WO2023202531A1 - 一种咔唑衍生物、有机电致发光元件、显示装置和照明装置 - Google Patents

一种咔唑衍生物、有机电致发光元件、显示装置和照明装置 Download PDF

Info

Publication number
WO2023202531A1
WO2023202531A1 PCT/CN2023/088700 CN2023088700W WO2023202531A1 WO 2023202531 A1 WO2023202531 A1 WO 2023202531A1 CN 2023088700 W CN2023088700 W CN 2023088700W WO 2023202531 A1 WO2023202531 A1 WO 2023202531A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
phenyl
carbazole derivative
Prior art date
Application number
PCT/CN2023/088700
Other languages
English (en)
French (fr)
Inventor
曹建华
姜卫东
郭文龙
唐怡杰
邸庆童
边坤
张昊
Original Assignee
北京八亿时空液晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京八亿时空液晶科技股份有限公司 filed Critical 北京八亿时空液晶科技股份有限公司
Publication of WO2023202531A1 publication Critical patent/WO2023202531A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of organic electroluminescent materials, and specifically relates to a carbazole derivative, an organic electroluminescent element, a display device and a lighting device.
  • Organic electroluminescence is mainly divided into fluorescence and phosphorescence.
  • the probability of singlet excitons and triplet excitons is 1:3, which is the theoretical limit of fluorescence from singlet exciton radiation transition. is 25%, and the theoretical limit of fluorescence from triplet exciton radiative transition is 75%. How to utilize the energy of 75% of triplet excitons has become a top priority.
  • Forrest et al. discovered that the phosphorescent electroluminescence phenomenon broke through the 25% quantum efficiency limit of organic electroluminescent materials, which attracted widespread attention to metal complex phosphorescent materials. Since then, people have conducted a lot of research on phosphorescent materials.
  • the present invention provides a carbazole derivative, an organic electroluminescent element, a display device and a lighting device.
  • the carbazole derivative of the present invention is used as a material for organic electroluminescent elements.
  • the raw materials can provide materials for organic electroluminescent elements and organic electroluminescent elements with reduced starting voltage, high luminous efficiency and improved brightness.
  • a carbazole derivative the structure of the carbazole derivative is shown in formula (I):
  • X 1 to X 4 each represent CR 0 or N equally or differently;
  • Ar is selected from the group consisting of a substituted or unsubstituted C 6 -C 60 aryl group and a substituted or unsubstituted C 2 -C 60 heterocyclic aryl group;
  • L is selected from the group consisting of substituted or unsubstituted C 6 -C 60 arylene, substituted or unsubstituted C 2 -C 60 heterocyclic aryl;
  • R 0 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 are each independently selected from the group consisting of the following groups: hydrogen, deuterium, fluorine, nitrile group , a linear alkyl group having C 1 to C 40 , a linear heteroalkyl group having C 1 to C 40 , a branched or cyclic alkyl group having C 3 to C 40 , a branched chain having C 3 to C 40 chain or cyclic heteroalkyl, alkenyl or alkynyl with C 2 to C 40 , substituted or unsubstituted C 6 -C 60 aryl or substituted or unsubstituted C 2 -C 60 heterocyclic aryl, Any two or more adjacent substituents may optionally be joined or fused to form a ring with or without N, O, S, Si, P or B.
  • An aryl group in the sense of the present invention contains 6 to 60 carbon atoms, and a heteroaryl group in the sense of the present invention contains 2 to 60 carbon atoms and at least one heteroatom, provided that the sum of the carbon atoms and heteroatoms is at least 5 ;
  • the heteroatom is preferably selected from N, O or S.
  • Aryl or heteroaryl groups here encompass both monocyclic groups and polycyclic systems. Polycyclic rings can have two carbons that are common to two adjacent rings or are said to be "fused" to two or more Rings, wherein at least one of said rings is aromatic, for example the other rings may be cycloalkyl, cycloalkenyl, aryl, heterocycle and/or heteroaryl.
  • aryl or heteroaryl groups can also be linked by non-aromatic units such as C, N, O or S atoms, for example, as in systems in which two or more aryl groups are linked by, for example, short alkyl groups. , such as fluorene, 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, dibenzofuran or dibenzothiophene, etc.
  • the alkyl group used in the present invention refers to a monovalent functional group obtained by removing one hydrogen atom from a linear or branched saturated hydrocarbon with a carbon number of 1 to 40.
