WO2023169264A1 - 基于超带宽的信息反馈方法及装置 - Google Patents

基于超带宽的信息反馈方法及装置 Download PDF

Info

Publication number
WO2023169264A1
WO2023169264A1 PCT/CN2023/078881 CN2023078881W WO2023169264A1 WO 2023169264 A1 WO2023169264 A1 WO 2023169264A1 CN 2023078881 W CN2023078881 W CN 2023078881W WO 2023169264 A1 WO2023169264 A1 WO 2023169264A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
feedback
sensing
communication device
field
Prior art date
Application number
PCT/CN2023/078881
Other languages
English (en)
French (fr)
Inventor
钱彬
彭晓辉
马梦瑶
杨讯
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023169264A1 publication Critical patent/WO2023169264A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of communication technology, and in particular, to an information feedback method and device based on ultra-bandwidth.
  • Ultra-wideband (UWB) technology is a wireless carrier communication technology that can use nanosecond-level non-sinusoidal narrow pulses to transmit data, so it occupies a wide spectrum range. Because its pulses are relatively narrow and the radiation spectrum density is low, UWB has the advantages of strong multipath resolution, low power consumption, and strong confidentiality.
  • UWB pulses can be used for sensing.
  • sensing applications by detecting the echo of UWB signals on the target, information such as the distance, angle or speed of the target can be extracted.
  • the sensing initiator is the transmitter of the UWB signal
  • the sensing responder is the receiving end of the UWB echo signal.
  • the sensing initiator can obtain target-related information through the feedback information sent by the sensing responder.
  • This application provides an information feedback method based on UWB, which effectively improves the interactive process of sensing based on UWB pulses.
  • embodiments of the present application provide an information feedback method based on ultra-bandwidth.
  • the method includes: a first communication device sends control information to a second communication device, where the control information includes a first field, and the first communication device The field is used to indicate the feedback method of the perceptual measurement results; the first communication device receives feedback information from the second communication device, the feedback information includes a second field, and the second field is used to carry second parameter information.
  • the second parameter information is determined according to the feedback method and the first parameter information, and the first parameter information is the sensing measurement result obtained by the second communication device based on UWB pulses.
  • the first communication device indicates the feedback mode to the second communication device, so that the second communication device can clearly learn the processing mode of the first parameter information, thereby not only effectively improving the process of sensing based on UWB pulses, but also It also effectively ensures the communication efficiency of both communicating parties.
  • embodiments of the present application provide an information feedback method based on ultra-bandwidth.
  • the method includes: a second communication device receiving control information, where the control information includes a first field, and the first field is used to indicate sensing Feedback method of measurement results; the second communication device sends the feedback information to the first communication device, the feedback information includes a second field, the second field is used to carry second parameter information, the second parameter The information is determined based on the feedback method and the first parameter information, which is a sensing measurement result obtained by the second communication device based on ultra-bandwidth UWB pulses.
  • the feedback information further includes a third field, the third field is used to indicate a compression method of the first parameter information; the second Determining parameter information based on the feedback method and the first parameter information includes: determining the second parameter information based on the feedback method, the compression method, and the first parameter information.
  • the second communication device can not only effectively learn the method of processing the first parameter information, but also effectively reduce the number of feedback information by processing the first parameter information in the compression method. Signaling overhead.
  • the feedback method includes a feedback method based on differential information, or at least one of a feedback method based on reference information and differential information.
  • the differential information Determined based on the first parameter information and the reference information.
  • the signaling overhead of feedback information can be effectively reduced through a feedback method based on differential information, or through a feedback method based on reference information and differential information.
  • the feedback method based on differential information can further reduce the signaling overhead of feedback information.
  • the feedback method based on reference information and differential information enables the first communication device to directly obtain the reference information included in the feedback information according to the feedback information, which is more direct.
  • the compression method includes at least one of a time-based compression method or a value-based compression method.
  • the time-based compression method is simpler to implement.
  • numerical-based compression can effectively ensure the accuracy of feedback.
  • numerical-based compression methods are more suitable for scenarios with large parameter changes.
  • control information further includes a fourth field, the fourth field is used to indicate the number of sensing time sub-units included in one sensing time unit. .
  • the number of sensing time sub-units included in a sensing time unit may be used to indicate the period of feedback information.
  • the number of sensing time sub-units included in a sensing time unit is proportional to the period of feedback information. For example, the greater the number of sensing time sub-units included in a sensing time unit, the greater the period of feedback information. , the lower the frequency of feedback information. Since the feedback information needs to be fed back within the sensing time unit, indicating the sensing time sub-unit included in a sensing time unit through the fourth field can not only effectively indicate the feedback period of the feedback information, but also indicate the time period in which the feedback information is located. . Therefore, not only can the sensing process be effectively improved, but also the communication efficiency of both communicating parties can be effectively guaranteed.
  • the second parameter information includes at least one of path loss information, time delay, horizontal angle of arrival AOA, and vertical angle of arrival ZOA.
  • the feedback information further includes a fifth field, the fifth field is used to indicate a data pattern of the path loss information, the data pattern includes A data pattern based on amplitude and phase, or at least one of a data pattern based on in-phase components and quadrature components.
  • the fifth field indicates the data pattern of the path loss information, making the forms of the path loss information more diverse, and enabling different feedback forms of sensing information to be effectively selected for different application scenarios. For example, when the bit width of the path loss information is smaller (that is, the occupied bit length), feedback accuracy using amplitude and phase is higher.
  • the feedback information further includes a sixth field, the sixth field being used to indicate whether reference information exists in the feedback information.
  • the sixth field is used to indicate whether reference information exists in the feedback information, which can further improve the sensing process based on UWB pulses. And by adding feedback information in the form of "handshake", the reliability of communication is enhanced and the communication efficiency of both communicating parties is improved.
  • inventions of the present application provide a first communication device for performing the method in the first aspect or any possible implementation of the first aspect.
  • the first communication device includes means for performing a method of the first aspect or any possible implementation of the first aspect.
  • embodiments of the present application provide a second communication device for performing the method in the second aspect or any possible implementation of the second aspect.
  • the second communication device includes means for performing the method of the second aspect or any possible implementation of the second aspect.
  • the above-mentioned first communication device and the second communication device may include a transceiver unit and a processing unit.
  • a transceiver unit and a processing unit may also be made to the device embodiments shown below.
  • inventions of the present application provide a first communication device.
  • the first communication device includes a processor, configured to execute the method shown in the above-mentioned first aspect or any possible implementation of the first aspect.
  • the processor is configured to execute a program stored in the memory. When the program is executed, the method shown in the above first aspect or any possible implementation of the first aspect is executed.
  • the memory is located outside the above-mentioned first communication device.
  • the memory is located in the above-mentioned first communication device.
  • the processor and the memory can also be integrated into one device, that is, the processor and the memory can also be integrated together.
  • the first communication device further includes a transceiver, which is used to receive signals or send signals.
  • inventions of the present application provide a second communication device.
  • the second communication device includes a processor, configured to execute the method shown in the above-mentioned second aspect or any possible implementation of the second aspect.
  • the processor is configured to execute a program stored in the memory. When the program is executed, the method shown in the above second aspect or any possible implementation of the second aspect is executed.
  • the memory is located outside the above-mentioned second communication device.
  • the memory is located within the above-mentioned second communication device.
  • the processor and the memory can also be integrated into one device, that is, the processor and the memory can also be integrated together.
  • the second communication device further includes a transceiver, which is used to receive signals or send signals.
  • inventions of the present application provide a first communication device.
  • the communication device includes a logic circuit and an interface.
  • the logic circuit is coupled to the interface; the logic circuit is used to output control information through the interface. and enter feedback information.
  • the logic circuit is also used to process the feedback information to obtain information related to the target.
  • Information related to the target includes information such as speed, angle or attenuation.
  • inventions of the present application provide a second communication device.
  • the communication device includes a logic circuit and an interface, the logic circuit is coupled to the interface; the logic circuit is used to input control information through the interface, and output feedback information.
  • the logic circuit is also used to determine feedback information based on the control information.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program. When it is run on a computer, it enables any possible implementation of the first aspect or the first aspect. The method shown in the implementation is executed.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program. When it is run on a computer, it enables any possible implementation of the above second aspect or the second aspect. The method shown in the implementation is executed.
  • inventions of the present application provide a computer program product.
  • the computer program product includes a computer program Program or computer code, when run on a computer, causes the method shown in the above first aspect or any possible implementation of the first aspect to be executed.
  • inventions of the present application provide a computer program product.
  • the computer program product includes a computer program or computer code. When it is run on a computer, it enables the above-mentioned second aspect or any possible implementation of the second aspect. The method shown is executed.
  • embodiments of the present application provide a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above first aspect or any possible implementation of the first aspect is executed.
  • embodiments of the present application provide a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above second aspect or any possible implementation of the second aspect is executed.
  • inventions of the present application provide a wireless communication system.
  • the wireless communication system includes a first communication device and a second communication device.
  • the first communication device is configured to perform the above-mentioned first aspect or any of the first aspects.
  • the method shown in the possible implementation manner, the second communication device is configured to perform the method shown in the above second aspect or any possible implementation manner of the second aspect.
  • Figures 1a and 1b are sensing scenarios based on a sensing responder provided by embodiments of the present application;
  • Figures 1c and 1d are sensing scenarios based on multiple sensing responders provided by embodiments of the present application.
  • Figure 2a is a schematic flow chart of a UWB-based information feedback method provided by an embodiment of the present application
  • FIGS. 2b and 2c are schematic diagrams of UWB-based information feedback scenarios provided by embodiments of the present application.
  • FIGS. 3a to 3c are schematic diagrams of the sensing process provided by embodiments of the present application.
  • FIG. 4a and Figure 4b are schematic diagrams of the sensing process provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of sampling path loss information provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of snapshot-based compression provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of cluster-based compression provided by an embodiment of the present application.
  • Figure 8a is a schematic diagram of CIR parameters in snapshot 1 provided by the embodiment of the present application.
  • Figure 8b is a schematic diagram of CIR parameters in snapshot 2 provided by the embodiment of this application.
  • Figure 8c is a schematic diagram of CIR parameters in snapshot 10 provided by the embodiment of the present application.
  • 9 to 11 are schematic structural diagrams of a communication device provided by embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same implementation. Examples are not independent or alternative embodiments that are mutually exclusive from other embodiments. Those skilled in the art will understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (items) means two or three and three
  • “and/or” is used to describe the relationship between associated objects, indicating that there can be three relationships.
  • a and/or B can mean: only A exists, only B exists, and A and B exist simultaneously. In this case, A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items.
  • at least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ".
  • the technical solution provided by this application can be applied to wireless personal area network (WPAN) based on UWB technology.
  • the method provided in this application can be applied to the Institute of Electrical and Electronics Engineers (IEEE) 802.15 series protocols, such as the 802.15.4a protocol, 802.15.4z protocol or 802.15.4ab protocol, or a future generation of UWB WPAN The standard is medium, so I won’t list them all here.
  • the method provided by this application can also be applied to various communication systems, such as Internet of Things (IoT) systems, Vehicle to X (V2X), Narrowband Internet of Things (NB) -IoT) system, used in devices in the Internet of Vehicles, IoT nodes, sensors, etc.
  • IoT Internet of Things
  • V2X Vehicle to X
  • NB Narrowband Internet of Things
  • LTE frequency division duplex (FDD) system LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), global interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, long term evolution (long term evolution, LTE) system, or fifth generation (5th-generation, 5G) communication system, sixth generation (6th-generation, 6G) communication system, etc. .
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interconnection microwave access
  • WiMAX worldwide interoperability for microwave access
  • LTE long term evolution
  • 5G fifth generation
  • 6th-generation, 6G sixth generation
  • UWB technology is a new type of wireless communication technology. It uses nanosecond-level non-sinusoidal narrow pulses to transmit data. By modulating the impulse pulses with very steep rise and fall times, it occupies a wide spectrum range, making the signal have a gigahertz (GHz) level. bandwidth. The bandwidth used by UWB is usually above 1GHz. Because the UWB system does not need to generate a sinusoidal carrier signal and can directly transmit impulse sequences, the UWB system has a wide spectrum and very low average power. The UWB wireless communication system has strong multipath resolution, low power consumption, and strong confidentiality. and other advantages, which is conducive to coexistence with other systems, thereby improving spectrum utilization and system capacity.
  • GHz gigahertz
  • the transmit power of UWB transmitters can usually be less than 1mW (milliwatt).
  • the interference generated by UWB signals is only equivalent to a wideband white noise. This facilitates good coexistence between UWB and existing narrowband communications. Therefore, the UWB system can work simultaneously with the narrowband (NB) communication system without interfering with each other.
  • the method provided by this application can be implemented by a communication device in a wireless communication system.
  • a module that implements UWB system functions can be called a UWB module (for example, it can be used to send UWB pulses), and a module that implements narrowband communication system functions It can be called a narrowband communication module, and the UWB module and the narrowband communication module can be different devices or chips, etc., which are not limited in the embodiments of the present application.
  • the UWB module and the narrowband communication module can also be integrated on one device or chip. The embodiments of this application do not limit the implementation of the UWB module and the narrowband communication module in the communication device.
  • WPAN wireless local area networks
  • Bluetooth BLUETOOTH
  • HIPERLAN high performance wireless LAN
  • WAN wide area networks
  • the method provided by this application can be implemented by a communication device in a wireless communication system.
  • the communication device may be a device involved in a UWB system.
  • the communication device may include but is not limited to a communication server, router, switch, network bridge, computer, mobile phone, etc.
  • the communication device may include a central control point, such as a personal area network (PAN) or a PAN coordinator.
  • the communication device may include user equipment (UE), and the user equipment may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, Internet of Things (IoT) devices, Computing devices or other processing devices connected to wireless modems, etc., are not listed here.
  • the communication device may include a chip, and the chip may be installed in a communication server, router, switch or user terminal, etc., which will not be listed here.
  • the communication device shown in the embodiment of the present application may also include a sensing initiator (initiator) or a sensing responder (responder).
  • the sensing initiator and the sensing responder are relative. If the sensing initiator is the party that initiates the sensing process, the sensing responder can be the party that responds based on the party that initiated the sensing process. It can be understood that the sensing initiator may be the transmitting end of the UWB signal, and the sensing responder may be the receiving end of the UWB echo signal. Alternatively, the sensing initiator may be the receiving end of the UWB echo signal, and the sensing responder may be the transmitting end of the UWB signal.
  • the communication device shown in the embodiment of the present application can be either a sensing initiator or a sensing responder. It can be understood that since the UWB signal sent by the sensing initiator needs to reach the target first and then reach the sensing responder, compared with the UWB signal sent by the sensing initiator, the signal received by the sensing responder can be called a UWB echo signal .
  • Figures 1a and 1b can be understood as sensing scenarios based on one sensing responder
  • Figures 1c and 1d can be understood as sensing scenarios based on multiple sensing responders.
  • the sensing initiator is the receiving end of the UWB echo signal
  • the sensing responder is the transmitting end of the UWB signal.
  • the sensing initiator is the transmitting end of the UWB signal
  • the sensing responder is the receiving end of the UWB signal.
  • the sensing initiator since the sensing initiator is the receiving end of the UWB echo signal, the sensing initiator can obtain relevant information about the target based on the UWB echo signal. Therefore, there is no need to transmit feedback information through the air interface between the sensing initiator and the sensing responder.
  • the sensing initiator since the sensing initiator is the transmitter of the UWB signal and the sensing responder is the receiving end of the UWB echo signal, the sensing initiator needs to obtain target-related information through the feedback information sent by the sensing responder.
