定数量的采样点为单元的压缩方式时(此仿真中每组Tap只包含1个,参考Tap的实部和虚部均用12比特表示,差分信息的实部差值和虚部差值均用8比特表示),当第一门限为10-5(即1e-5)时,这10个snapshot内的感知测量结果需要985字节的长度,压缩率为0.3283;当第一门限为5*10-5(即5e-5)时,这10个snapshot内的感知测量结果需要550字节的长度,压缩率为0.1833。压缩率越低,则表示反馈CIR参数时使用的比特开销就越小。从表9可以看出,本申请提供的方法有效减少了CIR参数的信令开销。
表9
图8是本申请实施例提供的一种仿真结果示意图。在这个仿真图中(仿真的条件和表9一致),黑色圆圈的线表示没有压缩(如图8所示的No compression)的情况,黑色星号的线表示采样固定数量的采样点的压缩方式,如每组tap的个数为1,门限为1e-5。图8所示的感知测量结果是通过单天线测量得到的。当压缩方式为无压缩时,横坐标表示实部和虚部的位宽,也可以理解为同相分量(in-phase component)和正交分量(quadrature component)的位宽(IQ bitwidth),当采用采样固定数量的采样点的压缩方式时,横坐标表示差分信息的实部和虚部的位宽,或者差分信息的同相分量和正交分量的位宽(如图8所示的Reference IQ bitwidth)。本方案中的参考信息采用12比特。纵坐标表示最大量化误差(maximum quantization error)。从图8中可以看到,当采用12比特量化时,无压缩方案的最大量化误差为2e-5,而本方案采用8比特表示差分信息的实部和虚部的位宽时,最大量化误差为1.6e-5。因此,本方案在没有增加量化误差的基础上,大幅降低了反馈开销。
本申请实施例中,发送端通过向接收端发送控制信息,可使得接收端能够基于该控制信息对原始CIR参数进行处理,如基于门限的反馈方式获得CIR参数信息,即该CIR参数信息是基于门限的反馈方式得到的。通过对感知测量结果进行处理(如基于门限的反馈方式进行处理),获得CIR参数信息,然后再反馈CIR参数信息,可以有效减少信令开销。同时接收端基于发送端所发送的控制信息进行处理,然后接收端发送反馈信息,有效完善了基于UWB脉冲进行感知的流程,而且还有效保证了通信双方的通信效率。
图3所示的方法中,在一种可能的实现方式中,控制信息还包括第二控制信息,该第二控制信息可以包括指示一个时间单元中包括的时间子单元的个数的信息。该一个时间单元可以理解为一个控制信息和一个反馈信息的交互时长。或者,接收端完成一次独立的感知测量以及反馈信息的上报的过程可以称为一个时间单元。或者,一个时间单元可以理解为发送端发起感知流程,以及获得反馈信息的一段时长。示例性的,一个时间单元可以包括多个时间子单元。也就是说,多个时间子单元可以组成一个时间单元。例如,一个时间单元可以包括T个时间子单元,T为正整数。
作为示例,时间子单元的个数可以用于指示反馈信息的周期,如时间子单元的个数与反馈信息的周期成正比。作为示例,时间子单元的个数还可以用于指示反馈信息的发送时间, 如反馈信息的发送时间可以位于一个时间单元中的最后一个或多个时间子单元中。作为示例,时间子单元的个数还可以用于指示发送端和接收端执行的感知流程的周期。举例来说,时间单元还可以称为感知时间单元或感知轮(sensing round),时间子单元还可以称为感知时间子单元或感知时隙(sensing slot)。本申请实施例对于该时间单元和时间子单元的具体名称不作限定。可理解,下文关于感知轮的说明同样适用于感知时间单元,感知时隙的说明同样适用于感知时间子单元。
由于发送端和接收端可以执行多次感知流程,因此本申请实施例中还提供了时间块。如图5所示,一个时间块可以包括N个时间单元,N为正整数,一个时间单元可以包括M个时间子单元。可理解,时间块还可以称为感知时间块或基于UWB的感知时间块或感知块(sensing block)等,本申请实施例对于该时间块的具体名称不作限定。为便于描述,下文将以图6所示的感知块、感知轮和感知时隙为例说明本申请实施例提供的方法。可理解,关于图6的说明可以参考图5。
示例性的,感知块可以是专门用于感知的一段时间,每个感知块可以分为若干个感知轮,每个感知轮可以用于完成一次独立的感知测量以及结果上报。以及每个感知轮可以分为若干个感知时隙,每个感知时隙可以用于传输至少一个感知包(用于感知)。一个感知时隙可以对应一个或多个感知包,由此,接收端可以在一个感知轮中多次对目标进行感知。基于感知包,接收端可以获得路径损耗信息、时延、AOZ、AOA等信息。可理解,每个感知包可以包括一个或多个UWB脉冲。