  • a monovalent functional group obtained by removing one hydrogen atom from a linear or branched saturated hydrocarbon with a carbon number of 1 to 40.
  • Heteroalkyl means that the hydrogen atom or -CH 2 - on the alkyl group is replaced by at least one heteroatom, and the heteroatom is selected from halogen, nitrile, N, O, S or silicon.
  • the alkenyl group used in the present invention refers to a monovalent functional group obtained by removing one hydrogen atom from a straight-chain or branched-chain unsaturated hydrocarbon having one or more carbon-carbon double bonds with a carbon number of 2 to 40.
  • a monovalent functional group obtained by removing one hydrogen atom from a straight-chain or branched-chain unsaturated hydrocarbon having one or more carbon-carbon double bonds with a carbon number of 2 to 40.
  • the alkynyl group used in the present invention refers to a monovalent functional group obtained by removing one hydrogen atom from a straight-chain or branched-chain unsaturated hydrocarbon with more than one carbon-carbon triple bond and a carbon number of 2 to 40.
  • a monovalent functional group obtained by removing one hydrogen atom from a straight-chain or branched-chain unsaturated hydrocarbon with more than one carbon-carbon triple bond and a carbon number of 2 to 40.
  • cycloalkyl and cycloalkenyl refer to a monovalent functional group obtained by removing one hydrogen atom from a monocyclic or polycyclic non-aromatic hydrocarbon with a carbon number of 3 to 40.
  • cyclopropyl cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, adamantyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptyl, Cycloheptenyl, in which one or more -CH 2 - groups can be replaced by the above-mentioned groups; in addition, one or more hydrogen atoms can also be replaced by deuterium atoms, halogen atoms or nitrile groups.
  • the heterocycloalkyl group used in the present invention refers to a monovalent functional group obtained by removing one hydrogen atom from a non-aromatic hydrocarbon with a nuclear number of 3 to 40.
  • more than one carbon in the ring preferably 1 to 3 carbons, are substituted by heteroatoms such as N, O or S.
  • heteroatoms such as N, O or S.
  • ком ⁇ онент or “group” means that one or more members of an applicable list are combined to form a known or chemically stable arrangement that one of ordinary skill in the art would contemplate from the applicable list.
  • alkyl and deuterium can be combined to form partially or fully deuterated alkyl
  • halogen and alkyl can be combined to form haloalkyl substituents, such as trifluoromethyl, etc.
  • halogen, alkyl, and aryl can be combined to form Haloaralkyl.
  • X 1 to X 4 are each independently CR 0 .
  • the Ar is selected from substituted or unsubstituted C 2 -C 60 heterocyclic aryl groups.
  • R 0 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are each independently selected from the group consisting of the following groups: hydrogen, deuterium , substituted or unsubstituted C 6 -C 60 aryl group or substituted or unsubstituted C 2 -C 60 heterocyclic aryl group, any two or more adjacent substituents may be optionally joined or fused to form a ring , with or without N, O, S, Si, P or B in the ring.
