WO2024088072A1 - 基于超带宽的速率指示方法及装置 - Google Patents

基于超带宽的速率指示方法及装置 Download PDF

Info

Publication number
WO2024088072A1
WO2024088072A1 PCT/CN2023/124257 CN2023124257W WO2024088072A1 WO 2024088072 A1 WO2024088072 A1 WO 2024088072A1 CN 2023124257 W CN2023124257 W CN 2023124257W WO 2024088072 A1 WO2024088072 A1 WO 2024088072A1
Authority
WO
WIPO (PCT)
Prior art keywords
sfd
field
sequence
rate
ppdu
Prior art date
Application number
PCT/CN2023/124257
Other languages
English (en)
French (fr)
Inventor
钱彬
刘辰辰
林伟
杨讯
周正春
唐小虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024088072A1 publication Critical patent/WO2024088072A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate

Definitions

  • the present application relates to the field of communication technology, and in particular to a rate indication method and device based on ultra-wideband.
  • Ultra-wideband (UWB) technology is a wireless carrier communication technology that can use nanosecond non-sinusoidal narrow pulses to transmit data, so it occupies a wide spectrum range. Due to its narrow pulses and low radiation spectrum density, UWB has the advantages of strong multipath resolution, low power consumption, and strong confidentiality.
  • ultra-wideband can send signals without channel monitoring, so it is suitable for low-latency data transmission. At the same time, due to its large communication bandwidth, it can transmit data at a higher rate on the ultra-wideband channel. Of course, in order to increase the transmission distance or expand the coverage of the device, you can also choose to transmit data at a lower rate.
  • the data transmission rate can be configured by static configuration. As a result, when the channel conditions change relatively quickly, data may not be able to communicate. For example, in a wireless body area network (WBAN) environment, due to the body's obstruction of the antenna, an instantaneous channel attenuation of 20-25dB may occur. Therefore, if the data rate is set too high, when the channel suddenly deteriorates, the problem of being unable to communicate will be encountered. If the data rate is set too low, the data will occupy too much time, causing interference to other devices and applications.
  • WBAN wireless body area network
  • the embodiments of the present application disclose a rate indication method and device based on ultra-wideband, which can flexibly indicate the rate.
  • an embodiment of the present application provides a rate indication method based on ultra-wideband, the method comprising:
  • PPDU Physical layer
  • PHY physical layer
  • PPDU protocol data unit
  • the PPDU includes a start-of-frame delimiter (SFD) field and a first field, wherein the SFD field is determined based on a preamble symbol and a first SFD sequence, wherein the first SFD sequence is used to indicate a rate of the first field, and a position of the first field in the PPDU is after the SFD field; and send the PPDU.
  • SFD start-of-frame delimiter
  • the first SFD sequence corresponding to the SFD field is used to indicate the rate of the first field, which can not only separate the preamble symbol and the field after the SFD field, but also indicate the rate of the first field.
  • Different SFD sequences are used to indicate different rates of the first field, thereby effectively improving the configuration flexibility of the first field rate.
  • generating the PPDU includes: acquiring indication information, the indication information including first indication information, the first indication information being used to indicate a rate at which the first field is indicated by the first SFD sequence; and generating the PPDU based on the first indication information.
  • the first indication information is used to indicate the rate of the first field indicated by the first SFD sequence, that is, the transmitting end can determine that it can indicate the rate of the first field by the first SFD sequence corresponding to the SFD field based on the first indication information.
  • the transmitting end can clearly know that it can use the SFD sequence corresponding to the SFD field in the PPDU to indicate the rate of the first field, thereby improving communication efficiency.
  • the method further includes: acquiring indication information, where the indication information includes second indication information, where the second indication information is used to indicate a rate of configuring the first field in an out-of-band (OOB) manner.
  • OOB out-of-band
  • the sending end through the second indication information, the sending end can be informed that it needs to configure the rate of the first field through OOB, so that the configuration method of the rate of the first field can maintain backward compatibility.
  • the sending the PPDU includes sending the first field based on a rate of the first field indicated by the first SFD sequence.
  • the transmitting end may determine the SFD sequence (such as the first SFD sequence) corresponding to the SFD field and the rate of the first field based on the correspondence between the SFD sequence and the rate of the first field. It is understandable that the embodiment of the present application does not limit the order in which the transmitting end determines the first SFD sequence and determines the rate of the first field. By indicating different rates of the first field through different SFD sequences, the purpose of flexibly indicating the rate of the first field is effectively achieved.
  • an embodiment of the present application provides a rate indication method based on ultra-wideband, the method comprising:
  • the PPDU includes a frame start delimiter SFD field and a first field, wherein the SFD field is determined based on a preamble symbol and a first SFD sequence, wherein the first SFD sequence is used to indicate a rate of the first field, and a position of the first field in the PPDU is located after the SFD field; and process the PPDU.
  • the first SFD sequence corresponding to the SFD field is used to indicate the rate of the first field, so that the receiving end can not only effectively distinguish the preamble symbol from the field after the SFD field based on the SFD sequence, but also effectively know the rate of the first field corresponding to the first SFD sequence.
  • Different SFD sequences are used to indicate different rates of the first field, thereby effectively improving the configuration flexibility of the first field rate.
  • the processing of the PPDU includes: determining the first SFD sequence based on the preamble code symbol and the SFD field; determining the rate of the first field corresponding to the first SFD sequence based on the correspondence between the SFD sequence and the rate of the first field; and demodulating the first field based on the rate of the first field.
  • both communicating parties can store the correspondence between the SFD sequence and the rate of the first field.
  • the receiving end can effectively know the rate of the first field corresponding to the first SFD sequence.
  • the first SFD sequence is an SFD sequence among M SFD sequences, each SFD sequence among the M SFD sequences corresponds to a rate of the first field, and there are at least two different rates among the M rates corresponding to the M SFD sequences, and M is an integer greater than or equal to 2.
  • the SFD field determined by any one of the M SFD sequences and the preamble symbol can ensure that the receiving end can effectively distinguish the preamble symbol from the field after the SFD field, thereby effectively improving the distinction efficiency of the receiving end.
  • each SFD sequence in the M SFD sequences corresponds to a different rate of the first field.
  • each of the M SFD sequences corresponds to a different rate, so that the receiving end can effectively determine the corresponding unique rate based on any SFD sequence among the M SFD sequences, thereby improving the efficiency of determining the rate.
  • the M rates are included in a rate set, and the rate set is a predefined set.
  • the M rates corresponding to the M SFD sequences are included in the rate set, ensuring that the communicating parties reach an agreement on the correspondence between the SFD sequences and the rates based on the rate set.
  • the first SFD sequence is used to indicate a rate of the first field, including: the first SFD sequence is used to indicate a value of a rate of the first field; or,
  • the first SFD sequence is used to indicate an offset between a rate of the first field and a reference rate.
  • the first SFD sequence is used to indicate the value of the rate of the first field, which is simpler.
  • the first SFD sequence is used to indicate the offset between the rate of the first field and the reference rate. In this way, when the correspondence between the SFD sequence and the rate stored by the communicating parties is small, the storage space occupied is small.
  • the length of the first SFD sequence is L
  • the first SFD sequence is any one of the following tables:
  • the length of the first SFD sequence is L
  • the first SFD sequence is any one of the following tables:
  • the first SFD sequence is also used to indicate the type of the PPDU, and the type of the PPDU includes at least one of the following: the PPDU is used for sensing, or the PPDU is used for ranging.
  • the first field includes a physical layer header (PHR) field.
  • PHR physical layer header
  • the rate of the PHR field can be configured through OOB.
  • OOB when configured through OOB, if the PHR rate is set too high, when the channel suddenly deteriorates, communication will be impossible. If the PHR rate is set too low, the data will occupy too much time, causing interference to other devices and applications.
  • indicating the PHR rate i.e., the rate of the PHR field
  • the SFD sequence can effectively improve the flexibility of indicating the PHR rate. At the same time, it will not increase the occupation time of the PHR field, avoiding interference with other devices and applications.
  • the PPDU also includes a frame synchronization (SYNC) field, and the frame synchronization field is used to carry the preamble symbol.
  • SYNC frame synchronization
  • the M SFD sequences are determined based on at least one of the following:
  • the autocorrelation of the SFD sequence is the autocorrelation of a first sequence and the SFD sequence, and the first sequence is determined based on a preamble symbol and the SFD sequence; based on the first sequence and the first SFD of the M SFD sequences
  • the first sequence is determined based on the mutual correlation sidelobe of the sequence, the first sequence is determined based on the preamble code symbol and the second SFD sequence among the M SFD sequences; based on the autocorrelation mainlobe of the SFD sequence; based on the mutual correlation mainlobe of the first sequence and the first SFD sequence among the M SFD sequences, the first sequence is determined based on the preamble code symbol and the second SFD sequence among the M SFD sequences.
  • the M sequences satisfy at least one of the following:
  • the root mean square of the autocorrelation sidelobe amplitude of the SFD sequence is smaller than the root mean square of the autocorrelation sidelobe amplitude of other sequences, and the other sequences are other sequences among the 2L sequences except the M sequences;
  • the root mean square of the cross-correlation sidelobe amplitudes between the first sequence and the first SFD sequence is smaller than the root mean square of the cross-correlation sidelobe amplitudes between the second sequence and the first other sequence among the other sequences, and the second sequence is determined based on the second other sequence among the other sequences and the leading code symbol;
  • the difference between the autocorrelation main lobe amplitude of the SFD sequence and the maximum amplitude among the autocorrelation sidelobe amplitudes of the SFD sequence is greater than or equal to the first threshold.
  • M sequences are determined from 2 L sequences as SFD sequences by autocorrelation or autocorrelation, which can effectively improve the performance of the SFD sequence, so that the receiving end can more efficiently distinguish the preamble code symbol from the field after the SFD field.
  • an embodiment of the present application provides a communication device, which is used to execute the method in the first aspect or any possible implementation of the first aspect.
  • the communication device includes a unit having the function of executing the method in the first aspect or any possible implementation of the first aspect.
  • an embodiment of the present application provides a communication device, which is used to execute the method in the second aspect or any possible implementation of the second aspect.
  • the communication device includes a unit having the function of executing the method in the second aspect or any possible implementation of the second aspect.
  • the above communication device and the communication device may include a transceiver unit and a processing unit.
  • a transceiver unit and a processing unit For a detailed description of the transceiver unit and the processing unit, reference may also be made to the device embodiment shown below.
  • an embodiment of the present application provides a communication device, the communication device comprising a processor, configured to execute the method described in the first aspect or any possible implementation of the first aspect.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the method described in the first aspect or any possible implementation of the first aspect is executed.
  • the memory is located outside the above communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is used to receive a signal or send a signal.
  • an embodiment of the present application provides a communication device, the communication device comprising a processor, configured to execute the method described in the second aspect or any possible implementation of the second aspect.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the method described in the second aspect or any possible implementation of the second aspect is executed.
  • the memory is located outside the above communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is used to receive a signal or send a signal.
  • an embodiment of the present application provides a communication device, which includes a logic circuit and an interface, wherein the logic circuit and the interface are coupled; the logic circuit is used to generate a PPDU; and the interface is used to output the PPDU.
  • an embodiment of the present application provides a communication device, which includes a logic circuit and an interface, wherein the logic circuit and the interface are coupled; the interface is used to input a PPDU; and the logic circuit is used to process the PPDU.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program.
  • the computer-readable storage medium is run on a computer, the method shown in the above-mentioned first aspect or any possible implementation of the first aspect is executed.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program.
  • the computer-readable storage medium is run on a computer, the method shown in the above-mentioned second aspect or any possible implementation of the second aspect is executed.
  • an embodiment of the present application provides a computer program product, which includes a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above-mentioned first aspect or any possible implementation of the first aspect is executed.
  • an embodiment of the present application provides a computer program product, which includes a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above-mentioned second aspect or any possible implementation of the second aspect is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program runs on a computer, the method shown in the above-mentioned first aspect or any possible implementation of the first aspect is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program runs on a computer, the method shown in the above-mentioned second aspect or any possible implementation of the second aspect is executed.
  • an embodiment of the present application provides a wireless communication system, the wireless communication system comprising a transmitting end and a receiving end, the transmitting end The end is used to execute the method shown in the first aspect or any possible implementation of the first aspect, and the receiving end is used to execute the method shown in the second aspect or any possible implementation of the second aspect.
  • FIG1a is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG1b is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of a PPDU provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a preamble symbol provided in an embodiment of the present application.
  • FIG4 is a flow chart of a rate indication method based on UWB provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • At least one (item) means one or more
  • “more than one” means two or more
  • “at least two (items)” means two or three and more than three
  • “and/or” is used to describe the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: only A exists, only B exists, and A and B exist at the same time, where A and B can be singular or plural.
  • “Or” means that two relationships may exist, such as only A exists, only B exists; when A and B are not mutually exclusive, it can also mean that there are three relationships, such as only A exists, only B exists, and A and B exist at the same time.
  • the technical solution provided in the embodiment of the present application can be applied to WPAN based on UWB technology.
  • the method provided in the embodiment of the present application can be applied to the IEEE802.15 series of protocols, such as the 802.15.4a protocol, the 802.15.4z protocol or the 802.15.4ab protocol, or a future generation of UWB WPAN standards, etc., which are not listed here one by one.
  • the technical solution provided in the embodiment of the present application can also be applied to WLAN, such as the IEEE802.11 series of protocols in Wi-Fi, such as the 802.11a/b/g protocol, the 802.11n protocol, the 802.11ac protocol, the 802.11ax protocol, the 802.11be protocol or the next generation of protocols, etc., which are not listed here one by one.
  • Wi-Fi 7 which can also be called extremely high throughput (EHT)
  • Wi-Fi 8 which can also be called ultra high reliability (UHR) or ultra high reliability and throughput (UHRT).
  • the method provided in the embodiments of the present application can also be applied to various communication systems, for example, it can be an Internet of Things (IoT) system, a Vehicle to X (V2X), a narrowband Internet of Things (NB-IoT) system, applied to devices in the Internet of Things, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls, smart water meters and electricity meters in smart homes, and sensors in smart cities. It can also be applicable to LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), long term evolution (LTE) system, as well as fifth-generation (5G) communication system, sixth-generation (6G) communication system, etc.
  • IoT Internet of Things
  • V2X Vehicle to X
  • NB-IoT narrowband Internet of Things
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • LTE long term evolution
  • 5G fifth-generation
  • 6G sixth-generation
  • UWB technology is a new type of wireless communication technology. It uses nanosecond non-sinusoidal narrow pulses to transmit data. By modulating impulse pulses with very steep rise and fall times, the spectrum it occupies is very wide, giving the signal a bandwidth of the order of GHz. The bandwidth used by UWB is usually above 1GHz. Because the UWB system does not need to generate a sinusoidal carrier signal, it can directly transmit an impulse sequence. Therefore, the UWB system has a wide spectrum and a low average power. The UWB wireless communication system has the advantages of strong multipath resolution, low power consumption, and strong confidentiality, which is conducive to coexistence with other systems, thereby improving spectrum utilization and system capacity.