示例性的,第二控制信息的内容可以如表10a所示。如表10a所示,第二控制信息可以包括感知块的持续时间、感知轮的持续时间、感知时隙的持续时间和脉冲重复频率(pulse repetion frequency,PRF)。每个感知时隙的持续时间可以相同,每个感知轮的持续时间可以相同。本申请实施例所示的持续时间还可以称为时长或持续时长或时间长度等。通过感知块的持续时间和感知轮的持续时间,可以获知一个感知轮中包括的感知块的个数,如图6所示,一个感知块中可以包括N个感知轮,N为正整数。通过感知轮的持续时间和感知时隙的持续时间,可以获知一个感知轮中包括的感知时隙的个数,如图6所示,一个感知轮中可以包括T个感知时隙,T为正整数。
表10a
结合图3所示的方法,上述反馈信息所反馈的感知测量结果可以是接收端在一个感知轮中对目标进行感知所获得的感知测量结果。即反馈信息所反馈的可以是本次感知轮内所获得的感知测量结果。本次感知轮内所反馈的反馈信息可以包括本次感知轮中的参考采样单元内的感知测量结果,如可以将snapshot1内的感知测量结果作为本次感知轮内反馈的感知测量结果的参考信息。或者,本次感知轮内所反馈的反馈信息可以不包括参考采样单元内的感知测 量结果,如以上一轮感知轮内所反馈的反馈信息中所包括的参考采样单元内的感知测量结果作为本次感知轮内所反馈的感知测量结果的参考信息。
结合图3所示的方法,上述反馈信息所反馈的感知测量结果还可以是接收端在多个感知轮中对目标进行感知所获得的感知测量结果。也就是说,接收端可以将多个感知轮内的感知测量结果通过一个反馈信息反馈。该情况下,该反馈信息中也可以包括参考信息或不包括参考信息,这里不再一一详述。
由于在每个感知轮中发送端都会发送控制信息,因此第二控制信息中还可以包括指示本次感知轮是否反馈感知测量结果的信息。通过指示本次感知轮是否反馈感知测量结果,可使得接收端有效获知本次感知轮是否反馈感知测量结果。如果本次感知轮不需要反馈感知测量结果,则接收端可以先缓存本次感知轮的感知测量结果,在接收到需要反馈感知测量结果的指示时,将未反馈的感知测量结果在一个反馈信息中反馈给发送端。由此,表8a至表8d中,还可以增加感知轮的指示,如表8a至表8d中最左边可以替换为:感知轮N_round的snapshot N_snapshot的tap N_tap的CIR,Num_round表示感知轮的个数,N_snapshot表示每个感知轮中的snapshot的个数,N_tap表示每个snapshot中的tap个数。假设,每个感知轮包括的snapshot个数相同,每个snapshot包括的tap个数相同。
示例性的,结合表10a以及上述指示本次感知轮是否反馈感知测量结果的信息,第二控制信息可以如表10b所示。
表10b
可理解,表10b中的最后两行是并列的方案,在某一个确定的反馈信息中仅采用其中一种方案即可,并非是两者都要存在的意思。如当CIR更新指示所在字段的取值为00时,这两个方案均表示反馈CIR的差分信息,也就是说,反馈信息中不需要包括参考采样单元的感知测量结果,即以上一个有参考信息的反馈信息中的参考信息为本次反馈信息的参考信息。 CIR更新指示为00时,测量报告阶段如图7b所示。反馈信息中通过差分信息来指示接收端所获取的感知测量结果,如CIR参数信息是基于早于反馈信息之前的反馈信息中的参考信息和原始CIR参数确定的。
如当CIR更新指示所在字段的取值为01时,这两个方案均表示反馈CIR的差分信息和差值。CIR更新指示为01时,测量报告阶段如图7c所示。反馈信息中通过差分信息和参考信息来指示接收端所获取的感知测量结果,如CIR参数信息是基于该反馈信息中的参考信息和原始CIR参数确定的。
在CIR更新指示所在字段的取值为00或01时,对应的压缩方式可以包括基于门限的压缩方式、基于snapshot的压缩方式或基于簇(clustering)的压缩方式中的任一项。同时,表6所示的第一控制信息中还可以增加指示基于门限的压缩方式、基于snapshot的压缩方式或基于簇(clustering)的压缩方式中的任一项的信息。如增加的信息指示为基于门限的压缩方式时,第一控制信息可以如表6所示;如增加的信息指示为基于snapshot的压缩方式或基于簇的压缩方式时,本申请实施例对于第一控制信息的其他内容不作限定。如当CIR更新指示所在字段的取值为10时,这两个方案均表示本次感知轮不反馈CIR,即表示控制信息所在的感知轮中可以不反馈感知测量结果。如当CIR更新指示所在字段的取值为11时,第一个方案可以预留,第二个方案表示本次感知轮使用的压缩方式为基于门限的压缩方式。由此,对应的第一控制信息可以如表6所示。
