WO2023072130A1 - 感知测量方法以及相关装置 - Google Patents

感知测量方法以及相关装置 Download PDF

Info

Publication number
WO2023072130A1
WO2023072130A1 PCT/CN2022/127611 CN2022127611W WO2023072130A1 WO 2023072130 A1 WO2023072130 A1 WO 2023072130A1 CN 2022127611 W CN2022127611 W CN 2022127611W WO 2023072130 A1 WO2023072130 A1 WO 2023072130A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppdu
transmission path
amplitude
information
difference
Prior art date
Application number
PCT/CN2022/127611
Other languages
English (en)
French (fr)
Inventor
刘辰辰
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22886006.0A priority Critical patent/EP4412296A1/en
Publication of WO2023072130A1 publication Critical patent/WO2023072130A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular to a perception measurement method and a related device.
  • Ultra-Wide Band (UWB) technology is a wireless carrier communication technology that uses nanosecond-level non-sine wave narrow pulses to transmit data, so it occupies a wide spectrum. Because the non-sine wave narrow pulse is very narrow, and the radiation spectral density is extremely low. Therefore, the UWB wireless communication system has the advantages of strong multipath resolution capability, low power consumption, and strong confidentiality.
  • UWB technology is known as one of the hotly discussed physical layer technologies for short-distance, high-speed wireless networks.
  • IEEE has incorporated UWB technology into its IEEE 802 series of wireless standards.
  • IEEE has released the high-speed wireless personal area network (Wireless Personal Area Network, WPAN) standard IEEE 802.15.4a and its evolution version IEEE 802.15.4z based on UWB technology.
  • WPAN Wireless Personal Area Network
  • the formulation of the next-generation UWB wireless personal area network standard 802.15.4ab has also been put on the agenda.
  • the bandwidth of the signal used for wireless communication is very large (minimum 500M (megabyte)), so the UWB signal can be used to obtain high-precision ranging results or perception measurement results.
  • the UWB wireless communication system how to use ultra-wideband signals to realize the perception of the surrounding environment and the feedback of the perception measurement results is a problem worth considering.
  • the present application provides a perception measurement method and a related device, which are used to realize the perception of the target in the surrounding environment by the second device and feed back the corresponding perception measurement result to the first device.
  • the first aspect of the present application provides a perception measurement method, the method comprising:
  • the first device sends the first physical layer protocol data unit (PHY Protocol Data Unit, PPDU) to the second device, and the first PPDU is used for perception measurement; the first device receives the second PPDU from the second device, and the second PPDU includes the perception
  • the measurement result, the sensing measurement result is obtained by the second device performing sensing measurement on the first PPDU.
  • PHY Protocol Data Unit PHY Protocol Data Unit
  • the above technical solution may be applied to a UWB wireless communication system, and the first device and the second device may be two UWB devices of the UWB wireless communication system.
  • the first device sends a first PPDU to the second device, and then the first device may receive a second PPDU from the second device, the second PPDU includes a perceptual measurement result, which is a perceptual measurement performed by the second device on the first PPDU owned.
  • the perception of the surrounding environment by the UWB device is realized and the corresponding perception measurement results are fed back.
  • the second aspect of the present application provides a perception measurement method, including:
  • the second device receives the first PPDU from the first device; the second device performs perception measurement on the first PPDU to obtain a perception measurement result; the second device sends a second PPDU to the first device, and the second PPDU includes the perception measurement result .
  • the above technical solution may be applied to a UWB wireless communication system, and the first device and the second device may be two UWB devices of the UWB wireless communication system.
  • the second device performs perception measurement on the first PPDU, obtains a perception measurement result, and feeds back the perception measurement result to the first device. In this way, the perception of the surrounding environment by the UWB device is realized and the corresponding perception measurement results are fed back.
  • the sensing measurement result includes at least one of the following: transmission path number information, multipath signal component amplitude information, time information, angle Information, location information of the second device;
  • the transmission path number information is used to indicate the number of transmission paths between the first device and the second device;
  • the multipath signal component amplitude information includes at least one transmission path of the first PPDU between the first device and the second device The corresponding signal amplitude information;
  • the time information includes the time information corresponding to the first PPDU on at least one transmission path;
  • the angle information includes the angle information corresponding to the arrival of the first PPDU on at least one transmission path to the second device.
  • the above implementation manner shows the specific content of the perception measurement result, which specifically includes the signal amplitude information, time information, angle information, and The number of transmission paths between the first device and the second device, the location information of the second device, and the like. It is beneficial for the first device to determine information such as the position and speed of the target in the surrounding environment based on the perception measurement result, so as to realize the perception of the target in the surrounding environment.
  • the multipath signal component amplitude information includes in-phase signal amplitude information and quadrature Signal amplitude information
  • the in-phase amplitude information includes the amplitude information of the in-phase signal corresponding to the first PPDU on at least one transmission path
  • the quadrature amplitude information includes the amplitude information of the quadrature signal corresponding to the first PPDU on at least one transmission path.
  • the multipath signal component amplitude information characterizes the signal energy of the first PPDU on each transmission path from two dimensions (the in-phase signal of the first PPDU and the quadrature signal of the first PPDU). Therefore, it is beneficial for the first device to determine the signal amplitude variation and signal phase variation on each transmission path based on the multipath signal component amplitude information. Since the phase change of the signal can represent the moving speed of the target in the environment to a certain extent, the first device can determine information such as the moving speed of the target through the multipath signal component amplitude information.
  • the in-phase signal amplitude information includes at least one first An amplitude difference, at least one first amplitude difference corresponds to at least one transmission path, and each first amplitude difference is based on the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the first transmission path Determined by the amplitude of the in-phase signal of the first PPDU transmitted above, the first transmission path is the transmission path with the strongest signal energy of the first PPDU in at least one transmission path;
  • the quadrature signal amplitude information includes at least one second amplitude difference, At least one second amplitude difference corresponds to at least one transmission path, and each second amplitude difference is based on the amplitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the amplitude of the first PPDU transmitted on the
  • the amplitude information of the in-phase signal may be represented by at least one first amplitude difference
  • the amplitude information of the quadrature signal may be represented by at least one second amplitude difference. If the signal amplitude information can be correctly indicated, it is beneficial to reduce the number of bits used to indicate the signal amplitude information in the second PPDU, thereby improving resource utilization.
  • each first amplitude difference is equal to the first amplitude difference for the first
  • a ratio is logarithmic, the first ratio being the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the amplitude of the in-phase signal of the first PPDU transmitted on the first transmission path
  • Each second amplitude difference is equal to the logarithm of the second ratio, and the second ratio is the amplitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the first transmission path The ratio between the amplitudes of the quadrature signals of the first PPDU transmitted.
  • a specific calculation method of the first amplitude difference and the second amplitude difference is provided in the above implementation manner, which facilitates the implementation of the solution. It is convenient for the second device to indicate the amplitude information of multipath signal components through at least one first amplitude difference and at least one second amplitude difference, which is beneficial to reduce the number of bits used to indicate signal amplitude information in the second PPDU, thereby improving resource utilization.
  • the time information includes at least one delay difference
  • At least one delay difference corresponds to at least one transmission path
  • each delay difference is the arrival time of the first PPDU transmitted on the transmission path corresponding to the delay difference to the second device and the first PPDU transmitted on the second transmission path.
  • the time difference between arrival times of PPDUs arriving at the second device, and the second transmission path is a transmission path with the minimum transmission time of the first PPDU among at least one transmission path.
  • the content specifically included in the time information is shown, and the second device uses at least one delay difference to represent the transmission time information of the first PPDU on the at least one transmission path. Therefore, it is convenient for the first device to determine information such as the distance between the target on the transmission path and the first device based on the time information. Secondly, the second device uses at least one delay difference to represent the transmission time information of the first PPDU on the at least one transmission path. In the case that the time information can be correctly indicated, it is beneficial to reduce the time information used to indicate the time information in the second PPDU. The number of bits saves bit overhead.
  • the angle information includes at least one incident angle, at least One incident angle corresponds to at least one transmission path, and each incident angle is an incident angle at which the first PPDU transmitted on the transmission path corresponding to the incident angle reaches the second device.
  • the above-mentioned embodiment shows what the angle information includes.
  • the second device uses at least one incident angle to represent the incident angle at which the first PPDU on the at least one transmission path reaches the second device. Therefore, it is convenient for the first device to determine the specific position of the target on the transmission path based on the angle information.
  • the location information of the second device includes at least the following One item: longitude information where the second device is located, latitude information where the second device is located, and altitude information where the second device is located.
  • the second device may also feed back location information of the second device to the first device, specifically including longitude, latitude, and altitude information where the second device is located. Therefore, it is convenient for the first device to determine the position of the target in the surrounding environment based on the position information of the second device.
  • Methods before the first device sends the first PPDU to the second device, Methods also include:
  • the first device sends a sensory measurement request to the second device, and the sensory measurement request is used to request the second device to assist the first device in sensory measurement; the first device receives a sensory measurement consent response from the second device, and the sensory measurement consent response is used to indicate The second device agrees to assist the first device with the perception measurement.
  • the first device before the sensory measurement is performed between the first device and the second device, the first device can negotiate with the second device for sensory measurement, so that the second device can assist the first device to perform sensory measurement, and realize Perceive the target of the environment and feed back the corresponding perception measurement result to the first device.
  • the method further includes: the first device sends a measurement report request to the second device, where the measurement report request is used to request the second device to feed back the perception measurement result.
  • the first device may request the second device to feed back the perception measurement result, so that the second device may feed back the perception measurement result to the first device. Therefore, it is convenient for the first device to determine information such as the location of the target in the surrounding environment based on the perception measurement result.
  • the method before the second device receives the first PPDU from the first device , the method further includes: the second device receives a sensory measurement request from the first device, where the sensory measurement request is used to request the second device to assist the first device in performing sensory measurement; the second device sends a sensory measurement consent response to the first device, and the sensory measurement The consent response is used to indicate that the second device agrees to assist the first device in performing the sensing measurement.
  • the first device before the perception measurement is performed between the first device and the second device, the first device can negotiate with the second device for perception measurement, so that the second device can assist the first device in performing perception measurement, and realize the awareness of the surrounding environment.
  • the target perceives and feeds back the corresponding perception measurement result to the first device.
  • the second device receives a measurement report request from the first device to request feedback of the perception measurement result, so that the second device can feed back the perception measurement result to the first device. Therefore, it is convenient for the first device to determine information such as the location of the target in the surrounding environment based on the perception measurement result.
  • the second PPDU includes channel measurement feedback elements, and the sensing The measurement result is carried in the channel measurement feedback element.
  • a specific field carrying the perception measurement result is provided, so as to facilitate the implementation of the solution.
  • the channel measurement feedback element includes at least one of the following fields: Multipath number field, multipath amplitude field, multipath delay field, multipath signal incidence angle field and device location information field; the multipath number field is used to carry the number information of transmission paths, and the multipath amplitude field is used to carry The multipath signal component amplitude information, the multipath delay field is used to carry time information, the multipath signal incident angle field is used to carry angle information, and the device location information field is used to carry location information of the second device.
  • the channel measurement feedback element includes a plurality of subfields, which can be used to carry information included in the perception measurement result, respectively. This facilitates the first device to interpret the perception measurement result.
  • the third aspect of the present application provides a perception measurement method, including:
  • the first device sends a trigger frame to the second device, the trigger frame is used to trigger the second device to send a first PPDU, and the first PPDU is used for perception measurement; the first device receives the first PPDU from the second device; the first device Perception measurement is performed based on the first PPDU to obtain a perception measurement result.
  • the above technical solution may be applied to a UWB wireless communication system, and the first device and the second device may be two UWB devices of the UWB wireless communication system.
  • the first device sends a trigger frame to the second device, where the trigger frame is used to trigger the second device to send a first PPDU, where the first PPDU is used for perception measurement.
  • the first device receives the first PPDU from the second device, and the first device performs sensing measurement based on the first PPDU to obtain a sensing measurement result. In this way, the perception of the surrounding environment by the UWB device is realized to obtain corresponding perception measurement results. No need to feedback sensory measurements.
  • the fourth aspect of the present application provides a perception measurement method, including:
  • the second device receives a trigger frame from the first device, where the trigger frame is used to trigger the first device to send a first PPDU, and the first PPDU is used for perception measurement; the second device sends the first PPDU to the first device.
  • the above technical solution may be applied to a UWB wireless communication system, and the first device and the second device may be two UWB devices of the UWB wireless communication system.
  • the first device sends a trigger frame to the second device, where the trigger frame is used to trigger the second device to send a first PPDU, where the first PPDU is used for perception measurement.
  • the second device sends a first PPDU to the first device. Therefore, it is convenient for the first device to perform perception measurement based on the first PPDU, and obtain a perception measurement result. In this way, the perception of the surrounding environment by the UWB device is realized to obtain corresponding perception measurement results. No need to feedback sensory measurements.
  • the trigger frame includes first indication information, and the first indication information is used to instruct the second device to send a format of the first PPDU.
  • the first device may indicate the format of the first PPDU to the second device through the trigger frame, so that the second device can send the first PPDU in the format indicated by the first PPDU. It is beneficial for the first device to parse the first PPDU, and perform perception measurement on the first PPDU to obtain a corresponding perception measurement result. No need to feedback sensory measurements.
  • the first indication information includes at least one of the following: scrambled time stamp sequence (scrambled timestamp sequence, STS) secret key, signal time length, STS sequence repetition times.
  • the first indication information may indicate to the second device the STS key, the signal duration, and the number of repetitions of the STS sequence.
  • the second device can generate the first PPDU based on these information.
  • the first PPDU includes an STS
  • the STS is generated based on the STS key
  • the length of the STS is the signal time length
  • the STS is placed repeatedly in the first PPDU.
  • the first device may perform a correlation operation on the locally determined STS and the STS of the first PPDU to obtain some corresponding sensing measurement quantities.
  • the first device parses the first PPDU through the STS, which is beneficial to improving the security of the first device parsing the first PPDU and time measurement.
  • the sensory measurement results include at least one of the following Items: information on the number of transmission paths, amplitude information of multipath signal components, time information, and angle information.
  • the transmission path number information is used to indicate the number of transmission paths between the first device and the second device;
  • the multipath signal component amplitude information includes at least one transmission path of the first PPDU between the first device and the second device The corresponding signal amplitude information;
  • the time information includes the time information corresponding to the first PPDU on the at least one transmission path;
  • the angle information includes the angle information corresponding to the arrival of the first PPDU on the at least one transmission path to the first device.
  • the above implementation manner shows the specific content of the perception measurement result, which specifically includes the signal amplitude information, time information, angle information, and The number of transmission paths between the first device and the second device, etc. It is beneficial for the first device to determine information such as the position and speed of the target in the surrounding environment based on the perception measurement result, so as to realize the perception of the target in the surrounding environment.
  • the multipath signal component amplitude information includes In-phase signal amplitude information and quadrature signal amplitude information
  • the in-phase amplitude information includes the amplitude information of the in-phase signal corresponding to the first PPDU on at least one transmission path
  • the quadrature amplitude information includes the amplitude information of the first PPDU on at least one transmission path Amplitude information of the quadrature signal.
  • the multipath signal component amplitude information characterizes the signal energy of the first PPDU on each transmission path from two dimensions (the in-phase signal of the first PPDU and the quadrature signal of the first PPDU). Therefore, it is convenient for the first device to determine the signal amplitude variation and signal phase variation on each transmission path based on the multipath signal component amplitude information. Since the phase change of the signal can represent the moving speed of the target in the environment to a certain extent, the first device can determine information such as the moving speed of the target through the multipath signal component amplitude information.
  • the in-phase signal amplitude information includes at least A first amplitude difference, at least one first amplitude difference corresponds to at least one transmission path, and each first amplitude difference is based on the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the first Determined by the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path, the first transmission path is the transmission path with the strongest signal capability of the first PPDU in at least one transmission path;
  • the orthogonal signal amplitude information includes at least one second amplitude At least one second amplitude difference corresponds to at least one transmission path, and each second amplitude difference is based on the magnitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the amplitude of the quadrature signal transmitted on
  • the amplitude information of the in-phase signal may be represented by at least one first amplitude difference
  • the amplitude information of the quadrature signal may be represented by at least one second amplitude difference.
  • the first device may determine signal amplitude information of the first PPDU on each transmission path based on the at least one first amplitude difference and the at least one second amplitude difference.
  • each first amplitude difference is equal to Taking the logarithm for the first ratio, the first ratio is the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the amplitude of the in-phase signal of the first PPDU transmitted on the first transmission path The ratio between the amplitudes; each second amplitude difference is equal to the logarithm of the second ratio, and the second ratio is the amplitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the first transmission The ratio between the amplitudes of the quadrature signals of the first PPDU transmitted on the path.
  • a specific calculation method of the first amplitude difference and the second amplitude difference is provided in the above implementation manner, which facilitates the implementation of the solution. It is convenient for the first device to determine the signal amplitude information of the first PPDU on each transmission path by using at least one first amplitude difference and at least one second amplitude difference.
  • the time information includes at least one time delay At least one delay difference corresponds to at least one transmission path, and each delay difference is the difference between the arrival time of the first PPDU transmitted on the transmission path corresponding to the delay difference and the arrival time of the first PPDU transmitted on the second transmission path.
  • the time difference between arrival times of the first PPDU at the first device, and the second transmission path is a transmission path with the smallest transmission time of the first PPDU among at least one transmission path.
  • the above-mentioned embodiment shows what the time information specifically includes, and the first device uses at least one delay difference to represent the transmission time information of the first PPDU on the at least one transmission path. Therefore, it is convenient for the first device to determine information such as the distance between the target on the transmission path and the first device based on the time information.
  • the angle information includes at least one incident angle , at least one incident angle corresponds to at least one transmission path, and each incident angle is an incident angle at which the first PPDU transmitted on the transmission path corresponding to the incident angle reaches the first device.
  • the above-mentioned embodiment shows what the angle information includes.
  • the first device uses at least one incident angle to represent the incident angle at which the first PPDU on the at least one transmission path arrives at the first device. Therefore, it is convenient for the first device to determine the specific position of the target on the at least one transmission path based on the angle information.
  • a fifth aspect of the present application provides a first communication device, including:
  • a sending unit configured to send a first PPDU to the second communication device, where the first PPDU is used for perception measurement
  • the receiving unit is configured to receive a second PPDU from the second communication device, the second PPDU includes a sensing measurement result, and the sensing measurement result is obtained by the second communication device performing sensing measurement on the first PPDU.
  • a sixth aspect of the present application provides a second communication device, including:
  • a receiving unit configured to receive a first PPDU from the first communication device
  • a processing unit configured to perform perceptual measurement on the first PPDU to obtain a perceptual measurement result
  • a sending unit configured to send a second PPDU to the first communication device, where the second PPDU includes a perception measurement result.
  • the sensing measurement result includes at least one of the following: transmission path number information, multipath signal component amplitude information, time information, angle information, location information of the second communication device;
  • the transmission path number information is used to indicate the number of transmission paths between the first communication device and the second communication device;
  • the multipath signal component amplitude information includes the first PPDU between the first communication device and the second communication device The corresponding signal amplitude information on at least one transmission path;
  • the time information includes the time information corresponding to the first PPDU on at least one transmission path;
  • the angle information includes the angle information corresponding to the arrival of the first PPDU on the at least one transmission path to the second communication device.
  • the multipath signal component amplitude information includes in-phase signal amplitude information and quadrature Signal amplitude information
  • the in-phase amplitude information includes the amplitude information of the in-phase signal corresponding to the first PPDU on at least one transmission path
  • the quadrature amplitude information includes the amplitude information of the quadrature signal corresponding to the first PPDU on at least one transmission path.
  • the in-phase signal amplitude information includes at least one first An amplitude difference, at least one first amplitude difference corresponds to at least one transmission path, and each first amplitude difference is based on the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the first transmission path Determined by the amplitude of the in-phase signal of the first PPDU transmitted above, the first transmission path is the transmission path with the strongest signal energy of the first PPDU in at least one transmission path;
  • the quadrature signal amplitude information includes at least one second amplitude difference, At least one second amplitude difference corresponds to at least one transmission path, and each second amplitude difference is based on the amplitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the amplitude of the first PPDU transmitted on the
  • each first amplitude difference is equal to the first amplitude difference for the first
  • a ratio is logarithmic, the first ratio being the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the amplitude of the in-phase signal of the first PPDU transmitted on the first transmission path
  • Each second amplitude difference is equal to the logarithm of the second ratio, and the second ratio is the amplitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the first transmission path The ratio between the amplitudes of the quadrature signals of the first PPDU transmitted.
  • the time information includes at least one delay difference
  • At least one delay difference corresponds to at least one transmission path
  • each delay difference is the arrival time of the first PPDU transmitted on the transmission path corresponding to the delay difference to the second communication device and the first PPDU transmitted on the second transmission path
  • the time difference between arrival times of a PPDU at the second communication device, the second transmission path is the transmission path with the minimum transmission time of the first PPDU among at least one transmission path.
  • the angle information includes at least one incident angle, at least One incident angle corresponds to at least one transmission path, and each incident angle is an incident angle at which the first PPDU transmitted on the transmission path corresponding to the incident angle reaches the second communication device.
  • the location information of the second communication device includes the following At least one item: longitude information where the second communication device is located, latitude information where the second communication device is located, and altitude information where the second communication device is located.
  • the sending unit is also used for:
  • sensing measurement request is used to request the second communication device to assist the first communication device in performing sensing measurement
  • the receiving unit is also used for:
  • a sensing measurement consent response from the second communication device is received, where the sensing measurement consent response is used to indicate that the second communication device agrees to assist the first communication device in performing sensing measurement.
  • the sending unit is also used for:
  • the receiving unit is also used for:
  • the sending unit is also used for:
  • sensing measurement consent response to the first communication device, where the sensing measurement consent response is used to indicate that the second communication device agrees to assist the first communication device in performing sensing measurement.
  • a measurement report request from the first communication device is received, where the measurement report request is used to request the second communication device to feed back a sensing measurement result.
  • the second PPDU includes channel measurement feedback elements, and the sensing The measurement result is carried in the channel measurement feedback element.
  • the channel measurement feedback element includes at least one of the following fields: Multipath number field, multipath amplitude field, multipath delay field, multipath signal incidence angle field and device location information field; the multipath number field is used to carry the number information of transmission paths, and the multipath amplitude field is used to carry The multipath signal component amplitude information, the multipath delay field is used to carry time information, the multipath signal incident angle field is used to carry angle information, and the device location information field is used to carry location information of the second communication device.
  • the multipath number field is used to carry the number information of transmission paths
  • the multipath amplitude field is used to carry The multipath signal component amplitude information
  • the multipath delay field is used to carry time information
  • the multipath signal incident angle field is used to carry angle information
  • the device location information field is used to carry location information of the second communication device.
  • a seventh aspect of the present application provides a first communication device, including:
  • a sending unit configured to send a trigger frame to the second communication device, the trigger frame is used to trigger the second communication device to send a first PPDU, and the first PPDU is used for perception measurement;
  • a receiving unit configured to receive the first PPDU from the second communication device
  • a processing unit configured to perform perception measurement based on the first PPDU, and obtain a perception measurement result.
  • the eighth aspect of the present application provides a second communication device, including:
  • a receiving unit configured to receive a trigger frame from the first communication device, the trigger frame is used to trigger the first communication device to send a first PPDU, and the first PPDU is used for perception measurement;
  • a sending unit configured to send the first PPDU to the first communication device.
  • the trigger frame includes first indication information, and the first indication information is used to instruct the second communication apparatus to send the format of the first PPDU.
  • the first indication information includes at least one of the following: STS key, signal time Length, number of STS sequence repeats.
  • the sensory measurement results include at least one of the following Items: information on the number of transmission paths, amplitude information of multipath signal components, time information, and angle information.
  • the transmission path number information is used to indicate the number of transmission paths between the first communication device and the second communication device;
  • the multipath signal component amplitude information includes the first PPDU between the first communication device and the second communication device The corresponding signal amplitude information on at least one transmission path;
  • the time information includes the time information corresponding to the first PPDU on the at least one transmission path;
  • the angle information includes the corresponding angle at which the first PPDU arrives at the first communication device on at least one transmission path information.
  • the multipath signal component amplitude information includes In-phase signal amplitude information and quadrature signal amplitude information
  • the in-phase amplitude information includes the amplitude information of the in-phase signal corresponding to the first PPDU on at least one transmission path
  • the quadrature amplitude information includes the amplitude information of the first PPDU on at least one transmission path Amplitude information of the quadrature signal.
  • the in-phase signal amplitude information includes at least A first amplitude difference, at least one first amplitude difference corresponds to at least one transmission path, and each first amplitude difference is based on the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the first Determined by the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path, the first transmission path is the transmission path with the strongest signal capability of the first PPDU in at least one transmission path;
  • the orthogonal signal amplitude information includes at least one second amplitude At least one second amplitude difference corresponds to at least one transmission path, and each second amplitude difference is based on the magnitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the amplitude of the quadrature signal transmitted on
  • each first amplitude difference is equal to Taking the logarithm for the first ratio, the first ratio is the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the amplitude of the in-phase signal of the first PPDU transmitted on the first transmission path The ratio between the amplitudes; each second amplitude difference is equal to the logarithm of the second ratio, and the second ratio is the amplitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the first transmission The ratio between the amplitudes of the quadrature signals of the first PPDU transmitted on the path.
  • the time information includes at least one time delay At least one delay difference corresponds to at least one transmission path, and each delay difference is the difference between the arrival time of the first PPDU transmitted on the transmission path corresponding to the delay difference and the arrival time of the first PPDU transmitted on the second transmission path.
  • the time difference between arrival times of the first PPDU at the first communication device, and the second transmission path is the transmission path with the smallest transmission time of the first PPDU among at least one transmission path.
  • the angle information includes at least one incident angle , at least one incident angle corresponds to at least one transmission path, and each incident angle is an incident angle at which the first PPDU transmitted on the transmission path corresponding to the incident angle reaches the first communication device.
  • a ninth aspect of the present application provides a communication device, where the communication device includes: a processor and a memory.
  • the memory stores computer programs or computer instructions
  • the processor is used to invoke and execute the computer programs or computer instructions stored in the memory, so that any implementation manner of any one of the first aspect to the fourth aspect is executed.
  • the communication device further includes a transceiver, and the processor is used to control the transceiver to send and receive signals.
  • a tenth aspect of the present application provides a communication device, where the communication device includes a processor.
  • the processor is used for invoking a stored computer program or computer instruction, so that any implementation manner of any one of the first aspect to the fourth aspect is executed.
  • the communication device further includes a transceiver, and the processor is used to control the transceiver to send and receive signals.
  • An eleventh aspect of the present application provides a communication device, where the communication device includes a processor configured to execute any implementation manner of any one of the first aspect to the fourth aspect.