  • the transmission power of the UWB transmitter can usually be less than 1 milliwatt (mW).
  • the interference generated by the UWB signal can be equivalent to white noise. This helps to coexist well between ultra-wideband and existing narrowband communications. Therefore, the UWB system can work simultaneously with the narrowband (narrowband, NB) communication system without interfering with each other.
  • the method provided in the embodiment of the present application can be implemented by a communication device in a wireless communication system.
  • the module that implements the UWB system function can be called a UWB module (such as can be used to send UWB pulses), and the module that implements the narrowband communication system function can be called a narrowband communication module.
  • the UWB module and the narrowband communication module can be different devices or chips, etc., and the embodiment of the present application is not limited to this.
  • the UWB module and the narrowband communication module can also be integrated into one device or chip, and the embodiments of the present application do not limit the implementation of the UWB module and the narrowband communication module in the communication device.
  • the PPDU shown in the embodiments of the present application can be sent by the UWB module.
  • the indication information can be sent by the UWB module, or by the narrowband communication module, etc., and the embodiments of the present application are not limited to this.
  • the configuration of the PHR rate by OOB shown below can be understood as the controller sending the PHR rate through the narrowband communication module before the communicating parties perform UWB communication.
  • the indication information shown below can be understood as the controller sending the indication information through the narrowband communication module before the communicating parties perform UWB communication.
  • the controller can be a transmitter, a receiver or a PAN coordinator.
  • WLAN wireless local area networks
  • BLUETOOTH Bluetooth
  • HIPERLAN high performance wireless LAN
  • WAN wide area networks
  • the method provided in the embodiment of the present application can be implemented by a communication device in a wireless communication system.
  • the communication device can be a device involved in a UWB system.
  • the communication device may include but is not limited to a communication server, a router, a switch, a bridge, a computer, a mobile phone, etc.
  • the communication device may include a central control point, such as a personal area network (PAN) or a PAN coordinator, etc.
  • the communication device may include a user equipment (UE), which may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, Internet of Things (IoT) devices, computing devices or other processing devices connected to a wireless modem, etc., which are not listed here one by one.
  • the communication device may include a chip, which may be set in a communication server, a router, a switch or a user terminal, etc., which are not listed here one by one.
  • FIG. 1a and FIG. 1b are schematic diagrams of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 1a is a star topology provided by an embodiment of the present application
  • FIG. 1b is a point-to-point topology provided by an embodiment of the present application.
  • a central control node can communicate data with one or more other devices.
  • FIG. 1b in a point-to-point topology, data communication can be performed between different devices.
  • both full-function devices and reduced-function devices can be understood as communication devices shown in the present application.
  • the full-function device and the reduced-function device are relative, such as a reduced-function device cannot be a PAN coordinator.
  • the low-function device may have no coordination capability or a lower communication rate than the full-function device.
  • the PAN coordinator shown in FIG. 1b is only an example, and the other three full-function devices shown in FIG. 1b can also be used as PAN coordinators, which are not shown one by one here.
  • FIG2 is a schematic diagram of the structure of a PPDU provided in an embodiment of the present application.
  • the PPDU may include a frame synchronization (SYNC) field, a start-of-frame delimiter (SFD) field, a physical layer header (PHR) field, and a physical payload (PHY payload) (or physical load) field; or, the PPDU may include a SYNC field, an SFD field, a scrambled timestamp sequence (STS) field, a PHR field, and a physical payload field; or, the PPDU includes a SYNC field, an SFD field, and an STS field.
  • SYNC frame synchronization
  • SFD start-of-frame delimiter
  • PHR physical layer header
  • STS physical payload
  • STS scrambled timestamp sequence
  • the PPDU shown in FIG2 is only an example, and the order of the fields in the PPDU is not limited in the embodiment of the present application. However, no matter how the structure of the PPDU changes, the PPDU includes an SFD field or a field having a similar function to the SFD field.
  • the SYNC field can be used for channel measurement, signal synchronization, etc.
  • the SFD field can be used to separate the SYNC field and the subsequent part.
  • the SFD field can be used to separate the SYNC field and the PHR field, and the SFD field can be used to separate the SYNC field and the STS field, etc.
  • the PHR field can be used to indicate some parameters required for demodulating the physical bearer field, such as the length information of the physical bearer field, the data transmission rate, the encoding type, etc., to assist the receiving end of the PPDU to correctly demodulate the data.
  • the physical bearer field can be used to carry
  • the STS field can be used for safety ranging.
  • the correct demodulation of the PHR field must be ensured.
  • the data rates of the physical bearer field include 1.95Mbps, 7.8Mbps, 31.2Mbps, 62.4Mbps, and 128.4Mbps. Therefore, in general, the rate corresponding to the PHR field is lower than the rate corresponding to the physical bearer field.
  • the rate of the PHR field can be statically configured in an out-of-band (OOB) manner.
  • OOB out-of-band
  • the rate of the PHR field can be configured in an OOB manner as follows: before the UWB connection is established, the communicating parties can first perform narrowband communication and determine the rate of the PHR field through the narrowband.
  • the narrowband here may include Bluetooth, or a narrowband specifically serving UWB in the 802.15.4ab protocol, etc., which is not limited in the embodiments of the present application.
  • the rate of the PHR field is fixed; or, before a new rate is indicated again, the rate of the PHR field is fixed.
  • Statically configuring the rate of the PHR field in an OOB manner lacks flexibility.
  • the frequency of the static configuration is limited, so the parameters of the static configuration will not change within a certain period of time. Therefore, when configuring in an OOB manner, the PHR rate is set too high, and when the channel suddenly deteriorates, the problem of being unable to communicate will be encountered. If the PHR rate is set too low, it will cause the data to occupy too long a time, causing interference to other devices and applications.
  • the embodiments of the present application provide a method and device for rate indication based on ultra-wideband, which can effectively improve the flexibility of rate configuration.
  • the method provided in the embodiments of the present application can improve the flexibility of rate configuration of the PHR field.
  • the rate can be understood as the transmission rate of the PPDU when the communicating parties transmit the PPDU, such as the transmission rate of the PHR field in the PPDU, or the transmission rate of the physical bearer field in the PPDU.
  • the rate can also be called the throughput rate, which indicates the number of bits transmitted in a unit time, such as the unit time can include seconds (s), etc.
  • the unit of the rate can be bps.
  • the frame synchronization field can be determined by repeated preamble symbols.
  • Each preamble symbol can be obtained by expanding the preamble sequence in the time domain, and the preamble sequence (such as an ipatov sequence) can include three elements of +1, 0 and -1.
  • Figure 3 is a schematic diagram of a preamble symbol provided in an embodiment of the present application. It can be understood that Figure 3 only shows an exemplary preamble symbol, and the frame synchronization field can be composed of multiple preamble symbols shown in Figure 3.
  • Ci(0), Ci(1), ...Ci(K-1) in Figure 3 are represented as a preamble sequence of length K (it can also be understood that the preamble sequence includes K elements), and K is an integer greater than 1.
  • l represents the time domain expansion factor, indicating that an element in the preamble sequence can be expanded into l elements.
  • Each element in the preamble sequence of length K can be expanded into l elements (corresponding to l chips), so that a preamble symbol can include K*l elements.
  • Ci(0) in the preamble sequence can be extended to Ci(0), 0..., and the ellipsis omits (1-2) 0s.
  • the time domain extension method of the preamble sequence shown here is only an example. With the development of the standard, other time domain extension methods may appear, and the embodiments of the present application do not limit this.
  • T psym in Figure 3 represents the occupied time of a preamble symbol.
  • the SFD field can be determined by the preamble symbol and the SFD sequence.
  • the SFD sequence multiplied by the preamble symbol can be carried in the SFD field in the PPDU.
  • the SFD sequence is [-1 -1 1 -1]
  • the content carried by the SFD field can be [-preamble symbol-preamble symbol preamble symbol-preamble symbol].
  • the relationship between the SFD sequence, preamble symbol and SFD field shown here is only an example and should not be understood as a limitation on the embodiments of the present application.
  • the elements in the SFD sequence shown in the embodiment of the present application may include +1 and -1.
  • the elements in the SFD sequence may include +1, 0, and -1.
  • the SFD sequences shown below are all shown by taking +1 and -1 as examples, but they should not be understood as limiting the embodiments of the present application.
  • M can be an integer greater than or equal to 2
  • L can be a positive integer.
  • M 2, 4, 8, 16, etc.
  • M and L are only examples and should not be understood as limitations on the embodiments of the present application. In short, M ⁇ 2 L.
  • M SFD sequences may be as shown in Table 1.
  • the inverse sequence of the SFD sequence shown in Table 1 also belongs to the SFD sequence.
  • the SFD sequence shown in Table 1 does not include the inverse sequence of each SFD sequence.
  • the inverse sequence of the SFD sequence shown in Table 1 is also included in the case of M SFD sequences, and the M SFD sequences can be shown in Table 2. It can be understood that for different L in Table 1, the values of M are 2, 4 and 8. For Table 2, since Table 2 not only includes the SFD sequence shown in Table 1, but also includes the inverse sequence of the SFD sequence shown in Table 1, for different L, the values of M are 4, 8, and 16. Table 2 is obtained by inverting the SFD sequence shown in Table 1 as an example.
  • an SFD sequence that may be different from Table 2 can also be obtained by the method for determining the SFD sequence shown below or the conditions satisfied by the SFD sequence, which will not be listed one by one in the embodiments of the present application.
  • M corresponding to different L when M takes the values shown in Table 1 as an example, the sequence shown in Table 1 is inverted (that is, 1 is inverted to -1, and -1 is inverted to 1), which can also be understood as the M SFD sequences shown in the embodiment of the present application, as shown in Table 3. That is to say, the values of L and M shown in Table 3 are the same as those in Table 1, but the M SFD sequences are all different.
  • SFD sequences shown in Table 3 are only examples.
  • other SFD sequences can be selected from the SFD sequences shown in Table 1 as part of the SFD sequences in Table 3, and the selected SFD sequences can be inverted as the sequences in the M SFD sequences.
  • the M SFD sequences shown in the embodiment of the present application can be understood as sequences determined from the 2 L sequences based on some conditions, M ⁇ 2 L.
  • the SFD sequence among the M SFD sequences may be determined based on at least one of the following:
  • the first one is to determine the autocorrelation sidelobe based on the SFD sequence.
  • the autocorrelation of the SFD sequence can be understood as the multiplication of the elements of the SFD sequence at different time points based on the preamble symbol and the SFD sequence, and the accumulation of the products.
  • the main lobe can be understood as the peak value in the autocorrelation result.
  • the remaining amplitudes can be called side lobes or side lobes.
  • the main lobe can correspond to the maximum amplitude value of the autocorrelation result.
  • the SFD sequence is located after the preamble symbol, and the basic function of the SFD sequence can be a separator, so the receiving end needs to accurately know the precise position of the SFD through the peak value of the autocorrelation.
  • the sequence determined based on the preamble symbol and the SFD sequence includes: a sequence formed by concatenating an all-1 sequence having a length equal to the number of repetitions of the preamble symbol and the SFD sequence. For example, if the number of repetitions of the preamble symbol is 16 and the SFD sequence is [-1 -1 1 -1], then the sequence formed by concatenating an all-1 sequence having a length of 16 and the SFD may be [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1].
  • the receiving end of the PPDU needs to correlate the preamble symbol carried by the SYNC field with the sequence carried in the SFD field, and determine the precise position of the SFD based on the correlation result. Therefore, determining the SFD sequence based on the autocorrelation or cross-correlation between the sequence determined based on the preamble symbol and the SFD sequence and the SFD sequence can effectively reduce the probability of false detection at the receiving end and effectively ensure that the receiving end can know the precise position of the SFD.
  • the number of repetitions of the preamble symbol may be 16, 32, or 64, etc., which are not listed one by one.
  • the description of the sequence determined based on the preamble symbol and the SFD sequence shown above is applicable to the sequence determined based on the preamble symbol and other sequences.
  • the description of the sequence determined based on the preamble symbol and other sequences can refer to the description of the sequence determined based on the preamble symbol and the SFD sequence.
  • the sequence determined based on the preamble symbol and the SFD sequence is referred to as the first sequence
  • the sequence determined based on the preamble symbol and other sequences is referred to as the second sequence.
  • the autocorrelation of the SFD sequence shown in the embodiment of the present application can be understood as the autocorrelation of the first sequence and the SFD sequence
  • the autocorrelation of the first SFD sequence can be understood as the autocorrelation between the first sequence determined based on the preamble symbol and the first SFD sequence and the first SFD sequence.
  • the mutual correlation of the SFD sequence shown in the embodiment of the present application can be understood as the mutual correlation between the first sequence and the first SFD sequence determined based on the preamble symbol and the second SFD sequence.
  • the first SFD sequence and the second SFD sequence are both SFD sequences in the M SFD sequences.
  • the autocorrelation of other sequences can be understood as the autocorrelation of the second sequence and other sequences, such as the autocorrelation between the second sequence determined based on the preamble symbol and other sequences and the first other sequence.
  • the mutual correlation of other sequences shown in the embodiment of the present application can be understood as the mutual correlation between the second sequence determined based on the preamble symbol and the second other sequence and the first other sequence.
  • the first other sequence and the second other sequence are both other sequences, and the number of other sequences can be 2 L -M.
  • the root mean square of the autocorrelation sidelobe amplitude of the SFD sequence is less than the root mean square of the autocorrelation sidelobe amplitude of other sequences. It can be understood that when comparing the root mean square or the sum of squares, the number of SFD sequences and other sequences is the same.
  • the root mean square x RMS of the autocorrelation sidelobe amplitude of the SFD sequence may satisfy the following formula:
  • x 1 , x 2 ...x C can be understood as the autocorrelation sidelobe amplitude of the SFD sequence.
  • the number of sidelobes of the cross-correlation between a sequence of length N1 and a sequence of length N2 can be N1+N2-1, and similarly, the number of sidelobes of the autocorrelation between a sequence of length N1 and a sequence of length N2 can be N1+N2-1.
  • the RMS of the autocorrelation sidelobe amplitudes of these four sequences is smaller than the RMS of the autocorrelation sidelobe amplitudes of four other sequences (four sequences randomly selected from 2 L -4 sequences).
  • the sum of squares of the autocorrelation sidelobe amplitudes of the SFD sequence is smaller than the sum of squares of the autocorrelation sidelobe amplitudes of other sequences. That is, the sum of squares of the autocorrelation sidelobe amplitudes of each SFD sequence in the M SFD sequences is smaller than the sum of squares of the autocorrelation sidelobe amplitudes of other sequences.
  • the sum of the absolute values of the autocorrelation sidelobe amplitudes of the SFD is less than the sum of the absolute values of the autocorrelation sidelobe amplitudes of other sequences. That is, the sum of the absolute values of the autocorrelation sidelobe amplitudes of each SFD sequence in the M SFD sequences is less than the sum of the absolute values of the autocorrelation sidelobe amplitudes of other sequences.
  • the second item is determined based on the cross-correlation sidelobe between the first sequence and the first SFD sequence.
  • Cross-correlation can be understood as the multiplication of elements of one sequence and another sequence at different time points, and the accumulation of products.
  • one sequence and another sequence shown in the embodiment of the present application can be understood as a first sequence and a first SFD sequence; or, a second sequence and a first other sequence.
  • the RMS of the cross-correlation sidelobe amplitudes between the first sequence and the first SFD sequence is less than the RMS of the cross-correlation sidelobe amplitudes between the second sequence and the first other sequence. It can be understood that when comparing the RMS or the sum of squares, the number of SFD sequences and other sequences is the same.
  • the RMS of the cross-correlation sidelobe amplitudes of these four sequences is smaller than the RMS of the autocorrelation sidelobe amplitudes of any four sequences selected from 2 L -4 sequences.
