WO2024012259A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2024012259A1
WO2024012259A1 PCT/CN2023/104587 CN2023104587W WO2024012259A1 WO 2024012259 A1 WO2024012259 A1 WO 2024012259A1 CN 2023104587 W CN2023104587 W CN 2023104587W WO 2024012259 A1 WO2024012259 A1 WO 2024012259A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
sequence set
length
side lobe
peak side
Prior art date
Application number
PCT/CN2023/104587
Other languages
English (en)
French (fr)
Inventor
周正春
叶智钒
刘辰辰
钱彬
唐小虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024012259A1 publication Critical patent/WO2024012259A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the embodiments of the present application relate to the field of communication, and more specifically, to a communication method and device.
  • Ultra wideband (UWB) technology is a wireless carrier communication technology that uses nanosecond-level non-sinusoidal narrow pulses to transmit data. Since the pulses used by UWB technology to transmit data are narrow and the radiation spectrum density is low, UWB technology has the advantages of strong multipath resolution, low power consumption, and strong confidentiality. Communication through UWB technology has become a short-distance, high-speed wireless One of the popular physical layer technologies in the network.
  • UWB technology transmits data by sending and receiving extremely narrow pulses with nanoseconds or less
  • synchronization of the receiving end and the transmitting end is crucial in UWB technology.
  • the synchronization between the receiving end and the sending end is achieved through the synchronization header field, and the synchronization header field is generated based on the sequence. Therefore, the characteristics of the sequence will affect the synchronization between the receiving end and the sending end, thereby affecting the communication performance of the system.
  • Embodiments of the present application provide a communication method and device, in order to improve the communication performance of the system by using sequences with better performance.
  • the first aspect provides a communication method, which can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, which is not limited.
  • a component such as a chip or circuit
  • the following description takes execution by the sending device as an example.
  • the method includes: generating a synchronization header field according to a sequence set, the sequence set including at least one of the following sequences: a sequence of length 127, a sequence of length 31, a sequence of length 91, or a sequence of length 64; sending The synchronization header field.
  • the sequence set can include sequences of different lengths, thereby meeting the needs of different scenarios. That is, the sending device can select sequences of different lengths according to the needs to generate synchronization header fields and send the synchronization header fields, thus improving the System transmission performance, communication performance, etc. Accordingly, after receiving the synchronization header field, the receiving end device can perform correlation detection with the synchronization header field according to the sequence set, thereby achieving synchronization of the sending and receiving devices.
  • the sequence set includes the sequence of length 127, and the sequence of length 127 includes the sequence to sequence at least one of them.
  • the sequence to this sequence The minimum value of the periodic peak side lobe ratio under the preset carrier frequency offset is greater than the first preset value.
  • the preset carrier frequency offset may be 40ppm.
  • the first preset value may be the minimum value of the periodic peak side lobe ratio of the Ipatov sequence of length 127 under the preset carrier frequency offset, or the first preset value may be the minimum value of the periodic peak side lobe ratio of the Ipatov sequence of length 127 under the preset carrier frequency offset.
  • the minimum value of the period peak to side lobe ratio under frequency deviation is larger than the minimum value.
  • the sequence to sequence Due to the sequence to sequence The minimum value of the periodic peak side lobe ratio under the preset carrier frequency offset is greater than the first preset value, so the sequence to sequence has better anti-frequency offset characteristics, so the sending end device is based on the sequence to sequence
  • the transmission performance and communication performance of the system can be improved. For example, even when there is a large frequency offset between carriers, the receiving device receives the to sequence After the synchronization header field generated by a sequence in the sequence, the sequence can also be to sequence
  • the sequence and synchronization header fields in the data are correlated to detect the synchronization of the sending and receiving devices.
  • the sequence set includes the sequence of length 31, and the sequence of length 31 includes the sequence and sequence at least one of them.
  • the second preset value may be the maximum value of the non-periodic peak side lobe ratio of the Ipatov sequence of length 31 under the preset carrier frequency offset, or the second preset value may be the ratio of the Ipatov sequence of length 31 under the preset carrier frequency offset. A value greater than the maximum value of the non-periodic peak side lobe ratio at the preset carrier frequency offset.
  • the sequence and sequence Due to the above technical solution, due to the sequence and sequence The aperiodic peak side lobe ratio under the preset carrier frequency offset is greater than the second preset value, Therefore the sequence and sequence The anti-Doppler characteristics are relatively good, so the transmitter device is based on the sequence to sequence When a sequence in a sequence generates a synchronization header field and sends the synchronization header field, the transmission performance and communication performance of the system can be improved. For example, even when there is a large frequency offset between carriers, the receiving device receives the sequence according to the or sequence After the generated synchronization header field, the sequence can also be or sequence Perform correlation detection with the synchronization header field to achieve synchronization of the sending and receiving devices.
  • the sequence set includes the sequence of length 91, and the sequence of length 91 includes the sequence and sequence at least one of them.
  • the sequence and sequence The aperiodic peak side lobe ratio under the preset carrier frequency offset is greater than the third preset value.
  • the third preset value may be the maximum value of the non-periodic peak side lobe ratio of the Ipatov sequence with a length of 91 under the preset carrier frequency offset, or the third preset value may be the ratio of the Ipatov sequence with a length of 91 under the preset carrier frequency offset. A value greater than the maximum value of the non-periodic peak side lobe ratio at the preset carrier frequency offset.
  • the sequence and sequence Due to the above technical solution, due to the sequence and sequence The aperiodic peak side lobe ratio under the preset carrier frequency offset is greater than the third preset value, so the sequence and sequence The anti-Doppler characteristics are relatively good, so the transmitter device is based on the sequence to sequence
  • the transmission performance and communication performance of the system can be improved. For example, even when there is a large frequency offset between carriers, the receiving device receives the sequence according to the or sequence After the generated synchronization header field, the sequence can also be or sequence Perform correlation detection with the synchronization header field to achieve synchronization of the sending and receiving devices.
  • the sequence set includes the sequence with a length of 127
  • the sequence The non-periodic peak side lobe ratio under the preset carrier frequency offset is greater than the fourth preset value.
  • the fourth preset value may be the maximum value of the aperiodic peak side lobe ratio of the Ipatov sequence with a length of 127 under the preset carrier frequency offset, or the fourth preset value may be the ratio of the Ipatov sequence with a length of 127 under the preset carrier frequency offset. A value greater than the maximum value of the non-periodic peak side lobe ratio at the preset carrier frequency offset.
  • the sequence Due to the above technical solution, due to the sequence The aperiodic peak side lobe ratio under the preset carrier frequency offset is greater than the fourth preset value, so the sequence The anti-Doppler characteristics are relatively good, so the transmitter device is based on the sequence Generating a synchronization header field and sending the synchronization header field can improve the transmission performance and communication performance of the system. For example, even when there is a large frequency offset between carriers, the receiving device receives the sequence according to the After the generated synchronization header field, the sequence can also be Perform correlation detection with the synchronization header field to achieve synchronization of the sending and receiving devices.
  • the sequence set includes the sequence of length 31, the sequence of length 91 and the sequence of length 127, and the sequence of length 31 includes the sequence and the sequence The sequence of length 91 includes the sequence and the sequence The sequence of length 127 includes the sequence
  • the sequence set includes the sequence with a length of 64
  • the sequence The length of the zero correlation zone is greater than or equal to the fifth preset value.
  • the sequence Due to the above technical solution, due to the sequence The length of the zero correlation zone is greater than or equal to the fifth preset value, so the sequence It has good local correlation characteristics and anti-frequency offset characteristics, so that the sending end device is based on the sequence Generating a synchronization header field and sending the synchronization header field can improve the transmission performance and communication performance of the system.
  • the receiving device based on the sequence and according to the sequence
  • the generated synchronization header field realizes the synchronization of the sending and receiving devices and avoids false alarm problems caused by the devices.
  • sequence It is a binary sequence, so it can also simplify the structure of the transceiver device.
  • sequence set may include the above sequences to sequence One or more of them are not limited by the embodiments of this application.
  • sending the synchronization header field includes: sending a physical layer protocol data unit (PPDU) based on UWB, and the PPDU includes the synchronization header field.
  • PPDU physical layer protocol data unit
  • the PPDU is a PPDU used for ranging or a PPDU used for sensing.
  • the sequences included in the sequence set have at least one of the following characteristics: good anti-frequency offset characteristics, good anti-Doppler characteristics, good non-periodic autocorrelation characteristics, or a large zero correlation area length, so if the synchronization header field generated based on the sequence set is included in the PPDU, and the PPDU is a PPDU used for ranging or sensing, the performance of ranging or sensing based on the PPDU will not be affected by the transmission of the PPDU. affected by changes in the environment.
  • the performance of ranging or sensing based on PPDU will not be affected by the carrier frequency offset. greater impact.
  • the PPDU including the synchronization header field will have a longer detection distance and a larger delay tolerance range, thus ensuring that the PPDU is based on the PPDU.
  • the performance of ranging or sensing avoids the problem of false alarms caused by the equipment.
  • the second aspect provides a communication method, which can be executed by a communication device, or can also be executed by a component (such as a chip or a circuit) of the communication device, which is not limited.
  • a component such as a chip or a circuit
  • the following description takes execution by the receiving end device as an example.
  • the method includes: receiving a synchronization header field; performing correlation detection based on a sequence set and the synchronization header field, where the sequence set includes at least one of the following sequences: a sequence with a length of 127, a sequence with a length of 31, and a sequence with a length of 91, Or, a sequence of length 64.
  • the sequence set includes the sequence of length 127, and the sequence of length 127 includes the sequence to sequence at least one of them.
  • the sequence to this sequence The minimum value of the periodic peak side lobe ratio under the preset carrier frequency offset is greater than the first preset value.
  • the sequence set includes the sequence of length 31, and the sequence of length 31 includes the sequence and sequence at least one of them.
  • the sequence set includes the sequence of length 91, and the sequence of length 91 includes the sequence and sequence at least one of them.
  • the sequence and sequence The aperiodic peak side lobe ratio under the preset carrier frequency offset is greater than the third preset value.
  • the sequence set includes the sequence with a length of 127
  • the sequence The non-periodic peak side lobe ratio under the preset carrier frequency offset is greater than the fourth preset value.
  • the sequence set includes the sequence of length 31, the sequence of length 91 and the sequence of length 127, and the sequence of length 31 includes the sequence and the sequence The sequence of length 91 includes the sequence and the sequence The sequence of length 127 includes the sequence
  • the sequence set includes the sequence with a length of 64
  • the sequence The length of the zero correlation zone is greater than or equal to the fifth preset value.
  • sequence set may include the above sequences to sequence One or more of them are not limited by the embodiments of this application.
  • receiving the synchronization header field includes: receiving a PPDU through UWB, and the PPDU includes the synchronization header field.
  • a communication method is provided, which method can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, which is not limited.
  • a component such as a chip or circuit
  • the following description takes execution by the sending device as an example.
  • the method includes: generating a synchronization header field according to a first sequence in a first sequence set, each sequence in the first sequence set being obtained by shifting and/or sampling a sequence in a second sequence set, the first sequence set One or more of the following relationships are satisfied between the first sequence set and the second sequence set: the minimum value of the M period peak side lobe ratios of the first sequence set under the preset carrier frequency offset is greater than that of the second sequence set under the preset carrier frequency offset.
  • the minimum value of the peak side-lobe ratios of the N periods under the preset carrier frequency offset, and the average value of the peak side-lobe ratios of the M periods is greater than the average value of the peak side-lobe ratios of the N periods; where, the M periods
  • the peak side lobe ratio corresponds to the M sequences included in the first sequence set
  • the N period peak side lobe ratio corresponds to the N sequences included in the second sequence set.
  • Send a PPDU which includes the synchronization header field.
  • the sequences in the first sequence set have better anti-frequency offset characteristics than the sequences in the second sequence set, Even when there is a large frequency offset between carriers, the periodic peak to side lobe ratio of the first sequence in the first sequence set is relatively high. Therefore, when the sending device generates the synchronization header field based on the first sequence and sends the PPDU containing the synchronization header field, the receiving device is less likely to misdetect the PPDU, thereby improving system performance. For example, when the PPDU is a PPDU used for ranging or sensing, the performance of the receiving device in ranging or sensing based on the PPDU will not be greatly affected by the carrier frequency offset.
  • the first sequence set and the second sequence set further satisfy one or more of the following relationships: the cross-correlation value of the first sequence set The maximum value of is less than the maximum value of the cross-correlation value of the second sequence set, and the average value of the cross-correlation value of the first sequence set is less than the average value of the cross-correlation value of the second sequence set.
  • the sequences in the first sequence set have better anti-interference performance than the sequences in the second sequence set.
  • the sending device When the sending device generates a synchronization header field based on the first sequence in the first sequence set, generates another synchronization header field based on the second sequence in the first sequence set, and when the sending device simultaneously transmits a synchronization header field generated based on the first sequence on the same channel,
  • the cross-correlation value between the second sequence and the first sequence is small, so the first PPDU and the second The interference between PPDUs is small, which can improve transmission performance.
  • the first sequence set is the same as the third sequence set, or the first sequence set is a subset of the third sequence set, and the third sequence set
  • Each sequence is obtained by shifting and/or sampling the sequences in the second sequence set, and one or more of the following relationships is satisfied between the third sequence set and the second sequence set: the third sequence
  • the minimum value of the peak side-lobe ratios of the L periods collected under the preset carrier frequency offset is greater than the minimum value of the peak side-lobe ratios of the N periods, and the average value of the peak side-lobe ratios of the L periods is greater than the N periods.
  • the average value of the peak side-lobe ratio; wherein, the peak side-lobe ratio of the L periods corresponds one-to-one to the L sequences included in the third sequence set.
  • the first sequence set is obtained by performing dynamic programming and/or pruning search on the third sequence set.
  • the first sequence set includes 4 sequences, or includes 8 sequences.
  • the fourth aspect provides a communication method, which can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, without limitation.
  • a component such as a chip or circuit
  • the following description takes execution by the receiving end device as an example.
  • the method may include: receiving a PPDU, the PPDU including a synchronization header field; performing correlation detection based on a first sequence in the first sequence set and the synchronization header field, and each sequence in the first sequence set is a pair of the second sequence set Sequences obtained by shifting and/or sampling, the first sequence set and the second sequence set satisfy one or more of the following relationships: M sequences of the first sequence set under the preset carrier frequency offset
  • the minimum value of the period peak side lobe ratio is greater than the minimum value of the N period peak side lobe ratios of the second sequence set under the preset carrier frequency offset, and the average value of the M period peak side lobe ratio is greater than the N
  • the average value of the peak side lobe ratios of the N periods wherein, the M period peak side lobe ratios correspond to the M sequences included in the first sequence set, and the N period peak side lobe ratios correspond to the M sequences included in the second sequence set.
  • N sequences correspond one to one.
  • the first sequence set and the second sequence set further satisfy one or more of the following relationships: the cross-correlation value of the first sequence set The maximum value of is less than the maximum value of the cross-correlation value of the second sequence set, and the average value of the cross-correlation value of the first sequence set is less than the average value of the cross-correlation value of the second sequence set.
  • the first sequence set is the same as the third sequence set, or the first sequence set is a subset of the third sequence set, and the third sequence set in the third sequence set
  • Each sequence is obtained by shifting and/or sampling a sequence in the second sequence set, and the third sequence set and the second sequence set satisfy the following relationship: the third sequence set operates at the preset carrier frequency
  • the minimum value of the peak side-lobe ratios of the lower L periods is greater than the minimum value of the peak side-lobe ratios of the N periods, and the average of the peak side-lobe ratios of the L periods is greater than the average of the peak side-lobe ratios of the N periods. value; wherein, the L period peak side lobe ratios correspond one to one to the L sequences included in the third sequence set.
  • the first sequence set is obtained by performing dynamic programming and/or pruning search on the third sequence set.
  • the first sequence set includes 4 sequences, or includes 8 sequences.
  • the fifth aspect provides a communication method, which can be executed by a communication device, or can also be executed by a component (such as a chip or a circuit) of the communication device, which is not limited.
  • a component such as a chip or a circuit
  • the following description takes execution by the sending device as an example.
  • the method may include: generating a synchronization header field according to the first sequence in the first sequence set, and one or more of the following relationships between the first sequence set and the second sequence set are satisfied: the first sequence set is in a preset The minimum value of the M non-periodic peak side lobe ratios under the carrier frequency offset is greater than the minimum value of the N non-periodic peak side lobe ratios of the second sequence set under the preset carrier frequency offset, and the M non-periodic peak side lobe ratios are The average value of the peak side-lobe ratios is greater than the average value of the N non-periodic peak side-lobe ratios; wherein, the M non-periodic peak side-lobe ratios correspond to the M sequences included in the first sequence set, and the N The aperiodic peak sidelobe ratio corresponds one-to-one to the N sequences included in the second sequence set; a PPDU is sent, and the PPDU includes the synchronization header field.
  • the sequences in the first sequence set have better anti-Doppler properties than the sequences in the second sequence set.
  • the aperiodic peak side lobe ratio of the first sequence in the first sequence set is relatively high. Therefore, when the sending device generates the synchronization header field based on the first sequence and sends the PPDU containing the synchronization header field, the receiving device is less likely to misdetect the PPDU, thereby improving system performance. For example, when the PPDU is a PPDU used for ranging or sensing, the performance of the receiving device in ranging or sensing based on the PPDU will not be greatly affected by the carrier frequency offset.
  • the first sequence set is searched through a genetic algorithm and/or a coordinate descent algorithm.
  • the coordinate descent algorithm includes bit flipping
  • the mutation in the genetic algorithm includes bit flipping
  • a sixth aspect provides a communication method, which can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, which is not limited.
  • a component such as a chip or circuit
  • the following description takes execution by the receiving end device as an example.
  • the method may include: receiving a PPDU, which includes a synchronization header field; performing correlation detection based on the first sequence in the first sequence set and the synchronization header field, and the first sequence set and the second sequence set satisfy the following relationship: One or more of: The minimum value of the M non-periodic peak side lobe ratios of the first sequence set under the preset carrier frequency offset is greater than the minimum value of the second sequence set under the preset carrier frequency offset.
  • the first sequence set is searched through a genetic algorithm and/or a coordinate descent algorithm.
  • the coordinate descent algorithm includes bit flipping
  • the mutation in the genetic algorithm includes bit flipping
  • a seventh aspect provides a communication method, which can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, without limitation.
  • a component such as a chip or circuit
  • the first sequence is the sequence with the largest zero correlation zone length in the above sequence set
  • the first sequence has better local correlation characteristics and anti-frequency offset characteristics, which can improve the system transmission performance and ensure that the receiving end device is based on the
  • the first sequence and synchronization header fields realize the synchronization of the sending and receiving devices and avoid false alarm problems caused by the devices.
  • An eighth aspect provides a communication method, which may be executed by a communication device, or may be executed by a component (such as a chip or circuit) of the communication device, without limitation.
  • a component such as a chip or circuit
  • a ninth aspect provides a communication method, which can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, without limitation.
  • a component such as a chip or circuit
  • the following description takes execution by the sending device as an example.
  • the method includes: generating a synchronization header field according to a first sequence in a first sequence set, the first sequence set having a preset carrier frequency offset.
  • the minimum value of the M period peak side lobe ratios is greater than the preset value, and the M period peak side lobe ratios correspond to the M sequences included in the first sequence set; the synchronization header field is sent.
  • the device since the minimum value of the periodic peak sidelobe ratio of the first sequence set under the preset carrier frequency offset is greater than the preset value, the anti-frequency offset characteristics of the sequences in the first sequence set are better, so that the transmitter
  • the device When the device generates a synchronization header field based on the first sequence and sends the synchronization header field, the transmission performance and communication performance of the system can be improved. For example, even when there is a large frequency offset between carriers, after the receiving device receives the synchronization header field generated by the first sequence, it can achieve synchronization of the sending and receiving device by performing correlation detection on the first sequence and the synchronization header field. .
  • a tenth aspect provides a communication method, which can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, without limitation.
  • a component such as a chip or circuit
  • the following description takes execution by the receiving end device as an example.
  • the method includes: receiving a synchronization header field; performing correlation detection based on a first sequence in a first sequence set and the synchronization header field, and the first sequence set has a peak sidelobe ratio of M periods under a preset carrier frequency offset.
  • the minimum value is greater than the preset value, and the M periodic peak side lobe ratios correspond to the M sequences included in the first sequence set; the synchronization header field is sent.
  • a communication method is provided, which method can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, without limitation.
  • a component such as a chip or circuit
  • the following description takes execution by the sending device as an example.
  • the method includes: generating a synchronization header field according to a first sequence in a first sequence set, where the minimum value among M non-periodic peak side lobe ratios under a preset carrier frequency offset is greater than a preset value, and the M The aperiodic peak side lobe ratios correspond one-to-one to the M sequences included in the first sequence set; the synchronization header field is sent.
  • the sending device since the minimum value of the non-periodic peak sidelobe ratio of the first sequence set under the preset carrier frequency offset is greater than the preset value, the anti-Doppler characteristics of the sequences in the first sequence set are better, thus
  • the sending device generates a synchronization header field based on the first sequence and sends the synchronization header field, the transmission performance and communication performance of the system can be improved. For example, even when there is a large frequency offset between carriers, after the receiving device receives the synchronization header field generated by the first sequence, it can achieve synchronization of the sending and receiving device by performing correlation detection on the first sequence and the synchronization header field. .
  • a twelfth aspect provides a communication method, which can be executed by a communication device, or can also be executed by a component (such as a chip or circuit) of the communication device, without limitation.
  • a component such as a chip or circuit
  • the following description takes execution by the receiving end device as an example.
  • the method includes: receiving a synchronization header field; performing correlation detection based on a first sequence in a first sequence set and the synchronization header field, and the first sequence set is among M non-periodic peak side lobe ratios under a preset carrier frequency offset.
  • the minimum value of is greater than the preset value, and the M aperiodic peak side lobe ratios correspond to the M sequences included in the first sequence set; the synchronization header field is sent.
  • a thirteenth aspect provides a device for performing the method provided in any one of the above-mentioned first to twelfth aspects.
  • the device may include units and/or modules for executing the first aspect or any one of the above implementations of the first aspect, or may include units and/or modules for executing the second aspect or any one of the above implementations of the second aspect.
  • the units and/or modules of the method provided by the method include the units and/or modules for performing the third aspect or the method provided by any of the above implementations of the third aspect, or include the units and/or modules used for performing the fourth aspect Or the units and/or modules of the method provided by any of the above implementations of the fourth aspect, or include units and/or modules for executing the method provided by the fifth aspect or any of the above implementations of the fifth aspect.
  • Units and/or modules or include units and/or modules for executing the method provided by the sixth aspect or any one of the above implementations of the sixth aspect, or include units and/or modules used for executing the method provided by the seventh aspect, Alternatively, it includes units and/or modules for executing the method provided in the eighth aspect, or it includes units and/or modules for executing the method provided by the ninth aspect, or it includes units and/or modules used for executing the method provided by the tenth aspect.
  • Units and/or modules or include units and/or modules for performing the method provided in the eleventh aspect, or include units and/or modules used to perform the method provided in the twelfth aspect, such as a processing unit and/or transceiver unit.
  • the device is a device (such as a sending device or a receiving device).
  • the transceiver unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip or chip system used in a device (such as a transmitting device or a receiving device). system or circuit.
  • the transceiver unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a fourteenth aspect provides a device, which device includes: a memory for storing a program; and at least one processor for executing the computer program or instructions stored in the memory to execute any of the above-mentioned first to twelfth aspects. method provided on one hand.
  • the device is a device (such as a sending device or a receiving device).
  • the device is a chip, chip system or circuit used in a device (such as a transmitting end device or a receiving end device).
  • this application provides a processor for executing the methods provided in the above aspects.
  • processor output, reception, input and other operations can be understood as processor output, reception, input and other operations.
  • transmitting and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium stores a program code for device execution.
  • the program code is run on a computer, any one of the above-mentioned first to twelfth aspects is enabled.
  • the methods provided by the aspect are executed.
  • a seventeenth aspect provides a computer program product containing instructions, which when the computer program product is run on a computer, causes the computer to execute the method provided in any one of the above-mentioned first to twelfth aspects.
  • An eighteenth aspect provides a chip.
  • the chip includes a processor and a communication interface.
  • the processor reads instructions stored in the memory through the communication interface and executes the method provided in any one of the above-mentioned first to twelfth aspects.
  • the chip also includes a memory, in which computer programs or instructions are stored.
  • the processor is used to execute the computer programs or instructions stored in the memory.
  • the processor is used to execute The method provided in any one of the above-mentioned first to twelfth aspects.
  • a communication system including the above sending device and receiving device.
  • Figure 1 is a schematic diagram of two application scenarios provided by this application.
  • Figure 2 is a schematic diagram of a PPDU structure applicable to the embodiment of the present application.
  • Figure 3 is a schematic diagram of the periodic autocorrelation function of an Ipatov sequence of length 31;
  • Figure 4 is a schematic flow chart of the communication method provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of a periodic autocorrelation function of a sequence of length 64 provided by an embodiment of the present application
  • Figure 6 is a schematic flow chart of the communication method provided by the embodiment of the present application.
  • Figure 7 is a schematic flow chart of the communication method provided by the embodiment of the present application.
  • Figure 8 is a schematic diagram of the device 2000 provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of the device 3000 provided by the embodiment of the present application.
  • Figure 10 is a schematic diagram of a chip system 4000 provided by an embodiment of the present application.
  • wireless personal area network wireless personal area network
  • WPAN wireless personal area network
  • IEEE Institute of Electrical and Electronics Engineers 802.15 series.
  • WPAN can be used for communication between digital auxiliary equipment within a small range such as phones, computers, and accessory equipment. Its working range is generally within 10 meters (m).
  • technologies that can support wireless personal area networks include but are not limited to: bluetooth, ZigBee, ultra wideband (UWB), infrared data association (IrDA) infrared connection technology, Home RF (HomeRF), etc.
  • WPAN can be located at the bottom of the entire network architecture and is used for wireless connections between devices within a small range, that is, point-to-point short-distance connections, which can be regarded as short-distance wireless communication networks.
  • WPAN can be divided into high rate (HR)-WPAN and low rate (LR)-WPAN.
  • HR-WPAN can be used to support various high-rate multimedia applications, including high-speed Quality audio and video distribution, multi-megabyte music and image file transfer, and more.
  • LR-WPAN can be used for general business in daily life.
  • WPAN In WPAN, according to the communication capabilities of the device, it can be divided into full-function device (FFD) and reduced-function device (RFD).
  • RFD is mainly used for simple control applications, such as light switches, passive infrared sensors, etc.
  • the amount of data transmitted is small, and it does not occupy much transmission resources and communication resources.
  • the cost of RFD is low.
  • FFDs can communicate with each other, and FFDs and RFDs can also communicate with each other. Usually, RFDs do not communicate directly with each other, but communicate with FFDs, or forward data through an FFD.
  • the FFD associated with an RFD may also be called the coordinator of the RFD.
  • the coordinator can also be called a personal area network (PAN) coordinator or central control node.
  • PAN personal area network
  • the PAN coordinator is the master control node of the entire network, and there is a PAN coordinator in each ad hoc network, which is mainly used for membership management, link information management, and packet forwarding functions.
  • the device in the embodiment of this application may be a device that supports multiple WPAN standards such as 802.15.4a and 802.15.4z, as well as those currently under discussion or subsequent versions.
  • the above-mentioned devices may be tags, communication servers, routers, switches, network bridges, computers or mobile phones, home smart devices, vehicle-mounted communication devices, wearable devices, etc.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the above-mentioned device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide according to the embodiment of the present application. It suffices to communicate using a method.
  • the execution subject of the method provided by the embodiment of the present application may be FFD or RFD, or a functional module in FFD or RFD that can call a program and execute the program.
  • This application is used to support IEEE 802.11ax next-generation wireless fidelity (Wi-Fi) protocols, such as 802.11be, Wi-Fi 7 or extremely high throughput (EHT), such as 802.11be next-generation , Wi-Fi 8, Wi-Fi artificial intelligence (AI) and other 802.11 series protocol wireless LAN systems can also be applied to UWB-based wireless personal area network systems and sensing systems.
