WO2024188187A1 - 基于uwb的ppdu传输方法及装置 - Google Patents

基于uwb的ppdu传输方法及装置 Download PDF

Info

Publication number
WO2024188187A1
WO2024188187A1 PCT/CN2024/080811 CN2024080811W WO2024188187A1 WO 2024188187 A1 WO2024188187 A1 WO 2024188187A1 CN 2024080811 W CN2024080811 W CN 2024080811W WO 2024188187 A1 WO2024188187 A1 WO 2024188187A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
communication device
ppdu
periodic
present application
Prior art date
Application number
PCT/CN2024/080811
Other languages
English (en)
French (fr)
Inventor
刘辰辰
周正春
钱彬
黄磊
杨洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024188187A1 publication Critical patent/WO2024188187A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/717Pulse-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/7183Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/719Interference-related aspects

Definitions

  • the present application relates to the field of communication technology, and in particular to a physical layer protocol data unit (PPDU) transmission method and device based on ultra-wide band (UWB).
  • PPDU physical layer protocol data unit
  • UWB ultra-wide band
  • UWB wireless communication As ultra-wideband (UWB) enters the civilian field, UWB wireless communication has become one of the physical layer technologies for short-distance, high-speed wireless networks.
  • UWB technology is a wireless carrier communication technology that can use nanosecond-level non-sinusoidal narrow pulses to transmit data, so it occupies a wide spectrum range. Due to its narrow pulses and low radiation spectrum density, UWB has the advantages of strong multipath resolution, low power consumption, and strong confidentiality.
  • the Institute of Electrical and Electronics Engineers has incorporated UWB technology into its IEEE802 series of wireless standards and has released the high-speed wireless personal area network (WPAN) standard IEEE 802.15.4a based on UWB technology, as well as its evolutionary version IEEE 802.15.4z, while the next-generation UWB wireless personal area network (WPAN) standard 802.15.4ab is under discussion. Since ultra-wideband technology does not require the use of carriers in traditional communication systems, but transmits data by sending and receiving extremely narrow pulses at the nanosecond level, it has high requirements for the time synchronization of the transceiver equipment, so the design of the synchronization sequence in ultra-wideband technology is crucial.
  • some synchronization sequences are defined in the 802.15.4a and 802.15.4z standards.
  • preamble sequences are defined in the 802.15.4a and 802.15.4z standards.
  • significant interference may occur, resulting in transmission failure.
  • the embodiments of the present application provide a UWB-based PPDU transmission method and apparatus, which can reduce interference between perfect sequences while ensuring the periodic autocorrelation characteristics of perfect sequences, thereby reducing interference between devices and supporting concurrent transmission of multiple devices.
  • the present application provides a UWB-based PPDU transmission method, the method comprising: a communication device generates and sends a PPDU, the PPDU includes a first sequence, the periodic autocorrelation main lobe amplitude of the first sequence is not zero and the periodic autocorrelation side lobe amplitude is zero, the periodic cross-correlation function of the first sequence and the second sequence has at most three different values, and the first sequence and the second sequence belong to the same sequence pair.
  • the first sequence can be used to implement one or more of the following functions: time synchronization, perception measurement, ranging, or wake-up device.
  • the present application does not limit the specific function of the first sequence.
  • the first sequence can be carried in one or more of the following fields of the PPDU: synchronization field, wake-up field, perception field, or ranging field.
  • perfect periodic autocorrelation characteristics may refer to: the main lobe amplitude of periodic autocorrelation is not 0 and the side lobe amplitude of periodic autocorrelation is 0.
  • the interference intensity between the two sequences mainly depends on the maximum value of the amplitude of the periodic mutual correlation function of the two sequences (i.e., the maximum value of the amplitude of the mutual correlation side lobe).
  • the periodic mutual correlation function between the two sequences such as the first sequence and the second sequence
  • the interference between the sequences can be reduced while ensuring the periodic autocorrelation characteristics of the complete sequence, so that the interference between the two devices that use these two sequences (i.e., the first sequence and the second sequence) for communication transmission at the same time is small, thereby supporting concurrent transmission of multiple devices and improving the overall throughput of the system.
  • the method may further include: the communication device receives sequence configuration information, the sequence configuration information includes sequence index information of the communication device, the sequence index information corresponds to the first sequence, or is used to determine the first sequence.
  • the sequence index information may include a sequence index, or the sequence index information includes a sequence index and an index of a sequence pair.
  • the sequence configuration information may also include sequence index information of another communication device, which is used to determine the first sequence.
  • the communication device and the other communication device may be geographically adjacent. The present application may schedule two geographically adjacent communication devices to use different sequences in a sequence pair for communication transmission at the same time through sequence configuration information, thereby reducing interference, supporting concurrent transmission of multiple devices, and improving the overall throughput of the system.
  • the present application provides a UWB-based PPDU transmission method, the method comprising: a communication device receives a PPDU and processes the PPDU, the PPDU comprises a first sequence, the periodic autocorrelation main lobe amplitude of the first sequence is not zero and the periodic autocorrelation side lobe amplitude is zero, the periodic cross-correlation function of the first sequence and the second sequence has at most three different values, and the first sequence and the second sequence belong to the same sequence pair.
  • the first sequence can be used to implement one or more of the following functions: time synchronization, perception measurement, ranging, or wake-up device.
  • the first sequence can be carried in one or more of the following fields of the PPDU: synchronization field, wake-up field, perception field, or ranging field.
  • the method may further include: sending or receiving sequence configuration information, the sequence configuration information including sequence index information, the sequence index information corresponding to the aforementioned first sequence, or used to determine the first sequence.
  • the communication device acts as a scheduler, the communication device sends sequence configuration information; when the communication device is not a scheduler, the communication device receives sequence configuration information sent by the scheduler to determine the first sequence; then the communication device may also use the determined first sequence to process the received PPDU, such as correlation operations, and then may perform operations such as time synchronization, ranging, perception measurement, or wake-up device according to the results of the correlation operations.
  • the sequence index information may include a sequence index, or the sequence index information includes a sequence index and an index of a sequence pair.
  • the lengths of the first sequence and the second sequence are the same, denoted by N.
  • the periodic cross-correlation function of the first sequence and the second sequence is Includes one or more of the following values:
  • f 2 ⁇ e-gcd (n, 3k)
  • e gcd (n, k) and the quotient of n divided by e (i.e. n/e) is an odd number
  • gcd (n, k) represents the greatest common divisor of n and k
  • gcd (n, 3k) represents the greatest common divisor of n and 3k.
  • k is a positive integer.
  • the lengths of the first sequence and the second sequence are both 511 bits
  • the first sequence may be any sequence in Table 1 of the following embodiment
  • the second sequence may be another sequence in Table 1 that belongs to the same sequence pair as the first sequence.
  • the lengths of the first sequence and the second sequence are both 127 bits
  • the first sequence may be any sequence in Table 2 of the following embodiment
  • the second sequence may be another sequence in Table 2 that belongs to the same sequence pair as the first sequence.
  • the first sequence may be generated based on a d1 - times sampling sequence of an m-sequence
  • the second sequence may be generated based on a d2 - times sampling sequence of an m-sequence.
  • k is a positive integer.
  • N can represent the length of the m-sequence. Exemplarily, the lengths of the first sequence, the second sequence, and the m-sequence are all the same. Specifically, the generation method and specific values of the first sequence and the second sequence (i.e., the sequence pair) are described in the following embodiments.
  • the amplitude of the periodic autocorrelation main lobe of the second sequence is not zero and the amplitude of the periodic autocorrelation side lobe is zero. That is, the second sequence is also a complete sequence.
  • an embodiment of the present application provides a communication device, which is used to execute the method in the first aspect or any possible implementation of the first aspect.
  • the communication device includes a unit having the function of executing the method in the first aspect or any possible implementation of the first aspect.
  • an embodiment of the present application provides a communication device, which is used to execute the method in the second aspect or any possible implementation of the second aspect.
  • the communication device includes a unit having the function of executing the method in the second aspect or any possible implementation of the second aspect.
  • the communication device may include a transceiver unit and a processing unit.
  • a transceiver unit and a processing unit For a specific description of the transceiver unit and the processing unit, reference may also be made to the device embodiment shown below.
  • the beneficial effects of the third aspect to the fourth aspect may refer to the relevant description of the first aspect and the second aspect, which will not be repeated here.
  • the present application provides a communication device, the communication device comprising a processor, configured to execute the method described in the first aspect or any possible implementation of the first aspect.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the method described in the first aspect or any possible implementation of the first aspect is executed.
  • the memory is located outside the above-mentioned communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device also includes a transceiver, and the transceiver is used to send the PPDU.
  • the present application provides a communication device, the communication device comprising a processor, configured to execute the method described in the second aspect or any possible implementation of the second aspect.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the method described in the second aspect or any possible implementation of the second aspect is executed.
  • the memory is located outside the above-mentioned communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device also includes a transceiver, and the transceiver is used to receive the PPDU.
  • the present application provides a communication device, the communication device comprising a logic circuit and an interface, the logic circuit and the interface being coupled.
  • the logic circuit is used to generate a PPDU, the PPDU comprising a first sequence, the periodic autocorrelation main lobe amplitude of the first sequence is not zero and the periodic autocorrelation side lobe amplitude is zero, the periodic cross-correlation function of the first sequence and the second sequence has at most three different values, and the first sequence and the second sequence belong to the same sequence pair; the interface is used to output the PPDU.
  • the present application provides a communication device, the communication device comprising a logic circuit and an interface, the logic circuit and the interface are coupled.
  • the interface is used to input a PPDU, the PPDU includes a first sequence, the periodic autocorrelation main lobe amplitude of the first sequence is not zero and the periodic autocorrelation side lobe amplitude is zero, the periodic cross-correlation function of the first sequence and the second sequence has at most three different values, and the first sequence and the second sequence belong to the same sequence pair; the logic circuit is used to process the PPDU.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program.
  • the computer-readable storage medium is run on a computer, the method shown in the above-mentioned first aspect or any possible implementation of the first aspect is executed.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program.
  • the computer-readable storage medium is run on a computer, the method shown in the above-mentioned second aspect or any possible implementation of the second aspect is executed.
  • an embodiment of the present application provides a computer program product, which includes a computer program or a computer code.
  • the computer program product is run on a computer, the method shown in the above-mentioned first aspect or any possible implementation of the first aspect is executed.
  • an embodiment of the present application provides a computer program product, which includes a computer program or a computer code.
  • the computer program product runs on a computer, the method shown in the above-mentioned second aspect or any possible implementation of the second aspect is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program runs on a computer, the method shown in the above-mentioned first aspect or any possible implementation of the first aspect is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program runs on a computer, the method shown in the above-mentioned second aspect or any possible implementation of the second aspect is executed.
  • an embodiment of the present application provides a wireless communication system, which includes: a communication device for executing the method shown in the above-mentioned first aspect or any possible implementation of the first aspect, and a communication device for executing the method shown in the above-mentioned second aspect or any possible implementation of the second aspect.
  • FIG1 is a schematic diagram of a structure of a wireless communication system provided in an embodiment of the present application.
  • FIG2 is another schematic diagram of the structure of a wireless communication system provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a frame structure of a PPDU provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of an SHR provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of an autocorrelation simulation result of an Ipatov sequence provided in an embodiment of the present application.
  • FIG6 is a flow chart of a UWB-based PPDU transmission method provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a structure of a communication device provided in an embodiment of the present application.
  • FIG8 is another schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG. 9 is another schematic diagram of the structure of the communication device provided in an embodiment of the present application.
  • At least one (item) refers to one or more
  • “more than one” refers to two or more
  • “at least two (items)” refers to two or three and more than three.
  • “and/or” is used to describe the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: only A exists, only B exists, and A and B exist at the same time, where A and B can be singular or plural.
  • the character “/” generally indicates that the previous and next associated objects are in an “or” relationship.
  • “The following one (item) or more (items)” or similar expressions refer to any combination of these items.
  • a, b or c can represent: a, b, c, "a and b", “a and c", “b and c", or "a and b and c”.
  • the words “exemplary” or “for example” are used to indicate examples, illustrations or descriptions. Any embodiment or design described in this application as “exemplary”, “for example” or “for example” should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of the words “exemplary”, “for example” or “for example” is intended to present the related concepts in a concrete way.
  • the technical solution provided in this application can be applied to wireless personal area networks (WPAN) based on UWB technology.
  • WPAN wireless personal area networks
  • the method provided in this application can be applied to IEEE802.15 series protocols, such as 802.15.4a protocol, 802.15.4z protocol or 802.15.4ab protocol, or a future generation of UWB WPAN standards, etc., which are not listed here one by one.
  • the method provided in this application can also be applied to various communication systems, for example, it can be an Internet of Things (IoT) system, a vehicle to X (V2X), a narrowband Internet of Things (NB-IoT) system, and applied to devices in the vehicle network, IoT nodes and sensors in the Internet of Things (IoT), smart cameras in smart homes, smart remote controls, smart water meters and electricity meters, and sensors in smart cities, etc.
  • IoT Internet of Things
  • V2X vehicle to X
  • NB-IoT narrowband Internet of Things
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX world-wide interoperability for microwave access
  • LTE system LTE system
  • 5G fifth-generation
  • 6G sixth-generation