  • the amplitudes of the mutual correlation side lobes of these four sequences include: the mutual correlation side lobe amplitude between the sequence determined based on the preamble code symbol and A and B, the mutual correlation side lobe amplitude between the sequence determined based on the preamble code symbol and A and C, the mutual correlation side lobe amplitude between the sequence determined based on the preamble code symbol and A and D, the mutual correlation side lobe amplitude between the sequence determined based on the preamble code symbol and B and A, the mutual correlation side lobe amplitude between the sequence determined based on the preamble code symbol and B and C, the mutual correlation side lobe amplitude between the sequence determined based on the preamble code symbol and B and D, the mutual correlation side lobe amplitude between the sequence determined based on the preamble code symbol and C and A, the mutual correlation side lobe amplitude between the sequence determined based on the preamble code symbol and C and B, the mutual correlation side lobe ampli
  • a sum of squares of cross-correlation sidelobe amplitudes of the first sequence and the first SFD sequence is smaller than a sum of squares of cross-correlation sidelobe amplitudes of the second sequence and the first other sequence.
  • a sum of absolute values of cross-correlation sidelobe amplitudes of the first sequence and the first SFD sequence is smaller than a sum of absolute values of cross-correlation sidelobe amplitudes of the second sequence and the first other sequence.
  • the first item shown above can be combined with the second item, that is, the root mean square of the autocorrelation sidelobe amplitude of the SFD sequence and the root mean square of the cross-correlation sidelobe amplitude of the SFD sequence are both minimized.
  • the following example shows the performance of the M SFD sequences shown in the embodiment of the present application.
  • the four SFD sequences can be as follows: [-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1], [-1,-1,1,-1,-1,-1,1,1,1,1,-1,1,-1,-1], [-1,-1,1,-1,-1,-1,1,1,1,1,-1,1,-1,1,1,-1], [-1,-1,-1,-1,-1,1,1,-1], [-1,-1,-1,-1,-1,1,1,1,-1,-1,1,1,-1,1].
  • the average RMS of the RMS shown in Table 10b is 2.9058. Therefore, it can be shown that the performance of the M SFD sequences provided in the embodiment of the present application is better than other sequences.
  • the third item is to determine the main lobe based on the autocorrelation of the SFD sequence.
  • a difference between a maximum amplitude of an autocorrelation main lobe amplitude of the SFD sequence and an autocorrelation side lobe amplitude of the SFD sequence is greater than or equal to a first threshold.
  • the maximum amplitude among the autocorrelation sidelobe amplitudes shown here can be understood as the maximum positive sidelobe amplitude among the autocorrelation sidelobe amplitudes.
  • the fourth item is to determine the main lobe based on the cross-correlation between the first sequence and the first SFD sequence.
  • the maximum difference between the autocorrelation main lobe amplitude and the cross-correlation side lobe amplitude is greater than or equal to the second threshold.
  • the autocorrelation main lobe amplitude refers to the autocorrelation main lobe amplitude of the SFD sequence
  • the cross-correlation refers to the cross-correlation between the first SFD sequence and the first sequence.
  • M SFD sequences shown in the embodiment of the present application may satisfy one or more of the above conditions.
  • the above determination methods or conditions may be combined with each other.
  • the determination process of the M SFD sequences shown below is only an example.
  • the M SFD sequences may be pre-defined by a standard, or may be a preset sequence, etc. That is, the M SFD sequences shown in the embodiment of the present application are not necessarily all implemented through the process shown below. In other words, in actual applications, the communicating parties may interact by saving the M SFD sequences.
  • the determination process shown below may also not exist, but the method shown in Figure 4 may be executed by saving the M SFD sequences.
  • the first step is initialization.
  • the value of M can be taken as Table 1. It can be understood that the determination process shown in the embodiment of the present application is shown by taking the case where M SFD sequences include the SFD sequence in the current protocol as an example. Of course, the determination process shown in the embodiment of the present application is also applicable to the case where M SFD sequences do not include the SFD sequence in the current protocol.
  • the second step is loop iteration.
  • the deleted element shown here can be understood as other sequences shown in the embodiments of the present application, and the remaining sequence after deleting one element is
  • the remaining elements i.e., the remaining elements, can be understood as the SFD sequences in the M SFD sequences shown in the embodiment of the present application.
  • the description of the autocorrelation of the elements and the cross-correlation of the elements shown here can refer to the above description of the autocorrelation of the SFD sequence and the cross-correlation of the SFD sequence, which will not be described in detail here.
  • the second step shown above is to delete redundant elements by minimizing the RMS of the autocorrelation sidelobe amplitude and the RMS of the cross-correlation sidelobe amplitude of the elements in the set S.
  • redundant elements can also be deleted by other means, such as deleting redundant elements by maximizing the minimum distance between different elements in S.
  • the minimum distance can be understood as the difference between the peak amplitude of the autocorrelation main lobe and the amplitude of the autocorrelation maximum sidelobe; or, the minimum distance can be understood as the difference between the peak amplitude of the autocorrelation main lobe and the amplitude of the cross-correlation maximum sidelobe.
  • condition for deleting redundant elements can be: maximizing the difference between the autocorrelation main lobe amplitude of different elements in S and the autocorrelation maximum positive sidelobe amplitude, and/or maximizing the difference between the autocorrelation main lobe amplitude of different elements in S and the cross-correlation maximum positive sidelobe amplitude of different elements.
  • Step 3 Output the result.
  • the M elements in S form a SFD sequence set.
  • a set of SFD sequences can be determined.
  • M ⁇ N a set of SFD sequences that meet the requirements can be effectively determined by using the above method;
  • Fig. 4 is a flow chart of a rate indication method based on ultra-wideband provided in an embodiment of the present application.
  • the method can be applied to a transmitting end and a receiving end, and the transmitting end and the receiving end can be understood as relatively speaking communication devices, such as the transmitting end can be understood as the transmitting end of PPDU, and the receiving end can be understood as the receiving end of PPDU.
  • the transmitting end may include a full-function device, and the receiving end may include a low-function device; another example is that the transmitting end may include a low-function device, and the receiving end includes a low-function device; another example is that the transmitting end includes a low-function device, and the receiving end includes a full-function device; another example is that both the transmitting end and the receiving end are full-function devices.
  • the full-function device and the low-function device involved in Figures 1a and 1b are only examples, and any device that can implement the method provided in the embodiment of the present application belongs to the protection scope of the embodiment of the present application.
  • the transmitting end and the receiving end shown in the above list should not be understood as a limitation on the embodiment of the present application.
  • the embodiment of the present application describes the method provided in the embodiment of the present application on both sides of the transmitting end and the receiving end, but the transmitting end and the receiving end may also have other devices in the process of transmitting information, such as forwarding information between the transmitting end and the receiving end through a forwarding device. Therefore, the mutual transmission of information in the embodiment of the present application can be realized by technical means that can be completed by those skilled in the art, and the embodiment of the present application does not limit other devices other than the transmitting end and the receiving end.
  • the method may include:
  • the transmitting end generates a PPDU.
  • the PPDU includes an SFD field and a first field, the SFD field is determined based on the preamble symbol and the first SFD sequence, the first SFD sequence is used to indicate the rate of the first field, and the position of the first field in the PPDU is located after the SFD field.
  • the SFD field For the description of the SFD field, please refer to the above and will not be described in detail here.
  • the first SFD sequence shown in the embodiment of the present application is only an example, and the first SFD sequence represents the SFD sequence used in the PPDU to determine the SFD field.
  • the first field may include at least one of a PHR field, an STS field, and a physical bearer field.
  • a PHR field may include at least one of a PHR field, an STS field, and a physical bearer field.
  • the method shown in FIG. 4 is described below using the example that the first field includes the PHR field.
  • the description of the STS field and the physical bearer field, etc. reference may be made to the description of the PHR field in a similar manner.
  • each of the M SFD sequences corresponds to a rate of the first field
  • the M rates corresponding to the M SFD sequences have at least two different rates. That is, each of the M SFD sequences may correspond to a rate, and the rates corresponding to each of the M SFD sequences may have at least two different rates; or each of the M SFD sequences may correspond to a rate. There may be at least two identical rates among the rates corresponding to the SFD sequences, but they are not completely identical. For example, each of the M SFD sequences corresponds to a different rate of the first field. For another example, there may be two identical rates among the rates corresponding to each of the M SFD sequences.
  • the rates corresponding to the M SFD sequences may include rates configured through OOB, and the M SFD sequences may include SFD sequences in the current protocol.
  • the M rates corresponding to the M SFDs may be included in a rate set.
  • the rate set may be defined by negotiation between the communicating parties, or defined by a standard, etc.
  • the embodiment of the present application does not limit the setting method of the rate set. It can be determined that both communicating parties store the rate set, thereby effectively taking into account the flexibility and complexity of the PHR field rate configuration.
  • each M corresponding to the same length L can have a rate set, that is, the value of L is the same, the value of M is different, and the rate set is different.
  • different M corresponding to the same length L can correspond to a rate set, that is, the value of L is the same, the value of M is different, and the rate set is the same.
  • different lengths L correspond to a rate set. That is to say, the value of L is different, the value of M is different, and the rate set is the same.
  • the first SFD sequence is used to indicate the rate of the PHR field, including: the first SFD sequence is used to indicate the value of the rate of the PHR field. That is, the first SFD sequence can correspond to the rate of the PHR field. Each of the M SFD sequences can correspond to the rate of the PHR field.
  • the PHR rates corresponding to the same sequence may be the same.
  • the PPDU includes a value for indicating M, the PHR rates corresponding to the same sequence may be different.
  • the rate of the PHR field may include at least one of the following: 0.975Mbps, 1.95Mbps, 3.9Mbps, 7.8Mbps, 15.6Mbps, 31.2Mbps.
  • the PHR rate 1 shown in Table 4 may be any one of 0.975Mbps, 1.95Mbps, 3.9Mbps, 7.8Mbps, 15.6Mbps, and 31.2Mbps.
  • the PHR rate 2 shown in Table 4 may be any one of 0.975Mbps, 1.95Mbps, 3.9Mbps, 7.8Mbps, 15.6Mbps, and 31.2Mbps. It is understood that the rate of the PHR field shown here is only an example. With the development of the standard, more rates of the PHR field may be included in the future, and the embodiments of the present application are not limited to this. It is understood that the correspondence between the SFD sequence shown in Table 4 and the rate of the PHR field is shown by taking the SFD sequence shown in Table 1 as an example.
  • the rate of the PHR field uses the rate configured by OOB.
  • the number of rate sets shown in the embodiment of the present application may be X, where X is an integer greater than or equal to 2, such as X may include PHR rate 1, PHR rate 2, PHR rate 3, PHR rate 4, PHR rate 5, PHR rate 6, and PHR rate 7 according to OOB configuration as shown in Table 4.
  • M an integer greater than or equal to 2
  • the communicating parties may indicate the PHR sequences corresponding to the M SFD sequences in a narrowband manner. In other words, the communicating parties may agree on the PHR rate that can be indicated by the SFD sequence through OOB.
  • Table 5 shows the correspondence between the SFD sequence and the rate of the PHR field, taking Table 3 as an example.
  • Tables 5 and 6 show two ways in which the SFD sequence corresponds to the rate of the PHR field.
  • the SFD sequence shown in Table 5 can correspond to a certain rate, and the rate corresponding to the SFD sequence shown in Table 6 needs to be determined based on the rate configured through OOB.
  • Table 4 please refer to Table 4, which will not be described in detail here.
  • SFD sequence 0 to SFD sequence 4 shown in Table 6 are only examples.
  • Table 6 can be understood as adjusting the PHR rate configured through OOB in an indirect way. That is to say, before UWB communication, the PHR rate can be configured in a narrowband manner. During UWB communication, the SFD sequence can be used to indicate whether the PHR rate is higher than the rate configured through OOB or lower than the rate configured through OOB.
  • the PHR rate configured according to OOB is 7.8 Mbps
  • the high-speed rate is 15.6 Mbps
  • the high-speed rate is 31.2 Mbps
  • the low-speed rate is 3.9 Mbps
  • the low-speed rate is 1.95 Mbps.
  • the first SFD sequence is used to indicate the rate of the PHR field, including: the first SFD sequence is used to indicate the offset between the rate of the PHR field and the reference rate. That is, the SFD sequence may not correspond to a specific value of the PHR rate, but may indicate the PHR rate indirectly.
  • the reference rate may be a rate configured according to OOB, or the reference rate may be the sum of a rate configured according to OOB and a floating rate. The description of the floating rate in the embodiments of the present application is not limited.
  • Table 7 is a schematic diagram of the correspondence between the SFD sequence and the PHR rate provided in an embodiment of the present application.
  • the offset 0 shown in Table 7 represents the offset between the PHR rate corresponding to SFD sequence 0 and the reference rate
  • the offset 1 represents the offset between the PHR rate corresponding to SFD sequence 1 and the reference rate, and so on.
  • the PHR rate corresponding to SFD sequence 0 is the rate configured according to OOB
  • the reference rate is the rate configured according to OOB
  • Offset 1 is equal to the PHR rate corresponding to SFD sequence 1 minus the reference rate, and so on.
  • the PHR rate corresponding to the SFD sequence may include a rate configured according to OOB, such as Tables 4 to 6. In this manner, the receiving end can know whether the PHR rate is configured according to OOB or a newly defined rate through different SFD sequences corresponding to the SFD field.
  • the PHR rate corresponding to the SFD sequence may not include the rate configured according to OOB.
  • the transmitting end obtains the indication information, and when the indication information is the first indication information, the transmitting end generates a PPDU based on the first indication information, and the SFD sequence corresponding to the SFD field in the PPDU is used to indicate the rate of the PHR field.
  • the first indication information is used to indicate that there is a corresponding relationship between the SFD sequence and the rate of the PHR field.
  • the first indication information can be configured in an OOB manner, such as before the UWB connection is established, the communicating parties can obtain the first indication information.
  • Table 8 is a schematic diagram of the correspondence between the SFD sequence and the rate of the PHR field provided in an embodiment of the present application.
  • PHR rate 0 to PHR rate 7 in Table 8 can be understood as different PHR rates.
  • Table 8 is an example of the correspondence between the SFD sequence and the rate of the PHR field, taking the SFD sequence shown in Table 1 above as an example.
  • the corresponding relationship between the SFD sequence in Table 2 or Table 3 and the rate of the PHR field can be given in the form of Table 8, which is not listed one by one here.
  • Table 1 the description of the SFD sequence in Table 8
  • Table 4 or Table 5 which is not described in detail here.
  • the transmitting end obtains the indication information, and when the indication information is the second indication information, the transmitting end generates a PPDU based on the second indication information, and the rate of the PHR field in the PPDU is configured according to the OOB.
  • the relationship between the SFD sequence and the rate of the PHR field can be shown in Table 9.
  • the transmitting end obtains the indication information, which can be understood as: the transmitting end determines the indication information, or the transmitting end receives the indication information. After the transmitting end determines the indication information, the indication information can also be sent to the receiving end. That is to say, the transmitting end of the PPDU shown in the embodiment of the present application is not necessarily the transmitting end of the indication information.
  • the transmitting end of the indication information may be the receiving end of the PPDU, or it may be the transmitting end of the PPDU, or it may be the control end, such as the PAN coordinator.
  • the embodiment of the present application does not limit this.
  • the first indication information and the second indication information shown in the embodiment of the present application can be configured through OOB.
  • the PHR rate can be indicated by the SFD sequence corresponding to the SFD field based on the correspondence between the SFD sequence and the PHR rate.
  • the first SFD sequence can be used to indicate some physical layer configurations of UWB, such as the type of PPDU, in addition to the rate of the PHR field. That is, the first SFD sequence is used to indicate both the rate of the PHR field and the type of PPDU. Alternatively, the first SFD sequence is only used to indicate the rate of the PHR field. Alternatively, the first SFD sequence is only used to indicate the type of PPDU.