  • Wi-Fi wireless fidelity
  • EHT extremely high throughput
  • 802.11be next-generation Wi-Fi 8 Wi-Fi 8 Wi-Fi artificial intelligence
  • other 802.11 series protocol wireless LAN systems can also be applied to UWB-based wireless personal area network systems and sensing systems. It should be noted that the following describes the embodiments of the present application by taking application to a UWB-based wireless personal area network system as an example.
  • the embodiments of the present application can also be used in other communication systems, such as sixth generation (6th generation, 6G) mobile communication systems, fifth generation (5th generation, 5G) or new radio (new radio, NR) systems, Long term evolution (long term evolution, LTE) system, frequency division duplex (frequency division duplex, FDD) system, time division duplex (time division duplex, TDD) system, etc.
  • 6G sixth generation
  • 5th generation, 5G fifth generation
  • new radio new radio
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • the embodiments of this application can also be used in future communication systems.
  • the embodiments of this application can also be used for device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, machine-to-machine (M2M) communication, machine-type communication ( machine type communication (MTC), and the Internet of things (IoT) communication system or other communication systems.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • MTC machine-type communication
  • IoT Internet of things
  • the sending end and/or the receiving end may be a station (STA) in a wireless local area network (WLAN).
  • the station may be a mobile phone that supports Wi-Fi communication function, or a mobile phone that supports WiFi communication.
  • the site can support the 802.11be standard.
  • the site can also support multiple WLAN standards of the 802.11 family such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a.
  • the sending end and/or receiving end in the embodiment of the present application may also be an access point (AP) in WLAN.
  • the access point can be the access point for terminal devices (such as mobile phones) to enter the wired (or wireless) network. It is mainly deployed inside homes, buildings and campuses. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed in outdoor.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the access point can be a terminal device (such as a mobile phone) or a network device (such as a router) with a Wi-Fi chip.
  • the access point can be a device that supports the 802.11be standard.
  • the access point can also be a device that supports multiple WLAN standards of the 802.11 family such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • Access points and sites can also be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls, smart water meters and electricity meters in smart homes, and Sensors in smart cities, etc.
  • IoT Internet of Things
  • smart cameras smart remote controls
  • smart water meters and electricity meters in smart homes and Sensors in smart cities, etc.
  • Figure 1 is a schematic diagram of two application scenarios provided by this application.
  • the system 101 shown in (A) in Figure 1 is a communication system with star topology, and the system 102 shown in (B) in Figure 1 is a peer to peer topology. Communication Systems.
  • the system 101 may include multiple FFDs and multiple RFDs, and the multiple FFDs and multiple RFDs may form a star topology communication system.
  • one FFD among multiple FFDs is a PAN coordinator.
  • the PAN coordinator can transmit data with one or more other devices, that is, multiple devices can establish one-to-many or many-to-many devices.
  • One-to-one data transmission architecture One-to-one data transmission architecture.
  • the system 102 may include multiple FFDs and one RFD, and the multiple FFDs and one RFD may form a point-to-point topology communication system.
  • one FFD among multiple FFDs is a PAN coordinator.
  • a many-to-many data transmission architecture can be established between multiple different devices.
  • UWB technology can transmit data using nanosecond-level non-sinusoidal narrow pulses, which occupies a wide spectrum range. Since the pulses used by UWB technology to transmit data are narrow and the radiation spectrum density is extremely low, UWB technology has the advantages of strong multipath resolution, low power consumption, and strong confidentiality.
  • UWB technology has been written into the IEEE 802 series of wireless standards, and the WPAN standard IEEE 802.15.4a based on UWB technology has been released, as well as its evolved version IEEE 802.15.4z.
  • the next generation WPAN standard 802.15.4ab of UWB technology is being formulated. It has also been put on the agenda.
  • UWB technology transmits data by sending and receiving extremely narrow pulses with nanoseconds or less. Therefore, the synchronization of sending and receiving devices is crucial in UWB technology.
  • the so-called synchronization of transceiver equipment can be understood as the physical layer protocol data unit (PPDU) is sent in the form of pulse signals.
  • the receiving end receives multiple pulse signals and determines which of the multiple pulse signals starts. is the PPDU it wants to receive.
  • PPDU physical layer protocol data unit
  • the receiving end receives multiple pulse signals and determines which of the multiple pulse signals starts. is the PPDU it wants to receive.
  • the synchronization of transceiver devices is mainly achieved through the synchronization header (SHR) in PPDU. Specifically, the receiving end can perform correlation detection on the synchronization header to determine which of the multiple received pulse signals starts. is the PPDU it wants to receive.
  • SHR synchronization header
  • Figure 2 is a schematic diagram of a PPDU structure applicable to the embodiment of the present application.
  • PPDU includes: SHR, physical header (physical header, PHR) and physical layer (physical layer, PHY) bearer field (payload filed).
  • SHR can be used by the receiving end for PPDU detection and synchronization.
  • the receiving end can detect whether the sending end has sent a PPDU and the starting position of the PPDU based on the SHR.
  • PHR can carry physical layer indication information, which can be used to help the receiving end demodulate the data correctly.
  • the indication information may include: modulation and coding information, PPDU length, the recipient of the PPDU, etc.
  • the PHY bearer field carries the transmitted data.
  • Figure 2 also shows the structure of the SHR.
  • the SHR may include a synchronization (SYNC) field and a start-of-frame delimiter (SFD) field.
  • the SYNC field may include multiple repeated basic symbols Si , which are generated by a preamble sequence.
  • the preamble sequence may be a ternary sequence composed of three values: ⁇ –1,0,1 ⁇ , Also called Ipatov sequence.
  • Ipatov sequence Currently, there are three preamble sequence lengths defined in standard 802.15: 31, 91, and 127. Table 1, Table 2, and Table 3 are some Ipatov sequences with lengths of 31, 91, and 127 respectively.
  • the Ipatov sequence has good autocorrelation properties and can be called a perfect sequence.
  • sequence The maximum side lobe R Amax of the periodic autocorrelation function is: ⁇ 0, the maximum value. Generally, in sequence design, it is hoped that R Amax should be as small as possible. when sequence The periodic autocorrelation function of When formula 2 is satisfied, the sequence Can be called a perfect sequence.
  • j is the imaginary unit
  • f is the frequency offset value.
  • j is the imaginary unit
  • f is the frequency offset value.
  • R Cmax represents the sequence and sequence The amplitude of the periodic cross-correlation function
  • the maximum value of R Cmax can also be called a sequence and sequence The maximum side lobe of the periodic cross-correlation function.
  • the R Cmax of any two sequences in the sequence set should be as small as possible.
  • the smaller R Cmax is, the sequence and sequence The smaller the cross-correlation value of , then the sequence and sequence The interference between them will be smaller.
  • the maximum side lobe R Amax of the periodic autocorrelation function and the maximum side lobe R Cmax of the periodic cross-correlation function of the sequences in the sequence set need to satisfy the inequality (i.e. Sarwate's inequality), as shown in Equation 5.
  • Table 4 shows the cross-correlation values of the Ipatov sequence of length 127 defined in standard 802.15. As mentioned above, the smaller the cross-correlation value between two sequences, the smaller the interference between the two sequences. However, it can be seen from Table 4 that the maximum cross-correlation value of the Ipatov sequence with a length of 127 is 16, which shows that the interference between the two sequences with sequence IDs 9 and 16 is very large. When the sender uses two sequences with sequence IDs 9 and 16 for transmission on the same channel at the same time, significant interference may occur, resulting in transmission failure.
  • ⁇ [0,L-1], and l+ ⁇ L-1 is the conjugate of a l+ ⁇ .
  • Ipatov sequence includes the following two types:
  • ⁇ (x,y) represents the cross-correlation function of the sequences ⁇ x t ⁇ and ⁇ y t ⁇ , then (D 0 , D 1 ,..., D L-1 ) is a complete ternary sequence.
  • be the primitive element of the finite field GF(q k ), GF(q k ) represents the finite field with the number of elements q k , GF represents the Galois Field (GF), and q is an odd number. Power, k is an odd number.
  • C (c 0 , c 1 ,..., c L-1 ) is defined as follows:
  • Tr() is the trace function on the finite field GF(q).
  • the periodic peak side lobe ratio refers to the difference between the main lobe (i.e. the periodic autocorrelation value of the sequence when the delay is 0) and the maximum side lobe (i.e. the periodic autocorrelation value of the sequence when the delay is not 0) when performing periodic autocorrelation operations on the sequence. value), as shown in Equation 10.
  • R Amax,f the carrier offset is f, ⁇ 0 hour, the maximum value.
  • Table 5 shows the periodic peak side lobe ratio of the Ipatov sequence defined in standard 802.15 at a carrier frequency offset of 40 ppm.
  • the greater the periodic peak side lobe ratio of a sequence under a certain carrier frequency offset the better the anti-frequency offset characteristics of this sequence are.
  • the periodic peak sidelobe ratios of the sequences in the standard are uneven under the carrier frequency offset of 40ppm.
  • the correlation functions of some sequences are seriously deteriorated under the influence of the carrier frequency offset.
  • the seventh sequence is at 40ppm.
  • the periodic peak side lobe under the standard is only 9.8dB. Compared with the sequence of the same length in the standard, the performance is reduced by 2 to 5dB. When the transmitter uses the seventh sequence for transmission, it may seriously affect the transmission performance.
  • the aperiodic peak side lobe ratio refers to the difference between the main lobe (i.e., the aperiodic autocorrelation value of the sequence when the delay is 0) and the maximum side lobe (i.e., the aperiodic autocorrelation value of the sequence when the delay is not 0) when performing aperiodic autocorrelation operations on the sequence.
  • the ratio of the maximum value of the non-periodic autocorrelation value as shown in Equation 12.
  • the non-periodic autocorrelation value of Q Amax is: ⁇ 0, the maximum value.
  • Table 6 shows the aperiodic peak side lobe ratio of the Ipatov sequence defined in standard 802.15 at no carrier frequency offset and 40ppm carrier frequency offset.
  • the greater the periodic peak side lobe ratio of a sequence under a certain carrier frequency offset the better the anti-Doppler characteristics of this sequence are.
  • the non-periodic peak side-lobe ratios of the sequences in the standard under 40ppm carrier frequency deviation are uneven, and compared with the non-periodic peak side-lobe ratio under no carrier frequency deviation, it drops more. This It means that the anti-Doppler properties of the sequences in the standard are not good enough.
  • Figure 3 is a schematic diagram of the periodic autocorrelation function of an Ipatov sequence of length 31.
  • the abscissa in Figure 3 represents the time delay, and the ordinate represents the periodic autocorrelation value of the sequence.
  • the periodic autocorrelation value of the Ipatov sequence with a length of 31 is not 0 only at the origin, and is 0 elsewhere. It can be seen that the Ipatov sequence satisfies the above equation 2, so the Ipatov sequence can be called for the perfect sequence.
  • the receiving end can use the same sequence to perform correlation with the received signal, and achieve synchronization based on the relevant peak position and other information. For example, the receiving end detects the correlation result between the predefined sequence and the received signal.
  • the receiving end can determine the starting position of the PPDU.
  • the receiving end can determine the length of the PPDU and whether the data in the PPDU is the data transmitted to it by the sending end according to the PHR field. If the data in the PPDU is data transmitted to the receiving end, the receiving end can further parse the physical layer bearer field in the PPDU to obtain the data sent by the sending end; if the data in the PPDU is not data transmitted to it, Then the receiving end does not need to parse the physical layer bearer field in the PPDU.
  • Embodiments of the present application provide a communication method.
  • the sending device uses a sequence set to generate a synchronization header field.
  • the sequence set includes sequences with better characteristics, thereby improving the transmission performance and communication performance of the system.
  • Figure 4 is a schematic flow chart of a communication method 400 provided by an embodiment of the present application.
  • Method 400 may include the following steps:
  • S410 The sending device generates a synchronization header field according to the sequence set.
  • the sending device generates a synchronization header field according to any sequence in the sequence set.
  • the sequence set includes at least one of the following sequences: a sequence of length 127, a sequence of length 31, a sequence of length 91, or a sequence of length 64.
  • the sequence set includes sequences with a length of 127, and the sequence with a length of 127 includes the sequence to sequence At least one of the sequences to sequence As shown in Table 7.
  • the element "1" in the sequence shown in Table 7 can be replaced with the symbol "+”
  • the element "-1" in the sequence can be replaced with the symbol "-"
  • the sequence shown in Table 7 can be expressed as The form shown in Table 8.
  • the minimum value of the periodic peak side lobe ratio under the preset carrier frequency offset is greater than the first preset value.
  • the preset carrier frequency offset may be 40ppm.
  • the first preset value may be the minimum value of the periodic peak side lobe ratio of the Ipatov sequence of length 127 under the preset carrier frequency offset, or the first preset value may be the minimum value of the periodic peak side lobe ratio of the Ipatov sequence of length 127 under the preset carrier frequency offset.
  • the minimum value of the period peak to side lobe ratio under frequency deviation is larger than the minimum value. It should be noted that the embodiment of the present application does not limit the preset carrier frequency offset and the first preset value.
  • Table 9 shows the above sequence to sequence The periodic peak side lobe ratio at a carrier frequency deviation of 40 ppm, and the period peak side lobe ratio of an Ipatov sequence of length 127 defined in the standard 802.15 at a carrier frequency deviation of 40 ppm is shown.
  • the sequence to sequence The minimum value of the periodic peak side-lobe ratio under 40ppm carrier frequency deviation is 16.35dB, while the minimum value of the periodic peak-to-sidelobe ratio under 40ppm carrier frequency deviation of the Ipatov sequence of length 127 defined in the standard 802.15 is only 14.37dB, that is, the first preset value may be 14.37dB.
  • the sequence to sequence Due to the sequence to sequence The minimum value of the periodic peak side lobe ratio under the preset carrier frequency offset is greater than the first preset value, so the sequence to sequence has better anti-frequency offset characteristics, so the sending end device is based on the sequence to sequence
  • the transmission performance and communication performance of the system can be improved. For example, even when there is a large frequency offset between carriers, the receiving device receives the to sequence After the synchronization header field generated by a sequence in the sequence, the sequence can also be to sequence
  • the sequence and synchronization header fields in the data are correlated to detect the synchronization of the sending and receiving devices.
  • the sequence set includes the sequence to sequence In the case of multiple sequences in the sequence to sequence
  • the maximum value of the cross-correlation values of the multiple sequences in is less than the ninth preset value.
  • the ninth preset value may be the maximum value of the cross-correlation value of the Ipatov sequence of length 127, that is, 16 in Table 4 above, or the ninth preset value may be greater than the cross-correlation value of the Ipatov sequence of length 127
  • the value that is smaller than the maximum value is not limited in the embodiment of this application.
  • Table 10 shows the sequence to sequence The cross-correlation value of , where C 1 to C 8 are the sequences respectively to sequence The identifier (identifier, ID). Comparing Table 10 with Table 4 above, it can be seen that the maximum value of the cross-correlation value of the sequence set provided by the embodiment of the present application is 12, which is smaller than the maximum value of the cross-correlation value of the Ipatov sequence with a length of 127, that is, the maximum value of the cross-correlation value of the sequence set provided by the embodiment of the present application is The sequence set has better mutual correlation.
  • the sequence set includes sequences with a length of 31, and the sequence with a length of 31 includes the sequence and sequence At least one of the sequences and sequence As shown in Table 11.
  • the element "1" in the sequence shown in Table 11 can be replaced by the symbol "+”
  • the element "-1" in the sequence can be replaced by the symbol "-"
  • the sequence shown in Table 11 can be expressed as The format shown in Table 12.
  • the non-periodic peak side lobe ratio under the preset carrier frequency offset is greater than the second preset value.
  • the second preset value may be the maximum value of the non-periodic peak side lobe ratio of the Ipatov sequence of length 31 under the preset carrier frequency offset, or the second preset value may be the ratio of the Ipatov sequence of length 31 under the preset carrier frequency offset. It is preset that the maximum value of the non-periodic peak side lobe ratio under the carrier frequency offset is larger. The embodiment of the present application does not limit the second preset value.
  • the aperiodic peak side lobe ratio when there is no carrier frequency offset is greater than or equal to the sixth preset value.
  • the sixth preset value may be the maximum value of the non-periodic peak side lobe ratio of the Ipatov sequence of length 31 without carrier frequency offset, or the sixth preset value may be the maximum value of the non-periodic peak side lobe ratio of the Ipatov sequence of length 31 without carrier frequency offset.
  • the maximum value of the non-periodic peak side lobe ratio when the carrier frequency offset is greater, this application Please embodiment does not limit the sixth preset value.
  • the sixth preset value may be the aperiodic peak side lobe ratio of the first sequence in Table 6 above at a carrier frequency offset of 40 ppm, that is, the sixth preset value is 18.06dB.
  • Table 13 shows the above sequence to sequence Non-periodic peak side lobe ratio under no carrier frequency offset and 40ppm carrier frequency offset, where C 9 and C 10 are the sequences respectively to sequence ID.
  • Table 13 also shows the aperiodic peak side lobe ratio of the Ipatov sequence of length 31 defined in the standard 802.15 at no carrier frequency offset and 40ppm carrier frequency offset. It can be seen from Table 13 that the maximum value of the non-periodic peak side lobe ratio of the Ipatov sequence with a length of 31 under a carrier frequency offset of 40 ppm is 15.6dB, that is, the second preset value can be 15.6dB. And sequence to sequence The non-periodic peak side lobe ratios at 40ppm carrier frequency offset are 17.3dB and 17.2dB respectively, both greater than 15.6dB, which shows that the sequence to sequence Has better anti-Doppler properties.
  • the non-periodic peak side lobe ratio of the Ipatov sequence with a length of 31 under the carrier frequency offset of 40 ppm decreases significantly compared with the non-periodic peak side lobe ratio when there is no carrier frequency offset, and sequence to sequence
  • the non-periodic peak side-lobe ratio under the carrier frequency offset of 40ppm is smaller than the non-periodic peak side-lobe ratio when there is no carrier frequency offset, which shows that the sequence to sequence The anti-frequency offset characteristics are better.
  • the sequence and sequence Due to the above technical solution, due to the sequence and sequence The aperiodic peak side lobe ratio under the preset carrier frequency offset is greater than the second preset value, so the sequence and sequence The anti-Doppler characteristics are relatively good, so the transmitter device is based on the sequence to sequence
  • the transmission performance and communication performance of the system can be improved. For example, even when there is a large frequency offset between carriers, the receiving device receives the sequence according to the or sequence After the generated synchronization header field, the sequence can also be or sequence Perform correlation detection with the synchronization header field to achieve synchronization of the sending and receiving devices.
  • sequence and sequence The aperiodic peak side lobe ratio when there is no carrier frequency offset is greater than or equal to the sixth preset value, so the sequence and sequence The aperiodic autocorrelation characteristic is relatively low, which can reduce the false detection rate of the synchronization header field by the receiving end device.
  • the sequence set includes sequences with a length of 91
  • the sequence with a length of 91 includes the sequence and sequence At least one of the sequences and sequence As shown in Table 11 above.
  • the third preset value may be the maximum value of the non-periodic peak side lobe ratio of the Ipatov sequence with a length of 91 under the preset carrier frequency offset, or the third preset value may be the ratio of the Ipatov sequence with a length of 91 under the preset carrier frequency offset. It is preset that the maximum value of the non-periodic peak side lobe ratio under the carrier frequency offset is larger.
  • the embodiment of the present application does not limit the third preset value.
  • the third preset value may be the aperiodic peak side lobe ratio of the 29th sequence in Table 6 above under a carrier frequency offset of 40 ppm, that is, the third preset value is 28.76dB.
  • the maximum value of the non-periodic peak side lobe ratio when there is no carrier frequency offset is greater than or equal to the seventh preset value.
  • the seventh preset value may be the maximum value of the non-periodic peak side lobe ratio of the Ipatov sequence of length 91 without carrier frequency offset, or the seventh preset value may be the maximum value of the non-periodic peak side lobe ratio of the Ipatov sequence of length 91 without carrier frequency offset.
  • the maximum value of the non-periodic peak side lobe ratio when the carrier frequency is offset is greater.
  • the embodiment of the present application does not limit the seventh preset value.
  • the seventh preset value may be the aperiodic peak side lobe ratio of the 29th sequence in Table 6 above without carrier frequency offset, that is, the seventh and fourth preset value is 22.61dB.
  • the transmitter device is based on the sequence to sequence
  • the sequence and sequence When a sequence in a sequence generates a synchronization header field and sends the synchronization header field, the transmission performance and communication performance of the system can be improved. For example, even when there is a large frequency offset between carriers, the receiving device receives the sequence according to the or sequence After the generated synchronization header field, you can also pass over-aligned sequence or sequence Perform correlation detection with the synchronization header field to achieve synchronization of the sending and receiving devices.
  • sequence and sequence The aperiodic peak side lobe ratio when there is no carrier frequency offset is greater than or equal to the seventh preset value, so the sequence and sequence The aperiodic autocorrelation characteristic is relatively low, which can reduce the false detection rate of the synchronization header field by the receiving end device.
  • the sequence set includes sequences with a length of 127
  • the sequence with a length of 127 includes the sequence sequence As shown in Table 11 above.
  • the non-periodic peak side lobe ratio under the preset carrier frequency offset is greater than the fourth preset value.
  • the fourth preset value may be the maximum value of the aperiodic peak side lobe ratio of the Ipatov sequence with a length of 127 under the preset carrier frequency offset, or the fourth preset value may be the ratio of the Ipatov sequence with a length of 127 under the preset carrier frequency offset. It is preset that the maximum value of the non-periodic peak side lobe ratio under the carrier frequency offset is larger.
  • the embodiment of the present application does not limit the fourth preset value.
  • the fourth preset value may be the non-periodic peak side lobe ratio of the 9th sequence in Table 6 above under a carrier frequency offset of 40 ppm, that is, the fourth preset value is 19.71dB.
  • the aperiodic peak side lobe ratio when there is no carrier frequency offset is greater than or equal to the eighth preset value.
  • the eighth preset value may be the maximum value of the non-periodic peak side lobe ratio of the Ipatov sequence of length 127 without carrier frequency offset, or the eighth preset value may be the maximum value of the non-periodic peak side lobe ratio of the Ipatov sequence of length 127 without carrier frequency offset.
  • the maximum value of the non-periodic peak side lobe ratio when the carrier frequency is offset is greater.
  • the embodiment of the present application does not limit the eighth preset value.
  • the eighth preset value may be the aperiodic peak side lobe ratio of the ninth sequence in Table 6 above without carrier frequency offset, that is, the fourth preset value is 22.14dB.
  • the sequence Due to the above technical solution, due to the sequence The aperiodic peak side lobe ratio under the preset carrier frequency offset is greater than the fourth preset value, so the sequence The anti-Doppler characteristics are relatively good, so the transmitter device is based on the sequence Generating a synchronization header field and sending the synchronization header field can improve the transmission performance and communication performance of the system. For example, even when there is a large frequency offset between carriers, the receiving device receives the sequence according to the After the generated synchronization header field, the sequence can also be Perform correlation detection with the synchronization header field to achieve synchronization of the sending and receiving devices.
  • sequence The aperiodic peak side lobe ratio when there is no carrier frequency offset is greater than or equal to the eighth preset value, so the sequence The aperiodic autocorrelation characteristic is relatively low, which can reduce the false detection rate of the synchronization header field by the receiving end device.
  • sequence set includes sequences of length 64
  • sequence of length 64 includes the sequence sequence As shown in Table 14.
  • the element "1" in the sequence shown in Table 14 can be replaced with the symbol "+”
  • the element "-1" in the sequence can be replaced with the symbol "-"
  • the sequence shown in Table 14 can be expressed as The format shown in Table 15.
  • the length of the zero correlation zone is greater than or equal to the fifth preset value.
  • the fifth preset value may be the maximum value of the zero correlation zone length of the sequences included in the Golay zero correlation zone (ZCZ) sequence set, or may be the zero correlation zone length of the sequences included in the Golay ZCZ sequence set. The average length of the correlation zone. It should be noted that in the embodiment of this application, the fifth preset value No restrictions.
  • Exemplary sequence It is the sequence with the largest zero correlation zone length in the Golay ZCZ sequence set.
  • the Golay ZCZ sequence set can be expressed by Equation 14.
  • q is an even number, m is an integer, and m ⁇ 2, k ⁇ m-1;
  • the sequence Due to the sequence The length of the zero correlation zone is greater than or equal to the fifth preset value, so the sequence It has good local correlation characteristics and anti-frequency offset characteristics, thus ensuring that the receiving end device is based on the sequence and according to the sequence
  • the generated synchronization header field realizes synchronization of sending and receiving devices and avoids false alarm problems caused by the devices. Furthermore, since the sequence It is a binary sequence, so it can also simplify the structure of the transceiver device.
  • Figure 5 shows the sequence Schematic diagram of the periodic autocorrelation function.
  • the abscissa in Figure 5 represents the delay, and the ordinate represents the sequence. periodic autocorrelation value. It can be seen from (A) in Figure 5 that when there is no carrier frequency offset and the delay is less than 152, the sequence The value of the periodic autocorrelation function is 0, which shows that the sequence Has good local correlation properties. It can be seen from (B) in Figure 5 that under 40ppm carrier frequency deviation, the sequence The maximum side lobe in the (0,72) region is 2.66, which shows that the sequence It has good anti-frequency offset characteristics.
  • the sequence set required to generate the synchronization header field may include any of the above-mentioned sequences with a length of 127, a sequence with a length of 31, a sequence with a length of 91, and a sequence with a length of 64.
  • sequence alternatively, the sequence set includes the above-mentioned sequence of length 127, sequence of length 31, sequence of length 91, sequence of length 64, a combination of multiple sequences of different lengths, for example: sequence of length 127, length A combination of a sequence of 31 and a sequence of length 91; alternatively, the sequence set includes the sequence of length 127, a sequence of length 31, a sequence of length 91 and a sequence of length 64.
  • the synchronization header field generated by the sending device according to the sequence set can include a SYNC field and an SFD field.
  • the SYNC field includes multiple repeated basic symbols si .
  • the SFD field can be based on the basic symbols and predetermined symbols. Assume that the sequence (or specified sequence) is expanded.
  • s i is generated based on the sequence set, either directly from the sequences in the sequence set , or by equivalently deforming the sequences in the sequence set first, and then generating s i from the deformed sequence.
  • the above equivalent modification may be to perform a cyclic shift operation on the sequences in the sequence set, or to perform a reverse order operation on the sequences in the sequence set, or to perform a cyclic shift and reverse order operation on the sequences in the sequence set to form a new sequence.
  • the so-called reverse order operation can also be understood as a head-to-tail operation or a reverse operation.
  • the result of a reverse order operation on the sequence ⁇ a, b, c, d, e ⁇ is ⁇ e, d, c, b, a ⁇ .
  • generating synchronization header fields based on sequence sets can also be understood as generating basic symbols based on sequences in the sequence set, and the synchronization header fields include basic symbols; or it can also be understood as generating PPDUs based on sequences in the sequence set, and the PPDU Include this synchronization header field.
  • the pulse repetition frequency refers to the number of pulses transmitted per second and is the reciprocal of the pulse repetition interval (PRI).
  • the pulse repetition interval is the time interval between one pulse and the next pulse.
  • ⁇ L (n) is the Delta function, which can also be called the unit impulse function
  • N is the length of the Delta function
  • the preset sequence can be ⁇ 0,1,0,1,1,0,0,1 ⁇ , then
  • step (1) according to the sequence When generating the basic symbol s i , you can first Perform equivalent deformation to obtain the sequence equivalent deformation sequence, and then generate s i based on the equivalent deformation sequence.
  • the equivalent deformation includes the sequence Perform circular shift operations and/or reverse order operations.
  • Step (3) is only used as an example and is not limited by the embodiment of the present application.
  • S420 The sending device sends the synchronization header field.
  • the receiving end receives the synchronization header field.
  • the sending end device sends a synchronization header field, including: the sending end device sends a PPDU based on UWB, and the PPDU includes the synchronization header field. Accordingly, the receiving device receives the PPDU.
  • the structure of the PPDU may be similar to the structure shown in Figure 2, including the SHR field, the PHR field and the PHY bearer field, which will not be described again here.
  • the PPDU is a PPDU used for ranging, or a PPDU used for sensing.
  • S430 The receiving device performs correlation detection based on the sequence set and the synchronization header field.
  • the correlation detection in S430 may be auto-correlation detection or cross-correlation detection, and the embodiment of the present application will not limit the specific method of correlation detection.
  • the receiving device can determine whether the PPDU is detected and the location of the PPDU based on the correlation detection result. Specific methods for determining synchronization based on correlation detection results may use technologies known to those skilled in the art or newly developed, and are not limited in this application.
  • the sequence set can include sequences of different lengths, thereby meeting the needs of different scenarios. That is, the sending device can select sequences of different lengths according to the needs to generate synchronization header fields and send the synchronization header fields, thereby Achieve synchronization of sending and receiving devices.
  • the sequence set includes sequences that have at least one of the following characteristics: good anti-frequency offset characteristics, good anti-Doppler characteristics, good non-periodic autocorrelation characteristics, or a large zero-correlation zone length, so based on
  • the sequence set provided by the embodiment of the present application transmits the synchronization header field, it can improve the transmission performance of the system and reduce the misdetection rate of the synchronization header field by the receiving end device.
  • the synchronization header field generated according to the sequence set provided by the embodiment of the present application is included in the PPDU, and the PPDU is a PPDU used for ranging or sensing, then the receiving end device performs ranging or sensing based on the PPDU.
  • Performance will not be affected by changes in the PPDU transmission environment. For example, if the sequence used to generate the synchronization header field has good anti-frequency offset characteristics, for example, the sequence used to generate the synchronization header field is the sequence in Table 7 above, then even in a transmission environment with a large carrier offset, The performance of ranging or sensing based on PPDU by the receiving end device will not be greatly affected by the carrier frequency offset.
  • the sequence used to generate the synchronization header field has good aperiodic autocorrelation properties and has good anti-Doppler properties, for example, if the sequence used to generate the synchronization header field is the sequence in Table 11 above, then it can Determine synchronization, ranging or sensing performance without carrier frequency offset and avoid false detection problems caused by equipment. For another example, if the sequence used to generate the header field has a larger zero correlation zone length, the PPDU including the synchronization header field will have a longer detection distance and a larger delay tolerance range, thus ensuring that the PPDU is based on the PPDU. The performance of ranging or sensing avoids the problem of false alarms caused by the equipment.
  • Figure 6 is a schematic flow chart of a communication method 600 provided by an embodiment of the present application.
  • Method 600 may include the following steps:
  • S610 The sending device generates a first synchronization header field according to the first sequence in the first sequence set.
  • the first sequence is any sequence in the first sequence set.
  • Each sequence in the first sequence set is obtained by shifting and/or sampling the sequence in the second sequence set, and one or more of the following relationships is satisfied between the first sequence set and the second sequence set: Relationship #1, the minimum value of the M-cycle peak side-lobe ratios of the first sequence set under the preset carrier frequency offset is greater than the minimum value of the N-cycle peak side-lobe ratios of the second sequence set under the preset carrier frequency offset. ;Relationship #2, the average of the peak side-lobe ratios of M periods is greater than the average of the peak side-lobe ratios of N periods. mean.