示例性的,基于snapshot的压缩方式有如下说明:
举例来说,可以将一个或多个天线中的某个天线需要反馈的一个或多个感知轮中的任一个感知轮中的某一个snapshot作为参考采样单元(如测量感知测量结果时采用的天线中的第一个天线的snapshot1),该参考采样单元中的参数信息作为参考信息。举例来说,接收端通过多个天线接收UWB信号,以及其需要反馈本次感知轮(如一个感知轮)内的感知测量结果,由此,接收端可以将某个天线需要反馈的本地感知轮中的第一个snapshot内的感知测量结果作为参考信息。其他snapshot内的感知测量结果与参考信息的差值作为差分信息。
示例性的,基于簇的压缩方式有如下说明:
将所有snapshot的CIR进行分簇,如可以根据动态范围、K均值(K-mean)或有噪环境下基于密度的空间分簇方法应用(density-based spatial clustering of applications with noise,DBSCAN)对路径损耗信息进行分簇,本申请实施例对于分簇的具体实现方式不作限定。然后,在每一个簇中选择一个tap(即reference Tap)作为参考采样单元,该参考采样单元内的感知测量结果作为参考信息,每一簇内的其余tap(即Normal Tap)与作为参考信息的tap的差值(指的是对应tap的参数的差值),作为差分信息。举例来说,可以在簇1中选择一个tap作为该簇1的参考信息,从而将簇1中的其他tap与参考tap进行差分,以及,在簇2中选择一个tap作为簇2的参考信息,从而将簇2中的其他tap与参考tap进行差分,这里不再一一列举。
图7a是本申请实施例提供的在感知轮中执行感知流程的一种示意图。如图7a所示,在感知控制阶段(sensing control phase),发送端可以向接收端发送控制信息(也可以称为感知控制信息(sensing control message);在感知阶段(sensing phase),发送端可以向接收端发送多个感知包;在测量报告阶段(measurement report phase),接收端可以向发送端发送反馈信息(也可以称为测量信息或测量报告信息等)。其中,感知控制阶段可以对应一个或多个感知时隙,感知阶段可以对应多个感知时隙,测量报告阶段可以对应一个或多个感知时隙。图7a中的P为小于Q的正整数,Q为小于M的正整数。例如,P+1小于Q,且Q+1小于或等于 M-1。
在一种可能的实现方式中,当目标的运动速度较快时,接收端可以更频繁地进行反馈,以方便发送端能够及时获取与目标相关的信息。当目标的运动速度较慢时,可以降低感知测量结果的反馈频率。由于反馈信息需要在一个感知轮中的最后一个或最后多个感知时隙中反馈,因此可以通过控制信息中一个感知轮所包括的感知时隙的个数指示反馈信息的周期或反馈信息的反馈频率。感知时隙的个数与反馈信息的周期成正比,感知时隙的个数与反馈信息的反馈频率成反比。感知时隙的个数越多,则表示反馈信息的周期越长,或者,反馈信息的反馈频率越低。
举例来说,当发送端需要接收端更频繁地反馈感知测量结果时,控制信息中所指示的一个感知轮中包括的感知时隙的个数可以减少,从而使得反馈信息的周期变短或反馈信息的反馈频率增加。示例性的,发送端可以通过一定的检测算法获得反馈信息的周期与目标的变化频率之间的关系,从而其在接收到反馈信息之后,根据检测算法确定后续反馈信息的反馈周期。
以上所示的各个实现方式,其中一个方式中未详细描述的地方可以参考其他方式,这里不再一一详述。同时,以上所示的各个实现方式可以相互结合。
从上文可以看出,本申请实施例中的反馈信息中包括第一比特位图和/或第二比特位图,因此第一控制信息还可以理解为用于指示基于比特位图的方式反馈感知测量结果。本申请实施例所示的基于比特位图的方式反馈感知测量结果可以包括:基于比特位图的方式反馈差分的感知测量结果(如基于比特位图的方式,以及参考信息反馈原始CIR参数),或者,基于比特位图的方式反馈不差分的感知测量结果(即基于比特位图的方式反馈原始CIR参数)。
作为一个示例,第一控制信息中可以包括指示信息,该指示信息用于指示是否基于比特位图(bitmap)的方式反馈感知测量结果。
示例性的,如表11所示,该第一控制信息中可以包括指示信息。
表11