  • the twelfth aspect of the present application provides a computer program product including instructions, which is characterized in that, when it is run on a computer, the implementation of any one of the aspects from the first aspect to the fourth aspect is executed .
  • a thirteenth aspect of the present application provides a computer-readable storage medium, including computer instructions. When the instructions are run on a computer, any implementation method in any one of the first to fourth aspects is executed. .
  • the fourteenth aspect of the present application provides a chip device, including a processor, which is used to call a computer program or computer instruction in the memory, so that any implementation method in any one of the above-mentioned first to fourth aspects is executed .
  • the chip device further includes a memory, which is used to store computer programs or computer instructions.
  • the chip device is composed of chips, and may also include chips and other discrete devices.
  • the processor is coupled with the memory through an interface.
  • a fifteenth aspect of the present application provides a communication system, the communication system includes the first communication device according to the fifth aspect and the second communication device according to the sixth aspect; or, the communication system includes the first communication device according to the seventh aspect An apparatus and the second communication device according to the eighth aspect.
  • the first device sends the first PPDU to the second device, and the first PPDU is used for perception measurement; then, the first device receives the second PPDU from the second device, and the second PPDU includes the perception measurement result, which The sensing measurement result is obtained by the second device performing sensing measurement on the first PPDU. It can be seen that, in the technical solution of the present application, the first device receives the second PPDU from the second device, and the second PPDU includes a sensing measurement result obtained by the second device performing sensing measurement on the first PPDU. In this way, the second device can perceive the objects in the surrounding environment and feed back the corresponding perception measurement results to the first device.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another architecture of a wireless communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a PPDU provided by an embodiment of the present application.
  • Fig. 4 (a) is another schematic structural diagram of the PPDU provided by the embodiment of the present application.
  • Fig. 4 (b) is another schematic structural diagram of the PPDU provided by the embodiment of the present application.
  • Fig. 4 (c) is another schematic structural diagram of the PPDU provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the distance between device A and device B obtained in the ranging process of the embodiment of the present application;
  • FIG. 6 is a schematic diagram of an embodiment of a perception measurement method according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a perception measurement method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a scenario of a perception measurement method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another embodiment of the perception measurement method of the embodiment of the present application.
  • FIG. 10 is another schematic flowchart of a perception measurement method according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a first communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a second communication device according to an embodiment of the present application.
  • FIG. 13 is another schematic structural diagram of the first communication device according to the embodiment of the present application.
  • FIG. 14 is another schematic structural diagram of a second communication device according to an embodiment of the present application.
  • FIG. 15 is another schematic structural diagram of the first communication device according to the embodiment of the present application.
  • FIG. 16 is another schematic structural diagram of a second communication device according to an embodiment of the present application.
  • Embodiments of the present application provide a perception measurement method and a related device, which are used to realize a second device's perception of an object in a surrounding environment and feed back a corresponding perception measurement result to the first device.
  • At least one item (unit) of a, b, or c may represent: a, b, c; a and b; a and c; b and c; or a and b and c.
  • a, b, c can be single or multiple.
  • words such as “exemplary” or “for example” are used to mean an example, illustration or description. Any embodiment or design described in this application as “exemplary”, “for example” or “such as” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, use of words such as “exemplary,” “for example,” or “such as” is intended to present related concepts in a specific manner.
  • system architecture of the method provided in the embodiment of the present application will be described below. It can be understood that the system architecture described in the embodiments of the present application is for more clearly illustrating the technical solutions of the embodiments of the present application, and does not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solution provided by this application can be applied to a wireless personal area network (Wireless Personal Area Network, WPAN) based on ultra-wideband (Ultra-Wide Band, UWB) technology.
  • WPAN Wireless Personal Area Network
  • UWB Ultra-wideband
  • the technical solutions provided in this application can be applied to IEEE 802.15 series standards.
  • IEEE 802.15.4a standard, IEEE 802.15.4z standard, IEEE 802.15.4ab standard, or a future generation of UWB WPAN standard for example, IEEE 802.15.4a standard, IEEE 802.15.4z standard, IEEE 802.15.4ab standard, or a future generation of UWB WPAN standard.
  • WPAN Wireless Local Area Networks
  • Bluetooth BLUETOOTH
  • High Performance Wireless LAN High Performance Radio LAN, HIPERLAN
  • WAN wide area networks
  • the embodiments of the present application may also be applicable to wireless local area network systems such as an Internet of Things (Internet of Things, IoT) network or a vehicle networking (Vehicle to X, V2X).
  • IoT Internet of Things
  • V2X vehicle networking
  • the embodiment of the present application can also be applicable to other possible communication systems, for example, Long Term Evolution (Long Term Evolution, LTE) system, LTE Frequency Division Duplex (Frequency Division Duplex, FDD) system, LTE Time Division Duplex (Time Division) Duplex, TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability For Microwave Access (WiMAX) communication system, fifth generation (5th Generation, 5G) communication system, and future The sixth generation (6th Generation, 6G) communication system, etc.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability For Microwave Access
  • 5G fifth generation
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system adopts a star topology.
  • a star topology includes a central control device and one or more distribution devices. Communication transmission can be performed between the central control device and the one or more distribution devices.
  • the network shown in FIG. 1 may be a WPAN, and the central control device may be the WPAN coordinator, that is, act as the coordinator in the WPAN.
  • the central control device and the distribution device realize the perception of objects in the surrounding environment and obtain corresponding sensing measurement results.
  • the wireless communication system includes two types of devices, which are full function devices (Full Function Device) and reduced function devices (Reduce Function Device).
  • FIG. 2 is another schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system adopts a point-to-point topology.
  • the network shown in FIG. 2 may be a WPAN, and the device a shown in FIG. 2 may serve as a WPAN coordinator, that is, act as a coordinator in the WPAN.
  • the different devices in FIG. 2 realize the perception of objects in the surrounding environment and obtain corresponding perception measurement results through the technical solution of the present application.
  • the wireless communication system includes two types of devices, which are full-function devices and reduced-function devices.
  • a wireless communication system to which the present application is applicable includes a first device and a second device.
  • the first device includes a communication server, a router, a switch, a bridge, a computer device, a terminal device, a PAN coordinator, and the like.
  • the second equipment includes communication servers, routers, switches, bridges, computer equipment, terminal equipment, and the like.
  • the frame structure of the physical layer protocol data unit in the UWB 802.15.4 standard.
  • the PPDU includes a synchronization header (Synchronization Header, SHR), a physical header (PHY Header, PHR) and a physical layer payload (PHY Payload).
  • the SHR includes a standard pre-defined preamble sequence (Preamble Sequence), which is used for PPDU detection and synchronization by the receiving end device.
  • the PHR carries some indication information of the physical layer, such as modulation and coding information, PPDU length, etc., and is used to assist the receiving end device to correctly demodulate the data.
  • the receiver device refers to the device that receives the PPDU.
  • the receiver device can use the pre-defined preamble sequence to perform correlation calculation with the preamble sequence in the PPDU (that is, the received signal), and use information such as the peak position in the result obtained by the correlation operation to determine the arrival time of the PPDU to the receiver device.
  • the time of arrival usually referred to refers to the time relative to the ranging marker (Ranging Marker, RMARKER), where the ranging marker refers to the frame start delimiter (Start-of-Frame Delimiter, SFD) immediately following the SHR The time at which the first pulse of ⁇ reaches the local antenna of the receiving device.
  • the 802.15.4z standard introduces a scrambled timestamp sequence (Scrambled Timestamp Sequence, STS).
  • STS is a pseudo-random sequence, and only a specific receiving device can know the STS.
  • the receiving end device uses the STS and the PPDU (that is, the received signal) to perform a correlation calculation, and estimates the arrival time information of the PPDU to the receiving end device according to the peak position in the correlation result obtained by the correlation operation.
  • the PPDU includes an STS, and the STS can be placed before or after the PHY Payload, or can exist independently instead of the PHY Payload.
  • the STS is before the PHR and PHY Payload.
  • the STS is after the PHY Payload.
  • the PPDU includes the STS and does not include the PHY Payload.
  • the ranging process using ultra-wideband signals is recorded in the UWB wireless standard, and the ranging process is introduced below.
  • device A sends a ranging PPDU to device B, and records the sending time of the ranging PPDU.
  • the device B determines the arrival time of the ranging PPDU to the device B according to the preamble sequence or the STS sequence in the ranging PPDU.
  • Device B sends a response PPDU to device A, and records the sending time of the response PPDU.
  • Device A determines the arrival time of the response PPDU according to the preamble sequence or the STA sequence of the first response PPDU.
  • device A can determine the round-trip time T round of this interaction according to the sending time of the ranging PPDU and the arrival time of the response PPDU.
  • device B can determine the time of receiving the ranging PPDU and the time of sending the response PPDU A reply time interval T reply is determined. Therefore, the transmission time T prop between device A and device B can be calculated according to the following formula 1.
  • device B may send the calculated reply time interval T reply to device A.
  • the convenience device A calculates the transmission time T prop of the ranging PPDU according to the above formula 1.
  • the distance between device A and device B is equal to the transit time T prop multiplied by the speed of light c.
  • the distance measurement process described above realizes distance measurement between two devices.
  • UWB technology only attention is paid to the determination of the arrival time of the line-of-sight signal to determine the distance between device A and device B. It cannot support the perception of other targets in the surrounding environment.
  • the present application proposes a corresponding technical solution to realize the perception of other objects in the surrounding environment in the UWB wireless communication system and obtain corresponding perception measurement results.
  • the sensing measurement result may also be referred to as a channel impulse response measurement (Channel Impulse Response, CIR) result.
  • CIR Channel Impulse Response
  • the first device can perform perception measurement with one or more second devices, and receive the perception measurement results respectively obtained by the one or more second devices. No limit.
  • the technical solution of the present application is introduced by taking the perception measurement process between the first device and the second device as an example.
  • Fig. 6 is a schematic diagram of an embodiment of a perception measurement method according to an embodiment of the present application.
  • perception measurement methods include:
  • the first device sends a first PPDU to a second device.
  • the second device receives the first PPDU from the first device.
  • the first PPDU is used for perception measurement.
  • the first PPDU includes a preamble sequence, and the preamble sequence is carried in the SHR field of the first PPDU.
  • the preamble sequence is carried in the SHR field of the first PPDU.
  • the first PPDU further includes an STS.
  • the STS is carried in the STS field of the first PPDU.
  • device A sends a sensing PPDU to device B and device C, so that device B and device C perform sensing measurement based on the sensing PPDU.
  • the technical solution of the present application may be applied to a UWB wireless communication system, and the first device and the second device may be two UWB devices of the UWB wireless communication system.
  • the first PPDU may also be referred to as a perception PPDU, and the perception measurement of the surrounding environment is implemented between two UWB devices through the perception PPDU.
  • the embodiment shown in Fig. 6 further includes step 600a and step 600b. Step 600a and step 600b may be performed before step 601 .
  • the first device sends a perception measurement request to the second device.
  • the second device receives the perception measurement request from the first device.
  • the perception measurement request is used to request the second device to assist the first device in performing perception measurement.
  • the second device sends a perception measurement consent response to the first device.
  • the first device receives the perception measurement consent response from the second device.
  • the perception measurement consent response is used to indicate that the second device agrees to assist the first device in performing the perception measurement.
  • device A may send a sensing measurement request to device B and device C before sending the sensing PPDU. If the device B and the device C agree to assist the device A to perform the sensing measurement, the device B and the device C respectively feed back a sensing measurement agreement response to the device A, to indicate that they agree to assist the device to perform the sensing measurement.
  • the second device feeds back a sensing measurement rejection response to indicate that the second device refuses to assist the first device in performing the sensing measurement. Then, in an implementation manner, the first device cannot perform perception measurement with the second device, and the first device may select other devices to perform perception measurement.
  • the second device performs sensing measurement on the first PPDU to obtain a sensing measurement result.
  • the perception measurement result includes at least one of the following: information about the number of transmission paths, amplitude information of multipath signal components, time information, angle information, and location information of the second device.
  • the information about the number of transmission paths is used to indicate the number of transmission paths between the first device and the second device. That is, the number of transmission paths used for communication transmission between the first device and the second device. Specifically, at least one transmission path is included between the first device and the second device, and the at least one transmission path is used for communication transmission between the first device and the second device.
  • the second device may perform a correlation operation on the predefined preamble sequence or STS with the first PPDU.
  • the correlation operation if the second device passes the The number of peak locations determines the number of transmission paths between the first device and the second device. For example, during a perception PPDU interaction process, if the correlation result includes three peak positions, it means that there are three transmission paths between the first device and the second device.
  • the multipath signal component amplitude information includes signal amplitude information corresponding to the first PPDU on the at least one transmission path.
  • the multipath signal component amplitude information includes in-phase signal amplitude information and quadrature signal amplitude information.
  • the amplitude information of the in-phase signal includes amplitude information of the in-phase signal corresponding to the first PPDU on at least one transmission path.
  • the quadrature signal amplitude information includes an amplitude signal of the quadrature signal corresponding to the first PPDU on at least one transmission path.
  • the second device determines the amplitude information of the in-phase signal and the amplitude information of the quadrature signal of the first PPDU transmitted on each transmission path, and carries it in the sensing measurement result. That is, the amplitude information of the in-phase signal and the amplitude information of the quadrature signal of the first PPDU transmitted on each transmission path represent the signal amplitude of the first PPDU transmitted on each transmission path.
  • the second device may perform a correlation operation on the predefined preamble sequence and the preamble sequence in the first PPDU to obtain a correlation result.
  • the second device may perform a correlation operation on the locally determined STS and the STS in the first PPDU to obtain a correlation result.
  • Correlation results include peak positions corresponding to each transmission path.
  • the signal X of the first PPDU transmitted on each transmission path can be expressed as
  • the real part a represents the amplitude of the in-phase signal of the first PPDU
  • b represents the amplitude of the quadrature signal of the first PPDU.
  • the absolute value of the amplitude of the signal of the first PPDU is expressed as
  • the phase of the signal of the first PPDU is expressed as
  • the in-phase signal amplitude information includes at least one first amplitude difference, and the at least one first amplitude difference corresponds to the at least one transmission path. That is, the at least one first amplitude difference corresponds to the at least one transmission path one by one, and each first amplitude difference corresponds to one transmission path.
  • Each first amplitude difference is determined based on the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the amplitude of the in-phase signal of the first PPDU transmitted on the first transmission path.
  • the first transmission path is a transmission path with the strongest signal energy of the first PPDU among the at least one transmission path.
  • each first amplitude difference is equal to the logarithm of the first ratio
  • the first ratio is the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the amplitude of the in-phase signal on the first transmission path The ratio between the amplitudes of the in-phase signal on the first PPDU transmitted.
  • Transmission path 1 is the direct line of sight between equipment A and equipment B.
  • Transmission path 2 is the transmission path between device A to target 1 and then to device B.
  • Transmission path 3 is the transmission path between device A to target 2 and then to device B.
  • Target 1 and target 2 may be understood as targets (for example, passive targets) in the surrounding environment of device A and device B.
  • Device B measures the signal energy of the first PPDU on each transmission path, and determines that the signal energy of the first PPDU on transmission path 1 is the largest. This is just an example.
  • the transmission path with larger signal energy may also be other transmission paths, not necessarily the direct line-of-sight path.
  • the first PPDU transmitted by each transmission path includes two parts of signals, namely an in-phase (In-phase) signal and a quadrature (Quadrature) signal.
  • the second device may determine three first amplitude differences, D1, D2 and D3 respectively.
  • D1 corresponds to transmission path 1, because the signal energy of the first PPDU on transmission path 1 is the largest, and D1 is equal to 0.
  • D2 log 2 (P), log 2 (P) refers to taking the logarithm to P, and P is the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path 2 and the amplitude of the first PPDU transmitted on the transmission path 1 The ratio between the amplitudes of the in-phase signals.
  • D3 log 2 (Q), log 2 (Q) refers to taking the logarithm to Q, and Q is that the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path 3 is the same as that of the first PPDU transmitted on the transmission path 1 The ratio between the amplitudes of the phase signals.
  • the first transmission path is used as the transmission path with the strongest signal energy of the first PPDU among the at least one transmission path.
  • the first transmission path may be any transmission path in the at least one transmission path.
  • the first transmission path may also be a transmission path in which the signal energy of the first PPDU in the at least one transmission path is moderate.
  • the quadrature signal amplitude information includes at least one second amplitude difference, and the at least one second amplitude difference corresponds to the at least one transmission path. That is, the at least second amplitude difference corresponds to the at least one transmission path one by one, and each second amplitude difference corresponds to one transmission path.
  • Each second amplitude difference is determined based on the amplitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the amplitude of the quadrature signal of the first PPDU transmitted on the first transmission path.
  • first transmission path please refer to the related introduction mentioned above.
  • each second amplitude difference is equal to the logarithm of the second ratio
  • the second ratio is the amplitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the amplitude of the first transmission path The ratio between the amplitudes of the quadrature signals on the first PPDU transmitted.
  • Transmission path 1 is the direct line of sight between equipment A and equipment B.
  • Transmission path 2 is the transmission path between device A to target 1 and then to device B.
  • Transmission path 3 is the transmission path between device A to target 2 and then to device B.
  • Target 1 and target 2 may be understood as targets (for example, passive targets) in the surrounding environment of device A and device B.
  • the second device measures the signal energy of the first PPDU on each transmission path, and determines that the signal energy of the first PPDU on transmission path 1 is the largest.
  • the first PPDU transmitted by each transmission path includes two parts of signals, which are in-phase signals and quadrature signals respectively.
  • the second device may determine three second amplitude differences, E1, E2 and E3 respectively.
  • E1 corresponds to transmission path 1, because the signal energy of the first PPDU on transmission path 1 is the largest, and E1 is equal to 0.
  • E2 log 2 (R)
  • log 2 (R) refers to taking the logarithm to R
  • R is the magnitude of the orthogonal signal of the first PPDU transmitted on the transmission path 2 and the amplitude of the first PPDU transmitted on the transmission path 1
  • E3 log 2 (S), log 2 (S) refers to taking the logarithm to S, and S is the magnitude of the orthogonal signal of the first PPDU transmitted on the transmission path 3 and the magnitude of the first PPDU transmitted on the transmission path 1 The ratio between the amplitudes of cross signals.
  • the second device represents the signal amplitude and signal phase of the first PPDU on each transmission path by using the at least one first amplitude difference and the at least one second amplitude difference.
  • the time information includes time information corresponding to the first PPDU on the at least one transmission path.
  • the time information includes at least one delay difference, and the at least one delay difference corresponds to at least one transmission path. That is, one delay difference corresponds to one transmission path, that is, the at least one delay difference is in one-to-one correspondence with the at least one transmission path.
  • Each delay difference is the difference between the arrival time of the first PPDU transmitted on the transmission path corresponding to the delay difference to the second device and the arrival time of the first PPDU transmitted on the second transmission path to the second device Time difference.
  • the second transmission path is a transmission path with the shortest transmission time of the first PPDU among the at least one transmission path. That is to say, the transmission time of the first PPDU on each transmission path may be represented by a time difference between arrival times of the first PPDU on different transmission paths to the second device.
  • Transmission path 1 is the direct line of sight between equipment A and equipment B.
  • Transmission path 2 is the transmission path between device A to target 1 and then to device B.
  • Transmission path 3 is the transmission path between device A to target 2 and then to device B.
  • Device B measures the arrival time of the first PPDU on each transmission path to device B.
  • device B can perform a correlation operation on the pre-defined preamble sequence and the preamble sequence included in the first PPDU on a certain transmission path to obtain the correlation result, and the abscissa corresponding to the peak position in the correlation result is in the transmission path The arrival time at which the first PPDU arrives at device B.
  • device B can perform a correlation operation on the STS and the STS included in the first PPDU on a certain transmission path to obtain a correlation result, and the abscissa corresponding to the peak position in the correlation result is the arrival device of the first PPDU on the transmission path B's arrival time.
  • Device B determines that the arrival time of the first PPDU on transmission path 1 to device B is the earliest, so it can be understood that transmission path 1 is a transmission path with the shortest transmission time of the first PPDU.
  • Device B can determine three delay differences, which are F1, F2 and F3 respectively.
  • F1 is equal to 0 because the signal energy of the first PPDU on transmission path 1 is the largest.
  • F2 is equal to the time difference between the arrival time of the first PPDU transmitted on transmission path 2 to device B and the arrival time of the first PPDU transmitted on transmission path 1 to device B.
  • F3 is equal to the time difference between the arrival time of the first PPDU transmitted on transmission path 3 to device B and the arrival time of the first PPDU transmitted on transmission path 1 to device B.
  • the angle information includes angle information corresponding to the first PPDU arriving at the second device on at least one transmission path.
  • the angle information includes at least one incident angle, and the at least one incident angle corresponds to the at least one transmission path.
  • Each incident angle is an incident angle at which the first PPDU transmitted on the transmission path corresponding to the incident angle reaches the second device.
  • multiple antennas are deployed on the second device, and the second device respectively receives the first PPDU transmitted on each transmission path through the multiple antennas.
  • the second device may determine the incident angle by using a time difference between receiving times of the multiple antennas receiving the first PPDU on the transmission path.
  • the time difference between the receiving times of the multiple antennas receiving the first PPDU on the transmission path may be determined according to the signal phase difference of the multiple antennas receiving the first PPDU on the transmission path.
  • angle information including an incident angle at which the first PPDU on each transmission path arrives at the second device as an example.
  • the angle information may also include an incident angle of each antenna among multiple antennas where the first PPDU arrives at the second device on each transmission path, which is not limited in this application. That is, the angle of incidence of the first PPDU incident on each antenna of the second device on each transmission path.
  • the location information of the second device includes at least one of the following items: longitude information where the second device is located, latitude information where the second device is located, and altitude information where the second device is located.
  • the second device sends a second PPDU to the first device, where the second PPDU includes a perception measurement result.
  • the first device receives the second PPDU from the second device.
  • device B and device C respectively perform sensing measurement (also called channel impulse response measurement) based on the sensing PPDU, and obtain CIR results 1 and CIR results2.
  • Device B sends CIR feedback 1 to device A, where the CIR feedback 1 includes the CIR result 1 .
  • Device C sends CIR feedback 2 to device A, where the CIR feedback 2 includes the CIR result 2 .
  • the second PPDU includes a channel measurement feedback element (The Channel Measurement Feedback Element), and the sensing measurement result is carried in the channel measurement feedback element.
  • the Channel Measurement Feedback Element may be included in the physical layer payload of the second PPDU.
  • the channel measurement feedback element includes at least one of the following fields: a multipath number field, a multipath amplitude field, a multipath delay field, a multipath signal incident angle field, and a device location information field.
  • the transmission path number information is carried in the multipath number field
  • the multipath signal component amplitude information is carried in the multipath amplitude field
  • the time information is carried in the multipath delay field
  • the multipath signal incident angle field is carried in In the multipath signal incident angle field
  • the location information of the second device is carried in the device location information field.
  • Table 1 shows a specific format of the channel measurement feedback element and a possible example of the channel measurement feedback element carrying the sensing measurement result.
  • the above table 1 shows the fields included in the channel measurement feedback elements, the length of each field and the meaning indicated by each field.
  • bit size of each field shown in Table 1 above is just an example, and is not specifically limited in this application.
  • the amplitude corresponding to each transmission path in Table 1 above may occupy 10 bits, 11 bits, or 12 bits, etc.
  • the bits occupied by the relative delay corresponding to each transmission path in the multipath delay field in Table 1 may be 6 bits, 7 bits, or 9 bits.
  • the bits occupied by the incident angle corresponding to each transmission path in the multipath signal incident angle field shown in Table 1 above may be 6 bits, 7 bits, or 9 bits.
  • bit lengths of the fields in the above examples may be different.
  • the order of the fields included in the channel measurement feedback element is not limited, and the above Table 1 is just an example.
  • the channel measurement feedback element includes at least one of the following fields: a multipath number field, a field corresponding to at least one transmission path, and a device location information field.
  • Table 2 shows the specific format of the channel measurement feedback element and another possible example of the channel measurement feedback element carrying the sensing measurement result.
  • the amplitude information, time information and angle information corresponding to each transmission path are respectively carried in the fields corresponding to each transmission path.
  • bit size of each field shown in the above Table 2 is just an example, and the specific application is not limited.
  • the amplitude corresponding to each transmission path in Table 2 above may occupy 10 bits, 12 bits, or 14 bits, etc.
  • the bits occupied by the relative time delay corresponding to each transmission path in Table 2 above may be 6 bits, 7 bits, or 9 bits.
  • the bits occupied by the incident angle corresponding to each transmission path in Table 2 above may be 6 bits, 7 bits, or 9 bits.
  • the order of the fields included in the channel measurement feedback element is not limited, and the above Table 2 is just an example.
  • step 603a may be performed before step 603.
  • the first device sends a measurement report request to the second device.
  • the second device receives the measurement report request from the first device.
  • the measurement report request is used to instruct the second device to feed back the sensing measurement result.
  • device B and device C may send CIR feedback 1 to device A, and device C may send CIR feedback 2 to device A.
  • the following introduces information such as the distance between the object in the surrounding environment and the first device, the position and the moving speed of the object in the surrounding environment determined by the first device based on the content of the perception measurement result.
  • the perception measurement result includes information about the number of transmission paths.
  • Device A can preliminarily determine the number of objects in the surrounding environment through the transmission path number information.
  • the information on the number of transmission paths indicates three transmission paths, and device A may preliminarily determine that there are two targets.
  • Device A already knows the distance of transmission path 1 (direct sight path) between device A and device B. Specifically, it can be obtained through the ranging process described above. Device A determines the time difference between the arrival time of the first PPDU on transmission path 2 at device B and the arrival time of the first PPDU on transmission path 1 at device B through the time information. And the distance between the direct-sight diameters of equipment A and equipment B is known. Therefore, device A can determine the distance of the transmission path 2 according to the distance and the time difference. Therefore, device A can determine that the distance from target 1 to device A plus the distance from target 1 to device B is equal to the distance of the transmission path 2 .
  • the target 1 is located on the ellipse shown in FIG. 8 , and device A and device B are the two foci of the ellipse.
  • Device A may determine the incident angle at which the first PPDU of transmission path 2 arrives at device B according to the angle information. Since the target 1 is located on the ellipse, the angle ⁇ 1 between the target 1 and the device B can be approximately equal to the incident angle of the first PPDU of the transmission path 2 arriving at the device B, so starting from the device B along the opposite direction of the incident angle direction The intersection of the ray and the ellipse is the position of target 1.
  • device A can determine the distance L between target 1 and device B, and device A can subtract the distance L between target 1 and device B from the distance of transmission path 2 to obtain the distance K between target 1 and device A.
  • the location of the device A is known, and the device A can determine the location of the target 1 through the distance K between the target 1 and the device A and the location of the device A.
  • the above-mentioned process shown in FIG. 6 may be performed multiple times.
  • Device A can determine the moving speed of target 1 based on the magnitude information of multipath signal components reported multiple times. Specifically, in a short period of time, the absolute value of the signal amplitude of the first PPDU on the transmission path 2 can be considered to be constant, but due to the Doppler effect generated by the movement of the target 1, in multiple adjacent measurements, The phase of the signal of the first PPDU on the transmission path 2 will change.
  • Device A may determine the phase variation of the signal of the first PPDU on the transmission path 2 by using the amplitude information of the multipath signal components reported multiple times.
  • Device A obtains the Doppler frequency by dividing the amount of phase change by the measurement time of multiple measurements. Then, device A determines the moving speed of the target 1 according to the Doppler frequency and the signal wavelength of the first PPDU transmitted on the transmission path.
  • the process of determining the distance, position and moving speed between the target 2 and the device A is also similar.
  • the technical solution of the present application can be applied to a UWB wireless communication system, and the first device and the second device can be two UWB devices of the UWB wireless communication system.
  • the second device uses the preamble sequence or STS of the first PPDU to measure the channel impulse response, and feeds back the multipath signal component amplitude information, time information, angle information, transmission path number information, etc. corresponding to at least one transmission path. It is realized that the second device performs perception measurement on objects in the surrounding environment (for example, passive objects) through the UWB signal.
  • the first device sends a first PPDU to the second device, and the first PPDU is used for sensing measurement; then, the first device receives a second PPDU from the second device, and the second PPDU includes the sensing measurement result.
  • the sensing measurement result is obtained by the second device performing sensing measurement on the first PPDU.
  • FIG. 9 is a schematic diagram of another embodiment of the perception measurement method of the embodiment of the present application.
  • perception measurement methods include:
  • the first device sends a trigger frame to the second device, where the trigger frame is used to trigger the second device to send the first PPDU.
  • the second device receives the trigger frame from the first device.
  • the first PPDU is used for perception measurement.
  • the trigger frame may also be called a perception measurement trigger frame
  • the first PPDU may also be called a perception PPDU.
  • the trigger frame further includes first indication information, where the first indication information is used to instruct the second device to send the format of the first PPDU.
  • the first indication message includes at least one of the following: STS key, signal time length, and STS sequence repetition times.
  • the STS key is used by the second device to generate the STS.
  • the signal duration is used to indicate the length of the STS.
  • the number of repetitions of the STS sequence is used to indicate the number of repetitions of the STS contained in the first PPDU. That is, the STS is repeatedly placed in the first PPDU, which is beneficial for the first device to parse the STS. In this way, the second device can determine the STS through the STS key, and perform a correlation operation between the determined STS and the STS of the first PPDU to obtain a sensing measurement result. Thereby, it is beneficial to improve the security of the perception measurement.