  • the type of the PPDU includes the type of the PPDU used for sensing, or the type of the PPDU used for ranging, or the type of the PPDU used for both sensing and ranging. That is to say, each SFD sequence in the M SFD sequences may correspond to a rate of the PHR field, and may also correspond to the type of packet including the SFD sequence, where the packet shown here refers to a packet transmitted during ranging, or a packet transmitted during sensing.
  • the PPDU may also include information for indicating ranging using STS, or ranging using a synchronization field.
  • the PPDU may also include information for indicating sensing using STS, or sensing using a synchronization field, or sensing using a sensing field (for sensing).
  • the above information may be indicated by the first SFD sequence, or may be indicated by other fields in the PPDU, etc., and the embodiments of the present application are not limited thereto.
  • the first SFD sequence can be used to indicate the rate of the PHR field, and also to indicate at least one of the following: PPDU is used for ranging based on STS, PPDU is used for ranging based on the synchronization field, PPDU is used for sensing based on STS, or PPDU is used for sensing based on the synchronization field, or PPDU is used for sensing based on the sensing field.
  • SFD sequence information of the physical layer configuration of the PPDU may be indicated by the SFD sequence, which is not listed one by one in the embodiments of the present application.
  • the transmitting end sends a PPDU, and correspondingly, the receiving end receives the PPDU.
  • the transmitting end may transmit the PHR field based on the rate of the PHR field indicated by the first SFD sequence.
  • the transmitter may send the preamble symbol and the SFD field in a pulse manner, such as 1 may correspond to a positive pulse, -1 may correspond to a negative pulse, and 0 may correspond to no pulse; or, -1 may correspond to a positive pulse, and 1 may correspond to a negative pulse.
  • the PPDU may also be modulated, etc., which will not be described one by one in the embodiments of the present application.
  • the receiving end processes the PPDU.
  • the receiving end processes the PPDU including: the receiving end determines a first SFD sequence based on the preamble code symbol and the SFD field; determines a PHR rate corresponding to the first SFD sequence based on the correspondence between the SFD sequence and the rate of the PHR field; and demodulates the PHR field based on the PHR rate corresponding to the first SFD sequence.
  • the receiving end determines the rate of the PHR field based on the first SFD sequence, it can learn the relationship between the bit and the pulse based on the rate of the PHR field, thereby demodulating the PHR field.
  • the receiving end After demodulating the PHR field, it can learn relevant information of the physical growth field, such as the length information of the physical bearing field, the data transmission rate, and the coding type.
  • the first SFD sequence corresponding to the SFD field is used to indicate the rate of the first field, which can not only separate the preamble symbol and the field after the SFD field, but also indicate the rate of the first field.
  • Different SFD sequences are used to indicate different rates of the first field, thereby effectively improving the configuration flexibility of the first field rate.
  • the PHR is divided into two parts, PHR1 and PHR2.
  • PHR1 is used as the rate header and is sent at a fixed lower rate. It carries less information, such as at least the rate of PHR2 and the physical bearer part.
  • PHR2 carries other information in the PHR and is transmitted at the same rate as the physical bearer part, or at a rate slightly lower than the physical bearer part.
  • the rate of PHR1 is fixed at 1.95Mbps and is encoded using a convolutional code.
  • the reliability of PHR1 will be lower than the reliability of the physical bearer part, thus becoming a bottleneck for system performance.
  • PHR1 occupies too long a time due to the low code rate, and the total occupancy time of PHR1 and PHR2 will exceed the occupancy time of a single PHR.
  • the rate of the PHR field is indicated by the correspondence between the SFD sequence and the rate of the PHR field, which can not only flexibly indicate the rate of the PHR field, but also dynamically adjust the rate of the PHR field based on the rate of the physical bearer part, such as by
  • the rate of the PHR field is determined by the relationship between the rate of the physical bearer part and the rate of the PHR field, and then the SFD sequence is determined based on the corresponding relationship between the SFD sequence and the rate of the PHR field.
  • the rate of the PHR field can be adjusted to be larger (such as the same rate as the physical bearer field, or a lower rate than the physical bearer field) to improve the situation where the PHR field is occupied for too long.
  • the embodiment of the present application divides the functional modules of the communication device according to the above method embodiment.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • the communication device of the embodiment of the present application will be described in detail below in conjunction with Figures 5 to 7.
  • FIG5 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device includes a processing unit 501 and a transceiver unit 502 .
  • the communication device may be the transmitting end or chip shown above, and the chip may be applied to the transmitting end, etc. That is, the communication device may be used to execute the steps or functions executed by the transmitting end in the above method embodiments, etc.
  • the processing unit 501 is used to generate a PPDU; the transceiver unit 502 is used to send the PPDU.
  • the processing unit 501 is specifically configured to obtain indication information, where the indication information includes first indication information, and generate a PPDU based on the first indication information.
  • the processing unit 501 is further configured to output the PPDU based on the rate of the first field.
  • the processing unit 501 may output the PPDU to the transceiver unit 502, and the transceiver unit 502 may send the PPDU.
  • transceiver unit and the processing unit shown in the embodiment of the present application is only an example.
  • specific functions or execution steps of the transceiver unit and the processing unit reference can be made to the above-mentioned method embodiment, which will not be described in detail here.
  • the communication device may be the receiving end shown above or a chip in the receiving end, etc. That is, the communication device may be used to execute the steps or functions executed by the receiving end in the above method embodiment.
  • the transceiver unit 502 is used to receive the PPDU; the processing unit 501 is used to process the PPDU.
  • the processing unit 501 is specifically used to determine a first SFD sequence based on the preamble code symbol and the SFD field; determine the rate of the first field corresponding to the first SFD sequence based on the correspondence between the SFD sequence and the rate of the first field; and demodulate the first field based on the rate of the first field.
  • transceiver unit and the processing unit shown in the embodiment of the present application is only an example.
  • specific functions or execution steps of the transceiver unit and the processing unit reference can be made to the above-mentioned method embodiment, which will not be described in detail here.
  • the descriptions of the first field, the SFD field, the PHR field, the M SFD sequences, the rate of the PHR field, etc. can also be referred to the introduction in the above method embodiments, and will not be described in detail here.
  • the processing unit 501 may be one or more processors
  • the transceiver unit 502 may be a transceiver, or the transceiver unit 502 may also be a sending unit and a receiving unit
  • the sending unit may be a transmitter
  • the receiving unit may be a receiver
  • the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the embodiment of the present application does not limit the connection mode of the processor and the transceiver.
  • the process of sending information in the above method can be understood as the process of outputting the above information by the processor.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver so that it is transmitted by the transceiver. After the above information is output by the processor, it may also need to be processed in other ways before it reaches the transceiver. Similarly, the process of receiving information in the above method can be understood as the process of the processor receiving the input information.
  • the processor receives the input information
  • the transceiver receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to be processed in other ways before it is input into the processor.
  • the communication device 60 includes one or more processors 620 and a transceiver 610 .
  • the processor 620 is used to generate a PPDU; and the transceiver 610 is used to send the PPDU.
  • the processor 620 is specifically configured to obtain indication information, the indication information including first indication information, based on the first indication information Generate PPDU based on the information.
  • the processor 620 is further configured to output the PPDU based on the rate of the first field.
  • the processor 620 may output the PPDU to the transceiver 610, and the transceiver 610 may send the PPDU.
  • the transceiver 610 is used to receive the PPDU; and the processor 620 is used to process the PPDU.
  • the processor 620 is specifically used to determine a first SFD sequence based on the preamble code symbol and the SFD field; determine the rate of the first field corresponding to the first SFD sequence based on the correspondence between the SFD sequence and the rate of the first field; and demodulate the first field based on the rate of the first field.
  • the descriptions of the first field, the SFD field, the PHR field, the M SFD sequences, the rate of the PHR field, etc. can also be referred to the introduction in the above method embodiments, and will not be described in detail here.
  • the transceiver may include a receiver and a transmitter, wherein the receiver is used to perform a receiving function (or operation) and the transmitter is used to perform a transmitting function (or operation).
  • the transceiver is used to communicate with other devices/devices via a transmission medium.
  • the communication device 60 may also include one or more memories 630 for storing program instructions and/or data, etc.
  • the memory 630 is coupled to the processor 620.
  • the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 620 may operate in conjunction with the memory 630.
  • the processor 620 may execute program instructions stored in the memory 630.
  • at least one of the one or more memories may be included in the processor.
  • the memory may be used to store a rate set; or, the correspondence between the SFD sequence and the rate of the PHR field, etc.
  • connection medium between the above-mentioned transceiver 610, processor 620 and memory 630 is not limited in the embodiment of the present application.
  • the embodiment of the present application is connected by bus 640 between memory 630, processor 620 and transceiver 610.
  • the bus is represented by a bold line in FIG6 .
  • the connection mode between other components is only for schematic illustration and is not limited thereto.
  • the bus can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one bold line is used in FIG6 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc., and may implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed by a hardware processor, or may be executed by a combination of hardware and software modules in the processor, etc.
  • the memory may include, but is not limited to, non-volatile memories such as hard disk drive (HDD) or solid-state drive (SSD), random access memory (RAM), erasable programmable read-only memory (EPROM), read-only memory (ROM) or portable read-only memory (CD-ROM), etc.
  • the memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures and can be read and/or written by a computer (such as the communication device shown in the present application), but is not limited to this.
  • the memory in the embodiments of the present application can also be a circuit or any other device that can realize a storage function, which is used to store program instructions and/or data.
  • the processor 620 is mainly used to process the communication protocol and communication data, and to control the entire communication device, execute the software program, and process the data of the software program.
  • the memory 630 is mainly used to store the software program and data.
  • the transceiver 610 may include a control circuit and an antenna.
  • the control circuit is mainly used to convert the baseband signal and the radio frequency signal and to process the radio frequency signal.
  • the antenna is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output devices such as a touch screen, a display screen, a keyboard, etc., are mainly used to receive data input by the user and output data to the user.
  • the processor 620 can read the software program in the memory 630, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 620 performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal outward in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 620.
  • the processor 620 converts the baseband signal into data and processes the data.
  • the RF circuit and antenna may be arranged independently of the processor performing baseband processing.
  • the RF circuit and antenna may be arranged independently of the communication device in a remote manner.
  • the communication device shown in the embodiment of the present application may also have more components than those in FIG6 , and the embodiment of the present application is not limited to this.
  • the method performed by the processor and transceiver shown above is only an example. For the specific steps performed by the processor and transceiver, please refer to The method described above.
  • the processing unit 501 may be one or more logic circuits, and the transceiver unit 502 may be an input-output interface, or a communication interface, or an interface circuit, or an interface, etc.
  • the transceiver unit 502 may also be a sending unit and a receiving unit, the sending unit may be an output interface, the receiving unit may be an input interface, and the sending unit and the receiving unit are integrated into one unit, such as an input-output interface.
  • the communication device shown in FIG7 includes a logic circuit 701 and an interface 702.
  • the above-mentioned processing unit 501 may be implemented with a logic circuit 701
  • the transceiver unit 502 may be implemented with an interface 702.
  • the logic circuit 701 may be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 702 may be a communication interface, an input-output interface, a pin, etc.
  • FIG7 is exemplified by taking the above-mentioned communication device as a chip, and the chip includes a logic circuit 701 and an interface 702.
  • the chip shown in the embodiment of the present application may include an ultra-wideband chip, and the step of sending a PPDU or the step of receiving a PPDU as shown above may be performed by the ultra-wideband chip.
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiment of the present application does not limit the specific connection method of the logic circuit and the interface.
  • the following description is given by taking a narrowband chip as an example. However, it should not be understood as a limitation on the embodiment of the present application.
  • the perception signal may be sent by the ultra-wideband chip.
  • the ultra-wideband chip receives the perception signal, the perception signal may be sent to the narrowband chip.
  • the logic circuit 701 is used to generate a PPDU; and the interface 702 is used to output the PPDU.
  • the logic circuit 701 is used to obtain indication information, and when the indication information includes first indication information, generate a PPDU based on the first indication information.
  • the logic circuit 701 is further configured to output the PPDU based on the rate of the first field.
  • the interface 702 is used to input the PPDU; and the logic circuit 701 is used to process the PPDU.
  • the logic circuit 701 is specifically used to determine a first SFD sequence based on a preamble code symbol and an SFD field; determine the rate of a first field corresponding to the first SFD sequence based on a correspondence between the SFD sequence and the rate of the first field; and demodulate the first field based on the rate of the first field.
  • the chip shown in FIG. 7 may further include a memory, which may be used to store a rate set, a correspondence between an SFD sequence and a PHR rate, and the like.
  • the communication device shown in the embodiment of the present application can implement the method provided in the embodiment of the present application in the form of hardware, or can implement the method provided in the embodiment of the present application in the form of software, etc., and the embodiment of the present application is not limited to this.
  • the descriptions of the first field, the SFD field, the PHR field, the M SFD sequences, the rate of the PHR field, etc. can also be referred to the introduction in the above method embodiments, and will not be described in detail here.
  • An embodiment of the present application also provides a wireless communication system, which includes a transmitting end and a receiving end.
  • the transmitting end and the receiving end can be used to execute the method in any of the aforementioned embodiments (such as FIG. 4 ).
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the sending end in the method provided by the present application.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the receiving end in the method provided by the present application.
  • the present application also provides a computer-readable storage medium, in which computer codes are stored.
  • the computer codes are executed on a computer, the computer executes the operations and/or processing performed by the sending end in the method provided by the present application.
  • the present application also provides a computer-readable storage medium, in which computer codes are stored.
  • the computer codes are executed on a computer, the computer executes the operations and/or processing performed by the receiving end in the method provided in the present application.
  • the present application also provides a computer program product, which includes a computer code or a computer program.
  • a computer program product which includes a computer code or a computer program.
  • the present application also provides a computer program product, which includes a computer code or a computer program.
  • a computer program product which includes a computer code or a computer program.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only exemplary.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some special.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or may be an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided in the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, including a number of instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned readable storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于UWB的速率指示方法及装置,应用于基于UWB的WPAN系统如802.15系列协议中的802.15.4a协议、802.15.4z协议或802.15.4ab协议等;还可以应用于802.11ax下一代Wi-Fi协议如802.11be,Wi-Fi 7或EHT,如802.11be下一代,Wi-Fi 8或UHR等802.11系列协议的WLAN系统,感知系统等。发送端生成PPDU,发送该PPDU。对应的,接收端接收PPDU,并处理该PPDU。PPDU包括SFD字段和第一字段,SFD字段基于前导码符号和第一SFD序列确定,第一SFD序列用于指示第一字段的速率,第一字段在PPDU中的位置位于SFD字段之后。