  • heteroaryl group is selected from the group consisting of the following groups shown in II-1 to II-17:
  • Z 1 and Z 2 are each independently selected from hydrogen, deuterium, halogen, hydroxyl, nitrile group, nitro group, amino group, amidine group, hydrazine group, hydrazone group, carboxyl group or its carboxylate, sulfonic acid group or its sulfonate , phosphate group or its phosphate, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 1 -C 40 alkoxy group, C 3 -C 40 cycloalkyl group, C 3 -C 40 cycloalkenyl group, substituted or unsubstituted C 6 -C 60 aryl group, substituted or unsubstituted C 6 -C 60 aryloxy group, substituted or unsubstituted C 6 -C 60 aryl sulfide group , or a group consisting of substituted or unsubstituted C 2 -
  • T 1 means O, S, CR'R" or NAr';
  • R', R" are each independently selected from hydrogen, deuterium, C 1 to C 40 alkyl group, C 1 to C 40 heteroalkyl group, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted A group consisting of C 6 -C 60 arylamine groups, or substituted or unsubstituted C 2 -C 60 heterocyclic aryl groups, R' and R" can optionally be joined or fused to form another multiple substituted Or an unsubstituted ring, containing or not containing one or more heteroatoms N, P, B, O or S in the formed ring; preferably, R', R" is methyl, phenyl or fluorenyl;
  • Ar' is selected from a C 1 to C 40 alkyl group, a C 1 to C 40 heteroalkyl group, a C 3 to C 40 cycloalkyl group, a substituted or unsubstituted C 6 -C 60 aryl group, a substituted or A group consisting of an unsubstituted C 6 -C 60 fused ring aryl group, a substituted or unsubstituted C 6 -C 60 arylamine group, or a substituted or unsubstituted C 2 -C 60 heterocyclic aryl group; preferably, Ar' is methyl, ethyl, phenyl, biphenyl or naphthyl;
  • Ar is selected from the group consisting of the following groups III-1 to III-13:
  • T 2 is selected from O or S;
  • R 10 and R 11 are each independently selected from the group consisting of hydrogen, deuterium, substituted or unsubstituted C 6 to C 60 aryl groups, and substituted or unsubstituted C 2 to C 60 heteroaryl groups;
  • R 12 is selected from the group consisting of hydrogen, deuterium, C 1 to C 40 alkyl, substituted or unsubstituted C 6 -C 60 aryl, or substituted or unsubstituted C 2 -C 60 heteroaryl; R 1 2 is one or more saturated substitutions;
  • R 10 and R 11 are each independently selected from phenyl, biphenyl, terphenyl, naphthyl, phenanthrenyl, triphenylene, naphthalene-substituted phenyl, phenanthrene-substituted phenyl base, dibenzofuranyl, dibenzothienyl, carbazolyl, dibenzofuran-substituted phenyl, dibenzothiophene-substituted phenyl, phenyl-substituted carbazolyl, naphthyl-substituted carbazole group consisting of a biphenyl-substituted carbazolyl group, a 9-phenylcarbazolyl group, a benzonaphthofuranyl group, a benzonaphthothienyl group or a phenyl-substituted benzocarbazoly
  • R 12 is hydrogen or deuterium.
  • the L is selected from a single bond, a phenylene group, a pyridinyl group or a naphthalenediyl group.
  • R 0 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are all hydrogen, or R 1 and R 2 are each independently selected from benzene. base, biphenyl, terphenyl, naphthyl, phenanthrenyl, triphenylene, naphthalene-substituted phenyl, phenanthrene-substituted phenyl, dibenzofuranyl, dibenzothienyl, carbazolyl, diphenyl Furan-substituted phenyl, dibenzothiophene-substituted phenyl, phenyl-substituted carbazolyl, naphthyl-substituted carbazolyl, biphenyl-substituted carbazolyl, 9-phenylcarbazolyl, benzo A group consisting of naphthofuryl, benzonap
  • carbazole derivative is one of the following structures shown in N151 to N312:
  • *-T 3 -* is each independently selected from *-O-*, *-S-* or one of the following structures:
  • the present invention provides a method for preparing the compound represented by formula (I), taking the following scheme 1 as an example:
  • the compound represented by formula (I) is prepared from compound C having a parent core structure and compound D containing an acceptor substituent through a palladium-catalyzed or base-catalyzed coupling reaction.
  • a palladium catalyst that can be used for palladium-catalyzed coupling reaction, it can be selected from: Pd(P- t Bu 3 ) 2 , Pd(PPh 3 ) 4 , Pd 2 (dba) 3 , Pd 2 (dba) 3 CHCl 3 , PdCl 2 (PPh 3 ) 2 , PdCl 2 (CH 3 CN) 2 , Pd(OAc) 2 , Pd(acac) 2 , Pd/C, PdCl 2 , [Pd(allyl)Cl] 2, etc., or use two mixture of one or more species.
  • the base used in the palladium-catalyzed coupling reaction or the base-catalyzed coupling reaction can be selected from: sodium tert-butoxide, potassium tert-butoxide, sodium hydride, lithium hydride, sodium tert-amyloxide, sodium ethoxide, sodium methoxide, carbonic acid Sodium, potassium carbonate, cesium carbonate, lithium, potassium hydride, triethylamine, cesium fluoride, etc., as well as one or a mixture of two or more thereof.