  • the second device sends the first PPDU to the first device.
  • the first device receives the first PPDU from the second device.
  • the second device sends the first PPDU according to the format of the first PPDU indicated by the trigger frame in step 901 above.
  • the first PPDU includes a preamble sequence and an STS.
  • the length of the STS is the length indicated by the above-mentioned signal time length, and the STS is generated by the above-mentioned STS key.
  • device A sends a perception measurement trigger frame to device B to trigger device B to send a perception PPDU.
  • Device B sends a perception PPDU to device A based on the perception measurement trigger frame.
  • the technical solution of the present application may be applied to a UWB wireless communication system, and the first device and the second device may be two UWB devices of the UWB wireless communication system.
  • the first PPDU may also be referred to as a perception PPDU, and the perception measurement of the surrounding environment is implemented between two UWB devices through the perception PPDU.
  • the first device performs perception measurement based on the first PPDU, and obtains a perception measurement result.
  • the first device uses the preamble sequence or the STS of the first PPDU to perform sensing measurement to obtain a sensing measurement result.
  • the first device can use the locally determined STS to perform a correlation operation with the STS of the first PPDU to obtain a correlation result, and determine the arrival time of the first PPDU to the first device and the amplitude information of the first PPDU through the peak position of the correlation result wait.
  • the perception measurement result includes at least one of the following: information on the number of transmission paths, amplitude information on multipath signal components, time information, and angle information.
  • the information about the number of transmission paths is used to indicate the number of transmission paths between the first device and the second device. That is, the number of transmission paths used for communication transmission between the first device and the second device. Specifically, at least one transmission path is included between the first device and the second device, and the at least one transmission path is used for communication transmission between the first device and the second device.
  • the determination of the information about the number of transmission paths is similar to step 602 in the embodiment shown in FIG. 6 , for details, please refer to the relevant introduction mentioned above.
  • the multipath signal component amplitude information includes signal amplitude information corresponding to the first PPDU on the at least one transmission path.
  • the multipath signal component amplitude information includes in-phase signal amplitude information and quadrature signal amplitude information.
  • the amplitude information of the in-phase signal includes amplitude information of the in-phase signal corresponding to the first PPDU on at least one transmission path.
  • the quadrature signal amplitude information includes an amplitude signal of the quadrature signal corresponding to the first PPDU on at least one transmission path.
  • the first device determines the amplitude information of the in-phase signal and the amplitude information of the quadrature signal of the first PPDU transmitted on each transmission path, and carries them in the sensing measurement result. That is, the amplitude information of the in-phase signal and the amplitude information of the quadrature signal of the first PPDU transmitted on each transmission path represent the signal amplitude of the first PPDU transmitted on each transmission path.
  • the in-phase signal amplitude information includes at least one first amplitude difference, and the at least one first amplitude difference corresponds to the at least one transmission path. That is, the at least one first amplitude difference corresponds to the at least one transmission path one by one, and each first amplitude difference corresponds to one transmission path.
  • Each first amplitude difference is determined based on the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the amplitude of the in-phase signal of the first PPDU transmitted on the first transmission path.
  • the first transmission path is a transmission path with the strongest signal energy of the first PPDU among the at least one transmission path.
  • each first amplitude difference is equal to the logarithm of the first ratio
  • the first ratio is the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and the amplitude of the in-phase signal on the first transmission path
  • the first amplitude difference please refer to the related introduction of step 602 in the embodiment shown in FIG. 6 .
  • the first transmission path is used as the transmission path with the strongest signal energy of the first PPDU among the at least one transmission path.
  • the first transmission path may be any transmission path in the at least one transmission path.
  • the first transmission path may also be a transmission path in which the signal energy of the first PPDU in the at least one transmission path is moderate.
  • the quadrature signal amplitude information includes at least one second amplitude difference, and the at least one second amplitude difference corresponds to the at least one transmission path. That is, the at least second amplitude difference corresponds to the at least one transmission path one by one, and each second amplitude difference corresponds to one transmission path.
  • Each second amplitude difference is determined based on the amplitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the amplitude of the quadrature signal of the first PPDU transmitted on the first transmission path.
  • first transmission path please refer to the related introduction mentioned above.
  • each second amplitude difference is equal to the logarithm of the second ratio
  • the second ratio is the amplitude of the quadrature signal of the first PPDU transmitted on the transmission path corresponding to the second amplitude difference and the amplitude of the first transmission path The ratio between the amplitudes of the quadrature signals on the first PPDU transmitted.
  • the second amplitude difference please refer to the related introduction of step 602 in the embodiment shown in FIG. 6 .
  • the time information includes time information corresponding to the first PPDU on the at least one transmission path.
  • the time information includes at least one delay difference, and the at least one delay difference corresponds to at least one transmission path. That is, one delay difference corresponds to one transmission path, that is, the at least one delay difference is in one-to-one correspondence with the at least one transmission path.
  • Each delay difference is the difference between the arrival time of the first PPDU transmitted on the transmission path corresponding to the delay difference to the first device and the arrival time of the first PPDU transmitted on the second transmission path to the first device Time difference.
  • the second transmission path is a transmission path with the shortest transmission time of the first PPDU among the at least one transmission path. That is to say, the transmission time of the first PPDU on each transmission path may be represented by a time difference between arrival times of the first PPDU on different transmission paths to the first device. Please refer to the related introduction of step 602 in the embodiment shown in FIG.
  • the angle information includes angle information corresponding to the first PPDU arriving at the first device on at least one transmission path.
  • the angle information includes at least one incident angle, and the at least one incident angle corresponds to the at least one transmission path.
  • Each incident angle is an incident angle at which the first PPDU transmitted on the transmission path corresponding to the incident angle reaches the first device.
  • multiple antennas are deployed on the first device, and the first device respectively receives the first PPDU transmitted on each transmission path through the multiple antennas.
  • the first device may determine the incident angle by using a time difference between receiving times of the multiple antennas receiving the first PPDU on the transmission path.
  • angle information including an incident angle at which the first PPDU on each transmission path arrives at the first device as an example.
  • the angle information may also include an incident angle of each antenna among multiple antennas where the first PPDU on each transmission path arrives at the first device, which is not limited in this application. That is, the angle of incidence of the first PPDU incident on each antenna of the first device on each transmission path.
  • the moving speed of the target and other information based on the content included in the perception measurement result please refer to the relevant introduction in step 603 in the embodiment shown in FIG. 6 above. I won't go into details here.
  • the technical solution of the present application can be applied to a UWB wireless communication system, and the first device and the second device can be two UWB devices of the UWB wireless communication system.
  • the above-mentioned embodiment shown in FIG. 9 shows a process in which the first device initiates the sensing measurement triggering process, and uses the sensing PPDU sent by the second device to perform sensing measurement.
  • the second device uses the preamble sequence or STS of the first PPDU to measure the channel impulse response to obtain the multipath signal component amplitude information, time information, angle information, and transmission path corresponding to at least one transmission path between the first device and the second device Path number information, etc.
  • This enables the first device to perform perception measurement on objects in the surrounding environment (for example, passive objects) through the UWB signal.
  • the first device sends a trigger frame to the second device, where the trigger frame is used to trigger the second device to send a first PPDU, and the first PPDU is used for perception measurement.
  • the first device receives the first PPDU from the second device, and the first device performs sensing measurement based on the first PPDU to obtain a sensing measurement result. In this way, the perception of the surrounding environment by the UWB device is realized to obtain corresponding perception measurement results. No need to feedback sensory measurements.
  • FIG. 11 is a schematic structural diagram of a first communication device according to an embodiment of the present application.
  • the first communication device 1100 may be used to execute the steps performed by the first device in the embodiment shown in FIG. 6 .
  • FIG. 6 please refer to the relevant introduction in the embodiment shown in FIG. 6 above.
  • the first communication device 1100 includes a sending unit 1101 and a receiving unit 1102 .
  • the first communication device 1100 further includes a processing unit 1103 .
  • the sending unit 1101 is configured to perform the sending operation of the first device in the method embodiment shown in FIG. 6 above
  • the receiving unit 1102 is configured to perform the receiving operation of the first device in the method embodiment shown in FIG. 6 above.
  • the processing unit 1103 is configured to execute the processing operations of the first device in the method embodiment shown in FIG. 6 above.
  • the first communication device 1100 is used to implement the following solutions:
  • a sending unit 1101 configured to send a first PPDU to a second communication device, where the first PPDU is used for perception measurement;
  • the receiving unit 1102 is configured to receive a second PPDU from the second communication device, the second PPDU includes a sensing measurement result, and the sensing measurement result is obtained by the second communication device performing sensing measurement on the first PPDU.
  • information about the number of transmission paths amplitude information of multipath signal components, time information, angle information, and location information of the second communication device
  • the information on the number of transmission paths is used to indicate the number of transmission paths between the first communication device 1100 and the second communication device;
  • the time information includes the time information corresponding to the first PPDU on at least one transmission path;
  • the angle information includes the corresponding angle at which the first PPDU arrives at the second communication device on at least one transmission path information.
  • the multipath signal component amplitude information includes in-phase signal amplitude information and quadrature signal amplitude information
  • the in-phase amplitude information includes the amplitude information of the in-phase signal corresponding to the first PPDU on at least one transmission path
  • the quadrature amplitude information includes amplitude information of a quadrature signal corresponding to the first PPDU on at least one transmission path.
  • the in-phase signal amplitude information includes at least one first amplitude difference, and the at least one first amplitude difference corresponds to at least one transmission path, and each first amplitude difference is based on the transmission path corresponding to the first amplitude difference.
  • the amplitude of the in-phase signal of the first PPDU transmitted on the path and the amplitude of the in-phase signal of the first PPDU transmitted on the first transmission path are determined, and the first transmission path is the signal energy of the first PPDU in at least one transmission path.
  • the quadrature signal amplitude information includes at least one second amplitude difference, at least one second amplitude difference corresponds to at least one transmission path, and each second amplitude difference is transmitted based on the transmission path corresponding to the second amplitude difference
  • the amplitude of the quadrature signal of the first PPDU is determined from the amplitude of the quadrature signal of the first PPDU transmitted on the first transmission path.
  • each first amplitude difference is equal to the logarithm of the first ratio
  • the first ratio is the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and The ratio between the amplitudes of the in-phase signals of the first PPDU transmitted on the first transmission path
  • each second amplitude difference is equal to the logarithm of the second ratio
  • the second ratio is the transmission path corresponding to the second amplitude difference The ratio between the amplitude of the quadrature signal of the first PPDU transmitted on the network and the amplitude of the quadrature signal of the first PPDU transmitted on the first transmission path.
  • the time information includes at least one delay difference, at least one delay difference corresponds to at least one transmission path, and each delay difference is the first PPDU transmitted on the transmission path corresponding to the delay difference the time difference between the time of arrival at the second communication device and the time of arrival at the second communication device of the first PPDU transmitted on the second transmission path, the second transmission path being the transmission time of the first PPDU of at least one transmission path with the minimum transmission path.
  • the angle information includes at least one incident angle, and at least one incident angle corresponds to at least one transmission path, and each incident angle is when the first PPDU transmitted on the transmission path corresponding to the incident angle reaches the second communication The angle of incidence of the device.
  • the location information of the second communication device includes at least one of the following: longitude information where the second communication device is located, latitude information where the second communication device is located, and altitude information where the second communication device is located.
  • the sending unit 1101 is further configured to:
  • sensing measurement request is used to request the second communication device to assist the first communication device 1100 in performing sensing measurement
  • the receiving unit 1102 is also used for:
  • a sensing measurement consent response is received from the second communication device, where the sensing measurement consent response is used to indicate that the second communication device agrees to assist the first communication device 1100 in performing sensing measurement.
  • the sending unit 1101 is further configured to:
  • the second PPDU includes a channel measurement feedback element, and the sensing measurement result is carried in the channel measurement feedback element.
  • the channel measurement feedback element includes at least one of the following fields: multipath number field, multipath amplitude field, multipath delay field, multipath signal incident angle field and device location information field; multipath The number field is used to carry the number information of transmission paths, the multipath amplitude field is used to carry the multipath signal component amplitude information, the multipath delay field is used to carry time information, and the multipath signal incident angle field is used to carry angle information.
  • the location information field is used to carry location information of the second communication device.
  • FIG. 12 is a schematic structural diagram of a second communication device according to an embodiment of the present application.
  • the second communication apparatus 1200 may be configured to execute the steps performed by the second device in the embodiment shown in FIG. 6 .
  • relevant introductions in the above embodiment shown in FIG. 6 please refer to relevant introductions in the above embodiment shown in FIG. 6 .
  • the second communication device 1200 includes a receiving unit 1201 , a processing unit 1202 and a sending unit 1203 .
  • the receiving unit 1202 is configured to execute the receiving operation of the second device in the method embodiment shown in FIG. 6 above
  • the processing unit 1202 is configured to execute the processing operation of the second device in the method embodiment shown in FIG. Execute the sending operation of the second device in the method embodiment shown in FIG. 6 above.
  • the second communication device 1200 is used to implement the following solutions:
  • a receiving unit 1201, configured to receive a first PPDU from a first communication device
  • the processing unit 1202 is configured to perform perception measurement on the first PPDU, and obtain a perception measurement result
  • a sending unit 1203, configured to send a second PPDU to the first communication device, where the second PPDU includes a perception measurement result.
  • information about the number of transmission paths amplitude information of multipath signal components, time information, angle information, and location information of the second communication device 1200;
  • the information on the number of transmission paths is used to indicate the number of transmission paths between the first communication device and the second communication device 1200;
  • the time information includes the time information corresponding to the first PPDU on at least one transmission path;
  • the angle information includes the corresponding time information on the first PPDU arriving at the second communication device 1200 on at least one transmission path angle information.
  • the multipath signal component amplitude information includes in-phase signal amplitude information and quadrature signal amplitude information
  • the in-phase amplitude information includes the amplitude information of the in-phase signal corresponding to the first PPDU on at least one transmission path
  • the quadrature amplitude information includes amplitude information of a quadrature signal corresponding to the first PPDU on at least one transmission path.
  • the in-phase signal amplitude information includes at least one first amplitude difference, and the at least one first amplitude difference corresponds to at least one transmission path, and each first amplitude difference is based on the transmission path corresponding to the first amplitude difference.
  • the amplitude of the in-phase signal of the first PPDU transmitted on the path and the amplitude of the in-phase signal of the first PPDU transmitted on the first transmission path are determined, and the first transmission path is the signal energy of the first PPDU in at least one transmission path.
  • the quadrature signal amplitude information includes at least one second amplitude difference, at least one second amplitude difference corresponds to at least one transmission path, and each second amplitude difference is transmitted based on the transmission path corresponding to the second amplitude difference
  • the amplitude of the quadrature signal of the first PPDU is determined from the amplitude of the quadrature signal of the first PPDU transmitted on the first transmission path.
  • each first amplitude difference is equal to the logarithm of the first ratio
  • the first ratio is the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and The ratio between the amplitudes of the in-phase signals of the first PPDU transmitted on the first transmission path
  • each second amplitude difference is equal to the logarithm of the second ratio
  • the second ratio is the transmission path corresponding to the second amplitude difference The ratio between the amplitude of the quadrature signal of the first PPDU transmitted on the network and the amplitude of the quadrature signal of the first PPDU transmitted on the first transmission path.
  • the time information includes at least one delay difference, at least one delay difference corresponds to at least one transmission path, and each delay difference is the first PPDU transmitted on the transmission path corresponding to the delay difference
  • the time difference between the time of arrival at the second communication device 1200 and the time of arrival at the second communication device 1200 of the first PPDU transmitted over a second transmission path, the second transmission path being the transmission of the first PPDU in at least one transmission path The time-minimized transmission path.
  • the angle information includes at least one incident angle, and at least one incident angle corresponds to at least one transmission path, and each incident angle is when the first PPDU transmitted on the transmission path corresponding to the incident angle reaches the second communication The angle of incidence of the device 1200.
  • the location information of the second communication device 1200 includes at least one of the following: longitude information where the second communication device 1200 is located, latitude information where the second communication device 1200 is located, and location information where the second communication device 1200 is located. Altitude information.
  • the receiving unit 1201 is further configured to:
  • the sending unit 1203 is also used for:
  • a sensing measurement consent response is sent to the first communication device, where the sensing measurement consent response is used to indicate that the second communication device 1200 agrees to assist the first communication device in performing sensing measurement.
  • the receiving unit 1201 is further configured to:
  • a measurement report request is received from the first communication device, where the measurement report request is used to request the second communication device 1200 to feed back a perception measurement result.
  • the second PPDU includes a channel measurement feedback element, and the sensing measurement result is carried in the channel measurement feedback element.
  • the channel measurement feedback element includes at least one of the following fields: multipath number field, multipath amplitude field, multipath delay field, multipath signal incident angle field and device location information field; multipath The number field is used to carry the number information of transmission paths, the multipath amplitude field is used to carry the multipath signal component amplitude information, the multipath delay field is used to carry time information, and the multipath signal incident angle field is used to carry angle information.
  • the location information field is used to carry location information of the second communication device 1200 .
  • FIG. 13 is a schematic structural diagram of a first communication device according to an embodiment of the present application.
  • the first communication apparatus 1300 may be configured to execute the steps performed by the first device in the embodiment shown in FIG. 9 .
  • FIG. 9 please refer to the related introduction in the embodiment shown in FIG. 9 .
  • the first communication device 1300 includes a sending unit 1301 , a receiving unit 1303 and a processing unit 1303 .
  • the sending unit 1301 is configured to perform the sending operation of the first device in the method embodiment shown in FIG. 9 above
  • the receiving unit 1302 is configured to perform the receiving operation of the first device in the method embodiment shown in FIG. 9 above.
  • the processing unit 1303 is configured to execute the processing operations of the first device in the method embodiment shown in FIG. 9 above.
  • the first communication device 1300 is used to implement the following solutions:
  • a sending unit 1301, configured to send a trigger frame to the second communication device, where the trigger frame is used to trigger the second communication device to send a first PPDU, and the first PPDU is used for perception measurement;
  • the processing unit 1303 is configured to perform perception measurement based on the first PPDU, and obtain a perception measurement result.
  • the trigger frame includes first indication information, and the first indication information is used to instruct the second communication apparatus to send a format of the first PPDU.
  • the first indication information includes at least one of the following: an STS key, a signal time length, and an STS sequence repetition number.
  • the perception measurement result includes at least one of the following: information about the number of transmission paths, amplitude information about multipath signal components, time information, and angle information.
  • the transmission path number information is used to indicate the number of transmission paths between the first communication device 1300 and the second communication device;
  • the multipath signal component amplitude information includes the first PPDU between the first communication device 1300 and the second communication device The corresponding signal amplitude information on at least one transmission path between them;
  • the time information includes the time information corresponding to the first PPDU on the at least one transmission path;
  • the angle information includes the first PPDU arriving at the first communication device 1300 on at least one transmission path Corresponding angle information.
  • the multipath signal component amplitude information includes in-phase signal amplitude information and quadrature signal amplitude information
  • the in-phase amplitude information includes the amplitude information of the in-phase signal corresponding to the first PPDU on at least one transmission path
  • the quadrature amplitude information includes amplitude information of a quadrature signal corresponding to the first PPDU on at least one transmission path.
  • the in-phase signal amplitude information includes at least one first amplitude difference, and the at least one first amplitude difference corresponds to at least one transmission path, and each first amplitude difference is based on the transmission path corresponding to the first amplitude difference.
  • the amplitude of the in-phase signal of the first PPDU transmitted on the path and the amplitude of the in-phase signal of the first PPDU transmitted on the first transmission path are determined, and the first transmission path is the signal capability of the first PPDU in at least one transmission path.
  • the quadrature signal amplitude information includes at least one second amplitude difference, at least one second amplitude difference corresponds to at least one transmission path, and each second amplitude difference is transmitted based on the transmission path corresponding to the second amplitude difference
  • the amplitude of the quadrature signal of the first PPDU is determined from the amplitude of the quadrature signal of the first PPDU transmitted on the first transmission path.
  • each first amplitude difference is equal to the logarithm of the first ratio
  • the first ratio is the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and The ratio between the amplitudes of the in-phase signals of the first PPDU transmitted on the first transmission path
  • each second amplitude difference is equal to the logarithm of the second ratio
  • the second ratio is the transmission path corresponding to the second amplitude difference The ratio between the amplitude of the quadrature signal of the first PPDU transmitted on the network and the amplitude of the quadrature signal of the first PPDU transmitted on the first transmission path.
  • the time information includes at least one delay difference, at least one delay difference corresponds to at least one transmission path, and each delay difference is the first PPDU transmitted on the transmission path corresponding to the delay difference
  • the time difference between the arrival time of the first communication device 1300 and the arrival time of the first PPDU transmitted on the second transmission path to the first communication device 1300, the second transmission path being the first PPDU in at least one transmission path The transmission path with the minimum transmission time.
  • the angle information includes at least one incident angle, at least one incident angle corresponds to at least one transmission path, and each incident angle is the first PPDU transmitted on the transmission path corresponding to the incident angle to reach the first communication The angle of incidence of the device 1300.
  • FIG. 14 is a schematic structural diagram of a second communication device according to an embodiment of the present application.
  • the second communication apparatus 1400 may be configured to execute the steps performed by the second device in the embodiment shown in FIG. 9 .
  • FIG. 9 please refer to the related introduction in the embodiment shown in FIG. 9 .
  • the second communication device 1400 includes a receiving unit 1401 and a sending unit 1402 .
  • the second communication device 1400 further includes a processing unit 1403 .
  • the receiving unit 1401 is configured to perform the receiving operation of the second device in the method embodiment shown in FIG. 9 above
  • the sending unit 1402 is configured to perform the sending operation of the second device in the method embodiment shown in FIG. 9 above.
  • the second communication device 1400 is used to implement the following solutions:
  • the receiving unit 1401 is configured to receive a trigger frame from the first communication device, the trigger frame is used to trigger the first communication device to send a first PPDU, and the first PPDU is used for perception measurement;
  • the sending unit 1402 is configured to send the first PPDU to the first communication device.
  • the trigger frame includes first indication information, and the first indication information is used to instruct the second communication apparatus 1400 to send the format of the first PPDU.
  • the first indication information includes at least one of the following: an STS key, a signal time length, and an STS sequence repetition number.
  • the perception measurement result includes at least one of the following: information about the number of transmission paths, amplitude information about multipath signal components, time information, and angle information.
  • the information on the number of transmission paths is used to indicate the number of transmission paths between the first communication device and the second communication device 1400;
  • the time information includes the time information corresponding to the first PPDU on the at least one transmission path;
  • the angle information includes the first PPDU on at least one transmission path angle information.
  • the multipath signal component amplitude information includes in-phase signal amplitude information and quadrature signal amplitude information
  • the in-phase amplitude information includes the amplitude information of the in-phase signal corresponding to the first PPDU on at least one transmission path
  • the quadrature amplitude information includes amplitude information of a quadrature signal corresponding to the first PPDU on at least one transmission path.
  • the in-phase signal amplitude information includes at least one first amplitude difference, and the at least one first amplitude difference corresponds to at least one transmission path, and each first amplitude difference is based on the transmission path corresponding to the first amplitude difference.
  • the amplitude of the in-phase signal of the first PPDU transmitted on the path and the amplitude of the in-phase signal of the first PPDU transmitted on the first transmission path are determined, and the first transmission path is the signal capability of the first PPDU in at least one transmission path.
  • the quadrature signal amplitude information includes at least one second amplitude difference, at least one second amplitude difference corresponds to at least one transmission path, and each second amplitude difference is transmitted based on the transmission path corresponding to the second amplitude difference
  • the amplitude of the quadrature signal of the first PPDU is determined from the amplitude of the quadrature signal of the first PPDU transmitted on the first transmission path.
  • each first amplitude difference is equal to the logarithm of the first ratio
  • the first ratio is the amplitude of the in-phase signal of the first PPDU transmitted on the transmission path corresponding to the first amplitude difference and The ratio between the amplitudes of the in-phase signals of the first PPDU transmitted on the first transmission path
  • each second amplitude difference is equal to the logarithm of the second ratio
  • the second ratio is the transmission path corresponding to the second amplitude difference The ratio between the amplitude of the quadrature signal of the first PPDU transmitted on the network and the amplitude of the quadrature signal of the first PPDU transmitted on the first transmission path.
  • the time information includes at least one delay difference, at least one delay difference corresponds to at least one transmission path, and each delay difference is the first PPDU transmitted on the transmission path corresponding to the delay difference the time difference between the time of arrival at the first communication device and the time of arrival at the first communication device of the first PPDU transmitted over a second transmission path, the second transmission path being the first PPDU in at least one transmission path The transmission path with the minimum transmission time.
  • the angle information includes at least one incident angle, at least one incident angle corresponds to at least one transmission path, and each incident angle is the first PPDU transmitted on the transmission path corresponding to the incident angle to reach the first communication The angle of incidence of the device.
  • the embodiment of the present application also provides a first communication device. Please refer to FIG. 15 , which is another schematic structural diagram of the first communication device in the embodiment of the present application.
  • the first communication device can be used to execute the For the steps performed by the first device in this embodiment, reference may be made to the relevant descriptions in the foregoing method embodiments.
  • the first communication device includes a processor 1501 .
  • the first communication device further includes a memory 1502 and a transceiver 1503 .
  • the processor 1501, the memory 1502 and the transceiver 1503 are respectively connected through a bus, and computer instructions are stored in the memory.
  • the sending unit 1101 and the receiving unit 1102 shown in FIG. 11 may specifically be the transceiver 1503, so the specific implementation of the transceiver 1503 will not be repeated here.
  • the aforementioned processing unit 1103 shown in FIG. 11 may specifically be the processor 1501 , so the specific implementation of the processor 1501 will not be repeated here.
  • the sending unit 1301 and the receiving unit 1302 shown in FIG. 13 may specifically be the transceiver 1503, so the specific implementation of the transceiver 1503 will not be repeated here.
  • the aforementioned processing unit 1303 shown in FIG. 11 may specifically be the processor 1501 , so the specific implementation of the processor 1501 will not be repeated here.
  • the embodiment of the present application also provides a second communication device. Please refer to FIG. 16 , which is another schematic structural diagram of the second communication device in the embodiment of the present application.
  • the second communication device can be used to implement the For the steps performed by the second device in this embodiment, reference may be made to the relevant descriptions in the foregoing method embodiments.
  • the second communication device includes: a processor 1601 .
  • the second communication device further includes a memory 1602 and a transceiver 1603 .
  • the processor 1601, the memory 1602 and the transceiver 1603 are respectively connected through a bus, and computer instructions are stored in the memory.
  • the receiving unit 1201 and the sending unit 1203 shown in FIG. 12 may specifically be the transceiver 1603, so the specific implementation of the transceiver 1603 will not be repeated here.
  • the aforementioned processing unit 1202 shown in FIG. 12 may specifically be the processor 1601 , and thus the specific implementation of the processor 1601 will not be repeated here.
  • the receiving unit 1401 and the sending unit 1402 shown in FIG. 14 may specifically be the transceiver 1603, so the specific implementation of the transceiver 1603 will not be repeated here.
  • the aforementioned processing unit 1402 shown in FIG. 14 may specifically be the processor 1601 , so the specific implementation of the processor 1601 will not be repeated here.
  • the present application also provides a communication system, the communication system includes a first device and a second device, the first device is used to perform the steps performed by the first device in the embodiment shown in Figure 6 and Figure 9, and the second device is used to Execute the steps performed by the second device in the embodiment shown in FIG. 6 and FIG. 9 .
  • An embodiment of the present application provides a computer program product including instructions, which is characterized in that, when it is run on a computer, any implementation manner in the embodiments shown in FIG. 6 and FIG. 9 is executed.
  • An embodiment of the present application provides a computer-readable storage medium, including computer instructions. When the instructions are run on a computer, any implementation manner of the embodiments shown in FIG. 6 and FIG. 9 is executed.
  • An embodiment of the present application provides a chip device, including a processor, configured to call a computer program or a computer instruction in the memory, so that any implementation manner in the above-mentioned embodiments shown in FIG. 6 and FIG. 9 is executed.
  • the chip device further includes a memory, which is used to store computer programs or computer instructions.
  • the chip device is composed of chips, and may also include chips and other discrete devices.
  • the processor is coupled with the memory through an interface.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the essence of the technical solution of this application or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种感知测量方法以及相关装置,该感知测量方法可以应用于基于超带宽UWB技术的无线个人局域网WPAN。例如,该感知测量方法可以应用于支持IEEE 802.15.4a标准、IEEE 802.15.4z标准、IEEE 802.15.4ab标准,或者未来某代UWB WPAN标准等IEEE 802.15系列标准的无线个人局域网。第一设备向第二设备发送第一物理层协议数据单元PPDU,所述第一PPDU用于感知测量;所述第一设备接收来自所述第二设备的第二PPDU,所述第二PPDU包括感知测量结果,所述感知测量结果是所述第二设备对所述第一PPDU进行感知测量得到。实现对周边环境中的目标的感知并向第一设备反馈相应的感知测量结果。