  • the M period peak side lobe ratios correspond to the M sequences included in the first sequence set
  • the N period peak side lobe ratios correspond to the N sequences included in the second sequence set.
  • M and N are both positive. integer.
  • the second sequence set is a sequence set composed of Ipatov sequences.
  • the second sequence set is a sequence set composed of Ipatov sequences of length 127, or the second sequence set is a sequence set composed of Ipatov sequences of length 91, or the second sequence set is composed of Ipatov sequences of length 31 sequence set.
  • the first sequence set and the second sequence set also satisfy one or more of the following relationships: Relation #3, the maximum value of the cross-correlation value of the first sequence set is less than the cross-correlation value of the second sequence set. Maximum value of correlation values; Relationship #4, the average of the cross-correlation values of the first set of sequences is less than the average of the cross-correlation values of the second set of sequences.
  • the maximum value of the cross-correlation value of the first sequence set is defined as: ⁇ [0,L-1], and are any two sequences in the first sequence set.
  • the maximum value of the cross-correlation value of the second sequence set is defined as: , ⁇ [0,L-1], and are any two sequences in the first sequence set.
  • the first sequence set includes 4 sequences, or includes 8 sequences.
  • each sequence in the first sequence set is obtained by shifting the sequence in the second sequence set.
  • each sequence in the first sequence set is obtained by shifting the sequence in the second sequence set k bits to the right, or each sequence in the first sequence set is obtained by shifting the sequence in the second sequence set k bits to the left.
  • bit, k is a positive integer. If the length of the sequences included in the second sequence set is L, then 1 ⁇ k ⁇ L-1.
  • record sequence #1 in the second sequence set as Then the sequence obtained after moving sequence #1 k bits to the right can be expressed as The sequence obtained after shifting sequence #1 k bits to the left can be expressed as It should be noted that after shifting sequence #1, the length of the sequence obtained is equal to sequence #1.
  • sequence #A in the first sequence set is obtained by shifting sequence #1 in the second sequence set to the right by 1 bit
  • sequence #B in the first sequence set is obtained by shifting sequence #2 in the second sequence set to the right. Obtained by moving 2 bits.
  • each sequence in the first sequence set is obtained by sampling the sequence in the second sequence set.
  • the sampling multiple e is relatively prime to the length L of the sequence in the second sequence set, and e is positive. integer.
  • sequence #A in the first sequence set is obtained by sampling sequence #1 in the second sequence set 4 times
  • sequence #B in the first sequence set is obtained by sampling sequence #2 in the second sequence set 2 times. obtained by sampling.
  • each sequence in the first sequence set is obtained by shifting and sampling the sequence in the second sequence set. Got it this way.
  • sequence #A in the first sequence set is obtained by sampling sequence #1 in the second sequence set 4 times and then shifting 1 bit to the right.
  • Sequence #B in the first sequence set is obtained by sampling the second sequence
  • the concentrated sequence #2 is obtained by shifting 1 bit to the left and then sampling 3 times. It should be noted that the sequence obtained after sampling and shifting sequence #1 is equal to the length of sequence #1, and the sequence obtained after shifting and sampling sequence #2 is equal to the length of sequence #2.
  • different sequences in the first sequence set are obtained by performing different processing on sequences in the second sequence set. For example, a part of the sequences in the first sequence set is obtained by shifting the sequences in the second sequence set, and another part of the sequences in the first sequence set is obtained by sampling the sequences in the second sequence set. For another example, a part of the sequences in the first sequence set is obtained by sampling the sequences in the second sequence set, and another part of the sequences in the first sequence set is obtained by shifting and sampling the sequences in the second sequence set. owned.
  • the embodiment of the present application does not limit the method of generating the first sequence set.
  • the first sequence set is obtained by shifting and/or sampling one or more sequences in the second sequence set. That is to say, if sequence set #1 obtained by shifting and/or sampling one or more sequences in the second sequence set and the second sequence set satisfy the above-mentioned relationship #1 and/or relationship #2, then the sequence Set #1 serves as the first sequence set.
  • sequence set #1 is obtained by shifting sequence #1 in the second sequence set to the right by 1 bit, 2 bits, 3 bits, ..., L-1 bits respectively.
  • sequence #1 is expressed as Then the sequence set #1 obtained by shifting sequence #1 in the direction includes 4 sequences, which are expressed as: Furthermore, if sequence set #1 and the second sequence set satisfy relationship #1 and/or relationship #2, then sequence set #1 is used as the first sequence set.
  • the first sequence set is obtained by filtering sequence set #1
  • sequence set #1 is obtained by shifting and/or sampling one or more sequences in the second sequence set. Got it later.
  • the steps of filtering sequence set #1 to obtain the first sequence set include: S1, separately calculating the periodic peak sidelobe ratio of each sequence in sequence set #1 under the preset carrier frequency offset; S2, according to each sequence
  • the periodic peak sidelobe ratio of the sequence under the preset carrier frequency offset selects M sequences to form the first sequence set.
  • the periodic peak sidelobe ratio of each sequence in the M sequences is greater than the smallest of the N periodic peak sidelobe ratios. value. It can be understood that the first sequence set and the second sequence set obtained by filtering sequence set #1 according to the above steps satisfy relationship #1 and/or relationship #2.
  • the steps of filtering sequence set #1 to obtain the first sequence set include: S1, randomly select one or more sequences from sequence set #1 to form sequence set #2; S2, if sequence set #2 is the same as the sequence set #2, If the two sequence sets satisfy the above relationship #1 and/or relationship #2, then sequence set #2 will be used as the first sequence set. If sequence set #2 and the second sequence set do not satisfy the above relationship #1 and relationship #2, then continue Sequence set #1 is filtered until sequence set #2 composed of one or more sequences selected from sequence set #1 and the second sequence set satisfy the above-mentioned relationship #1 and/or relationship #2.
  • first sequence set and the second sequence set also satisfy the above-mentioned relationship #3 and/or relationship #4, then the first sequence set is the same as the third sequence set, or the first sequence set Set is a subset of the third sequence set.
  • Each sequence in the third sequence set is obtained by shifting and/or sampling the sequence in the second sequence set, and one or more of the following relationships is satisfied between the third sequence set and the second sequence set: Relationship #5, the minimum value of the L period peak side lobe ratio of the third sequence set under the preset carrier frequency offset is greater than the minimum value of the N period peak side lobe ratio, relationship #6, L period peak side lobe ratio The average value is greater than the average value of the peak side lobe ratio of N cycles.
  • the L period peak side lobe ratios correspond one to one to the L sequences included in the third sequence set.
  • the method of generating the third sequence set may refer to the method of generating the first sequence set that satisfies the above-mentioned relationship #1 and/or relationship #2 with the second sequence set.
  • the third sequence set is regarded as the first The sequence set, or the first sequence set and the third sequence set are the same.
  • the definition of the maximum value and the average value of the cross-correlation value of the third sequence set may refer to the above definition of the maximum value and average value of the cross-correlation value of the first sequence set.
  • the first sequence set is obtained by searching the third sequence set.
  • the first sequence set is obtained by searching the third sequence set through a dynamic programming algorithm and/or a pruning algorithm. It can be understood that the first sequence set obtained by searching the third sequence set is a subset of the third sequence set.
  • the way to obtain the first sequence set by searching the third sequence set through the dynamic programming algorithm is as follows: use “M sequences selected from the third sequence set” as the independent variable of the dynamic programming algorithm, and use “M sequences composed of "The maximum value and/or average value of the cross-correlation value of the sequence set” is used as the dependent variable of the dynamic programming algorithm, and "the maximum value of the cross-correlation value of the sequence set composed of M sequences is smaller than the second sequence set.
  • the periodic peak side lobe ratio of the first sequence set shown in Table 7 under a carrier frequency offset of 40 ppm is shown in Table 9 above.
  • Table 9 Also shown is the periodic peak side lobe ratio of the second sequence set under a carrier frequency offset of 40 ppm.
  • the second sequence set is a sequence set composed of Ipatov sequences with a length of 127. It can be seen from Table 9 that the minimum value of the peak side lobe ratio of the first sequence set in 8 cycles under 40 ppm carrier frequency deviation is 16.35dB, and the peak side lobe ratio of the second sequence set in 8 cycles under 40 ppm carrier frequency deviation is 16.35dB.
  • the minimum value in the ratio is 14.37dB, that is, the above-mentioned relationship #1 is satisfied between the first sequence set and the second sequence set shown in Table 7.
  • the average peak side-lobe ratio of the first sequence set in 8 cycles under 40 ppm carrier frequency deviation is 16.9dB
  • the average peak side-lobe ratio in 8 cycles under 40 ppm carrier frequency deviation in the second sequence set is 16.61 dB, that is, the above-mentioned relationship #2 is also satisfied between the first sequence set and the second sequence set shown in Table 7.
  • the cross-correlation values for the first set of sequences shown in Table 7 are as shown in Table 10 above.
  • the maximum cross-correlation value of the first sequence set is 12, and the maximum cross-correlation value of the second sequence set is 12. is 16, that is, the first series set and the second series set shown in Table 7 also satisfy the above relationship #3.
  • the average cross-correlation value of the first sequence set is 8.75
  • the average cross-correlation value of the second sequence set is 9.4375. That is, the first sequence set and the second sequence set shown in Table 7 also satisfy the above Relationship #4.
  • the method 600 further includes: the sending device generates a second synchronization header field according to the second sequence in the first sequence set.
  • the second sequence is any sequence in the first sequence set that is different from the first sequence.
  • the sending device generates the second synchronization header field according to the second sequence, refer to S410 in the method 400 above.
  • S620 The sending end device sends the first PPDU.
  • the first PPDU includes a first synchronization header field.
  • the receiving end device receives the first PPDU.
  • the sending device if the sending device generates the second synchronization header field according to the second sequence, in S620, the sending device also sends a second PPDU, and the second PPDU includes the second synchronization header field.
  • the structure of the PPDU may be similar to the structure shown in Figure 2, including the SHR field, the PHR field and the PHY bearer field, which will not be described again here.
  • the receiving end device receives the first PPDU and the second PPDU; or, the first receiving end device receives the first PPDU, and the second receiving end device receives the second PPDU; or, the first receiving end device receives The first PPDU and the second PPDU, and the second receiving end device receives the first PPDU and the second PPDU, and there is no restriction on this.
  • S630 The receiving device performs correlation detection based on the first sequence and the first synchronization header field.
  • the correlation detection in S630 may be auto-correlation detection or cross-correlation detection, and the embodiment of the present application will not limit the specific method of correlation detection.
  • the receiving device performs correlation detection according to the second sequence and the second synchronization header field.
  • the sequences in the first sequence set are more resistant to frequency offset than the sequences in the second sequence set.
  • the characteristics are good, even when there is a large frequency offset between carriers, the periodic peak side lobe ratio of the first sequence in the first sequence set is relatively high. Therefore, when the sending end device generates the first synchronization header field based on the first sequence and sends the first PPDU including the first synchronization header field, the receiving end device is less likely to misdetect the first PPDU, which can improve System performance.
  • the first PPDU is a PPDU used for ranging or sensing, the performance of the receiving device in ranging or sensing based on the first PPDU will not be greatly affected by the carrier frequency offset.
  • the sequences in the first sequence set have better anti-interference performance than the sequences in the second sequence set.
  • the sending end device When the sending end device generates the first synchronization header field based on the first sequence in the first sequence set and generates the second synchronization header field based on the second sequence in the first sequence set, and when the sending end device simultaneously transmits the first synchronization header field on the same channel,
  • the first PPDU of the header field and the second PPDU containing the second synchronization header field are used, the cross-correlation value between the second sequence and the first sequence is smaller, so the interference between the first PPDU and the second PPDU is smaller. This in turn can improve transmission performance.
  • Figure 7 is a schematic flow chart of a communication method 700 provided by an embodiment of the present application.
  • Method 700 may include the following steps:
  • S710 The sending device generates a synchronization header field according to the first sequence in the first sequence set.
  • the first sequence is any sequence in the first sequence set.
  • the first sequence set and the second sequence set satisfy one or more of the following relationships: Relation #A, the minimum value of the M non-periodic peak sidelobe ratios of the first sequence set under the preset carrier frequency offset Greater than the minimum value of the N non-periodic peak side lobe ratios of the second sequence set under the preset carrier frequency offset; Relationship #B, the average of the M non-periodic peak side lobe ratios is greater than the N non-periodic peak side lobe ratios average of.
  • the M non-periodic peak side lobe ratios have a one-to-one correspondence with the M sequences included in the first sequence set
  • the N aperiodic peak side lobe ratios have a one-to-one correspondence with the N sequences included in the second sequence set.
  • the description of the second sequence set may refer to S610 in the method 600 above.
  • the embodiment of the present application does not limit the method of generating the first sequence set.
  • the first sequence set is obtained by filtering sequence set #A, which is a randomly generated sequence set.
  • the steps of filtering sequence set #2 to obtain the first sequence set include: S1, separately calculate the aperiodic peak sidelobe ratio of each sequence in sequence set #A under the preset carrier frequency offset; S2, according to each sequence M sequences are selected from the non-periodic peak side lobe ratios of the sequences at the preset carrier frequency offset to form the first sequence set.
  • the non-periodic peak side lobe ratio of each sequence in the M sequences is greater than N non-periodic peak side lobes.
  • the minimum value among the ratios, or the non-periodic peak side lobe ratio of each of the M sequences is greater than the maximum value among the N non-periodic peak side lobe ratios.
  • the steps of filtering sequence set #A to obtain the first sequence set include: S1, randomly select one or more sequences from sequence set #A to form sequence set #B; S2, if sequence set #B is the same as the first sequence set #A, If the two sequence sets satisfy the above relationship #A and/or relationship #B, then sequence set #B will be used as the first sequence set. If sequence set #B and the second sequence set do not satisfy the above relationship #A and relationship #B, then continue Sequence set #A is filtered until sequence set #B composed of one or more sequences selected from sequence set #A and the second sequence set satisfy the above-mentioned relationship #A and/or relationship #B.
  • each sequence in the first sequence set is searched through a coordinate descent algorithm and/or a genetic algorithm.
  • the method of searching to obtain a sequence in the first sequence set through the coordinate descent algorithm is as follows: randomly generate a sequence set #A including Z (Z is a positive integer) sequences, and the length of each sequence in sequence set #A is L; Flip the first element of each sequence in sequence set #A to form sequence set #B, where if the first element of the sequence is "-1", flip the first element to "1” , if the first element of the sequence is "1", then flip the first element to "-1", if the first element of the sequence is "0", then the first element remains unchanged; calculation The non-periodic peak side-lobe ratio of each sequence in sequence set #B under the preset carrier frequency offset, and select the sequence #A with the largest non-periodic peak side-lobe ratio; if sequence #A is under the preset carrier frequency offset If the non-periodic peak side-lobe ratio is greater than the maximum value among the N non-periodic peak side-lobe ratios, sequence #A will be regarded as a sequence in the first
  • sequence #A is next to the non-periodic peak value under the preset carrier frequency offset If the lobe ratio is less than the maximum value among the N non-periodic peak side-lobe ratios, continue to flip the second element of each sequence in sequence set #B until a sequence that meets the requirements is selected.
  • the method of obtaining a sequence in the first sequence set through genetic algorithm search is as follows: randomly generate sequence set #A including Z sequences; perform selection, crossover and mutation operations on sequence set #A to obtain sequence set #B, for example After selecting Z' sequences from the sequence set, perform pairwise exclusive OR on the Z' sequences to obtain Z' 2 sequences, and then flip the first element of each sequence of the Z' 2 sequences to obtain Sequence set #B; Calculate the aperiodic peak side-lobe ratio of each sequence in sequence set #B under the preset carrier frequency offset, and select the sequence #A with the largest aperiodic peak side-lobe ratio; if sequence #A is in the preset carrier frequency offset, Assume that the non-periodic peak side lobe ratio under the carrier frequency offset is greater than the maximum value among N non-periodic peak side lobe ratios, then sequence #A is regarded as a sequence in the first sequence set.
  • sequence #A is at the preset carrier frequency offset If the non-periodic peak side-lobe ratio is less than the maximum value among the N non-periodic peak side-lobe ratios, continue to perform selection, crossover and mutation operations on sequence set #B until a sequence that meets the requirements is selected.
  • the first sequence set provided by the embodiment of the present application includes the sequences in Table 11 above. and sequence sequence and sequence The non-periodic peak side lobe ratio of is shown in Table 13.
  • Table 13 also shows the aperiodic peak sidelobe ratio for the second sequence set.
  • the second sequence set is a sequence set composed of Ipatov sequences with a length of 31. It can be seen from Table 13 that the minimum value of the peak side lobe ratio of the first sequence set in 2 cycles under 40 ppm carrier frequency deviation is 17.2dB, and the peak side lobe ratio of the second sequence set in 8 cycles under 40 ppm carrier frequency deviation.
  • the minimum value in the ratio is 11.6dB, that is, the above-mentioned relationship #A is satisfied between the first sequence set and the second sequence set.
  • the average peak sidelobe ratio of the first sequence set in 2 cycles under 40ppm carrier frequency deviation is 17.25dB
  • the average value of the second sequence set in 8 cycles under 40ppm carrier frequency deviation is 17.25dB.
  • the average value of the peak side-lobe ratio is 14.29dB, that is, the above-mentioned relationship #B is also satisfied between the first sequence set and the second sequence set.
  • the non-periodic peak side lobe ratio of the sequences in the second sequence set under the carrier frequency offset of 40 ppm decreases significantly compared with the non-periodic peak side lobe ratio when there is no carrier frequency offset, and sequence and sequence The non-periodic peak side-lobe ratio under the carrier frequency offset of 40ppm is smaller than the non-periodic peak side-lobe ratio when there is no carrier frequency offset, which shows that the first sequence set has better anti-frequency offset characteristics.
  • first sequence set provided by the embodiment of the present application may include one or more sequences in Table 11 above, that is, including the above sequences to sequence One or more of them are not limited by the embodiments of this application.
  • S720 The sending end device sends PPDU.
  • PPDU includes synchronization header field.
  • the receiving end device receives the PPDU.
  • S730 The receiving device performs correlation detection based on the first sequence and the synchronization header field.
  • the correlation detection in S730 may be auto-correlation detection or cross-correlation detection.
  • the embodiment of this application is not limited to the specific method of correlation detection.
  • the sequences in the first sequence set are more anti-DOP than the sequences in the second sequence set.
  • the characteristics are good, even when there is a large frequency offset between carriers, the aperiodic peak side lobe ratio of the first sequence in the first sequence set is relatively high. Therefore, when the sending device generates the synchronization header field based on the first sequence and sends the PPDU containing the synchronization header field, the receiving device is less likely to misdetect the PPDU, thereby improving system performance. For example, when the PPDU is a PPDU used for ranging or sensing, the performance of the receiving device in ranging or sensing based on the PPDU will not be greatly affected by the carrier frequency offset.
  • devices in the existing network architecture are mainly used as examples for illustrative explanations (such as sending devices, receiving devices, etc.). It should be understood that the specific form of the devices is The application examples are not limiting. For example, devices that can implement the same functions in the future are suitable for the embodiments of the present application.
  • the methods and operations implemented by devices can also be implemented by components of the device (such as chips or circuits).
  • the sending end device and the receiving end device include hardware structures and/or software modules corresponding to each function.
  • Embodiments of the present application can divide the sending end device or the receiving end device into functional modules according to the above method embodiments.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one process. in the module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods. The following is an example of dividing each functional module according to each function.
  • FIG 8 is a schematic block diagram of a device provided by an embodiment of the present application.
  • the device 2000 may include a transceiver unit 2010 and a processing unit 2020.
  • the transceiver unit 2010 can communicate with the outside, and the processing unit 2020 is used for data processing.
  • the transceiver unit 2010 may also be called a communication interface or a communication unit.
  • the device 2000 may also include a storage unit, which may be used to store instructions and/or data, and the processing unit 2020 may read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments. .
  • the device 2000 may be the sending device in the aforementioned embodiment, or may be a component of the sending device. components (such as chips).
  • the device 2000 can implement steps or processes corresponding to those performed by the sending end device in the above method embodiment, wherein the transceiving unit 2010 can be used to perform operations related to the sending and receiving of the sending end device in the above method embodiment, and the processing unit 2020 can be used Perform operations related to the processing of the sending device in the above method embodiment.
  • the processing unit 2020 is configured to generate a synchronization header field according to a sequence set.
  • the sequence set includes at least one of the following sequences: a sequence with a length of 127, a sequence with a length of 31, and a sequence with a length of 91. , or a sequence of length 64; the transceiver unit 2010 is used to send the synchronization header field.
  • the processing unit 2020 is configured to generate a synchronization header field according to the first sequence in the first sequence set, and each sequence in the first sequence set is a shifted sum of the sequence in the second sequence set. /or obtained by sampling, the first sequence set and the second sequence set satisfy one or more of the following relationships: M period peak side lobe ratios of the first sequence set under the preset carrier frequency offset The minimum value in is greater than the minimum value among the N period peak side lobe ratios of the second sequence set under the preset carrier frequency offset, and the average value of the M period peak side lobe ratios is greater than the N period peak side lobe ratio.
  • the average value of the ratios wherein, the M period peak side lobe ratios correspond to the M sequences included in the first sequence set, and the N period peak side lobe ratios correspond to the N sequences included in the second sequence set.
  • the transceiver unit 2010 is used to send PPDU, and the PPDU includes the synchronization header field.
  • the processing unit 2020 is configured to generate a synchronization header field according to the first sequence in the first sequence set, and one or more of the following relationships are satisfied between the first sequence set and the second sequence set.
  • the transceiver unit 2010 is configured to send a PPDU, which includes the synchronization header field.
  • the processing unit 2020 is configured to generate a synchronization header field according to the first sequence, which is the sequence with the largest zero correlation area in the sequence set that satisfies the above equation 14; the transceiver unit 2010 is configured to Send a PPDU including the synchronization header field.
  • the device 2000 may be the receiving end device in the aforementioned embodiment, or may be a component (such as a chip) of the receiving end device.
  • the device 2000 can implement steps or processes corresponding to those performed by the receiving device in the above method embodiment, wherein the transceiving unit 2010 can be used to perform operations related to the receiving device in the above method embodiment, and the processing unit 2020 can be used Perform operations related to the processing of the receiving device in the above method embodiment.
  • the transceiver unit 2010 is used to receive the synchronization header field; the processing unit 2000 is used to perform correlation detection based on the sequence set and the synchronization header field.
  • the sequence set includes at least one of the following sequences: the length is A sequence of 127, a sequence of length 31, a sequence of length 91, or a sequence of length 64.
  • the transceiver unit 2010 is configured to receive a PPDU, which includes a synchronization header field; the processing unit 2020 is configured to perform correlation detection based on the first sequence in the first sequence set and the synchronization header field.
  • the first sequence set and the second sequence set satisfy one or more of the following relationships: the minimum value of the M non-periodic peak side lobe ratios of the first sequence set under the preset carrier frequency offset is greater than the th The minimum value of the N non-periodic peak side lobe ratios of the two-sequence set under the preset carrier frequency offset.
  • the average value of the M non-periodic peak side lobe ratios is greater than the average value of the N non-periodic peak side lobe ratios.
  • the M non-periodic peak side lobe ratios have a one-to-one correspondence with the M sequences included in the first sequence set
  • the N aperiodic peak side lobe ratios have a one-to-one correspondence with the N sequences included in the second sequence set.
  • the transceiver unit 2010 is configured to receive a PPDU, which includes a synchronization header field; the processing unit 2020 is configured to perform correlation detection based on the first sequence in the first sequence set and the synchronization header field.
  • the first sequence set and the second sequence set satisfy one or more of the following relationships: the minimum value of the M non-periodic peak side lobe ratios of the first sequence set under the preset carrier frequency offset is greater than the th The minimum value of the N non-periodic peak side lobe ratios of the two-sequence set under the preset carrier frequency offset.
  • the average value of the M non-periodic peak side lobe ratios is greater than the average value of the N non-periodic peak side lobe ratios.
  • the M non-periodic peak side lobe ratios have a one-to-one correspondence with the M sequences included in the first sequence set
  • the N aperiodic peak side lobe ratios have a one-to-one correspondence with the N sequences included in the second sequence set.
  • the transceiver unit 2010 is configured to receive a PPDU, which includes a synchronization header field; the processing unit 2020 is configured to perform correlation detection based on a first sequence and the synchronization header field, and the first sequence satisfies The sequence with the largest zero correlation area in the sequence set of Formula 14 above.
  • the device 2000 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the apparatus 2000 can be specifically the sending end device in the above embodiments, and can be used to perform various processes and/or steps corresponding to the sending end device in the above method embodiments.
  • the apparatus 2000 may be specifically the receiving end device in the above embodiments, and may be used to execute various processes and/or steps corresponding to the receiving end device in the above method embodiments. To avoid duplication, they will not be described again here.
  • the above-mentioned transceiver unit 2010 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit 2020 may be a processing circuit.
  • the device in Figure 8 may be the device in the aforementioned embodiment, or it may be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input-output circuit or a communication interface; the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip. No limitation is made here.
  • the apparatus 2000 of each of the above solutions has the function of realizing the corresponding steps performed by the sending device or the receiving device in the above method.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiving unit. (machine replacement), other units, such as processing units, etc., can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • FIG 9 is a schematic diagram of a device 3000 provided by an embodiment of the present application.
  • the device 3000 includes a processor 3010.
  • the processor 3010 is configured to execute computer programs or instructions stored in the memory 3020, or read data/signaling stored in the memory 3020, to execute the methods in each of the above method embodiments.
  • the device 3000 also includes a memory 3020, which is used to store computer programs or instructions and/or data.
  • the memory 3020 may be integrated with the processor 3010, or may be provided separately.
  • the device 3000 also includes a transceiver 3030, which is used for receiving and/or transmitting signals.
  • the processor 3010 is used to control the transceiver 3030 to receive and/or transmit signals.
  • the device 3000 is used to implement the operations performed by the sending end device in each of the above method embodiments.
  • the processor 3010 is used to execute computer programs or instructions stored in the memory 3020 to implement related operations of the sending device in each of the above method embodiments.
  • the apparatus 3000 is used to implement the operations performed by the receiving end device in each of the above method embodiments.
  • the processor 3010 is used to execute computer programs or instructions stored in the memory 3020 to implement related operations of the receiving device in each of the above method embodiments.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM). For example, RAM can be used as an external cache.
  • RAM includes the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and direct Memory bus random access memory (direct rambus RAM, DR RAM).
  • processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate Or transistor logic devices, discrete hardware components, memory (memory module) can be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • FIG. 10 is a schematic diagram of a chip system 4000 provided by an embodiment of the present application.
  • the chip system 4000 (or can also be called a processing system) includes a logic circuit 4010 and an input/output interface 4020.
  • the logic circuit 4010 may be a processing circuit in the chip system 4000.
  • the logic circuit 4010 can be coupled to the memory unit and call instructions in the memory unit, so that the chip system 4000 can implement the methods and functions of various embodiments of the present application.
  • the input/output interface 4020 can be an input/output circuit in the chip system 4000, which outputs information processed by the chip system 4000, or inputs data or signaling information to be processed into the chip system 4000 for processing.
  • the logic circuit 4010 can send a PPDU through the input/output interface 4020, and the PPDU can be generated for the logic circuit 1010.
  • the logic circuit 4010 can receive the PPDU through the input/output interface 4020, and the logic circuit 4010 parses the PPDU.
  • the chip system 4000 is used to implement the operations performed by the sending device in each of the above method embodiments.
  • the logic circuit 4010 is used to implement processing-related operations performed by the sending-side device in the above method embodiments, such as processing-related operations performed by the sending-side device in the embodiments shown in FIG. 4, FIG. 6, or FIG. 7. ;
  • the input/output interface 4020 is used to implement the sending and/or receiving related operations performed by the sending end device in the above method embodiment, such as the sending end device in the embodiment shown in Figure 4, Figure 6 or Figure 7. Send and/or receive related operations.
  • the chip system 4000 is used to implement the operations performed by the receiving end device in each of the above method embodiments.
  • the logic circuit 4010 is used to implement processing-related operations performed by the receiving end device in the above method embodiments, such as processing-related operations performed by the receiving end device in the embodiments shown in Figure 4, Figure 6 or Figure 7 ;
  • the input/output interface 4020 is used to implement the sending and/or receiving related operations performed by the receiving end device in the above method embodiment, such as the receiving end device in the embodiment shown in Figure 4, Figure 6 or Figure 7. Send and/or receive related operations.
  • Embodiments of the present application also provide a computer-readable storage medium on which computer instructions for implementing the methods executed by the device in each of the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the sending device in each embodiment of the above method.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the receiving device in each embodiment of the above method.
  • Embodiments of the present application also provide a computer program product that includes instructions that, when executed by a computer, implement the methods executed by a device (such as a sending device or a receiving device) in each of the above method embodiments.
  • a device such as a sending device or a receiving device
  • An embodiment of the present application also provides a communication system, including the aforementioned sending device and receiving device.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or may be an integration of one or more available media. servers, data centers and other data storage equipment.
  • the available media may be magnetic media (such as floppy disks, hard disks, magnetic tapes), optical media (such as DVDs), or semiconductor media (such as solid state disks (SSD)).
  • the aforementioned available media include but Not limited to: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请实施例应用于支持IEEE 802.11ax下一代Wi-Fi协议,如802.11be,Wi-Fi7或EHT,再如802.11be下一代,Wi-Fi8等802.11系列协议的无线局域网系统,还可以应用于基于超宽带UWB的无线个人局域网系统,感知(sensing)系统。本申请实施例提供了一种通信方法及装置。该方法包括:根据序列集生成同步头字段,该序列集包括以下序列中的至少一个:长度为127的序列,长度为31的序列,长度为91的序列,或,长度为64的序列;发送该同步头字段。根据本申请实施例中的方法可以提高系统传输性能。