  • UWB technology is a new type of wireless communication technology. It uses nanosecond non-sinusoidal narrow pulses to transmit data, and modulates impulse pulses with very steep rise and fall times, so the spectrum range it transmits is very wide, so that the signal has a bandwidth of the order of GHz.
  • the bandwidth used by UWB is usually above 1GHz. Because the UWB system does not need to generate a sinusoidal carrier signal and can directly transmit an impulse sequence, the UWB system has a very wide spectrum and a very low average power.
  • the UWB wireless communication system has the advantages of strong multipath resolution, low power consumption, and strong confidentiality, which is conducive to coexistence with other systems, thereby improving spectrum utilization and system capacity.
  • the transmission power of the UWB transmitter can usually be less than 1mW (milliwatt).
  • the interference generated by the UWB signal is only equivalent to white noise. This helps to achieve good coexistence between ultra-wideband and existing narrowband communications. Therefore, the UWB system can work simultaneously with a narrowband (narrowband, NB) communication system without interfering with each other.
  • the method provided in the present application can be implemented by a communication device in a wireless communication system.
  • a device or chip that implements the UWB system function can be called a UWB module
  • a device or chip that implements the narrowband communication system function can be called a narrowband communication module.
  • the UWB module and the narrowband communication module can be different devices or chips. Of course, the UWB module and the narrowband communication module can also be integrated in one device or chip. The embodiments of the present application do not limit the implementation of the UWB module and the narrowband communication module in the communication device.
  • the communication device in the present application includes a UWB module and optionally also includes a narrowband communication module.
  • WPAN wireless local area networks
  • Bluetooth BLUETOOTH
  • HIPERLAN high performance wireless LAN
  • WAN wide area networks
  • the communication device in the embodiment of the present application may support 802.15.4a and 802.15.4z, as well as the IEEE 802.15.4 standard currently under discussion. Devices using various WPAN standards, such as 802.15.4ab or later versions.
  • the method provided in the present application can be implemented by a communication device in a wireless communication system, and the communication device can be a device involved in a UWB system.
  • the communication device can include, but is not limited to, a communication server, a router, a switch, a bridge, a computer, a mobile phone, etc. that supports UWB technology.
  • the communication device can include a user equipment (UE), and the user equipment can include various handheld devices that support UWB technology, vehicle-mounted devices (such as cars or components installed on cars, etc.), wearable devices, Internet of Things (IoT) devices, computing devices, or other processing devices connected to a wireless modem, etc., which are not listed here one by one.
  • IoT Internet of Things
  • the communication device can include a central control point, such as a personal area network (PAN) or a PAN coordinator, etc.
  • the PAN coordinator or PAN can be a mobile phone, a vehicle-mounted device, an anchor point (Anchor), a tag (tag) or a smart home, etc.
  • the communication device can include a chip, and the chip can be set in a communication server, a router, a switch or a terminal device, etc., which are not listed here one by one.
  • the above-mentioned communication device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of the present application, as long as it can communicate according to the method provided in the embodiment of the present application by running a program that records the code of the method provided in the embodiment of the present application.
  • FIG. 1 is a schematic diagram of a structure of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system is a star topology structure, in which a central control node (such as the PAN coordinator in FIG. 1) can communicate data with one or more other devices.
  • FIG. 2 which is another schematic diagram of a structure of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system is a point-to-point topology structure, in which a central control node (such as the PAN coordinator in FIG. 2) can communicate data with one or more other devices, and other different devices can also communicate data with each other.
  • a central control node such as the PAN coordinator in FIG. 2
  • both full-function devices and reduced-function devices can be understood as the communication devices shown in the present application.
  • full-function devices and reduced-function devices are relative, such as a low-function device cannot be a PAN coordinator.
  • a low-function device may have no coordination capability or a lower communication rate than a full-function device.
  • the PAN coordinator shown in FIG2 is only an example, and the other three full-function devices shown in FIG2 can also be used as PAN coordinators, which are not shown one by one here.
  • the full-function device and low-function device shown in this application are only an example of a communication device, and any device that can implement the UWB-based PPDU transmission method provided in this application belongs to the protection scope of this application.
  • the sidelobe amplitude of the periodic autocorrelation function of sequence a is
  • represents the absolute value of the periodic autocorrelation function Ra ( ⁇ ), which will not be described in detail below.
  • represents the absolute value of the periodic autocorrelation function Ra ( ⁇ ), which will not be described in detail below.
  • represents the absolute value of the periodic autocorrelation function Ra ( ⁇ ), which will not be described in detail below.
  • represents the absolute value of the periodic autocorrelation function Ra ( ⁇ ), which will not be described in detail below.
  • represents the absolute value of the periodic autocorrelation function Ra ( ⁇ ), which will not be described in detail below.
  • represents the absolute value of the periodic autocorrelation function Ra ( ⁇ ), which will not be described in detail below.
  • represents the absolute value of the periodic auto
  • sequence b [b 0 , b 1 , b 2 , ..., b N-1 ] is another sequence of length N.
  • the periodic cross-correlation function Ra ,b ( ⁇ ) of sequence a and sequence b is defined as follows:
  • R C max represents the maximum value of the periodic cross-correlation function amplitude
  • the PPDU may include, but is not limited to: a synchronization header (SHR), a physical layer header (PHR), and a physical payload field (PHY payload field).
  • SHR synchronization header
  • PHR physical layer header
  • PHY payload field the receiving end can perform PPDU detection and synchronization according to the SHR.
  • the PHR carries some physical layer indication information, such as modulation coding information, PPDU length, etc., which can be used to assist the receiving end in correctly demodulating data.
  • the physical payload field is used to carry data.
  • the synchronization header may include a synchronization (SYNC) field and a start-of-frame delimiter (SFD) field.
  • T pre represents the time length of each SHR
  • T SYNC represents the time length of the SYNC field
  • T SFD represents the time length of the SFD field.
  • the synchronization (SYNC) field may include multiple symbols, which may be generated by a preamble sequence.
  • the preamble sequence may be an Ipatov sequence with a length of 31, 127, or 91.
  • the Ipatov sequence is a ternary sequence composed of three elements ⁇ -1, 0, 1 ⁇ and has the periodic autocorrelation characteristics of a complete sequence; for specific contents of Ipatov sequences of different lengths, refer to 802.15.4a and 802.15.4z standards, which will not be described in detail here.
  • Figure 5 is a schematic diagram of the autocorrelation simulation results of an Ipatov sequence provided in an embodiment of the present application.
  • the periodic autocorrelation function of the Ipatov sequence of length 31 has a value at the origin (that is, the ordinate at the origin is not 0), and is 0 at other places on the horizontal axis (that is, the ordinate at other non-origin points is 0).
  • the main lobe amplitude of the periodic autocorrelation of the Ipatov sequence of length 31 is 16 (it can also be understood that the peak value of the periodic autocorrelation is 16), and the side lobe amplitude of the periodic autocorrelation is 0.
  • the horizontal axis shown in Figure 5 represents the time shift (time shift)
  • the vertical axis represents the amplitude of the periodic autocorrelation (periodic autocorrelation).
  • the horizontal axis shown in Figure 5 can also be understood as an element or bit, etc., and the embodiment of the present application does not limit the interpretation of the horizontal axis involved in the simulation of the periodic autocorrelation function.
  • autocorrelation can be understood as the cross-correlation between a signal and itself at different time points
  • the positive axis values (0 to 15) and the negative axis values (-15 to 0) in the horizontal axis can be determined by the length of the Ipatov sequence.
  • FIG. 5 is only an example and is not limiting.
  • a sequence whose main lobe amplitude of periodic autocorrelation is not 0 and whose side lobe amplitude of periodic autocorrelation is 0 is called a perfect sequence (Perfect Sequence). It can be understood that the "perfect periodic autocorrelation characteristic" in this application means that the main lobe amplitude of periodic autocorrelation is not 0 and the side lobe amplitude of periodic autocorrelation is 0.
  • the receiving end can utilize the periodic autocorrelation characteristics of the Ipatov sequence and use the same sequence to perform correlation processing with the received signal, such as correlation operation, and use the result of the correlation processing (such as the position of the correlation peak) to perform synchronization, ranging, or sensing operations.
  • the 802.15.4a and 802.15.4z standards define multiple Ipatov sequences as preamble sequences, and use the perfect periodic autocorrelation characteristics of the Ipatov sequence (the main lobe amplitude of the periodic autocorrelation is not 0 and the side lobe amplitude of the periodic autocorrelation is 0) to generate a synchronization header (SHR), which can enhance the synchronization accuracy of the receiving end.
  • SHR synchronization header
  • the prior art does not consider the cross-correlation characteristics between Ipatov sequences, and the maximum value ( RCmax ) of the periodic cross-correlation function amplitude between different Ipatov sequences is large. Then, when multiple devices in close geographical locations use different Ipatov sequences for communication transmission on the same channel at the same time, it may cause greater interference, resulting in transmission failure.
  • the embodiments of the present application provide a UWB-based PPDU transmission method and apparatus.
  • a perfect sequence pair with low cross-correlation characteristics and applying it to PPDU it is possible to reduce interference between sequences while ensuring the perfect periodic autocorrelation characteristics of the sequence, and minimize interference between geographically close devices; thereby supporting concurrent transmission of multiple devices and improving the overall throughput of the system.
  • the communication device in the present application can not only support 802.15 series protocols, such as 802.15.4ab or the next generation of 802.15.4ab, but also support other standard protocols (such as 802.11 series protocols), such as 802.11be, Wi-Fi7 or EHT (extremely high throughput), and the next generation of 802.11be, Wi-Fi8, UHR (ultra high throughput), Wi-Fi AI (Wi-Fi).
  • 802.11 series protocols such as 802.11be, Wi-Fi7 or EHT (extremely high throughput)
  • Wi-Fi8 Extremely high throughput
  • Wi-Fi8 ultra high throughput
  • Wi-Fi AI Wi-Fi
  • the communication device in the present application can also support UWB-based sensing protocols, such as 802.11bf or the next generation of 802.11bf.
  • FIG. 6 is a flow chart of a UWB-based PPDU transmission method provided in an embodiment of the present application.
  • the first communication device and the second communication device involved in the method may be any two devices capable of performing data transmission in the aforementioned Figure 1 or Figure 2.
  • the UWB-based PPDU transmission method includes but is not limited to the following steps:
  • a first communication device generates a PPDU, the PPDU includes a first sequence, the periodic autocorrelation main lobe amplitude of the first sequence is not zero and the periodic autocorrelation side lobe amplitude is zero, a periodic cross-correlation function of the first sequence and a second sequence has at most three different values, and the first sequence and the second sequence belong to the same sequence pair.
  • S102 The first communication device sends the PPDU.
  • the second communication device receives the PPDU.
  • S103 The second communication device processes the PPDU.
  • the PPDU includes a first sequence, which can be used to implement one or more of the following functions: time synchronization, perception measurement, ranging, or waking up the device.
  • the first sequence can be carried in one or more of the following fields of the PPDU: a synchronization (SYNC) field, a wakeup (wakeup) field, a perception (sensing) field, or a ranging (ranging) field.
  • SYNC synchronization
  • wakeup wakeup
  • perception sensing
  • ranging ranging
  • the periodic autocorrelation main lobe amplitude of the above-mentioned first sequence is not zero and the periodic autocorrelation side lobe amplitude is zero, that is, the first sequence is a perfect sequence.
  • the first sequence can be any sequence in a sequence set, and there is also a second sequence in the sequence set, and the periodic autocorrelation main lobe amplitude of the second sequence is not zero and the periodic autocorrelation side lobe amplitude is zero, that is, the second sequence is also a perfect sequence; and the periodic cross-correlation function of the second sequence and the first sequence has at most three different values.
  • the first sequence and the second sequence can form a sequence pair, which can be used when two geographically adjacent devices communicate and transmit simultaneously on the same channel.
  • the first sequence and the second sequence can be a ternary sequence containing three elements ⁇ -1,0,1 ⁇ .
  • the lengths of the first sequence and the second sequence can be the same, for example, the lengths of the first sequence and the second sequence are both 511 bits or 127 bits.
  • the maximum value ( RCmax ) of the amplitude of the periodic mutual correlation function is smaller; and the interference intensity between the two sequences mainly depends on the maximum value RCmax of the amplitude of the periodic mutual correlation function of the two sequences (i.e., the maximum value of the amplitude of the mutual correlation side lobe).
  • the periodic mutual correlation function between the two complete sequences (such as the first sequence and the second sequence) in the constrained sequence pair has at most three different values, then the maximum value of their mutual correlation side lobe amplitude is small, which can reduce the interference between sequences while ensuring the periodic autocorrelation characteristics of the complete sequence, support multi-device concurrent transmission, and improve the overall throughput of the system.
  • the first sequence may be generated based on a d1 - times sampling sequence of an m-sequence
  • the second sequence may be generated based on a d2 - times sampling sequence of an m-sequence.
  • k is a positive integer.
  • N can represent the length of the m-sequence.
  • the lengths of the first sequence, the second sequence, and the m-sequence are all the same.
  • the generation method and specific values of the first sequence and the second sequence are described below.
  • m-sequence is the abbreviation of the longest linear feedback shift register sequence. It is the longest period sequence generated by a shift register with linear feedback. Generally speaking, the longest period that an n-stage linear feedback shift register can generate is equal to ( 2n -1).
  • the m-sequence is a typical pseudo-random sequence and is widely used in the field of communications. Among all pseudo-random sequences, the m-sequence is the most important and basic pseudo-random sequence. It is easy to generate, has strong regularity, and has good autocorrelation and good cross-correlation characteristics.
  • the above-mentioned first sequence may be preconfigured.
  • the third communication device may send sequence configuration information, which includes sequence index information A of the first communication device, and the sequence index information A may correspond to the first sequence, or it can be said that it is used to determine the first sequence. After receiving the sequence configuration information, the first communication device determines the first sequence according to the sequence index information A therein.
  • the sequence configuration information may also include sequence index information B of the fourth communication device, and the sequence index information B may correspond to the second sequence, or it can be said that it is used to determine the second sequence, and the second sequence belongs to the same sequence pair as the first sequence.
  • the third communication device may also send the sequence index information B to the fourth communication device alone, without sending it together with the sequence index information A.
  • the sequence index information A may include a sequence index, or the sequence index information A includes a sequence index and an index of a sequence pair.
  • the sequence index information B may include a sequence index, or the sequence index information B includes a sequence index and an index of a sequence pair.