Description

基于超带宽的速率指示方法及装置
本申请要求在2022年10月25日提交中国国家知识产权局、申请号为202211339517.4的中国专利申请的优先权,发明名称为“基于超带宽的速率指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于超带宽的速率指示方法及装置。
背景技术
超宽带(ultra wideband,UWB)技术是一种无线载波通信技术,如可以利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。由于其脉冲比较窄,且辐射谱密度低,因此UWB具有多径分辨能力强,功耗低,保密性强等优点。
由于超宽带的频谱能量相对较低,对其他无线通信技术的干扰较小。超宽带可以不用进行信道监听就发送信号,因此适用于低延迟的数据传输。同时由于其通信带宽较大,所以可以在超宽带信道上传输较高速率的数据。当然,为了提高传输距离或者扩大设备的覆盖范围,也可以选择以较低的速率传输数据。一般情况下,可以通过静态配置的方式配置数据的传输速率。由此在信道条件发生比较快的变化时,可能会导致数据无法通信。例如,在无线体域网(wireless body area network,WBAN)环境下,由于身体对于天线的阻挡,有可能会发生瞬时的20-25dB的信道衰减。因此,数据速率设置过高,当信道突然恶化时,会遇到无法通信的问题。数据速率设置过低,则会导致数据占用时长过大,对其他设备和应用造成干扰。
如何灵活配置数据速率亟待解决。
发明内容
本申请实施例公开一种基于超带宽的速率指示方法及装置,能够灵活地指示速率。
第一方面,本申请实施例提供一种基于超宽带的速率指示方法,所述方法包括:
生成物理层(physical layer,PHY)协议数据单元(PHY protocol data unit,PPDU),所述PPDU包括帧开始分隔符(start-of-frame delimiter,SFD)字段和第一字段,所述SFD字段基于前导码符号和第一SFD序列确定,所述第一SFD序列用于指示所述第一字段的速率,所述第一字段在所述PPDU中的位置位于所述SFD字段之后;发送所述PPDU。
本申请实施例中,利用SFD字段所对应的第一SFD序列来指示第一字段的速率,既可以分隔前导码符号与SFD字段之后的字段,而且还可以指示第一字段的速率。通过不同的SFD序列指示第一字段的不同速率,由此可以有效提高第一字段速率的配置灵活性。
在一种可能的实现方式中,所述生成PPDU包括:获取指示信息,所述指示信息包括第一指示信息,所述第一指示信息用于指示通过所述第一SFD序列指示所述第一字段的速率;基于所述第一指示信息生成所述PPDU。
本申请实施例中,第一指示信息用于指示通过第一SFD序列指示第一字段的速率,也就是说,发送端可以基于该第一指示信息来确定其可以通过SFD字段对应的第一SFD序列来指示第一字段的速率。从而,通过第一指示信息,发送端可以明确获知其可以利用PPDU中的SFD字段对应的SFD序列指示第一字段的速率,提高通信效率。
在一种可能的实现方式中,所述方法还包括:获取指示信息,所述指示信息包括第二指示信息,所述第二指示信息用于指示通过带外(out-ofband,OOB)的方式配置第一字段的速率。
本申请实施例中,通过第二指示信息,发送端可以获知其需要通过OOB的方式配置第一字段的速率,由此第一字段的速率的配置方式可以保持后向兼容。
所述发送所述PPDU包括:基于所述第一SFD序列指示的所述第一字段的速率发送所述第一字段。
本申请实施例中,发送端可以基于SFD序列与第一字段的速率之间的对应关系,确定SFD字段所对应的SFD序列(如第一SFD序列)以及第一字段的速率。可理解,本申请实施例对于发送端确定第一SFD序列与确定第一字段的速率的先后顺序不作限定。通过不同的SFD序列指示第一字段的不同速率,有效实现了灵活指示第一字段的速率的目的。
第二方面,本申请实施例提供一种基于超带宽的速率指示方法,所述方法包括:
接收PPDU,所述PPDU包括帧开始分隔符SFD字段和第一字段,所述SFD字段基于前导码符号和第一SFD序列确定,所述第一SFD序列用于指示所述第一字段的速率,所述第一字段在所述PPDU中的位置位于所述SFD字段之后;处理所述PPDU。
本申请实施例中,利用SFD字段所对应的第一SFD序列来指示第一字段的速率,可使得接收端不仅可以基于该SFD序列有效区分出前导码符号与SFD字段之后的字段,而且还可以有效获知第一SFD序列所对应的第一字段的速率。通过不同的SFD序列指示第一字段的不同速率,由此可以有效提高第一字段速率的配置灵活性。
在一种可能的实现方式中,所述处理所述PPDU包括:基于所述前导码符号与所述SFD字段确定所述第一SFD序列;基于SFD序列与所述第一字段的速率之间的对应关系,确定所述第一SFD序列对应的所述第一字段的速率;基于所述第一字段的速率解调所述第一字段。
本申请实施例中,通信双方均可以存储SFD序列与第一字段的速率之间的对应关系。通过存储该对应关系,接收端可以有效获知第一SFD序列所对应的第一字段的速率。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一SFD序列为M个SFD序列中的一个SFD序列,所述M个SFD序列中的每个SFD序列对应所述第一字段的一个速率,且所述M个SFD序列对应的M个速率中至少有两个不同速率,M为大于或等于2的整数。
本申请实施例中,通过M个SFD序列中的任意一个SFD序列与前导码符号确定的SFD字段,均可以保证接收端能够有效区分出前导码符号与SFD字段之后的字段,有效提高了接收端的区分效率。
结合第一方面或第二方面,在一种可能的实现方式中,所述M个SFD序列中的每个SFD序列对应所述第一字段的不同速率。
本申请实施例中,M个SFD序列中的每个SFD序列均对应不同的速率,由此可使得接收端基于该M个SFD序列中的任一SFD序列有效确定出对应的唯一速率,提高了确定速率的效率。
结合第一方面或第二方面,在一种可能的实现方式中,所述M个速率包含于速率集合中,所述速率集合为预先定义的集合。
本申请实施例中,M个SFD序列对应的M个速率包含于速率集合中,保证通信双方基于该速率集合对SFD序列与速率之间的对应关系达成一致。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一SFD序列用于指示所述第一字段的速率包括:所述第一SFD序列用于指示所述第一字段的速率的取值;或者,
所述第一SFD序列用于指示所述第一字段的速率与基准速率的偏移量。
本申请实施例中,第一SFD序列用于指示第一字段的速率的取值,这种方式更简单。第一SFD序列用于指示第一字段的速率与基准速率的偏移量,这种方式通信双方存储的SFD序列与速率之间的对应关系时,占用的存储空间小。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一SFD序列的长度为L,所述第一SFD序列为如下表格中的任一项:


结合第一方面或第二方面,在一种可能的实现方式中,所述第一SFD序列的长度为L,所述第一SFD序列为如下表格中的任一项:

结合第一方面或第二方面,在一种可能的实现方式中,所述第一SFD序列还用于指示所述PPDU的类型,所述PPDU的类型包括如下至少一项:所述PPDU用于感知,或者,所述PPDU用于测距。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一字段包括物理层报头(physical layer header,PHR)字段。
一般来说,PHR字段的速率可以通过OOB的方式配置。然而,通过OOB的方式配置时,PHR速率设置过高,当信道突然恶化时,会遇到无法通信的问题。PHR速率设置过低,则会导致数据占用时长过大,对其他设备和应用造成干扰。
本申请实施例中,通过SFD序列来指示PHR速率(即PHR字段的速率)可以有效提高指示PHR速率的灵活性。同时,不会增加PHR字段的占用时长,避免对其他设备和应用造成干扰。
结合第一方面或第二方面,在一种可能的实现方式中,所述PPDU还包括帧同步(synchronization,SYNC)字段,所述帧同步字段用于承载所述前导码符号。
结合第一方面或第二方面,在一种可能的实现方式中,所述M个SFD序列基于如下至少一项确定:
基于所述SFD序列的自相关旁瓣确定,所述SFD序列的自相关为第一序列与所述SFD序列的自相关,所述第一序列基于前导码符号与所述SFD序列确定;基于第一序列与所述M个SFD序列中的第一SFD 序列的互相关旁瓣确定,所述第一序列基于前导码符号与所述M个SFD序列中的第二SFD序列确定;基于所述SFD序列的自相关主瓣确定;基于所述第一序列与所述M个SFD序列中的第一SFD序列的互相关主瓣确定,所述第一序列基于前导码符号与所述M个SFD序列中的第二SFD序列确定。
结合第一方面或第二方面,在一种可能的实现方式中,所述M个序列满足如下至少一项:
所述SFD序列的自相关旁瓣幅度的均方根小于其他序列的自相关旁瓣幅度的均方根,所述其他序列为2L个序列中除所述M个序列之外的其他序列;所述第一序列与所述第一SFD序列的互相关旁瓣幅度的均方根小于第二序列与所述其他序列中的第一其他序列的互相关旁瓣幅度的均方根,所述第二序列基于所述其他序列中的第二其他序列与前导码符号确定;所述SFD序列的自相关主瓣幅度与所述SFD序列的自相关旁瓣幅度中的最大幅度的差值大于或等于第一阈值。
本申请实施例中,通过自相关或自相关的方式从2L个序列中确定出M个序列作为SFD序列,可以有效提高SFD序列的性能,使得接收端能够更高效地区分前导码符号与SFD字段之后字段。
第三方面,本申请实施例提供一种通信装置,用于执行第一方面或第一方面的任意可能的实现方式中的方法。该通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,本申请实施例提供一种通信装置,用于执行第二方面或第二方面的任意可能的实现方式中的方法。该通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
在第三方面或第四方面中,上述通信装置和通信装置可以包括收发单元和处理单元。对于收发单元和处理单元的具体描述还可以参考下文示出的装置实施例。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第七方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述逻辑电路,用于生成PPDU;所述接口,用于输出该PPDU。
第八方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述接口,用于输入PPDU;所述逻辑电路,用于处理该PPDU。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十二方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十三方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十四方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十五方面,本申请实施例提供一种无线通信系统,该无线通信系统包括发送端和接收端,所述发送 端用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,所述接收端用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
上述第三方面至第十五方面达到的技术效果可以参考第一方面或第二方面的技术效果或下文所示的方法实施例中的有益效果,此处不再重复赘述。
附图说明
图1a是本申请实施例提供的一种通信系统的架构示意图;
图1b是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种PPDU的结构示意图;
图3是本申请实施例提供的一种前导码符号的示意图;
图4是本申请实施例提供的一种基于UWB的速率指示方法的流程示意图;
图5是本申请实施例提供的一种通信装置的结构示意图;
图6是本申请实施例提供的一种通信装置的结构示意图;
图7是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。“或”表示可以存在两种关系,如只存在A、只存在B;在A和B互不排斥时,也可以表示存在三种关系,如只存在A、只存在B、同时存在A和B。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请实施例提供的技术方案可以适用于基于UWB技术的WPAN。如本申请实施例提供的方法可以适用于IEEE802.15系列协议,例如802.15.4a协议、802.15.4z协议或802.15.4ab协议,或者未来某代UWB WPAN标准等,这里不再一一列举。或者,本申请实施例提供的技术方案可以还可以应用于WLAN,如Wi-Fi中的IEEE802.11系列协议,例如802.11a/b/g协议、802.11n协议、802.11ac协议、802.11ax协议、802.11be协议或下一代的协议等,这里不再一一列举。示例性的,本申请实施例提供的技术方案可以支持Wi-Fi7,又可称为极高吞吐量(extremely high-throughput,EHT),又如支持Wi-Fi8,又可称为超高可靠性(ultra highreliability,UHR)或超高可靠性和吞吐量(ultra highreliability and throughput,UHRT)等。或者,本申请实施例提供的方法还可以应用于各类通信系统,例如,可以是物联网(internet of things,IoT)系统、车联网(Vehicle to X,V2X)、窄带物联网(narrow band internet of things,NB-IoT)系统,应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。还可以适用于LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统、第六代(6th-generation,6G)通信系统等。
UWB技术是一种新型的无线通信技术。它利用纳秒级的非正弦波窄脉冲传输数据,通过对具有很陡上升和下降时间的冲激脉冲进行调制,因此其所占用的频谱范围很宽,使信号具有吉赫(GHz)量级的带宽。UWB使用的带宽通常在1GHz以上。因为UWB系统不需要产生正弦载波信号,可以直接发射冲激序 列,所以UWB系统具有很宽的频谱和很低的平均功率,UWB无线通信系统具有多径分辨能力强、功耗低、保密性强等优点,有利于与其他系统共存,从而提高频谱利用率和系统容量。另外,在短距离的通信应用中,UWB发射机的发射功率通常可以做到低于1毫瓦(mW),从理论上来说,UWB信号所产生的干扰可以相当于白噪声。这样有助于超宽带与现有窄带通信之间的良好共存。因此,UWB系统可以实现与窄带(narrowband,NB)通信系统同时工作而互不干扰。本申请实施例提供的方法可以由无线通信系统中的通信装置实现,一个通信装置中,实现UWB系统功能的模块可以被称为UWB模块(如可以用于发送UWB脉冲),实现窄带通信系统功能的模块可以被称为窄带通信模块,UWB模块和窄带通信模块可以为不同的装置或芯片等,本申请实施例对此不作限定。当然UWB模块和窄带通信模块也可以集成在一个装置或芯片上,本申请实施例不限制UWB模块和窄带通信模块在通信装置中的实现方式。示例性的,本申请实施例所示的PPDU可以由UWB模块发送。指示信息可以由UWB模块发送,或者,由窄带通信模块发送等,本申请实施例对此不作限定。下文所示的通过OOB的方式配置PHR速率,可以理解为在通信双方进行UWB通信之前,控制者通过窄带通信模块发送PHR速率。示例性的,下文所示的指示信息可以理解为在通信双方进行UWB通信之前,控制者通过窄带通信模块发送该指示信息。该控制者可以为发送端、接收端或PAN协调者。
虽然本申请实施例主要以WPAN为例,尤其是应用于IEEE 802.15系列标准的网络为例进行说明。但是,本领域技术人员容易理解,本申请实施例涉及的各个方面可以扩展到采用各种标准或协议的其它网络。例如,无线局域网(wireless local area networks,WLAN)、蓝牙(BLUETOOTH)、高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE 802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请实施例提供的各种方面可以适用于任何合适的无线网络。
本申请实施例提供的方法可以由无线通信系统中的通信装置实现。该通信装置可以是UWB系统中涉及的装置。例如,该通信装置可以包括但不限于通信服务器、路由器、交换机、网桥、计算机、手机等。又例如,该通信装置可以包括中心控制点,如个人局域网(personal area network,PAN)或PAN协调者等。又例如,该通信装置可以包括用户设备(user equipment,UE),该用户设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、物联网(internet of things,IoT)设备、计算设备或连接到无线调制解调器的其它处理设备等,这里不再一一列举。又例如,该通信装置可以包括芯片,该芯片可以设置于通信服务器、路由器、交换机或用户终端中等,这里不再一一列举。
作为示例,图1a和图1b是本申请实施例提供的一种通信系统的架构示意图。图1a是本申请实施例提供的一种星型拓扑结构,图1b是本申请实施例提供的一种点对点拓扑结构。如图1a所示,在星型拓扑中,一个中心控制节点可以与一个或多个其他设备之间进行数据通信。如图1b所示,在点对点拓扑结构中,不同设备之间可以进行数据通信。图1a和图1b中,全功能设备(full function device)和低功能设备(reduced function device)都可以理解为本申请所示的通信装置。其中,全功能设备与低功能设备之间是相对而言的,如低功能设备不能是PAN协调者(coordinator)。又如低功能设备与全功能设备相比,该低功能设备可以没有协调能力或通信速率相对全功能设备较低等。可理解,图1b所示的PAN协调者仅为示例,图1b所示的其他三个全功能设备也可以作为PAN协调者,这里不再一一示出。
可理解,本申请实施例所示的全功能设备和低功能设备仅为通信装置的一种示例,但凡通信装置能够实现本申请实施例所提供的方法,均属于本申请实施例的保护范围。
示例性的,图2是本申请实施例提供的一种PPDU的结构示意图。如图2所示,PPDU可以包括帧同步(synchronization,SYNC)字段、帧开始分隔符(start-of-frame delimiter,SFD)字段、物理层头(physical layer header,PHR)字段和物理承载(PHY payload)(或称为物理负载)字段;或者,PPDU可以包括SYNC字段、SFD字段、加扰时间戳序列(scrambled timestamp sequence,STS)字段、PHR字段和物理承载字段;或者,PPDU包括SYNC字段、SFD字段和STS字段。可理解,图2所示的PPDU仅为示例,对于该PPDU中字段的顺序,本申请实施例不作限定。然而不管PPDU的结构如何发生变化,PPDU包括SFD字段或具有SFD字段类似功能的字段。
示例性的,SYNC字段可以用于信道测量、信号同步等。SFD字段可以用于分隔SYNC字段和后续部分,如SFD字段可以用于分隔SYNC字段和PHR字段,又如SFD字段可以用于分隔SYNC字段和STS字段等,不再一一列举。PHR字段可以用于指示解调物理承载字段所需要的一些参数,如物理承载字段的长度信息、数据传输速率、编码类型等,协助PPDU的接收端正确解调数据。物理承载字段可以用于携带 数据。STS字段可以用于安全测距。关于SYNC字段和SFD字段的具体说明可以参考下文所示的术语说明。
从上可以看出为了保证准确解调出物理承载字段中承载的数据,必须保证PHR字段的正确解调。一般情况下,数据率越低,对应的数据越可靠,接收端越容易解调正确。示例性的,物理承载字段的数据速率包括1.95Mbps,7.8Mbps,31.2Mbps,62.4Mbps,128.4Mbps。因此,一般来说,PHR字段对应的速率要小于物理承载字段对应的速率。
目前的方法中,可以通过带外(out of band,OOB)的方式静态配置PHR字段的速率。如通过OOB的方式配置PHR字段的速率可以如下所示:在UWB连接建立之前,通信双方可以先进行窄带通信,通过窄带确定PHR字段的速率。这里的窄带可以包括蓝牙,或802.15.4ab协议中专门服务于UWB的窄带等,本申请实施例对此不作限定。一般来说,在UWB连接断开之前,PHR字段的速率是固定的;或者,在没有再次指示新的速率之前,该PHR字段的速率是固定的。通过OOB的方式静态配置PHR字段的速率,缺乏灵活性。如静态配置的频率受限,因此静态配置的参数在一定时间内不会发生变化。由此通过OOB的方式配置时,PHR速率设置过高,当信道突然恶化时,会遇到无法通信的问题。PHR速率设置过低,则会导致数据占用时长过大,对其他设备和应用造成干扰。
鉴于此,本申请实施例提供一种基于超带宽的速率指示方法及装置,可以有效提高速率配置的灵活性。示例性的,本申请实施例提供的方法可以提高PHR字段的速率配置的灵活性。
在介绍图4所示的方法流程之前,以下介绍本申请实施例涉及的术语。
一、速率
速率可以理解为通信双方传输PPDU时,该PPDU的传输速率,如PPDU中的PHR字段的传输速率,或者,PPDU中的物理承载字段的传输速率等。速率还可以称为吞吐率,表示在一个单位时间内传输的比特数,如该单位时间可以包括秒(s)等。示例性的,速率的单位可以为bps。
二、帧同步字段
帧同步字段可以由重复的前导码符号确定。每个前导码符号可以由前导码序列在时域上扩展得到,前导码序列(如ipatov序列)可以包括+1、0和-1三种元素。图3是本申请实施例提供的一种前导码符号的示意图。可理解,图3仅示例性地示出了一个前导码符号,帧同步字段可以由多个图3所示的前导码符号构成。图3中的Ci(0)、Ci(1)、…Ci(K-1)表示为长度为K的前导码序列(也可以理解为前导码序列包括K个元素),K为大于1的整数。示例性的,K=31,或者,K=91,或者,K=127等,不再一一列举。l表示时域扩展因子,表示前导码序列中一个元素可以扩展成l个元素。长度为K的前导码序列中的每个元素均可以扩展为l个元素(对应l个码片),由此一个前导码符号可以包括K*l个元素。举例来说,如前导码序列中的Ci(0)可以扩展为Ci(0)、0……,省略号省略的是(l-2)个0。可理解,这里所示的前导码序列的时域扩展方式仅为一种示例,随着标准的发展,可能还会出现其他方式的时域扩展方式,本申请实施例对此不作限定。
通过时域扩展,可以有效扩展前导码序列的原始时间,展宽前导码符号占用的时间。图3中的Tpsym表示一个前导码符号的占用时间。
三、SFD字段
SFD字段可以由前导码符号和SFD序列确定。示例性的,SFD序列与前导码符号相乘可以承载于PPDU中的SFD字段。示例性的,SFD序列为[-1 -1 1 -1],则SFD字段承载的内容可以为[-前导码符号-前导码符号前导码符号-前导码符号]。这里所示的SFD序列、前导码符号和SFD字段之间的关系仅为示例,不应将其理解为对本申请实施例的限定。
可理解,本申请实施例所示的SFD序列中的元素可以包括+1和-1。或者,随着标准技术的发展,SFD序列中的元素可以包括+1、0、-1。下文所示的SFD序列均是以包括+1和-1为例示出的,但是不应将其理解为对本申请实施例的限定。
四、M个SFD序列
本申请实施例所示的M个SFD序列指的是针对同一长度L来说,可以对应M个SFD序列。M可以为大于或等于2的整数,L可以为正整数。示例性的,L可以为大于或等4的整数,如L=4、8、16或32。示例性的,M=2、4、8、16等,这里对M和L的取值仅为示例,不应将其理解为对本申请实施例的限定。总之,M<2L
示例性的,M个SFD序列可以如表1所示。
表1