例如,指示信息的取值为0时,则表示不采用比特位图的方式反馈感知测量结果(或不采用比特位图的方式进行CIR反馈);又如指示信息的取值为1时,表示采用比特位图的方式反馈感知测量结果(或采用比特位图的方式进行CIR反馈)。
作为另一个示例,第一控制信息中可以不包括指示信息,如第一控制信息可以用于指示基于比特位图的方式反馈感知测量结果。
如上文所示,第一控制信息中可以包括第一门限的信息。示例性的,第一控制信息中可以包括多个第一门限,接收端在接收到该第一控制信息之后,可以从该多个第一门限中选择一个第一门限。该情况下,反馈信息中可以包括接收端所选择的第一门限。示例性的,第一门限中除了可以包含于第一控制信息中,还可以由接收端确定。如第一门限的取值还可以与接收端热噪声Pn=kTB成正比,其中k表示玻尔兹曼常数,T表示开尔文温度(室温情况下一般为290K),B表示信号带宽。例如,当带宽B较大或者温度T较高时,第一门限值可以设置的较大,当带宽B较小或者温度T较低时,第一门限值可以设置的较小。在第一门限由接收端确定的情况下,反馈信息中可以包括该第一门限的信息。当然,第一控制信息中还可以 包括一个第一门限。本申请实施例所示的第一门限可以大于或等于0。
示例性的,第一门限除了可以基于参考采样单元中的感知测量结果判定是否反馈一个或多个非参考采样单元中的感知测量结果之外,该第一门限还可以用于判定是否反馈一个采样单元中的某组采样点的感知测量结果。某组采样点的感知测量结果可以是原始的CIR参数信息,也可以是基于差分得到的CIR参数信息。或者,该第一门限还可以用于判定是否反馈基于参考径对应的某些采样点的感知测量结果(如下文图12a至图12d)。
示例性的,由于反馈信息可以基于比特位图的方式反馈感知测量结果,因此第一控制信息中还可以包括比特位图的长度信息及所对应的采样点的位置信息。示例性的,该比特位图的长度信息可以包括窗口长度(Wlength),对应的采样点的位置信息包括:参考径(或称为参考径的位置、参考采样点等)、窗口的起始位置相对于参考径的窗口偏移量(Woffset)(或称为偏移)。可选地,该第一控制信息还可以包括采样率fs。采样率可以用于确定相邻采样点之间的时间间隔Ts,如Ts=1/fs。示例性的,如图12a、图12b和图12d所示,参考采样点的位置可以包括最早到达径的位置,或者,如图12c所示,参考采样点的位置可以包括最强到达径的位置。可理解,最强到达经的位置可以在窗口内,也可以在窗口外,本申请实施例对此不作限定。本申请实施例中,最强到达径或最早到达径的获取方式作为一种可行的示例,如下所示:如在通信双方第一次进行感知测量时,窗口的长度可以大于或等于某个值,以便于接收端可以获知最强到达径或最早到达径的大概位置(或者也可以获知目标的大概范围),即获知先验信息。然后基于先验信息后续窗口可以继续调整,如小于上述某个值。对于窗口的长度的具体取值,本申请实施例不作限定。如窗口的长度可以是固定值,如以固定数量的采样点为单位的压缩方式(或以固定数量的采样点作为反馈)。又如窗口的长度可以是可变值,如以可变数量的采样点为单位的压缩方式(或以可变数量的采样点作为反馈)。关于反馈方式的具体说明可以参考上文,这里不再详述。
示例性的,在采用加窗的方式反馈感知测量结果时,作为一个示例,当第一控制信息中包括比特位图的长度及所对应的采样点的位置信息时,反馈信息中可以不包括该长度信息。作为另一个示例,当第一控制信息中不包括上述比特位图的长度及所对应的采样点的位置信息时,反馈信息中可以包括上述比特位图的长度及所对应的采样点的位置信息。作为又一个示例,无论第一控制信息中是否包括上述信息,反馈信息中均可以包括比特位图的长度及所对应的采样点的位置信息。
示例性的,由于反馈信息可以包括两个比特位图,因此第一控制信息还可以包括N、P,该N可以为需要反馈的总tap数量(在采用加窗的方式反馈时,N等于窗口长度),P为分组数,如接收端可以基于该第一控制信息将N个tap分成P组,每一组内包含M个tap,当P无法被N除尽时,可以将N补零值P的整数倍(即最后一个分组对应的比特位图中,表示最后P-Q个Tap的比特为0,Q为N对P取模),然后分成P组。示例性的,第一控制信息中包括N和P的信息时,反馈信息中可以不包括N和P的信息,或者,当第一控制信息中不包括N和P的信息时,反馈信息中可以包括N和P的信息,或者,无论第一控制信息中是否包括N和P的信息,反馈信息中均可以包括N和P的信息。
如上文所示,第一控制信息可以包括压缩方式的信息,基于上述表4可以进一步得到如表12。
表12