Description

通信方法及装置
本申请要求于2022年07月14日提交中国国家知识产权局、申请号为202210834563.5、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种通信方法及装置。
背景技术
超宽带(ultra wideband,UWB)技术是一种无线载波通信技术,利用纳秒级的非正弦波窄脉冲传输数据。由于UWB技术传输数据所采用的脉冲较窄,且辐射谱密度较低,因此,UWB技术具有多径分辨能力强、功耗低、保密性强等优点,通过UWB技术通信成为短距离、高速无线网络热门的物理层技术之一。
由于UWB技术通过收发具有纳秒或纳秒以下的极窄脉冲来传输数据,因此,接收端和发送端的同步在UWB技术中至关重要。接收端和发送端的同步通过同步头字段实现,而同步头字段是基于序列生成的,因此序列的特性将影响接收端和发送端的同步,从而影响系统的通信性能。
发明内容
本申请实施例提供一种通信方法及装置,以期通过使用性能更好的序列,提高系统的通信性能。
第一方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由发送端设备执行为例进行说明。
该方法包括:根据序列集生成同步头字段,该序列集包括以下序列中的至少一个:长度为127的序列,长度为31的序列,长度为91的序列,或,长度为64的序列;发送该同步头字段。
基于上述技术方案,序列集可以包括不同长度的序列,从而可以满足不同场景下的需求,即发送端设备可以根据需求选择不同长度的序列生成同步头字段,并发送该同步头字段,从而可以提高系统的传输性能,通信性能等。相应地,接收端设备接收到该同步头字段之后,可以根据序列集与该同步头字段进行相关性检测,从而实现收发设备的同步。
结合第一方面,在第一方面的某些实现方式中,该序列集包括该长度为127的序列,该长度为127的序列包括序列至序列中的至少一个。
其中,