可理解,表1所示的SFD序列的取反序列也属于SFD序列。也就是说,表1所示的SFD序列中不包括各个SFD序列的取反序列。
示例性的,表1所示的SFD序列的取反序列也包含于M个SFD序列的情况下,M个SFD序列可以如表2所示。可理解,表1中对于不同的L来说,M的取值均为2、4和8。对于表2来说,由于表2不仅包括表1所示的SFD序列,也包括表1所示的SFD序列的取反序列,因此对于不同的L来说,M的取值均为4、8、16。表2是以表1所示的SFD序列为例进行取反得到的,然而在L的取值和M的取值固定的情况下,也可以通过下文所示的确定SFD序列的方法或者SFD序列所满足的条件得到可能与表2不同的SFD序列,本申请实施例不再一一列举。
表2



示例性的,在不同L对应的M固定的情况下,如M均以表1所示的取值为例,则对表1所示的序列取反(即1取反为-1,-1取反为1),也可以理解为本申请实施例所示的M个SFD序列,如表3所示。也就是说,表3所示的L的取值和M的取值与表1相同,但是M个SFD序列所有不同。
表3


可理解,表3所示的SFD序列仅为示例,如还可以从表1所示的SFD序列中选取其他SFD序列作为表3中的部分SFD序列,以及对选取的SFD序列取反作为M个SFD序列中的序列。
为便于描述,下文中涉及的M的取值均以表1和表3为例。
针对同一长度L来说,包括+1和-1这两个元素的序列总共可以有2L个序列,这2L个序列中除M个SFD序列之外的序列可以称为其他序列。也就是说,本申请实施例所示的M个SFD序列可以理解为从2L个序列中基于一些条件确定的序列,M<2L
示例性的,M个SFD序列中的SFD序列可以基于如下至少一项确定:
第一项、基于SFD序列的自相关旁瓣确定。
SFD序列的自相关可以理解为基于前导码符号与SFD序列确定的序列该SFD序列在不同时间点的元素相乘,以及乘积累加。主瓣可以理解为自相关结果中的峰值,除了主瓣之外,其余的幅度都可以称为旁瓣或副瓣。例如,主瓣可以对应自相关结果的幅度最高值。
一般来说,SFD序列位于前导码符号之后,SFD序列的基本作用可以是一个分隔符,因此接收端需要通过自相关的峰值准确地获知SFD的精准位置。
示例性的,基于前导码符号与SFD序列确定的序列包括:长度为前导码符号的重复次数的全1序列与SFD序列拼接而成的序列。例如,前导码符号的重复次数为16,SFD序列为[-1 -1 1 -1],则长度为16的全1序列与SFD拼接而成的序列可以为[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 1 -1]。一般来说,PPDU的接收端在接收到SYNC字段和SFD字段之后,需要基于该SYNC字段承载的前导码符号与SFD字段中承载的序列进行相关,基于相关结果确定SFD的精准位置。因此,基于前导码符号与SFD序列确定的序列与SFD序列之间的自相关或互相关确定SFD序列,可以有效降低接收端误检的概率,有效保证接收端能够获知SFD的精准位置。示例性的,前导码符号的重复次数可以为16、32或64等,不再一一列举。
可理解,以上所示的基于前导码符号与SFD序列确定的序列的说明适用于基于前导码符号与其他序列确定的序列。基于前导码符号与其他序列确定的序列的说明可以参考基于前导码符号与SFD序列确定的序列的描述。
为便于描述,下文将基于前导码符号与SFD序列确定的序列称为第一序列,基于前导码符号与其他序列确定的序列称为第二序列。可理解,本申请实施例所示的SFD序列的自相关可以理解为第一序列与SFD序列的自相关,如第一SFD序列的自相关可以理解为基于前导码符号与第一SFD序列确定的第一序列与该第一SFD序列之间的自相关。本申请实施例所示的SFD序列的互相关可以理解为基于前导码符号与第二SFD序列确定的第一序列与第一SFD序列之间的互相关。第一SFD序列和第二SFD序列均为M个SFD序列中的SFD序列。其他序列的自相关可以理解为第二序列与其他序列的自相关,如基于前导码符号与其他序列确定的第二序列与第一其他序列之间的自相关。本申请实施例所示的其他序列的互相关可以理解为基于前导码符号与第二其他序列确定的第二序列与第一其他序列之间的互相关。第一其他序列和第二其他序列均为其他序列,其他序列的个数可以为2L-M。
作为一个示例,SFD序列的自相关旁瓣幅度的均方根小于其他序列的自相关旁瓣幅度的均方根。可理解,在对比均方根或平方和等时,SFD序列和其他序列的个数相同。
示例性的,SFD序列的自相关旁瓣幅度的均方根xRMS可以满足如下公式:
其中,x1,x2…xC可以理解为SFD序列的自相关旁瓣幅度。一般来说,长度为N1的序列与长度为N2的序列互相关的旁瓣数量可以有N1+N2-1个,同样的,长度为N1的序列与长度为N2的序列自相关的旁瓣数量可以有N1+N2-1个。
举例来说,M=4,有ABCD四条SFD序列,则这四条序列的自相关旁瓣幅度的均方根小于四个其他序列(2L-4个序列中任意选择四个序列)的自相关旁瓣幅度的均方根。
作为另一个示例,SFD序列的自相关旁瓣幅度的平方和小于其他序列的自相关旁瓣幅度的平方和。也就是说,M个SFD序列中每个SFD序列的自相关旁瓣幅度的平方和均小于其他序列的自相关旁瓣幅度的平方和。
作为又一个示例,SFD的自相关旁瓣幅度的绝对值之和小于其他序列的自相关旁瓣幅度的绝对值之和。也就是说,M个SFD序列中每个SFD序列的自相关旁瓣幅度的绝对值之和均小于其他序列的自相关旁瓣幅度的绝对值之和。
第二项、基于第一序列与第一SFD序列之间的互相关旁瓣确定。
互相关可以理解为一个序列与另一个序列在不同时间点的元素相乘,以及乘积累加。示例性的,本申请实施例所示的一个序列与另一个序列可以理解为第一序列与第一SFD序列;或者,第二序列与第一其他序列。
作为一个示例,第一序列与第一SFD序列的互相关旁瓣幅度的均方根小于第二序列与第一其他序列的互相关旁瓣幅度的均方根。可理解,在对比均方根或平方和等时,SFD序列和其他序列的个数相同。
举例来说,M=4,有ABCD四条SFD序列,则这四条序列的互相关旁瓣幅度的均方根小于2L-4个序列中任意选择四个序列的自相关旁瓣幅度的均方根。如这四条序列的互相关旁瓣的幅度包括:基于前导码符号与A确定的序列与B的互相关旁瓣幅度、基于前导码符号与A确定的序列与C的互相关旁瓣幅度、基于前导码符号与A确定的序列与D的互相关旁瓣幅度,基于前导码符号与B确定的序列与A的互相关旁瓣幅度、基于前导码符号与B确定的序列与C的互相关旁瓣幅度、基于前导码符号与B确定的序列与D的互相关旁瓣幅度,基于前导码符号与C确定的序列与A的互相关旁瓣幅度、基于前导码符号与C确定的序列与B的互相关旁瓣幅度、基于前导码符号与C确定的序列与D的互相关旁瓣幅度,基于前导码符号与D确定的序列与A的互相关旁瓣幅度、基于前导码符号与D确定的序列与B的互相关旁瓣幅度、基于前导码符号与D确定的序列与C的互相关旁瓣幅度。
作为另一个示例,第一序列与第一SFD序列的互相关旁瓣幅度的平方和小于第二序列与第一其他序列的互相关旁瓣幅度的平方和。
作为又一个示例,第一序列与第一SFD序列的互相关旁瓣幅度的绝对值之和小于第二序列与第一其他序列的互相关旁瓣幅度的绝对值之和。
以上所示的第一项可以与第二项结合,即SFD序列的自相关旁瓣幅度的均方根与SFD序列的互相关旁瓣幅度的均方根均最小,以下举例来说,本申请实施例所示的M个SFD序列的性能。
以L=16,M=4为例,四个SFD序列可以如下所示:[-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,-1]、[-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1]、[-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,1,1,1,-1]、[-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,-1,1]。
其RMS的计算如下表10a所示:
表10a
Prem+a表示基于前导码符号与序列a确定的序列,以此类推。a=[-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1, -1,1,-1],b=[-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1],c=[-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,1,1,1,-1],d=[-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,-1,1]。表10a所示的RMS的平均RMS为2.6451。
L=16对应的216个序列中任选四个其他序列,如这四个其他序列如下所示:[-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,1]、[-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,1]、[-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,1,1,1,1]、[-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,-1,-1]。
其RMS的计算如下表10b所示:
表10b
表10b所示的RMS的平均RMS为2.9058。从而可以说明,本申请实施例提供的M个SFD序列的性能优于其他序列。
第三项、基于SFD序列的自相关主瓣确定。
示例性的,SFD序列的自相关主瓣幅度与SFD序列的自相关旁瓣幅度中的最大幅度的差值大于或等于第一阈值。
可理解,这里所示的自相关旁瓣幅度中的最大幅度可以理解为自相关旁瓣幅度中的最大正旁瓣幅度。
第四项、基于第一序列与第一SFD序列之间的互相关主瓣确定。
示例性的,自相关主瓣幅度与互相关旁瓣幅度中的最大幅度的差值大于或等于第二阈值。自相关主瓣幅度指的是SFD序列的自相关主瓣幅度,互相关指的是第一SFD序列与第一序列的互相关。
可理解,本申请实施例所示的M个SFD序列可以满足以上所示的一个或多个条件。以上所示的各个确定方法或条件可以相互结合。
以下示例性地说明M个SFD序列的确定过程。
需要说明的是,以下所示的M个SFD序列的确定过程仅为示例。可选的,该M个SFD序列可以是由标准预先定义的,或者是预设的序列等。即本申请实施例所示的M个SFD序列不一定都是通过以下所示的过程实现的。也就是说,在实际应用中,通信双方可以通过保存M个SFD序列进行交互。以下所示的确定过程也可能不存在,而是通过保存M个SFD序列来执行如图4所示的方法。
第一步、初始化。
同一个长度L的情况下,令x1,…,xN表示所有可能的SFD序列,N=2L。令M表示需要的SFD序列的个数,令xl表示目前协议中的SFD序列(如表7所示)。初始化时,S={xl}。xl可以理解为S中的一个元素,该元素是目前协议中的SFD序列。
示例性的,M的取值可以以表1为例。可理解,本申请实施例所示的确定过程是以M个SFD序列包括目前协议中的SFD序列为例示出的。当然,本申请实施例所示的确定过程也适用于M个SFD序列不包括目前协议中的SFD序列。
第二步,循环迭代。
对于i=1,…S且i≠l,令S=S∪{xi},用|S|表示S中的元素个数。如可以分成下面四种情况:
(1)如果|S|≤M且i<N,则重新执行第二步。
(2)如果|S|>M且i<N,则从S中删除一个元素(元素xl不能删除),使得S中其余元素的自相关旁瓣幅度的RMS及S中其余元素的互相关旁瓣幅度的RMS均最小,然后执行第二步。
举例来说,ABCDE是S中的元素,M=4,因此需要从ABCDE中删除一个元素。这样有五种情况,ABCD,ACDE,ABDE,ABCE,BCDE。对于每一种情况,可以分别计算自相关旁瓣的RMS,互相关旁瓣的RMS,从而找到自相关旁瓣的RMS和互相关旁瓣的RMS均最小的一组。比如最小的一组是ABCD,则删除元素E。
可理解,这里所示的删除的一个元素可以理解为本申请实施例所示的其他序列,删除一个元素之后剩 余的元素,即其余元素可以理解为本申请实施例所示的M个SFD序列中的SFD序列。可理解,这里所示的元素的自相关与元素的互相关的说明可以参考上文关于SFD序列的自相关和SFD序列的互相关的描述,这里不再详述。
以上所示的第二步是以通过最小化集合S中元素的自相关旁瓣幅度的RMS及互相关旁瓣幅度的RMS来删除多余元素。如上述第二步还可以通过其他方式删除多余元素,比如通过最大化S中不同元素的最小距离删除多余元素。最小距离可以理解为自相关主瓣的峰值幅度与自相关最大旁瓣的幅度的差值;或者,最小距离可以理解为自相关主瓣的峰值幅度与互相关最大旁瓣的幅度的差值。示例性的,删除多余元素的条件可以为:最大化S中不同元素自相关主瓣幅度与自相关最大正旁瓣幅度的差值,和/或,最大化S中不同元素自相关主瓣幅度与不同元素互相关最大正旁瓣幅度的差值。
举例来说,L=4,M=2时,对于i=1时,S=S∪{x1},|S|=2=M,且1<S,则循环迭代。对于i=2时,S=S∪{x1,x2},|S|=3>M,且2<N,则从S中删除一个元素,继续循环迭代,直至遍历24-1=15个元素之后输出M个SFD序列。
又举例来说,L=4,M=4时,对于i=1时,S=S∪{x1},|S|=2<M,且1<S,则循环迭代。对于i=2时,S=S∪{x1,x2},|S|=3<M,且2<N,循环迭代。对于i=2时,S=S∪{x1,x2,x3},|S|=4=M,且3<S,循环迭代。对于i=4时,S=S∪{x1,x2,x3,x4},|S|=5>M,且3<N,则从S∪{x1,x2,x3,x4}中删除一个元素,删除的一个元素与删除之后剩余元素之间的满足可以参考上文关于互相关和自相关的说明,这里不再详述。
(3)如果|S|>M且i=N,则从S中删除一个元素,使得S中其余元素的自相关旁瓣幅度的RMS及S中其余元素的互相关旁瓣幅度的RMS均最小,然后执行第三步。
对于上述(3)可以理解为当i遍历完所有的可能元素之后,可以确定出M个SFD序列。
(4)其他情况,执行第三步。
第三步,输出结果。将S中的M个元素组成SFD序列集合。
通过上述方法,可以确定出SFD序列集合。当M≤N时,通过上述方法可以有效地确定出满足要求的SFD序列集合;
以上所示的各个术语的说明均适用于下文所示的方法实施例。
图4是本申请实施例提供的一种基于超带宽的速率指示方法的流程示意图。该方法可以应用于发送端和接收端,该发送端和接收端可以理解为相对而言的通信装置,如该发送端可以理解为PPDU的发送端,该接收端可以理解为PPDU的接收端。
示例性的,发送端可以包括全功能设备,接收端可以包括低功能设备;又如发送端可以包括低功能设备,接收端包括低功能设备;又如发送端包括低功能设备,接收端包括全功能设备;又如发送端和接收端都是全功能设备。可理解,基于图1a和图1b中涉及的全功能设备和低功能设备仅为示例,但凡能够实现本申请实施例提供的方法的装置均属于本申请实施例的保护范围,因此不应将上述列举示出的发送端和接收端理解为对本申请实施例的限定。可理解,本申请实施例是以发送端和接收端两侧来描述本申请实施例提供的方法的,但是该发送端和接收端在传输信息的过程中,还可以有其他装置的存在,如通过转发装置来转发发送端与接收端之间的信息等。因此,本申请实施例中信息的互相传递以本领域技术人员可以完成的技术手段实现即可,本申请实施例对于发送端和接收端之外的其他装置不作限定。
如图4所示,该方法可以包括:
401、发送端生成PPDU。
该PPDU包括SFD字段和第一字段,该SFD字段基于前导码符号和第一SFD序列确定,该第一SFD序列用于指示第一字段的速率,该第一字段在PPDU中的位置位于SFD字段之后。关于SFD字段的说明可以参考上文,这里不再详述。本申请实施例所示的第一SFD序列仅为示例,该第一SFD序列表示PPDU中用于确定SFD字段所使用的SFD序列。
示例性的,第一字段可以包括PHR字段、STS字段、物理承载字段中的至少一项。为便于描述,下文以第一字段包括PHR字段为例说明图4所示的方法。至于STS字段和物理承载字段等的说明可以类似地参考PHR字段的描述。
示例性的,M个SFD序列中的每个SFD序列对应第一字段的一个速率,且M个SFD序列对应的M个速率中至少有两个不同速率。也就是说,M个SFD序列中的每个SFD序列都可以对应一个速率,该M个SFD序列中每个SFD序列对应的速率中至少可以有两个不同的速率;或者,该M个SFD序列中每个 SFD序列对应的速率中至少可以有两个相同的速率,但是不完全相同。举例来说,M个SFD序列中的每个SFD序列对应第一字段的不同速率。又举例来说,M个SFD序列中每个SFD序列对应的速率中可以有两个速率相同。可选的,该M个SFD序列对应的速率中可以包括通过OOB配置的速率,该M个SFD序列可以包括目前协议中的SFD序列。
M个SFD对应的M个速率可以包含于速率集合中。该速率集合可以由通信双方协商定义,或者,由标准定义等,本申请实施例对于该速率集合的设置方式不作限定。可以确定的是,通信双方都存储有该速率集合,从而有效兼顾PHR字段速率配置的灵活性与复杂度。
作为一个示例,同一个长度L对应的每个M都可以有一个速率集合,即L的取值相同,M的取值不同,速率集合不同。作为另一个示例,同一个长度L对应的不同M可以对应一个速率集合,即,L的取值相同,M的取值不同,速率集合相同。作为又一个示例,对于不同长度L都对应一个速率集合。也就是说,L的取值不同,M的取值不同,速率集合相同。
作为一个示例,第一SFD序列用于指示PHR字段的速率包括:该第一SFD序列用于指示PHR字段的速率的取值。也就是说,第一SFD序列可以对应PHR字段的速率。M个SFD序列中的每个SFD序列均可以对应PHR字段的速率。
表4是本申请实施例以表1为例示出的SFD序列与PHR字段的速率之间的对应关系。可理解,表4所示的PHR速率1~PHR速率7对于同一个L下的不同M,可以相同,也可以不同。表4所示的PHR速率1~PHR速率7对于不同来说,可以相同,也可以不同。对于不同速率的取值,本申请实施例不作限定。一般来说,对于同一个L来说,L的取值较大时,如L=8或L=16或L=32,M的取值不同时,由于2L的数值较大,可以选择的范围大,因此SFD序列不会出现相同的情况。但是,L的取值较小时,如L=4,24=16,由于M个SFD序列本身可以选择的范围较小,因此SFD序列可能会出现相同的情况,如L=4,M=2时对应的SFD序列包括[-1,-1,1,1]、L=4,M=4时对应的SFD序列包括[-1,-1,1,1]、L=4,M=8时对应的SFD序列包括[-1,-1,1,1]。该情况下,相同序列对应的PHR速率可以是相同的。或者,在PPDU中包括用于指示M的取值的情况下,相同序列对应的PHR速率可以是不同的。
示例性的,PHR字段的速率可以包括如下至少一项:0.975Mbps,1.95Mbps,3.9Mbps,7.8Mbps,15.6Mbps,31.2Mbps。例如,表4所示的PHR速率1可以为0.975Mbps,1.95Mbps,3.9Mbps,7.8Mbps,15.6Mbps,31.2Mbps中的任一项。又如,表4所示的PHR速率2可以为0.975Mbps,1.95Mbps,3.9Mbps,7.8Mbps,15.6Mbps,31.2Mbps中的任一项。可理解,这里所示的PHR字段的速率仅为示例,随着标准的发展,后续还可能会包括PHR字段的更多速率,本申请实施例对此不作限定。可理解,表4所示的SFD序列与PHR字段的速率之间的对应关系是以表1所示的SFD序列为例示出的。
表4