Description

感知测量方法以及相关装置
本申请要求于2021年10月29日提交中国专利局,申请号为202111277365.5,发明名称为“感知测量方法以及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种感知测量方法以及相关装置。
背景技术
超带宽(Ultra-Wide Band,UWB)技术是一种无线载波通信技术,利用纳秒级的非正弦波窄脉冲传输数据,因此其所占用的频谱范围很宽。由于非正弦波窄脉冲很窄,且辐射谱密度极低。因此,UWB无线通信系统具有多径分辨能力强、功耗低、保密性强等优点。
随着2002年美国联邦通信委员会(Federal Communications Commission,FCC)批注UWB技术进入民用领域,UWB技术称为短距离、高速无线网络热议的物理层技术之一。IEEE已经将UWB技术纳入其IEEE 802系列无线标准,目前IEEE已经发布了基于UWB技术的高速无线个人局域网(Wireless Personal Area Network,WPAN)标准IEEE 802.15.4a以及其演进版本IEEE 802.15.4z,对于其下一代UWB无线个域网标准802.15.4ab的制定也已经提上日程。
由于在UWB无线通信系统中,用于无线通信的信号的带宽很大(最小500M(兆)),因此利用超宽带信号可以获得高精度的测距结果或感知测量结果。而在UWB无线通信系统中,如何进行利用超宽带信号实现对周边环境的感知和感知测量结果的反馈,是值得考虑的问题。
发明内容
本申请提供了一种感知测量方法以及相关装置,用于实现第二设备对周边环境中的目标的感知并向第一设备反馈相应的感知测量结果。
本申请第一方面提供一种感知测量方法,方法包括:
第一设备向第二设备发送第一物理层协议数据单元(PHY Protocol Data Unit,PPDU),第一PPDU用于感知测量;第一设备接收来自第二设备的第二PPDU,第二PPDU包括感知测量结果,感知测量结果是第二设备对第一PPDU进行感知测量得到。
上述技术方案中可以应用于UWB无线通信系统,第一设备和第二设备可以是该UWB无线通信系统的两个UWB设备。第一设备向第二设备发送第一PPDU,然后第一设备可以接收来自第二设备的第二PPDU,第二PPDU包括感知测量结果,该感知测量结果是第二设备对第一PPDU进行感知测量得到的。从而实现UWB设备对周边环境的感知并反馈相应的感知测量结果。
本申请第二方面提供一种感知测量方法,包括:
第二设备接收来自第一设备的第一PPDU;第二设备对第一PPDU进行感知测量,得到 感知测量结果;第二设备向所述第一设备发送第二PPDU,第二PPDU包括感知测量结果。
上述技术方案中可以应用于UWB无线通信系统,第一设备和第二设备可以是该UWB无线通信系统的两个UWB设备。第二设备对第一PPDU进行感知测量,得到感知测量结果,并向第一设备反馈感知测量结果。从而实现UWB设备对周边环境的感知并反馈相应的感知测量结果。
基于第一方面和第二方面中任一方面,本申请的第一种实施方式中,该感知测量结果包括以下至少一项:传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息、第二设备的位置信息;
其中,传输路径个数信息用于指示第一设备与第二设备之间的传输路径的数目;多径信号分量幅度信息包括第一PPDU在第一设备与第二设备之间的至少一条传输路径上对应的信号幅度信息;时间信息包括第一PPDU在至少一条传输路径上对应的时间信息;角度信息包括第一PPDU在至少一条传输路径上到达第二设备对应的角度信息。
上述实现方式中示出了感知测量结果的具体内容,具体包括了在第一设备与第二设备之间的至少一条传输路径上传输的第一PPDU的信号幅度信息、时间信息、角度信息、以及第一设备与第二设备之间的传输路径的个数、第二设备的位置信息等。有利于第一设备基于该感知测量结果确定周边环境中的目标的位置、速度等信息,实现对周边环境的目标的感知。
基于第一方面、第二方面和本申请的第一种实施方式中任一种实施方式中,本申请的第二种实施方式中,多径信号分量幅度信息包括同相信号幅度信息和正交信号幅度信息,同相幅度信息包括第一PPDU在至少一条传输路径上对应的同相信号的幅度信息,正交幅度信息包括第一PPDU在至少一条传输路径上对应的正交信号的幅度信息。
在该实施方式中,多径信号分量幅度信息从两个维度(第一PPDU的同相信号和第一PPDU的正交信号)表征每条传输路径上的第一PPDU的信号能量情况。从而有利于第一设备基于该多径信号分量幅度信息确定每条传输路径上的信号幅度变化情况和信号相位变化情况。由于信号的相位变化情况可以一定程度上表征环境中的目标的移动速度,因此第一设备可以通过该多径信号分量幅度信息确定该目标的移动速度等信息。
基于第一方面、第二方面、本申请的第一种实施方式至第二种实施方式中任一种实施方式中,本申请的第三种实施方式中,同相信号幅度信息包括至少一个第一幅度差,至少一个第一幅度差与至少一个传输路径对应,每个第一幅度差是基于第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度和第一传输路径上传输的第一PPDU的同相信号的幅度确定的,第一传输路径是至少一条传输路径中第一PPDU的信号能量最强的传输路径;正交信号幅度信息包括至少一个第二幅度差,至少一个第二幅度差与至少一个传输路径对应,每个第二幅度差是基于第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度确定的。
上述实施方式中,同相信号幅度信息可以通过至少一个第一幅度差表征,正交信号幅度信息可以通过至少一个第二幅度差表征。在能够正确指示信号幅度信息的情况下,有利于降低第二PPDU中用于指示信号幅度信息的比特数,从而提高资源利用率。
基于第一方面、第二方面、本申请的第一种实施方式至第三种实施方式中任一种实施方式中,本申请的第四种实施方式中,每个第一幅度差等于对第一比值取对数,第一比值为在第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与在第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值;每个第二幅度差等于对第二比值取对数,第二比值为在第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度之间的比值。
上述实施方式中提供了第一幅度差和第二幅度差的一种具体的计算方式,有利于方案的实施。便于第二设备通过至少一个第一幅度差和至少一个第二幅度差指示多径信号分量幅度信息,有利于降低第二PPDU中用于指示信号幅度信息的比特数,从而提高资源利用率。
基于第一方面、第二方面、本申请的第一种实施方式至第四种实施方式中任一种实施方式中,本申请的第五种实施方式中,时间信息包括至少一个时延差,至少一个时延差与至少一条传输路径对应,每个时延差是在时延差对应的传输路径上传输的第一PPDU到达第二设备的到达时间与在第二传输路径上传输的第一PPDU到达第二设备的到达时间之间的时间差,第二传输路径是至少一条传输路径中第一PPDU的传输时间最小的传输路径。
上述实施方式中示出了时间信息具体包括的内容,第二设备通过至少一个时延差表征该至少一条传输路径上第一PPDU的传输时间信息。从而便于第一设备基于该时间信息确定传输路径上的目标与第一设备的距离等信息。其次,第二设备通过至少一个时延差表征该至少一条传输路径上第一PPDU的传输时间信息,在能够正确的指示时间信息的情况下,有利于降低第二PPDU中用于指示时间信息的比特数,节省比特开销。
基于第一方面、第二方面、本申请的第一种实施方式至第五种实施方式中任一种实施方式中,本申请的第六种实施方式中,角度信息包括至少一个入射角度,至少一个入射角度与至少一条传输路径对应,每个入射角度是在入射角度对应的传输路径上传输的第一PPDU到达第二设备的入射角度。
上述实施方式中示出了角度信息包括的内容,第二设备通过至少一个入射角度表征该至少一条传输路径上第一PPDU到达第二设备的入射角度。从而便于第一设备基于角度信息确定传输路径上的目标的具体位置。
基于第一方面、第二方面、本申请的第一种实施方式至第六种实施方式中任一种实施方式中,本申请的第七种实施方式中,第二设备的位置信息包括以下至少一项:第二设备所在的经度信息、第二设备所在的纬度信息、第二设备所在的海拔高度信息。
在该实施方式中,第二设备还可以向第一设备反馈第二设备的位置信息,具体包括第二设备所在的经度、纬度和海拔高度信息。从而便于第一设备基于该第二设备的位置信息确定周边环境中的目标的位置。
基于第一方面、本申请的第一种实施方式至第七种实施方式中任一种实施方式中,本申请的第八种实施方式中,第一设备向第二设备发送第一PPDU之前,方法还包括:
第一设备向第二设备发送感知测量请求,感知测量请求用于请求第二设备协助第一设备进行感知测量;第一设备接收来自第二设备的感知测量同意响应,感知测量同意响应用于指示第二设备同意协助第一设备进行感知测量。
在该实施方式中,在第一设备与第二设备之间进行感知测量之前,第一设备可以与第二设备进行感知测量协商,从而便于第二设备协助第一设备进行感知测量,实现对周边环境的目标的感知并反馈相应的感知测量结果给第一设备。
基于第一方面、本申请的第一种实施方式至第八种实施方式中任一种实施方式中,本申请的第九种实施方式中,在第一设备向第二设备发送第一PPDU之后,第一设备接收来自所述第二设备的第二PPDU之前,方法还包括:第一设备向第二设备发送测量报告请求,测量报告请求用于请求第二设备反馈所述感知测量结果。
在该实施方式中,第一设备可以向第二设备请求反馈感知测量结果,这样第二设备可以向第一设备反馈感知测量结果。从而便于第一设备基于感知测量结果确定周边环境的目标的位置等信息。
基于第二方面、本申请的第一种实施方式至第七种实施方式中任一种实施方式中,本申请的第十种实施方式中,第二设备接收来自第一设备的第一PPDU之前,方法还包括:第二设备接收来自第一设备的感知测量请求,感知测量请求用于请求第二设备协助第一设备进行感知测量;第二设备向第一设备发送感知测量同意响应,感知测量同意响应用于指示第二设备同意协助第一设备进行感知测量。
上述实施方式中,在第一设备与第二设备之间进行感知测量之前,第一设备可以与第二设备进行感知测量协商,从而便于第二设备协助第一设备进行感知测量,实现对周边环境的目标的感知并反馈相应的感知测量结果给第一设备。
基于第二方面、本申请的第一种实施方式至第七种实施方式、本申请的第十种实施方式中任一种实施方式中,本申请的第十一种实施方式中,在第二设备接收来自第一设备的第一PPDU之后,第二设备向第一设备发送第二PPDU之前,方法还包括:第二设备接收来自第一设备的测量报告请求,测量报告请求用于请求第二设备反馈感知测量结果。
在该实施方式中,第二设备接收来自第一设备的测量报告请求,以请求反馈感知测量结果,这样第二设备可以向第一设备反馈感知测量结果。从而便于第一设备基于感知测量结果确定周边环境的目标的位置等信息。
基于第一方面、第二方面、本申请的第一种实施方式至本申请的第十一种实施方式中,本申请的第十二种实施方式中,第二PPDU包括信道测量反馈要素,感知测量结果承载于所述信道测量反馈要素。在该实施方式中,提供了承载感知测量结果的一个具体的字段,从而便于方案的实施。
基于第一方面、第二方面、本申请的第一种实施方式至本申请的第十二种实施方式中,本申请的第十三种实施方式中,信道测量反馈要素包括以下至少一个字段:多径个数字段、多径幅度字段、多径时延字段、多径信号入射角度字段和设备位置信息字段;多径个数字段用于承载传输路径个数信息,多径幅度字段用于承载多径信号分量幅度信息,多径时延字段用于承载时间信息,多径信号入射角度字段用于承载角度信息,设备位置信息字段用于承载第二设备的位置信息。
在该实施方式中,信道测量反馈要素包括多个子字段,分别可以用于承载感知测量结果中包括的信息。从而便于第一设备解析该感知测量结果。
本申请第三方面提供一种感知测量方法,包括:
第一设备向第二设备发送触发帧,触发帧用于触发所述第二设备发送第一PPDU,第一PPDU用于感知测量;第一设备接收来自第二设备的第一PPDU;第一设备基于第一PPDU进行感知测量,得到感知测量结果。
上述技术方案中可以应用于UWB无线通信系统,第一设备和第二设备可以是该UWB无线通信系统的两个UWB设备。第一设备向第二设备发送触发帧,该触发帧用于触发第二设备发送第一PPDU,第一PPDU用于感知测量。第一设备接收来自第二设备的第一PPDU,第一设备基于该第一PPDU进行感知测量,得到感知测量结果。从而实现UWB设备对周边环境的感知以得到相应的感知测量结果。无需反馈感知测量结果。
本申请第四方面提供一种感知测量方法,包括:
第二设备接收来自第一设备的触发帧,触发帧用于触发第一设备发送第一PPDU,第一PPDU用于感知测量;第二设备向第一设备发送第一PPDU。
上述技术方案中可以应用于UWB无线通信系统,第一设备和第二设备可以是该UWB无线通信系统的两个UWB设备。第一设备向第二设备发送触发帧,该触发帧用于触发第二设备发送第一PPDU,第一PPDU用于感知测量。第二设备向第一设备发送第一PPDU。从而便于第一设备基于第一PPDU进行感知测量,得到感知测量结果。从而实现UWB设备对周边环境的感知以得到相应的感知测量结果。无需反馈感知测量结果。
基于第一方面和第二方面中任一方面,本申请的第一种实施方式中,触发帧包括第一指示信息,第一指示信息用于指示第二设备发送第一PPDU的格式。
在该实施方式中,第一设备可以通过触发帧向第二设备指示第一PPDU的格式,从而便于第二设备指示的第一PPDU的格式发送第一PPDU。有利于第一设备解析该第一PPDU,并对第一PPDU进行感知测量以得到相应的感知测量结果。无需反馈感知测量结果。
基于第一方面、第二方面和本申请的第一种实施方式中任一种实施方式,本申请的第二种实施方式中,第一指示信息包括以下至少一项:加扰的时间戳序列(scrambled timestamp sequence,STS)秘钥、信号时间长度、STS序列重复次数。
在该实施方式中,第一指示信息可以向第二设备指示STS秘钥、信号时间长度、以及STS序列重复次数。这样第二设备可以基于这些信息生成第一PPDU。例如,第一PPDU包括STS,该STS是基于该STS秘钥生成的,该STS的长度是该信号时间长度,第一PPDU重复放置该STS。第一设备可以通过本地确定的STS和该第一PPDU的STS进行相关运算,得到相应的一些感知测量量。第一设备通过STS解析该第一PPDU,有利于提高第一设备解析第一PPDU和时间测量的安全性。
基于第一方面、第二方面、本申请的第一种实施方式至本申请的第二种实施方式中任一种实施方式,本申请的第三种实施方式中,感知测量结果包括以下至少一项:传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息。
其中,传输路径个数信息用于指示第一设备与第二设备之间的传输路径的数目;多径信号分量幅度信息包括第一PPDU在第一设备与第二设备之间的至少一条传输路径上对应的信号幅度信息;时间信息包括第一PPDU在所述至少一条传输路径上对应的时间信息;角 度信息包括第一PPDU在至少一条传输路径上到达第一设备对应的角度信息。
上述实现方式中示出了感知测量结果的具体内容,具体包括了在第一设备与第二设备之间的至少一条传输路径上传输的第一PPDU的信号幅度信息、时间信息、角度信息、以及第一设备与第二设备之间的传输路径的个数等。有利于第一设备基于该感知测量结果确定周边环境中的目标的位置、速度等信息,实现对周边环境的目标的感知。
基于第一方面、第二方面、本申请的第一种实施方式至本申请的第三种实施方式中任一种实施方式,本申请的第四种实施方式中,多径信号分量幅度信息包括同相信号幅度信息和正交信号幅度信息,同相幅度信息包括第一PPDU在至少一条传输路径上对应的同相信号的幅度信息,正交幅度信息包括第一PPDU在至少一条传输路径上对应的正交信号的幅度信息。
在该实施方式中,多径信号分量幅度信息从两个维度(第一PPDU的同相信号和第一PPDU的正交信号)表征每条传输路径上的第一PPDU的信号能量情况。从而便于第一设备基于该多径信号分量幅度信息确定每条传输路径上的信号幅度变化情况和信号相位变化情况。由于信号的相位变化情况可以一定程度上表征环境中的目标的移动速度,因此第一设备可以通过该多径信号分量幅度信息确定该目标的移动速度等信息。
基于第一方面、第二方面、本申请的第一种实施方式至本申请的第四种实施方式中任一种实施方式,本申请的第五种实施方式中,同相信号幅度信息包括至少一个第一幅度差,至少一个第一幅度差与至少一个传输路径对应,每个第一幅度差是基于第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度和第一传输路径上传输的第一PPDU的同相信号的幅度确定的,第一传输路径是至少一条传输路径中第一PPDU的信号能力最强的传输路径;正交信号幅度信息包括至少一个第二幅度差,至少一个第二幅度差与至少一个传输路径对应,每个第二幅度差是基于第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度确定的。
上述实施方式中,同相信号幅度信息可以通过至少一个第一幅度差表征,正交信号幅度信息可以通过至少一个第二幅度差表征。第一设备可以基于该至少一个第一幅度差和该至少一个第二幅度差确定每条传输路径上第一PPDU的信号幅度信息。
基于第一方面、第二方面、本申请的第一种实施方式至本申请的第五种实施方式中任一种实施方式,本申请的第六种实施方式中,每个第一幅度差等于对第一比值取对数,第一比值为在第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与在第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值;每个第二幅度差等于对第二比值取对数,第二比值为在第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度之间的比值。
上述实施方式中提供了第一幅度差和第二幅度差的一种具体的计算方式,有利于方案的实施。便于第一设备通过至少一个第一幅度差和至少一个第二幅度差确定每条传输路径上第一PPDU的信号幅度信息。
基于第一方面、第二方面、本申请的第一种实施方式至本申请的第六种实施方式中任一种实施方式,本申请的第七种实施方式中,时间信息包括至少一个时延差,至少一个时 延差与至少一条传输路径对应,每个时延差是在时延差对应的传输路径上传输的第一PPDU到达第一设备的到达时间与在第二传输路径上传输的所述第一PPDU到达所述第一设备的到达时间之间的时间差,第二传输路径是至少一条传输路径中第一PPDU的传输时间最小的传输路径。
上述实施方式中示出了时间信息具体包括的内容,第一设备通过至少一个时延差表征该至少一条传输路径上第一PPDU的传输时间信息。从而便于第一设备基于该时间信息确定传输路径上的目标与第一设备的距离等信息。
基于第一方面、第二方面、本申请的第一种实施方式至本申请的第七种实施方式中任一种实施方式,本申请的第八种实施方式中,角度信息包括至少一个入射角度,至少一个入射角度与至少一条传输路径对应,每个入射角度是在入射角度对应的传输路径上传输的第一PPDU到达第一设备的入射角度。
上述实施方式中示出了角度信息包括的内容,第一设备通过至少一个入射角度表征该至少一条传输路径上第一PPDU到达第一设备的入射角度。从而便于第一设备基于角度信息确定该至少一条传输路径上的目标的具体位置。
本申请第五方面提供一种第一通信装置,包括:
发送单元,用于向第二通信装置发送第一PPDU,第一PPDU用于感知测量;
接收单元,用于接收来自第二通信装置的第二PPDU,第二PPDU包括感知测量结果,感知测量结果是第二通信装置对第一PPDU进行感知测量得到。
本申请第六方面提供一种第二通信装置,包括:
接收单元,用于接收来自第一通信装置的第一PPDU;
处理单元,用于对第一PPDU进行感知测量,得到感知测量结果;
发送单元,用于向所述第一通信装置发送第二PPDU,第二PPDU包括感知测量结果。
基于第五方面和第六方面中任一方面,本申请的第一种实施方式中,该感知测量结果包括以下至少一项:传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息、第二通信装置的位置信息;
其中,传输路径个数信息用于指示第一通信装置与第二通信装置之间的传输路径的数目;多径信号分量幅度信息包括第一PPDU在第一通信装置与第二通信装置之间的至少一条传输路径上对应的信号幅度信息;时间信息包括第一PPDU在至少一条传输路径上对应的时间信息;角度信息包括第一PPDU在至少一条传输路径上到达第二通信装置对应的角度信息。
基于第五方面、第六方面和本申请的第一种实施方式中任一种实施方式中,本申请的第二种实施方式中,多径信号分量幅度信息包括同相信号幅度信息和正交信号幅度信息,同相幅度信息包括第一PPDU在至少一条传输路径上对应的同相信号的幅度信息,正交幅度信息包括第一PPDU在至少一条传输路径上对应的正交信号的幅度信息。
基于第五方面、第六方面、本申请的第一种实施方式至第二种实施方式中任一种实施方式中,本申请的第三种实施方式中,同相信号幅度信息包括至少一个第一幅度差,至少一个第一幅度差与至少一个传输路径对应,每个第一幅度差是基于第一幅度差对应的传输 路径上传输的第一PPDU的同相信号的幅度和第一传输路径上传输的第一PPDU的同相信号的幅度确定的,第一传输路径是至少一条传输路径中第一PPDU的信号能量最强的传输路径;正交信号幅度信息包括至少一个第二幅度差,至少一个第二幅度差与至少一个传输路径对应,每个第二幅度差是基于第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度确定的。
基于第五方面、第六方面、本申请的第一种实施方式至第三种实施方式中任一种实施方式中,本申请的第四种实施方式中,每个第一幅度差等于对第一比值取对数,第一比值为在第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与在第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值;每个第二幅度差等于对第二比值取对数,第二比值为在第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度之间的比值。
基于第五方面、第六方面、本申请的第一种实施方式至第四种实施方式中任一种实施方式中,本申请的第五种实施方式中,时间信息包括至少一个时延差,至少一个时延差与至少一条传输路径对应,每个时延差是在时延差对应的传输路径上传输的第一PPDU到达第二通信装置的到达时间与在第二传输路径上传输的第一PPDU到达第二通信装置的到达时间之间的时间差,第二传输路径是至少一条传输路径中第一PPDU的传输时间最小的传输路径。
基于第五方面、第六方面、本申请的第一种实施方式至第五种实施方式中任一种实施方式中,本申请的第六种实施方式中,角度信息包括至少一个入射角度,至少一个入射角度与至少一条传输路径对应,每个入射角度是在入射角度对应的传输路径上传输的第一PPDU到达第二通信装置的入射角度。
基于第五方面、第六方面、本申请的第一种实施方式至第六种实施方式中任一种实施方式中,本申请的第七种实施方式中,第二通信装置的位置信息包括以下至少一项:第二通信装置所在的经度信息、第二通信装置所在的纬度信息、第二通信装置所在的海拔高度信息。
基于第五方面、本申请的第一种实施方式至第七种实施方式中任一种实施方式中,本申请的第八种实施方式中,发送单元还用于:
向第二通信装置发送感知测量请求,感知测量请求用于请求第二通信装置协助第一通信装置进行感知测量;
接收单元还用于:
接收来自第二通信装置的感知测量同意响应,感知测量同意响应用于指示第二通信装置同意协助第一通信装置进行感知测量。
基于第五方面、本申请的第一种实施方式至第八种实施方式中任一种实施方式中,本申请的第九种实施方式中,发送单元还用于:
向第二通信装置发送测量报告请求,测量报告请求用于请求第二通信装置反馈所述感知测量结果。
基于六方面、本申请的第一种实施方式至第七种实施方式中任一种实施方式中,本申 请的第十种实施方式中,接收单元还用于:
接收来自第一通信装置的感知测量请求,感知测量请求用于请求第二通信装置协助第一通信装置进行感知测量;
发送单元还用于:
向第一通信装置发送感知测量同意响应,感知测量同意响应用于指示第二通信装置同意协助第一通信装置进行感知测量。
基于第六方面、本申请的第一种实施方式至第七种实施方式、本申请的第十种实施方式中任一种实施方式中,本申请的第十一种实施方式中,接收单元还用于:
接收来自第一通信装置的测量报告请求,测量报告请求用于请求第二通信装置反馈感知测量结果。
基于第五方面、第六方面、本申请的第一种实施方式至本申请的第十一种实施方式中,本申请的第十二种实施方式中,第二PPDU包括信道测量反馈要素,感知测量结果承载于所述信道测量反馈要素。
基于第五方面、第六方面、本申请的第一种实施方式至本申请的第十二种实施方式中,本申请的第十三种实施方式中,信道测量反馈要素包括以下至少一个字段:多径个数字段、多径幅度字段、多径时延字段、多径信号入射角度字段和设备位置信息字段;多径个数字段用于承载传输路径个数信息,多径幅度字段用于承载多径信号分量幅度信息,多径时延字段用于承载时间信息,多径信号入射角度字段用于承载角度信息,设备位置信息字段用于承载第二通信装置的位置信息。
本申请第七方面提供一种第一通信装置,包括:
发送单元,用于向第二通信装置发送触发帧,触发帧用于触发所述第二通信装置发送第一PPDU,第一PPDU用于感知测量;
接收单元,用于接收来自第二通信装置的第一PPDU;
处理单元,用于基于第一PPDU进行感知测量,得到感知测量结果。
本申请第八方面提供一种第二通信装置,包括:
接收单元,用于接收来自第一通信装置的触发帧,触发帧用于触发第一通信装置发送第一PPDU,第一PPDU用于感知测量;
发送单元,用于向第一通信装置发送第一PPDU。
基于第七方面和第八方面中任一方面,本申请的第一种实施方式中,触发帧包括第一指示信息,第一指示信息用于指示第二通信装置发送第一PPDU的格式。
基于第七方面、第八方面和本申请的第一种实施方式中任一种实施方式,本申请的第二种实施方式中,第一指示信息包括以下至少一项:STS秘钥、信号时间长度、STS序列重复次数。
基于第七方面、第八方面、本申请的第一种实施方式至本申请的第二种实施方式中任一种实施方式,本申请的第三种实施方式中,感知测量结果包括以下至少一项:传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息。
其中,传输路径个数信息用于指示第一通信装置与第二通信装置之间的传输路径的数 目;多径信号分量幅度信息包括第一PPDU在第一通信装置与第二通信装置之间的至少一条传输路径上对应的信号幅度信息;时间信息包括第一PPDU在所述至少一条传输路径上对应的时间信息;角度信息包括第一PPDU在至少一条传输路径上到达第一通信装置对应的角度信息。
基于第七方面、第八方面、本申请的第一种实施方式至本申请的第三种实施方式中任一种实施方式,本申请的第四种实施方式中,多径信号分量幅度信息包括同相信号幅度信息和正交信号幅度信息,同相幅度信息包括第一PPDU在至少一条传输路径上对应的同相信号的幅度信息,正交幅度信息包括第一PPDU在至少一条传输路径上对应的正交信号的幅度信息。
基于第七方面、第八方面、本申请的第一种实施方式至本申请的第四种实施方式中任一种实施方式,本申请的第五种实施方式中,同相信号幅度信息包括至少一个第一幅度差,至少一个第一幅度差与至少一个传输路径对应,每个第一幅度差是基于第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度和第一传输路径上传输的第一PPDU的同相信号的幅度确定的,第一传输路径是至少一条传输路径中第一PPDU的信号能力最强的传输路径;正交信号幅度信息包括至少一个第二幅度差,至少一个第二幅度差与至少一个传输路径对应,每个第二幅度差是基于第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度确定的。
基于第七方面、第八方面、本申请的第一种实施方式至本申请的第五种实施方式中任一种实施方式,本申请的第六种实施方式中,每个第一幅度差等于对第一比值取对数,第一比值为在第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与在第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值;每个第二幅度差等于对第二比值取对数,第二比值为在第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度之间的比值。
基于第七方面、第八方面、本申请的第一种实施方式至本申请的第六种实施方式中任一种实施方式,本申请的第七种实施方式中,时间信息包括至少一个时延差,至少一个时延差与至少一条传输路径对应,每个时延差是在时延差对应的传输路径上传输的第一PPDU到达第一通信装置的到达时间与在第二传输路径上传输的所述第一PPDU到达所述第一通信装置的到达时间之间的时间差,第二传输路径是至少一条传输路径中第一PPDU的传输时间最小的传输路径。