表12所示的一组tap可以基于上文所示的比特位图的长度确定,如该一组tap中的tap数量N可以等于窗口的长度,即N=Wlength。示例性的,该一组tap中的所有tap均可以包含于一个snapshot中。
作为一个示例,若一个snapshot中(可以是经过加窗的CIR(如基于上文所示的窗口长度和窗口偏移量等确定的CIR),也可以是不加窗的CIR)的某个tap小于第一门限,则不反馈对应的tap,或者,不反馈这个tap所对应的感知测量结果(如包括路径损耗信息和时延,或还可以包括AOA和ZOA)。也就是说,在确定不反馈该某一个tap的感知测量结果时,说明该tap对应的幅值太小,对感知结果几乎没有影响,从而可以不反馈,有效减少信令开销,而且还不影响发送端获得与目标相关的信息。可理解,本申请实施例所示的tap小于第一门限的描述可以理解为:该tap对应的CIR参数小于第一门限。
作为另一个示例,将一个snapshot中(可以是经过加窗的CIR,也可以是不加窗的CIR)的tap分成P组,每组包含M个tap,若某组中有T个tap小于第一门限,则不反馈对应组的tap,或者,不反馈这个组所对应的感知测量结果(如包括路径损耗信息和时延,或还可以包括AOA和ZOA)。也就是说,在确定不反馈该某一个组内tap的感知测量结果时,说明该组tap对应的幅值太小,对感知结果几乎没有影响,从而可以不反馈,有效减少信令开销,而且还不影响发送端获得与目标相关的信息。上述T可以为小于或等于M的正整数。
示例性的,如图12a和图12b所示,反馈信息中可以包括第一比特位图,该第一比特位图可以用于指示是否反馈组内的对应tap的感知测量结果。如接收端可以基于最早到达径的位置以及窗口偏移量确定窗口的起始位置,然后基于窗口的长度以及窗口的起始位置确定窗口的位置。该窗口内的tap即为组内的tap。如图12a所示,该窗口内的第一个tap、第二个tap、第三个tap、第四个tap、第七个tap、第九个tap和第十个tap均大于第一门限,因此第一比特位图的取值可以为1111 0010 11。又如图12b所示,接收端确定窗口的位置之后,还可以对该窗口内的tap进行分组,如两个tap分为一组(仅为示例),如第一组tap、第二组tap、第五组tap均大于第一门限,因此第一比特位图的取值可以为11001。
作为又一个示例,将一个snapshot中(可以是经过加窗的CIR,也可以是不加窗的CIR)的tap分成P组,每组包含M个tap。采用两个比特位图指示CIR参数信息,当某组中任何一个tap大于第一门限,则反馈相应的组;进一步的,判断组内具体哪个tap大于第一门限,则反馈组内相应的tap。也就是说,在确定不反馈该某一个组内tap的感知测量结果时,说明该组tap对应的幅值太小,对感知结果几乎没有影响,从而可以不反馈,有效减少信令开销,而且还不影响发送端获得与目标相关的信息。
示例性的,如图12d所示,第一比特位图的取值为10011,表示接收端反馈第一组、第四组和第五组内的tap,第二比特位图的取值为11 10 11,则分别表示第一组、第四组和第五 组内的tao是否被反馈。
示例性的,由于不同tap对应的CIR相同参数(例如不同tap对应的CIR的路径损耗,相位,或者CIR的正交分量,同相分量)用同样的bit位宽量化,但是其对应的幅度范围不同,因此可以用标度因子β进行归一化,标度因子与收发天线对有关,每一个收发天线对需要一个标度因子。基于此,与上文表8a对应的表可以适应性地修改为如表13a所示。
表13a