表4所示的SFD序列与PHR速率之间的对应关系仅为示例,不应将表4所示的例子理解为对本申请实施例的限定。
可理解,表4所示的不同长度的SFD序列以及不同M的取值的SFD集合中,按照OOB配置可以理解为PHR字段的速率使用OOB配置的速率。
举例来说,本申请实施例所示的速率集合的个数可以为X个,X为大于或等于2的整数,如X个可以包括表4所示的按照OOB配置、PHR速率1、PHR速率2、PHR速率3、PHR速率4、PHR速率5、PHR速率6、PHR速率7。对于M的取值为2、4的情况下,即该速率集合中的速率个数大于SFD序列的个数,通信双方可以通过窄带的方式指示M个SFD序列所对应的PHR序列。也就是说,通信双方可以通过OOB约定可以由SFD序列指示的PHR速率。
表5是以表3为例示出的SFD序列与PHR字段的速率之间的对应关系。表5和表6示出的是SFD序列对应PHR字段的速率时的两种方式,如表5所示的SFD序列可以对应某个速率,表6所示的SFD序列对应的速率需要基于通过OOB配置的速率确定。关于表5和表6的相关说明可以参考表4,这里不再详述。表6所示的SFD序列0~SFD序列4仅为示例。表6可以理解为是通过间接的方式调整通过OOB配置的PHR速率。也就是说,在进行UWB通信之前,可以先通过窄带的方式配置PHR速率,在进行UWB通信过程中,可以通过SFD序列指示PHR速率为高于通过OOB配置的速率,还是低于通过OOB配置的速率。
表5


表6
举例来说,按照OOB配置的PHR速率为7.8Mbps,高一档的速率为15.6Mbps,高二档的速率为31.2Mbps,低一档的速率为3.9Mbps,低二档的速率为1.95Mbps。
可理解,以上所示的SFD序列与PHR字段的速率之间的对应关系是以上文表1和表3为例示出的,对于表2所示的SFD序列同样可以与PHR字段的速率的对应,不再一一列举。
作为另一个示例,第一SFD序列用于指示PHR字段的速率包括:该第一SFD序列用于指示PHR字段的速率与基准速率的偏移量。也就是说,SFD序列对应的可以不是PHR速率的具体取值,而是通过间接指示的方式指示PHR速率。如基准速率可以是按照OOB配置的速率,或者,基准速率可以是按照OOB配置的速率与浮动速率之和。本申请实施例对于该浮动速率的说明不作限定。
示例性的,表7是本申请实施例提供的SFD序列与PHR速率之间的对应关系示意。表7所示的偏移量0表示SFD序列0对应的PHR速率与基准速率之间的偏移量,偏移量1表示SFD序列1对应的PHR速率与基准速率之间的偏移量,以此类推。举例来说,SFD序列0对应的PHR速率为按照OOB配置的速率,基准速率为按照OOB配置的速率,则偏移量0等于0。偏移量1等于SFD序列1对应的PHR速率-基准速率,以此类推。
表7
在本申请的一些实施例中,SFD序列对应的PHR速率可以包括按照OOB配置的速率,如表4至表6。该种方式中,接收端通过SFD字段所对应的不同SFD序列即可以获知PHR速率是按照OOB配置,还是新定义的速率。
在本申请的另一些实施例中,SFD序列对应的PHR速率可以不包括按照OOB配置的速率。
示例性的,发送端获取指示信息,在该指示信息为第一指示信息的情况下,发送端基于该第一指示信息生成PPDU,该PPDU中的SFD字段对应的SFD序列用于指示PHR字段的速率。该第一指示信息用于指示SFD序列与PHR字段的速率之间具有对应关系。例如,第一指示信息可以通过OOB的方式配置,如在UWB建立连接之前,通信双方可以获取该第一指示信息。
示例性的,表8是本申请实施例提供的SFD序列与PHR字段的速率之间的对应关系示意。表8中的PHR速率0~PHR速率7可以理解为不同的PHR速率。表8是以上文表1所示的SFD序列为例示出的SFD序列与PHR字段的速率之间的对应关系,对于表2和表3所示的SFD序列与PHR字段的速率之间的对应 关系,均可参考表8的形式给出对应表2或表3的SFD序列与PHR字段的速率之间的对应关系,在此不再一一列举。关于表8的SFD序列说明可以参考表1,或者,关于表8所示的SFD序列与PHR字段的速率之间的对应关系的说明可以参考表4或表5,这里不再详述。
表8

示例性的,发送端获取指示信息,在该指示信息为第二指示信息的情况下,发送端基于第二指示信息生成PPDU,该PPDU中的PHR字段的速率按照OOB配置。关于SFD序列与PHR字段的速率之间的关系可以如表9所示。
可理解,发送端获取指示信息可以理解为:该发送端确定指示信息,或者,该发送端接收指示信息。在发送端确定指示信息之后,还可以向接收端发送该指示信息。也就是说,本申请实施例所示的PPDU的发送端不一定是指示信息的发送端,指示信息的发送端可以是PPDU的接收端,也可能是PPDU的发送端,也可能是控制端,如PAN协调者,本申请实施例对此不作限定。本申请实施例所示的第一指示信息和第二指示信息可以通过OOB配置。如通过OOB配置是否使用SFD序列指示不同的PHR速率。若否,则如表9所示的方式配置PHR速率;若是,则可以基于SFD序列与PHR速率之间的对应关系通过SFD字段所对应的SFD序列指示PHR速率。
表9