基于第七方面、第八方面、本申请的第一种实施方式至本申请的第七种实施方式中任一种实施方式,本申请的第八种实施方式中,角度信息包括至少一个入射角度,至少一个入射角度与至少一条传输路径对应,每个入射角度是在入射角度对应的传输路径上传输的第一PPDU到达第一通信装置的入射角度。
本申请第九方面提供一种通信装置,该通信装置包括:处理器和存储器。该存储器存储有计算机程序或计算机指令,该处理器用于调用并运行该存储器中存储的计算机程序或计算机指令,使得如第一方面至第四方面中任一方面的任意一种实现方式被执行。
可选的,该通信装置还包括收发器,该处理器用于控制该收发器收发信号。
本申请第十方面提供一种通信装置,该通信装置包括处理器。该处理器用于调用存储起中的计算机程序或计算机指令,使得如第一方面至第四方面中任一方面的任意一种实现方式被执行。
可选的,该通信装置还包括收发器,该处理器用于控制该收发器收发信号。
本申请第十一方面提供一种通信装置,该通信装置包括处理器,用于执行如第一方面至第四方面中任一方面的任意一种实现方式。
本申请第十二方面提供一种包括指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得如第一方面至第四方面中任一方面中任一种的实现方式被执行。
本申请第十三方面提供一种计算机可读存储介质,包括计算机指令,当该指令在计算机上运行时,使得如第一方面至第四方面中任一方面中的任一种实现方式被执行。
本申请第十四方面提供一种芯片装置,包括处理器,用于调用存储器中的计算机程序或计算机指令,使得上述第一方面至第四方面中任一方面中的任一种实现方式被执行。
可选的,该芯片装置还包括存储器,该存储器用于存储计算机程度或计算机指令等。该芯片装置由芯片构成,也可以包括芯片和其他分立器件。
可选的,该处理器通过接口与该存储器耦合。
本申请第十五方面提供一种通信系统,该通信系统包括如第五方面的第一通信装置和如第六方面的第二通信设备;或者,该通信系统包括如第七方面的第一通信装置和如第八方面的第二通信设备。
从以上技术方案可以看出,本申请实施例具有以下优点:
经由上述技术方案可知,第一设备向第二设备发送第一PPDU,第一PPDU用于感知测量;然后,第一设备接收来自第二设备的第二PPDU,第二PPDU包括感知测量结果,该感知测量结果是第二设备对第一PPDU进行感知测量得到的。由此可知,本申请的技术方案中,第一设备接收来自第二设备的第二PPDU,第二PPDU包括感知测量结果,该感知测量结果是第二设备对第一PPDU进行感知测量得到的。从而实现第二设备对周边环境中的目标的感知并向第一设备反馈相应的感知测量结果。
附图说明
图1为本申请实施例提供的无线通信系统的一个架构示意图;
图2为本申请实施例提供的无线通信系统的另一个架构示意图;
图3为本申请实施例提供的PPDU的一个结构示意图;
图4(a)为本申请实施例提供的PPDU的另一个结构示意图;
图4(b)为本申请实施例提供的PPDU的另一个结构示意图;
图4(c)为本申请实施例提供的PPDU的另一个结构示意图;
图5为本申请实施例测距过程得到的设备A与设备B之间的距离的一个示意图;
图6为本申请实施例感知测量方法的一个实施例示意图;
图7为本申请实施例感知测量方法的一个流程示意图;
图8为本申请实施例感知测量方法的一个场景示意图;
图9为本申请实施例感知测量方法的另一个实施例示意图;
图10为本申请实施例感知测量方法的另一个流程示意图;
图11为本申请实施例第一通信装置的一个结构示意图;
图12为本申请实施例第二通信装置的一个结构示意图;
图13为本申请实施例第一通信装置的另一个结构示意图;
图14为本申请实施例第二通信装置的另一个结构示意图;
图15为本申请实施例第一通信装置的另一个结构示意图;
图16为本申请实施例第二通信装置的另一个结构示意图。
具体实施方式
本申请实施例提供了一种感知测量方法以及相关装置,用于实现第二设备对周边环境中的目标的感知并向第一设备反馈相应的感知测量结果。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”、“举例来说”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、“举例来说”或者“例如”等词旨在以具体方式呈现相关概念。
应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”或“至少一个”,而并非表示“一个且仅一个”,除非有特别说明。
为便于理解本申请实施例提供的方法,下面将对本申请实施例提供的方法的系统架构进行说明。可理解的,本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请提供的技术方案可以适用于基于超带宽(Ultra-Wide Band,UWB)技术的无线个人局域网(Wireless Personal Area Network,WPAN)。例如,本申请提供的技术方案可以适用于IEEE 802.15系列标准。例如,IEEE 802.15.4a标准、IEEE 802.15.4z标准、IEEE 802.15.4ab标准,或者未来某代UWB WPAN标准中。
虽然本申请实施例主要以WPAN为例,尤其是应用于IEEE 802.15系列标准的网络为例 进行说明。本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络。例如,无线局域网(Wireless Local Area Networks,WLAN)、蓝牙(BLUETOOTH),高性能无线LAN(High Performance Radio LAN,HIPERLAN)(一种与IEEE 802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
本申请实施例还可以适用于物联网(Internet of Things,IoT)网络或车联网(Vehicle to X,V2X)等无线局域网系统中。当然,本申请实施例还可以适用于其他可能的通信系统,例如,长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability For Microwave Access,WiMAX)通信系统、第五代(5th Generation,5G)通信系统,以及未来的第六代(6th Generation,6G)通信系统等。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
请参阅图1,图1为本申请实施例提供的无线通信系统的一个架构示意图。
如图1所示,该无线通信系统采用星型拓扑结构。星型拓扑结构包括中心控制设备以及一个或多个分布设备。中心控制设备与该一个或多个分布设备之间可以进行通信传输。如图1所示的网络可以是WPAN,该中心控制设备可以是该WPAN协调器,也就是充当该WPAN中的协调者。中心控制设备与分布设备之间通过本申请的技术方案实现对周边环境中的目标进行感知并得到相应的感知测量结果。对于设备的功能,该无线通信系统包括两种类型的设备,分别是全功能设备(Full Function Device)和简化功能设备(Reduce Function Device)。
请参阅图2,图2为本申请实施例提供的无线通信系统的另一个架构示意图。
如图2所示,该无线通信系统采用点对点拓扑结构。如图2所示的网络可以是WPAN,图2所示的设备a可以作为WPAN调器,也就是充当该WPAN中的协调者。图2中的不同设备之间通过本申请的技术方案实现对周边环境中的目标进行感知并得到相应的感知测量结果。对于设备的功能,该无线通信系统包括两种类型的设备,分别为全功能设备和简化功能设备。
本申请适用的无线通信系统包括第一设备和第二设备。第一设备包括通信服务器、路由器、交换机、网桥、计算机设备、终端设备、PAN协调器等。第二设备包括通信服务器、路由器、交换机、网桥、计算机设备、终端设备等。
目前,在UWB 802.15.4标准中物理层协议数据单元(PHY Protocol Data Unit,PPDU)的帧结构。如图3所示,PPDU包括同步头(Synchronization Header,SHR)、物理头(PHY Header,PHR)和物理层有效负载(PHY Payload)。
其中,SHR包括标准预定义的前导码序列(Preamble Sequence),用于接收端设备进行PPDU检测和同步。PHR中携带一些物理层的指示信息,例如,调制编码信息、PPDU长度等, 用于协助接收端设备正确解调数据。接收端设备指接收该PPDU的设备。
接收端设备可以使用预先定义的前导码序列与PPDU(即接收信号)中的前导码序列做相关运算,利用相关运算得到结果中的峰值位置等信息确定该PPDU到达接收端设备的到达时间。通常所指的到达时间是指相对于测距标志(Ranging Marker,RMARKER)的时间,这里的测距标志是指紧跟在SHR中的帧开始分隔符(Start-of-Frame Delimiter,SFD)之后的第一个脉冲到达接收端设备的本地天线的时间。
为了进一步增强时间测量的安全性,802.15.4z标准中引入了加扰的时间戳序列(Scrambled Timestamp Sequence,STS)。该STS是一个伪随机序列,只有特定的接收端设备才能获知该STS。接收端设备利用该STS与PPDU(即接收信号)进行相关运算,并根据相关运算得到的相关结果中的峰值位置估计该PPDU到达接收端设备的到达时间信息。在实现方式中,可选的,PPDU包括STS,该STS可以放在PHY Payload之前或之后,也可以取代PHY Payload单独存在。例如,如图4(a)至图4(c)所示,在图4(a)中,STS在PHR和PHY Payload之前。在图4(b)中,STS在PHY Payload之后。在图4(c)中,PPDU包括STS,并没有包括PHY Payload。
在UWB无线标准中记载了采用超宽带信号的测距流程,下面介绍该测距过程。
例如,如图5所示,设备A向设备B发送测距PPDU,并记录该测距PPDU的发送时间。设备B根据该测距PPDU中的前导码序列或STS序列确定该测距PPDU到达设备B的到达时间。设备B向设备A发送回应PPDU,并记录该回应PPDU的发送时间。设备A根据该第一回应PPDU的前导码序列或STA序列确定该回应PPDU的到达时间。经过上述流程,设备A可以根据测距PPDU的发送时间和回应PPDU的到达时间确定本次交互的往返时间T round,类似的,设备B可以根据接收到测距PPDU的时间和发送回应PPDU的时间确定回复时间间隔T reply。因此,设备A与设备B之间的传输时间T prop可以按照下述公式1计算得到。
Figure PCTCN2022127611-appb-000001
设备B在发送回应PPDU之后,可以将计算得到的回复时间间隔T reply发送给设备A。方便设备A根据上述公式1计算测距PPDU的传输时间T prop。相应的,设备A与设备B之间的距离等于传输时间T prop乘以光速c。
由此可知,上述测距过程实现了两个设备之间的距离测量。目前在UWB技术中,仅关注直视径信号的到达时间的确定以确定设备A与设备B之间的距离。并无法支持对周边环境中的其他目标的感知。有鉴于此,本申请提出了相应的技术方案,以实现在UWB无线通信系统中对周边环境的其他目标的感知并得到相应的感知测量结果。该感知测量结果也可以称为信道冲击响应测量(Channel Impulse Response,CIR)结果。具体请参阅后文的实施例的详细介绍。
下面结合具体实施例介绍本申请的技术方案。需要说明的是,本申请的技术方案中,第一设备可以与一个或多个第二设备之间进行感知测量,并接收该一个或多个第二设备分 别获得的感知测量结果,具体本申请不做限定。后文图6所示的实施例中以第一设备与第二设备之间的感知测量过程为例介绍本申请的技术方案。
图6为本申请实施例感知测量方法的一个实施例示意图。请参阅图6,感知测量方法包括:
601、第一设备向第二设备发送第一PPDU。相应的,第二设备接收来自第一设备的第一PPDU。
其中,第一PPDU用于感知测量。
具体的,该第一PPDU包括前导码序列,该前导码序列承载于该第一PPDU的SHR字段中,具体可以参阅前述图3所示的PPDU的帧结构示意图。
可选的,该第一PPDU还包括STS。该STS承载于该第一PPDU的STS字段中,具体可以参阅前述图4(a)至图4(c)所示的PPDU的帧结构示意图。
例如,如图7所示,设备A向设备B和设备C发送感知PPDU,用于设备B和设备C基于该感知PPDU进行感知测量。
本申请的技术方案可以应用于UWB无线通信系统,第一设备和第二设备可以是该UWB无线通信系统的两个UWB设备。第一PPDU也可以称为感知PPDU,两个UWB设备之间通过感知PPDU实现对周边环境的感知测量。
在一些实施方式中,图6所示的实施例还包括步骤600a和步骤600b。步骤600a和步骤600b可以在步骤601之前执行。
600a、第一设备向第二设备发送感知测量请求。相应的,第二设备接收来自第一设备的感知测量请求。
感知测量请求用于请求第二设备协助第一设备进行感知测量。
600b、第二设备向第一设备发送感知测量同意响应。相应的,第一设备接收来自第二设备的感知测量同意响应。
感知测量同意响应用于指示第二设备同意协助第一设备进行感知测量。
例如,如图7所示,设备A在发送感知PPDU之前,可以向设备B和设备C发送感知测量请求。若设备B和设备C同意协助设备A进行感知测量,则设备B和设备C向设备A分别反馈感知测量同意响应,以指示同意协助设备进行感知测量。
需要说明的是,如果第二设备不同意协助第一设备进行感知测量,则第二设备反馈感知测量拒绝响应,以指示第二设备拒绝协助第一设备进行感知测量。那么在实现方式下,第一设备无法与第二设备进行感知测量,第一设备可以选择其他设备进行感知测量。
602、第二设备对第一PPDU进行感知测量,得到感知测量结果。
其中,感知测量结果包括以下至少一项:传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息、第二设备的位置信息。
下面介绍感知测量结果包括的内容。
1、传输路径个数信息用于指示第一设备与第二设备之间的传输路径的数目。也就是用于第一设备与第二设备之间通信传输的传输路径的数目。具体的,第一设备与第二设备之间包括至少一条传输路径,该至少一条传输路径用于第一设备与第二设备之间的通信传输。
具体的,第二设备接收到第一PPDU之后,第二设备可以将预定义的前导码序列或STS与第一PPDU做相关运算,在相关运算过程中,如果第二设备通过相关结果中出现的峰值位置的个数确定第一设备与第二设备之间的传输路径的数目。例如,在一次感知PPDU的交互过程中,相关结果中包括三个峰值位置,则表示该第一设备与第二设备之间存在三条传输路径。
2、多径信号分量幅度信息包括第一PPDU在该至少一条传输路径上对应的信号幅度信息。
在一些实施方式中,多径信号分量幅度信息包括同相信号幅度信息和正交信号幅度信息。同相信号幅度信息包括第一PPDU在至少一条传输路径上对应的同相信号的幅度信息。正交信号幅度信息包括第一PPDU在至少一条传输路径上对应的正交信号的幅度信号。
在该实施方式中,第二设备确定每条传输路径上传输的第一PPDU的同相信号的幅度信息和正交信号的幅度信息,并携带在该感知测量结果。也就是通过每条传输路径上传输的第一PPDU的同相信号的幅度信息和正交信号的幅度信息表征该每条传输路径上传输的第一PPDU的信号幅度。
例如,第二设备可以将预定义的前导码序列与第一PPDU中的前导码序列进行相关运算,得到相关结果。或者,第二设备可以通过本地确定的STS与第一PPDU中的STS进行相关运算,得到相关结果。相关结果中包括每条传输路径对应的峰值位置。每条传输路径上传输的第一PPDU的信号X可以表示为
Figure PCTCN2022127611-appb-000002
实部a表示第一PPDU的同相信号的幅度,b表示第一PPDU的正交信号的幅度。第一PPDU的信号的幅度绝对值表示为
Figure PCTCN2022127611-appb-000003
第一PPDU的信号的相位表示为
Figure PCTCN2022127611-appb-000004
可选的,同相信号幅度信息包括至少一个第一幅度差,该至少一个第一幅度差与该至少一条传输路径对应。也就是该至少一个第一幅度差与该至少一条传输路径一一对应,每个第一幅度差对应一条传输路径。
每个第一幅度差是基于第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与第一传输路径上传输的第一PPDU的同相信号的幅度确定的。
一种可能的实现方式中,第一传输路径是该至少一条传输路径中第一PPDU的信号能量最强的传输路径。
例如,每个第一幅度差等于对第一比值取对数,第一比值为在该第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与在该第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值。
例如,如图8所示,设备A与设备B之间存在3条传输路径,分别为传输路径1、传输路径2和传输路径3。传输路径1是设备A与设备B之间的直视径。传输路径2是设备A到目标1再到设备B之间的传输路径。传输路径3为设备A到目标2再到设备B之间的传输路径。目标1和目标2可以理解为设备A与设备B的周边环境中的目标(例如,无源目标)。设备B测量每条传输路径上第一PPDU的信号能量,并确定传输路径1上第一PPDU的信号能量最大。这里仅仅是示例,实际应用中信号能量较大的传输路径也可能是其他传输路径,并非一定是直视径。每条传输路径传输的第一PPDU包括两部分信号,分别为同相 (In-phase)信号和正交(Quadrature)信号。第二设备可以确定3个第一幅度差,分别D1、D2和D3。D1对应传输路径1,因为传输路径1上的第一PPDU的信号能量最大,D1等于0。D2=log 2(P),log 2(P)指对P取对数,P为在传输路径2上传输的第一PPDU的同相信号的幅度与在传输路径1上传输的第一PPDU的同相信号的幅度之间的比值。D3=log 2(Q),log 2(Q)指对Q取对数,Q为在传输路径3上传输的第一PPDU的同相信号的幅度与在传输路径1传输的第一PPDU的同相信号的幅度之间的比值。
上述示例以第一传输路径为该至少一条传输路径中第一PPDU的信号能量最强的传输路径。实际应用中,本申请并不做限定,第一传输路径可以是该至少一条传输路径中的任一条传输路径。例如,第一传输路径也可以为该至少一条传输路径中第一PPDU的信号能量适中的传输路径。
可选的,正交信号幅度信息包括至少一个第二幅度差,该至少一个第二幅度差与该至少一条传输路径对应。也就是该至少第二幅度差与该至少一条传输路径一一对应,每个第二幅度差对应一条传输路径。
每个第二幅度差是基于该第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与该第一传输路径上传输的第一PPDU的正交信号的幅度确定的。关于第一传输路径请参阅前述的相关介绍。
可选的,每个第二幅度差等于对第二比值取对数,第二比值为在该第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度之间的比值。
例如,第一设备与第二设备之间存在3条传输路径,分别为传输路径1、传输路径2和传输路径3。传输路径1是设备A与设备B之间的直视径。传输路径2是设备A到目标1再到设备B之间的传输路径。传输路径3为设备A到目标2再到设备B之间的传输路径。目标1和目标2可以理解为设备A与设备B的周边环境中的目标(例如,无源目标)。第二设备测量每条传输路径上第一PPDU的信号能量,并确定传输路径1上第一PPDU的信号能量最大。每条传输路径传输的第一PPDU包括两部分信号,分别为同相信号和正交信号。第二设备可以确定3个第二幅度差,分别E1、E2和E3。E1对应传输路径1,因为传输路径1上的第一PPDU的信号能量最大,E1等于0。E2=log 2(R),log 2(R)指对R取对数,R为在传输路径2上传输的第一PPDU的正交信号的幅度与在传输路径1上传输的第一PPDU的正交信号的幅度之间的比值。E3=log 2(S),log 2(S)指对S取对数,S为在传输路径3上传输的第一PPDU的正交信号的幅度与在传输路径1传输的第一PPDU的正交信号的幅度之间的比值。
由此可知,第二设备通过该至少一个第一幅度差和该至少一个第二幅度差表示每条传输路径上的第一PPDU的信号幅度、信号相位。
3、时间信息包括第一PPDU在该至少一条传输路径上对应的时间信息。
在一些实施方式中,时间信息包括至少一个时延差,该至少一个时延差与至少一条传输路径对应。也就是一个时延差对应一条传输路径,即该至少一个时延差与该至少一条传输路径一一对应。
每个时延差是在该时延差对应的传输路径上传输的第一PPDU到达第二设备的到达时间与在第二传输路径上传输的第一PPDU到达第二设备的到达时间之间的时间差。
一种可能的实现方式中,第二传输路径是该至少一条传输路径中第一PPDU的传输时间最短的传输路径。也就是说每条传输路径上第一PPDU的传输时间情况可以通过不同传输路径上第一PPDU到达第二设备的到达时间之间的时间差表征。
例如,如图8所示,设备A与设备B之间存在3条传输路径,分别为传输路径1、传输路径2和传输路径3。传输路径1是设备A与设备B之间的直视径。传输路径2是设备A到目标1再到设备B之间的传输路径。传输路径3为设备A到目标2再到设备B之间的传输路径。设备B测量每条传输路径上第一PPDU到达设备B的到达时间。例如,设备B可以将预定义的前导码序列与某条传输路径上的第一PPDU包括的前导码序列做相关运算,得到相关结果,相关结果中的峰值位置对应的横坐标为在该传输路径上该第一PPDU到达设备B的到达时间。或者,设备B可以将STS与某条传输路径上的第一PPDU包括的STS做相关运算,得到相关结果,相关结果中的峰值位置对应的横坐标为在该传输路径上该第一PPDU到达设备B的到达时间。设备B确定传输路径1上第一PPDU到达设备B的到达时间最早,那么可以理解的是传输路径1是第一PPDU的传输时间最短的一条传输路径。设备B可以确定三个时延差,分别为F1、F2和F3。对应传输路径1,因为传输路径1上的第一PPDU的信号能量最大,所以F1等于0。F2等于在传输路径2上传输的第一PPDU到达设备B的到达时间与在传输路径1上传输的第一PPDU到达设备B的到达时间之间的时间差。F3等于传输路径3上传输的第一PPDU到达设备B的到达时间与在传输路径1上传输的第一PPDU到达设备B的到达时间之间的时间差。
4、角度信息包括第一PPDU在至少一条传输路径上到达第二设备对应的角度信息。
在一些实施方式中,角度信息包括至少一个入射角度,该至少一个入射角度与该至少一条传输路径对应。每个入射角度是在该入射角度对应的传输路径上传输的第一PPDU到达第二设备的入射角度。
具体的,第二设备上部署有多个天线,第二设备通过该多个天线上分别接收每条传输路径上传输的第一PPDU。第二设备可以通过该多个天线接收该传输路径上的第一PPDU的接收时间之间的时间差确定该入射角度。其中,该多个天线接收该传输路径上的第一PPDU的接收时间之间的时间差可以根据该多个天线接收该传输路径上的第一PPDU的信号相位差确定。
需要说明的是,上述是以角度信息包括每条传输路径上第一PPDU到达第二设备的入射角度为例介绍本申请的技术方案。实际应用中,角度信息也可以是包括每条传输路径上第一PPDU到达第二设备的多个天线中每个天线的入射角度,具体本申请不做限定。也就是每条传输路径上第一PPDU入射到第二设备的每条天线的入射角度。
5、第二设备的位置信息包括以下至少一项:第二设备所在的经度信息、第二设备所在的纬度信息、第二设备所在的海拔高度信息。
603、第二设备向第一设备发送第二PPDU,第二PPDU包括感知测量结果。相应的,第一设备接收来自第二设备的第二PPDU。
例如,如图7所示,设备B和设备C接收到设备A的感知PPDU之后,设备B和设备C分别基于该感知PPDU进行感知测量(也称为信道冲击响应测量),得到CIR结果1和CIR结果2。设备B向设备A发送CIR反馈1,该CIR反馈1包括该CIR结果1。设备C向设备A发送CIR反馈2,该CIR反馈2包括该CIR结果2。
在一些实施方式中,第二PPDU包括信道测量反馈要素(The Channel Measurement Feedback Element),感知测量结果承载于该信道测量反馈要素中。需要说明的是,信道测量反馈要素可以包含于第二PPDU的物理层有效负载中。
可选的,信道测量反馈要素包括以下至少一个字段:多径个数字段、多径幅度字段、多径时延字段、多径信号入射角度字段和设备位置信息字段。
例如,传输路径个数信息承载于该多径个数字段中,多径信号分量幅度信息承载于多径幅度字段中,时间信息承载于多径时延字段中,多径信号入射角度字段承载于多径信号入射角度字段,第二设备的位置信息承载于设备位置信息字段中。
请参阅表1,表1示出了信道测量反馈要素的具体格式以及信道测量反馈要素承载感知测量结果的一种可能的示例。
表1
Figure PCTCN2022127611-appb-000005
Figure PCTCN2022127611-appb-000006
上述表1示出了信道测量反馈要素包括的字段、各字段的长度以及各字段分别指示的含义。需要说明的是,上述表1所示的各字段的比特大小仅仅是一种示例,具体本申请不做限定。例如,上述表1中每条传输路径对应的幅度可以占用10比特、11比特或12比特等。上述表1中多径时延字段中每条传输路径对应的相对时延占用的比特可以是6比特、7 比特、或9比特等。上述表1所示的多径信号入射角度字段中每条传输路径对应的入射角度占用的比特可以是6比特、7比特、或9比特等。另外,实际应用中可以使用不同的比特个数指示感知测量结果中包括的各个信息,也就是上述示例的各个字段的比特长度可以不同。信道测量反馈要素包括的各字段的顺序并不做限定,上述表1仅仅是一种示例。
可选的,信道测量反馈要素包括以下至少一个字段:多径个数字段、至少一条传输路径分别对应的字段和设备位置信息字段。
请参阅表2,表2示出了信道测量反馈要素的具体格式以及信道测量反馈要素承载感知测量结果的另一种可能的示例。
表2
Figure PCTCN2022127611-appb-000007
Figure PCTCN2022127611-appb-000008
由上述表2可知,每条传输路径对应的幅度信息、时间信息和角度信息分别承载于该每条传输路径对应的字段中。需要说明的是,上述表2所示的各字段的比特大小仅仅是一种示例,具体申请不做限定。例如,上述表2中每条传输路径对应的幅度可以占用10比特、12比特或14比特等。上述表2中每条传输路径对应的相对时延占用的比特可以是6比特、7比特、或9比特等。上述表2中每条传输路径对应的入射角度占用的比特可以是6比特、7比特、或9比特等。信道测量反馈要素包括的各字段的顺序并不做限定,上述表2仅仅是一种示例。
可选的,图6所示的实施例还包括步骤603a。步骤603a可以在步骤603之前执行。
603a、第一设备向第二设备发送测量报告请求。相应的,第二设备接收来自第一设备的测量报告请求。
测量报告请求用于指示第二设备反馈感知测量结果。
例如,如图7所示,设备B和设备C接收到设备A发送的测量报告请求之后,设备B可以向设备A发送CIR反馈1,设备C可以向设备A发送CIR反馈2。
下面介绍第一设备基于感知测量结果的内容确定周边环境的目标与第一设备之间的距离、周边环境的目标的位置、移动速度等信息。
例如,如图8所示,感知测量结果包括传输路径个数信息。设备A可以通过该传输路径个数信息初步确定周边环境中的目标的个数。如图8所示,传输路径个数信息指示三条传输路径,设备A可以初步确定存在两个目标。
设备A已经获知设备A与设备B之间的传输路径1(直视径)的距离。具体可以通过前述介绍的测距过程获得。设备A通过时间信息确定传输路径2的第一PPDU到达设备B的到达时间与传输路径1上的第一PPDU到达设备B的到达时间之间的时间差。而设备A与设备B的直视径之间的距离已知。因此设备A可以通过该距离与该时间差确定传输路径2的路程。因此设备A可以确定目标1到达设备A的距离加上目标1到达设备B的距离等于该传输路径2的路程。根据椭圆特性可知,目标1位于图8所示的椭圆上,设备A和设备B为椭圆的两个焦点。设备A根据角度信息可以确定传输路径2的第一PPDU到达设备B的入射角度。由于目标1位于椭圆上,目标1与设备B之间的角度θ 1可以近似等同于该传输路径2的第一PPDU到达设备B的入射角度,因此从设备B出发沿该入射角度方向的反方向的射线与椭圆的交点即为目标1的位置。那么设备A可以确定目标1与设备B之间的距离L,设备A可以将传输路径2的路程减去目标1与设备B之间的距离L得到目标1与设备A之间的距离K。设备A所在的位置是已知的,设备A通过该目标1与设备A之间的距离K和设备A所在的位置可以确定目标1所在的位置。
上述图6所示的过程可以执行多次。设备A基于多次上报的多径信号分量幅度信息可以确定目标1的移动速度。具体的,在短时间内,传输路径2上的第一PPDU的信号的幅度绝对值可以认为是不变的,而由于目标1在移动产生的多普勒效应,导致相邻多次测量中,传输路径2上的第一PPDU的信号的相位会发生变化。设备A可以通过多次上报的多径信号分量幅度信息确定传输路径2上的第一PPDU的信号的相位变化量。设备A通过将该相位变化量除以多次测量的测量时间得到多普勒频率。然后,设备A通过该多普勒频率和该传输路径上传输的第一PPDU的信号波长确定该目标1的移动速度。对于目标2与设备A的距离、位置以及移动速度等确定过程同样类似。