  • the coupling reaction can be carried out in an organic solvent, wherein the organic solvent can be selected from: diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, ethylene glycol ethyl ether, ethylene glycol diethyl ether, ethylene glycol Ether solvents such as methyl ether, diglyme, or anisole, aromatic hydrocarbon agents such as benzene, toluene, and xylene, chlorobenzene, dichlorobenzene, N,N-dimethylformamide, N,N- One type or a mixture of two or more types of dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, sulfolane, etc. can be used.
  • the organic solvent can be selected from: diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, ethylene glycol
  • Compound D can be prepared using conventional organic reactions or can be obtained from commercial sources.
  • the present invention provides an organic electroluminescent element, including a first electrode, a second electrode, a capping layer and a first electrode and a second electrode. There is at least one organic layer between the electrodes, and at least one of the organic layer or capping layer includes the carbazole derivative.
  • the organic electroluminescent element includes a cathode, an anode and at least one light-emitting layer. In addition to these layers, it may contain further layers, for example in each case one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, excitation layers, etc. sub-blocking layer, electron blocking layer and/or charge generating layer. An intermediate layer having, for example, an exciton blocking function can also be introduced between the two luminescent layers. However, it should be noted that each of these layers does not necessarily have to be present.
  • the organic electroluminescent device described herein may include one light emitting layer, or it may include multiple light emitting layers.
  • a plurality of light-emitting compounds capable of emitting light are used in the light-emitting layer.
  • Particularly preferred are systems with three luminescent layers, wherein the three layers can exhibit blue, green and red luminescence. If more than one luminescent layer is present, according to the invention at least one of these layers contains a carbazole derivative of the invention.
  • organic electroluminescent components are preferred in which one or more layers are applied by means of a sublimation method, wherein the layer is deposited by vapor deposition in a vacuum sublimation device at an initial pressure of less than 10 -5 Pa, preferably less than 10 -6 Pa. Apply the material.
  • the initial pressure may also be even lower, for example below 10 -7 Pa.
  • organic electroluminescent elements in which one or more layers are applied by means of an organic vapor deposition method or by means of carrier gas sublimation, wherein the material is applied at a pressure of between 10 ⁇ 5 Pa and 1 Pa.
  • a particular example of this method is the organic vapor jet printing method, in which the material is applied directly through a nozzle and is therefore structured.
  • organic electroluminescent elements produced from solution, for example by spin coating, or by means of any desired printing method, such as screen printing, flexographic printing, lithography, photothermography, thermal transfer printing, spray printing, etc. Ink printing or nozzle printing to produce one or more layers.
  • Soluble compounds can be obtained, for example, by appropriately substituting compounds represented by formula (I). These methods are also particularly suitable for oligomers, dendrimers and polymers.
  • hybrid methods are possible, in which one or more layers are applied, for example, from solution and one or more further layers are applied by vapor deposition.
  • the organic layer further includes at least one selected from the group consisting of an electron injection layer, an electron transport layer, a hole blocking layer, an electron blocking layer, a hole transport layer, a hole injection layer, a light emitting layer, and a photorefractive layer.
  • the organic electroluminescent element of the present invention can be either a top-emitting light-emitting element or a bottom-emitting light-emitting element.
  • the structure and preparation method of the organic electroluminescent element of the present invention are not limited.
  • the organic electroluminescent element prepared by using the compound of the present invention can reduce the starting voltage and improve the luminous efficiency and brightness.
  • a display device includes the organic electroluminescent element.
  • a lighting device includes the organic electroluminescent element.
  • the material for organic devices of the present invention contains the carbazole derivative of the present invention.
  • the material for organic elements may be composed of the compound of the present invention alone or may contain other compounds.
  • the carbazole derivative of the present invention contained in the material for organic electroluminescent elements of the present invention can be used as a host material.
  • the material for organic electroluminescence elements of the present invention may contain other compounds as doping materials.
  • the material for organic electroluminescent elements of the present invention can also be used as a material for a hole transport layer, an enhancement layer, a light emitting layer, an electron transport layer, a charge generation layer, an electron blocking layer, a capping layer or a photorefractive layer.
  • the invention also relates to mixtures comprising at least one compound of formula (I) or the preferred embodiments described above and at least one further compound. If the compounds according to the invention are used as matrix materials, the other compounds can be fluorescent or phosphorescent emitters. The mixture may then additionally contain other materials as additional matrix materials.
  • the invention also relates to the use of the compounds of the invention in electronic components. Preferably, as mentioned above and below, the compounds according to the invention are used in electron transport layers or as matrix materials in light-emitting layers.