可理解,以上所示的各个表格仅为示例,旨在说明本申请实施例所示的SFD序列与PHR字段的速率之间的对应关系,但是对于PHR字段的速率的具体取值,以及该取值所对应的SFD序列所包括的具体元素不作限定。
本申请实施例中,第一SFD序列除了可以用于指示PHR字段的速率之外,还可以用于指示UWB的一些物理层配置,如PPDU的类型。即第一SFD序列既用于指示PHR字段的速率,还可以用于指示PPDU的类型。或者,该第一SFD序列仅用于指示PHR字段的速率。或者,该第一SFD序列仅用于指示PPDU的类型。
以下举例来说,通过第一SFD序列指示PPDU的类型的方法。如该PPDU的类型包括该PPDU用于感知的类型,或者,该PPDU用于测距的类型,或者该PPDU既用于感知又用于测距的类型。也就是说,M个SFD序列中的每个SFD序列可以对应PHR字段的一个速率,还可以对应包括该SFD序列的包(packet)的类型,这里所示的包指的是测距过程中传输的包、或者,感知过程中传输的包。可选的,在PPDU的类型为用于测距的情况下,PPDU中还可以包括用于指示用STS进行测距,或者,用同步字段进行测距的信息。在PPDU的类型为用于感知的情况下,PPDU中还可以包括用于指示使用STS感知,或者,使用同步字段进行感知,或者,使用感知字段(用于感知)进行感知的信息。上述信息可以通过第一SFD序列指示,也可以通过PPDU中的其他字段指示等,本申请实施例不作限定。举例来说,第一SFD序列可以用于指示PHR字段的速率,以及还用于指示如下至少一项:PPDU用于基于STS进行测距、PPDU用于基于同步字段进行测距、PPDU用于基于STS进行感知,或者,PPDU用于基于同步字段进行感知,或者,PPDU用于基于感知字段进行感知。
本领域技术人员可以理解,通过SFD序列还可以指示更多的信息,或者,通过SFD序列还可以指示PPDU的物理层配置的其他信息,本申请实施例不再一一列举。
402、发送端发送PPDU,对应的,接收端接收该PPDU。
示例性的,发送端可以基于第一SFD序列指示的PHR字段的速率发送该PHR字段。
示例性的,发送端在发送PPDU时,可以通过脉冲的方式发送前导码符号和SFD字段。如1可以对应正脉冲,-1对应负脉冲,0对应无脉冲;或者,-1对应正脉冲,1对应负脉冲。
可理解,发送端在发送PPDU之前,该PPDU还可以通过调制等,本申请实施例不再一一说明。
403、接收端处理PPDU。
示例性的,接收端处理PPDU包括:接收端基于前导码符号和SFD字段确定第一SFD序列;基于SFD序列与PHR字段的速率之间的对应关系,确定该第一SFD序列对应的PHR速率;基于第一SFD序列对应的PHR速率解调PHR字段。
示例性的,接收端基于第一SFD序列确定PHR字段的速率之后,可以基于该PHR字段的速率获知比特与脉冲之间的关系,从而解调PHR字段。解调PHR字段之后,可以获知物理成长字段的相关信息,如物理承载字段的长度信息、数据传输速率、编码类型。
本申请实施例中,利用SFD字段所对应的第一SFD序列来指示第一字段的速率,既可以分隔前导码符号与SFD字段之后的字段,而且还可以指示第一字段的速率。通过不同的SFD序列指示第一字段的不同速率,由此可以有效提高第一字段速率的配置灵活性。
目前还存在一种通过速率头进行动态配置PHR速率的方式。如将PHR分成两部分,PHR1和PHR2,PHR1作为速率头,以一个固定的较低速率进行发送,其携带的信息较少,如至少包括PHR2和物理承载部分的速率。PHR2携带PHR中的其他信息,以与物理承载部分相同的速率,或者比物理承载部分稍低的速率传输。这种方式中PHR1的速率固定为1.95Mbps,且使用卷积码进行编码。由此,在物理承载部分数据率为1.95Mbps且使用LDPC码时,PHR1的可靠度将低于物理承载部分的可靠度,从而成为系统性能的瓶颈。当信道环境较好时,PHR1由于低码率导致占用时长过大,PHR1和PHR2的总占用时长,将超过单一PHR的占用时长。
本申请实施例中通过SFD序列与PHR字段的速率的对应关系来指示PHR字段的速率,不仅可以灵活地指示PHR字段的速率,而且还可以基于物理承载部分的速率来动态的调整PHR自字段的速率,如通过 物理承载部分的速率与PHR字段的速率的关系确定PHR字段的速率,然后基于SFD序列与PHR字段的速率的对应关系确定SFD序列。如当信道环境较好时,可以调整PHR字段的速率较大(如与物理承载字段相同的速率,或者比物理承载字段低的速率),改善PHR字段的占用时长过长的情况。
以下将介绍本申请实施例提供的通信装置。
本申请实施例根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图5至图7详细描述本申请实施例的通信装置。
图5是本申请实施例提供的一种通信装置的结构示意图,如图5所示,该通信装置包括处理单元501和收发单元502。
在本申请的一些实施例中,该通信装置可以是上文示出的发送端或芯片,该芯片可以应用于发送端中等。即该通信装置可以用于执行上文方法实施例中由发送端执行的步骤或功能等。
处理单元501,用于生成PPDU;收发单元502,用于发送该PPDU。
示例性的,处理单元501,具体用于获取指示信息,该指示信息包括第一指示信息,基于该第一指示信息生成PPDU。
示例性的,处理单元501,还用于基于第一字段的速率输出该PPDU。如处理单元501,可以输出该PPDU至收发单元502,由收发单元502发送该PPDU。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
复用图5,在本申请的另一些实施例中,该通信装置可以是上文示出的接收端或接收端中的芯片等。即该通信装置可以用于执行上文方法实施例中由接收端执行的步骤或功能等。
如收发单元502,用于接收PPDU;处理单元501,用于处理PPDU。
示例性的,处理单元501,具体用于基于前导码符号与SFD字段确定第一SFD序列;基于SFD序列与第一字段的速率之间的对应关系,确定第一SFD序列对应的第一字段的速率;基于第一字段的速率解调第一字段。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
上个各个实施例中,关于第一字段、SFD字段、PHR字段、M个SFD序列、PHR字段的速率等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
以上介绍了本申请实施例的发送端和接收端,以下介绍所述发送端和接收端可能的产品形态。应理解,但凡具备上述图5所述的发送端的功能的任何形态的产品,或者,但凡具备上述图5所述的接收端的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的发送端和接收端的产品形态仅限于此。
在一种可能的实现方式中,图5所示的通信装置中,处理单元501可以是一个或多个处理器,收发单元502可以是收发器,或者收发单元502还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。在执行上述方法的过程中,上述方法中有关发送信息的过程,可以理解为由处理器输出上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,上述方法中有关接收信息的过程,可以理解为处理器接收输入的上述信息的过程。处理器接收输入的信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
如图6所示,该通信装置60包括一个或多个处理器620和收发器610。
示例性的,当该通信装置用于执行上述发送端执行的步骤或方法或功能时,处理器620,用于生成PPDU;收发器610,用于发送该PPDU。
示例性的,处理器620,具体用于获取指示信息,该指示信息包括第一指示信息,基于该第一指示信 息生成PPDU。
示例性的,处理器620,还用于基于第一字段的速率输出该PPDU。如处理器620,可以输出该PPDU至收发器610,由收发器610发送该PPDU。
示例性的,当该通信装置用于执行上述接收端执行的步骤或方法或功能时,收发器610,用于接收PPDU;处理器620,用于处理PPDU。
示例性的,处理器620,具体用于基于前导码符号与SFD字段确定第一SFD序列;基于SFD序列与第一字段的速率之间的对应关系,确定第一SFD序列对应的第一字段的速率;基于第一字段的速率解调第一字段。
上个各个实施例中,关于第一字段、SFD字段、PHR字段、M个SFD序列、PHR字段的速率等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
在图6所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
可选的,通信装置60还可以包括一个或多个存储器630,用于存储程序指令和/或数据等。存储器630和处理器620耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器620可能和存储器630协同操作。处理器620可可以执行存储器630中存储的程序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。示例性的,存储器可以用于存储速率集合;或者,SFD序列与PHR字段的速率之间的对应关系等。
本申请实施例中不限定上述收发器610、处理器620以及存储器630之间的具体连接介质。本申请实施例在图6中以存储器630、处理器620以及收发器610之间通过总线640连接,总线在图6中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
示例性的,处理器620主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器630主要用于存储软件程序和数据。收发器610可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器620可以读取存储器630中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器620对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器620,处理器620将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图6更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照 上文介绍的方法。
在另一种可能的实现方式中,图5所示的通信装置中,处理单元501可以是一个或多个逻辑电路,收发单元502可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元502还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图7所示,图7所示的通信装置包括逻辑电路701和接口702。即上述处理单元501可以用逻辑电路701实现,收发单元502可以用接口702实现。其中,该逻辑电路701可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口702可以为通信接口、输入输出接口、管脚等。示例性的,图7是以上述通信装置为芯片为例出的,该芯片包括逻辑电路701和接口702。
可理解,本申请实施例所示的芯片可以包括超带宽芯片,如上文所示的发送发送PPDU的步骤或接收PPDU的步骤可以由超带宽芯片执行。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。为便于描述,下文以窄带芯片为例进行说明。但是,不应将其理解为对本申请实施例的限定。示例性的,窄带芯片输出感知信号之后,可以由超带宽芯片发送该感知信号。示例性的,超带宽芯片接收到感知信号之后,可以将该感知信号发送给窄带芯片。
示例性的,当通信装置用于执行上述发送端执行的方法或功能或步骤时,逻辑电路701,用于生成PPDU;接口702,用于输出该PPDU。
示例性的,逻辑电路701,用于获取指示信息,在指示信息包括第一指示信息的情况下,基于第一指示信息生成PPDU。
示例性的,逻辑电路701,还用于基于第一字段的速率输出该PPDU。
示例性的,当通信装置用于执行上述接收端执行的方法或功能或步骤时,接口702,用于输入PPDU;逻辑电路701,用于处理PPDU。
示例性的,逻辑电路701,具体用于基于前导码符号与SFD字段确定第一SFD序列;基于SFD序列与第一字段的速率之间的对应关系,确定第一SFD序列对应的第一字段的速率;基于第一字段的速率解调第一字段。
可选的,图7所示的芯片还可以包括存储器,该存储器可以用于存储速率集合、SFD序列与PHR速率之间的对应关系等。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
上个各个实施例中,关于于第一字段、SFD字段、PHR字段、M个SFD序列、PHR字段的速率等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
对于图7所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。
本申请实施例还提供了一种无线通信系统,该无线通信系统包括发送端和接收端,该发送端和该接收端可以用于执行前述任一实施例(如图4)中的方法。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由发送端执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由接收端执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由发送端执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由接收端执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由发送端执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由接收端执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特 征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种基于超宽带的速率指示方法,其特征在于,所述方法包括:
    生成物理层协议数据单元PPDU,所述PPDU包括帧开始分隔符SFD字段和第一字段,所述SFD字段基于前导码符号和第一SFD序列确定,所述第一SFD序列用于指示所述第一字段的速率,所述第一字段在所述PPDU中的位置位于所述SFD字段之后;
    发送所述PPDU。
  2. 根据权利要求1所述的方法,其特征在于,所述生成PPDU包括:
    获取指示信息,所述指示信息包括第一指示信息,所述第一指示信息用于指示通过所述第一SFD序列指示所述第一字段的速率;
    基于所述第一指示信息生成所述PPDU。
  3. 一种基于超带宽的速率指示方法,其特征在于,所述方法包括:
    接收PPDU,所述PPDU包括帧开始分隔符SFD字段和第一字段,所述SFD字段基于前导码符号和第一SFD序列确定,所述第一SFD序列用于指示所述第一字段的速率,所述第一字段在所述PPDU中的位置位于所述SFD字段之后;
    处理所述PPDU。
  4. 根据权利要求3所述的方法,其特征在于,所述处理所述PPDU包括:
    基于所述前导码符号与所述SFD字段确定所述第一SFD序列;
    基于SFD序列与所述第一字段的速率之间的对应关系,确定所述第一SFD序列对应的所述第一字段的速率;
    基于所述第一字段的速率解调所述第一字段。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一SFD序列为M个SFD序列中的一个SFD序列,所述M个SFD序列中的每个SFD序列对应所述第一字段的一个速率,且所述M个SFD序列对应的M个速率中至少有两个不同速率,M为大于或等于2的整数。
  6. 根据权利要求5所述的方法,其特征在于,所述M个速率包含于速率集合中,所述速率集合为预先定义的集合。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一SFD序列用于指示所述第一字段的速率包括:
    所述第一SFD序列用于指示所述第一字段的速率的取值;或者,
    所述第一SFD序列用于指示所述第一字段的速率与基准速率的偏移量。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一SFD序列的长度为L,
    L=16,M=2时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,-1]、[-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1];或者,
    L=16,M=4时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,-1]、[-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1]、[-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,1,1,1,-1]、[-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,-1,1];或者,
    L=16,M=8时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,-1]、[-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1]、[-1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,1]、[-1,1,-1,1,-1,-1,1,1,1,1,1,-1,-1,1,1,-1]、[-1,-1,1,1,1,-1,1,1,1,-1,1,-1,-1,1,-1,1]、[-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,1,1,1,-1]、[-1,1,-1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,1]、[-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1]。
  9. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一SFD序列的长度为L,
    L=32,M=2时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,-1 1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,-1]、[-1,-1,-1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,-1,1,-1,1];或者,
    L=32,M=4时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,-1 1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,-1]、[-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,1,1,1,-1,-1]、[-1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,1,-1]、[-1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,1,-1];或者,
    L=32,M=8时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,-1 1,-1,1, -1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,-1]、[-1,1,-1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,1,1,-1,-1,1,-1]、[-1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,1]、[-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,-1,1,1,1,-1]、[-1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,1,-1]、[-1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,1,-1]、[-1,-1,1,-1,-1,1,-1,1,1,1,1,1,1,-1,-1,-1,1,1,1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1]、[-1,-1,-1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,1,-1,1,1,-1,1,1,-1,1,-1,-1,-1,1,-1,-1,1,1]。
  10. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一SFD序列的长度为L,
    L=16,M=2时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,-1]、[1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,1,-1,1];或者,
    L=16,M=4时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,-1]、[-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1]、[1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,1,-1,1]、[1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1];或者,
    L=16,M=8时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,1,-1]、[-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,-1,1,-1]、[-1,-1,1,-1,-1,1,1,1,1,-1,1,-1,1,1,1,-1]、[-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,1,1,-1,1]、[1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,1,-1,1]、[1,1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,-1,1]、[1,1,-1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,1]、[1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1]。
  11. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一SFD序列的长度为L,L=32,M=2时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,-1]、[1,1,1,1,1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,-1,1,1];或者,
    L=32,M=4时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,-1 1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,-1]、[-1,-1,-1,1,-1,1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,-1,1,-1,1]、[1,1,1,1,1,1,1,-1,1,1,-1,1,1 -1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,-1,1,1]、[1,1,1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,-1,1,-1];或者,
    L=32,M=8时,所述第一SFD序列为如下任一项:[-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,-1 1,-1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,-1]、[-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,-1,-1,1,1,1,-1,-1]、[-1,1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,1,1,-1]、[-1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,1,1,-1,1,1,1,1,1,-1]、[1,1,1,1,1,1,1,-1,1,1,-1,1,1 -1,1,-1,1,-1,1,1,1,-1,-1,1,1,1,-1,1,-1,-1,1,1]、[1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,1,1]、[1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,1]、[1,1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,1,1,-1,-1,-1,1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1]。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一SFD序列还用于指示所述PPDU的类型,所述PPDU的类型包括如下至少一项:所述PPDU用于感知,或者,所述PPDU用于测距。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述第一字段包括物理层报头PHR字段。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述PPDU还包括帧同步字段,所述帧同步字段用于承载所述前导码符号。
  15. 一种通信装置,其特征在于,包括用于执行如权利要求1-14任一项所述方法的单元。
  16. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储指令;
    所述处理器用于执行所述指令,以使权利要求1-14任一项所述的方法被执行。
  17. 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和接口耦合;
    所述接口用于输入和/或输出代码指令,所述逻辑电路用于执行所述代码指令,以使权利要求1-14任一项所述的方法被执行。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,所述计算机程序被执行时,如权利要求1-14任一项所述的方法被执行。
  19. 一种计算机程序,其特征在于,所述计算机程序被执行时,如权利要求1-14任一项所述的方法被执行。
  20. 一种通信系统,其特征在于,所述通信系统包括发送端和接收端,所述发送端用于执行如权利要求1、2、5-14任一项所述的方法,所述接收端用于执行如权利要求3-14任一项所述的方法。
PCT/CN2023/124257 2022-10-25 2023-10-12 基于超带宽的速率指示方法及装置 WO2024088072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211339517.4A CN117939541A (zh) 2022-10-25 2022-10-25 基于超带宽的速率指示方法及装置
CN202211339517.4 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024088072A1 true WO2024088072A1 (zh) 2024-05-02

Family

ID=90763573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124257 WO2024088072A1 (zh) 2022-10-25 2023-10-12 基于超带宽的速率指示方法及装置

Country Status (2)

Country Link
CN (1) CN117939541A (zh)
WO (1) WO2024088072A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101228688A (zh) * 2005-06-16 2008-07-23 高通股份有限公司 具有扩展覆盖范围的无线通信网络
CN104604171A (zh) * 2012-09-10 2015-05-06 英特尔公司 用于检查序列的方法和布置
US20150381772A1 (en) * 2014-06-27 2015-12-31 Silicon Laboratories Inc. Communication Protocol with Reduced Overhead
US10826727B1 (en) * 2019-09-24 2020-11-03 Nxp B.V. Wireless device and method for operating wireless device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101228688A (zh) * 2005-06-16 2008-07-23 高通股份有限公司 具有扩展覆盖范围的无线通信网络
CN104604171A (zh) * 2012-09-10 2015-05-06 英特尔公司 用于检查序列的方法和布置
US20150381772A1 (en) * 2014-06-27 2015-12-31 Silicon Laboratories Inc. Communication Protocol with Reduced Overhead
US10826727B1 (en) * 2019-09-24 2020-11-03 Nxp B.V. Wireless device and method for operating wireless device

Also Published As

Publication number Publication date
CN117939541A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2022033593A1 (zh) 适用于多链路的关键bss参数管理方法及相关装置
WO2023197986A1 (zh) Uwb信号的传输方法及相关装置
WO2018127146A1 (zh) 接收节点、发送节点和传输方法
WO2024088072A1 (zh) 基于超带宽的速率指示方法及装置
WO2023169264A1 (zh) 基于超带宽的信息反馈方法及装置
WO2023174403A1 (zh) 基于超宽带的传输物理层协议数据单元的方法及装置
WO2024037445A1 (zh) 物理层配置的指示方法及相关装置
WO2023236805A1 (zh) 信息交互方法及相关装置
WO2023202546A1 (zh) 基于超带宽的感知测量结果反馈方法及装置
WO2019120304A1 (zh) 无线唤醒包发送与接收方法与装置
WO2024131745A1 (zh) 信息处理方法及装置
WO2024083179A1 (zh) 基于感知的通信方法及装置
WO2023246526A1 (zh) 基于物理层协议数据单元的通信方法及装置
WO2023241651A1 (zh) 基于物理层协议数据单元的通信方法及装置
WO2024093683A1 (zh) 信道接入方法及相关装置
WO2023236823A1 (zh) 基于uwb的ppdu传输方法及相关装置
WO2024012259A1 (zh) 通信方法及装置
WO2023207593A1 (zh) 应用于超带宽uwb系统感知测量的方法和装置
CN114760719B (zh) 发现和连接到软接入设备的方法、装置、设备及存储介质
WO2023207602A1 (zh) 通信方法及相关装置
WO2023185633A1 (zh) 一种通信的方法、装置和系统
WO2024061113A1 (zh) 测量小区的方法与装置
WO2024051515A1 (zh) 一种通信方法及装置
WO2024050789A1 (zh) 通信方法及相关装置
WO2023061311A1 (zh) 一种传输物理层协议数据单元的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881651

Country of ref document: EP

Kind code of ref document: A1