由此可知,本申请的技术方案可以应用于UWB无线通信系统,第一设备和第二设备可以是该UWB无线通信系统的两个UWB设备。第二设备利用第一PPDU的前导码序列或STS进行信道冲击响应的测量,并反馈至少一条传输路径对应的多径信号分量幅度信息、时间信息、角度信息、传输路径个数信息等。实现第二设备通过UWB信号对周边环境的目标(例如,无源目标)进行感知测量。
本申请实施例中,第一设备向第二设备发送第一PPDU,第一PPDU用于感知测量;然后,第一设备接收来自第二设备的第二PPDU,第二PPDU包括感知测量结果,该感知测量结果是第二设备对第一PPDU进行感知测量得到的。由此可知,本申请的技术方案中,第一设备接收来自第二设备的第二PPDU,第二PPDU包括感知测量结果,该感知测量结果是第 二设备对第一PPDU进行感知测量得到的。从而实现UWB设备对周边环境的感知并反馈相应的感知测量结果。
图9为本申请实施例感知测量方法的另一个实施例示意图。请参阅图9,感知测量方法包括:
901、第一设备向第二设备发送触发帧,触发帧用于触发第二设备发送第一PPDU。相应的,第二设备接收来自第一设备的触发帧。
其中,第一PPDU用于感知测量。具体的,该触发帧也可以称为感知测量触发帧,第一PPDU也可以称为感知PPDU。
可选的,触发帧还包括第一指示信息,第一指示信息用于指示第二设备发送第一PPDU的格式。
在一些实施方式中,第一指示信包括以下至少一项:STS秘钥、信号时间长度、STS序列重复次数。
STS秘钥用于第二设备生成STS。信号时间长度用于指示STS的长度。
STS序列重复次数用于指示第一PPDU中包含的STS的重复个数。也就是在第一PPDU中重复放置该STS,有利于第一设备解析该STS。这样第二设备可以通过STS秘钥确定STS,并将该确定的STS与第一PPDU的STS进行相关运算,得到感知测量结果。从而有利于提高感知测量的安全性。
902、第二设备向第一设备发送第一PPDU。相应的,第一设备接收来自第二设备的第一PPDU。
具体的,第二设备按照上述步骤901中的触发帧指示的第一PPDU的格式发送该第一PPDU。例如,该第一PPDU包括前导码序列和STS。该STS的长度是上述信号时间长度指示的长度,该STS是通过上述STS秘钥生成的。
例如,如图10所示,设备A向设备B发送感知测量触发帧,用于触发设备B发送感知PPDU。设备B基于该感知测量触发帧向设备A发送感知PPDU。
本申请的技术方案可以应用于UWB无线通信系统,第一设备和第二设备可以是该UWB无线通信系统的两个UWB设备。第一PPDU也可以称为感知PPDU,两个UWB设备之间通过感知PPDU实现对周边环境的感知测量。
903、第一设备基于第一PPDU进行感知测量,得到感知测量结果。
具体的,第一设备利用该第一PPDU的前导码序列或STS进行感知测量,得到感知测量结果。例如,第一设备可以利用本地确定的STS与该第一PPDU的STS进行相关运算得到相关结果,并通过相关结果的峰值位置确定第一PPDU到达第一设备的到达时间、第一PPDU的幅度信息等。
感知测量结果包括以下至少一项:传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息。
下面介绍感知测量结果包括的内容。
1、传输路径个数信息用于指示第一设备与第二设备之间的传输路径的数目。也就是用于第一设备与第二设备之间通信传输的传输路径的数目。具体的,第一设备与第二设备之 间包括至少一条传输路径,该至少一条传输路径用于第一设备与第二设备之间的通信传输。关于传输路径个数信息的确定与前述图6所示的实施例中的步骤602类似,具体可以参阅前述的相关介绍。
2、多径信号分量幅度信息包括第一PPDU在该至少一条传输路径上对应的信号幅度信息。
在一些实施方式中,多径信号分量幅度信息包括同相信号幅度信息和正交信号幅度信息。同相信号幅度信息包括第一PPDU在至少一条传输路径上对应的同相信号的幅度信息。正交信号幅度信息包括第一PPDU在至少一条传输路径上对应的正交信号的幅度信号。
在该实施方式中,第一设备确定每条传输路径上传输的第一PPDU的同相信号的幅度信息和正交信号的幅度信息,并携带在该感知测量结果。也就是通过每条传输路径上传输的第一PPDU的同相信号的幅度信息和正交信号的幅度信息表征该每条传输路径上传输的第一PPDU的信号幅度。
可选的,同相信号幅度信息包括至少一个第一幅度差,该至少一个第一幅度差与该至少一条传输路径对应。也就是该至少一个第一幅度差与该至少一条传输路径一一对应,每个第一幅度差对应一条传输路径。
每个第一幅度差是基于第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与第一传输路径上传输的第一PPDU的同相信号的幅度确定的。
一种可能的实现方式中,第一传输路径是该至少一条传输路径中第一PPDU的信号能量最强的传输路径。
例如,每个第一幅度差等于对第一比值取对数,第一比值为在该第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与在该第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值。关于第一幅度差的相关说明示例请参阅前述图6所示的实施例步骤602的相关介绍。
上述示例以第一传输路径为该至少一条传输路径中第一PPDU的信号能量最强的传输路径。实际应用中,本申请并不做限定,第一传输路径可以是该至少一条传输路径中的任一条传输路径。例如,第一传输路径也可以为该至少一条传输路径中第一PPDU的信号能量适中的传输路径。
可选的,正交信号幅度信息包括至少一个第二幅度差,该至少一个第二幅度差与该至少一条传输路径对应。也就是该至少第二幅度差与该至少一条传输路径一一对应,每个第二幅度差对应一条传输路径。
每个第二幅度差是基于该第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与该第一传输路径上传输的第一PPDU的正交信号的幅度确定的。关于第一传输路径请参阅前述的相关介绍。
可选的,每个第二幅度差等于对第二比值取对数,第二比值为在该第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度之间的比值。关于第二幅度差的相关说明示例请参阅前述图6所示的实施例步骤602的相关介绍。
3、时间信息包括第一PPDU在该至少一条传输路径上对应的时间信息。
在一些实施方式中,时间信息包括至少一个时延差,该至少一个时延差与至少一条传输路径对应。也就是一个时延差对应一条传输路径,即该至少一个时延差与该至少一条传输路径一一对应。
每个时延差是在该时延差对应的传输路径上传输的第一PPDU到达第一设备的到达时间与在第二传输路径上传输的第一PPDU到达第一设备的到达时间之间的时间差。
一种可能的实现方式中,第二传输路径是该至少一条传输路径中第一PPDU的传输时间最短的传输路径。也就是说每条传输路径上第一PPDU的传输时间情况可以通过不同传输路径上第一PPDU到达第一设备的到达时间之间的时间差表征。关于时延差的相关示例介绍请参阅前述图6所示的实施例步骤602的相关介绍。
4、角度信息包括第一PPDU在至少一条传输路径上到达第一设备对应的角度信息。
在一些实施方式中,角度信息包括至少一个入射角度,该至少一个入射角度与该至少一条传输路径对应。每个入射角度是在该入射角度对应的传输路径上传输的第一PPDU到达第一设备的入射角度。
具体的,第一设备上部署有多个天线,第一设备通过该多个天线上分别接收每条传输路径上传输的第一PPDU。第一设备可以通过该多个天线接收该传输路径上的第一PPDU的接收时间之间的时间差确定该入射角度。
需要说明的是,上述是以角度信息包括每条传输路径上第一PPDU到达第一设备的入射角度为例介绍本申请的技术方案。实际应用中,角度信息也可以是包括每条传输路径上第一PPDU到达第一设备的多个天线中每个天线的入射角度,具体本申请不做限定。也就是每条传输路径上第一PPDU入射到第一设备的每条天线的入射角度。
关于第一设备基于感知测量结果包括的内容确定周边环境的目标与第一设备的距离、目标的移动速度等信息的过程可以参阅前述图6所示的实施例中的步骤603中的相关介绍,这里不再赘述。
由此可知,本申请的技术方案可以应用于UWB无线通信系统,第一设备和第二设备可以是该UWB无线通信系统的两个UWB设备。上述图9所示的实施例中示出了第一设备发起感知测量触发流程,利用第二设备发送的感知PPDU进行感知测量的过程。第二设备利用第一PPDU的前导码序列或STS进行信道冲击响应的测量得到第一设备与第二设备之间的至少一条传输路径对应的多径信号分量幅度信息、时间信息、角度信息、传输路径个数信息等。实现了第一设备通过UWB信号对周边环境的目标(例如,无源目标)进行感知测量。
无需反馈感知测量结果。
本申请实施例中,第一设备向第二设备发送触发帧,该触发帧用于触发第二设备发送第一PPDU,第一PPDU用于感知测量。第一设备接收来自第二设备的第一PPDU,第一设备基于该第一PPDU进行感知测量,得到感知测量结果。从而实现UWB设备对周边环境的感知以得到相应的感知测量结果。无需反馈感知测量结果。
下面对本申请实施例提供的第一通信装置进行描述。请参阅图11,图11为本申请实施例第一通信装置的一个结构示意图。第一通信装置1100可以用于执行图6所示的实施例 中第一设备执行的步骤,具体请参考上述图6所示的实施例中的相关介绍。
第一通信装置1100包括发送单元1101和接收单元1102。可选的,第一通信装置1100还包括处理单元1103。发送单元1101用于执行上述图6所示的方法实施例中第一设备的发送操作,接收单元1102用于执行上述图6所示的方法实施例第一设备的接收操作。处理单元1103用于执行上述图6所示的方法实施例中第一设备的处理操作。
具体的,第一通信装置1100用于执行以下方案:
发送单元1101,用于向第二通信装置发送第一PPDU,第一PPDU用于感知测量;
接收单元1102,用于接收来自第二通信装置的第二PPDU,第二PPDU包括感知测量结果,感知测量结果是第二通信装置对第一PPDU进行感知测量得到。
一种可能的实现方式中,传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息、第二通信装置的位置信息;
其中,传输路径个数信息用于指示第一通信装置1100与第二通信装置之间的传输路径的数目;多径信号分量幅度信息包括第一PPDU在第一通信装置1100与第二通信装置之间的至少一条传输路径上对应的信号幅度信息;时间信息包括第一PPDU在至少一条传输路径上对应的时间信息;角度信息包括第一PPDU在至少一条传输路径上到达第二通信装置对应的角度信息。
另一种可能的实现方式中,多径信号分量幅度信息包括同相信号幅度信息和正交信号幅度信息,同相幅度信息包括第一PPDU在至少一条传输路径上对应的同相信号的幅度信息,正交幅度信息包括第一PPDU在至少一条传输路径上对应的正交信号的幅度信息。
另一种可能的实现方式中,同相信号幅度信息包括至少一个第一幅度差,至少一个第一幅度差与至少一个传输路径对应,每个第一幅度差是基于第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度和第一传输路径上传输的第一PPDU的同相信号的幅度确定的,第一传输路径是至少一条传输路径中第一PPDU的信号能量最强的传输路径;正交信号幅度信息包括至少一个第二幅度差,至少一个第二幅度差与至少一个传输路径对应,每个第二幅度差是基于第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度确定的。
另一种可能的实现方式中,每个第一幅度差等于对第一比值取对数,第一比值为在第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与在第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值;每个第二幅度差等于对第二比值取对数,第二比值为在第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度之间的比值。
另一种可能的实现方式中,时间信息包括至少一个时延差,至少一个时延差与至少一条传输路径对应,每个时延差是在时延差对应的传输路径上传输的第一PPDU到达第二通信装置的到达时间与在第二传输路径上传输的第一PPDU到达第二通信装置的到达时间之间的时间差,第二传输路径是至少一条传输路径中第一PPDU的传输时间最小的传输路径。
另一种可能的实现方式中,角度信息包括至少一个入射角度,至少一个入射角度与至少一条传输路径对应,每个入射角度是在入射角度对应的传输路径上传输的第一PPDU到达 第二通信装置的入射角度。
另一种可能的实现方式中,第二通信装置的位置信息包括以下至少一项:第二通信装置所在的经度信息、第二通信装置所在的纬度信息、第二通信装置所在的海拔高度信息。
另一种可能的实现方式中,发送单元1101还用于:
向第二通信装置发送感知测量请求,感知测量请求用于请求第二通信装置协助第一通信装置1100进行感知测量;
接收单元1102还用于:
接收来自第二通信装置的感知测量同意响应,感知测量同意响应用于指示第二通信装置同意协助第一通信装置1100进行感知测量。
另一种可能的实现方式中,发送单元1101还用于:
向第二通信装置发送测量报告请求,测量报告请求用于请求第二通信装置反馈所述感知测量结果。
另一种可能的实现方式中,第二PPDU包括信道测量反馈要素,感知测量结果承载于所述信道测量反馈要素。
另一种可能的实现方式中,信道测量反馈要素包括以下至少一个字段:多径个数字段、多径幅度字段、多径时延字段、多径信号入射角度字段和设备位置信息字段;多径个数字段用于承载传输路径个数信息,多径幅度字段用于承载多径信号分量幅度信息,多径时延字段用于承载时间信息,多径信号入射角度字段用于承载角度信息,设备位置信息字段用于承载第二通信装置的位置信息。
下面对本申请实施例提供的第二通信装置进行描述。请参阅图12,图12为本申请实施例第二通信装置的一个结构示意图。第二通信装置1200可以用于执行图6所示的实施例中第二设备执行的步骤,具体请参考上述图6所示的实施例中的相关介绍。
第二通信装置1200包括接收单元1201、处理单元1202和发送单元1203。接收单元1202用于执行上述图6所示的方法实施例第二设备的接收操作,处理单元1202用于执行上述图6所示的方法实施例中第二设备的处理操作,发送单元1203用于执行上述图6所示的方法实施例中第二设备的发送操作。
具体的,第二通信装置1200用于执行以下方案:
接收单元1201,用于接收来自第一通信装置的第一PPDU;
处理单元1202,用于对第一PPDU进行感知测量,得到感知测量结果;
发送单元1203,用于向所述第一通信装置发送第二PPDU,第二PPDU包括感知测量结果。
一种可能的实现方式中,传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息、第二通信装置1200的位置信息;
其中,传输路径个数信息用于指示第一通信装置与第二通信装置1200之间的传输路径的数目;多径信号分量幅度信息包括第一PPDU在第一通信装置与第二通信装置1200之间的至少一条传输路径上对应的信号幅度信息;时间信息包括第一PPDU在至少一条传输路径上对应的时间信息;角度信息包括第一PPDU在至少一条传输路径上到达第二通信装置1200 对应的角度信息。
另一种可能的实现方式中,多径信号分量幅度信息包括同相信号幅度信息和正交信号幅度信息,同相幅度信息包括第一PPDU在至少一条传输路径上对应的同相信号的幅度信息,正交幅度信息包括第一PPDU在至少一条传输路径上对应的正交信号的幅度信息。
另一种可能的实现方式中,同相信号幅度信息包括至少一个第一幅度差,至少一个第一幅度差与至少一个传输路径对应,每个第一幅度差是基于第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度和第一传输路径上传输的第一PPDU的同相信号的幅度确定的,第一传输路径是至少一条传输路径中第一PPDU的信号能量最强的传输路径;正交信号幅度信息包括至少一个第二幅度差,至少一个第二幅度差与至少一个传输路径对应,每个第二幅度差是基于第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度确定的。
另一种可能的实现方式中,每个第一幅度差等于对第一比值取对数,第一比值为在第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与在第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值;每个第二幅度差等于对第二比值取对数,第二比值为在第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度之间的比值。
另一种可能的实现方式中,时间信息包括至少一个时延差,至少一个时延差与至少一条传输路径对应,每个时延差是在时延差对应的传输路径上传输的第一PPDU到达第二通信装置1200的到达时间与在第二传输路径上传输的第一PPDU到达第二通信装置1200的到达时间之间的时间差,第二传输路径是至少一条传输路径中第一PPDU的传输时间最小的传输路径。
另一种可能的实现方式中,角度信息包括至少一个入射角度,至少一个入射角度与至少一条传输路径对应,每个入射角度是在入射角度对应的传输路径上传输的第一PPDU到达第二通信装置1200的入射角度。
另一种可能的实现方式中,第二通信装置1200的位置信息包括以下至少一项:第二通信装置1200所在的经度信息、第二通信装置1200所在的纬度信息、第二通信装置1200所在的海拔高度信息。
另一种可能的实现方式中,接收单元1201还用于:
接收来自第一通信装置的感知测量请求,感知测量请求用于请求第二通信装置1200协助第一通信装置进行感知测量;
发送单元1203还用于:
向第一通信装置发送感知测量同意响应,感知测量同意响应用于指示第二通信装置1200同意协助第一通信装置进行感知测量。
另一种可能的实现方式中,接收单元1201还用于:
接收来自第一通信装置的测量报告请求,测量报告请求用于请求第二通信装置1200反馈感知测量结果。
另一种可能的实现方式中,第二PPDU包括信道测量反馈要素,感知测量结果承载于所 述信道测量反馈要素。
另一种可能的实现方式中,信道测量反馈要素包括以下至少一个字段:多径个数字段、多径幅度字段、多径时延字段、多径信号入射角度字段和设备位置信息字段;多径个数字段用于承载传输路径个数信息,多径幅度字段用于承载多径信号分量幅度信息,多径时延字段用于承载时间信息,多径信号入射角度字段用于承载角度信息,设备位置信息字段用于承载第二通信装置1200的位置信息。
下面对本申请实施例提供的第一通信装置进行描述。请参阅图13,图13为本申请实施例第一通信装置的一个结构示意图。第一通信装置1300可以用于执行图9所示的实施例中第一设备执行的步骤,具体请参考上述图9所示的实施例中的相关介绍。
第一通信装置1300包括发送单元1301、接收单元1303和处理单元1303。发送单元1301用于执行上述图9所示的方法实施例中第一设备的发送操作,接收单元1302用于执行上述图9所示的方法实施例第一设备的接收操作。处理单元1303用于执行上述图9所示的方法实施例中第一设备的处理操作。
具体的,第一通信装置1300用于执行以下方案:
发送单元1301,用于向第二通信装置发送触发帧,触发帧用于触发所述第二通信装置发送第一PPDU,第一PPDU用于感知测量;
接收单元1302,用于接收来自第二通信装置的第一PPDU;
处理单元1303,用于基于第一PPDU进行感知测量,得到感知测量结果。
一种可能的实现方式中,触发帧包括第一指示信息,第一指示信息用于指示第二通信装置发送第一PPDU的格式。
另一种可能的实现方式中,第一指示信息包括以下至少一项:STS秘钥、信号时间长度、STS序列重复次数。
另一种可能的实现方式中,感知测量结果包括以下至少一项:传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息。
其中,传输路径个数信息用于指示第一通信装置1300与第二通信装置之间的传输路径的数目;多径信号分量幅度信息包括第一PPDU在第一通信装置1300与第二通信装置之间的至少一条传输路径上对应的信号幅度信息;时间信息包括第一PPDU在所述至少一条传输路径上对应的时间信息;角度信息包括第一PPDU在至少一条传输路径上到达第一通信装置1300对应的角度信息。
另一种可能的实现方式中,多径信号分量幅度信息包括同相信号幅度信息和正交信号幅度信息,同相幅度信息包括第一PPDU在至少一条传输路径上对应的同相信号的幅度信息,正交幅度信息包括第一PPDU在至少一条传输路径上对应的正交信号的幅度信息。
另一种可能的实现方式中,同相信号幅度信息包括至少一个第一幅度差,至少一个第一幅度差与至少一个传输路径对应,每个第一幅度差是基于第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度和第一传输路径上传输的第一PPDU的同相信号的幅度确定的,第一传输路径是至少一条传输路径中第一PPDU的信号能力最强的传输路径;正交信号幅度信息包括至少一个第二幅度差,至少一个第二幅度差与至少一个传输路径对应, 每个第二幅度差是基于第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度确定的。
另一种可能的实现方式中,每个第一幅度差等于对第一比值取对数,第一比值为在第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与在第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值;每个第二幅度差等于对第二比值取对数,第二比值为在第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度之间的比值。
另一种可能的实现方式中,时间信息包括至少一个时延差,至少一个时延差与至少一条传输路径对应,每个时延差是在时延差对应的传输路径上传输的第一PPDU到达第一通信装置1300的到达时间与在第二传输路径上传输的所述第一PPDU到达第一通信装置1300的到达时间之间的时间差,第二传输路径是至少一条传输路径中第一PPDU的传输时间最小的传输路径。
另一种可能的实现方式中,角度信息包括至少一个入射角度,至少一个入射角度与至少一条传输路径对应,每个入射角度是在入射角度对应的传输路径上传输的第一PPDU到达第一通信装置1300的入射角度。
下面对本申请实施例提供的第二通信装置进行描述。请参阅图14,图14为本申请实施例第二通信装置的一个结构示意图。第二通信装置1400可以用于执行图9所示的实施例中第二设备执行的步骤,具体请参考上述图9所示的实施例中的相关介绍。
第二通信装置1400包括接收单元1401和发送单元1402。可选的,第二通信装置1400还包括处理单元1403。接收单元1401用于执行上述图9所示的方法实施例第二设备的接收操作,发送单元1402用于执行上述图9所示的方法实施例中第二设备的发送操作。
具体的,第二通信装置1400用于执行以下方案:
接收单元1401,用于接收来自第一通信装置的触发帧,触发帧用于触发第一通信装置发送第一PPDU,第一PPDU用于感知测量;
发送单元1402,用于向第一通信装置发送第一PPDU。
一种可能的实现方式中,触发帧包括第一指示信息,第一指示信息用于指示第二通信装置1400发送第一PPDU的格式。
另一种可能的实现方式中,第一指示信息包括以下至少一项:STS秘钥、信号时间长度、STS序列重复次数。
另一种可能的实现方式中,感知测量结果包括以下至少一项:传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息。
其中,传输路径个数信息用于指示第一通信装置与第二通信装置1400之间的传输路径的数目;多径信号分量幅度信息包括第一PPDU在第一通信装置与第二通信装置1400之间的至少一条传输路径上对应的信号幅度信息;时间信息包括第一PPDU在所述至少一条传输路径上对应的时间信息;角度信息包括第一PPDU在至少一条传输路径上到达第一通信装置对应的角度信息。
另一种可能的实现方式中,多径信号分量幅度信息包括同相信号幅度信息和正交信号 幅度信息,同相幅度信息包括第一PPDU在至少一条传输路径上对应的同相信号的幅度信息,正交幅度信息包括第一PPDU在至少一条传输路径上对应的正交信号的幅度信息。
另一种可能的实现方式中,同相信号幅度信息包括至少一个第一幅度差,至少一个第一幅度差与至少一个传输路径对应,每个第一幅度差是基于第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度和第一传输路径上传输的第一PPDU的同相信号的幅度确定的,第一传输路径是至少一条传输路径中第一PPDU的信号能力最强的传输路径;正交信号幅度信息包括至少一个第二幅度差,至少一个第二幅度差与至少一个传输路径对应,每个第二幅度差是基于第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度确定的。
另一种可能的实现方式中,每个第一幅度差等于对第一比值取对数,第一比值为在第一幅度差对应的传输路径上传输的第一PPDU的同相信号的幅度与在第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值;每个第二幅度差等于对第二比值取对数,第二比值为在第二幅度差对应的传输路径上传输的第一PPDU的正交信号的幅度与第一传输路径上传输的第一PPDU的正交信号的幅度之间的比值。
另一种可能的实现方式中,时间信息包括至少一个时延差,至少一个时延差与至少一条传输路径对应,每个时延差是在时延差对应的传输路径上传输的第一PPDU到达第一通信装置的到达时间与在第二传输路径上传输的所述第一PPDU到达所述第一通信装置的到达时间之间的时间差,第二传输路径是至少一条传输路径中第一PPDU的传输时间最小的传输路径。
另一种可能的实现方式中,角度信息包括至少一个入射角度,至少一个入射角度与至少一条传输路径对应,每个入射角度是在入射角度对应的传输路径上传输的第一PPDU到达第一通信装置的入射角度。
本申请实施例还提供一种第一通信装置,请参阅图15,本申请实施例中第一通信装置的另一个结构示意图,该第一通信装置可以用于执行图6和图9所示的实施例中的第一设备执行的步骤,可以参考上述方法实施例中的相关描述。
该第一通信装置包括处理器1501。
可选的,该第一通信装置还包括存储器1502和收发器1503。该处理器1501、存储器1502和收发器1503分别通过总线相连,该存储器中存储有计算机指令。
可选的,前述图11所示的发送单元1101和接收单元1102具体可以是收发器1503,因此收发器1503的具体实现不再赘述。前述图11所示的处理单元1103具体可以是处理器1501,因此处理器1501的具体实现不再赘述。
可选的,前述图13所示的发送单元1301和接收单元1302具体可以是收发器1503,因此收发器1503的具体实现不再赘述。前述图11所示的处理单元1303具体可以是处理器1501,因此处理器1501的具体实现不再赘述。
本申请实施例还提供一种第二通信装置,请参阅图16,本申请实施例中第二通信装置的另一个结构示意图,该第二通信装置可以用于执行图6和图9所示的实施例中的第二设备执行的步骤,可以参考上述方法实施例中的相关描述。
该第二通信装置包括:处理器1601。
可选的,第二通信装置还包括存储器1602和收发器1603。该处理器1601、存储器1602和收发器1603分别通过总线相连,该存储器中存储有计算机指令。
可选的,前述图12所示的接收单元1201和发送单元1203具体可以是收发器1603,因此收发器1603的具体实现不再赘述。前述图12所示的处理单元1202具体可以是处理器1601,因此处理器1601的具体实现不再赘述。
可选的,前述图14所示的接收单元1401和发送单元1402具体可以是收发器1603,因此收发器1603的具体实现不再赘述。前述图14所示的处理单元1402具体可以是处理器1601,因此处理器1601的具体实现不再赘述。
本申请还提供一种通信系统,该通信系统包括第一设备和第二设备,第一设备用于执行图6和图9所示的实施例中第一设备执行的步骤,第二设备用于执行图6和图9所示的实施例中第二设备执行的步骤。
本申请实施例提供一种包括指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得如图6和图9所示的实施例中任一种的实现方式被执行。
本申请实施例提供一种计算机可读存储介质,包括计算机指令,当该指令在计算机上运行时,使得如图6和图9所示的实施例的任一种实现方式被执行。
本申请实施例提供一种芯片装置,包括处理器,用于调用该存储器中的计算机程序或计算机指令,以使得上述图6和图9所示的实施例中的任一种实现方式被执行。
可选的,该芯片装置还包括存储器,该存储器用于存储计算机程度或计算机指令等。该芯片装置由芯片构成,也可以包括芯片和其他分立器件。
可选的,该处理器通过接口与该存储器耦合。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者 对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (28)