示例性地,该序列至该序列在预设载波频偏下的周期峰值旁瓣比中的最小值大于第一预设值。
其中,预设载波频偏可以是40ppm。第一预设值可以是长度为127的Ipatov序列在预设载波频偏下的周期峰值旁瓣比的最小值,或者,第一预设值可以是比长度为127的Ipatov序列在预设载波频偏下的周期峰值旁瓣比的最小值更大的值。
基于上述技术方案,由于序列至序列在预设载波频偏下的周期峰值旁瓣比中的最小值大于第一预设值,因此序列至序列的抗频偏特性比较好,从而发送端设备基于序列至序列中的一个序列生成同步头字段,并发送该同步头字段时,可以提高系统的传输性能,通信性能。例如,即使当载波之间存在较大频率偏移时,接收端设备接收到根据序列至序列中的一个序列生成的同步头字段之后,也可以通过对序列至序列中的序列和同步头字段进行相关性检测实现收发设备的同步。
结合第一方面,在第一方面的某些实现方式中,该序列集包括该长度为31的序列,该长度为31的序列包括序列和序列中的至少一个。
其中,
示例性的,序列和序列在预设载波频偏下的非周期峰值旁瓣比大于第二预设值。
其中,第二预设值可以是长度为31的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值,或者,第二预设值可以是比长度为31的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值更大的值。
基于上述技术方案,由于序列和序列在预设载波频偏下的非周期峰值旁瓣比大于第二预设值, 因此序列和序列的抗多普勒特性比较好,从而发送端设备基于序列至序列中的一个序列生成同步头字段,并发送该同步头字段时,可以提高系统的传输性能,通信性能。例如,即使当载波之间存在较大频率偏移时,接收端设备接收到根据该序列或序列生成的同步头字段之后,也可以通过对序列或序列和同步头字段进行相关性检测实现收发设备的同步。
结合第一方面,在第一方面的某些实现方式中,该序列集包括该长度为91的序列,该长度为91的序列包括序列和序列中的至少一个。
其中,
示例性地,序列和序列在预设载波频偏下的非周期峰值旁瓣比大于第三预设值。
其中,第三预设值可以是长度为91的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值,或者,第三预设值可以是比长度为91的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值更大的值。
基于上述技术方案,由于序列和序列在预设载波频偏下的非周期峰值旁瓣比大于第三预设值,因此序列和序列的抗多普勒特性比较好,从而发送端设备基于序列至序列中的一个序列生成同步头字段,并发送该同步头字段时,可以提高系统的传输性能,通信性能。例如,即使当载波之间存在较大频率偏移时,接收端设备接收到根据该序列或序列生成的同步头字段之后,也可以通过对序列或序列和同步头字段进行相关性检测实现收发设备的同步。
结合第一方面,在第一方面的某些实现方式中,该序列集包括该长度为127的序列
示例性地,该序列在预设载波频偏下的非周期峰值旁瓣比大于第四预设值。
其中,第四预设值可以是长度为127的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值,或者,第四预设值可以是比长度为127的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值更大的值。
基于上述技术方案,由于序列在预设载波频偏下的非周期峰值旁瓣比大于第四预设值,因此序列的抗多普勒特性比较好,从而发送端设备基于序列生成同步头字段,并发送该同步头字段时,可以提高系统的传输性能,通信性能。例如,即使当载波之间存在较大频率偏移时,接收端设备接收到根据该序列生成的同步头字段之后,也可以通过对序列和同步头字段进行相关性检测实现收发设备的同步。
结合第一方面,在第一方面的某些实现方式中,该序列集包括该长度为31的序列、该长度为91的序列和该长度为127的序列,该长度为31的序列包括该序列和该序列该长度为91的序列包括该序列和该序列该长度为127的序列包括该序列
结合第一方面,在第一方面的某些实现方式中,该序列集包括该长度为64的序列
示例性地,该序列的零相关区的长度大于或等于第五预设值。
基于上述技术方案,由于序列的零相关区长度大于或等于第五预设值,因此序列具有良好的局部相关特性以及抗频偏特性,从而发送端设备基于序列生成同步头字段,并发送该同步头字段时,可以提高系统的传输性能,通信性能。例如,接收端设备基于该序列和根据序列生成的同步头字段,实现收发设备的同步,并且避免设备带来的虚警问题。
此外,由于序列是二元序列,因此还可以简化收发设备的结构。
需要说明的是,序列集可以包括上述序列至序列中的一个或多个,本申请实施例对此不做限定。
结合第一方面,在第一方面的某些实现方式中,该发送该同步头字段,包括:基于UWB发送物理层协议数据单元(physical protocol data unit,PPDU),该PPDU包括该同步头字段。
示例性地,该PPDU是用于测距的PPDU,或者是用于感知的PPDU。
基于上述技术方案,由于序列集包括的序列的具有以下至少一种特性:良好的抗频偏特性,良好的抗多普勒特性,良好的非周期自相关特性,或,较大的零相关区长度,因此若根据该序列集生成的同步头字段包含于PPDU中,且该PPDU是用于测距或用于感知的PPDU,则基于该PPDU进行测距或感知的性能不会因为PPDU的传输环境的变化而受影响。例如,若生成同步头字段所使用的序列具有良好的抗频偏特性,则即使在载波偏移较大的传输环境中,基于PPDU进行测距或感知的性能也不会因为载波频偏而受到较大影响。又例如,若生成头字段所使用的序列具有较大的零相关区长度,则包括该同步头字段的PPDU具备更远的探测距离以及更大的时延容忍范围,从而可以确保基于该PPDU进行测距或感知的性能,避免了设备带来的虚警问题。
第二方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由接收端设备执行为例进行说明。
该方法包括:接收同步头字段;根据序列集和同步头字段进行相关性检测,该序列集包括以下序列中的至少一个:长度为127的序列,长度为31的序列,长度为91的序列,或,长度为64的序列。
第二方面及第二方面中任一种可能实现方式的有益效果可以参考上述第一方面。
结合第二方面,在第二方面的某些实现方式中,该序列集包括该长度为127的序列,该长度为127的序列包括序列至序列中的至少一个。
其中,







示例性地,该序列至该序列在预设载波频偏下的周期峰值旁瓣比中的最小值大于第一预设值。
结合第二方面,在第二方面的某些实现方式中,该序列集包括该长度为31的序列,该长度为31的序列包括序列和序列中的至少一个。
其中,
示例性的,序列和序列在预设载波频偏下的非周期峰值旁瓣比大于第二预设值。
结合第二方面,在第二方面的某些实现方式中,该序列集包括该长度为91的序列,该长度为91的序列包括序列和序列中的至少一个。
其中,
示例性地,序列和序列在预设载波频偏下的非周期峰值旁瓣比大于第三预设值。
结合第二方面,在第二方面的某些实现方式中,该序列集包括该长度为127的序列
示例性地,该序列在预设载波频偏下的非周期峰值旁瓣比大于第四预设值。
结合第二方面,在第二方面的某些实现方式中,该序列集包括该长度为31的序列、该长度为91的序列和该长度为127的序列,该长度为31的序列包括该序列和该序列该长度为91的序列包括该序列和该序列该长度为127的序列包括该序列
结合第二方面,在第二方面的某些实现方式中,该序列集包括该长度为64的序列
示例性地,该序列的零相关区的长度大于或等于第五预设值。
需要说明的是,序列集可以包括上述序列至序列中的一个或多个,本申请实施例对此不做限定。
结合第二方面,在第二方面的某些实现方式中,该接收同步头字段,包括:通过UWB接收PPDU,该PPDU包括该同步头字段。
第三方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由发送端设备执行为例进行说明。
该方法包括:根据第一序列集中的第一序列生成同步头字段,该第一系列集中的每个序列是对第二序列集中的序列进行移位和/或采样得到的,该第一序列集与该第二序列集之间满足如下关系中的一项或多项:该第一序列集在预设载波频偏下的M个周期峰值旁瓣比中的最小值大于该第二序列集在该预设载波频偏下的N个周期峰值旁瓣比中的最小值,该M个周期峰值旁瓣比的平均值大于该N个周期峰值旁瓣比的平均值;其中,该M个周期峰值旁瓣比与该第一序列集包括的M个序列一一对应,该N个周期峰值旁瓣比与该第二序列集包括的N个序列一一对应;发送PPDU,该PPDU包括该同步头字段。
基于上述技术方案,由于第一序列集与第二序列集之间满足上述关系中的一项或多项,因此,第一序列集中的序列比第二序列集中的序列的抗频偏特性好,即使当载波之间存在较大频率偏移时,第一序列集中的第一序列的周期峰值旁瓣比也比较高。因此,当发送端设备基于第一序列生成同步头字段,并发送包含同步头字段的PPDU之后,接收端设备对PPDU产生误检的可能性较低,从而可以提高系统性能。例如,当该PPDU是用于测距或用于感知的PPDU时,接收端设备基于PPDU进行测距或感知的性能不会因为载波频偏而受到较大影响。
结合第三方面,在第三方面的某些实现方式中,该第一序列集与该第二序列集之间还满足如下关系中的一项或多项:该第一序列集的互相关值的最大值小于该第二序列集的互相关值的最大值,该第一序列集的互相关值的平均值小于该第二序列集的互相关值的平均值。
基于上述技术方案,若第一序列集与第二序列集之间还满足上述关系中的一项或多项,则第一序列集中序列的比第二序列集中的序列的抗干扰性好。当发送端设备基于第一序列集中的第一序列生成同步头字段,基于第一序列集中的第二序列生成另一个同步头字段,并且当发送端设备在同一信道同时发送包含根据第一序列生成的同步头字段的第一PPDU和包含根据第二序列生成的第二同步头字段的第二PPDU时,第二序列和第一序列之间的互相关值较小,因此第一PPDU和第二PPDU之间的干扰较小,进而可以提高传输性能。
结合第三方面,在第三方面的某些实现方式中,该第一序列集与第三序列集相同,或者该第一序列集是该第三序列集的子集,该第三系列集中的每个序列是对该第二序列集中的序列进行移位和/或采样得到的,该第三序列集与该第二序列集之间满足如下关系中的一项或多项:该第三序列集在预设载波频偏下的L个周期峰值旁瓣比中的最小值大于该N个周期峰值旁瓣比中的最小值,该L个周期峰值旁瓣比的平均值大于该N个周期峰值旁瓣比的平均值;其中,该L个周期峰值旁瓣比与该第三序列集包括的L个序列一一对应。
结合第三方面,在第三方面的某些实现方式中,该第一序列集是对第三序列集进行动态规划和/或剪枝搜索得到的。
结合第三方面,在第三方面的某些实现方式中,该第一序列集包括4个序列,或者包括8个序列。
第四方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由接收端端设备执行为例进行说明。
该方法可以包括:接收PPDU,该PPDU包括同步头字段;根据第一序列集中的第一序列和该同步头字段进行相关性检测,该第一序列集中的每个序列是对第二序列集中的序列进行移位和/或采样得到的,该第一序列集与该第二序列集之间满足如下关系中的一项或多项:该第一序列集在预设载波频偏下的M个周期峰值旁瓣比中的最小值大于该第二序列集在该预设载波频偏下的N个周期峰值旁瓣比中的最小值,该M个周期峰值旁瓣比的平均值大于该N个周期峰值旁瓣比的平均值;其中,该M个周期峰值旁瓣比与该第一序列集包括的M个序列一一对应,该N个周期峰值旁瓣比与该第二序列集包括的N个序列一一对应。
第四方面及第四方面中任一种可能实现方式的有益效果可以参考上述第三方面。
结合第四方面,在第四方面的某些实现方式中,该第一序列集与该第二序列集之间还满足如下关系中的一项或多项:该第一序列集的互相关值的最大值小于该第二序列集的互相关值的最大值,该第一序列集的互相关值的平均值小于该第二序列集的互相关值的平均值。
结合第四方面,在第四方面的某些实现方式中,该第一序列集与第三序列集相同,或者该第一序列集是该第三序列集的子集,该第三系列集中的每个序列是对该第二序列集中的一个序列进行移位和/或采样得到的,该第三序列集与该第二序列集之间满足如下关系:该第三序列集在预设载波频偏下的L个周期峰值旁瓣比中的最小值大于该N个周期峰值旁瓣比中的最小值,该L个周期峰值旁瓣比的平均值大于该N个周期峰值旁瓣比的平均值;其中,该L个周期峰值旁瓣比与该第三序列集包括的L个序列一一对应。
结合第四方面,在第四方面的某些实现方式中,该第一序列集是对第三序列集进行动态规划和/或剪枝搜索得到的。
结合第四方面,在第四方面的某些实现方式中,该第一序列集包括4个序列,或者包括8个序列。
第五方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由发送端设备执行为例进行说明。
该方法可以包括:根据第一序列集中的第一序列生成同步头字段,该第一序列集与第二序列集之间满足如下关系中的一项或多项:该第一序列集在预设载波频偏下的M个非周期峰值旁瓣比中的最小值大于该第二序列集在该预设载波频偏下的N个非周期峰值旁瓣比中的最小值,该M个非周期峰值旁瓣比的平均值大于该N个非周期峰值旁瓣比的平均值;其中,该M个非周期峰值旁瓣比与该第一序列集包括的M个序列一一对应,该N个非周期峰值旁瓣比与该第二序列集包括的N个序列一一对应;发送PPDU,该PPDU包括该同步头字段。
基于上述技术方案,由于第一序列集与第二序列集之间满足上述关系中的一项或多项,因此,第一序列集中的序列比第二序列集中的序列的抗多普勒特性好,即使当载波之间存在较大频率偏移时,第一序列集中的第一序列的非周期峰值旁瓣比也比较高。因此,当发送端设备基于第一序列生成同步头字段,并发送包含同步头字段的PPDU之后,接收端设备对PPDU产生误检的可能性较低,从而可以提高系统性能。例如,当该PPDU是用于测距或用于感知的PPDU时,接收端设备基于PPDU进行测距或感知的性能不会因为载波频偏而受到较大影响。
结合第五方面,在第五方面的某些实现方式中,该第一序列集是通过遗传算法和/或坐标下降算法搜索得到的。
示例性地,该坐标下降算法包括比特翻转,和/或,该遗传算法中的变异包括比特翻转。
第六方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由接收端端设备执行为例进行说明。
该方法可以包括:接收PPDU,该PPDU包括同步头字段;根据第一序列集中的第一序列与该同步头字段进行相关性检测,该第一序列集与第二序列集之间满足如下关系中的一项或多项:该第一序列集在预设载波频偏下的M个非周期峰值旁瓣比中的最小值大于该第二序列集在该预设载波频偏下的 N个非周期峰值旁瓣比中的最小值,该M个非周期峰值旁瓣比的平均值大于该N个非周期峰值旁瓣比的平均值;其中,该M个非周期峰值旁瓣比与该第一序列集包括的M个序列一一对应,该N个非周期峰值旁瓣比与该第二序列集包括的N个序列一一对应。
第六方面及第六方面中任一种可能实现方式的有益效果可以参考上述第五方面。
结合第六方面,在第六方面的某些实现方式中,该第一序列集是通过遗传算法和/或坐标下降算法搜索得到的。
示例性地,该坐标下降算法包括比特翻转,和/或,该遗传算法中的变异包括比特翻转。
第七方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由发送端端设备执行为例进行说明。
该方法可以包括:根据第一序列生成同步头字段,该第一序列是满足下式的序列集G中零相关区最大的序列:其中,q是偶数,m是整数,且m≥2,k≤m-1;I1,I2,…,Ik是对集合{1,2,…,m}的划分,πα是{1,2,…,mα}到Iα的一个双射,mα=|Iα|≥1,α=2,…,k,m1=|I1|≥2;ci∈Zq,i=0,1,…,m-1,πα(1)=m-α+1,α=1,2,…,k;发送PPDU,该PPDU包括该同步头字段。
基于上述技术方案,由于第一序列是上述序列集中零相关区长度最大的序列,第一序列具有更好的局部相关特性以及抗频偏特性,从而可以提高系统传输性能,确保接收端设备基于该第一序列和同步头字段,实现收发设备的同步,并且避免设备带来的虚警问题。
第八方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由接收端端设备执行为例进行说明。
该方法可以包括:接收同步头字段;根据第一序列和同步头字段进行相关性检测,该第一序列是满足下式的序列集G中零相关区最大的序列:其中,q是偶数,m是整数,且m≥2,k≤m-1;I1,I2,…,Ik是对集合{1,2,…,m}的划分,πα是{1,2,…,mα}到Iα的一个双射,mα=|Iα|≥1,α=2,…,k,m1=|I1|≥2;ci∈Zq,i=0,1,…,m-1,πα(1)=m-α+1,α=1,2,…,k;发送PPDU,该PPDU包括该同步头字段。
第八方面的有益效果可以参考上述第七方面。
第九方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由发送端设备执行为例进行说明。
该方法包括:根据第一序列集中的第一序列生成同步头字段,该第一序列集在预设载波频偏下的 M个周期峰值旁瓣比中的最小值大于预设值,该M个周期峰值旁瓣比与该第一序列集包括的M个序列一一对应;发送该同步头字段。
基于上述技术方案,由于第一序列集在预设载波频偏下的周期峰值旁瓣比中的最小值大于预设值,因此第一序列集中的序列的抗频偏特性比较好,从而发送端设备基于第一序列生成同步头字段,并发送该同步头字段时,可以提高系统的传输性能,通信性能。例如,即使当载波之间存在较大频率偏移时,接收端设备接收到第一序列生成的同步头字段之后,也可以通过对第一序列和同步头字段进行相关性检测实现收发设备的同步。
第十方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由接收端设备执行为例进行说明。
该方法包括:接收同步头字段;根据第一序列集中的第一序列和该同步头字段进行相关性检测,该第一序列集在预设载波频偏下的M个周期峰值旁瓣比中的最小值大于预设值,该M个周期峰值旁瓣比与该第一序列集包括的M个序列一一对应;发送该同步头字段。
第十方面的有益效果可以参考上述第九方面。
第十一方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由发送端设备执行为例进行说明。
该方法包括:根据第一序列集中的第一序列生成同步头字段,该第一序列集在预设载波频偏下的M个非周期峰值旁瓣比中的最小值大于预设值,该M个非周期峰值旁瓣比与该第一序列集包括的M个序列一一对应;发送该同步头字段。
基于上述技术方案,由于第一序列集在预设载波频偏下的非周期峰值旁瓣比中的最小值大于预设值,因此第一序列集中的序列的抗多普勒特性比较好,从而发送端设备基于第一序列生成同步头字段,并发送该同步头字段时,可以提高系统的传输性能,通信性能。例如,即使当载波之间存在较大频率偏移时,接收端设备接收到第一序列生成的同步头字段之后,也可以通过对第一序列和同步头字段进行相关性检测实现收发设备的同步。
第十二方面,提供了一种通信方法,该方法可以由通信设备执行,或者,也可以由通信设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由接收端设备执行为例进行说明。
该方法包括:接收同步头字段;根据第一序列集中的第一序列和该同步头字段进行相关性检测,该第一序列集在预设载波频偏下的M个非周期峰值旁瓣比中的最小值大于预设值,该M个非周期峰值旁瓣比与该第一序列集包括的M个序列一一对应;发送该同步头字段。
第十二方面的有益效果可以参考上述第十一方面。
第十三方面,提供一种装置,该装置用于执行上述第一方面至第十二方面中任一方面提供的方法。具体地,该装置可以包括用于执行第一方面或第一方面的上述任意一种实现方式的单元和/或模块,或者,包括用于执行第二方面或第二方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,包括用于执行第三方面或第三方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,包括用于执行第四方面或第四方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,包括用于执行第五方面或第五方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,包括用于执行第六方面或第六方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,包括用于执行第七方面提供的方法的单元和/或模块,或者,包括用于执行第八方面提供的方法的单元和/或模块,或者,包括用于执行第九方面提供的方法的单元和/或模块,或者,包括用于执行第十方面提供的方法的单元和/或模块,或者,包括用于执行第十一方面提供的方法的单元和/或模块,或者,包括用于执行第十二方面提供的方法的单元和/或模块,如处理单元和/或收发单元。
在一种实现方式中,该装置为设备(如发送端设备,又如接收端设备)。当该装置为设备时,收发单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于设备(如发送端设备,又如接收端设备)中的芯片、芯片系 统或电路。当该装置为用于设备中的芯片、芯片系统或电路时,收发单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第十四方面,提供一种装置,该装置包括:存储器,用于存储程序;至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第十二方面中任一方面提供的方法。
在一种实现方式中,该装置为设备(如发送端设备,又如接收端设备)。
在另一种实现方式中,该装置为用于设备(如发送端设备,又如接收端设备)中的芯片、芯片系统或电路。
第十五方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十六方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码在计算机上运行时,使得上述第一方面至第十二方面中任一方面提供的方法被执行。
第十七方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第十二方面中任一方面提供的方法。
第十八方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面至第十二方面中任一方面提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面至第十二方面中任一方面提供的方法。
第十九方面,提供一种通信系统,包括上文的发送端设备和接收端设备。
附图说明
图1是本申请提供的两种应用场景的示意图;
图2是本申请实施例适用的一种PPDU结构的示意图;
图3是一种长度为31的Ipatov序列的周期自相关函数的示意图;
图4是本申请实施例提供的通信方法的示意性流程图;
图5是本申请实施例提供一种长度为64的序列的周期自相关函数的示意图;
图6是本申请实施例提供的通信方法的示意性流程图;
图7是本申请实施例提供的通信方法的示意性流程图;
图8是本申请实施例提供的装置2000的示意图;
图9是本申请实施例提供的装置3000的示意图;
图10是本申请实施例提供的芯片系统4000的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请提供的技术方案可以应用于无线个人局域网(wireless personal area network,WPAN)。目前WPAN采用的标准为电气和电子工程协会(institute of electrical and electronics engineer,IEEE)802.15系列。WPAN可以用于电话、计算机、附属设备等小范围内的数字辅助设备之间的通信,其工作范围一般是在l0米(m)以内。作为示例,能够支持无线个人局域网的技术包括但不限于:蓝牙(bluetooth)、紫蜂(ZigBee)、超宽带(ultra wideband,UWB)、红外线数据标准协会(infrared data association,IrDA)红外连接技术、家庭射频(HomeRF)等。从网络构成上来看,WPAN可位于整个网络架构的底层,用于小范围内的设备之间的无线连接,即点到点的短距离连接,可以视为短距离无线通信网络。根据不同的应用场景,WPAN可分为高速率(high rate,HR)-WPAN和低速率(low rate,LR)-WPAN,其中,HR-WPAN可用于支持各种高速率的多媒体应用,包括高质量声像配送、多兆字节音乐和图像文档传送等。LR-WPAN可用于日常生活的一般业务。
在WPAN中,根据设备所具有的通信能力,可以分为全功能设备(full-function device,FFD)和精简功能设备(reduced-function device,RFD)。RFD主要用于简单的控制应用,如灯的开关、被动式红外线传感器等,传输的数据量较少,对传输资源和通信资源占用不多,RFD的成本较低。FFD之间可以通信,FFD与RFD之间也可以通信。通常,RFD之间不直接通信,而是与FFD通信,或者通过一个FFD向外转发数据。与RFD相关联的FFD也可称为该RFD的协调器(coordinator)。协调器也可以称为个人局域网(personal area network,PAN)协调器或中心控制节点等。PAN协调器为整个网络的主控节点,并且每个自组网中有一个PAN协调器,主要用于成员身份管理、链路信息管理、分组转发功能。可选地,本申请实施例中的设备可以为支持802.15.4a和802.15.4z、以及现在正在讨论中的或后续版本等多种WPAN制式的设备。
本申请实施例中,上述设备可以是标签、通信服务器、路由器、交换机、网桥、计算机或者手机,家居智能设备,车载通信设备,可穿戴设备等。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,上述设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是FFD或RFD,或者,是FFD或RFD中能够调用程序并执行程序的功能模块。
上述关于WPAN的介绍仅是举例说明,其不对本申请实施例的保护范围造成限定。
本申请应用于支持IEEE 802.11ax下一代无线保真(wireless fidelity,Wi-Fi)协议,如802.11be,Wi-Fi 7或极高吞吐量(extremely high throughput,EHT),再如802.11be下一代,Wi-Fi 8,Wi-Fi人工智能(artificial intelligence,AI)等802.11系列协议的无线局域网系统,还可以应用于基于UWB的无线个人局域网系统,感知sensing系统。需要说明的是,下文以应用于基于UWB的无线个人局域网系统为例,对本申请实施例进行描述。
可以理解,本申请实施例还可以用于其他通信系统,例如,第六代(6th generation,6G)移动通信系统,第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、频分双工(frequency division duplex,FDD)系统、时分双工(time division duplex,TDD)系统等。本申请实施例还可以用于未来的通信系统。本本申请实施例还可以用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
本申请实施例中发送端和/或接收端可以是无线局域网(wireless local area networks,WLAN)中站点(station,STA),例如,站点可以为支持Wi-Fi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持Wi-Fi通讯功能的机顶盒、支持Wi-Fi通讯功能的智能电视、支持Wi-Fi通讯功能的智能可穿戴设备、支持Wi-Fi通讯功能的车载通信设备和支持Wi-Fi通讯功能的计算机等等。可选地,站点可以支持802.11be制式。站点也可以支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种WLAN制式。
另外,本申请实施例中的发送端和/或接收端也可以是WLAN中接入点(access point,AP),接 入点可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,接入点可以是带有Wi-Fi芯片的终端设备(如手机)或者网络设备(如路由器)。接入点可以为支持802.11be制式的设备。接入点也可以为支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种WLAN制式的设备。
接入点和站点也可以是应用于车联网中的设备,物联网(internet of things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。
首先结合图1简单介绍适用于本申请的应用场景,如下。
图1是本申请提供的两种应用场景的示意图。图1中的(A)所示的系统101为一种星型拓扑(star topology)的通信系统,图1中的(B)所示的系统102为一种点对点拓扑(peer to peer topology)的通信系统。
如图1中的(A)所示,该系统101中可包括多个FFD和多个RFD,该多个FFD和多个RFD可形成星型拓扑的通信系统。其中,多个FFD中的某一个FFD为PAN协调器,在星型拓扑的通信系统中,PAN协调器可同一个或多个其他设备进行数据传输,即多个设备可以建立一对多或多对一的数据传输架构。
如图1中的(B)所示,该系统102中可包括多个FFD和一个RFD,该多个FFD和一个RFD可形成点对点拓扑的通信系统。其中,多个FFD中的某一个FFD为PAN协调器,在点对点拓扑的通信系统中,多个不同设备之间可以建立多对多的数据传输架构。
应理解,图1中的(A)和图1中的(B)仅为便于理解而示例的简化示意图,并不构成对本申请的应用场景的限定。例如,该系统101和/或系统102中还可以包括其他FFD和/或RFD等。
UWB技术可利用纳秒级的非正弦波窄脉冲传输数据,其所占的频谱范围很宽。由于UWB技术传输数据所采用的脉冲较窄,且辐射谱密度极低,因此,UWB技术具有多径分辨能力强、功耗低、保密性强等优点。当前,在IEEE 802系列无线标准已经写入了UWB技术,发布了基于UWB技术的WPAN标准IEEE 802.15.4a,以及其演进版本IEEE 802.15.4z,目前UWB技术的下一代WPAN标准802.15.4ab的制定也已经提上日程。
UWB技术通过收发具有纳秒或纳秒以下的极窄脉冲来传输数据,因此,收发设备的同步在UWB技术中至关重要。所谓收发设备的同步,可以理解为物理层协议数据单元(physical layer protocol data unit,PPDU)以脉冲信号的形式进行发送,接收端接收多个脉冲信号,并确定该多个脉冲信号中从哪个开始是其要接收的PPDU。当前,收发设备的同步主要通过PPDU中的同步头(synchronization header,SHR)来实现,具体来说,接收端可以对同步头进行相关性检测,从而确定接收到的多个脉冲信号中从哪个开始是其要接收的PPDU。
图2是本申请实施例适用的一种PPDU结构的示意图。
如图2所示,PPDU包括:SHR、物理头(physical header,PHR)和物理层(physical layer,PHY)承载字段(payload filed)。其中,SHR可用于接收端进行PPDU检测和同步,举例来说,接收端可以根据SHR检测到发送端是否发送了PPDU以及PPDU的起始位置。PHR可携带物理层的指示信息,该指示信息可用于助接收端正确解调数据。作为示例,该指示信息可以包括:调制编码信息、PPDU长度以及该PPDU的接收者等。PHY承载字段携带传输的数据。
图2还示出了SHR的结构,如图2所示,SHR可包括同步(synchronization,SYNC)字段和帧开始分隔符(start-of-frame delimiter,SFD)字段。其中,SYNC字段可包括多个重复的基础符号Si,该基础符号Si由前导码序列生成,该前导码序列可以是由{–1,0,1}三种值构成的三元序列,也叫做Ipatov序列。目前标准802.15中定义的前导码序列的长度有31、91和127三种,表1、表2和表3分别是部分长度为31、91和127的Ipatov序列。
表1部分长度为31的Ipatov序列