示例性的,与上文表8b对应的表可以适应性地修改为如表13b所示。
表13b


示例性的,与上文表8c对应的表可以适应性地修改为如表13c所示。
表13c


示例性的,与上文表8d对应的表可以适应性地修改为如表13d所示。
表13d



以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图9至图11详细描述本申请实施例的通信装置。
图9是本申请实施例提供的一种通信装置的结构示意图,如图9所示,该通信装置包括处理单元901和收发单元902。
在本申请的一些实施例中,该通信装置可以是上文示出的发送端或芯片,该芯片可以应用于发送端中等。即该通信装置可以用于执行上文方法实施例中由发送端执行的步骤或功能等。
收发单元902,用于输出控制信息,以及输入反馈信息。
示例性的,处理单元901,用于确定控制信息;以及通过收发单元902输出该控制信息,输入反馈信息。
可理解,处理单元901,还可以根据反馈信息进行处理,获得目标的速度、距离或衰减等信息。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
复用图9,在本申请的另一些实施例中,该通信装置可以是上文示出的接收端或接收端中的芯片等。即该通信装置可以用于执行上文方法实施例中由接收端执行的步骤或功能等。
如收发单元902,用于输入控制信息;收发单元902,还用于输出反馈信息。
示例性的,处理单元901,用于根据控制信息确定反馈信息。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
上个各个实施例中,关于控制信息、反馈信息、第一控制信息、第二控制信息、第一比特位图、第二比特位图、参考采样单元等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
以上介绍了本申请实施例的发送端和接收端,以下介绍所述发送端和接收端可能的产品形态。应理解,但凡具备上述图9所述的发送端的功能的任何形态的产品,或者,但凡具备上述图9所述的接收端的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的发送端和接收端的产品形态仅限于此。
在一种可能的实现方式中,图9所示的通信装置中,处理单元901可以是一个或多个处理器,收发单元902可以是收发器,或者收发单元902还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。在执行上述方法的过程中,上述方法中有关发送信息的过程,可以理解为由处理器输出上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,上述方法中有关接收信息的过程,可以理解为处理器接收输入的上述信息的过程。处理器接收输入的信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
如图10所示,该通信装置100包括一个或多个处理器1020和收发器1010。
示例性的,当该通信装置用于执行上述发送端执行的步骤或方法或功能时,处理器1020,用于确定控制信息;收发器1010,用于向接收端发送控制信息,以及接收来自接收端的反馈信息。
示例性的,当该通信装置用于执行上述接收端执行的步骤或方法或功能时,收发器1010,用于接收来自发送端的控制信息;处理器1020,用于根据控制信息确定反馈信息;收发器1010,还用于向发送端发送反馈信息。
上个各个实施例中,关于控制信息、反馈信息、第一控制信息、第二控制信息、第一比特位图、第二比特位图、参考采样单元等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
在图10所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
可选的,通信装置100还可以包括一个或多个存储器1030,用于存储程序指令和/或数据等。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可可以执行存储器1030中存储的程序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及收发器1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。示例性的,对于接收端来说,存储器中可以存储参考信息,即采样单元内的感知测量结果。可选的,对于发送端来说,由于其需要根据参考信息解析CIR参数信息,因此其存储器中也可以存储参考信息。
示例性的,处理器1020主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1030主要用于存储软件程序和数据。收发器1010可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以 及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1020可以读取存储器1030中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1020对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1020,处理器1020将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图10更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图9所示的通信装置中,处理单元901可以是一个或多个逻辑电路,收发单元902可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元902还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图11所示,图11所示的通信装置包括逻辑电路1101和接口1102。即上述处理单元901可以用逻辑电路1101实现,收发单元902可以用接口1102实现。其中,该逻辑电路1101可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口1102可以为通信接口、输入输出接口、管脚等。示例性的,图11是以上述通信装置为芯片为例出的,该芯片包括逻辑电路1101和接口1102。可理解,本申请实施例所示的芯片可以包括窄带芯片或超带宽芯片等,本申请实施例不作限定。如上文所示的发送感知包的步骤可以由超带宽芯片执行,其余步骤是否由超带宽芯片执行,本申请实施例不作限定。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当通信装置用于执行上述发送端执行的方法或功能或步骤时,逻辑电路1101,用于确定控制信息;接口1102,用于输出该控制信息,以及输入反馈信息。逻辑电路1101,还用于处理反馈信息,获得与目标相关的信息。
示例性的,当通信装置用于执行上述接收端执行的方法或功能或步骤时,接口1102,用于输入控制信息;逻辑电路1101,用于根据控制信息确定反馈信息;接口1102,还用于输出该反馈信息。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
上个各个实施例中,关于控制信息、反馈信息、第一控制信息、第二控制信息、第一比特位图、第二比特位图、参考采样单元等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