  • multiple sensing responders are transmitters of UWB signals. Similarly, there is no need to transmit feedback information through the air interface between the sensing initiator and multiple sensing responders. However, in the scenario shown in Figure 1d, the sensing initiator needs to obtain feedback information from multiple sensing responders.
  • the sensing packet shown in Figure 1a to Figure 1b can be understood as a UWB signal.
  • the device that receives the sensing packet can obtain target-related information based on the sensing packet.
  • the device that receives the sensing packet can also feed back information related to the target through feedback information.
  • embodiments of the present application provide a UWB-based information feedback method and device.
  • the sensing initiator serves as the transmitter of the UWB signal
  • the sensing responder serves as the receiving end of the UWB echo signal
  • the sensing initiator and the sensing responder can effectively transmit feedback information.
  • the format of the feedback information may be as shown in Table 1a.
  • the signaling overhead of the feedback information is relatively large, and the feedback information cannot effectively utilize temporal similarity and spatial correlation.
  • FIG. 2a is a schematic flowchart of a UWB-based information feedback method provided by an embodiment of the present application.
  • the method shown in Figure 2a can be applied to a first communication device and a second communication device.
  • the first communication device includes a transmitting end of a UWB signal
  • the second communication device includes a receiving end of a UWB echo signal; or, the first communication device
  • the device can be understood as a sensing initiator, and the sensing initiator is the transmitting end of the UWB signal.
  • the second communication device can be understood as the sensing responder, and the sensing responder is the receiving end of the UWB echo signal.
  • any device that can implement the method provided by the embodiment of the present application belongs to the protection scope of the present application. Therefore, the sensing initiator and the sensing responder should not be understood as being opposite to each other. Limitations of the embodiments of this application.
  • the method shown in Figure 2a can be applied to the scenario shown in Figure 2b.
  • the sensing initiator initiates the sensing process and sends the sensing packet (Fig. 2b takes the sensing packet included in the sensing initiation information as an example).
  • the sensing initiator Respondent response perception process.
  • the scenario shown in Figure 2b can also be applied to the controller (controller) and the controlled (controlee) device.
  • the method shown in Figure 2a can be applied to the scenario shown in Figure 2c.
  • a third party (such as a controller) initiates the sensing process as an independent physical node.
  • the sensing initiator sends sensing packets, and the sensing responder responds to the sensing process. , that is, sending feedback information to the sensing initiator.
  • the sensing responder can also send feedback information to the controller, which is not limited in the embodiment of the present application.
  • the method includes:
  • the first communication device sends control information to the second communication device, where the control information includes a first field used to indicate a feedback method of the perception measurement result.
  • the second communication device receives the control information.
  • the control information can be used to control at least one of the feedback mode or feedback cycle of the sensing measurement results, or the control information can be understood as control information related to the sensing process.
  • the second communication device may feed back information related to the target based on the control information, such as the feedback information shown in the embodiments of this application.
  • the control information may be included in a physical layer (PHY) protocol data unit (PHY protocol data unit, PPDU).
  • PHY protocol data unit, PPDU physical layer protocol data unit
  • PPDU physical layer protocol data unit
  • the control information can be carried in the physical layer service data unit (PHY service data unit, PSDU) in the PPDU.
  • PHY service data unit PHY service data unit
  • the embodiment of the present application does not limit the specific location of the control information.
  • the first field is used to indicate (also referred to as carrying) the feedback method of the perception measurement results.
  • the feedback method of the perception measurement results can be used to determine whether the content in the feedback information is compressed, or whether the second communication device needs Feedback perception measurement results, etc.
  • the first parameter information shown in the embodiment of the present application may be the sensing measurement result obtained by the second communication device based on the UWB pulse sent by the first communication device. That is to say, the second communication device can obtain target-related information based on UWB pulses.
  • the target-related information shown here can be understood as the first parameter information shown in the embodiment of the present application.
  • the first parameter information may include path loss (path loss) information, delay (also called tap delay), vertical angle of arrival (zenith angle of arrival, ZOA), horizontal angle of arrival (azimuth angle of Arrival, AOA) at least one.
  • path loss path loss
  • delay also called tap delay
  • vertical angle of arrival zenith angle of arrival, ZOA
  • horizontal angle of arrival azimuth angle of Arrival
  • AOA azimuth angle of Arrival
  • path loss information can also be understood as transmission power attenuation information, or power delay information, etc.
  • the first field shown in the embodiment of this application is described in detail below.
  • the first field may include the following implementation methods:
  • Feedback methods include: feedback or no feedback.
  • the first field may be used to indicate whether the second communication device feeds back the first parameter information; or, the first field is used to indicate whether the second communication device generates feedback information based on the first parameter information. For example, if the first field is used to instruct the second communication device to feedback the first parameter information, it indicates that the second communication device needs to generate feedback information.
  • the first field includes 1 bit. If the value of the first field is 1, it means that the second communication device needs to feed back the first parameter information; if the value of the first field is 0, it means that the second communication device needs to feed back the first parameter information. There is no need to feed back the first parameter information. It can be understood that the value of the first field shown above is only an example and should not be understood as limiting the embodiments of the present application.
  • the second communication device feeds back the first parameter information in an uncompressed manner (which can also be understood as feedback
  • the content in the information includes information obtained by not compressing the first parameter information); or, the second communication device feeds back the first parameter information in the form of differential information (it can also be understood that the content in the feedback information includes the process of the first parameter information) second parameter information obtained by compression processing); or, the second communication device feeds back the first parameter information in the form of reference information and differential information (it can also It is understood that the content in the feedback information includes second parameter information obtained by compressing the first parameter information).
  • the second communication device may discard the first parameter information, or the second communication device may carry the obtained first parameter information in subsequent feedback information.
  • Feedback methods include: feedback methods based on differential information (which can also be called feedback of sensory measurement results in the form of differential information), or feedback methods based on reference information and differential information (which can also be called feedback in the form of reference information and differential information). at least one of the perceptual measurement results).
  • the differential information is determined based on the first parameter information and reference information.
  • the differential information can be understood as the change amount of a certain parameter in the first parameter information other than the parameters included in the reference information relative to the certain parameter in the reference information.
  • differential information can be understood as the change in delay in a certain range relative to the delay in another range.
  • the differential information can be understood as the change of the delay at a certain moment relative to the delay at another moment.
  • the reference information in the feedback information may be predefined by a standard or protocol; or, the reference information may also be included in feedback information earlier than the feedback information.
  • the first parameter information is fed back in the form of differential information, that is, the feedback information may include at least one of differential information or reference information.
  • the feedback information may include at least one of differential information or reference information.
  • the second implementation method can also be understood as that the feedback information is obtained through compression processing, or, The first parameter information needs to be compressed to obtain the second parameter information, and then carried in the first field.
  • the feedback method includes: a feedback method based on differential information, a feedback method based on reference information and differential information, and no feedback.
  • the feedback method includes at least one of: compressing the first parameter information, not feeding back the first parameter information, or not compressing the first parameter information.
  • the feedback methods include: feedback of perception measurement results and feedback methods based on differential information, feedback of perception measurement results and feedback methods based on differential information and reference information, no feedback of perception measurement results, and discarding the perception measurement results obtained this time or no feedback. Perception measurement results and retaining the perception measurement results obtained this time (such as feeding back the perception measurement results obtained this time through subsequent feedback information).
  • the value in the first field may be as shown in Table 1b. It can be understood that the relationship between the index and the meaning shown in Table 1b is only an example and should not be understood as limiting the embodiments of the present application.
  • the second communication device can only feed back the first parameter information in the form of differential information.
  • the second parameter information in the feedback information can be based on feedback earlier than The information is obtained from the reference information in the feedback information before the information and the first parameter information.
  • the value of the first field 01
  • 11 shown in Table 1b is only Examples should not be construed as limiting the embodiments of the present application.
  • the first field may be used to instruct the second communication device to feed back the first parameter information in an uncompressed manner.
  • the second parameter information in the feedback information may be the same as the first parameter information.
  • the value of the first field is 10
  • the first parameter information can be included in subsequent feedback information, or the first parameter information can be discarded.
  • the second communication device can discard the first parameter information it has obtained, thereby saving signaling overhead.
  • the first communication device can indicate whether to use the first field. The first parameter information is fed back, and by default the first parameter information can be included in subsequent feedback information.
  • the value in the first field may be as shown in at least one item in Table 1c or Table 1d.
  • the bit length of the first field is 3 bits, in which the first bit can be used to indicate whether to retain this perceptual measurement result (as shown in Table 1c), and the second and third bits can be used to indicate Feedback method of perceptual measurement results (shown in Table 1d).
  • the first bit can be used to indicate whether to retain the current perception measurement results. If the value of the first bit is 0, it means that the first parameter information is discarded; if the value of the first bit is 1, it means that the first parameter information can be included in subsequent feedback information.
  • the value of the first bit can be ignored, or the first bit It can be used to indicate that the current sensing measurement result is retained (for example, the value of the first bit is 1).
  • the feedback methods indicated by the first field can be made more diverse, and the specific method of processing the first parameter information by the second communication device can be effectively instructed, which improves the communication between the first communication device and the second communication device. Communication efficiency between two communication devices.
  • bit length of the first field shown above is only an example. As the bit length of the first field increases, the content indicated by the first field will become diversified.
  • the second communication device sends feedback information to the first communication device.
  • the feedback information includes a second field.
  • the second field is used to carry second parameter information.
  • the second parameter information is determined according to the feedback mode and the first parameter information.
  • the first parameter information is a sensing measurement result obtained by the second communication device based on the UWB pulse sent by the first communication device.
  • the first communication device receives the feedback information.
  • the second communication device may generate feedback information according to the control information.
  • second parameter The information may be the same as the first parameter information, that is, the second parameter information may be obtained after the first parameter information is not compressed.
  • the second parameter information may be obtained after compression processing of the first parameter information.
  • the second parameter information may be determined according to the feedback mode indicated by the first field, the first parameter information and the predefined compression mode.
  • the feedback information further includes a third field, which is used to indicate the compression mode. Therefore, the second parameter information may be determined based on the feedback mode indicated by the first field, the compression mode indicated by the third field, and the first parameter information.
  • the compression method includes a time-based compression method or a value-based compression method.
  • the time-based compression method can be understood as a group of parameters that are close in time in the first parameter information, so as to perform a difference with the reference information (referring to differential processing for the same parameter) to obtain differential information; or, it can be understood as a time-based compression method.
  • the degree of similarity is processed to obtain reference information and differential information.
  • the first compression method can be a compression method based on time subunits.
  • the time subunits in one time unit can be used as reference information, and the parameter information in other time subunits can be differentially set based on the reference information. Get differential information.
  • the compression method based on numerical values can be understood as a group of parameters with similar numerical values in the first parameter information, so as to perform a difference with the reference information (referring to differential processing for the same parameter) to obtain differential information; or, it can be understood as a compression method based on numerical values.
  • the degree of similarity is processed to obtain reference information and differential information. It can be understood that for the specific description of the compression method shown in the embodiment of the present application, reference can also be made to the relevant descriptions of Tables 4 to 7 below, which will not be described in detail here.
  • the compression method includes a first compression method and a second compression method, and the first compression method and the second compression method have different compression standards. It can be understood that the compression method shown in the embodiment of the present application is only an example, and any method that can obtain differential information based on the first parameter information and the reference information and then carry it in the second field falls within the protection scope of the embodiment of the present application.
  • the feedback method when the feedback method includes a feedback method based on differential information, or a feedback method based on reference information and differential information; and when the compression method includes a time-based compression method or a value-based compression method, it means that the second parameter information is The first parameter information is obtained through compression processing.
  • the feedback method when the feedback method includes feedback of the first parameter information, it does not specifically indicate that the first parameter information is fed back in the form of differential information or the first parameter information is fed back in the form of reference information and differential information, and the feedback information does not include the third parameter information. field, it means that the first parameter information may be compressed, or may not be compressed, which is not limited in the embodiment of the present application. It is understandable that the specific description of the feedback method and compression method can also be referred to below, and will not be detailed here.
  • the first communication device can obtain information such as distance, speed or attenuation of the target based on the feedback information.
  • the feedback information may be information directed to one target or may be information directed to multiple targets, which is not limited in the embodiments of the present application.
  • the first communication device can parse parameters related to the target to obtain information about one or more targets.
  • the first communication device indicates the feedback mode to the second communication device, so that the second communication device can clearly learn the processing mode of the first parameter information, thereby not only effectively improving the process of sensing based on UWB pulses, but also It also effectively ensures the communication efficiency of both communicating parties.
  • the control information further includes a fourth field, which is used to indicate the number of time sub-units included in a time unit.
  • a time unit can be understood as the interaction duration between a control information and a feedback information.
  • the process in which the second communication device completes an independent sensing measurement and reports feedback information may be called a time unit.
  • a time unit can be understood as a period of time during which the first communication device initiates the sensing process and obtains feedback information.
  • a time unit may include multiple time sub-units. In other words, multiple time subunits can form a time unit.
  • a time unit may include M time sub-units, where M is a positive integer.
  • the number of time sub-units can be used to indicate the period of feedback information, for example, the number of time sub-units is proportional to the period of feedback information.
  • the number of time sub-units can also be used to indicate the sending time of feedback information.
  • the sending time of feedback information can be located in the last one or more time sub-units in a time unit.
  • the number of time subunits may also be used to indicate the period of the sensing process performed by the first communication device and the second communication device.
  • the time unit may also be called a sensing time unit or a sensing round
  • the time subunit may also be called a sensing time subunit or a sensing slot.
  • time blocks are also provided in the embodiments of the present application.
  • one time block can include N time units, N is a positive integer, and one time unit can include M time sub-units.
  • the time block may also be called a sensing time block or a UWB-based sensing time block or a sensing block.
  • the embodiment of the present application does not limit the specific name of the time block.
  • the following uses the sensing block, sensing wheel and sensing time slot shown in Figure 3b as an example to illustrate the method provided by the embodiment of the present application. It can be understood that for the description of FIG. 3b, reference may be made to FIG. 3a.
  • a sensing block can be a period of time dedicated to sensing, and each sensing block can be divided into several sensing rounds. Each sensing round can be used to complete an independent sensing measurement and report the results. And each sensing round can be divided into several sensing time slots, and each sensing time slot can be used to transmit at least one sensing packet (for sensing).
  • One sensing time slot may correspond to one or more sensing packets, whereby the second communication device may sense the target multiple times in one sensing round. Based on the sensing packet, the second communication device can obtain path loss information, delay, AOZ, AOA and other information. It can be understood that each sensing packet may include one or more UWB pulses.