表2部分长度为91的Ipatov序列
表3部分长度为127的Ipatov序列

可以理解,在表示序列时,可以用符号“+”表示1,用符号“-”表示-1,如表1至表3中的“1”可以用符号“+”替换,表1至表3中的“-1”可以用符号“+”替换。
Ipatov序列具有较好的自相关特性,可被称为完美序列。
为便于理解本申请实施例的技术方案,首先对本申请实施例可能涉及到的一些术语或概念进行简单描述。
1)周期自相关函数
假设序列的长度为L,且序列序列的周期自相关函数可满足式1。
其中,τ∈[0,L-1],当l+τ≥L时,al+τ=al+τ-L是al+τ的共轭。
序列的周期自相关函数的最大旁瓣RAmax为:τ≠0时,的最大值。通常,在序列设计中希望RAmax越小越好。当序列的周期自相关函数满足式2时,序列可被称为完美序列。
其中,E为序列的总能量。由式2可知,对于序列如果τ≠0,那么如果τ=0时,那么
序列在载波频偏下的周期自相关函数可满足式3。
其中,j为虚数单位,f为频率偏移值,例如,当载波频偏为40ppm,且载波带宽为8MHz时,f=320Hz。
2)周期互相关(periodic crosscorrelation)函数
假设序列的长度也为L,且序列序列和序列的周期互相关函数可满足式4。
当l+τ≥L时,bl+τ=bl+τ-L。RCmax表示序列和序列的周期互相关函数幅度的最大值,RCmax也可称为序列和序列的周期互相关函数的最大旁瓣。通常,在序列设计中,希望序列集中任意两个序列的RCmax越小越好。举例来说,对于序列和序列来说,RCmax越小,表示序列和序列的互相关值越小,那么序列和序列之间的干扰也会越小。
对于一个包含M个长度为L的序列集来说,该序列集中的序列的周期自相关函数的最大旁瓣RAmax和周期互相关函数的最大旁瓣RCmax需满足不等式(inequality)(即Sarwate’s inequality),如式5。
表4示出了标准802.15中定义的长度为127的Ipatov序列的互相关值。如上所述,两个序列之间的互相关值越小,那么两个序列之间的干扰也会越小。然而由表4可以看出,长度为127的Ipatov序列的互相关值最大为16,这说明序列ID为9和16的两个序列之间的干扰很大。当发送端在同一信道上同时采用序列ID为9和16的两个序列进行传输时,可能会产生较大地干扰,从而导致发送失败。
表4长度为127的Ipatov序列的互相关值的互相关值
3)非周期自相关函数
假设序列的长度为L,且序列序列的非周期自相关函数可满足式6。

其中,λ∈[0,L-1],且l+λ≤L-1,是al+λ的共轭。
序列在载波频偏下的非周期自相关函数可满足式7。
4)Ipatov序列
Ipatov序列的定义包括以下两种:
a)令{xt}为周期L=2k-1(k是奇数)的m序列,令{yt}是{xt}的d采样序列,若gcd(k,c)=1,d=2c+1,或,d=22c-2c+1,则{xt}和{yt}的互相关函数值为{-1+2(k+1)/2,-1,-1-2(k+1)/2}。
定义三元序列
其中,θ(x,y)表示序列{xt}和{yt}的互相关函数,则(D0,D1,...,DL-1)是完备三元序列。
b)令α为有限域GF(qk)的本原元,GF(qk)表示元素个数为qk的有限域,GF表示伽罗华域(Galois Field,GF),q为奇数的幂次,k为奇数。令则C=(c0,c1,...,cL-1)定义如下:
其中,bi=Tr(αi),Tr()为有限域GF(q)上的迹函数。
5)周期峰值旁瓣比
周期峰值旁瓣比指的是,在对序列进行周期自相关运算时,主瓣(即时延为0时序列的周期自相关值)与最大旁瓣(即时延不为0时序列的周期自相关值的最大值)的比值,如式10。
其中,是时延为0时序列的周期自相关值,RAmax为:τ≠0时,的最大值。
类似的,序列在载波频偏下的周期峰值旁瓣比可以表示为:
其中,是载波偏移为f、时延为0时序列的周期自相关值,RAmax,f为:载波偏移为f,τ≠0 时,的最大值。
表5示出了标准802.15中定义的Ipatov序列在40ppm载波频偏下的周期峰值旁瓣比。如上所述,序列在一定的载波频偏下的周期峰值旁瓣比越大,那么说明这个序列的抗频偏特性越好。然而由表5可以看出,标准中的序列在40ppm载波频偏下的周期峰值旁瓣比参差不齐,部分序列的相关函数在载波频偏影响下严重恶化,例如,第七条序列在40ppm下的周期峰值旁瓣只有9.8dB,相比于标准中相同长度的序列,性能下降了2~5dB,发送端在采用第七条序列进行传输时,可能会严重影响传输性能。
表5标准802.15中定义的Ipatov序列在40ppm载波频偏下的周期峰值旁瓣比
6)非周期峰值旁瓣比
非周期峰值旁瓣比指的是,在对序列进行非周期自相关运算时,主瓣(即时延为0时序列的非周期自相关值)与最大旁瓣(即时延不为0时序列的非周期自相关值的最大值)的比值,如式12。
其中,其中,是时延为0时序列的非周期自相关值,QAmax为:τ≠0时,的最大值。
类似的,序列在载波频偏下的周期峰值旁瓣比可以表示为:
其中,是载波偏移为f、时延为0时序列的非周期自相关值,QAmax,f为:载波偏移为f,τ≠0时,的最大值。
表6示出了标准802.15中定义的Ipatov序列在无载波频偏和40ppm载波频偏下的非周期峰值旁瓣比。如上所述,序列在一定的载波频偏下的周期峰值旁瓣比越大,那么说明这个序列的抗多普勒特性越好。然而由表6可以看出,标准中的序列在40ppm载波频偏下的非周期峰值旁瓣比参差不齐,并且相比于无载波频偏下的非周期峰值旁瓣比下降较多,这说明标准中的序列的抗多普勒特性不够好。
表6标准802.15中定义的Ipatov序列的非周期峰值旁瓣比

图3是一种长度为31的Ipatov序列的周期自相关函数的示意图。
图3中的横坐标表示时延,纵坐标表示序列的周期自相关值。由图3可以看出,长度为31的Ipatov序列的周期自相关值只在原点处不为0,在其他地方都是0,由此可见,Ipatov序列满足上述式2,因此Ipatov序列可被称为完美序列。根据Ipatov序列的自相关特性,接收端可以使用相同的序列与接收到的信号做相关(correlation),根据相关的峰值位置等信息实现同步。例如,接收端检测预定义序列与接收信号的相关结果,当相关结果出现周期性的峰值时,即接收到了PPDU的同步头,且根据峰值的位置接收端可以确定PPDU的起始位置。接收端可以根据PHR字段确定该PPDU的长度以及该PPDU中的数据是否是发送端向其传输的数据。若该PPDU中的数据是向该接收端传输的数据,则接收端可以进一步解析该PPDU中的物理层承载字段,获得发送端发送的数据;若该PPDU中的数据不是向其传输的数据,则接收端可以不用解析PPDU中的物理层承载字段。
本申请实施例提供一种通信的方法,发送端设备使用序列集生成同步头字段,序列集包括具备更好的特性的序列,从而可以提高系统的传输性能,通信性能。
图4是本申请实施例提供的一种通信方法400的示意性流程图。方法400可以包括如下步骤:
S410,发送端设备根据序列集生成同步头字段。
示例性的,发送端设备根据序列集中的任意一个序列生成同步头字段。
序列集包括以下序列中的至少一个:长度为127的序列,长度为31的序列,长度为91的序列,或,长度为64的序列。
示例性的,序列集包括长度为127的序列,长度为127的序列包括序列至序列中的至少一个,序列至序列如表7所示。
表7长度为127的序列

示例性的,表7所示的序列中的元素“1”可以替换为符号“+”,序列中的元素“-1”可以替换为符号“-”,即表7所示的序列可以表示为表8所示的形式。
表8长度为127的序列

示例性的,序列至序列在预设载波频偏下的周期峰值旁瓣比中的最小值大于第一预设值。其中,预设载波频偏可以是40ppm。第一预设值可以是长度为127的Ipatov序列在预设载波频偏下的周期峰值旁瓣比的最小值,或者,第一预设值可以是比长度为127的Ipatov序列在预设载波频偏下的周期峰值旁瓣比的最小值更大的值。需要说明的是,本申请实施例对预设载波频偏和第一预设值不做限定。
表9示出了上述序列至序列在40ppm载波频偏下的周期峰值旁瓣比,以及示出了标准802.15中定义的长度为127的Ipatov序列在40ppm载波频偏下的周期峰值旁瓣比。由表9可以看出,序列至序列在40ppm载波频偏下的周期峰值旁瓣比中的最小值为16.35dB,而标准802.15中定义的长度为127的Ipatov序列在40ppm载波频偏下的周期峰值旁瓣比中的最小值仅为14.37dB,即第一预设值可以是14.37dB。
表9 40ppm载波频偏下序列的周期峰值旁瓣比

基于上述技术方案,由于序列至序列在预设载波频偏下的周期峰值旁瓣比中的最小值大于第一预设值,因此序列至序列的抗频偏特性比较好,从而发送端设备基于序列至序列中的一个序列生成同步头字段,并发送该同步头字段时,可以提高系统的传输性能,通信性能。例如,即使当载波之间存在较大频率偏移时,接收端设备接收到根据序列至序列中的一个序列生成的同步头字段之后,也可以通过对序列至序列中的序列和同步头字段进行相关性检测实现收发设备的同步。
示例性的,在序列集包括序列至序列中的多个序列的情况下,序列至序列中的多个序列的互相关值的最大值小于第九预设值。第九预设值可以是长度为127的Ipatov序列的互相关值的最大值,即上文表4中的16,或者第九预设值可以是比长度为127的Ipatov序列的互相关值的最大值更小的值,本申请实施例对此不做限定。
以序列集包括序列至序列为例,表10示出了序列至序列的互相关值,其中,C1至C8分别是序列至序列的标识(identifier,ID)。比较表10和上文中的表4可知,本申请实施例提供的序列集的互相关值的最大值为12,小于长度为127的Ipatov序列的互相关值的最大值,即本申请实施例提供的序列集具有更优的互相关性。
表10序列集的互相关值
基于上述技术方案,由于序列至序列具有更优的互相关性,从而发送端设备基于序列至序列中的多个序列生成多个同步头字段,并在同一个信道发送该多个同步头字段时,可以降低不同序列之间的干扰,提高系统传输性能。
示例性的,序列集包括长度为31的序列,长度为31的序列包括序列和序列中的至少一个,序列和序列如表11所示。
表11长度为31的序列、长度为91的序列和长度为127的序列