对于图11所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。
本申请实施例还提供了一种无线通信系统,该无线通信系统包括发送端和接收端,该发送端和该接收端可以用于执行前述任一实施例(如图3)中的方法。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由发送端执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由接收端执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由发送端执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由接收端执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由发送端执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由接收端执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种基于超带宽UWB的感知测量结果反馈方法,其特征在于,所述方法包括:
    发送控制信息,所述控制信息包括第一控制信息,所述第一控制信息用于指示基于比特位图的方式反馈感知测量结果;
    接收反馈信息,所述反馈信息包括信道冲击响应CIR参数信息,所述CIR参数信息基于所述控制信息对所述感知测量结果处理得到。
  2. 一种基于超带宽UWB的感知测量结果反馈方法,其特征在于,所述方法包括:
    接收控制信息,所述控制信息包括第一控制信息,所述第一控制信息用于指示基于比特位图的方式反馈感知测量结果;
    发送反馈信息,所述反馈信息包括信道冲击响应CIR参数信息,所述CIR参数信息基于所述第一控制信息对所述感知测量结果处理得到。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一控制信息包括第一门限的信息,所述第一门限用于指示基于所述第一门限对所述感知测量结果进行处理。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一控制信息还包括压缩方式的信息,所述压缩方式包括以下任一项:不压缩、以固定数量的采样点为单位的压缩方式、以可变数量的采样点为单位的压缩方式。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一控制信息还包括用于指示所述比特位图的长度信息及对应的采样点的位置信息。
  6. 根据权利要求5所述的方法,其特征在于,所述对应的采样点的位置信息包括参考径和所述采样点的起始位置相对于所述参考径的偏移。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述反馈信息包括第一比特位图,所述第一比特位图中的每个比特用于指示是否反馈对应组内的感知测量结果。
  8. 根据权利要求7所述的方法,其特征在于,所述反馈信息还包括第二比特位图,所述第二比特位图中的每个比特用于指示是否反馈对应组内的采样点的感知测量结果。
  9. 根据权利要求7或8所述的方法,其特征在于,所述反馈信息还包括与所述CIR参数信息相关的信息,与所述CIR参数信息相关的信息包括以下至少一项:
    与所述CIR参数信息对应的采样单元的数量、每个采样单元包括的采样点的数量、测量所述感知测量结果时采用的天线数量、是否存储有参考采样单元中的感知测量结果。
  10. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于发送控制信息,所述控制信息包括第一控制信息,所述第一控制信息用于指示基于比特位图的方式反馈感知测量结果;
    所述收发单元,还用于接收反馈信息,所述反馈信息包括信道冲击响应CIR参数信息,所述CIR参数信息基于所述控制信息对所述感知测量结果处理得到。
  11. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于接收控制信息,所述控制信息包括第一控制信息,所述第一控制信息用于指示基于比特位图的方式反馈感知测量结果;
    所述收发单元,还用于发送反馈信息,所述反馈信息包括信道冲击响应CIR参数信息,所述CIR参数信息基于所述第一控制信息对所述感知测量结果处理得到。
  12. 根据权利要求10或11所述的装置,其特征在于,所述第一控制信息包括第一门限的信息,所述第一门限用于指示基于所述第一门限对所述感知测量结果进行处理。
  13. 根据权利要求10-12任一项所述的装置,其特征在于,所述第一控制信息还包括压缩方式的信息,所述压缩方式包括以下任一项:不压缩、以固定数量的采样点为单位的压缩方式、以可变数量的采样点为单位的压缩方式。
  14. 根据权利要求10-13任一项所述的装置,其特征在于,所述第一控制信息还包括用于指示所述比特位图的长度信息及对应的采样点的位置信息。
  15. 根据权利要求14所述的装置,其特征在于,所述对应的采样点的位置信息包括参考径和所述采样点的起始位置相对于所述参考径的偏移。
  16. 根据权利要求10-15任一项所述的装置,其特征在于,所述反馈信息包括第一比特位图,所述第一比特位图中的每个比特用于指示是否反馈对应组内的感知测量结果。
  17. 根据权利要求16所述的装置,其特征在于,所述反馈信息还包括第二比特位图,所述第二比特位图中的每个比特用于指示是否反馈对应组内的采样点的感知测量结果。
  18. 根据权利要求16或17所述的装置,其特征在于,所述反馈信息还包括与所述CIR参数信息相关的信息,与所述CIR参数信息相关的信息包括以下至少一项:
    与所述CIR参数信息对应的采样单元的数量、每个采样单元包括的采样点的数量、测量所述感知测量结果时采用的天线数量、是否存储有参考采样单元中的感知测量结果。
  19. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储指令;
    所述处理器用于执行所述指令,以使权利要求1至9任一项所述的方法被执行。
  20. 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和接口耦合;
    所述接口用于输入和/或输出代码指令,所述逻辑电路用于执行所述代码指令,以使权利要求1至9任一项所述的方法被执行。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,权利要求1至9任一项所述的方法被执行。
  22. 一种计算机程序,其特征在于,当所述计算机程序被执行时,权利要求1至9任一项所述的方法被执行。
  23. 一种通信系统,其特征在于,发送端和接收端,所述发送端用于执行如权利要求1、3-9任一项所述的方法,所述接收端用于执行如权利要求2-9任一项所述的方法。
PCT/CN2023/088830 2022-04-20 2023-04-18 基于超带宽的感知测量结果反馈方法及装置 WO2023202546A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210418108.7 2022-04-20
CN202210418108 2022-04-20
CN202211698165.1A CN116916366A (zh) 2022-04-20 2022-12-28 基于超带宽的感知测量结果反馈方法及装置
CN202211698165.1 2022-12-28