  • the measurement report result can also be understood as a channel impulse response (channel impulse response, CIR) feedback parameter or CIR parameter or CIR information, etc.
  • CIR channel impulse response
  • the first parameter information or the second parameter information can also be understood as CIR feedback parameters or CIR parameters, etc.
  • Figure 3c is a schematic diagram of executing the sensing process in the sensing wheel provided by the embodiment of the present application.
  • the first communication device in the sensing control phase, can send control information (also called sensing control message) to the second communication device (for descriptions of control information, please refer to The control information shown in Figure 2a, or, refer to the control information shown in Table 2 below); in the sensing phase (sensing phase), the first communication device can send multiple sensing packets to the second communication device; in the measurement reporting phase (measurement report phase), the second communication device can send feedback information (also called measurement information or measurement report information, etc.) to the first communication device.
  • control information also called sensing control message
  • the second communication device for descriptions of control information, please refer to The control information shown in Figure 2a, or, refer to the control information shown in Table 2 below
  • the first communication device in the sensing phase (sensing phase) the first communication device can send multiple sensing packets to the second communication device; in the measurement reporting phase (measurement report phase), the second communication device
  • the sensing control phase can correspond to one or more sensing time slots, and the sensing phase It can correspond to multiple sensing time slots, and the measurement reporting phase can correspond to one or more sensing time slots.
  • P in Figure 3c is a positive integer less than Q, and Q is a positive integer less than M.
  • P+1 is less than Q, and Q+1 is less than or equal to M-1.
  • control information includes a first field and a fourth field.
  • the first field is used to indicate the feedback mode
  • fourth field is used to indicate the number of sensing time slots included in one sensing round.
  • control information may also be other information, which is used to indicate any one or more of the following: the duration of the sensing time slot, the duration of the sensing block, the number of sensing rounds included in a sensing block, or the pulse repetition frequency. (pulse repetition frequency, PRF).
  • the duration of each sensing slot can be the same, and the duration of each sensing round can be the same.
  • the duration shown in the embodiments of this application may also be called duration or time length, etc.
  • Control information can be understood as the information used by the perception initiator to update the CIR feedback of the perception responder.
  • the information shown in Table 2 can also be called the perception control information element (information element, IE) or the advanced perception control IE. (advanced sensing control IE). That is to say, the information shown in Table 2 can be understood as one IE in the control information, and the embodiment of the present application does not limit other IEs in the control information.
  • the format of the sensing control IE in the control information may be as shown in Table 2.
  • the CIR update indication can be understood as the first field, and the sensing slot duration can be understood as the fourth field.
  • the sensing block duration and sensing slot duration can be in sensing scheduling time unit (SSTU) units.
  • SSTU sensing scheduling time unit
  • the embodiment of this application does not limit the specific duration of the SSTU.
  • the duration of the SSTU can be preset by a protocol or standard, or negotiated by both communicating parties.
  • the impact on the measurement reporting phase is shown in Figure 4a.
  • the first parameter information is indicated by differential information in the feedback information.
  • the second parameter information is determined based on the reference information and the first parameter information in the feedback information earlier than the feedback information.
  • This differential information can also be called differential CIR (difference CIR).
  • the CIR update indication is 01
  • the impact on the measurement reporting phase is shown in Figure 4b.
  • the feedback information indicates the first parameter information through differential information and reference information.
  • the second parameter information is determined based on the reference information and the first parameter information in the feedback information.
  • the CIR update indication is 10
  • no CIR feedback is performed during the measurement reporting phase of this sensing round.
  • the first parameter information that needs to be fed back in this sensing round can be fed back in subsequent sensing rounds (such as the next sensing round or the next sensing round, etc.). That is to say, the CIR parameters in this sensing round can be transmitted simultaneously with subsequent CIR parameters when feedback is indicated in the next control information.
  • the first parameter information that needs to be fed back in this sensing round can be discarded.
  • the second communication device when the movement speed of the target is relatively fast, can provide feedback more frequently to facilitate the first communication device to obtain information related to the target in a timely manner.
  • the feedback frequency of the first parameter information can be reduced. Since feedback information needs to be fed back in the last or last multiple sensing slots in a sensing round, and as can be seen from Figure 3c and Table 2, the number of sensing slots included in a sensing round in the control information can be used Indicates the period of feedback information or the feedback frequency of feedback information.
  • the number of sensing time slots is directly proportional to the period of feedback information, and the number of sensing time slots is inversely proportional to the feedback frequency of feedback information. The greater the number of sensing time slots, the longer the cycle of feedback information, or the lower the feedback frequency of feedback information.
  • the control information when the first communication device requires the second communication device to feedback the first parameter information more frequently, the control information
  • the number of sensing time slots included in a sensing round indicated in can be reduced, thereby shortening the period of feedback information or increasing the feedback frequency of feedback information.
  • the first communication device can obtain the relationship between the period of feedback information and the change frequency of the target through a certain detection algorithm, so that after receiving the feedback information, it determines the feedback period of subsequent feedback information according to the detection algorithm.
  • the detection algorithm can be used to calculate the variance of the CIR parameters within a period of time, or detect whether there is a drastic change in the CIR parameters, thereby determining the content of the perceptual control IE of the control information and the content of the feedback information.
  • the first communication device can indicate the feedback method of the first parameter information and the feedback frequency of the first parameter information through the control information. Therefore, when the feedback method includes differential information, or differential information and reference information, the feedback overhead of the second communication device can be effectively reduced. At the same time, since the differential information has a smaller value compared to the uncompressed parameters, a relatively small number of bits can be used to achieve the same accuracy as the uncompressed parameters, effectively ensuring the accuracy of the values.
  • the first communication device can continuously send sensing packets (a sensing packet can be understood as a collection of UWB pulse signals within a certain period of time), and the second communication device senses the target based on these sensing packets.
  • a sensing packet can be understood as a collection of UWB pulse signals within a certain period of time
  • the second communication device senses the target based on these sensing packets.
  • the second communication device may record parameter information corresponding to the time. Therefore, the parameter information related to the target will correspond to a time.
  • one sensing time slot corresponds to one sensing packet
  • the second communication device can sample the time in one sensing time slot based on the sensing time slot, thereby obtaining parameter information at different times in one sensing time slot.
  • the second communication device can sample parameters obtained in a partial period of time in one sensing time slot, etc. This is not limited by the embodiment of the present application. In other words, based on the sensing packet, the second communication device can sample the time corresponding to a sensing packet (such as a sensing snapshot), thereby obtaining parameter information corresponding to different taps in a sensing snapshot.
  • a sensing packet such as a sensing snapshot
  • Figure 5 is a schematic diagram of sampling path loss information provided by an embodiment of the present application.
  • Figure 5 shows path loss information in different taps sampled based on time within a perception snapshot.
  • Path loss information can be understood as the attenuation information during the transmission process of UWB signals from transmission to reception. Therefore, the abscissa shown in Figure 5 can be understood as the delay from the sending time to the receiving time, and the ordinate can be understood as the path loss.
  • sampling can be based on a certain threshold.
  • sampling is performed using greater than -160dB as an example to obtain the path loss corresponding to the tap.
  • the taps shown in the embodiments of this application can correspond to information such as path loss and delay.
  • the tap shown in the embodiment of this application can also be understood as a sampling point, a sampling node, a sensing sampling point, etc. It can be understood that the sampling process shown in Figure 5 is only an example and should not be understood as limiting the embodiments of the present application.
  • snapshot and tap The relationship between snapshot and tap can be understood as: the second communication device can sample based on the parameters obtained in one snapshot, thereby obtaining parameters corresponding to multiple taps.
  • One awareness package can correspond to one snapshot. That is, one snapshot can be less than or equal to one sensing slot (one sensing slot corresponds to one or more snapshots), and one sensing round can include multiple snapshots.
  • Table 3 is the third field shown in the embodiment of this application.
  • the third field may also be called a compression mode field or a compression mode field, etc.
  • the value of the third field when the value of the third field is 00, it means that the first parameter information does not need to be compressed; when the value of the third field is 01, it means that the second parameter information is the first parameter information after snapshot-based compression processing. obtained; when the value of the third field is 10, it means that the second parameter information is obtained by cluster-based compression of the first parameter information.
  • the snapshot-based compression shown above can be understood as a time-based compression method, and the cluster-based compression can be understood as a numerical-based compression method.
  • the second parameter information may be as shown in Table 4.
  • the first parameter information when the third field is used to indicate that the compression mode is no compression, the second parameter information may be as shown in Table 4.
  • the first parameter information when the value of the third field is 00, the first parameter information does not need to be compressed. At this time, the first parameter information is as shown in Table 4. It can be understood that the first parameter information shown in the embodiment of the present application can be understood as the CIR parameters in the CIR feedback IE (CIR feedback IE) shown in Table 9 or Table 10 below.
  • CIR feedback IE CIR feedback IE
  • each parameter and bit length shown in Table 4 are only examples and should not be understood as limiting the embodiments of the present application. It can be understood that Num_round, Num_snapshot, and Num_tap shown above are all positive integers.
  • the second parameter information may not include AOA and ZOA, that is, AOA and ZOA do not occupy bits.
  • the relevant information in the feedback information (such as Table 9 below) may be used to indicate whether AOA and ZOA exist. When indicating that AOA and ZOA exist, the AOA and ZOA may occupy 8 bits; otherwise, they are ignored.
  • AOA and ZOA may not exist in the second parameter information at the same time, and the embodiment of the present application does not limit this.
  • the feedback information may include a fifth field (such as the data mode field shown in Table 9 below).
  • the fifth field is used to indicate the data mode of the path loss information.
  • the data mode includes indication in the form of amplitude and phase.
  • Path loss information, or path loss information is indicated in terms of in-phase components and quadrature components.
  • the value of the fifth field is 0, which means that the path loss information is fed back in the form of in-phase components and quadrature components (it can also be called feedback of path loss information in the form of real parts and imaginary parts).
  • the fifth field The value of is 1, which means that the path loss information is fed back in the form of amplitude and phase.
  • Num_round is not equal to 1, such as greater than or equal to 2, it means that the feedback information may include the CIR parameters obtained in this sensing round and the CIR parameters obtained in the sensing rounds before this sensing round and not fed back.
  • the value of the first field in the control information in the previous sensing round is 10 (as shown in Table 1b)
  • the second communication device in the previous sensing round may not feed back the feedback information. Then, through the number of sensing rounds shown in Table 4, it can be indicated to the first communication device that the feedback information includes not only the CIR parameters in the previous sensing round but also the CIR parameters of this sensing round.
  • the second parameter information may be as shown in Table 5.
  • the second parameter information can be understood as the CIR parameters in the CIR feedback IE (CIR feedback IE) shown in Table 9 or Table 10 below.
  • the second parameter information is obtained after compression based on snapshot.
  • the compression process based on snapshot can be shown in Figure 6. It can be understood that the ordinate in Figure 5 is based on dB as the unit, and the ordinate shown in Figure 6 is based on linear numerical value as the unit. Therefore, the ordinate units in Figure 5 and Figure 6 are different, but this should not be understood as a reference to this article. Limitation of application examples.
  • parameter information corresponding to a snapshot of any one of one or more sensing wheels that needs to be fed back by one of the one or more antennas can be used as reference information.
  • the second communication device receives UWB signals through multiple antennas, and it needs to feed back the parameter information corresponding to this sensing wheel (such as a sensing wheel). Therefore, the second communication device can transmit the information that a certain antenna needs to feed back.
  • the parameter information corresponding to the first snapshot in the local sensing round is used as reference information.
  • the second communication device needs to receive the UWB signal through an antenna, and its It is necessary to feed back the parameter information corresponding to multiple sensing wheels (that is, there are multiple sensing wheels that need to be fed back this time).
  • the second communication device can use the parameter information corresponding to the first snapshot in the first sensing wheel as a reference. information.
  • the second communication device needs to receive UWB signals through multiple antennas and needs to feed back parameter information corresponding to multiple sensing wheels. Therefore, the second communication device can use a certain antenna to feed back the first sensing wheel.
  • the parameter information corresponding to the first snapshot in is used as reference information.
  • the difference between the parameter information corresponding to other snapshots or other antennas and the reference information is used as differential information.
  • the reference information may be reference information in a perception round earlier than this perception round. The embodiment of this application does not limit how to determine the reference information.
  • the reference information can be the parameter information corresponding to the first snapshot of the first sensing round in this sensing round, or it can be the reference information in the sensing round earlier than the local sensing round.
  • Table 6 shows the bit lengths occupied by different parameter information.
  • the parameter information corresponding to snapshot1 in Table 6 is reference information, so the bit length occupied by the parameter information corresponding to snapshot1 is greater than the bit length occupied by parameter information not corresponding to snapshot1.
  • Table 5 uses the parameter information of the first snapshot of the first perception round as reference information.
  • parameter information other than the first snapshot can also be used as reference information.
  • the parameter information of the first snapshot in the non-first perception round, or the non-first snapshot in the non-first perception round can also be used.
  • the parameter information of the snapshot is used as reference information.
  • the second parameter information or feedback information includes information indicating the location of the reference information.
  • the information indicating the location of the reference information is used to indicate the sensing wheel, sensing time slot or sensing snapshot in which the reference information is located. at least one of.
  • the information indicating the location of the reference information may exist in the second parameter information in the form of a field (or subfield, etc.), or in the feedback information (as shown in Table 10 below).
  • the feedback information may also include indication information indicating whether reference information exists.
  • the feedback information may further include a sixth field used to indicate whether reference information exists in the feedback information; or the sixth field is used to indicate whether reference information exists in the second parameter information.
  • the sixth field is used to indicate whether reference information exists in the second parameter information.
  • the sixth field is used to indicate the existence of reference information (for example, the value of the sixth field is 1), which means that the second parameter information is determined based on the first parameter information and the reference information in this sensing round, that is, That is, the second parameter information includes both differential information and reference information.
  • the value of the third field is 00 or 11
  • the sixth field may not exist in the feedback information, or the value of the sixth field may be ignored.
  • the In-phase Component or Amplitude corresponding to the reference snapshot occupies 16 bits
  • the Quadrature Component or Phase occupies 16 bits.
  • the In-phase Component or Amplitude corresponding to other non-reference snapshots occupies 12 bits
  • the Quadrature Component or Phase occupies 12 bits
  • the delay occupies 6 bits
  • the AOA occupies 6 bits
  • the AOZ occupies 6 bits.
  • the In-phase Component or Amplitude corresponding to snapshot1 as the reference snapshot occupies 16 bits
  • the Quadrature Component or Phase occupies 16 bits
  • the delay occupies 8 bits
  • AOA occupies 8 bits
  • the second parameter information may be as shown in Table 7.
  • the second parameter information is obtained after cluster-based compression.
  • the cluster-based compression process can be shown in Figure 7. It can be understood that the compression process shown in Figure 7 is only an example and should not be understood as limiting the embodiments of the present application.
  • the CIR in snapshot 1 shown in Figures 6 and 7 can be referred to Figure 8a, that is, Figure 8a is obtained by enlarging the CIR in snapshot 1 in Figure 6 or 7.
  • the CIR in snapshot 2 shown in Figure 6 and Figure 7 can be referred to Figure 8b, that is, Figure 8b is obtained by enlarging the CIR in snapshot 2 in Figure 6 or Figure 7.
  • the CIR in snapshot10 shown in Figures 6 and 7 can be referred to Figure 8c, that is, Figure 8c is obtained by enlarging the CIR in snapshot10 in Figure 6 or Figure 7.
  • the cluster-based compression process can be: clustering the CIR of all snapshots, for example, it can be based on the dynamic range, K-means (K-mean) or the density-based spatial clustering method in a noisy environment (density- Clustering is performed based on spatial clustering of applications with noise (DBSCAN).
  • K-means K-mean
  • density- Clustering is performed based on spatial clustering of applications with noise (DBSCAN).
  • DBSCAN spatial clustering of applications with noise
  • Table 7 only shows cluster 1 as an example.
  • the other clusters may all use the reference tap in cluster 1 as reference information.
  • the difference between the parameter corresponding to the tap in cluster 2 and the parameter corresponding to the reference tap in cluster 1 is differential information.
  • the cluster where the reference information is located may be the first cluster, or it may not be the first cluster.