示例性的,表11所示的序列中的元素“1”可以替换为符号“+”,序列中的元素“-1”可以替换为符号“-”,即表11所示的序列可以表示为表12所示的形式。
表12长度为31的序列、长度为91的序列和长度为127的序列
示例性的,序列和序列在预设载波频偏下的非周期峰值旁瓣比大于第二预设值。其中,第二预设值可以是长度为31的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值,或者,第二预设值可以是比长度为31的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值更大的值,本申请实施例对第二预设值不做限定。
示例性的,序列和序列在无载波频偏时的非周期峰值旁瓣比大于或等于第六预设值。其中,第六预设值可以是长度为31的Ipatov序列在无载波频偏时的非周期峰值旁瓣比的最大值,或者,第六预设值可以是比长度为31的Ipatov序列在无载波频偏时的非周期峰值旁瓣比的最大值更大的值,本申 请实施例对第六预设值不做限定。例如,第六预设值可以是上文表6中第1条序列在40ppm载波频偏下的非周期峰值旁瓣比,即第六预设值是18.06dB。
表13示出了上述序列至序列在无载波频偏和40ppm载波频偏下的非周期峰值旁瓣比,其中,C9和C10分别是序列至序列的ID。表13还示出了标准802.15中定义的长度为31的Ipatov序列在无载波频偏和40ppm载波频偏下的非周期峰值旁瓣比。由表13可以看出,长度为31的Ipatov序列在40ppm载波频偏下的非周期峰值旁瓣比中的最大值为15.6dB,即第二预设值可以是15.6dB。而序列至序列在40ppm载波频偏下的非周期峰值旁瓣比分别为17.3dB和17.2dB,都大于15.6dB,这说明序列至序列具有更优的抗多普勒特性。
此外,从表13中还可以看出,长度为31的Ipatov序列在40ppm载波频偏下的非周期峰值旁瓣比相比于无载波频偏时的非周期峰值旁瓣比下降较大,而序列至序列在40ppm载波频偏下的非周期峰值旁瓣比相比于无载波频偏时的非周期峰值旁瓣比下降较小,这说明序列至序列的抗频偏特性更好。
表13序列的非周期峰值旁瓣比(单位:dB)
基于上述技术方案,由于序列和序列在预设载波频偏下的非周期峰值旁瓣比大于第二预设值,因此序列和序列的抗多普勒特性比较好,从而发送端设备基于序列至序列中的一个序列生成同步头字段,并发送该同步头字段时,可以提高系统的传输性能,通信性能。例如,即使当载波之间存在较大频率偏移时,接收端设备接收到根据该序列或序列生成的同步头字段之后,也可以通过对序列或序列和同步头字段进行相关性检测实现收发设备的同步。
此外,由于序列和序列在无载波频偏时的非周期峰值旁瓣比大于或等于第六预设值,因此序列和序列的非周期自相关特性比较低,从而可以降低接收端设备对同步头字段的误检率。
示例性的,序列集包括长度为91的序列,长度为91的序列包括序列和序列中的至少一个,序列和序列如上文表11所示。
示例性的,序列和序列在预设载波频偏下的非周期峰值旁瓣比大于第三预设值。其中,第三预设值可以是长度为91的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值,或者,第三预设值可以是比长度为91的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值更大的值,本申请实施例对第三预设值不做限定。例如,第三预设值可以是上文表6中第29条序列在40ppm载波频偏下的非周期峰值旁瓣比,即第三预设值是28.76dB。
示例性的,序列和序列在无载波频偏时的非周期峰值旁瓣比中的最大值大于或等于第七预设值。其中,第七预设值可以是长度为91的Ipatov序列在无载波频偏时的非周期峰值旁瓣比的最大值,或者,第七预设值可以是比长度为91的Ipatov序列在无载波频偏时的非周期峰值旁瓣比的最大值更大的值,本申请实施例对第七预设值不做限定。例如,第七预设值可以是上文表6中第29条序列在无载波频偏下的非周期峰值旁瓣比,即第七四预设值是22.61dB。
基于上述技术方案,由于序列和序列在预设载波频偏下的非周期峰值旁瓣比大于第三预设值,因此序列和序列的抗多普勒特性比较好,从而发送端设备基于序列至序列中的一个序列生成同步头字段,并发送该同步头字段时,可以提高系统的传输性能,通信性能。例如,即使当载波之间存在较大频率偏移时,接收端设备接收到根据该序列或序列生成的同步头字段之后,也可以通 过对序列或序列和同步头字段进行相关性检测实现收发设备的同步。
此外,由于序列和序列在无载波频偏时的非周期峰值旁瓣比大于或等于第七预设值,因此序列和序列的非周期自相关特性比较低,从而可以降低接收端设备对同步头字段的误检率。
示例性的,序列集包括长度为127的序列,长度为127的序列包括序列序列如上文表11所示。
示例性的,序列在预设载波频偏下的非周期峰值旁瓣比大于第四预设值。其中,第四预设值可以是长度为127的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值,或者,第四预设值可以是比长度为127的Ipatov序列在预设载波频偏下的非周期峰值旁瓣比的最大值更大的值,本申请实施例对第四预设值不做限定。例如,第四预设值可以是上文表6中第9条序列在40ppm载波频偏下的非周期峰值旁瓣比,即第四预设值是19.71dB。
示例性的,序列在无载波频偏时的非周期峰值旁瓣比大于或等于第八预设值。其中,第八预设值可以是长度为127的Ipatov序列在无载波频偏时的非周期峰值旁瓣比的最大值,或者,第八预设值可以是比长度为127的Ipatov序列在无载波频偏时的非周期峰值旁瓣比的最大值更大的值,本申请实施例对第八预设值不做限定。例如,第八预设值可以是上文表6中第9条序列在无载波频偏下的非周期峰值旁瓣比,即第四预设值是22.14dB。
基于上述技术方案,由于序列在预设载波频偏下的非周期峰值旁瓣比大于第四预设值,因此序列的抗多普勒特性比较好,从而发送端设备基于序列生成同步头字段,并发送该同步头字段时,可以提高系统的传输性能,通信性能。例如,即使当载波之间存在较大频率偏移时,接收端设备接收到根据该序列生成的同步头字段之后,也可以通过对序列和同步头字段进行相关性检测实现收发设备的同步。
此外,由于序列在无载波频偏时的非周期峰值旁瓣比大于或等于第八预设值,因此序列的非周期自相关特性比较低,从而可以降低接收端设备对同步头字段的误检率。
示例性的,序列集包括长度为64的序列,长度为64的序列包括序列序列如表14所示。
表14长度为64的序列
示例性的,表14所示的序列中的元素“1”可以替换为符号“+”,序列中的元素“-1”可以替换为符号“-”,即表14所示的序列可以表示为表15所示的形式。
表15长度为64的序列
示例性的,序列的零相关区长度大于或等于第五预设值。其中,第五预设值可以是格雷(Golay)零相关区(zero correlation zone,ZCZ)序列集包括的序列的零相关区长度的最大值,或者,可以是Golay ZCZ序列集包括的序列的零相关区长度的平均值。需要说明的是,本申请实施例对第五预设值 不做限定。
示例性的,序列是Golay ZCZ序列集中零相关区长度最大的序列。
Golay ZCZ序列集可以用式14表示。
其中,q是偶数,m是整数,且m≥2,k≤m-1;I1,I2,…,Ik是对集合{1,2,…,m}的划分,πα是{1,2,…,mα}到Iα的一个双射,mα=|Iα|≥1,α=2,…,k,m1=|I1|≥2;ci∈Zq,i=0,1,…,m-1,πα(1)=m-α+1,α=1,2,…,k。
基于上述技术方案,由于序列的零相关区长度大于或等于第五预设值,因此序列具有良好的局部相关特性以及抗频偏特性,从而可以确保接收端设备基于该序列和根据序列生成的同步头字段,实现收发设备的同步,并且避免设备带来的虚警问题。此外,由于序列是二元序列,因此还可以简化收发设备的结构。
图5示出了序列的周期自相关函数的示意图。图5中的横坐标表示时延,纵坐标表示序列的周期自相关值。由图5中的(A)可以看出,在无载波频偏时,时延小于152时,序列的周期自相关函数值为0,由此可见序列具有良好的局部相关特性。由图5中的(B)可以看出,在40ppm载波频偏下,序列的在(0,72)区域内的最大旁瓣为2.66,由此可见序列具有良好的抗频偏特性。
在本申请的实施例中,生成同步头字段所需的序列集可以包括上述长度为127的序列,长度为31的序列,长度为91的序列,长度为64的序列中的任意一种长度的序列;或者,该序列集包括上述长度为127的序列,长度为31的序列,长度为91的序列,长度为64的序列中多个不同长度序列的组合,例如:长度为127的序列,长度为31的序列,长度为91的序列的组合;或者,该序列集包括上述长度为127的序列,长度为31的序列,长度为91的序列以及长度为64的序列。
发送端设备根据序列集生成的同步头字段,如为图2所示的SHR字段,可包括SYNC字段和SFD字段,SYNC字段包括多个重复的基础符号si,SFD字段可根据基础符号和预设序列(或指定序列)扩展得到。
可以理解,si根据序列集生成,可以是由序列集中的序列直接生成si,也可以是先对序列集中的序列进行等效变形,由变形后的序列生成si。作为示例,上述等效变形可以是对序列集中的序列进行循环移位操作,还可以是对序列集中的序列进行逆序操作,或者对序列集中的序列进行循环移位和逆序操作而形成新的序列。所谓逆序操作,也可以理解为首尾颠倒操作或反向操作,例如,对序列{a,b,c,d,e}逆序操作的结果为{e,d,c,b,a}。
还可以理解,“根据序列集生成同步头字段”,也可以理解为根据序列集中的序列生成基础符号,该同步头字段包括基础符号;或者也可以理解为根据序列集中的序列生成PPDU,该PPDU包括该同步头字段。
以序列为例,介绍一种根据序列生成同步头字段的实现方式。一种可能的实现方式,根据序列生成同步头字段,可包括如下步骤。
(1)对序列进行拓展,生成基础符号Si,以适配相应的平均脉冲重复频率(pulse repetition frequency,PRF)。脉冲重复频率是指每秒钟发射的脉冲数目,是脉冲重复间隔(pulse repetition interval,PRI)的倒数。脉冲重复间隔就是一个脉冲和下一个脉冲之间的时间间隔。
作为示例,生成Si的过程用数学公式表示如下:
其中,代表克罗内克积(Kronecker product),δL(n)是Delta函数,也可以称为单位脉冲函数,N为Delta函数长度。
(2)按照标准规定,将基础符号重复指定次数K,获得同步字段SYNC。即SYNC={Si,Si,…,Si}。K为正整数。
(3)添加SFD字段,该SFD字段可以是基础符号Si经预设序列扩展得到。作为示例,该预设序列可以为{0,1,0,1,1,0,0,1},那么
基于上述步骤,可得到同步头字段SHR为:SHR=[SYNC,SFD]=[Si,Si,…,Si,SFD]。
可以理解,在步骤(1)中,根据序列生成基础符号si时,可以先对序列进行等效变形,得到序列的等效变形序列,再根据等效变形后的序列生成si。其中,等效变形包括对序列进行循环移位操作和/或和逆序操作。
还可以理解,SFD可以有很多不同的设计,步骤(3)中只是作为示例,本申请实施例不做限定。
S420,发送端设备发送同步头字段。
相应地,接收端接收该同步头字段。
示例性的,发送端设备发送同步头字段,包括:发送端设备基于UWB发送PPDU,该PPDU包括该同步头字段。相应地,接收到设备接收该PPDU。
关于PPDU的结构可以与图2所示的结构类似,包括SHR字段、PHR字段和PHY承载字段,此处不再赘述。
示例性的,该PPDU是用于测距的PPDU,或者是,用于感知的PPDU。
S430,接收端设备根据序列集和同步头字段进行相关性检测。
示例性地,S430中的相关性检测可以是自相关检测,也可以是互相关检测,关于相关性检测的具体方法本申请实施例不予限制。在同步头字段包含于PPDU的情况下,接收端设备可以根据相关性检测结果确定是否检测到了PPDU,以及PPDU的位置。根据相关性检测结果确定同步的具体方法可以使用本领域技术人员已知或新研发的技术,本申请不做限定。
在本申请实施例中,序列集可以包括不同长度的序列,从而可以满足不同场景下的需求,即发送端设备可以根据需求选择不同长度的序列生成同步头字段,并发送该同步头字段,从而实现收发设备的同步。
此外,序列集包括的序列的具有以下至少一种特性:良好的抗频偏特性,良好的抗多普勒特性,良好的非周期自相关特性,或,较大的零相关区长度,因此基于本申请实施例提供的序列集传输同步头字段时,可以提高系统的传输性能,降低接收端设备对同步头字段的误检率等。此外,若根据本申请实施例提供的序列集生成的同步头字段包含于PPDU中,且该PPDU是用于测距或用于感知的PPDU,则接收端设备基于该PPDU进行测距或感知的性能不会因为PPDU的传输环境的变化而受影响。例如,若生成同步头字段所使用的序列具有良好的抗频偏特性,例如,生成同步头字段使用的序列是上文表7中的序列,则即使在载波偏移较大的传输环境中,接收端设备基于PPDU进行测距或感知的性能也不会因为载波频偏而受到较大影响。又例如,若生成同步头字段所使用的序列具有良好非周期自相关特性,并且具有良好的抗多普勒特性,例如,生成同步头字段使用的序列是上文表11中的序列,则可以确定无载波频偏下的同步、测距或感知性能,并且避免设备带来的误检问题。又例如,若生成头字段所使用的序列具有较大的零相关区长度,则包括该同步头字段的PPDU具备更远的探测距离以及更大的时延容忍范围,从而可以确保基于该PPDU进行测距或感知的性能,避免了设备带来的虚警问题。
图6是本申请实施例提供的一种通信方法600的示意性流程图。方法600可以包括如下步骤:
S610,发送端设备根据第一序列集中的第一序列生成第一同步头字段。
第一序列是第一序列集中的任意一个序列。第一序列集中的每个序列是对第二序列集中的序列进行移位和/或采样得到的,且第一序列集与第二序列集之间满足如下关系中的一项或多项:关系#1,第一序列集在预设载波频偏下的M个周期峰值旁瓣比中的最小值大于第二序列集在预设载波频偏下的N个周期峰值旁瓣比中的最小值;关系#2,M个周期峰值旁瓣比的平均值大于N个周期峰值旁瓣比的平 均值。其中,M个周期峰值旁瓣比与第一序列集包括的M个序列一一对应,N个周期峰值旁瓣比与第二序列集包括的N个序列一一对应,M和N均为正整数。
示例性的,第二序列集是Ipatov序列组成的序列集。例如,第二序列集是长度为127的Ipatov序列组成的序列集,或者,第二序列集是长度为91的Ipatov序列组成的序列集,或者,第二序列集是长度为31的Ipatov序列组成的序列集。
可选的,第一序列集与第二序列集之间还满足如下关系中的一项或多项:关系#3,第一序列集的互相关值的最大值小于该第二序列集的互相关值的最大值;关系#4,第一序列集的互相关值的平均值小于第二序列集的互相关值的平均值。
假设第一序列集包括的序列的长度都是L,则第一序列集的互相关值的最大值的定义为:τ∈[0,L-1],是第一序列集中的任意两个序列。第一序列集的互相关值的平均值的定义为:其中,ai,l表示第一序列集中的第i个序列中的第l个元素,bj,(l+τ)表示第一序列集中的第j个序列中的第l个元素,且当l+τ≥L时,bl+τ=bl+τ-L
假设第二序列集包括的序列的长度都是L,则第二序列集的互相关值的最大值的定义为:,τ∈[0,L-1],是第一序列集中的任意两个序列。第二序列集的互相关值的平均值的定义为:其中,ci,l表示第二序列集中的第i个序列中的第l个元素,dj,(l+τ)表示第一序列集中的第j个序列中的第l个元素,且当l+τ≥L时,dl+τ=dl+τ-L。
可选的,第一序列集包括4个序列,或者包括8个序列。
一种可能的实现方式中,第一序列集中的每个序列是通过对第二序列集中的序列进行移位得到的。换句话说,第一序列集中的每个序列是通过对第二序列集中序列向右移动k位得到的,或者,第一序列集中的每个序列是通过对第二序列集中序列向左移动k位得到的,k为正整数。若第二序列集包括的序列的长度为L,则1≤k≤L-1。例如,将第二序列集中的序列#1记为那么对序列#1向右移动k位之后得到的序列可表示为对序列#1向左移动k位之后得到的序列可表示为需要说明的是,对序列#1进行移位之后得到序列与序列#1的长度相等。
例如,第一序列集中的序列#A是通过对第二序列集中的序列#1向右移动1位得到的,第一序列集中的序列#B是通过对第二序列集中的序列#2向右移动2位得到的。
另一种可能的实现方式中,第一序列集中的每个序列是通过对第二序列集中的序列进行采样得到的,采样倍数e与第二序列集中的序列的长度L互质,e为正整数。例如,将第二序列集中的序列#1记为那么以采样倍数e对序列#1采样得到的序列可表示为1≤e’≤e,且当(l·e-e’)>(L-1)时,sl·e-e'=s(l·e-e')modL,1≤l≤L,mod表示取余。需要说明的是,对序列#1进行采样之后得到序列与序列#1的长度相等。
例如,第一序列集中的序列#A是通过对第二序列集中的序列#1进行4倍采样得到的,第一序列集中的序列#B是通过对第二序列集中的序列#2进行2倍采样得到的。
在一种可能的实现方式中,第一序列集中的每个序列是通过对第二序列集中的序列进行移位和采 样得到的。
例如,第一序列集中的序列#A是通过对第二序列集中的序列#1进行4倍采样之后,再向右移动1位得到的,第一序列集中的序列#B是通过对第二序列集中的序列#2向左移动1位之后,再进行3倍采样得到的。需要说明的是,对序列#1进行采样和移位之后得到序列与序列#1的长度相等,以及对序列#2进行移位和采样之后得到的序列与序列#2的长度相等。
在一种可能的实现方式中,第一序列集中不同序列是通过对第二序列集中的序列进行不同的处理得到的。例如,第一序列集中的一部分序列是通过对第二序列集中的序列进行移位之后得到的,以及,第一序列集中的另一部分序列是通过对第二序列集中的序列进行采样之后得到的。又例如,第一序列集中的一部分序列是通过对第二序列集中的序列进行采样之后得到的,以及,第一序列集中的另一部分序列是通过对第二序列集中的序列进行移位和采样之后得到的。
本申请实施例对第一序列集的生成方式不做限定。
一种可能的实现方式中,第一序列集是通过对第二序列集中的一个或多个序列进行移位和/或采样得到的。也就是说,若通过对第二序列集中的一个或多个序列进行移位和/或采样得到的序列集#1与第二序列集满足上述关系#1和/或关系#2,则将序列集#1作为第一序列集。
例如,序列集#1是通过对第二序列集中的序列#1分别向右移动1位、2位、3位、……、L-1位得到的。例如,L=5,序列#1表示为则通过对序列#1向移位得到的序列集#1包括4个序列,分别表示为: 进而,若序列集#1与第二序列集满足关系#1和/或关系#2,则将序列集#1作为第一序列集。
另一种可能的实现方式中,第一序列集是通过对序列集#1进行筛选之后得到的,序列集#1是通过对第二序列集中的一个或多个序列进行移位和/或采样之后得到的。
例如,对序列集#1进行筛选得到第一序列集的步骤包括:S1,分别计算序列集#1中的每个序列在预设载波频偏下的周期峰值旁瓣比;S2,根据每个序列在预设载波频偏下的周期峰值旁瓣比选出M个序列组成第一序列集,该M序列中每个序列的周期峰值旁瓣比都大于N个周期峰值旁瓣比中的最小值。可以理解,根据上述步骤对序列集#1进行筛选得到的第一序列集与第二序列集满足关系#1和/或关系#2。
又例如,对序列集#1进行筛选得到第一序列集的步骤包括:S1,从序列集#1中随机选出一个或多个序列组成序列集#2;S2,若序列集#2与第二序列集满足上述关系#1和/或关系#2,则将序列集#2作为第一序列集,若序列集#2与第二序列集不满足上述关系#1和关系#2,则继续对序列集#1进行筛选,直至从序列集#1中选择的一个或多个序列组成的序列集#2与第二序列集满足上述关系#1和/或关系#2。
再一种可能的实现方式中,若第一序列集与第二序列集还满足上述关系#3和/或关系#4,则第一序列集是与第三序列集相同,或者,第一序列集是第三序列集的子集。第三序列集中的每个序列是对第二序列集中的序列进行移位和/或采样得到的,且第三序列集与第二序列集之间满足如下关系中的一项或多项:关系#5,第三序列集在预设载波频偏下的L个周期峰值旁瓣比中的最小值大于N个周期峰值旁瓣比中的最小值,关系#6,L个周期峰值旁瓣比的平均值大于N个周期峰值旁瓣比的平均值。L个周期峰值旁瓣比与第三序列集包括的L个序列一一对应。第三序列集的生成方式可以参考生成与第二序列集满足上述关系#1和/或关系#2的第一序列集的方式。
例如,根据第二序列集得到第三序列集之后,若第三序列集与第二序列集满足如下关系中的一项或多项:关系#7,第三序列集的互相关值的最大值小于第二序列集的互相关值的最大值;关系#8,第三序列集的互相关值的平均值小于第二序列集的互相关值的平均值,则将第三序列集作为第一序列集,或者说第一序列集与第三序列集相同。第三序列集的互相关值的最大值和平均值的定义,可以参考上文第一序列集的互相关值的最大值和平均值的定义。
又例如,根据第二序列集得到第三序列集之后,通过对第三序列集进行搜索得到第一序列集。例如,第一序列集是通过动态规划算法和/或剪枝算法对第三序列集进行搜索得到的。可以理解,通过对第三序列集进行搜索得到的第一序列集是第三序列集的子集。
例如,通过动态规划算法对第三序列集进行搜索得到第一序列集的方式如下:将“从第三序列集中选出的M个序列”作为动态规划算法的自变量,将“M个序列组成的序列集的互相关值的最大值和/或平均值”作为动态规划算法的因变量,将“M个序列组成的序列集的互相关值的最大值小于第二序列集的 互相关值的最大值,和/或,M个序列组成的序列集的互相关值的平均值小于第二序列集的互相关值的平均值”作为动态规划算法需要遵循的原则,从而实现对第三序列集进行搜索得到第一序列集。
本申请实施例提供的第一序列集的一个示例如上文表7所示,表7所示的第一序列集在40ppm载波频偏下的周期峰值旁瓣比如上文表9所示,表9还示出了第二序列集在40ppm载波频偏下的周期峰值旁瓣比,第二序列集是长度为127的Ipatov序列组成的序列集。由表9可以看出,第一序列集在40ppm载波频偏下的8个周期峰值旁瓣比中的最小值为16.35dB,第二序列集在40ppm载波频偏下的8个周期峰值旁瓣比中的最小值为14.37dB,即表7所示的第一序列集与第二序列集之间满足上述关系#1。并且,第一序列集在40ppm载波频偏下的8个周期峰值旁瓣比的平均值为16.9dB,第二序列集在40ppm载波频偏下的8个周期峰值旁瓣比的平均值为16.61dB,即表7所示的第一序列集与第二序列集之间还满足上述关系#2。
表7所示的第一序列集的互相关值如上文表10所示。相比于表4所示的长度为127的Ipatov序列组成的第二序列集的互相关值,第一序列集的互相关值的最大值为12,第二序列集的互相关值的最大值为16,即表7所示的第一系列集与第二序列集还满足上述关系#3。并且,第一序列集的互相关值的平均值为8.75,第二序列集的互相关值的平均值为9.4375,即表7所示的第一序列集与第二序列集之间还满足上述关系#4。
发送端设备根据第一序列集中的第一序列生成的第一同步头字段的方式可以参考上文图4中的S410。
示例性地,方法600还包括:发送端设备根据第一序列集中的第二序列生成第二同步头字段。
第二序列是第一序列集中任一不同于第一序列的序列。发送端设备根据第二序列生成第二同步头字段的方式可以参考上文方法400中的S410。
S620,发送端设备发送第一PPDU。
其中,第一PPDU包括第一同步头字段。相应地,接收端设备接收该第一PPDU。
示例性地,若发送端设备根据第二序列生成第二同步头字段,则在S620中,发送端设备还发送第二PPDU,第二PPDU包括第二同步头字段。
关于PPDU的结构可以与图2所示的结构类似,包括SHR字段、PHR字段和PHY承载字段,此处不再赘述。
举例来说,在S620中,接收端设备接收第一PPDU和第二PPDU;或者,第一接收端设备接收第一PPDU,第二接收端设备接收第二PPDU;或者,第一接收端设备接收第一PPDU和第二PPDU,第二接收端设备接收第一PPDU和第二PPDU,对此不予限制。
S630,接收端设备根据第一序列和第一同步头字段进行相关性检测。
示例性地,S630中的相关性检测可以是自相关检测,也可以是互相关检测,关于相关性检测的具体方法本申请实施例不予限制。
示例性地,若接收端设备还接收到第二PPDU,则在S630中,接收端设备根据第二序列和第二同步头字段进行相关性检测。
在本申请实施例中,由于第一序列集与第二序列集之间满足上述关系#1和/或关系#2,因此,第一序列集中的序列比第二序列集中的序列的抗频偏特性好,即使当载波之间存在较大频率偏移时,第一序列集中的第一序列的周期峰值旁瓣比也比较高。因此,当发送端设备基于第一序列生成第一同步头字段,并发送包含第一同步头字段的第一PPDU之后,接收端设备对第一PPDU产生误检的可能性较低,从而可以提高系统性能。例如,当该第一PPDU是用于测距或用于感知的PPDU时,接收端设备基于第一PPDU进行测距或感知的性能不会因为载波频偏而受到较大影响。
此外,若第一序列集与第二序列集之间还满足上述关系#3和/或关系#4,则第一序列集中序列的比第二序列集中的序列的抗干扰性好。当发送端设备基于第一序列集中的第一序列生成第一同步头字段,基于第一序列集中的第二序列生成第二同步头字段,并且当发送端设备在同一信道同时发送包含第一同步头字段的第一PPDU和包含第二同步头字段的第二PPDU时,第二序列和第一序列之间的互相关值较小,因此第一PPDU和第二PPDU之间的干扰较小,进而可以提高传输性能。
图7是本申请实施例提供的一种通信方法700的示意性流程图。方法700可以包括如下步骤:
S710,发送端设备根据第一序列集中的第一序列生成同步头字段。
第一序列是第一序列集中的任意一个序列。第一序列集与第二序列集之间满足如下关系中的一项或多项:关系#A,第一序列集在预设载波频偏下的M个非周期峰值旁瓣比中的最小值大于第二序列集在预设载波频偏下的N个非周期峰值旁瓣比中的最小值;关系#B,M个非周期峰值旁瓣比的平均值大于N个非周期峰值旁瓣比的平均值。其中,M个非周期峰值旁瓣比与第一序列集包括的M个序列一一对应,N个非周期峰值旁瓣比与第二序列集包括的N个序列一一对应。
第二序列集的描述可以参考上文方法600中的S610。
本申请实施例对第一序列集的生成方式不做限定。
一种可能的实现方式中,第一序列集是通过对序列集#A进行筛选之后得到的,序列集#A是随机生成的序列集。
例如,对序列集#2进行筛选得到第一序列集的步骤包括:S1,分别计算序列集#A中的每个序列在预设载波频偏下的非周期峰值旁瓣比;S2,根据每个序列在预设载波频偏下的非周期峰值旁瓣比选出M个序列组成第一序列集,该M序列中每个序列的非周期峰值旁瓣比都大于N个非周期峰值旁瓣比中的最小值,或者,该M个序列中每个序列的非周期峰值旁瓣比都大于N个非周期峰值旁瓣比中的最大值。可以理解,根据上述步骤对序列集#1进行筛选得到的第一序列集与第二序列集满足关系#A和/或关系#B。
又例如,对序列集#A进行筛选得到第一序列集的步骤包括:S1,从序列集#A中随机选出一个或多个序列组成序列集#B;S2,若序列集#B与第二序列集满足上述关系#A和/或关系#B,则将序列集#B作为第一序列集,若序列集#B与第二序列集不满足上述关系#A和关系#B,则继续对序列集#A进行筛选,直至从序列集#A中选择的一个或多个序列组成的序列集#B与第二序列集满足上述关系#A和/或关系#B。
另一种可能的实现方式中,第一序列集中的每个序列是通过坐标下降算法和/或遗传算法搜索得到的。
例如,通过坐标下降算法搜索得到第一序列集中的一个序列的方式如下:随机生成包括Z(Z为正整数)个序列的序列集#A,序列集#A中每个序列的长度为L;对序列集#A中的每个序列的第一个元素进行翻转形成序列集#B,其中,若序列的第一个元素是“-1”,则将该第一个元素翻转为“1”,若序列的第一个元素是“1”,则将该第一个元素翻转为“-1”,若序列的第一个元素是“0”,则该第一个元素保持不变;计算序列集#B中每个序列在预设载波频偏下的非周期峰值旁瓣比,并选出非周期峰值旁瓣比最大的序列#A;若序列#A在预设载波频偏下的非周期峰值旁瓣比大于N个非周期峰值旁瓣比中的最大值,则将序列#A作为第一序列集中的一个序列,若序列#A在预设载波频偏下的非周期峰值旁瓣比小于N个非周期峰值旁瓣比中的最大值,则继续对序列集#B中每个序列的第二个元素进行翻转,直至选出符合要求的一个序列。
又例如,通过遗传算法搜索得到第一序列集中的一个序列的方式如下:随机生成包括Z个序列的序列集#A;对序列集#A进行选择、交叉和变异操作得到序列集#B,例如从序列集中选择Z’个序列之后,对该Z’个序列进行两两异或得到Z’2个序列,然后再对该Z’2个序列的每个序列的第一个元素进行翻转之后得到序列集#B;计算序列集#B中每个序列在预设载波频偏下的非周期峰值旁瓣比,并选出非周期峰值旁瓣比最大的序列#A;若序列#A在预设载波频偏下的非周期峰值旁瓣比大于N个非周期峰值旁瓣比中的最大值,则将序列#A作为第一序列集中的一个序列,若序列#A在预设载波频偏下的非周期峰值旁瓣比小于N个非周期峰值旁瓣比中的最大值,则继续对序列集#B进行选择、交叉和变异操作,直至选出符合要求的一个序列。
本申请实施例提供的第一序列集的一个示例包括上文表11中的序列和序列序列和序列的非周期峰值旁瓣比如表13所示。表13还示出了第二序列集的非周期峰值旁瓣比。其中,第二序列集是长度为31的Ipatov序列组成的序列集。由表13可以看出,第一序列集在40ppm载波频偏下的2个周期峰值旁瓣比中的最小值为17.2dB,第二序列集在40ppm载波频偏下的8个周期峰值旁瓣比中的最小值为11.6dB,即第一序列集与第二序列集之间满足上述关系#A。并且,第一序列集在40ppm载波频偏下的2个周期峰值旁瓣比的平均值为17.25dB,第二序列集在40ppm载波频偏下的8个周期 峰值旁瓣比的平均值为14.29dB,即第一序列集与第二序列集之间还满足上述关系#B。
此外,从表13中还可以看出,第二序列集中的序列在40ppm载波频偏下的非周期峰值旁瓣比相比于无载波频偏时的非周期峰值旁瓣比下降较大,而序列和序列在40ppm载波频偏下的非周期峰值旁瓣比相比于无载波频偏时的非周期峰值旁瓣比下降较小,这说明第一序列集的抗频偏特性更好。
需要说明的是,本申请实施例提供的第一序列集可以包括上文表11中的一个或多个序列,即包括上文序列至序列中的一个或多个,本申请实施例对此不做限定。
发送端设备根据第一序列集中的第一序列生成的同步头字段的方式可以参考上文图4中的S410。
S720,发送端设备发送PPDU。
其中,PPDU包括同步头字段。相应地,接收端设备接收该PPDU。
S730,接收端设备根据第一序列和同步头字段进行相关性检测。
示例性地,S730中的相关性检测可以是自相关检测,也可以是互相关检测,关于相关性检测的具体方法本申请实施例不予限制。
在本申请实施例中,由于第一序列集与第二序列集之间满足上述关系#A和/或关系#B,因此,第一序列集中的序列比第二序列集中的序列的抗多普勒特性好,即使当载波之间存在较大频率偏移时,第一序列集中的第一序列的非周期峰值旁瓣比也比较高。因此,当发送端设备基于第一序列生成同步头字段,并发送包含同步头字段的PPDU之后,接收端设备对PPDU产生误检的可能性较低,从而可以提高系统性能。例如,当该PPDU是用于测距或用于感知的PPDU时,接收端设备基于PPDU进行测距或感知的性能不会因为载波频偏而受到较大影响。
应理解,本申请实施例仅以图4、图6和图7为例,对本申请实施例提供的方法进行说明,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在上述一些实施例中,主要以现有的网络架构中的设备为例进行了示例性说明(如发送端设备、接收端设备等等),应理解,对于设备的具体形式本申请实施例不作限定。例如,在未来可以实现同样功能的设备都适用本申请实施例。
可以理解的是,上述各个方法实施例中,由设备(如上述发送端设备、接收端设备等)实现的方法和操作,也可以由设备的部件(例如芯片或者电路)实现。
还可以理解的是,发送端设备和接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以下,结合图8至图10详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不在赘述。
本申请实施例可以根据上述方法实施例对发送端设备或接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图8是本申请实施例提供的一种装置的示意性框图。如图8所示,该装置2000可以包括收发单元2010和处理单元2020。收发单元2010可以与外部进行通信,处理单元2020用于进行数据处理。收发单元2010还可以称为通信接口或通信单元。
可选的,该装置2000还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元2020可以读取存储单元中的指令和/或数据,以使得装置实现前述方法实施例。
在第一种设计中,该装置2000可以是前述实施例中的发送端设备,也可以是发送端设备的组成部 件(如芯片)。该装置2000可实现对应于上文方法实施例中的发送端设备执行的步骤或者流程,其中,收发单元2010可用于执行上文方法实施例中发送端设备的收发相关的操作,处理单元2020可用于执行上文方法实施例中发送端设备的处理相关的操作。
一种可能的实现方式中,处理单元2020,用于根据序列集生成同步头字段,该序列集包括以下序列中的至少一个:长度为127的序列,长度为31的序列,长度为91的序列,或,长度为64的序列;收发单元2010,用于发送该同步头字段。
又一种可能的实现方式中,处理单元2020,用于根据第一序列集中的第一序列生成同步头字段,该第一系列集中的每个序列是对第二序列集中的序列进行移位和/或采样得到的,该第一序列集与该第二序列集之间满足如下关系中的一项或多项:该第一序列集在预设载波频偏下的M个周期峰值旁瓣比中的最小值大于该第二序列集在该预设载波频偏下的N个周期峰值旁瓣比中的最小值,该M个周期峰值旁瓣比的平均值大于该N个周期峰值旁瓣比的平均值;其中,该M个周期峰值旁瓣比与该第一序列集包括的M个序列一一对应,该N个周期峰值旁瓣比与该第二序列集包括的N个序列一一对应;收发单元2010,用于发送PPDU,该PPDU包括该同步头字段。
再一种可能的实现方式中,处理单元2020,用于根据第一序列集中的第一序列生成同步头字段,该第一序列集与第二序列集之间满足如下关系中的一项或多项:该第一序列集在预设载波频偏下的M个非周期峰值旁瓣比中的最小值大于该第二序列集在该预设载波频偏下的N个非周期峰值旁瓣比中的最小值,该M个非周期峰值旁瓣比的平均值大于该N个非周期峰值旁瓣比的平均值;其中,该M个非周期峰值旁瓣比与该第一序列集包括的M个序列一一对应,该N个非周期峰值旁瓣比与该第二序列集包括的N个序列一一对应;收发单元2010,用于发送PPDU,该PPDU包括该同步头字段。
再一种可能的实现方式中,处理单元2020,用于根据第一序列生成同步头字段,该第一序列是满足上文式14的序列集中零相关区最大的序列;收发单元2010,用于发送PPDU,该PPDU包括该同步头字段。
在第二种设计中,该装置2000可以是前述实施例中的接收端设备,也可以是接收端设备的组成部件(如芯片)。该装置2000可实现对应于上文方法实施例中的接收端设备执行的步骤或者流程,其中,收发单元2010可用于执行上文方法实施例中接收端设备的收发相关的操作,处理单元2020可用于执行上文方法实施例中接收端设备的处理相关的操作。
一种可能的实现方式中,收发单元2010,用于接收同步头字段;处理单元2000,用于根据序列集和同步头字段进行相关性检测,该序列集包括以下序列中的至少一个:长度为127的序列,长度为31的序列,长度为91的序列,或,长度为64的序列。
又一种可能的实现方式中,收发单元2010,用于接收PPDU,PPDU包括同步头字段;处理单元2020,用于根据第一序列集中的第一序列与该同步头字段进行相关性检测,该第一序列集与第二序列集之间满足如下关系中的一项或多项:该第一序列集在预设载波频偏下的M个非周期峰值旁瓣比中的最小值大于该第二序列集在该预设载波频偏下的N个非周期峰值旁瓣比中的最小值,该M个非周期峰值旁瓣比的平均值大于该N个非周期峰值旁瓣比的平均值;其中,该M个非周期峰值旁瓣比与该第一序列集包括的M个序列一一对应,该N个非周期峰值旁瓣比与该第二序列集包括的N个序列一一对应。
再一种可能的实现方式中,收发单元2010,用于接收PPDU,PPDU包括同步头字段;处理单元2020,用于根据第一序列集中的第一序列与该同步头字段进行相关性检测,该第一序列集与第二序列集之间满足如下关系中的一项或多项:该第一序列集在预设载波频偏下的M个非周期峰值旁瓣比中的最小值大于该第二序列集在该预设载波频偏下的N个非周期峰值旁瓣比中的最小值,该M个非周期峰值旁瓣比的平均值大于该N个非周期峰值旁瓣比的平均值;其中,该M个非周期峰值旁瓣比与该第一序列集包括的M个序列一一对应,该N个非周期峰值旁瓣比与该第二序列集包括的N个序列一一对应。
再一种可能的实现方式中,收发单元2010,用于接收PPDU,PPDU包括同步头字段;处理单元2020,用于根据第一序列与该同步头字段进行相关性检测,该第一序列是满足上文式14的序列集中零相关区最大的序列。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁, 在此不再赘述。
还应理解,这里的装置2000以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置2000可以具体为上述实施例中的发送端设备,可以用于执行上述各方法实施例中与发送端设备对应的各个流程和/或步骤;或者,装置2000可以具体为上述实施例中的接收端设备,可以用于执行上述各方法实施例中与接收端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。上述收发单元2010还可以是收发电路(例如可以包括接收电路和发送电路),处理单元2020可以是处理电路。图8中的装置可以是前述实施例中的设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
上述各个方案的装置2000具有实现上述方法中发送端设备或接收端设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
图9是本申请实施例提供的装置3000的示意图。该装置3000包括处理器3010,处理器3010用于执行存储器3020存储的计算机程序或指令,或读取存储器3020存储的数据/信令,以执行上文各方法实施例中的方法。可选地,处理器3010为一个或多个。
可选地,如图9所示,该装置3000还包括存储器3020,存储器3020用于存储计算机程序或指令和/或数据。该存储器3020可以与处理器3010集成在一起,或者也可以分离设置。可选地,存储器3020为一个或多个。
可选地,如图9所示,该装置3000还包括收发器3030,收发器3030用于信号的接收和/或发送。例如,处理器3010用于控制收发器3030进行信号的接收和/或发送。
作为一种方案,该装置3000用于实现上文各个方法实施例中由发送端设备执行的操作。
例如,处理器3010用于执行存储器3020存储的计算机程序或指令,以实现上文各个方法实施例中发送端设备的相关操作。例如,图4、图6或图7所示实施例中的发送端设备执行的方法。
作为另一种方案,该装置3000用于实现上文各个方法实施例中由接收端设备执行的操作。
例如,处理器3010用于执行存储器3020存储的计算机程序或指令,以实现上文各个方法实施例中接收端设备的相关操作。例如,图4、图6或图7所示实施例中的接收端设备执行的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门 或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图10是本申请实施例提供一种芯片系统4000的示意图。该芯片系统4000(或者也可以称为处理系统)包括逻辑电路4010以及输入/输出接口(input/output interface)4020。
其中,逻辑电路4010可以为芯片系统4000中的处理电路。逻辑电路4010可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统4000可以实现本申请各实施例的方法和功能。输入/输出接口4020,可以为芯片系统4000中的输入输出电路,将芯片系统4000处理好的信息输出,或将待处理的数据或信令信息输入芯片系统4000进行处理。
具体地,例如,若发送端设备安装了该芯片系统4000,逻辑电路4010与输入/输出接口4020耦合,逻辑电路4010可通过输入/输出接口4020发送PPDU,该PPDU可以为逻辑电路1010生成。又如,若接收端设备安装了该芯片系统4000,逻辑电路4010与输入/输出接口4020耦合,逻辑电路4010可通过输入/输出接口4020接收PPDU,逻辑电路4010解析该PPDU。
作为一种方案,该芯片系统4000用于实现上文各个方法实施例中由发送端设备执行的操作。
例如,逻辑电路4010用于实现上文方法实施例中由发送端设备执行的处理相关的操作,如,图4、图6或图7所示实施例中的发送端设备执行的处理相关的操作;输入/输出接口4020用于实现上文方法实施例中由发送端设备执行的发送和/或接收相关的操作,如,图4、图6或图7所示实施例中的发送端设备执行的发送和/或接收相关的操作。
作为另一种方案,该芯片系统4000用于实现上文各个方法实施例中由接收端设备执行的操作。
例如,逻辑电路4010用于实现上文方法实施例中由接收端设备执行的处理相关的操作,如,图4、图6或图7所示实施例中的接收端设备执行的处理相关的操作;输入/输出接口4020用于实现上文方法实施例中由接收端设备执行的发送和/或接收相关的操作,如,图4、图6或图7所示实施例中的接收端设备执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由发送端设备执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由接收端设备执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由设备(如发送端设备,又如接收端设备)执行的方法。
本申请实施例还提供一种通信的系统,包括前述的发送端设备和接收端设备。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成 的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    根据序列集生成同步头字段,所述序列集包括以下序列中的至少一个:长度为127的序列,长度为31的序列,长度为91的序列,或,长度为64的序列;
    发送所述同步头字段。
  2. 根据权利要求1所述的方法,其特征在于,所述序列集包括所述长度为127的序列,所述长度为127的序列包括序列至序列中的至少一个;