  • the third communication device may be the same communication device as the second communication device, or may be a different communication device. When the third communication device is different from the second communication device, the second communication device also needs to know the sequence index information A of the first communication device in order to determine the first sequence for receiving the PPDU. For example, the second communication device may also receive the sequence configuration information, determine the first sequence according to the sequence index information A therein, and may process the received PPDU with the determined first sequence, such as performing a correlation operation, and then may perform operations such as time synchronization, ranging, perception measurement, or waking up the device according to the result of the correlation operation.
  • the embodiment of the present application designs a ternary perfect sequence pair with a lower cross-correlation characteristic and applies it to PPDU. Since the periodic cross-correlation function of the ternary perfect sequence pair has at most three different values, the maximum value RC max of their cross-correlation sidelobe amplitude is small, and the interference between the perfect sequences can be reduced while ensuring the periodic autocorrelation characteristic of the perfect sequence (that is, the periodic autocorrelation main lobe amplitude is not zero and the periodic autocorrelation sidelobe amplitude is zero), and the interference between the perfect sequences can be reduced as much as possible; thereby, the concurrent transmission of multiple devices can be supported, and the overall throughput of the system can be improved.
  • sequence pairs For example, a possible way to generate sequence pairs is as follows:
  • s d (i) represents the sequence
  • mod(d*i,N) represents the remainder of (d*i) divided by N, which will not be repeated below.
  • the greatest common divisor of d and N is 1, that is, d and N are relatively prime.
  • the symbol "*" in this application means multiplication or multiplication, which will not be repeated elsewhere in this article.
  • n can be obtained from the sequence
  • N 2 n -1.
  • k is a positive integer.
  • ud (t) represents the sequence The tth element in .
  • the sequence and The periodic cross-correlation function of the first and second sequences (as mentioned above) The maximum value of the amplitude is low, and the periodic cross-correlation function has at most three different values, as shown in the following formula (2-5):
  • d 1 ⁇ d 1 -1 1 (mod N)
  • d 2 ⁇ d 2 -1 1 (mod N).
  • f 2*e-gcd(n,3k).
  • gcd(n,3k) represents the greatest common divisor of n and 3k, k is a positive integer, and n can be calculated according to the sequence The length N is determined.
  • the first sequence can be any sequence in Table 1 below
  • the second sequence is another sequence in the same sequence pair as the first sequence.
  • the first sequence can also be The second sequence is The present application embodiment does not limit which sequence the first sequence and the second sequence are in the sequence pair, as long as the first sequence and the second sequence belong to the same sequence pair.
  • the first sequence is The second sequence can be Or the first sequence is The second sequence can be Or the first sequence is The second sequence can be Or the first sequence is The second sequence can be Or the first sequence is The second sequence can be Or the first sequence is The second sequence can be And so on, I won’t list them all here.
  • each sequence in the following Table 1 can be replaced by its equivalent deformation sequence, and the equivalent deformation sequence can be obtained by cyclic shift or inversion (such as element 1 is inverted to -1, element -1 is inverted to 1, and element 0 is inverted to itself) of any sequence in Table 1.
  • the specific values of the sequence pairs shown in Table 1 are only examples. When n takes different values, the generated sequence pairs may be different. Any two ternary complete sequences that satisfy the above formula (2-5) are within the protection scope of the embodiments of the present application.
  • the first sequence can be any sequence in Table 2 below, and the second sequence can be another sequence in the same sequence pair as the first sequence.
  • the first sequence can also be The second sequence is The present application embodiment does not limit which sequence the first sequence and the second sequence are in the sequence pair, as long as the first sequence and the second sequence belong to the same sequence pair.
  • the first sequence is The second sequence can be Or the first sequence is The second sequence can be Or the first sequence is The second sequence can be Or the first sequence is The second sequence can be Or the first sequence is The second sequence can be Or the first sequence is The second sequence can be And so on, I won’t list them all here.
  • each sequence in the following Table 2 can be replaced by its equivalent deformation sequence, and the equivalent deformation sequence can be obtained by cyclic shift or inversion (such as element 1 is inverted to -1, element -1 is inverted to 1, and element 0 is inverted to itself) of any sequence in Table 2.
  • the specific values of the sequence pairs shown in Table 2 are only examples. When n takes different values, the generated sequence pairs may be different. Any two ternary complete sequences that satisfy the above formula (2-5) are within the protection scope of the embodiments of the present application.
  • the embodiment of the present application also provides corresponding devices or equipment.
  • the present application divides the functional modules of the communication device according to the above method embodiment.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • the communication device of the embodiment of the present application will be described in detail below in conjunction with Figures 7 to 9.
  • Fig. 7 is a schematic diagram of a structure of a communication device provided in an embodiment of the present application.
  • the communication device includes: a transceiver unit 10 and a processing unit 20 .
  • the communication device may be the first communication device shown above or a chip therein, that is, the communication device shown in FIG. 7 may be used to execute the steps or functions performed by the first communication device in the above method embodiment.
  • the processing unit 20 is used to generate a PPDU, which includes a first sequence, the periodic autocorrelation main lobe amplitude of the first sequence is not zero and the periodic autocorrelation side lobe amplitude is zero, the periodic cross-correlation function of the first sequence and the second sequence has at most three different values, and the first sequence and the second sequence belong to the same sequence pair; the transceiver unit 10 is used to send the PPDU.
  • the transceiver unit 10 is further used to receive sequence configuration information, where the sequence configuration information includes sequence index information, and the sequence index information corresponds to the aforementioned first sequence, or is used to determine the first sequence.
  • transceiver unit 10 can be used to execute step S102 shown in Figure 6; the processing unit 20 can be used to execute step S101 shown in Figure 6.
  • the communication device may be the second communication device shown above or a chip therein, that is, the communication device shown in FIG7 may be used to execute the steps or functions executed by the second communication device in the above method embodiment.
  • the transceiver unit 10 is used to receive a PPDU, which includes a first sequence, the periodic autocorrelation main lobe amplitude of the first sequence is not zero and the periodic autocorrelation side lobe amplitude is zero, the periodic cross-correlation function of the first sequence and the second sequence has at most three different values, and the first sequence and the second sequence belong to the same sequence pair; the processing unit 20 is used to process the PPDU.
  • the transceiver unit 10 is further used to send or receive sequence configuration information, where the sequence configuration information includes sequence index information, and the sequence index information corresponds to the aforementioned first sequence, or is used to determine the first sequence.
  • transceiver unit 10 can be used to receive the PPDU; the processing unit 20 can be used to execute step S103 shown in Figure 6.
  • the communication device of the embodiment of the present application is introduced above, and the possible product form of the communication device is introduced below. It should be understood that any product of any form having the functions of the communication device described in FIG. 7 above falls within the protection scope of the embodiment of the present application. It should also be understood that the following introduction is only an example and does not limit the product form of the communication device of the embodiment of the present application to this.
  • the processing unit 20 may be one or more processors, the transceiver unit 10 may be a transceiver, or the transceiver unit 10 may also be a sending unit and a receiving unit, the sending unit may be a transmitter, the receiving unit may be a receiver, and the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the embodiment of the present application does not limit the connection mode of the processor and the transceiver.
  • the process of sending information in the above method can be understood as the process of outputting the above information by the processor.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver so that it is transmitted by the transceiver. After the above information is output by the processor, it may also need to be processed in other ways before it reaches the transceiver.
  • the process of receiving information (such as receiving PPDU, etc.) in the above method can be understood as the process of the processor receiving the input information.
  • the transceiver receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to be processed in other ways before being input into the processor.
  • FIG. 8 is another schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device may be a first communication device or a second communication device, or a chip therein.
  • FIG. 8 only shows the main components of the communication device.
  • the communication device may further include a memory 1003, and an input/output device (not shown in the figure).
  • the processor 1001 is mainly used to process the communication protocol and communication data, and to control the entire communication device, execute the software program, and process the data of the software program.
  • the memory 1003 is mainly used to store the software program and data.
  • the transceiver 1002 may include a control circuit and an antenna.
  • the control circuit is mainly used to convert the baseband signal and the radio frequency signal and process the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output devices such as a touch screen, a display screen, a keyboard, etc., are mainly used to receive data input by the user and output data to the user.
  • the processor 1001 can read the software program in the memory 1003, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1001 performs baseband processing on the data to be sent, and outputs the baseband signal to the RF circuit.
  • the RF circuit performs RF processing on the baseband signal and then sends the RF signal outward in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor 1001.
  • the processor 1001 converts the baseband signal into data and processes the data.
  • the RF circuit and antenna may be arranged independently of the processor performing baseband processing.
  • the RF circuit and antenna may be arranged independently of the communication device in a remote manner.
  • the processor 1001 , the transceiver 1002 , and the memory 1003 may be connected via a communication bus.
  • the processor 1001 can be used to execute step S101 in Figure 6, and/or to execute other processes of the technology described in this document;
  • the transceiver 1002 can be used to execute step S102 in Figure 6, and/or to execute other processes of the technology described in this document.
  • the processor 1001 can be used to execute step S103 in Figure 6, and/or to execute other processes of the technology described in this document;
  • the transceiver 1002 can be used to receive the PPDU processed by step S103 in Figure 6, and/or to be used for other processes of the technology described in this document.
  • the processor 1001 may store instructions, which may be computer programs.
  • the computer programs run on the processor 1001, and may enable the communication device to perform the method described in the above method embodiment.
  • the computer program may be fixed in the processor 1001, in which case the processor 1001 may be implemented by hardware.
  • the communication device may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiment.
  • the processor and transceiver described in the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit (RFIC), a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device shown in the embodiment of the present application may also have more components than those in FIG8, and the embodiment of the present application is not limited to this.
  • the method performed by the processor and transceiver shown above is only an example, and the specific steps performed by the processor and transceiver can refer to the introduction of the method embodiment above.
  • the processing unit 20 may be one or more logic circuits, and the transceiver unit 10 may be an input/output interface, or a communication interface, or an interface circuit, or an interface, etc.
  • the transceiver unit 10 may also be a sending unit and a receiving unit, the sending unit may be an output interface, the receiving unit may be an input interface, and the sending unit and the receiving unit are integrated into one unit, such as an input/output interface.
  • FIG9 is another structural schematic diagram of a communication device provided in an embodiment of the present application. As shown in FIG9 , the communication device shown in FIG9 includes a logic circuit 901 and an interface 902.
  • the above-mentioned processing unit 20 may be implemented with a logic circuit 901, and the transceiver unit 10 may be implemented with an interface 902.
  • the logic circuit 901 may be a chip, a processing circuit, an integrated circuit, or a system on chip (SoC) chip, etc.
  • the interface 902 may be a communication interface, an input/output interface, a pin, etc.
  • FIG9 is shown as an example of the above-mentioned communication device being a chip, and the chip includes a logic circuit 901 and an interface 902.
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiment of the present application does not limit the specific connection method between the logic circuit and the interface.
  • the logic circuit 901 is used to generate a PPDU, which includes a first sequence, the periodic autocorrelation main lobe amplitude of the first sequence is not zero and the periodic autocorrelation side lobe amplitude is zero, the periodic cross-correlation function of the first sequence and the second sequence has at most three different values, and the first sequence and the second sequence belong to the same sequence pair; the interface 902 is used to output the PPDU.
  • interface 902 is used to input PPDU, which PPDU includes a first sequence, the periodic autocorrelation main lobe amplitude of the first sequence is not zero and the periodic autocorrelation side lobe amplitude is zero, the periodic cross-correlation function of the first sequence and the second sequence has at most three different values, and the first sequence and the second sequence belong to the same sequence pair; logic circuit 901 is used to process the PPDU.
  • the communication device shown in the embodiment of the present application can implement the method provided in the embodiment of the present application in the form of hardware, or can implement the method provided in the embodiment of the present application in the form of software, etc., and the embodiment of the present application is not limited to this.
  • An embodiment of the present application also provides a wireless communication system, which includes a first communication device and a second communication device.
  • the first communication device and the second communication device can be used to execute the method in the above-mentioned embodiment.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the first communication device in the method provided by the present application.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the second communication device in the method provided by the present application.
  • the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer code.
  • the computer When running on a computer, the computer is enabled to execute the operations and/or processes performed by the first communication device in the method provided in the present application.
  • the present application also provides a computer-readable storage medium, in which computer codes are stored.
  • the computer codes are executed on a computer, the computer executes the operations and/or processes performed by the second communication device in the method provided in the present application.
  • the present application also provides a computer program product, which includes a computer code or a computer program.
  • a computer program product which includes a computer code or a computer program.
  • the present application also provides a computer program product, which includes a computer code or a computer program.
  • a computer program product which includes a computer code or a computer program.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, or it can be an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided in the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, including a number of instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned readable storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种基于UWB的PPDU传输方法及装置,该方法包括:通信双方交互PPDU,该PPDU中包含第一序列,第一序列是三元完备序列且第一序列和同属于一个序列对的第二序列的周期互相关函数最多存在三种不同的值。采用本申请实施例,可以减少设备间的干扰。本申请应用于基于UWB的WPAN系统、感知系统等,包括802.15系列协议,如802.15.4ab制式或者802.15.4ab下一代制式等。还可应用于支持802.11ax下一代Wi-Fi协议,如802.11be,Wi-Fi 7或EHT,再如802.11be下一代,Wi-Fi 8、UHR、Wi-Fi AI等802.11系列协议的WLAN系统。