  1. 一种感知测量方法,其特征在于,所述方法包括:
    第一设备向第二设备发送第一物理层协议数据单元PPDU,所述第一PPDU用于感知测量;
    所述第一设备接收来自所述第二设备的第二PPDU,所述第二PPDU包括感知测量结果,所述感知测量结果是所述第二设备对所述第一PPDU进行感知测量得到。
  2. 一种感知测量方法,其特征在于,所述方法包括:
    第二设备接收来自第一设备的第一物理层协议数据单元PPDU;
    所述第二设备对所述第一PPDU进行感知测量,得到感知测量结果;
    所述第二设备向所述第一设备发送第二PPDU,所述第二PPDU包括所述感知测量结果。
  3. 根据权利要求1或2所述的方法,其特征在于,所述感知测量结果包括以下至少一项:传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息、所述第二设备的位置信息;
    其中,所述传输路径个数信息用于指示所述第一设备与所述第二设备之间的传输路径的数目;所述多径信号分量幅度信息包括所述第一PPDU在所述第一设备与所述第二设备之间的至少一条传输路径上对应的信号幅度信息;所述时间信息包括所述第一PPDU在所述至少一条传输路径上对应的时间信息;所述角度信息包括所述第一PPDU在所述至少一条传输路径上到达所述第二设备对应的角度信息。
  4. 根据权利要求3所述的方法,其特征在于,所述多径信号分量幅度信息包括同相信号幅度信息和正交信号幅度信息,所述同相幅度信息包括所述第一PPDU在所述至少一条传输路径上对应的同相信号的幅度信息,所述正交幅度信息包括所述第一PPDU在所述至少一条传输路径上对应的正交信号的幅度信息。
  5. 根据权利要求4所述的方法,其特征在于,所述同相信号幅度信息包括至少一个第一幅度差,所述至少一个第一幅度差与所述至少一个传输路径对应,每个第一幅度差是基于所述第一幅度差对应的传输路径上传输的所述第一PPDU的同相信号的幅度和第一传输路径上传输的所述第一PPDU的同相信号的幅度确定的,所述第一传输路径是所述至少一条传输路径中所述第一PPDU的信号能量最强的传输路径;
    所述正交信号幅度信息包括至少一个第二幅度差,所述至少一个第二幅度差与所述至少一个传输路径对应,每个第二幅度差是基于所述第二幅度差对应的传输路径上传输的所述第一PPDU的正交信号的幅度与所述第一传输路径上传输的所述第一PPDU的正交信号的幅度确定的。
  6. 根据权利要求5所述的方法,其特征在于,每个第一幅度差等于对第一比值取对数,所述第一比值为在所述第一幅度差对应的传输路径上传输的所述第一PPDU的同相信号的幅度与在所述第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值;
    每个第二幅度差等于对第二比值取对数,所述第二比值为在所述第二幅度差对应的传输路径上传输的所述第一PPDU的正交信号的幅度与所述第一传输路径上传输的所述第一PPDU的正交信号的幅度之间的比值。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述时间信息包括至少一个时延差,所述至少一个时延差与所述至少一条传输路径对应,每个时延差是在所述时延差对应的传输路径上传输的所述第一PPDU到达所述第二设备的到达时间与在第二传输路径上传输的所述第一PPDU到达所述第二设备的到达时间之间的时间差,所述第二传输路径是所述至少一条传输路径中所述第一PPDU的传输时间最小的传输路径。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述角度信息包括至少一个入射角度,所述至少一个入射角度与所述至少一条传输路径对应,每个入射角度是在所述入射角度对应的传输路径上传输的所述第一PPDU到达所述第二设备的入射角度。
  9. 根据权利要求2至8中任一项所述的方法,其特征在于,所述第二设备的位置信息包括以下至少一项:所述第二设备所在的经度信息、所述第二设备所在的纬度信息、所述第二设备所在的海拔高度信息。
  10. 根据权利要求1、3至9中任一项所述的方法,其特征在于,所述第一设备向第二设备发送第一物理层协议数据单元PPDU之前,所述方法还包括:
    所述第一设备向所述第二设备发送感知测量请求,所述感知测量请求用于请求所述第二设备协助所述第一设备进行感知测量;
    所述第一设备接收来自所述第二设备的感知测量同意响应,所述感知测量同意响应用于指示所述第二设备同意协助所述第一设备进行感知测量。
  11. 根据权利要求10所述的方法,其特征在于,在所述第一设备向第二设备发送第一物理层协议数据单元PPDU之后,所述第一设备接收来自所述第二设备的第二PPDU之前,所述方法还包括:
    所述第一设备向所述第二设备的测量报告请求,所述测量报告请求用于请求所述第二设备反馈所述感知测量结果。
  12. 根据权利要求2、3至9中任一项所述的方法,其特征在于,所述第二设备接收来自第一设备的第一物理层协议数据单元PPDU之前,所述方法还包括:
    所述第二设备接收来自所述第一设备的感知测量请求,所述感知测量请求用于请求所述第二设备协助所述第一设备进行感知测量;
    所述第二设备向所述第一设备发送感知测量同意响应,所述感知测量同意响应用于指示所述第二设备同意协助所述第一设备进行感知测量。
  13. 根据权利要求12所述的方法,其特征在于,在所述第二设备接收来自第一设备的第一物理层协议数据单元PPDU之后,所述第二设备向所述第一设备发送第二PPDU之前,所述方法还包括:
    所述第二设备接收来自所述第一设备的测量报告请求,所述测量报告请求用于请求所述第二设备反馈所述感知测量结果。
  14. 一种感知测量方法,其特征在于,所述方法包括:
    第一设备向第二设备发送触发帧,所述触发帧用于触发所述第二设备发送第一物理层协议数据单元PPDU,所述第一PPDU用于感知测量;
    所述第一设备接收来自所述第二设备的所述第一PPDU;
    所述第一设备基于所述第一PPDU进行感知测量,得到感知测量结果。
  15. 一种感知测量方法,其特征在于,所述方法包括:
    第二设备接收来自第一设备的触发帧,所述触发帧用于触发所述第一设备发送第一物理层协议数据单元PPDU,所述第一PPDU用于感知测量;
    所述第二设备向所述第一设备发送所述第一PPDU。
  16. 根据权利要求14或15所述的方法,其特征在于,所述触发帧包括第一指示信息,所述第一指示信息用于指示所述第二设备发送所述第一PPDU的格式。
  17. 根据权利要求16所述的方法,其特征在于,所述第一指示信息包括以下至少一项:加扰的时间戳序列STS秘钥、信号时间长度、STS序列重复次数。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述感知测量结果包括以下至少一项:传输路径个数信息、多径信号分量幅度信息、时间信息、角度信息;
    其中,所述传输路径个数信息用于指示所述第一设备与所述第二设备之间的传输路径的数目;所述多径信号分量幅度信息包括所述第一PPDU在所述第一设备与所述第二设备之间的至少一条传输路径上对应的信号幅度信息;所述时间信息包括所述第一PPDU在所述至少一条传输路径上对应的时间信息;所述角度信息包括所述第一PPDU在所述至少一条传输路径上到达所述第一设备对应的角度信息。
  19. 根据权利要求18所述的方法,其特征在于,所述多径信号分量幅度信息包括同相信号幅度信息和正交信号幅度信息,所述同相幅度信息包括所述第一PPDU在所述至少一条传输路径上对应的同相信号的幅度信息,所述正交幅度信息包括所述第一PPDU在所述至少一条传输路径上对应的正交信号的幅度信息。
  20. 根据权利要求19所述的方法,其特征在于,所述同相信号幅度信息包括至少一个第一幅度差,所述至少一个第一幅度差与所述至少一个传输路径对应,每个第一幅度差是基于所述第一幅度差对应的传输路径上传输的所述第一PPDU的同相信号的幅度和第一传输路径上传输的所述第一PPDU的同相信号的幅度确定的,所述第一传输路径是所述至少一条传输路径中所述第一PPDU的信号能力最强的传输路径;
    所述正交信号幅度信息包括至少一个第二幅度差,所述至少一个第二幅度差与所述至少一个传输路径对应,每个第二幅度差是基于所述第二幅度差对应的传输路径上传输的所述第一PPDU的正交信号的幅度与所述第一传输路径上传输的所述第一PPDU的正交信号的幅度确定的。
  21. 根据权利要求20所述的方法,其特征在于,每个第一幅度差等于对第一比值取对数,所述第一比值为在所述第一幅度差对应的传输路径上传输的所述第一PPDU的同相信号的幅度与在所述第一传输路径上传输的第一PPDU的同相信号的幅度之间的比值;
    每个第二幅度差等于对第二比值取对数,所述第二比值为在所述第二幅度差对应的传输路径上传输的所述第一PPDU的正交信号的幅度与所述第一传输路径上传输的所述第一PPDU的正交信号的幅度之间的比值。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,所述时间信息包括至少一个时延差,所述至少一个时延差与所述至少一条传输路径对应,每个时延差是在所述时 延差对应的传输路径上传输的所述第一PPDU到达所述第一设备的到达时间与在第二传输路径上传输的所述第一PPDU到达所述第一设备的到达时间之间的时间差,所述第二传输路径是所述至少一条传输路径中所述第一PPDU的传输时间最小的传输路径。
  23. 根据权利要求18至22中任一项所述的方法,其特征在于,所述角度信息包括至少一个入射角度,所述至少一个入射角度与所述至少一条传输路径对应,每个入射角度是在所述入射角度对应的传输路径上传输的所述第一PPDU到达所述第一设备的入射角度。
  24. 一种通信装置,其特征在于,所述通信装置包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机程序或计算机指令,使得如权利要求1至13中任一项所述的方法被执行,或者,使得如权利要求14至23中任一项所述的方法被执行。
  25. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器用于执行存储器中的计算机程序或计算机指令,使得如权利要求1至13中任一项所述的方法被执行,或者,使得如权利要求14至23中任一项所述的方法被执行。
  26. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器用于执行如权利要求1至13中任一项所述的方法,或者,用于执行如权利要求14至23中任一项所述的方法。
  27. 一种包含程序指令的计算机程序产品,当所述程序指令在计算机上运行时,使得如权利要求1至13任一项所述的方法被执行,或者,使得如权利要求14至23任一项所述的方法被执行。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储程序指令,当所述程序指令运行时,使得如权利要求1至13任一项所述的方法被执行,或者,使得如权利要求14至23任一项所述的方法被执行。
PCT/CN2022/127611 2021-10-29 2022-10-26 感知测量方法以及相关装置 WO2023072130A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22886006.0A EP4412296A1 (en) 2021-10-29 2022-10-26 Sensing measurement method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111277365.5 2021-10-29
CN202111277365.5A CN116074884A (zh) 2021-10-29 2021-10-29 感知测量方法以及相关装置