  • the second parameter information or feedback information includes information indicating the location of the reference information, which is used to indicate the location of the reference information. The location information is used to indicate the cluster where the reference information is located.
  • the tap index shown in Table 7 will be explained in detail below.
  • Table 8 shows the conditions corresponding to the values of the tap index.
  • the bit length occupied by the tap index is 0, it means that the parameter information fed back in the feedback information is obtained based on one antenna and one snapshot.
  • the second communication device obtains the first parameter information within a snapshot through an antenna.
  • the bit length occupied by the tap index is 3
  • the second communication device obtains the first parameter information in multiple snapshots through one antenna. Therefore, the second parameter information needs to include the first parameter information in multiple snapshots, that is, it needs to indicate through the tap index that the parameter information corresponding to the tap is obtained based on the snapshot indicated by the tap index.
  • the bit length occupied by the tap index 2
  • the bit length occupied by the tap index 5
  • the second parameter information needs to include multiple snapshots and the first parameter information corresponding to multiple antennas, that is, the tap index needs to be used to indicate that the parameter information of the corresponding tap is based on the snapshot indicated by the tap index, and the tap The antenna indicated by the index is obtained.
  • Tap Index can be used to indicate the snapshot to which the tap belongs and the corresponding receiving antenna.
  • the number of antennas is 1 and the length of the tap index is 3 bits. If the value of the tap index of a tap is 010, it means that the tap belongs to the second snapshot. For example, if the tap index value of a tap is 01110, it means that the tap belongs to the 6th snapshot of antenna 1. It is understandable that the tap index value can also be 11001 to also represent the tap index. A certain tap belongs to the sixth snapshot of antenna 1.
  • bit length of the tap index may be related to the bit length of the number of antennas indicated in the feedback information and the number of snapshots indicated in the feedback information. For example, when the number of receiving antennas is equal to 1, the bit length of the tap index may be related to the number of snapshots indicated in the feedback information. For example, if the field used to indicate the number of snapshots in the feedback information occupies 3 bits, then the tap index can occupy 3 bits. For another example, if the field used to indicate the number of snapshots in the feedback information occupies 4 bits, then the tap index can occupy 4 bits.
  • the bit length of the tap index may be related to the number of antennas indicated in the feedback information. For example, if the field used to indicate the number of antennas in the feedback information occupies 2 bits, then the tap index can occupy 2 bits. For another example, if the field used to indicate the number of antennas in the feedback information occupies 3 bits, then the tap index can occupy 3 bits. Of course, at least one of the field indicating the number of antennas or the field indicating the number of snapshots may not exist in the feedback information.
  • the tap index can be included in the first tap, and then the delimiter is used to indicate that the index of the subsequent tap is the same as the index of the first tap.
  • the delimiter may be located after the reference tap in cluster 1.
  • the delimiter may be set to 8 1s or 8 0s, or 16 1s or 16 0s, etc. The embodiment of this application does not make any changes to the setting method of the delimiters. limited.
  • the second parameter information or feedback information may also include information indicating whether the tap index has changed relative to the tap index of the previous tap.
  • the information used to indicate whether the tap index of a tap has changed may exist in the second parameter information or in the feedback information in the form of a field (or subfield, etc.).
  • the information used to indicate whether the tap index of a tap has changed may exist in the form of a field (or subfield, etc.) before the tap index field.
  • Each cluster corresponds to a reference tap.
  • the index of the reference tap can be set according to Table 8, and then other non-reference taps in cluster 1 are described in turn. For example, cluster 1 contains tap1-tap10, and tap1 is the reference tap.
  • the information corresponding to the reference tap of cluster 1 can include the tapindex of tap1, and the field previously included in the tap index is used to indicate whether the tap index has changed. Can be set to default value (such as 0 or 1, etc.).
  • the tapindex of a non-reference tap in cluster 1, such as tap2 may include a field used to indicate whether the tap index of tap2 has changed from the tap index of tap1, and so on.
  • the feedback information can also be called CIR feedback IE (CIR feedback IE).
  • CIR feedback IE CIR feedback IE
  • the format of the feedback information may be as shown in Table 9 or Table 10.
  • Table 10 adds the index field of the snapshot where the reference information is located. It can be understood that the bit length occupied by the index field of the snapshot where the reference information is located may be the same as the bit length occupied by the snapshot quantity field. At the same time, the feedback information shown in Table 10 is more suitable for snapshot-based compression. For example, when reference information exists, the first communication device can clearly learn which snapshot the reference information belongs to through the index of the snapshot where the reference information is located.
  • the element ID may be used to indicate the ID of the feedback information, that is, the ID of the CIR feedback IE.
  • the compression mode field may be used to indicate whether to compress the first parameter information.
  • the compression mode field please refer to the third field shown above (such as the relevant description in Table 3, etc.), which will not be described in detail here.
  • the receiving antenna number field may be used to indicate the receiving antenna of the second communication device, and the bit length occupied by the receiving antenna number field may be used to determine the bit length occupied by the tap index field shown in Table 8.
  • the snapshot number field may be used to indicate the number of snapshots that the second communication device needs to feed back the CIR.
  • the bit length occupied by the snapshot value field may be used to determine the bit length occupied by the tap index field shown in Table 8. For the description of tap index, please refer to the relevant description of Table 8, which will not be described in detail here.
  • the Reference Information Existence field is used to indicate whether reference information exists in the feedback information. Regarding whether there is a reference information field, please refer to the above description of the sixth field, which will not be described in detail here.
  • the CIR parameter field shown in Table 9 or Table 10 can be understood as the second field shown above.
  • the CIR parameter field may be used to carry the first parameter information as shown in Table 4, or to carry the second parameter information as shown in Table 5 or Table 7.
  • the feedback information shown above effectively considers the similarity within different taps or the similarity within different clusters, and also considers the correlation between different antennas, thereby effectively utilizing the similarity in time and space of CIR parameter feedback. correlation.
  • Table 9 can also be combined with Table 11 and Table 12, or Table 10 can be combined with Table 11 and Table 12.
  • Table 11 is the CIR feedback header (main header), which can be used to indicate the included range.
  • Table 12 can be understood as a range header. Each range can correspond to a table 12 and a table 9, or each range can correspond to a table 12 and a table 10.
  • a snapshot may include one or more ranges, and a range may include multiple taps.
  • the second communication device may first transmit table 11, indicating the included ranges, and then for each range, first transmit table 12, and then transmit table 9 or table 10.
  • bit lengths or field values in each table shown above are only examples and should not be understood as limiting the embodiments of the present application.
  • Each of the tables shown above can be combined individually with the method shown in Figure 2a; or, different tables can also be combined with each other and with the method shown in Figure 2a.
  • the method shown above can be applied to the first communication device and the second communication device. Alternatively, the method shown above can be applied to other scenarios. For example,
  • the sensing initiator sends control information to the sensing responder, thereby enabling the sensing responder to provide feedback based on the control information; and the sensing responder sends feedback information to the sensing initiator, which not only effectively feeds back CIR parameters , and can also indicate the compression method or data mode of the CIR parameter to the sensing initiator. It not only improves the sensing interaction process based on the UWB system, but also effectively reduces signaling overhead by feeding back CIR parameters in a compressed manner.
  • This application divides the communication device into functional modules according to the above method embodiments.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in this application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIGS. 9 to 11 .
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application. As shown in Figure 9, the communication device includes a processing unit 901 and a transceiver unit 902.
  • the communication device may be the first communication device or chip shown above, and the chip may be applied to the first communication device or the like. That is, the communication device can be used to perform the steps or functions performed by the first communication device in the above method embodiment.
  • the transceiver unit 902 is used to output control information and input feedback information.
  • the processing unit 901 is used to determine control information; and output the control information through the transceiver unit 902 and input feedback information.
  • processing unit 901 can also perform processing based on the feedback information to obtain information such as the speed, distance or attenuation of the target.
  • transceiver unit and the processing unit shown in the embodiments of the present application are only examples.
  • specific functions or steps performed by the transceiver unit and the processing unit reference may be made to the above method embodiments, which will not be described in detail here.
  • the communication device may be the second communication device shown above or a chip in the second communication device, etc. That is, the communication device can be used to perform the steps performed by the second communication device in the above method embodiment. steps or functions, etc.
  • the transceiver unit 902 is used to input control information; the transceiver unit 902 is also used to output feedback information.
  • the processing unit 901 is used to determine feedback information according to the control information.
  • transceiver unit and the processing unit shown in the embodiments of the present application are only examples.
  • specific functions or steps performed by the transceiver unit and the processing unit reference may be made to the above method embodiments, which will not be described in detail here.
  • the first communication device and the second communication device according to the embodiment of the present application are introduced above.
  • the possible product forms of the first communication device and the second communication device are introduced below. It should be understood that any form of product that has the function of the first communication device described in Figure 9, or any form of product that has the function of the second communication device described in Figure 9, falls within the scope of this application. Protection scope of the embodiment. It should also be understood that the following description is only an example, and does not limit the product forms of the first communication device and the second communication device in the embodiments of the present application to this.
  • the processing unit 901 may be one or more processors, the transceiving unit 902 may be a transceiver, or the transceiving unit 902 may also be a sending unit and a receiving unit.
  • the sending unit may be a transmitter
  • the receiving unit may be a receiver
  • the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the embodiment of the present application does not limit the connection method between the processor and the transceiver.
  • the process of sending information in the above method can be understood as the process of outputting the above information by the processor.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver for transmission by the transceiver. After the above information is output by the processor, it may also need to undergo other processing before reaching the transceiver. Similarly, the process of receiving information in the above method can be understood as the process of the processor receiving the input information.
  • the processor receives the incoming information
  • the transceiver receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to undergo other processing before being input to the processor.
  • the communication device 100 includes one or more processors 1020 and a transceiver 1010 .
  • the processor 1020 is used to determine the control information; the transceiver 1010 is used to send the control information to the second communication device, and receiving feedback information from the second communication device.
  • the transceiver 1010 when the communication device is used to perform the steps or methods or functions performed by the second communication device, the transceiver 1010 is used to receive control information from the first communication device; the processor 1020 is used to perform the processing according to the control information. Determine feedback information; the transceiver 1010 is also used to send feedback information to the first communication device.
  • the transceiver may include a receiver and a transmitter.
  • the receiver is configured to perform a function (or operation) of receiving.
  • the transmitter is configured to perform a function (or operation) of transmitting. ). and transceivers for communication over transmission media and other equipment/devices.
  • the communication device 100 may also include one or more memories 1030 for storing program instructions and/or data.
  • Memory 1030 and processor 1020 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 1020 may cooperate with the memory 1030.
  • Processor 1020 may execute program instructions stored in memory 1030 .
  • at least one of the above one or more memories may be included in the processor.
  • connection medium between the above-mentioned transceiver 1010, processor 1020 and memory 1030 is not limited in the embodiment of the present application.
  • the memory 1030, the processor 1020 and the transceiver 1010 are connected through a bus 1040 in Figure 10.
  • the bus is represented by a thick line in Figure 10.
  • the connection methods between other components are only schematically explained. , is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 10, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc., which can be implemented Or execute the disclosed methods, steps and logical block diagrams in the embodiments of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor, etc.
  • the memory may include but is not limited to non-volatile memories such as hard disk drive (HDD) or solid-state drive (SSD), random access memory (Random Access Memory, RAM), Erasable Programmable ROM (EPROM), Read-Only Memory (ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM), etc.
  • Memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures, and that can be read and/or written by a computer (such as the communication device shown in this application), but is not limited thereto.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the processor 1020 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • Memory 1030 is mainly used to store software programs and data.
  • the transceiver 1010 may include a control circuit and an antenna.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor 1020 can read the software program in the memory 1030, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1020 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1020.
  • the processor 1020 converts the baseband signal into data and performs processing on the data. deal with.
  • the radio frequency circuit and antenna can be arranged independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely and independently of the communication device. .
  • the communication device shown in the embodiment of the present application may also have more components than in Figure 10 , and the embodiment of the present application does not limit this.
  • the methods performed by the processor and transceiver shown above are only examples. For specific steps performed by the processor and transceiver, please refer to the method introduced above.
  • the processing unit 901 may be one or more logic circuits, and the transceiver unit 902 may be an input-output interface, also known as a communication interface, or an interface circuit. , or interface, etc.
  • the transceiver unit 902 may also be a sending unit and a receiving unit.
  • the sending unit may be an output interface
  • the receiving unit may be an input interface.
  • the sending unit and the receiving unit may be integrated into one unit, such as an input-output interface.
  • the communication device shown in FIG. 11 includes a logic circuit 1101 and an interface 1102 .
  • the above-mentioned processing unit 901 can be implemented by the logic circuit 1101, and the transceiver unit 902 can be implemented by the interface 1102.
  • the logic circuit 1101 can be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 1102 can be a communication interface, an input-output interface, etc. ports, pins, etc.
  • FIG. 11 takes the above communication device as a chip, and the chip includes a logic circuit 1101 and an interface 1102.
  • the chips shown in the embodiments of the present application may include narrowband chips or ultra-bandwidth chips, etc., which are not limited by the embodiments of the present application.
  • the step of sending the sensing packet as shown above can be performed by the ultra-bandwidth chip. Whether the remaining steps are performed by the ultra-bandwidth chip is not limited by the embodiments of this application.
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiments of this application do not limit the specific connection methods of the logic circuits and interfaces.
  • the logic circuit 1101 is used to determine the control information; the interface 1102 is used to output the control information and input feedback information.
  • the logic circuit 1101 is also used to process feedback information and obtain information related to the target.
  • the interface 1102 is used to input control information; the logic circuit 1101 is used to determine feedback information according to the control information; the interface 1102 is also used Used to output this feedback information.
  • the communication device shown in the embodiments of the present application can be implemented in the form of hardware to implement the methods provided in the embodiments of the present application, or can be implemented in the form of software to implement the methods provided in the embodiments of the present application. This is not limited by the embodiments of the present application.
  • An embodiment of the present application also provides a wireless communication system.
  • the wireless communication system includes a first communication device and a second communication device.
  • the first communication device and the second communication device can be used to perform any of the foregoing embodiments (such as method in Figure 2a).
  • this application also provides a computer program, which is used to implement the operations and/or processing performed by the first communication device in the method provided by this application.
  • This application also provides a computer program, which is used to implement the operations and/or processing performed by the second communication device in the method provided by this application.
  • This application also provides a computer-readable storage medium that stores computer code.
  • the computer code When the computer code is run on a computer, it causes the computer to perform the operations performed by the first communication device in the method provided by this application. and/or processing.
  • This application also provides a computer-readable storage medium that stores computer code.
  • the computer code When the computer code is run on a computer, it causes the computer to perform the operations performed by the second communication device in the method provided by this application. and/or processing.
  • the present application also provides a computer program product.
  • the computer program product includes a computer code or a computer program.
  • the operations performed by the first communication device in the method provided by the present application are performed. /or processing is performed.
  • the present application also provides a computer program product.
  • the computer program product includes a computer code or a computer program.
  • the operations performed by the second communication device in the method provided by the present application are performed. /or processing is performed.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the phases shown or discussed The mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, or it may be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided by the embodiments of the present application.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a readable
  • the storage medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned readable storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc. that can store program code medium.