Description

基于UWB的PPDU传输方法及装置
本申请要求在2023年03月10日提交中国国家知识产权局、申请号为202310260811.4的中国专利申请的优先权,发明名称为“基于UWB的PPDU传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于超宽带(ultra-wide band,UWB)的物理层协议数据单元(physical layer protocol data unit,PPDU)传输方法及装置。
背景技术
随着超宽带(ultra-wide band,UWB)进入民用领域,超宽带(UWB)无线通信成为短距离、高速无线网络的物理层技术之一。超宽带(UWB)技术是一种无线载波通信技术,如可以利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。由于其脉冲比较窄,且辐射谱密度低,因此UWB具有多径分辨能力强,功耗低,保密性强等优点。
电气及电子工程师学会(institute of electrical and electronics engineers,IEEE)将UWB技术纳入其IEEE802系列无线标准,已经发布了基于UWB技术的高速无线个域网(wireless personal area network,WPAN)标准IEEE 802.15.4a,以及其演进版本IEEE 802.15.4z,而下一代UWB无线个域网(WPAN)标准802.15.4ab正在讨论中。由于超宽带技术不需要使用传统通信体制中的载波,而是通过收发纳秒级的极窄脉冲来传输数据,其对收发设备的时间同步具有很高的要求,故超宽带技术中同步序列的设计至关重要。
目前,802.15.4a和802.15.4z标准中定义了一些同步序列(即前导码序列)。然而当多个设备采用现有的同步序列同时进行通信传输时,可能会产生较大地干扰,导致传输失败。
发明内容
本申请实施例提供一种基于UWB的PPDU传输方法及装置,可以在保证完备序列(perfect sequence)的周期自相关特性的同时减少完备序列间的干扰,从而减少设备间的干扰,支持多设备并发传输。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请提供一种基于UWB的PPDU传输方法,该方法包括:通信装置生成并发送PPDU,该PPDU包含第一序列,该第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,该第一序列和第二序列的周期互相关函数最多存在三种不同的值,并且第一序列和第二序列属于同一序列对。其中,该第一序列可以用于实现以下一项或多项功能:时间同步、感知测量、测距、或唤醒设备。本申请不限制第一序列的具体功能。示例性的,该第一序列可以携带于该PPDU的以下一个或多个字段中:同步字段、唤醒字段、感知字段、或测距字段。
本申请将周期自相关的主瓣幅度不为0,且周期自相关的旁瓣幅度为0的序列称为完备序列(Perfect Sequence)。相应的,本申请中“完美的周期自相关特性”可以指:周期自相关的主瓣幅度不为0,且周期自相关的旁瓣幅度为0。
由于两个序列的周期互相关函数幅度的总和是固定值,当周期互相关函数的不同值越少时,其周期互相关函数幅度的最大值越小;而两个序列之间的干扰强度主要取决于两个序列的周期互相关函数幅度的最大值(即互相关旁瓣幅度的最大值)。所以本申请实施例通过约束序列对中两个序列(如第一序列和第二序列)之间的周期互相关函数最多存在三种不同的值,那么它们的互相关旁瓣幅度的最大值较小,可以在保证完备序列的周期自相关特性的同时减少序列间的干扰,使得采用这两个序列(即第一序列和第二序列)同时进行通信传输的两个设备间的干扰较小,从而支持多设备并发传输,提高系统整体的吞吐率。
结合第一方面,在一种可能的实现方式中,通信装置发送PPDU之前,上述方法还可以包括:通信装置接收序列配置信息,该序列配置信息中包括该通信装置的序列索引信息,该序列索引信息对应该第一序列,或者说用于确定第一序列。示例性的,该序列索引信息可以包括序列索引,或者该序列索引信息包括序列索引和序列对的索引。在一些场景中,该序列配置信息还可以包括另一通信装置的序列索引信息,用 于确定第二序列。该通信装置与该另一通信装置可以在地理位置上临近。本申请可以通过序列配置信息调度在地理位置上临近的两个通信装置同时使用序列对中的不同序列进行通信传输,从而减少干扰、支持多设备并发传输,提高系统整体的吞吐率。
第二方面,本申请提供一种基于UWB的PPDU传输方法,该方法包括:通信装置接收PPDU并对该PPDU进行处理,该PPDU包含第一序列,该第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,该第一序列和第二序列的周期互相关函数最多存在三种不同的值,并且第一序列和第二序列属于同一序列对。其中,该第一序列可以用于实现以下一项或多项功能:时间同步、感知测量、测距、或唤醒设备。示例性的,该第一序列可以携带于该PPDU的以下一个或多个字段中:同步字段、唤醒字段、感知字段、或测距字段。
结合第二方面,在一种可能的实现方式中,通信装置对该PPDU进行处理之前,上述方法还可以包括:发送或接收序列配置信息,该序列配置信息中包括序列索引信息,该序列索引信息对应前述第一序列,或者说用于确定第一序列。示例性的,当该通信装置作为调度方时,该通信装置发送序列配置信息;当该通信装置不是调度方时,该通信装置接收调度方发送的序列配置信息,用于确定第一序列;然后该通信装置还可以用确定出的第一序列对接收到的PPDU进行处理,比如相关运算,然后可以根据相关运算的结果进行时间同步、测距、感知测量或者唤醒设备等操作。示例性的,该序列索引信息可以包括序列索引,或者该序列索引信息包括序列索引和序列对的索引。
上述任一方面的一种可能实现方式中,上述第一序列和上述第二序列的长度相同,用N表示。上述第一序列和上述第二序列的周期互相关函数包括以下一种或多种值:
其中,f=2×e-gcd(n,3k),e=gcd(n,k)且n除以e的商(即n/e)是奇数,gcd(n,k)表示n和k的最大公约数,gcd(n,3k)表示n和3k的最大公约数。k是正整数。n满足2n=N+1。分别表示第一序列和第二序列。
示例性的,第一序列和第二序列的长度都是511位,该第一序列可以是下文实施例的表1中的任一序列,而第二序列可以是表1中与第一序列属于同一序列对中的另一序列。或者,第一序列和第二序列的长度都是127位,该第一序列可以是下文实施例的表2中的任一序列,而第二序列可以是表2中与第一序列属于同一序列对中的另一序列。
上述任一方面的一种可能实现方式中,上述第一序列可以基于m序列的d1倍采样序列生成,第二序列可以基于m序列的d2倍采样序列生成。d1和d2不相同,且d1和d2满足:d1=(2k+1)-1且d2=22k-2k+1,或者d1=(2k+1)且d2=(22k-2k+1)-1。其中,(2k+1)-1的值可以通过d1×d1 -1=1(mod N),即((2k+1)-1×(2k+1))mod N=1来求解。同理,(22k-2k+1)-1的值可以通过d2×d2 -1=1(mod N),即((22k-2k+1)-1×(22k-2k+1))mod N=1来求解。k是正整数。N可以表示m序列的长度,示例性的,第一序列、第二序列、以及m序列的长度均相同。具体的,第一序列和第二序列(即序列对)的生成方式以及具体值参见下文实施例的描述。
上述任一方面的一种可能实现方式中,上述第二序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零。也就是说,第二序列也是完备序列。
第三方面,本申请实施例提供一种通信装置,该通信装置用于执行第一方面或第一方面的任意可能的实现方式中的方法。该通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,本申请实施例提供一种通信装置,该通信装置用于执行第二方面或第二方面的任意可能的实现方式中的方法。该通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
在第三方面或第四方面中,上述通信装置可以包括收发单元和处理单元。对于收发单元和处理单元的具体描述还可以参考下文示出的装置实施例。上述第三方面到第四方面的有益效果可以参考前述第一方面和第二方面的相关描述,这里不赘述。
第五方面,本申请提供一种通信装置,该通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
结合第五方面,在一种可能的实现方式中,存储器位于上述通信装置之外。
结合第五方面,在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
结合第五方面,在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于发送PPDU。
第六方面,本申请提供一种通信装置,该通信装置包括处理器,用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
结合第六方面,在一种可能的实现方式中,存储器位于上述通信装置之外。
结合第六方面,在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
结合第六方面,在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收PPDU。
第七方面,本申请提供一种通信装置,该通信装置包括逻辑电路和接口,该逻辑电路和该接口耦合。该逻辑电路,用于生成PPDU,该PPDU包含第一序列,该第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,该第一序列和第二序列的周期互相关函数最多存在三种不同的值,该第一序列和该第二序列属于同一序列对;该接口,用于输出该PPDU。
第八方面,本申请提供一种通信装置,该通信装置包括逻辑电路和接口,该逻辑电路和该接口耦合。该接口,用于输入PPDU,该PPDU包含第一序列,该第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,该第一序列和第二序列的周期互相关函数最多存在三种不同的值,该第一序列和该第二序列属于同一序列对;逻辑电路,用于对该PPDU进行处理。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十二方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十三方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十四方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十五方面,本申请实施例提供一种无线通信系统,该无线通信系统包括:用于执行上述第一方面或第一方面的任意可能的实现方式所示方法的通信装置,和用于执行上述第二方面或第二方面的任意可能的实现方式所示方法的通信装置。
上述各个方面达到的技术效果可以相互参考或参考下文所示的方法实施例中的有益效果,此处不再重复赘述。
附图说明
图1是本申请实施例提供的无线通信系统的一结构示意图;
图2是本申请实施例提供的无线通信系统的另一结构示意图;
图3是本申请实施例提供的PPDU的帧结构示意图;
图4是本申请实施例提供的SHR的结构示意图;
图5是本申请实施例提供的一种Ipatov序列的自相关仿真结果示意图;
图6是本申请实施例提供的基于UWB的PPDU传输方法的流程示意图;
图7是本申请实施例提供的通信装置的一结构示意图;
图8是本申请实施例提供的通信装置的另一结构示意图;