Publications (1)

Publication Number Publication Date
WO2023072130A1 true WO2023072130A1 (zh) 2023-05-04

Family

ID=86160474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127611 WO2023072130A1 (zh) 2021-10-29 2022-10-26 感知测量方法以及相关装置

Country Status (3)

Country Link
EP (1) EP4412296A1 (zh)
CN (1) CN116074884A (zh)
WO (1) WO2023072130A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288838A1 (en) * 2016-04-05 2017-10-05 Laurent Cariou Sending feedback in a high efficiency service field
WO2018195174A1 (en) * 2017-04-19 2018-10-25 Feng Jiang Measurement report for a measurement protocol
US20190013978A1 (en) * 2017-07-07 2019-01-10 Qualcomm Incorporated Techniques for selecting ppdu format parameters
US20200021466A1 (en) * 2019-09-26 2020-01-16 Intel Corporation Apparatus, system and method of wireless sensing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288838A1 (en) * 2016-04-05 2017-10-05 Laurent Cariou Sending feedback in a high efficiency service field
WO2018195174A1 (en) * 2017-04-19 2018-10-25 Feng Jiang Measurement report for a measurement protocol
US20190013978A1 (en) * 2017-07-07 2019-01-10 Qualcomm Incorporated Techniques for selecting ppdu format parameters
US20200021466A1 (en) * 2019-09-26 2020-01-16 Intel Corporation Apparatus, system and method of wireless sensing

Also Published As

Publication number Publication date
EP4412296A1 (en) 2024-08-07
CN116074884A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
US11892538B2 (en) Method and apparatus for controlling ranging in wireless communication system
EP2499867B1 (en) Location tracking using response messages identifying a tracked device in a wireless network
JP4814324B2 (ja) 秘匿uwb測距のためのデバイス、方法及びプロトコル
EP2244098B1 (en) A master transceiver apparatus and a slave transceiver apparatus for determining a range information
WO2021115217A1 (zh) 一种测距的方法和装置
JP2024507714A (ja) 再構成可能インテリジェントサーフェス補助測位のための動作適合
CN111279625A (zh) 用于精细定时测量协议的路径选择
JP2024511058A (ja) 測位のための測定期間構築のための方法および装置
Liu et al. Networked sensing in 6G cellular networks: Opportunities and challenges
WO2023072130A1 (zh) 感知测量方法以及相关装置
TW202404292A (zh) 資訊交互方法及相關裝置
EP4309438A1 (en) Closed loop feedback for improved positioning
WO2023061011A1 (zh) 一种测距方法和装置
CN115299155A (zh) 发射器设备及控制发射器设备的方法
WO2023185633A1 (zh) 一种通信的方法、装置和系统
WO2023202546A1 (zh) 基于超带宽的感知测量结果反馈方法及装置
WO2024175075A1 (zh) 感知通信方法及装置
WO2024149026A1 (zh) 通信方法及通信装置
WO2023169264A1 (zh) 基于超带宽的信息反馈方法及装置
WO2024083179A1 (zh) 基于感知的通信方法及装置
WO2023236823A1 (zh) 基于uwb的ppdu传输方法及相关装置
WO2024012259A1 (zh) 通信方法及装置
WO2023165454A1 (zh) 通信方法和装置
WO2024217325A1 (zh) 基于频带拼接的ppdu传输方法及装置
US20240072962A1 (en) Localization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886006

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022886006

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022886006

Country of ref document: EP

Effective date: 20240430

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202402901V

Country of ref document: SG