Publications (1)

Publication Number Publication Date
WO2023202546A1 true WO2023202546A1 (zh) 2023-10-26

Family

ID=88360825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088830 WO2023202546A1 (zh) 2022-04-20 2023-04-18 基于超带宽的感知测量结果反馈方法及装置

Country Status (2)

Country Link
CN (1) CN116916366A (zh)
WO (1) WO2023202546A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517315A (zh) * 2012-06-27 2014-01-15 中兴通讯股份有限公司 传输节点的测量信息配置、上报方法及装置
CN105960017A (zh) * 2016-06-24 2016-09-21 北京理工大学 基于超宽带节点网络的免携带设备定位方法
CN111951434A (zh) * 2019-04-30 2020-11-17 罗伯特·博世有限公司 超宽带智能感测系统和方法
US20210175949A1 (en) * 2018-04-13 2021-06-10 Nokia Technologies Oy Compression of tap location information for time domain explicit channel state information feedback in new radio
WO2022006757A1 (zh) * 2020-07-07 2022-01-13 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517315A (zh) * 2012-06-27 2014-01-15 中兴通讯股份有限公司 传输节点的测量信息配置、上报方法及装置
CN105960017A (zh) * 2016-06-24 2016-09-21 北京理工大学 基于超宽带节点网络的免携带设备定位方法
US20210175949A1 (en) * 2018-04-13 2021-06-10 Nokia Technologies Oy Compression of tap location information for time domain explicit channel state information feedback in new radio
CN111951434A (zh) * 2019-04-30 2020-11-17 罗伯特·博世有限公司 超宽带智能感测系统和方法
WO2022006757A1 (zh) * 2020-07-07 2022-01-13 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质

Also Published As

Publication number Publication date
CN116916366A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
US11892538B2 (en) Method and apparatus for controlling ranging in wireless communication system
Xu et al. Pyramid: Real-time lora collision decoding with peak tracking
WO2022033144A1 (zh) 多链路连接建立的方法、终端、网络接入设备及存储介质
WO2022199647A1 (zh) 通信方法以及通信装置
US11558071B2 (en) Wireless ranging using physical and virtual responders
WO2023197986A1 (zh) Uwb信号的传输方法及相关装置
WO2023202546A1 (zh) 基于超带宽的感知测量结果反馈方法及装置
WO2023169264A1 (zh) 基于超带宽的信息反馈方法及装置
WO2022166644A1 (zh) 基于mimo波束赋形的感知方法及相关装置
WO2024083179A1 (zh) 基于感知的通信方法及装置
WO2024088072A1 (zh) 基于超带宽的速率指示方法及装置
WO2023185633A1 (zh) 一种通信的方法、装置和系统
WO2023174403A1 (zh) 基于超宽带的传输物理层协议数据单元的方法及装置
WO2024131745A1 (zh) 信息处理方法及装置
WO2024012259A1 (zh) 通信方法及装置
TWI843387B (zh) 通信方法和通信裝置
WO2023072130A1 (zh) 感知测量方法以及相关装置
WO2023207593A1 (zh) 应用于超带宽uwb系统感知测量的方法和装置
WO2024119333A1 (zh) 用于角度测量的方法和通信装置
US20220361207A1 (en) Positioning Method and Apparatus, WLAN Device, and Storage Medium
Zhang et al. A Low-cost ESP32-driven Wireless Key Generation System Based on Response Mechanism
WO2024051515A1 (zh) 一种通信方法及装置
WO2023236805A1 (zh) 信息交互方法及相关装置
WO2023246452A1 (zh) 一种通信方法和通信装置
WO2023165454A1 (zh) 通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791201

Country of ref document: EP

Kind code of ref document: A1