图9是本申请实施例提供的通信装置的又一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,“第一”、“第二”等字样仅用于区别不同对象,并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本申请的描述中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上。另外,“和/或”用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下一项(个)或多项(个)”或其类似表达,是指这些项中的任意组合。例如,以下一项(个)或多项(个):a、b或c,可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”、“举例来说”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、“举例来说”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。
本申请提供的技术方案可以适用于基于UWB技术的无线个人局域网(wireless personal area network,WPAN)。如本申请提供的方法可以适用于IEEE802.15系列协议,例如802.15.4a协议、802.15.4z协议或802.15.4ab协议,或者未来某代UWB WPAN标准等,这里不再一一列举。本申请提供的方法还可以应用于各类通信系统,例如,可以是物联网(internet of things,IoT)系统、车联网(vehicle to X,V2X)、窄带物联网(narrow band internet of things,NB-IoT)系统,应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。本申请提供的方法还可以适用于长期演进(long term evolution,LTE)频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、LTE系统,也可以是第五代(5th-generation,5G)通信系统、第六代(6th-generation,6G)通信系统等。
UWB技术是一种新型的无线通信技术。它利用纳秒级的非正弦波窄脉冲传输数据,通过对具有很陡上升和下降时间的冲激脉冲进行调制,因此其所传输的频谱范围很宽,使信号具有吉赫(GHz)量级的带宽。UWB使用的带宽通常在1GHz以上。因为UWB系统不需要产生正弦载波信号,可以直接发射冲激序列,所以UWB系统具有很宽的频谱和很低的平均功率,UWB无线通信系统具有多径分辨能力强、功耗低、保密性强等优点,有利于与其他系统共存,从而提高频谱利用率和系统容量。另外,在短距离的通信应用中,UWB发射机的发射功率通常可做到低于1mW(毫瓦),从理论上来说,UWB信号所产生的干扰仅相当于白噪声。这样有助于超宽带与现有窄带通信之间的良好共存。因此,UWB系统可以实现与窄带(narrowband,NB)通信系统同时工作而互不干扰。本申请提供的方法可以由无线通信系统中的通信装置实现。一个通信装置中,实现UWB系统功能的装置或芯片可以被称为UWB模块,实现窄带通信系统功能的装置或芯片可以被称为窄带通信模块。UWB模块和窄带通信模块可以为不同的装置或芯片,当然UWB模块和窄带通信模块也可以集成在一个装置或芯片上,本申请实施例不限制UWB模块和窄带通信模块在通信装置中的实现方式。本申请中的通信装置包括UWB模块,可选的还包括窄带通信模块。
虽然本申请实施例主要以WPAN为例,比如以应用于IEEE 802.15系列标准的网络为例进行说明。本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络。例如,无线局域网(wireless local area networks,WLAN)、蓝牙(BLUETOOTH),高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE 802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
可选地,本申请实施例中的通信装置可以为支持802.15.4a和802.15.4z、以及现在正在讨论中的IEEE 802.15.4ab或后续版本等多种WPAN制式的设备。
示例性的,本申请提供的方法可以由无线通信系统中的通信装置实现,该通信装置可以是UWB系统中涉及的装置。例如,该通信装置可以包括但不限于支持UWB技术的通信服务器、路由器、交换机、网桥、计算机、手机等。又例如,该通信装置可以包括用户设备(user equipment,UE),该用户设备可以包括支持UWB技术的各种手持设备、车载设备(如汽车或安装于汽车上的部件等)、可穿戴设备、物联网(internet of things,IoT)设备、计算设备或连接到无线调制解调器的其它处理设备等,这里不再一一列举。又例如,该通信装置可以包括中心控制点,如个人局域网(personal area network,PAN)或PAN协调者等。该PAN协调者或PAN可以是手机、车载设备、锚点(Anchor)、标签(tag)或智能家居等。又例如,该通信装置可以包括芯片,该芯片可以设置于通信服务器、路由器、交换机或终端设备中等,这里不再一一列举。
在本申请实施例中,上述通信装置可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。
可理解,以上关于通信装置的说明适用于本申请实施例中的第一通信装置和第二通信装置。
示例性的,参见图1,图1是本申请实施例提供的无线通信系统的一结构示意图。如图1所示,该无线通信系统是一种星型拓扑结构,该种结构中一个中心控制节点(如图1中的PAN协调者)可以与一个或多个其他设备进行数据通信。参见图2,图2是本申请实施例提供的无线通信系统的另一结构示意图。如图2所示,该无线通信系统是一种点对点拓扑结构,该种结构中,中心控制节点(如图2中的PAN协调者)可以与一个或多个其他设备进行数据通信,其他不同设备之间也可以互相进行数据通信。在图1和图2中,全功能设备(full function device)和低功能设备(reduced function device)都可以理解为本申请所示的通信装置。其中,全功能设备和低功能设备是相对而言的,如低功能设备不能是PAN协调者(coordinator)。又如低功能设备与全功能设备相比,该低功能设备可以没有协调能力或通信速率相对全功能设备较低等。可理解,图2所示的PAN协调者仅为示例,图2所示的其他三个全功能设备也可以作为PAN协调者,这里不再一一示出。还可理解,本申请所示的全功能设备和低功能设备仅为通信装置的一种示例,但凡能够实现本申请所提供的基于UWB的PPDU传输方法的装置,均属于本申请的保护范围。
下面对本申请涉及的一些术语或名词进行简要介绍。
一、周期自相关函数和周期互相关函数
对于长度为N的序列a=[a0,a1,a2,...,aN-1],其周期自相关函数Ra(τ)定义如下:
其中,τ∈[0,N-1],且当n+τ≥N时an+τ=an+τ-N是an+τ的共轭,下文类似表达表示相同含义,不再赘述。
序列a的周期自相关函数的旁瓣幅度为|Ra(τ)|,τ≠0。可以理解,|Ra(τ)|表示周期自相关函数Ra(τ)的绝对值,下文不再赘述。通常,在序列设计中周期自相关函数的旁瓣幅度在一定范围内越小越好,即:|Ra(τ)|≤ε,当|τ|≤Z且τ≠0时。其中,Z表示预设的一定范围。|τ|表示τ的绝对值。
举例来说,当ε=0时,序列a被称为具有零相关区的序列;当ε远远小于N时,序列a被称为具有低相关区的序列。
b=[b0,b1,b2,…,bN-1]是长度为N的另一序列,序列a和序列b的周期互相关函数Ra,b(τ)定义如下:
其中,τ∈[0,N-1],且当n+τ≥N时bn+τ=bn+τ-N是bn+τ的共轭。
用RC max表示周期互相关函数幅度|Ra,b(τ)|的最大值。可以理解,|Ra,b(τ)|表示周期互相关函数Ra,b(τ)的绝对值,下文不再赘述。通常在序列设计中序列集合包含的序列间RC max越小越好,或者说序列集合中任意两个序列间的互相关值越小越好。
二、UWB系统中PPDU的结构
IEEE 802.15.4a和IEEE 802.15.4z标准定义的PPDU的基本结构如图3所示,图3是本申请实施例提供的PPDU的帧结构示意图。如图3所示,PPDU可以包括但不限于:同步头(synchronization header,SHR)、物理层头(physical layer header,PHR)以及物理承载字段(PHY payload field)。其中,接收端可以根据SHR进行PPDU检测和同步,PHR中携带一些物理层的指示信息,如调制编码信息、PPDU长度等,可以用来协助接收端正确解调数据。物理承载字段用于携带数据。
示例性的,如图4所示,同步头(SHR)可以包括同步(synchronization,SYNC)字段和帧开始分隔符(start-of-frame delimiter,SFD)字段。图4中Tpre表示每个SHR的时间长度,TSYNC表示SYNC字段的时间长度,TSFD表示SFD字段的时间长度。同步(SYNC)字段可以包含多个符号,该符号可以由前导码序列生成,具体生成方式参见现有标准,比如802.15.4a或802.15.4z标准。其中,前导码序列可以是长度为31或127或91的Ipatov序列,该Ipatov序列是由{-1,0,1}三种元素构成的三元序列,且具有完备序列的周期自相关特性;不同长度的Ipatov序列的具体内容参见802.15.4a和802.15.4z标准,这里不展开说明。
以802.15.4a标准中长度为31的Ipatov序列为例,其周期自相关特性的仿真结果如图5所示,图5是本申请实施例提供的一种Ipatov序列的自相关仿真结果示意图。如图5所示,长度为31的Ipatov序列的周期自相关函数在原点处有值(即原点处的纵坐标不为0),在横坐标的其他地方都是0(即其他非原点处的纵坐标为0)。图5中,长度为31的Ipatov序列周期自相关的主瓣幅度为16(也可以理解为周期自相关的峰值为16),周期自相关的旁瓣幅度为0。可理解,图5所示的横坐标表示时间移位(time shift),纵坐标表示周期自相关(periodic autocorrelation)的幅度。图5所示的横坐标还可以理解为是元素或位等,本申请实施例对于周期自相关函数的仿真中涉及的横坐标的解释不作限定。由于自相关可以理解为一个信号与其自身在不同时间点的互相关,因此横坐标中的正轴取值(0到15)和负轴取值(-15到0)可以由Ipatov序列的长度确定,图5仅是示例说明,不做限制。
本申请将周期自相关的主瓣幅度不为0,且周期自相关的旁瓣幅度为0的序列称为完备序列(Perfect Sequence)。可以理解,本申请中“完美的周期自相关特性”是指:周期自相关的主瓣幅度不为0,且周期自相关的旁瓣幅度为0。
接收端可以利用Ipatov序列的周期自相关特性,使用相同的序列与接收到的信号做相关处理,比如相关运算,利用相关处理的结果(比如相关峰的位置)进行同步、测距、或感知等操作。
802.15.4a和802.15.4z标准中定义了多个Ipatov序列作为前导码序列,并利用Ipatov序列完美的周期自相关特性(指周期自相关的主瓣幅度不为0且周期自相关的旁瓣幅度为0)来生成同步头(SHR),可以增强接收端的同步精度。但是现有技术没有考虑Ipatov序列之间的互相关特性,不同Ipatov序列之间的周期互相关函数幅度的最大值(RC max)较大。那么当地理位置临近的多个设备在同一信道上同时采用不同的Ipatov序列进行通信传输时,可能会产生较大地干扰,从而导致传输失败。
鉴于此,本申请实施例提供一种基于UWB的PPDU传输方法及装置,通过设计一种具有较低互相关特性的完备序列(perfect sequence)对,应用于PPDU,可以在保证序列完美的周期自相关特性的同时减少序列间的干扰,尽可能减小地理位置临近的设备间的干扰;从而可以支持多设备并发传输,提高系统整体的吞吐率。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
本申请中,除特殊说明外,各个实施例或实现方式之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