Abstract

本申请公开了一种基于超带宽的信息反馈方法及装置,包括:第一通信装置向第二通信装置发送控制信息,第二通信装置在接收到控制信息之后,向第一通信装置发送反馈信息;第一通信装置接收反馈信息,并进行处理获得与目标相关的信息。控制信息包括第一字段,该第一字段用于指示感知测量结果的反馈方式;反馈信息包括第二字段,该第二字段用于承载第二参数信息,该第二参数信息是根据反馈方式和第一参数信息确定的,该第一参数信息是第二通信装置基于UWB脉冲得到的感知测量结果。本申请提供的方案有效完善了感知流程,可以应用于802.15系列协议,例如802.15.4a协议、802.15.4z协议或802.15.4ab协议等。

Description

基于超带宽的信息反馈方法及装置
本申请要求于2022年03月07日提交中国专利局、申请号为202210225950.9、申请名称为“基于超带宽的信息反馈方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于超带宽的信息反馈方法及装置。
背景技术
超宽带技术(ultra wideband,UWB)是一种无线载波通信技术,如可以利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。由于其脉冲比较窄,且辐射谱密度低,因此UWB具有多径分辨能力强,功耗低,保密性强等优点。
基于UWB的特点,因此可以利用UWB脉冲进行感知。在感知应用中,通过探测UWB信号在目标上的回波,可以提取目标的距离、角度或速度等信息。在感知应用的一种场景中,感知发起者是UWB信号的发射端,感知应答者是UWB回波信号的接收端,感知发起者可以通过感知应答者发送的反馈信息获取与目标相关的信息。
因此,感知发起者与感知应答者如何交互反馈信息亟待解决。
发明内容
本申请提供一种基于UWB的信息反馈方法,有效完善了基于UWB脉冲进行感知的交互过程。
第一方面,本申请实施例提供一种基于超带宽的信息反馈方法,所述方法包括:第一通信装置向第二通信装置发送控制信息,所述控制信息包括第一字段,所述第一字段用于指示感知测量结果的反馈方式;所述第一通信装置接收来自所述第二通信装置的反馈信息,所述反馈信息包括第二字段,所述第二字段用于承载第二参数信息,所述第二参数信息根据所述反馈方式和第一参数信息确定,所述第一参数信息是所述第二通信装置基于UWB脉冲得到的感知测量结果。
本申请实施例中,第一通信装置通过向第二通信装置指示反馈方式,可使得第二通信装置明确获知第一参数信息的处理方式,从而不仅有效完善了基于UWB脉冲进行感知的流程,而且还有效保证了通信双方的通信效率。
第二方面,本申请实施例提供一种基于超带宽的信息反馈方法,所述方法包括:第二通信装置接收控制信息,所述控制信息包括第一字段,所述第一字段用于指示感知测量结果的反馈方式;所述第二通信装置向第一通信装置发送所述反馈信息,所述反馈信息包括第二字段,所述第二字段用于承载第二参数信息,所述第二参数信息根据所述反馈方式和所述第一参数信息确定,所述第一参数信息是所述第二通信装置基于超带宽UWB脉冲得到的感知测量结果。
结合第一方面或第二方面,在一种可能的实现方式中,所述反馈信息还包括第三字段,所述第三字段用于指示所述第一参数信息的压缩方式;所述第二参数信息根据所述反馈方式和所述第一参数信息确定包括:所述第二参数信息根据所述反馈方式、所述压缩方式和所述第一参数信息确定。
本申请实施例中,通过第三字段指示具体的压缩方式,第二通信装置不仅可以有效获知其处理第一参数信息的方式,而且通过压缩方式处理第一参数信息,还能够有效减少反馈信息的信令开销。
结合第一方面或第二方面,在一种可能的实现方式中,所述反馈方式包括基于差分信息的反馈方式,或者基于参考信息和差分信息的反馈方式中的至少一项,所述差分信息基于所述第一参数信息和所述参考信息确定。
本申请实施例中,通过基于差分信息的反馈方式,或者,通过基于参考信息和差分信息的反馈方式可以有效减少反馈信息的信令开销。同时,基于差分信息的反馈方式能够进一步减少反馈信息的信令开销。基于参考信息和差分信息的反馈方式能够使得第一通信装置根据反馈信息直接获得该反馈信息中所包括的参考信息,更直接。
结合第一方面或第二方面,在一种可能的实现方式中,所述压缩方式包括基于时间的压缩方式,或者基于数值的压缩方式中的至少一项。
本申请实施例中,基于时间的压缩方式实现更简单。在参数的动态范围较大时,通过基于数值的压缩方式能够有效保证反馈的精度。如基于数值的压缩方式更适合参数变化较大的场景。
结合第一方面或第二方面,在一种可能的实现方式中,所述控制信息还包括第四字段,所述第四字段用于指示一个感知时间单元中包括的感知时间子单元的个数。
本申请实施例中,一个感知时间单元中所包括的感知时间子单元的个数可以用于指示反馈信息的周期。一个感知时间单元中所包括的感知时间子单元的个数与反馈信息的周期成正比,如一个感知时间单元中所包括的感知时间子单元的个数越多,则表示反馈信息的周期越大,反馈信息的反馈频率越低。由于反馈信息需要在感知时间单元内反馈,因此通过第四字段指示一个感知时间单元中所包括的感知时间子单元,不仅可以有效指示反馈信息的反馈周期,而且还能够指示反馈信息所在的时间段。从而,不仅可以有效完善感知流程,而且还能够有效保证通信双方的通信效率。
结合第一方面或第二方面,在一种可能的实现方式中,所述第二参数信息包括路径损耗信息、时延、水平到达角AOA、垂直到达角ZOA中的至少一项。
结合第一方面或第二方面,在一种可能的实现方式中,所述反馈信息还包括第五字段,所述第五字段用于指示所述路径损耗信息的数据模式,所述数据模式包括基于幅度和相位的数据模式,或者基于同相分量和正交分量的数据模式中的至少一项。
本申请实施例中,通过第五字段指示路径损耗信息的数据模式,使得路径损耗信息的形式更加多样化,能够针对不同的应用场景,有效的选择不同的感知信息的反馈形式。示例性的,在路径损耗信息的比特位宽较小(即占用的比特长度)时,用幅度和相位的反馈精度更高。
结合第一方面或第二方面,在一种可能的实现方式中,所述反馈信息还包括第六字段,所述第六字段用于指示所述反馈信息中是否存在参考信息。
本申请实施例中,通过第六字段指示反馈信息中是否存在参考信息,可以进一步完善基于UWB脉冲的感知流程。以及通过增加该“握手”形式的反馈信息,增强通信的可靠性,提高通信双方的通信效率。
第三方面,本申请实施例提供一种第一通信装置,用于执行第一方面或第一方面的任意可能的实现方式中的方法。该第一通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,本申请实施例提供一种第二通信装置,用于执行第二方面或第二方面的任意可能的实现方式中的方法。该第二通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
在第三方面或第四方面中,上述第一通信装置和第二通信装置可以包括收发单元和处理单元。对于收发单元和处理单元的具体描述还可以参考下文示出的装置实施例。
第五方面,本申请实施例提供一种第一通信装置,该第一通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述第一通信装置之外。
在一种可能的实现方式中,存储器位于上述第一通信装置之内。
本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,第一通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第六方面,本申请实施例提供一种第二通信装置,该第二通信装置包括处理器,用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述第二通信装置之外。
在一种可能的实现方式中,存储器位于上述第二通信装置之内。
在本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,第二通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第七方面,本申请实施例提供一种第一通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述逻辑电路,用于通过所述接口输出控制信息,以及输入反馈信息。
可理解,逻辑电路还用于根据反馈信息进行处理,获得与目标相关的信息。与目标相关的信息如包括速度、角度或衰减等信息。
第八方面,本申请实施例提供一种第二通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述逻辑电路,用于通过所述接口输入控制信息,以及输出反馈信息。
可理解,逻辑电路,还用于根据控制信息确定反馈信息。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程 序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十二方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十三方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十四方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十五方面,本申请实施例提供一种无线通信系统,该无线通信系统包括第一通信装置和第二通信装置,所述第一通信装置用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,所述第二通信装置用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
上述第三方面至第十五方面达到的技术效果可以参考第一方面或第二方面的技术效果或下文所示的方法实施例中的有益效果,此处不再重复赘述。
附图说明
图1a和图1b是本申请实施例提供的基于一个感知应答者的感知场景;
图1c和图1d是本申请实施例提供的基于多个感知应答者的感知场景;
图2a是本申请实施例提供的一种基于UWB的信息反馈方法的流程示意图;
图2b和图2c是本申请实施例提供的基于UWB的信息反馈的场景示意图;
图3a至图3c是本申请实施例提供的感知流程示意图;
图4a和图4b是本申请实施例提供的感知流程示意图;
图5是本申请实施例提供的一种对路径损耗信息进行采样的示意图;
图6是本申请实施例提供的基于snapshot的压缩示意图;
图7是本申请实施例提供的基于簇的压缩示意图;
图8a是本申请实施例提供的snapshot1中的CIR参数示意图;
图8b是本申请实施例提供的snapshot2中的CIR参数示意图;
图8c是本申请实施例提供的snapshot10中的CIR参数示意图;
图9至图11是本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施 例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请提供的技术方案可以适用于基于UWB技术的无线个人局域网(wireless personal area network,WPAN)。如本申请提供的方法可以适用于电气及电子工程师学会(institute of electrical and electronics engineers,IEEE)802.15系列协议,例如802.15.4a协议、802.15.4z协议或802.15.4ab协议,或者未来某代UWB WPAN标准中等,这里不再一一列举。本申请提供的方法还可以应用于各类通信系统,例如,可以是物联网(internet of things,IoT)系统、车联网(Vehicle to X,V2X)、窄带物联网(narrow band internet of things,NB-IoT)系统,应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。还可以适用于LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统、第六代(6th-generation,6G)通信系统等。
UWB技术是一种新型的无线通信技术。它利用纳秒级的非正弦波窄脉冲传输数据,通过对具有很陡上升和下降时间的冲激脉冲进行调制,因此其所占用的频谱范围很宽,使信号具有吉赫(GHz)量级的带宽。UWB使用的带宽通常在1GHz以上。因为UWB系统不需要产生正弦载波信号,可以直接发射冲激序列,所以UWB系统具有很宽的频谱和很低的平均功率,UWB无线通信系统具有多径分辨能力强、功耗低、保密性强等优点,有利于与其他系统共存,从而提高频谱利用率和系统容量。另外,在短距离的通信应用中,UWB发射机的发射功率通常可做到低于1mW(毫瓦),从理论上来说,UWB信号所产生的干扰仅相当于一宽带的白噪声。这样有助于超宽带与现有窄带通信之间的良好共存。因此,UWB系统可以实现与窄带(narrowband,NB)通信系统同时工作而互不干扰。本申请提供的方法可以由无线通信系统中的通信装置实现,一个通信装置中,实现UWB系统功能的模块可以被称为UWB模块(如可以用于发送UWB脉冲),实现窄带通信系统功能的模块可以被称为窄带通信模块,UWB模块和窄带通信模块可以为不同的装置或芯片等,本申请实施例对此不作限定。当然UWB模块和窄带通信模块也可以集成在一个装置或芯片上,本申请实施例不限制UWB模块和窄带通信模块在通信装置中的实现方式。
虽然本申请实施例主要以WPAN为例,尤其是应用于IEEE 802.15系列标准的网络为例进行说明。但是,本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络。例如,无线局域网(wireless local area networks,WLAN)、蓝牙(BLUETOOTH)、高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)或其它现在已知或以后 发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
本申请提供的方法可以由无线通信系统中的通信装置实现。该通信装置可以是UWB系统中涉及的装置。例如,该通信装置可以包括但不限于通信服务器、路由器、交换机、网桥、计算机、手机等。又例如,该通信装置可以包括中心控制点,如个人局域网(personal area network,PAN)或PAN协调者等。又例如,该通信装置可以包括用户设备(user equipment,UE),该用户设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、物联网(internet of things,IoT)设备、计算设备或连接到无线调制解调器的其它处理设备等,这里不再一一列举。又例如,该通信装置可以包括芯片,该芯片可以设置于通信服务器、路由器、交换机或用户终端中等,这里不再一一列举。
可理解,本申请实施例所示的通信装置还可以包括感知发起者(initiator)或感知应答者(responder)。感知发起者和感知应答者是相对而言的,如感知发起者为发起感知流程的一方,则感知应答者可以为根据发起感知流程的一方所作出应答的一方。可理解,感知发起者可以是UWB信号的发射端,感知应答者是UWB回波信号的接收端。或者,感知发起者可以是UWB回波信号的接收端,感知应答者是UWB信号的发射端。本申请实施例所示的通信装置既可以是感知发起者,也可以是感知应答者。可理解,由于感知发起者发送的UWB信号需要先到达目标,然后到达感知应答者,因此相对于感知发起者发送的UWB信号而言,感知应答者所接收到的信号可以称为UWB回波信号。
基于以上所示的感知发起者和感知应答者,本申请实施例提供了以下四种场景。可理解,图1a和图1b可以理解为基于一个感知应答者的感知场景,图1c和图1d可以理解为基于多个感知应答者的感知场景。同时,图1a和图1c中,感知发起者是UWB回波信号的接收端,感知应答者是UWB信号的发射端。图1b和图1d中,感知发起者是UWB信号的发射端,感知应答者是UWB信号的接收端。
如图1a所示,由于感知发起者是UWB回波信号的接收端,因此感知发起者可以根据该UWB回波信号获得与目标的相关信息。由此,感知发起者与感知应答者之间无需通过空口传输反馈信息。如图1b所示,由于感知发起者是UWB信号的发射端,感知应答者是UWB回波信号的接收端,因此感知发起者需要通过感知应答者发送的反馈信息获得与目标相关的信息。如图1c所示,多个感知应答者都是UWB信号的发射端,类似的,感知发起者与多个感知应答者之间无需通过空口传输反馈信息。然而,图1d所示的场景中,感知发起者需要获得来自多个感知应答者的反馈信息。
图1a至图1b中所示的感知包(sensing packet)可以理解为一种UWB信号,接收到该感知包的装置,可以基于该感知包获得与目标相关的信息。可选的,接收到感知包的装置还可以通过反馈信息反馈与目标相关的信息。
基于图1b和图1d,感知发起者和感知应答者之间需要传输反馈信息,因此本申请实施例提供了一种基于UWB的信息反馈方法及装置,当感知发起者作为UWB信号的发射端,感知应答者作为UWB回波信号的接收端时,通过本申请实施例提供的方法,感知发起者和感知应答者能够有效地进行反馈信息的传输。
在一个实现方式中,反馈信息的格式可以如表1a所示。
表1a