  3. 根据权利要求2所述的方法,其特征在于,所述序列至所述序列在预设载波频偏下的周期峰值旁瓣比中的最小值大于第一预设值。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述序列集包括所述长度为31的序列,所述长度为31的序列包括序列和序列中的至少一个;
    其中,
  5. 根据权利要求4所述的方法,其特征在于,所述序列和所述序列在预设载波频偏下的非周期峰值旁瓣比大于第二预设值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述序列集包括所述长度为91的序列,所述长度为91的序列包括序列和序列中的至少一个;
    其中,
  7. 根据权利要求6所述的方法,其特征在于,所述序列和所述序列在预设载波频偏下的非周期峰值旁瓣比大于第三预设值。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述序列集包括所述长度为127的序列
  9. 根据权利要求8所述的方法,其特征在于,所述序列在预设载波频偏下的非周期峰值旁瓣比大于第四预设值。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述序列集包括所述长度为64的序列
  11. 根据权利要求10所述的方法,其特征在于,所述序列的零相关区的长度大于或等于第五预设值。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述发送所述同步头字段,包括:
    基于超宽带UWB发送物理层协议数据单元PPDU,所述PPDU包括所述同步头字段。
  13. 一种通信方法,其特征在于,包括:
    接收同步头字段;
    根据序列集和同步头字段进行相关性检测,所述序列集包括以下序列中的至少一个:长度为127的序列,长度为31的序列,长度为91的序列,或,长度为64的序列。
  14. 根据权利要求13所述的方法,其特征在于,所述序列集包括所述长度为127的序列,所述长度为127的序列包括序列至序列中的至少一个;







  15. 根据权利要求14所述的方法,其特征在于,所述序列至所述序列在预设载波频偏下的周期峰值旁瓣比中的最小值大于第一预设值。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述序列集包括所述长度为31的序列,所述长度为31的序列包括序列和序列中的至少一个;
    其中,
  17. 根据权利要求16所述的方法,其特征在于,所述序列和所述序列在预设载波频偏下的 非周期峰值旁瓣比大于第二预设值。
  18. 根据权利要求13至17中任一项所述的方法,其特征在于,所述序列集包括所述长度为91的序列,所述长度为91的序列包括序列和序列中的至少一个;
    其中,
  19. 根据权利要求18所述的方法,其特征在于,所述序列和所述序列在预设载波频偏下的非周期峰值旁瓣比大于第三预设值。
  20. 根据权利要求13至19中任一项所述的方法,其特征在于,所述序列集包括所述长度为127的序列
  21. 根据权利要求20所述的方法,其特征在于,所述序列在预设载波频偏下的非周期峰值旁瓣比大于第四预设值。
  22. 根据权利要求13至21中任一项所述的方法,其特征在于,所序列集包括所述长度为64的序列
  23. 根据权利要求22所述的方法,其特征在于,所述序列的零相关区的长度大于第五预设值。
  24. 根据权利要求13至23中任一项所述的方法,其特征在于,所述接收同步头字段,包括:
    通过超宽带UWB接收物理层协议数据单元PPDU,所述PPDU包括所述同步头字段。
  25. 一种通信方法,其特征在于,包括:
    根据第一序列集中的第一序列生成同步头字段,所述第一系列集中的每个序列是对第二序列集中的序列进行移位和/或采样得到的,所述第一序列集与所述第二序列集之间满足如下关系中的一项或多项:所述第一序列集在预设载波频偏下的M个周期峰值旁瓣比中的最小值大于所述第二序列集在所述预设载波频偏下的N个周期峰值旁瓣比中的最小值,所述M个周期峰值旁瓣比的平均值大于所述N个周期峰值旁瓣比的平均值;其中,所述M个周期峰值旁瓣比与所述第一序列集包括的M个序列一一对应,所述N个周期峰值旁瓣比与所述第二序列集包括的N个序列一一对应;
    发送物理层协议数据单元PPDU,所述PPDU包括所述同步头字段。
  26. 一种装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机指令,以使得所述装置执行如权利要求1至12中任一项所述的方法,或者,使得所述装置执行如权利要求13至24中任一项所述的方法,或者,使得所述装置执行如权利要求25所述的方法。
  27. 根据权利要求26所述的装置,其特征在于,所述装置还包括所述存储器。
  28. 根据权利要求26或27所述的装置,其特征在于,所述装置还包括通信接口,所述通信接口与所述处理器耦合,
    所述通信接口,用于输入和/或输出信息。
  29. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现如权利要求1至12中任一项所述的方法的指令,或者,包括用于实现如权利要求13至24中任一项 所述的方法的指令,或者,包括用于实现如权利要求25所述的方法的指令。
PCT/CN2023/104587 2022-07-14 2023-06-30 通信方法及装置 WO2024012259A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210834563.5 2022-07-14
CN202210834563.5A CN117439719A (zh) 2022-07-14 2022-07-14 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024012259A1 true WO2024012259A1 (zh) 2024-01-18

Family

ID=89535428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104587 WO2024012259A1 (zh) 2022-07-14 2023-06-30 通信方法及装置

Country Status (3)

Country Link
CN (1) CN117439719A (zh)
TW (1) TW202404300A (zh)
WO (1) WO2024012259A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226342A (zh) * 2017-01-25 2019-09-10 华为技术有限公司 发送参考信号的方法和装置及接收参考信号的方法和装置
CN111435934A (zh) * 2019-01-10 2020-07-21 恩智浦有限公司 用于超宽带测距中的数据帧传输的密钥导出方案
US20200288396A1 (en) * 2017-09-07 2020-09-10 Lg Electronics Inc. Method and device for transmitting wakeup packet in wireless lan system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226342A (zh) * 2017-01-25 2019-09-10 华为技术有限公司 发送参考信号的方法和装置及接收参考信号的方法和装置
US20200288396A1 (en) * 2017-09-07 2020-09-10 Lg Electronics Inc. Method and device for transmitting wakeup packet in wireless lan system
CN111435934A (zh) * 2019-01-10 2020-07-21 恩智浦有限公司 用于超宽带测距中的数据帧传输的密钥导出方案

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIN YANLIANG; ZHANG XIAOSHUAI; YAO BIN: "A synchronization algorithm based on Kasami sequence in IEEE 802.15.6 IR-UWB body area networks", 2017 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), IEEE, 14 May 2017 (2017-05-14), pages 039 - 043, XP033158358, DOI: 10.1109/EIT.2017.8053327 *
KUN SHAO, YINGKE LEI: "Fast Blind Recognition Algorithm of Frame Synchronization Based on Dispersion Analysis", SIGNAL PROCESSING, vol. 36, no. 3, 25 March 2020 (2020-03-25), pages 361 - 372, XP093129426, ISSN: 1003-0530 *

Also Published As

Publication number Publication date
CN117439719A (zh) 2024-01-23
TW202404300A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US11892538B2 (en) Method and apparatus for controlling ranging in wireless communication system
US9094424B2 (en) Method, apparatus, and computer program product for digital stream swapping between signal sources
US20160134709A1 (en) Method, apparatus, and computer program product for a node to advertise its presence and service profiles thereof in a wireless environment
TW201947975A (zh) 訊息確定方法、終端設備和網路設備
WO2024012259A1 (zh) 通信方法及装置
WO2023160314A1 (zh) 传输物理层协议数据单元的方法和装置
WO2023185633A1 (zh) 一种通信的方法、装置和系统
WO2024036949A1 (zh) 信号处理方法及装置
WO2024051245A1 (zh) 信号处理的方法及装置
WO2023061311A1 (zh) 一种传输物理层协议数据单元的方法和装置
WO2023241431A1 (zh) 基于超宽带传输物理层协议数据单元的方法和装置
CN117640313A (zh) 信号处理方法及装置
WO2023207602A1 (zh) 通信方法及相关装置
WO2023061011A1 (zh) 一种测距方法和装置
WO2023165454A1 (zh) 通信方法和装置
WO2023198098A1 (zh) 传输信令的方法和装置
US20230170933A1 (en) Ultra-wideband device for transmitting/receiving multiple packets and method for operating same
WO2024051488A1 (zh) 一种信息传输方法和装置
WO2023236823A1 (zh) 基于uwb的ppdu传输方法及相关装置
WO2023241651A1 (zh) 基于物理层协议数据单元的通信方法及装置
WO2023179585A1 (zh) 时钟同步的方法和装置
WO2023174403A1 (zh) 基于超宽带的传输物理层协议数据单元的方法及装置
WO2024007477A1 (zh) 测距方法与装置
WO2023207593A1 (zh) 应用于超带宽uwb系统感知测量的方法和装置
WO2023246579A1 (zh) 一种应用于超宽带系统的信号同步的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838751

Country of ref document: EP

Kind code of ref document: A1