本申请中的通信装置不仅可以支持802.15系列协议,如802.15.4ab制式或者802.15.4ab的下一代制式等;还可以支持其他标准协议(比如802.11系列协议),如802.11be,Wi-Fi7或EHT(极高吞吐率,extremely high throughput),再如802.11be下一代,Wi-Fi8,UHR(超高吞吐率,ultra high throughput),Wi-Fi AI(Wi-Fi 人工智能)等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式。当然,本申请中的通信装置还可以支持基于UWB的感知sensing协议中,如802.11bf或802.11bf的下一代制式。
参见图6,图6是本申请实施例提供的基于UWB的PPDU传输方法的流程示意图。该方法中所涉及的第一通信装置和第二通信装置可以是前述图1或图2中任两个可以进行数据传输的设备。如图6所示,该基于UWB的PPDU传输方法包括但不限于以下步骤:
S101,第一通信装置生成PPDU,该PPDU包含第一序列,该第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,该第一序列和第二序列的周期互相关函数最多存在三种不同的值,该第一序列和该第二序列属于同一序列对。
S102,第一通信装置发送该PPDU。
相应的,第二通信装置接收该PPDU。
S103,第二通信装置对该PPDU进行处理。
可选的,上述PPDU包含第一序列,该第一序列可以用于实现以下一项或多项功能:时间同步、感知测量、测距、或唤醒设备。示例性的,该第一序列可以携带于该PPDU的以下一个或多个字段中:同步(SYNC)字段、唤醒(wakeup)字段、感知(sensing)字段、或测距(ranging)字段。本申请实施例不限制第一序列的具体功能。
可选的,上述第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,也就是说,该第一序列是完备序列(perfect sequence)。该第一序列可以是序列集中的任一序列,该序列集中还存在第二序列,该第二序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,也就是说第二序列也是完备序列;并且该第二序列与第一序列的周期互相关函数最多存在三种不同的值。该第一序列和该第二序列可以组成一个序列对,可以用于地理位置临近的两个设备在同一信道上同时进行通信传输时使用。其中,第一序列和第二序列可以是包含{-1,0,1}三种元素的三元序列。示例性的,第一序列和第二序列的长度可以相同,比如第一序列和第二序列的长度都是511位或者127位。
由于两个序列的周期互相关函数幅度的总和是固定值,当周期互相关函数的不同值越少时,其周期互相关函数幅度的最大值(RC max)越小;而两个序列之间的干扰强度主要取决于两个序列的周期互相关函数幅度的最大值RC max(即互相关旁瓣幅度的最大值)。所以本申请实施例约束序列对中两个完备序列(如第一序列和第二序列)之间的周期互相关函数最多存在三种不同的值,那么它们的互相关旁瓣幅度的最大值较小,可以在保证完备序列的周期自相关特性的同时减少序列间的干扰,支持多设备并发传输,提高系统整体的吞吐率。
可选的,上述第一序列可以基于m序列的d1倍采样序列生成,第二序列可以基于m序列的d2倍采样序列生成。d1和d2不相同,且d1和d2满足:d1=(2k+1)-1且d2=22k-2k+1,或者d1=(2k+1)且d2=(22k-2k+1)-1。其中,(2k+1)-1的值可以通过d1×d1 -1=1(mod N),即((2k+1)-1×(2k+1))mod N=1来求解。同理,(22k-2k+1)-1的值可以通过d2×d2 -1=1(mod N),即((22k-2k+1)-1×(22k-2k+1))mod N=1来求解。k是正整数。N可以表示m序列的长度,示例性的,第一序列、第二序列、以及m序列的长度均相同。具体的,第一序列和第二序列(即序列对)的生成方式以及具体值参见下文的描述。
可以理解,m序列是最长线性反馈移位寄存器序列的简称,它是由带线性反馈的移位寄存器产生的周期最长的序列。一般来说,一个n级线性反馈移位寄存器可能产生的最长周期等于(2n-1)。m序列是一种典型的伪随机序列,在通信领域有着广泛的应用。在所有的伪随机序列中,m序列是最重要、最基本的一种伪随机序列。它容易产生,规律性强,有很好的自相关性和较好的互相关特性。
可选的,上述第一序列可以是预先配置的。示例性的,第三通信装置可以发送序列配置信息,该序列配置信息中包括第一通信装置的序列索引信息A,该序列索引信息A可以对应该第一序列,也可以说,用于确定第一序列。第一通信装置接收到该序列配置信息后,根据其中的序列索引信息A确定第一序列。在一些场景中,比如第三通信装置想要调度在地理位置上临近的第一通信装置和第四通信装置在同一信道上同时进行通信传输,那么该序列配置信息还可以包括第四通信装置的序列索引信息B,该序列索引信息B可以对应第二序列,或者说用于确定第二序列,第二序列与第一序列属于同一序列对。当然,第三通信装置也可以单独向第四通信装置发送该序列索引信息B,无需与序列索引信息A一起发送。其中,该序列索引信息A可以包括序列索引,或者该序列索引信息A包括序列索引和序列对的索引。同理,该序列索引信息B可以包括序列索引,或者该序列索引信息B包括序列索引和序列对的索引。第三通信装置可以与第二通信装置是同一个通信装置,也可以是不同的通信装置。当第三通信装置与第二通信装置不同时,第二通信装置也需要获知第一通信装置的序列索引信息A,以便于确定第一序列,用于对接收到的PPDU进行 处理(比如相关运算)。例如,第二通信装置也可以接收该序列配置信息,根据其中的序列索引信息A确定第一序列,并可以用确定出的第一序列对接收到的PPDU进行处理,比如相关运算,然后可以根据相关运算的结果进行时间同步、测距、感知测量或者唤醒设备等操作。
本申请实施例通过设计一种具有较低互相关特性的三元完备序列对,应用于PPDU,由于该三元完备序列对的周期互相关函数最多存在三种不同的值,所以它们的互相关旁瓣幅度的最大值RC max较小,可以在保证完备序列的周期自相关特性(即周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零)的同时减少完备序列间的干扰,尽可能减小设备间的干扰;从而可以支持多设备并发传输,提高系统整体的吞吐率。
下面举例说明本申请实施例提供的第一序列和第二序列(即序列对)及其生成方法。
举例来说,一种可能的序列对生成方式如下:
来表示一个长度为N的m序列,N=2n-1。设s(i)表示序列中的第i个元素,i=0,1,2,...,(N-1)。序列的d倍采样序列根据如下公式(2-1)生成:
其中sd(i)表示序列中的第i个元素。mod(d*i,N)表示(d*i)除以N的余数,下文不再赘述。d与N的最大公约数是1,也就是说d与N互质。本申请中符号“*”表示乘或乘以的含义,本文其他地方不再赘述。
当d=2k+1或d=22k-2k+1时,序列和序列的周期互相关函数最多存在三种不同的值。
这里e=gcd(n,k)且n/e是奇数。gcd(n,k)表示n和k的最大公约数,下文不再赘述。n可以根据序列的长度N确定,即N=2n-1。k是正整数。
再可以按照如下公式(2-3)构造三元完备序列
其中ud(t)表示序列中的第t个元素。
对于整数d,假设存在另一整数d-1满足等式d-1×d=1(mod N),也就是说(d-1×d)mod N=1。整数d-1倍采样序列与原序列的周期互相关函数和d倍采样序列与原序列的周期互相关函数满足以下关系:
其中(-d×t)N表示(-d×t)mod N。可以理解,本申请中的“mod”表示求余数运算,本文其他地方不再赘述。
可以理解,当d取不同值时,按照上述方式可以生成不同的三元完备序列。示例性的,当d为d1时,按照上述方式可以生成三元完备序列当d为d2时,按照上述方式可以生成三元完备序列当d1=(2k+1)-1且d2=22k-2k+1,或者d1=2k+1且d2=(22k-2k+1)-1时,序列(如前述第一序列和第二序列)的周期互相关函数幅度的最大值较低,且该周期互相关函数最多存在三种不同的值,如下述公式(2-5)所示。这里,d1×d1 -1=1(mod N),d2×d2 -1=1(mod N)。
这里f=2*e-gcd(n,3k)。gcd(n,3k)表示n和3k的最大公约数,k是正整数,n可以根据序列的长度N确定。
下面通过理论推导证明当d1=(2k+1)-1且d2=22k-2k+1,或者d1=2k+1且d2=(22k-2k+1)-1时,序列和序 列的周期互相关函数满足上述公式(2-5)。
首先,
由公式(2-6)可知,序列和序列的周期互相关函数与序列的d1倍采样序列和d2倍采样序列的周期互相关函数相关。而序列和序列的周期互相关函数满足下述公式(2-7):
其中j=(d1×i)mod N。又由前文可知,当d=2k+1或d=22k-2k+1时,序列和序列的d倍采样序列的周期互相关函数最多存在三种不同的值,也就是说上述公式(2-2)成立。而当序列和序列的周期互相关函数存在三种不同的值,即上述公式(2-2)成立时,序列和序列的周期互相关函数存在三种不同的值。那么结合公式(2-7)可知,当d2×d1 -1=23k+1时,序列和序列的周期互相关函数最多存在三种不同的值。在满足d2×d1 -1=23k+1的条件下,观察可知当d1=(2k+1)-1且d2=22k-2k+1,或者d1=2k+1且d2=(22k-2k+1)-1时,序列和序列的周期互相关函数满足上述公式(2-5)。
例如,当n等于9时,以如下长度N为511(即2n-1)的原始m序列为例。
在d1=2k+1且d2=(22k-2k+1)-1的情况下,按照上述序列对的生成方式,当k=1,2,3,...,8时,可以获得8 对三元完备序列。示例性的,当k等于1时,可以获得序列对当k等于2时,可以获得序列对当k等于3时,可以获得序列对当k等于4时,可以获得序列对当k等于5时,可以获得序列对当k等于6时,可以获得序列对当k等于7时,可以获得序列对当k等于8时,可以获得序列对可以理解,当k等于1时,d1=21+1=3,d2可以通过d2×d2 -1=(22k-2k+1)-1×(22k-2k+1)=d2×3=1(mod N)求解,N=511,故d2=341。还可以理解,当k等于其他值时d1和d2的计算方式与k等于1时d1和d2的计算方式相同,这里不一一详述。
在d1=(2k+1)-1且d2=22k-2k+1的情况下,按照上述序列对的生成方式,当k=2,3,4,...,8时,可以获得7对三元完备序列。示例性的,当k等于2时,可以获得序列对当k等于3时,可以获得序列对当k等于4时,可以获得序列对当k等于5时,可以获得序列对当k等于6时,可以获得序列对当k等于7时,可以获得序列对当k等于8时,可以获得序列对可以理解,当k等于2时,d2=24-22+1=13,d1可以通过d1×d1 -1=(2k+1)-1×(2k+1)=d1×5=1(mod N)求解,N=511,故d1=409。还可以理解,当k等于其他值时d1和d2的计算方式与k等于2时d1和d2的计算方式相同,这里不一一详述。
下述表1示出了上述15对三元完备序列的具体值。示例性的,上述第一序列可以是下述表1中的任一序列,而上述第二序列则是与第一序列属于同一序列对中的另一序列。举例来说,如果第一序列是第二序列可以是当然第一序列也可以是第二序列是本申请实施例不限制第一序列和第二序列分别是序列对中的哪一条序列,第一序列和第二序列属于同一序列对即可。再举例来说,第一序列是第二序列可以是或者第一序列是第二序列可以是或者第一序列是第二序列可以是或者第一序列是第二序列可以是或者第一序列是第二序列可以是等等,这里不一一列举。
可以理解,下述表1中每个序列都可以使用其等效变形序列替换,该等效变形序列可以是对表1中的任意序列进行循环移位或取反(如元素1取反为-1,元素-1取反为1,元素0取反为本身)操作后得到。还可以理解,表1示出的序列对的具体值仅是示例,当n取不同值时,生成的序列对可能不相同,任意满足上述公式(2-5)的两个三元完备序列都在本申请实施例的保护范围内。
表1