根据表1a所示的反馈信息,该反馈信息的信令开销较大,而且该反馈信息无法有效利用时间上的相似性和空间上的相关性。
鉴于此,本申请还提供了一种反馈信息,不仅可以尽可能地减少反馈信息的信令开销,而且还能够有效利用反馈信息中的参数在时间上的相似性和空间上的相关性。图2a是本申请实施例提供的一种基于UWB的信息反馈方法的流程示意图。
图2a所示的方法可以应用于第一通信装置和第二通信装置,该第一通信装置包括UWB信号的发射端,第二通信装置包括UWB回波信号的接收端;或者,该第一通信装置可以理解为感知发起者,且感知发起者是UWB信号的发射端,第二通信装置可以理解为感知应答者,且感知应答者是UWB回波信号的接收端。关于第一通信装置和第二通信装置的说明可以参考上文关于通信装置的描述,这里不再一一详述。可理解,但凡能够实现本申请实施例提供的方法的装置均属于本申请的保护范围,因此不应将感知发起者和感知应答者理解为对 本申请实施例的限定。
可选的,图2a所示的方法可以应用于如图2b所示的场景,感知发起者发起感知流程以及发送感知包(图2b是以感知包包含于感知发起信息为例示出的),感知应答者响应感知流程。可理解,图2b所示的场景还可以适用于控制器(controler)和受控制的(controlee)装置。可选的,图2a所示的方法可以应用于如图2c所示的场景,第三方(如控制器)作为独立的物理节点发起感知流程,感知发起者发送感知包,感知应答者响应感知流程,即将反馈信息发送给感知发起者。可理解,图2c所示的场景中,感知应答者也可以将反馈信息发送给控制器,本申请实施例对此不作限定。
如图2a所示,该方法包括:
201、第一通信装置向第二通信装置发送控制信息,该控制信息包括第一字段,该第一字段用于指示感知测量结果的反馈方式。对应的,第二通信装置接收该控制信息。
控制信息可以用于控制感知测量结果的反馈方式或反馈周期中的至少一项,或者该控制信息可以理解为与感知流程相关的控制信息。第二通信装置可以基于该控制信息反馈与目标相关的信息,如本申请实施例所示的反馈信息。示例性的,控制信息可以包含于物理层(physical layer,PHY)协议数据单元(PHY protocol data unit,PPDU)。例如,控制信息可以承载于PPDU中的物理层服务数据单元(PHY service data unit,PSDU)中。本申请实施例对于该控制信息的具体位置不作限定。
第一字段用于指示(也可以称为承载)感知测量结果的反馈方式,如感知测量结果的反馈方式可以用于确定反馈信息中的内容是否是经过压缩的,或者,第二通信装置是否需要反馈感知测量结果等。本申请实施例所示的第一参数信息可以是第二通信装置基于第一通信装置发送的UWB脉冲得到的感知测量结果。也就是说,第二通信装置可以基于UWB脉冲获得与目标相关的信息,这里所示的与目标相关的信息可以理解为本申请实施例所示的第一参数信息。示例性的,第一参数信息可以包括路径损耗(path loss)信息、时延(也可以称为tap的时延)、垂直到达角(zenith angle of arrival,ZOA)、水平到达角(azimuth angle of Arrival,AOA)中的至少一项。本申请实施例对于第一参数信息中所包括的具体内容不作限定。可理解,时延可以是相对于UWB脉冲发送时间的时延等,本申请实施例对于该时延的参考标准不作限定。路径损耗信息也可以理解为发送功率的衰减信息,或者,功率时延信息等。
以下详细说明本申请实施例所示的第一字段,关于第一字段可以包括以下几种实现方式:
实现方式一
反馈方式包括:反馈或不反馈。
也就是说,第一字段可以用于指示第二通信装置是否反馈第一参数信息;或者,第一字段用于指示第二通信装置是否基于第一参数信息生成反馈信息。例如,第一字段用用于指示第二通信装置反馈第一参数信息,则表示第二通信装置需要生成反馈信息。例如,该第一字段包括1个比特,如第一字段的取值为1,则表示第二通信装置需要反馈第一参数信息;如第一字段的取值为0,则表示第二通信装置不需要反馈第一参数信息。可理解,以上所示的第一字段的取值仅为示例,不应将其理解为对本申请实施例的限定。
可选的,第一字段用于指示第二通信装置需要反馈第一参数信息时,可以由标准或协议预先规定:第二通信装置以不压缩的方式反馈第一参数信息(也可以理解为反馈信息中的内容包括第一参数信息未经过压缩处理得到的信息);或者,第二通信装置以差分信息的方式反馈第一参数信息(也可以理解为反馈信息中的内容包括第一参数信息经过压缩处理得到的第二参数信息);或者,第二通信装置以参考信息和差分信息的方式反馈第一参数信息(也可以 理解为反馈信息中的内容包括第一参数信息经过压缩处理得到的第二参数信息)。
可理解,当反馈方式包括不反馈第一参数信息时,第二通信装置可以丢弃第一参数信息,或者第二通信装置将所获得的第一参数信息承载于后续的反馈信息中。
实现方式二
反馈方式包括:基于差分信息的反馈方式(也可以称为以差分信息的方式反馈感知测量结果),或者基于参考信息和差分信息的反馈方式(也可以称为以参考信息和差分信息的方式反馈感知测量结果)中的至少一项。
其中,差分信息基于第一参数信息和参考信息确定。如差分信息可以理解为第一参数信息中除参考信息中包括的参数之外的某个参数相对于参考信息中的该某个参数的变化量。举例来说,差分信息可以理解为某个范围内的时延相对于另一个范围内的时延的变化量。又举例来说,差分信息可以理解为某一时刻的时延相对于另一时刻的时延的变化量。关于差分信息和参考信息的说明还可以参考下文所示的具体例子,这里先不一一详述。
可理解,当反馈信息中的内容仅仅是差分信息时,该反馈信息中的参考信息可以由标准或协议预先定义;或者,参考信息也可以包含于早于该反馈信息之前的反馈信息中。
实现方式二中,第一参数信息以差分信息的方式反馈,即反馈信息中可以包括差分信息或参考信息中的至少一项,相对于反馈信息中包括第一参数信息的方式来说,有效减少了该反馈信息的信令开销。由于通过差分信息的方式反馈第一参数信息,相对于直接第一反馈参数信息来说,有效减少了信令开销,因此实现方式二还可以理解为反馈信息是经过压缩处理得到的,或者,第一参数信息需要通过压缩处理后得到第二参数信息,然后承载于第一字段中。
实现方式三
反馈方式包括:基于差分信息的反馈方式、基于参考信息和差分信息的反馈方式、不反馈中的至少一项。或者,反馈方式包括:压缩第一参数信息、不反馈第一参数信息或不压缩第一参数信息中的至少一项。或者,反馈方式包括:反馈感知测量结果以及基于差分信息的反馈方式、反馈感知测量结果以及基于差分信息和参考信息的反馈方式、不反馈感知测量结果以及丢弃本次获得的感知测量结果或不反馈感知测量结果以及保留本次获得的感知测量结果(如通过后续的反馈信息反馈本次获得的感知测量结果)。
示例性的,第一字段中的取值可以如表1b所示。可理解,表1b所示的索引与意义之间的关系仅为示例,不应将其理解为对本申请实施例的限定。
表1b
表1b中,当第一字段的取值为00时,则表示第二通信装置可以仅以差分信息的方式反馈第一参数信息,如反馈信息中的第二参数信息可以是基于早于该反馈信息之前的反馈信息中的参考信息和该第一参数信息得到的。当第一字段的取值为01时,则表示反馈信息中的第二参数信息是基于该反馈信息中的参考信息和第一参数信息得到的。表1b中所示的11仅为 示例,不应将其理解为对本申请实施例的限定。例如,当第一字段的取值为11时,该第一字段可以用于指示第二通信装置以不压缩的方式反馈第一参数信息。该情况下,反馈信息中的第二参数信息可以与第一参数信息相同。当第一字段的取值为10时,则表示不反馈第一参数信息,该第一参数信息可以包含于后续的反馈信息中,或者,该第一参数信息可以被丢弃。例如,当第一通信装置根据已获得的反馈信息检测到目标的参数变化较小时,可以通过第一字段指示不反馈第一参数信息。由此,第二通信装置可以丢弃其已获得的第一参数信息,从而节省信令开销。又例如,当第一通信装置需要与多个第二通信装置之间执行感知相关流程时,为协调各个第二通信装置之间发送反馈信息的时间,第一通信装置可以通过第一字段指示不反馈第一参数信息,同时默认该第一参数信息可以包含于后续的反馈信息中。
示例性的,第一字段中的取值可以如表1c或表1d中的至少一项所示。如第一字段的比特长度为3比特,其中,第一个比特可以用于指示是否保留本次的感知测量结果(如表1c所示),第二个比特和第三个比特可以用于指示感知测量结果的反馈方式(如表1d所示)。例如,当第二个比特和第三个比特用于指示不反馈感知测量结果时,第一个比特可以用于指示是否保留本次的感知测量结果。如第一个比特的取值为0,则表示丢弃第一参数信息;第一个比特的取值为1,则表示第一参数信息可以包含于后续的反馈信息中。可理解,当第二个比特和第三个比特用于指示基于差分信息的反馈方式或基于参考信息和差分信息的反馈方式时,可以忽略第一个比特的取值,或者,第一个比特可以用于指示保留本次的感知测量结果(如第一个比特的取值为1)。
表1c
表1d
通过增加第一字段的比特长度,可以使得第一字段所指示的反馈方式更多样化,而且还能够有效指示第二通信装置处理第一参数信息的具体方式,提高了第一通信装置与第二通信装置之间的通信效率。
可理解,以上所示的第一字段的比特长度仅为示例,随着第一字段的比特长度的增加,该第一字段所指示的内容将变得多样化。
202、第二通信装置向第一通信装置发送反馈信息,该反馈信息包括第二字段,该第二字段用于承载第二参数信息,该第二参数信息根据反馈方式和第一参数信息确定,该第一参数信息是第二通信装置基于第一通信装置发送的UWB脉冲得到的感知测量结果。对应的,第一通信装置接收该反馈信息。
第二通信装置发送反馈信息之前,可以根据控制信息生成反馈信息。可选的,第二参数 信息可以与第一参数信息相同,即第二参数信息可以是第一参数信息未经压缩处理之后得到的。可选的,第二参数信息可以是第一参数信息经过压缩处理之后得到的,如第二参数信息可以是根据第一字段所指示的反馈方式、第一参数信息以及预先定义的压缩方式确定。又如,反馈信息还包括第三字段,该第三字段用于指示压缩方式。由此,第二参数信息可以是根据第一字段所指示的反馈方式、第三字段所指示的压缩方式以及第一参数信息确定的。
示例性的,压缩方式包括基于时间的压缩方式或基于数值的压缩方式。基于时间的压缩方式可以理解为第一参数信息中时间相近的参数作为一组,从而与参考信息进行差分(指的是针对同一参数的差分处理),得到差分信息;或者,可以理解为基于时间的相近程度进行处理,从而得到参考信息和差分信息。举例来说,第一压缩方式可以是基于时间子单元的压缩方式,如一个时间单元中的时间子单元可以作为参考信息,其他的时间子单元中的参数信息可以基于该参考信息进行差分设置,获得差分信息。基于数值的压缩方式可以理解为第一参数信息中数值相近的参数作为一组,从而与参考信息进行差分(指的是针对同一参数的差分处理),得到差分信息;或者,可以理解为基于数值的相近程度进行处理,从而得到参考信息和差分信息。可理解,本申请实施例所示的关于压缩方式的具体说明还可以参考下文关于表4至表7的相关描述,这里先不一一详述。
示例性的,压缩方式包括第一压缩方式和第二压缩方式,该第一压缩方式和第二压缩方式的压缩标准不同。可理解,本申请实施例所示的压缩方式仅为示例,但凡能够基于第一参数信息和参考信息得到差分信息,从而承载于第二字段的方法均属于本申请实施例的保护范围。
可选的,当反馈方式包括基于差分信息的反馈方式,或者,基于参考信息和差分信息的反馈方式;压缩方式包括基于时间的压缩方式或者基于数值的压缩方式时,则表示第二参数信息是第一参数信息经过压缩处理得到的。可选的,当反馈方式包括反馈第一参数信息,而不具体指示以差分信息的方式反馈第一参数信息或以参考信息和差分信息的方式反馈第一参数信息,且反馈信息不包括第三字段时,则表示第一参数信息可以经过压缩处理,或者,也可以不经过压缩处理,本申请实施例对此不作限定。可理解,关于反馈方式和压缩方式的具体说明还可以参考下文,这里先不一一详述。
可理解,当第一通信装置接收到反馈信息之后,可以基于反馈信息获得目标的距离、速度或衰减等信息。反馈信息可以是针对一个目标的信息,也可以是针对多个目标的信息,本申请实施例对此不作限定。例如,第一通信装置接收到反馈信息之后,可以解析与目标相关的参数,从而获得一个或多个目标的信息。
本申请实施例中,第一通信装置通过向第二通信装置指示反馈方式,可使得第二通信装置明确获知第一参数信息的处理方式,从而不仅有效完善了基于UWB脉冲进行感知的流程,而且还有效保证了通信双方的通信效率。
图2a所示的方法中,在一种可能的实现方式中,控制信息还包括第四字段,该第四字段用于指示一个时间单元中包括的时间子单元的个数。一个时间单元可以理解为一个控制信息和一个反馈信息的交互时长。或者,第二通信装置完成一次独立的感知测量以及反馈信息的上报的过程可以称为一个时间单元。或者,一个时间单元可以理解为第一通信装置发起感知流程,以及获得反馈信息的一段时长。示例性的,一个时间单元可以包括多个时间子单元。也就是说,多个时间子单元可以组成一个时间单元。例如,一个时间单元可以包括M个时间子单元,M为正整数。
作为示例,时间子单元的个数可以用于指示反馈信息的周期,如时间子单元的个数与反馈信息的周期成正比。作为示例,时间子单元的个数还可以用于指示反馈信息的发送时间,如反馈信息的发送时间可以位于一个时间单元中的最后一个或多个时间子单元中。作为示例,时间子单元的个数还可以用于指示第一通信装置和第二通信装置执行的感知流程的周期。举例来说,时间单元还可以称为感知时间单元或感知轮(sensing round),时间子单元还可以称为感知时间子单元或感知时隙(sensing slot)。本申请实施例对于该时间单元和时间子单元的具体名称不作限定。可理解,下文关于感知轮的说明同样适用于感知时间单元,感知时隙的说明同样适用于感知时间子单元。
由于第一通信装置和第二通信装置可以执行多次感知流程,因此本申请实施例中还提供了时间块。如图3a所示,一个时间块可以包括N个时间单元,N为正整数,一个时间单元可以包括M个时间子单元。可理解,时间块还可以称为感知时间块或基于UWB的感知时间块或感知块(sensing block)等,本申请实施例对于该时间块的具体名称不作限定。为便于描述,下文将以图3b所示的感知块、感知轮和感知时隙为例说明本申请实施例提供的方法。可理解,关于图3b的说明可以参考图3a。
示例性的,感知块可以是专门用于感知的一段时间,每个感知块可以分为若干个感知轮,每个感知轮可以用于完成一次独立的感知测量以及结果上报。以及每个感知轮可以分为若干个感知时隙,每个感知时隙可以用于传输至少一个感知包(用于感知)。一个感知时隙可以对应一个或多个感知包,由此,第二通信装置可以在一个感知轮中多次对目标进行感知。基于感知包,第二通信装置可以获得路径损耗信息、时延、AOZ、AOA等信息。可理解,每个感知包可以包括一个或多个UWB脉冲。由于第二通信装置是基于UWB脉冲获得的测量报告结果,因此该测量报告结果还可以理解为信道冲击响应(channel impulsive response,CIR)反馈参数或CIR参数或CIR信息等。第一参数信息或第二参数信息还可以理解为CIR反馈参数或CIR参数等。
图3c是本申请实施例提供的在感知轮中执行感知流程的一种示意图。如图3c所示,在感知控制阶段(sensing control phase),第一通信装置可以向第二通信装置发送控制信息(也可以称为感知控制信息(sensing control message)(关于控制信息的说明可以参考图2a所示的控制信息,或者,参考下文关于表2所示的控制信息);在感知阶段(sensing phase),第一通信装置可以向第二通信装置发送多个感知包;在测量报告阶段(measurement report phase),第二通信装置可以向第一通信装置发送反馈信息(也可以称为测量信息或测量报告信息等)。其中,感知控制阶段可以对应一个或多个感知时隙,感知阶段可以对应多个感知时隙,测量报告阶段可以对应一个或多个感知时隙。图3c中的P为小于Q的正整数,Q为小于M的正整数。例如,P+1小于Q,且Q+1小于或等于M-1。结合图3c,下文举例说明图2a所示的控制信息。
示例性的,控制信息包括第一字段和第四字段,第一字段用于指示反馈方式,第四字段用于指示一个感知轮中包括的感知时隙的个数。以及控制信息还可以其他信息,该其他信息用于指示以下任一项或多项:感知时隙的持续时间、感知块的持续时间、一个感知块中包括的感知轮的个数或脉冲重复频率(pulse repetion frequency,PRF)。每个感知时隙的持续时间可以相同,每个感知轮的持续时间可以相同。本申请实施例所示的持续时间还可以称为持续时间或时间长度等。
控制信息可以理解为感知发起者对感知应答者的CIR反馈进行更新控制的信息,表2所示的信息还可以称为感知控制信息单元(information element,IE)或高级的感知控制IE (advanced sensing control IE)。也就是说,表2所示的信息可以理解为控制信息中的一个IE,对于该控制信息中的其他IE,本申请实施例不作限定。
示例性的,控制信息中的感知控制IE的格式可以如表2所示。
表2
其中,CIR更新指示可以理解为第一字段,感知时隙时长可以理解为第四字段。感知块时长和感知时隙时长可以以感知调度时间单位(sensing scheduling time unit,SSTU)为单位。本申请实施例对于该SSTU的具体时长不作限定。例如,可以由协议或标准预先设置该SSTU的时长,或者,由通信双方协商等。
如表2所示,CIR更新指示为00时,对测量报告阶段的影响如图4a所示。反馈信息中通过差分信息来指示第一参数信息,如第二参数信息是基于早于反馈信息之前的反馈信息中的参考信息和第一参数信息确定的。该差分信息还可以称为差分的CIR(difference CIR)。CIR更新指示为01时,对测量报告阶段的影响如图4b所示。反馈信息中通过差分信息和参考信息来指示第一参数信息,如第二参数信息是基于该反馈信息中的参考信息和第一参数信息确定的。当CIR更新指示为10时,在本次感知轮的测量报告阶段不进行CIR反馈。可选的,本次感知轮中需要反馈的第一参数信息可以在后续的感知轮(如下一个感知轮或下下一个感知轮等)中反馈。也就是说,本次感知轮中的CIR参数可以与后续的CIR参数同时在下一次控制信息中指示需要反馈时传输。可选的,本次感知轮中需要反馈的第一参数信息可以被丢弃。
可理解,表2所示的每个字段的大小仅为示例,不应将其理解为对本申请实施例的限定。
在一种可能的实现方式中,当目标的运动速度较快时,第二通信装置可以更频繁地进行反馈,以方便第一通信装置能够及时获取与目标相关的信息。当目标的运动速度较慢时,可以降低第一参数信息的反馈频率。由于反馈信息需要在一个感知轮中的最后一个或最后多个感知时隙中反馈,以及结合图3c和表2可以看出,控制信息中一个感知轮所包括的感知时隙的个数可以用于指示反馈信息的周期或反馈信息的反馈频率。感知时隙的个数与反馈信息的周期成正比,感知时隙的个数与反馈信息的反馈频率成反比。感知时隙的个数越多,则表示反馈信息的周期越长,或者,反馈信息的反馈频率越低。
举例来说,当第一通信装置需要第二通信装置更频繁地反馈第一参数信息时,控制信息 中所指示的一个感知轮中包括的感知时隙的个数可以减少,从而使得反馈信息的周期变短或反馈信息的反馈频率增加。示例性的,第一通信装置可以通过一定的检测算法获得反馈信息的周期与目标的变化频率之间的关系,从而其在接收到反馈信息之后,根据检测算法确定后续反馈信息的反馈周期。例如,通过检测算法可以计算一段时间内的CIR参数的方差,或者检测CIR参数是否出现剧变,从而决定控制信息的感知控制IE的内容,以及反馈信息中的内容。
需要说明的是,表2所示的基于UWB的信息反馈方法可以参考图2a,以及图3a至图3c、图4a和图4b所示的基于UWB的信息反馈方法可以参考图2a,这里不再一一详述。
基于表2以及图2a所示的方法,第一通信装置通过控制信息可以指示第一参数信息的反馈方式,以及第一参数信息的反馈频率。从而在反馈方式包括差分信息的方式,或者差分信息和参考信息的方式时,可以有效降低第二通信装置的反馈开销。同时,由于差分信息相对于不压缩的参数来说,数值较小,可以用比较少的比特数达到与未压缩参数时相同的精度,有效保证了数值的精度。
下文举例说明本申请实施例提供的压缩方式。
在感知阶段,第一通信装置可以不断发送感知包(感知包可以理解为一定时间内的UWB脉冲信号的集合),第二通信装置基于这些感知包对目标进行感知。示例性的,第二通信装置接收到某个时间上的UWB信号时,可以记录与该时间对应的参数信息。因此,与目标相关的参数信息都会对应一个时间。举例来说,一个感知时隙对应一个感知包,则第二通信装置可以基于感知时隙,对一个感知时隙中的时间进行采样,从而得到一个感知时隙中不同时间的参数信息。又举例来说,一个感知时隙对应多个感知包,则第二通信装置可以对一个感知时隙中的部分时间段内获得的参数进行采样等,本申请实施例不作限定。换句话说,第二通信装置可以基于感知包,对一个感知包对应的时间(如称为感知快照)进行采样,从而得到一个感知快照内的不同tap对应的参数信息。
图5是本申请实施例提供的一种对路径损耗信息进行采样的示意图。图5示出的是基于一个感知快照(snapshot)内的时间进行采样得到的不同tap内的路径损耗信息。路径损耗信息可以理解为UWB信号从发送到接收的传输过程中的衰减信息。因此,图5所示的横坐标可以理解为从发送时间到接收时间的时延,纵坐标可以理解为路径损耗。例如,在对一个感知快照内的参数进行采样时,可以基于一定的阈值进行采样。如图5是以大于-160dB为例进行采样,从而得到tap对应的路径损耗。以此类推,本申请实施例所示的tap可以对应路径损耗、时延等信息。本申请实施例所示的tap还可以理解为采样点、采样节点或感知采样点等。可理解,图5所示的采样过程仅为示例,不应将其理解为对本申请实施例的限定。
下文将以snapshot和tap为例说明本申请实施例所示的方法。snapshot和tap的关系可以理解为:第二通信装置可以基于一个snapshot内获得的参数进行采样,从而得到多个tap对应的参数。一个感知包可以对应一个snapshot。即一个snapshot可以小于或等于一个感知时隙(一个感知时隙对应一个或多个snapshot),一个感知轮中可以包括多个snapshot。
示例性的,基于以上所示的snapshot的说明,表3是本申请实施例所示的第三字段。该第三字段还可以称为压缩模式字段(compression mode field)或压缩方式字段等。
表3