再例如,当n等于7时,以如下长度N为127(即2n-1)的原始m序列为例。
在d1=2k+1且d2=(22k-2k+1)-1的情况下,按照上述序列对的生成方式,当k=1,2,3,...,6时,可以获得6对三元完备序列。示例性的,当k等于1时,可以获得序列对当k等于2时,可以获得序列对当k等于3时,可以获得序列对当k等于4时,可以获得序列对当k等于5时,可以获得序列对当k等于6时,可以获得序列对可以理解,当k等于1时,d1=21+1=3,d2可以通过d2×d2 -1=(22k-2k+1)-1×(22k-2k+1)=d2×3=1(mod N)求解,N=127,故d2=85。还可以理解,当k等于其他值时d1和d2的计算方式与k等于1时d1和d2的计算方式相同,这里不一一详述。
在d1=(2k+1)-1且d2=22k-2k+1的情况下,按照上述序列对的生成方式,当k=2,3,4,...,6时,可以获得5 对三元完备序列。示例性的,当k等于2时,可以获得序列对当k等于3时,可以获得序列对当k等于4时,可以获得序列对当k等于5时,可以获得序列对当k等于6时,可以获得序列对可以理解,当k等于2时,d2=24-22+1=13,d1可以通过d1×d1 -1=(2k+1)-1×(2k+1)=d1×5=1(mod N)求解,N=127,故d1=51。还可以理解,当k等于其他值时d1和d2的计算方式与k等于2时d1和d2的计算方式相同,这里不一一详述。
下述表2示出了上述11对三元完备序列的具体值。示例性的,上述第一序列可以是下述表2中的任一序列,而上述第二序列则是与第一序列属于同一序列对中的另一序列。举例来说,如果第一序列是第二序列可以是当然第一序列也可以是第二序列是本申请实施例不限制第一序列和第二序列分别是序列对中的哪一条序列,第一序列和第二序列属于同一序列对即可。再举例来说,第一序列是第二序列可以是或者第一序列是第二序列可以是或者第一序列是第二序列可以是或者第一序列是第二序列可以是或者第一序列是第二序列可以是等等,这里不一一列举。
可以理解,下述表2中每个序列都可以使用其等效变形序列替换,该等效变形序列可以是对表2中的任意序列进行循环移位或取反(如元素1取反为-1,元素-1取反为1,元素0取反为本身)操作后得到。还可以理解,表2示出的序列对的具体值仅是示例,当n取不同值时,生成的序列对可能不相同,任意满足上述公式(2-5)的两个三元完备序列都在本申请实施例的保护范围内。
表2


上述内容详细阐述了本申请提供的方法,为了便于实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图7至图9详细描述本申请实施例的通信装置。
参见图7,图7是本申请实施例提供的通信装置的一结构示意图。如图7所示,该通信装置包括:收发单元10和处理单元20。
在本申请的一些实施例中,该通信装置可以是上文示出的第一通信装置或其中的芯片。即图7所示的通信装置可以用于执行上文方法实施例中由第一通信装置执行的步骤或功能等。
示例性的,处理单元20,用于生成PPDU,该PPDU包含第一序列,该第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,该第一序列和第二序列的周期互相关函数最多存在三种不同的值,该第一序列和该第二序列属于同一序列对;收发单元10,用于发送该PPDU。
在一种可能的实现方式中,收发单元10还用于接收序列配置信息,该序列配置信息中包括序列索引信息,该序列索引信息对应前述第一序列,或者说用于确定第一序列。
其中,关于PPDU、第一序列、第二序列、序列配置信息等的具体说明可以参考上文所示的方法实施 例,这里不再一一详述。
应理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。示例性的,收发单元10可以用于执行图6所示的步骤S102;处理单元20可以用于执行图6所示的步骤S101。
复用图7,在本申请的另一些实施例中,该通信装置可以是上文示出的第二通信装置或其中的芯片。即图7所示的通信装置可以用于执行上文方法实施例中由第二通信装置执行的步骤或功能等。
示例性的,收发单元10,用于接收PPDU,该PPDU包含第一序列,该第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,该第一序列和第二序列的周期互相关函数最多存在三种不同的值,该第一序列和该第二序列属于同一序列对;处理单元20,用于对该PPDU进行处理。
在一种可能的实现方式中,收发单元10还用于发送或接收序列配置信息,该序列配置信息中包括序列索引信息,该序列索引信息对应前述第一序列,或者说,用于确定第一序列。
其中,关于PPDU、第一序列、第二序列、序列配置信息等的具体说明可以参考上文所示的方法实施例,这里不再一一详述。
应理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。示例性的,收发单元10可以用于接收PPDU;处理单元20可以用于执行图6所示的步骤S103。
以上介绍了本申请实施例的通信装置,以下介绍通信装置可能的产品形态。应理解,但凡具备上述图7所述的通信装置的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的通信装置的产品形态仅限于此。
在一种可能的实现方式中,图7所示的通信装置中,处理单元20可以是一个或多个处理器,收发单元10可以是收发器,或者收发单元10还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。在执行上述方法的过程中,上述方法中有关发送信息(如发送PPDU等)的过程,可以理解为由处理器输出上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,上述方法中有关接收信息(如接收PPDU等)的过程,可以理解为处理器接收输入的上述信息的过程。处理器接收输入的信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
参见图8,图8是本申请实施例提供的通信装置的另一结构示意图。该通信装置可以为第一通信装置或第二通信装置,或其中的芯片。图8仅示出了通信装置的主要部件。除处理器1001和收发器1002之外,所述通信装置还可以进一步包括存储器1003、以及输入输出装置(图未示意)。
处理器1001主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1003主要用于存储软件程序和数据。收发器1002可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1001可以读取存储器1003中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1001对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1001,处理器1001将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
其中,处理器1001、收发器1002、以及存储器1003可以通过通信总线连接。
示例性的,当该通信装置用于执行上述方法实施例中第一通信装置执行的步骤或方法或功能时,处理器1001可以用于执行图6中的步骤S101,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图6中的步骤S102,和/或用于本文所描述的技术的其它过程。
示例性的,当该通信装置用于执行上述方法实施例中第二通信装置执行的步骤或方法或功能时,处理器1001可以用于执行图6中的步骤S103,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于接收图6中步骤S103处理的PPDU,和/或用于本文所描述的技术的其它过程。
一种实现方式中,处理器1001可以存有指令,该指令可为计算机程序,计算机程序在处理器1001上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、无线射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
可理解,本申请实施例示出的通信装置还可以具有比图8更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参考上文方法实施例的介绍。
在另一种可能的实现方式中,图7所示的通信装置中,处理单元20可以是一个或多个逻辑电路,收发单元10可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元10还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。参见图9,图9是本申请实施例提供的通信装置的又一结构示意图。如图9所示,图9所示的通信装置包括逻辑电路901和接口902。即上述处理单元20可以用逻辑电路901实现,收发单元10可以用接口902实现。其中,该逻辑电路901可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口902可以为通信接口、输入输出接口、管脚等。示例性的,图9是以上述通信装置为芯片为例示出的,该芯片包括逻辑电路901和接口902。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当该通信装置用于执行上述方法实施例中第一通信装置执行的步骤或方法或功能时,逻辑电路901,用于生成PPDU,该PPDU包含第一序列,该第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,该第一序列和第二序列的周期互相关函数最多存在三种不同的值,该第一序列和该第二序列属于同一序列对;接口902,用于输出该PPDU。
示例性的,当该通信装置用于执行上述方法实施例中第二通信装置执行的步骤或方法或功能时,接口902用于输入PPDU,该PPDU包含第一序列,该第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,该第一序列和第二序列的周期互相关函数最多存在三种不同的值,该第一序列和该第二序列属于同一序列对;逻辑电路901,用于对该PPDU进行处理。
可以理解,关于PPDU、第一序列、第二序列等的具体说明可以参考上文所示的方法实施例,这里不再一一详述。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
对于图9所示的实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。
本申请实施例还提供了一种无线通信系统,该无线通信系统包括第一通信装置和第二通信装置,该第一通信装置和该第二通信装置可以用于执行前述实施例中的方法。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第一通信装置执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第二通信装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码 在计算机上运行时,使得计算机执行本申请提供的方法中由第一通信装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第二通信装置执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第一通信装置执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第二通信装置执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种基于超宽带的物理层协议数据单元PPDU传输方法,其特征在于,包括:
    通信装置生成物理层协议数据单元PPDU,所述PPDU包含第一序列,所述第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,所述第一序列和第二序列的周期互相关函数最多存在三种不同的值,所述第一序列和所述第二序列属于同一序列对;
    所述通信装置发送所述PPDU。
  2. 一种基于超宽带的物理层协议数据单元PPDU传输方法,其特征在于,包括:
    通信装置接收物理层协议数据单元PPDU,所述PPDU包含第一序列,所述第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,所述第一序列和第二序列的周期互相关函数最多存在三种不同的值,所述第一序列和所述第二序列属于同一序列对;
    所述通信装置对所述PPDU进行处理。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一序列和所述第二序列的长度均为N,所述第一序列和所述第二序列的周期互相关函数包括以下一种或多种值:
    0;2(n-f)/2;-2(n-f)/2
    其中,f=2×e-gcd(n,3k),e=gcd(n,k)且n除以e的商是奇数,gcd(n,k)表示n和k的最大公约数,gcd(n,3k)表示n和3k的最大公约数,k是正整数,n满足2n=N+1。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一序列的长度为511位,为表1中的任一序列;
    或者所述第一序列的长度为127位,为表2中的任一序列。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一序列基于m序列的d1倍采样序列生成,所述第二序列基于所述m序列的d2倍采样序列生成;其中d1=(2k+1)-1且d2=22k-2k+1,d1满足d1×d1 -1=d1×(2k+1)=1(mod N);或者d1=(2k+1)且d2=(22k-2k+1)-1,d2满足d2×d2 -1=d2×(22k-2k+1)=1(mod N);k是正整数,N为所述m序列的长度。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一序列携带于所述PPDU的以下一个或多个字段中:同步字段、唤醒字段、感知字段、或测距字段。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第二序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述通信装置接收序列配置信息,所述序列配置信息中包括序列索引信息,所述序列索引信息对应所述第一序列。
  9. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述通信装置发送或接收序列配置信息,所述序列配置信息中包括序列索引信息,所述序列索引信息对应所述第一序列。
  10. 一种通信装置,其特征在于,包括:
    处理单元,用于生成物理层协议数据单元PPDU,所述PPDU包含第一序列,所述第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,所述第一序列和第二序列的周期互相关函数最多存在三种不同的值,所述第一序列和所述第二序列属于同一序列对;
    收发单元,用于发送所述PPDU。
  11. 根据权利要求10所述的装置,其特征在于,所述收发单元,还用于:
    接收序列配置信息,所述序列配置信息中包括序列索引信息,所述序列索引信息对应所述第一序列。
  12. 一种通信装置,其特征在于,包括:
    收发单元,用于接收物理层协议数据单元PPDU,所述PPDU包含第一序列,所述第一序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零,所述第一序列和第二序列的周期互相关函数最多存在三种不同的值,所述第一序列和所述第二序列属于同一序列对;
    处理单元,用于对所述PPDU进行处理。
  13. 根据权利要求12所述的装置,其特征在于,所述收发单元,还用于:
    发送或接收序列配置信息,所述序列配置信息中包括序列索引信息,所述序列索引信息对应所述第一序列。
  14. 根据权利要求10至13中任一项所述的装置,其特征在于,所述第一序列和所述第二序列的长度均为N,所述第一序列和所述第二序列的周期互相关函数包括以下一种或多种值:
    0;2(n-f)/2;-2(n-f)/2
    其中,f=2×e-gcd(n,3k),e=gcd(n,k)且n除以e的商是奇数,gcd(n,k)表示n和k的最大公约数,gcd(n,3k)表示n和3k的最大公约数,k是正整数,n满足2n=N+1。
  15. 根据权利要求10至14中任一项所述的装置,其特征在于,所述第一序列的长度为511位,为表1中的任一序列;
    或者所述第一序列的长度为127位,为表2中的任一序列。
  16. 根据权利要求10至15中任一项所述的装置,其特征在于,所述第一序列基于m序列的d1倍采样序列生成,所述第二序列基于所述m序列的d2倍采样序列生成;其中d1=(2k+1)-1且d2=22k-2k+1,d1满足d1×d1 -1=d1×(2k+1)=1(mod N);或者d1=(2k+1)且d2=(22k-2k+1)-1,d2满足d2×d2 -1=d2×(22k-2k+1)=1(mod N);k是正整数,N为所述m序列的长度。
  17. 根据权利要求10至16中任一项所述的装置,其特征在于,所述第一序列携带于所述PPDU的以下一个或多个字段中:同步字段、唤醒字段、感知字段、或测距字段。
  18. 根据权利要求10至17中任一项所述的装置,其特征在于,所述第二序列的周期自相关主瓣幅度不为零且周期自相关旁瓣幅度为零。
  19. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储指令;
    所述处理器用于执行所述指令,以使权利要求1至9中任一项所述的方法被执行。
  20. 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和接口耦合;
    所述接口用于输入和/或输出代码指令,所述逻辑电路用于执行所述代码指令,以使权利要求1至9中任一项所述的方法被执行。
  21. 一种无线通信系统,其特征在于,包括:如权利要求10或11所述的通信装置,和如权利要求12或13所述的通信装置。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,权利要求1至9中任一项所述的方法被执行。
PCT/CN2024/080811 2023-03-10 2024-03-08 基于uwb的ppdu传输方法及装置 WO2024188187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310260811.4A CN118631289A (zh) 2023-03-10 2023-03-10 基于uwb的ppdu传输方法及装置
CN202310260811.4 2023-03-10

Publications (1)

Publication Number Publication Date
WO2024188187A1 true WO2024188187A1 (zh) 2024-09-19

Family

ID=92602678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/080811 WO2024188187A1 (zh) 2023-03-10 2024-03-08 基于uwb的ppdu传输方法及装置

Country Status (2)

Country Link
CN (1) CN118631289A (zh)
WO (1) WO2024188187A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105284078A (zh) * 2013-06-27 2016-01-27 华为技术有限公司 长训练序列生成方法、发送信号方法和装置
US20190273636A1 (en) * 2018-03-05 2019-09-05 Apple Inc. Secure training sequence symbol structure
CN114916009A (zh) * 2021-02-10 2022-08-16 华为技术有限公司 信号处理方法及装置
WO2023025111A1 (zh) * 2021-08-26 2023-03-02 华为技术有限公司 一种测距方法及装置
WO2023236805A1 (zh) * 2022-06-10 2023-12-14 华为技术有限公司 信息交互方法及相关装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105284078A (zh) * 2013-06-27 2016-01-27 华为技术有限公司 长训练序列生成方法、发送信号方法和装置
US20190273636A1 (en) * 2018-03-05 2019-09-05 Apple Inc. Secure training sequence symbol structure
CN114916009A (zh) * 2021-02-10 2022-08-16 华为技术有限公司 信号处理方法及装置
WO2023025111A1 (zh) * 2021-08-26 2023-03-02 华为技术有限公司 一种测距方法及装置
WO2023236805A1 (zh) * 2022-06-10 2023-12-14 华为技术有限公司 信息交互方法及相关装置

Also Published As

Publication number Publication date
CN118631289A (zh) 2024-09-10

Similar Documents

Publication Publication Date Title
WO2023236805A1 (zh) 信息交互方法及相关装置
WO2023197986A1 (zh) Uwb信号的传输方法及相关装置
WO2024188187A1 (zh) 基于uwb的ppdu传输方法及装置
AU2023203520B2 (en) Multi-link communication setup method and related apparatus
WO2023236823A1 (zh) 基于uwb的ppdu传输方法及相关装置
WO2024037445A1 (zh) 物理层配置的指示方法及相关装置
WO2024217398A1 (zh) 一种通信方法及装置
WO2024149026A1 (zh) 通信方法及通信装置
WO2024217325A1 (zh) 基于频带拼接的ppdu传输方法及装置
WO2020147087A1 (zh) 系统消息处理的方法和装置
WO2024088072A1 (zh) 基于超带宽的速率指示方法及装置
WO2024175075A1 (zh) 感知通信方法及装置
WO2024120474A1 (zh) 基于超宽带的信号传输方法及装置
WO2023174403A1 (zh) 基于超宽带的传输物理层协议数据单元的方法及装置
WO2023179535A1 (zh) 信息交互方法及相关装置
CN118828713A (zh) 一种通信方法及装置
WO2024114671A1 (zh) 一种ppdu传输方法及装置
WO2023160314A1 (zh) 传输物理层协议数据单元的方法和装置
WO2024000593A1 (zh) 信号传输方法、装置及系统
WO2023207602A1 (zh) 通信方法及相关装置
WO2024083179A1 (zh) 基于感知的通信方法及装置
WO2023207223A1 (zh) 多链路的重配置方法及装置
WO2024093683A1 (zh) 信道接入方法及相关装置
WO2024001063A1 (zh) 信号传输方法、装置及系统
WO2024050789A1 (zh) 通信方法及相关装置