其中,第三字段的取值为00时,则表示第一参数信息不需要压缩;第三字段的取值为01时,则表示第二参数信息是第一参数信息经过基于snapshot的压缩处理后得到的;第三字段的取值为10时,则表示第二参数信息是第一参数信息经过基于簇的压缩处理后得到的。可理解,以上所示的基于snapshot的压缩可以理解为基于时间的一种压缩方式,基于簇的压缩可以理解为基于数值的一种压缩方式。
示例性的,第三字段用于指示压缩方式为不压缩时,第二参数信息可以如表4所示。如第三字段的取值为00时,第一参数信息不需要进行压缩,此时第一参数信息如表4所示。可理解,本申请实施例所示的第一参数信息可以理解为下文表9或表10所示的CIR反馈IE(CIR feedback IE)中的CIR参数。
表4

表4所示的各个参数以及比特长度仅为示例,不应将其理解为对本申请实施例的限定。可理解,以上所示的Num_round、Num_snapshot、Num_tap均为正整数。例如,在第二通信装置中用于接收感知包的天线数量为1个时,第二参数信息中可以不包括AOA和ZOA,即AOA和ZOA不占用比特。又例如,可以通过反馈信息中的相关信息(如下文表9)指示AOA和ZOA是否存在,当指示AOA和ZOA存在时,则该AOA和ZOA可以占用8个比特;否则忽略。当然,AOA和ZOA也可能不同时存在于第二参数信息,本申请实施例对此不作限定。
示例性的,反馈信息中可以包括第五字段(如下文表9所示的数据模式字段),该第五字段用于指示路径损耗信息的数据模式,该数据模式包括以幅度和相位的方式指示路径损耗信息,或者,以同相分量和正交分量的方式指示路径损耗信息。举例来说,第五字段的取值为0,则表示以同相分量和正交分量的形式反馈路径损耗信息(也可以称为以实部和虚部的形式反馈路径损耗信息),第五字段的取值为1,则表示以振幅和相位的形式反馈路径损耗信息。
对于表4所示的感知轮的个数Num_round来说,当Num_round=1时,则表示反馈的是本次感知轮中的CIR参数。当Num_round不等于1,如大于或等于2时,则表示反馈信息可以包括本次感知轮中获得的CIR参数以及本次感知轮之前的感知轮中获得的且未反馈的CIR参数。示例性的,当前一个感知轮中的控制信息中的第一字段的取值为10(如表1b)时,则前一个感知轮中第二通信装置可以不反馈反馈信息。则通过表4所示的感知轮的个数,可以向第一通信装置指示反馈信息中不仅包括前一个感知轮中的CIR参数还包括本次感知轮的CIR参数。
示例性的,第三字段用于指示压缩方式为基于snapshot的压缩时,第二参数信息可以如表5所示。第二参数信息可以理解为下文表9或表10所示的CIR反馈IE(CIR feedback IE)中的CIR参数。第二参数信息是基于snapshot进行压缩后得到的,基于snapshot的压缩过程可以如图6所示。可理解,图5中的纵坐标是以dB为单元,图6所示的纵坐标是以线性数值为单元,因此图5和图6中的纵坐标单位不同,但是不应将其理解为对本申请实施例的限定。
举例来说,可以将一个或多个天线中的某个天线需要反馈的一个或多个感知轮中的任一个感知轮中的某一个snapshot对应的参数信息作为参考信息。举例来说,第二通信装置通过多个天线接收UWB信号,以及其需要反馈本次感知轮(如一个感知轮)对应的参数信息,由此,第二通信装置可以将某个天线需要反馈的本地感知轮中的第一个snapshot对应的参数信息作为参考信息。又举例来说,第二通信装置需要通过一个天线接收UWB信号,以及其 需要反馈多个感知轮(即本次需要反馈的感知轮有多个)对应的参数信息,由此,第二通信装置可以将第一个感知轮中的第一个snapshot对应的参数信息作为参考信息。又举例来说,第二通信装置需要通过多个天线接收UWB信号,以及需要反馈多个感知轮对应的参数信息,由此,第二通信装置可以将某个天线需要反馈的第一个感知轮中的第一个snapshot对应的参数信息作为参考信息。其他snapshot或者其他天线对应的参数信息与参考信息的差值作为差分信息。又举例来说,参考信息可以是早于本次感知轮的感知轮中的参考信息。本申请实施例对于如何确定参考信息不作限定。
表5

可理解,表5中,参考信息可以是本次感知轮中第一个感知轮的第一个snapshot对应的参数信息,也可以是早于本地感知轮的感知轮中的参考信息。表6示出的是不同参数信息占用的比特长度。表6中snapshot1对应的参数信息为参考信息,因此snapshot1对应的参数信息占用的比特长度大于非snapshot1对应的参数信息占用的比特长度。
需要说明的是,表5是以第一个感知轮的第一个snapshot的参数信息作为参考信息。可选的,当反馈的是一个感知轮内的参数信息时,还可以以非第一个snapshot的参数信息作为参考信息。可选的,当反馈的是多个感知轮内的参数信息时,还可以以非第一个感知轮中的第一个snapshot的参数信息,或非第一个感知轮中的非第一个snapshot的参数信息等作为参考信息。该情况下,第二参数信息或反馈信息中包括用于指示参考信息所在位置的信息,该用于指示参考信息所在位置的信息用于指示参考信息所在的感知轮、感知时隙或感知快照中的至少一项。示例性的,该用于指示参考信息所在位置的信息可以以字段(或子字段等)的形式存在于第二参数信息中,或者,存在于反馈信息中(如下文所示的表10)。
在一种可能的实现方式中,反馈信息还可以包括用于指示是否存在参考信息的指示信息。例如,反馈信息还可以包括第六字段,该第六字段用于指示反馈信息中是否存在参考信息;或者,第六字段用于指示第二参数信息中是否存在参考信息。结合表3所示的压缩方式,当第三字段的取值为01或者10时,如第六字段用于指示不存在参考信息(如第六字段的取值为0),则表示第二参数信息是基于第一参数信息以及早于本地感知轮的感知轮中的参考信息确定的,也就是说,第二参数信息中可以只包括差分信息。又如,第六字段用于指示存在参考信息(如第六字段的取值为1),则表示第二参数信息是基于第一参数信息以及本次感知轮中的参考信息确定的,也就是说,第二参数信息中既包括差分信息,又包括参考信息。当第三字段的取值为00或11时,反馈信息中可以不存在第六字段,或者,该第六字段的取值可以被忽略。
表6
需要说明的是,当本次感知轮中存在参考信息时,则参考snapshot(如第一个snapshot)对应的In-phase Component或Amplitude占用16个比特,Quadrature Component或Phase占用16个比特,时延占用8个比特,AOA占用8个比特,AOZ占用8个比特。其他非参考snapshot对应的In-phase Component或Amplitude占用12个比特,Quadrature Component或Phase占用12个比特,时延占用6个比特,AOA占用6个比特,AOZ占用6个比特。例如,当本次感 知轮中不存在参考信息时,作为参考snapshot的snapshot1对应的In-phase Component或Amplitude占用16个比特,Quadrature Component或Phase占用16个比特,时延占用8个比特,AOA占用8个比特,AOZ占用8个比特。
可理解,以上所示的各个参数,以及各个参数占用的比特长度仅为示例,不应将其理解为对本申请实施例的限定。
示例性的,第三字段用于指示压缩方式为基于簇的压缩时,第二参数信息可以如表7所示。第二参数信息是基于簇进行压缩后得到的,基于簇的压缩过程可以如图7所示。可理解,图7所示的压缩过程仅为示例,不应将其理解为对本申请实施例的限定。可理解,图6和图7所示的在snapshot1中的CIR可以参考图8a,即图8a是将图6或图7中snapshot1中的CIR放大后得到的。图6和图7所示的在snapshot2中的CIR可以参考图8b,即图8b是将图6或图7中snapshot2中的CIR放大后得到的。图6和图7所示的在snapshot10中的CIR可以参考图8c,即图8c是将图6或图7中snapshot10中的CIR放大后得到的。
示例性的,基于簇的压缩过程可以为:将所有snapshot的CIR进行分簇,如可以根据动态范围、K均值(K-mean)或有噪环境下基于密度的空间分簇方法应用(density-based spatial clustering of applications with noise,DBSCAN)进行分簇,本申请实施例对于分簇的具体实现方式不作限定。然后,在每一个簇中选择一个tap(即reference Tap)作为CIR的参考信息,每一簇内的其余tap(即Normal Tap)与作为参考信息的tap的差值(指的是对应tap的参数的差值),作为CIR的差分信息。如图7所示,可以在簇1中选择一个tap作为该簇1的参考信息,从而将簇1中的其他tap与参考tap进行差分,以及,在簇2中选择一个tap作为簇2的参考信息,从而将簇2中的其他tap与参考tap进行差分,这里不再一一列举。
表7

表7仅示例性示出了簇1,对于其他簇的说明可以参考表7所示的簇1,这里不再一一详述。可理解,该其他簇可以均以簇1中的参考tap作为参考信息,如簇2中的tap对应的参数与簇1的参考tap对应的参数的差值为差分信息。关于表7所示的各个参数占用的比特长度的说明可以参考表5或表6的说明,这里不再一一详述。可理解,参考信息所在的簇可以是第一个簇,也可以不是第一个簇,如第二参数信息或反馈信息中包括用于指示参考信息所在位置的信息,该用于指示参考信息所在位置的信息用于指示参考信息所在的簇。
以下将详细说明表7中所示的tap索引。
表8示出的是与tap索引的取值对应的条件。如表8所示,当tap索引占用的比特长度为0,则表示反馈信息中反馈的参数信息是基于一个天线以及一个snapshot得到的。也就是说,第二通信装置是通过一个天线,在一个snapshot内获得的第一参数信息。当tap索引占用的比特长度为3,则表示反馈信息中反馈的参数信息是基于一个天线,以及多个snapshot得到的。也就是说,第二通信装置是通过一个天线,在多个snapshot内获得的第一参数信息。由此,第二参数信息中需要包括多个snapshot内的第一参数信息,即需要通过tap索引指示对应tap的参数信息是基于该tap索引所指示的snapshot得到的。当tap索引占用的比特长度为2,则表示反馈信息中反馈的参数信息是基于多个天线,以及一个snapshot得到的。当tap索引占用的比特长度为5,则表示反馈信息中反馈的参数信息是基于多个天线,以及多个snapshot得到的。由此,第二参数信息中需要包括多个snapshot内,以及多个天线对应的第一参数信息,即需要通过tap索引指示对应tap的参数信息是基于该tap索引所指示的snapshot,以及该tap索引所指示的天线得到的。也就是说,Tap Index可以用于指示该tap所从属的snapshot以及对应的接收天线。
表8

举例来说,天线数量是1,tap index的长度为3个比特,如果某个tap的tap index的取值是010,则表示该某个tap属于第2个snapshot。又举例来说,某个tap的tap index的取值为01110,则表示该某个tap属于天线1的第6个snapshot,可理解的,tap index的取值也可以为11001,来同样表示该某个tap属于天线1的第6个snapshot。
可理解,表8所示的各个比特长度仅为示例,不应将其理解为对本申请实施例的限定。但是,tap index的比特长度可以与反馈信息中所指示的天线数量的比特长度以及该反馈信息中所指示的snapshot的数量有关。示例性的,当接收天线数量等于1时,tap索引的比特长度可以与反馈信息中所指示的snapshot个数有关。例如,反馈信息中用于指示snapshot个数的字段占用3个比特,则该tap index可以占用3个比特。又例如,反馈信息中用于指示snapshot个数的字段占用4个比特,则该tap index可以占用4个比特。示例性的,当Snapshot数量等于1时,tap索引的比特长度可以与反馈信息中所指示的天线个数有关。例如,反馈信息中用于指示天线个数的字段占用2个比特,则该tap index可以占用2个比特。又例如,反馈信息中用于指示天线个数的字段占用3个比特,则该tap index可以占用3个比特。当然,反馈信息中也可以不存在用于指示天线个数的字段或用于指示snapshot个数的字段中的至少一项。
需要说明的是,当每个tap的索引都相同时,则可以在第一个tap中包括tap索引,然后通过分隔符指示后续tap的索引与该第一个tap的索引相同。例如,分隔符可以位于簇1中的参考tap之后,如分隔符可以设置为8个1或8个0,或者,16个1或16个0等,本申请实施例对于分隔符的设置方法不作限定。
需要说明的是,第二参数信息或反馈信息中还可以包括用于指示tap索引相对于前一个tap的tap索引是否发生变化的信息。该用于指示tap的tap索引是否发生变化的信息可以以字段(或子字段等)的形式存在于第二参数信息中,或反馈信息中。例如,该用于指示tap的tap索引是否发生变化的信息可以以字段(或子字段等)的形式存在于tap index字段之前。每个簇对应一个参考tap,参考tap的index可以按照表8取值,然后依次描述簇1中的其他非参考tap。举例来说,簇1中包含tap1-tap10,以tap1为参考tap,则簇1的参考tap对应的信息中可以包括tap1的tapindex,该tap index之前所包括的用于指示tap索引是否变化的字段可以设置为默认值(如0或1等)。以及簇1中的非参考tap如tap2的tapindex之前可以包括用于指示该tap2的tap索引与tap1的tap索引是否变化的字段,以此类推。
结合上文所示的反馈方式和压缩方式,下文举例说明本申请实施例提供的反馈信息。
由于反馈信息可以用于测量报告阶段,因此该反馈信息还可以称为CIR反馈IE(CIR feedback IE)。示例性的,反馈信息的格式可以如表9或表10所示。
表9

表10
可理解,表10相对于表9来说,增加了参考信息所在snapshot的索引字段。可理解,该参考信息所在snapshot的索引字段占用的比特长度可以与snapshot数量字段占用的比特长度相同。同时,表10所示的反馈信息更适用于基于snapshot的压缩方式。例如,当存在参考信息时,通过参考信息所在snapshot的索引可以使得第一通信装置明确获知该参考信息属于哪个snapshot。
元素ID可以用于指示反馈信息的ID,即CIR反馈IE的ID。
压缩方式字段可以用于指示是否对第一参数信息进行压缩,关于压缩方式字段的说明可以参考上文所示的第三字段(如表3的相关描述等),这里不再一一详述。
接收天线数量字段可以用于指示第二通信装置的接收天线,该接收天线数量字段占用的比特长度可以用于确定表8所示的tap索引字段占用的比特长度。snapshot数量字段可以用于指示第二通信装置需要反馈CIR的snapshot的个数,该snapshot数值字段占用的比特长度可以用于确定表8所示的tap索引字段占用的比特长度。关于tap索引的说明可以参考关于表8的相关描述,这里不再一一详述。
是否存在AOA和ZOA字段可以用于指示反馈信息中反馈第一参数信息时是否需要包括AOA和ZOA。例如,AOA and ZOA Present=1,则CIR参数中包含AOA和ZOA信息;如果AOA and ZOA Present=0,则CIR参数中不包含AOA和ZOA信息。可理解,当第二通信装置通过一个天线接收感知包时,不存在AOA和ZOA。
数据模式字段可以用于指示路径损耗信息是以同相分量和正交分量的方式反馈,或者,是以幅度和相位的方式反馈。例如,Data Mode=0,则路径损耗信息中反馈同相分量和正交分量;Data Mode=1,则路径损耗信息中反馈幅度和相位。关于数据模式字段的说明可以参考上文关于第五字段。
是否存在参考信息字段用于指示反馈信息是否存在参考信息。关于是否存在参考信息字段可以参考上文关于第六字段的说明,这里不再一一详述。
关于CIR参数字段的说明可以参考上文表4、表5和表7,这里不再一一详述。表9或表10所示的CIR参数字段可以理解为上文所示的第二字段。例如,CIR参数字段可以用于承载如表4所示的第一参数信息,或者,用于承载如表5或表7所示的第二参数信息。
以上所示的反馈信息有效考虑了不同tap内的相似性或不同簇内的相似性,还考虑了不同天线之间的相关性,从而有效利用了CIR参数反馈在时间上的相似性和空间上的相关性。
在本申请的一些实现方式中,表9还可以与表11和表12结合,或者,表10与表11和表12结合。表11是CIR反馈表头(main header),表11中可以用于指示包括的range。表12可以理解为范围表头(range header)。对于每个range可以对应一个表12和表9,或者每个range可以对应一个表12和表10。示例性的,一个snapshot可以包括一个或多个range,一个range可以包括多个tap。例如,第二通信装置可以先传输表11,说明所包括的range,然后对于每一个range,先传输表12,然后再传输表9或表10。
表11
表12

可理解,以上所示的各个表格中比特长度或字段的取值等仅为示例,不应将其理解为对本申请实施例的限定。以上所示的各个表格可以单独与图2a所示的方法结合;或者,不同表格之间也可以相互结合,以及与图2a所示的方法结合。
以上所示的方法可以应用于第一通信装置和第二通信装置。或者,以上所示的方法还可以应用于其他场景。例如,
本申请实施例中,感知发起者通过向感知应答者发送控制信息,从而可使得感知应答者基于该控制信息进行反馈;以及感知应答者通过向感知发起者发送反馈信息,不仅可以有效反馈CIR参数,还可以向感知发起者指示CIR参数的压缩方式或数据模式等。不仅完善了基于UWB系统的感知交互流程,而且通过压缩方式反馈CIR参数还能够有效减少信令开销。
以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图9至图11详细描述本申请实施例的通信装置。
图9是本申请实施例提供的一种通信装置的结构示意图,如图9所示,该通信装置包括处理单元901和收发单元902。
在本申请的一些实施例中,该通信装置可以是上文示出的第一通信装置或芯片,该芯片可以应用于第一通信装置中等。即该通信装置可以用于执行上文方法实施例中由第一通信装置执行的步骤或功能等。
收发单元902,用于输出控制信息,以及输入反馈信息。
示例性的,处理单元901,用于确定控制信息;以及通过收发单元902输出该控制信息,输入反馈信息。
可理解,处理单元901,还可以根据反馈信息进行处理,获得目标的速度、距离或衰减等信息。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
复用图9,在本申请的另一些实施例中,该通信装置可以是上文示出的第二通信装置或第二通信装置中的芯片等。即该通信装置可以用于执行上文方法实施例中由第二通信装置执 行的步骤或功能等。
如收发单元902,用于输入控制信息;收发单元902,还用于输出反馈信息。
示例性的,处理单元901,用于根据控制信息确定反馈信息。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
上个各个实施例中,关于控制信息、反馈信息、第一字段、第二字段、第三字段、第四字段等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
以上介绍了本申请实施例的第一通信装置和第二通信装置,以下介绍所述第一通信装置和第二通信装置可能的产品形态。应理解,但凡具备上述图9所述的第一通信装置的功能的任何形态的产品,或者,但凡具备上述图9所述的第二通信装置的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的第一通信装置和第二通信装置的产品形态仅限于此。
在一种可能的实现方式中,图9所示的通信装置中,处理单元901可以是一个或多个处理器,收发单元902可以是收发器,或者收发单元902还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。在执行上述方法的过程中,上述方法中有关发送信息的过程,可以理解为由处理器输出上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,上述方法中有关接收信息的过程,可以理解为处理器接收输入的上述信息的过程。处理器接收输入的信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
如图10所示,该通信装置100包括一个或多个处理器1020和收发器1010。
示例性的,当该通信装置用于执行上述第一通信装置执行的步骤或方法或功能时,处理器1020,用于确定控制信息;收发器1010,用于向第二通信装置发送控制信息,以及接收来自第二通信装置的反馈信息。
示例性的,当该通信装置用于执行上述第二通信装置执行的步骤或方法或功能时,收发器1010,用于接收来自第一通信装置的控制信息;处理器1020,用于根据控制信息确定反馈信息;收发器1010,还用于向第一通信装置发送反馈信息。
本申请实施例中,关于控制信息、反馈信息、第一字段、第二字段、第三字段、第四字段等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
在图10所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
可选的,通信装置100还可以包括一个或多个存储器1030,用于存储程序指令和/或数据等。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可可以执行存储器1030中存储的程序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及收发器1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
示例性的,处理器1020主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1030主要用于存储软件程序和数据。收发器1010可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1020可以读取存储器1030中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1020对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1020,处理器1020将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图10更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图9所示的通信装置中,处理单元901可以是一个或多个逻辑电路,收发单元902可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元902还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图11所示,图11所示的通信装置包括逻辑电路1101和接口1102。即上述处理单元901可以用逻辑电路1101实现,收发单元902可以用接口1102实现。其中,该逻辑电路1101可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口1102可以为通信接口、输入输出接 口、管脚等。示例性的,图11是以上述通信装置为芯片为例出的,该芯片包括逻辑电路1101和接口1102。可理解,本申请实施例所示的芯片可以包括窄带芯片或超带宽芯片等,本申请实施例不作限定。如上文所示的发送感知包的步骤可以由超带宽芯片执行,其余步骤是否由超带宽芯片执行,本申请实施例不作限定。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当通信装置用于执行上述第一通信装置执行的方法或功能或步骤时,逻辑电路1101,用于确定控制信息;接口1102,用于输出该控制信息,以及输入反馈信息。逻辑电路1101,还用于处理反馈信息,获得与目标相关的信息。
示例性的,当通信装置用于执行上述第二通信装置执行的方法或功能或步骤时,接口1102,用于输入控制信息;逻辑电路1101,用于根据控制信息确定反馈信息;接口1102,还用于输出该反馈信息。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
本申请实施例中,关于控制信息、反馈信息、第一字段、第二字段、第三字段、第四字段等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
对于图11所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。
本申请实施例还提供了一种无线通信系统,该无线通信系统包括第一通信装置和第二通信装置,该第一通信装置和该第二通信装置可以用于执行前述任一实施例(如图2a)中的方法。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第一通信装置执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第二通信装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第一通信装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第二通信装置执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第一通信装置执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第二通信装置执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种基于超带宽UWB的信息反馈方法,其特征在于,所述方法包括:
    第一通信装置向第二通信装置发送控制信息,所述控制信息包括第一字段,所述第一字段用于指示感知测量结果的反馈方式;
    所述第一通信装置接收来自所述第二通信装置的反馈信息,所述反馈信息包括第二字段,所述第二字段用于承载第二参数信息,所述第二参数信息根据所述反馈方式和第一参数信息确定,所述第一参数信息是所述第二通信装置基于UWB脉冲得到的感知测量结果。
  2. 一种基于超带宽UWB的信息反馈方法,其特征在于,所述方法包括:
    第二通信装置接收控制信息,所述控制信息包括第一字段,所述第一字段用于指示感知测量结果的反馈方式;
    所述第二通信装置向第一通信装置发送所述反馈信息,所述反馈信息包括第二字段,所述第二字段用于承载第二参数信息,所述第二参数信息根据所述反馈方式和所述第一参数信息确定,所述第一参数信息是所述第二通信装置基于UWB脉冲得到的感知测量结果。
  3. 根据权利要求1或2所述的方法,其特征在于,所述反馈信息还包括第三字段,所述第三字段用于指示所述第一参数信息的压缩方式;
    所述第二参数信息根据所述反馈方式和所述第一参数信息确定包括:
    所述第二参数信息根据所述反馈方式、所述压缩方式和所述第一参数信息确定。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述反馈方式包括基于差分信息的反馈方式,或者基于参考信息和差分信息的反馈方式中的至少一项,所述差分信息基于所述第一参数信息和所述参考信息确定。
  5. 根据权利要求3或4所述的方法,其特征在于,所述压缩方式包括基于时间的压缩方式,或者基于数值的压缩方式中的至少一项。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述控制信息还包括第四字段,所述第四字段用于指示一个感知时间单元中包括的感知时间子单元的个数。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第二参数信息包括路径损耗信息、时延、水平到达角AOA、垂直到达角ZOA中的至少一项。
  8. 根据权利要求7所述的方法,其特征在于,所述反馈信息还包括第五字段,所述第五字段用于指示所述路径损耗信息的数据模式,所述数据模式包括基于幅度和相位的数据模式,或者基于同相分量和正交分量的数据模式中的至少一项。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述反馈信息还包括第六字段, 所述第六字段用于指示所述反馈信息中是否存在参考信息。
  10. 根据权利要求3-9任一项所述的方法,其特征在于,所述第三字段还用于指示所述第一参数信息是否需要压缩。
  11. 根据权利要求6-10任一项所述的方法,其特征在于,一个时间块包括N个所述感知时间单元,一个所述感知时间单元包括M个所述感知时间子单元,所述M和所述N为正整数。
  12. 根据权利要求6-11任一项所述的方法,其特征在于,一个所述感知时间单元用于执行一个感知流程,所述感知流程包括感知控制阶段、感知阶段和测量报告阶段,所述控制信息包含于所述感知控制阶段,所述反馈信息包含于所述测量报告阶段。
  13. 一种第一通信装置,其特征在于,所述装置包括处理单元和收发单元,所述处理单元,用于通过所述收发单元执行:
    发送控制信息,所述控制信息包括第一字段,所述第一字段用于指示感知测量结果的反馈方式;
    接收反馈信息,所述反馈信息包括第二字段,所述第二字段用于承载第二参数信息,所述第二参数信息根据所述反馈方式和第一参数信息确定,所述第一参数信息是所述第二通信装置基于超带宽UWB脉冲得到的感知测量结果。
  14. 一种第二通信装置,其特征在于,所述装置包括处理单元和收发单元,所述处理单元,用于通过所述收发单元执行:
    接收控制信息,所述控制信息包括第一字段,所述第一字段用于指示感知测量结果的反馈方式;
    发送所述反馈信息,所述反馈信息包括第二字段,所述第二字段用于承载第二参数信息,所述第二参数信息根据所述反馈方式和所述第一参数信息确定,所述第一参数信息是所述第二通信装置基于超带宽UWB脉冲得到的感知测量结果。
  15. 根据权利要求13或14所述的装置,其特征在于,所述反馈信息还包括第三字段,所述第三字段用于指示所述第一参数信息的压缩方式;
    所述第二参数信息根据所述反馈方式和所述第一参数信息确定包括:
    所述第二参数信息根据所述反馈方式、所述压缩方式和所述第一参数信息确定。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,所述反馈方式包括基于差分信息的反馈方式,或者基于参考信息和差分信息的反馈方式中的至少一项,所述差分信息基于所述第一参数信息和所述参考信息确定。
  17. 根据权利要求15或16所述的装置,其特征在于,所述压缩方式包括基于时间的压缩方式,或者基于数值的压缩方式中的至少一项。
  18. 根据权利要求13-17任一项所述的装置,其特征在于,所述控制信息还包括第四字段, 所述第四字段用于指示一个感知时间单元中包括的感知时间子单元的个数。
  19. 根据权利要求13-18任一项所述的装置,其特征在于,所述第二参数信息包括路径损耗信息、时延、水平到达角AOA、垂直到达角ZOA中的至少一项。
  20. 根据权利要求19所述的装置,其特征在于,所述反馈信息还包括第五字段,所述第五字段用于指示所述路径损耗信息的数据模式,所述数据模式包括基于幅度和相位的数据模式,或者基于同相分量和正交分量的数据模式中的至少一项。
  21. 根据权利要求13-20任一项所述的装置,其特征在于,所述反馈信息还包括第六字段,所述第六字段用于指示所述反馈信息中是否存在参考信息。
  22. 根据权利要求15-21任一项所述的装置,其特征在于,所述第三字段还用于指示所述第一参数信息是否需要压缩。
  23. 根据权利要求18-22任一项所述的装置,其特征在于,一个时间块包括N个所述感知时间单元,一个所述感知时间单元包括M个所述感知时间子单元,所述M和所述N为正整数。
  24. 根据权利要求18-23任一项所述的装置,其特征在于,一个所述感知时间单元用于执行一个感知流程,所述感知流程包括感知控制阶段、感知阶段和测量报告阶段,所述控制信息包含于所述感知控制阶段,所述反馈信息包含于所述测量报告阶段。
  25. 一种第一通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储指令;
    所述处理器用于执行所述指令,以使权利要求1、3至12任一项所述的方法被执行。
  26. 一种第二通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储指令;
    所述处理器用于执行所述指令,以使权利要求2至12任一项所述的方法被执行。
  27. 一种第一通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和接口耦合;
    所述接口用于输入和/或输出代码指令,所述逻辑电路用于执行所述代码指令,以使权利要求1、3至12任一项所述的方法被执行。
  28. 一种第二通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和接口耦合;
    所述接口用于输入和/或输出代码指令,所述逻辑电路用于执行所述代码指令,以使权利要求2至12任一项所述的方法被执行。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,权利要求1、3至12任一项所述的方法被执行。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,权利要求2至12任一项所述的方法被执行。
  31. 一种通信系统,其特征在于,包括第一通信装置和第二通信装置,所述第一通信装置用于执行如权利要求1、3-12任一项所述的方法,所述第二通信装置用于执行如权利要求2-12任一项所述的方法。
PCT/CN2023/078881 2022-03-07 2023-02-28 基于超带宽的信息反馈方法及装置 WO2023169264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210225950.9 2022-03-07
CN202210225950.9A CN116781104A (zh) 2022-03-07 2022-03-07 基于超带宽的信息反馈方法及装置

Publications (1)

Publication Number Publication Date
WO2023169264A1 true WO2023169264A1 (zh) 2023-09-14

Family

ID=87937215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078881 WO2023169264A1 (zh) 2022-03-07 2023-02-28 基于超带宽的信息反馈方法及装置

Country Status (2)

Country Link
CN (1) CN116781104A (zh)
WO (1) WO2023169264A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350809A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 感知方法和通信装置
CN113794991A (zh) * 2021-11-15 2021-12-14 西南交通大学 一种基于UWB和LoRa的单基站无线定位系统
CN113921002A (zh) * 2020-07-09 2022-01-11 华为技术有限公司 一种设备控制方法及相关装置
CN115243307A (zh) * 2021-04-23 2022-10-25 成都极米科技股份有限公司 信号测量方法、装置、系统、终端及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350809A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 感知方法和通信装置
CN113921002A (zh) * 2020-07-09 2022-01-11 华为技术有限公司 一种设备控制方法及相关装置
CN115243307A (zh) * 2021-04-23 2022-10-25 成都极米科技股份有限公司 信号测量方法、装置、系统、终端及网络设备
CN113794991A (zh) * 2021-11-15 2021-12-14 西南交通大学 一种基于UWB和LoRa的单基站无线定位系统

Also Published As

Publication number Publication date
CN116781104A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
EP3798674A1 (en) Time-of-flight determination of user intent
US11044678B2 (en) Electronic device, method for transmitting message, and related products
Soungalo et al. Evaluating and improving wireless local area networks performance
US7184708B1 (en) Interference mitigation by adjustment of interconnect transmission characteristics
US11558071B2 (en) Wireless ranging using physical and virtual responders
WO2023197986A1 (zh) Uwb信号的传输方法及相关装置
WO2023169264A1 (zh) 基于超带宽的信息反馈方法及装置
WO2023202546A1 (zh) 基于超带宽的感知测量结果反馈方法及装置
WO2024088072A1 (zh) 基于超带宽的速率指示方法及装置
WO2024083179A1 (zh) 基于感知的通信方法及装置
WO2023174403A1 (zh) 基于超宽带的传输物理层协议数据单元的方法及装置
WO2023236805A1 (zh) 信息交互方法及相关装置
WO2023185633A1 (zh) 一种通信的方法、装置和系统
WO2024012259A1 (zh) 通信方法及装置
WO2023236823A1 (zh) 基于uwb的ppdu传输方法及相关装置
WO2023246452A1 (zh) 一种通信方法和通信装置
WO2024037445A1 (zh) 物理层配置的指示方法及相关装置
WO2023207593A1 (zh) 应用于超带宽uwb系统感知测量的方法和装置
WO2023165454A1 (zh) 通信方法和装置
CN113078926B (zh) 一种数据传输方法、装置和电子设备
WO2023241425A1 (zh) 感知方法、通信装置及通信系统
WO2023179585A1 (zh) 时钟同步的方法和装置
WO2023072130A1 (zh) 感知测量方法以及相关装置
WO2023198098A1 (zh) 传输信令的方法和装置
TW202412481A (zh) 一種通信方法及裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765842

Country of ref document: EP

Kind code of ref document: A1