  • the compounds according to the invention and the electronic components obtainable therefrom, in particular organic electroluminescent components differ from the prior art by one or more of the following surprising advantages:
  • the electronic components obtainable using the compounds of the present invention exhibit high efficiency, especially high luminous efficiency and high external quantum efficiency.
  • the compounds of the present invention provide low operating voltage.
  • the compounds according to the invention can be processed using conventional methods, so that cost advantages can also be achieved.
  • the films obtainable using the compounds of the present invention exhibit excellent qualities, especially in terms of film uniformity.
  • the compounds of the invention can be produced in a very fast and easy manner using conventional methods, so that cost advantages can also be achieved.
  • FIG. 1 shows a schematic diagram of an organic light-emitting device 100. Illustrations are not necessarily to scale.
  • Device 100 may include substrate 101, anode 102, hole injection layer 103, hole transport layer 104, electron blocking layer 105, light emitting layer 106, hole blocking layer 107, electron transport layer 108, electron injection layer 109, cathode 110 and capping layer (CPL) 111.
  • Device 100 may be fabricated by sequentially depositing the described layers.
  • FIG. 2 shows a schematic diagram of an organic light-emitting device 200 with two light-emitting layers.
  • the device includes a substrate 201, an anode 202, a hole injection layer 203, a hole transport layer 204, a first light-emitting layer 205, an electron transport layer 206, a charge generation layer 207, a hole injection layer 208, and a hole transport layer 209. , the second light-emitting layer 210, the electron transport layer 211, the electron injection layer 212 and the cathode 213.
  • Device 200 may be prepared by sequentially depositing the described layers.
  • the luminescence peak shapes of the first luminescent layer and the second luminescent layer may be overlapping or cross-overlapping or non-overlapping.
  • materials similar to those described with respect to device 100 may be used.
  • Figure 2 provides an example of how some layers may be added from the structure of device 100.
  • Luminance and chromaticity coordinates tested using spectral scanner PhotoResearch PR-715;
  • Life test Use LTS-1004AC life test device.
  • the preparation method of compound N151 includes the following steps:
  • compound C is used as a hole injection material
  • compound D is used as a hole transport material
  • compound E is used as a red light host material
  • compound F is used as a red light doping material
  • compound G is used as an electron transport doping material
  • LiQ is used as an electron transport material Subject material.
  • the EL evaporation machine manufactured by DOV Company was used to evaporate onto the ITO glass in order to produce the OLED contrast element 1.
  • a digital source meter and a luminance meter were used to measure the driving voltage and current efficiency of the organic electroluminescent element prepared in Test Example 1 and Comparative Examples 1 and 2, as well as the lifetime of the element. Specifically, increase the voltage at a rate of 0.1V per second, measure the voltage when the brightness of the organic electroluminescent element reaches 1000cd/ m2 , which is the driving voltage, and measure the current density at this time; the ratio of brightness to current density That is the current efficiency; the LT90% life test is as follows: use a luminance meter to maintain a constant current at a brightness of 1000cd/ m2 , and measure the time for the brightness of the organic electroluminescent element to decay to 900cd/ m2 , in hours.
  • the current efficiency can reach more than 23.0cd/A, and the life span is greatly improved, making it a host material with good performance.
  • the difference between the compound E in Comparative Example 1 and the compound of the present invention is that the indole is connected to the benzocarbazole through a single bond and has weak planar conjugation ability, while the compound of the present invention has a large conjugated structure of the phenanthrene base plane. Therefore, its performance in molecular film formation and charge transmission is excellent, the charge transmission within the component is more balanced, and the component performance is improved.
  • the difference between compound H in Comparative Example 2 is that the two carbazoles are connected through a single bond, the planar conjugation ability is weak, the transport of holes and electrons by the molecule is unbalanced, and its ability to accept holes Stronger than the ability to accept electrons, this imbalance in transmission affects the formation of excitons in the light-emitting layer, resulting in low efficiency and reduced lifetime. It can be seen from this that when the carbazole derivative with a large conjugated core of the present invention is used as a host material, it can obtain better performance and a longer life.
  • Table 4 only lists the properties of some of the compounds in N151 to N312. The properties of other compounds are basically consistent with the data of the compounds listed in the table. Due to limited space, they will not be listed one by one.
  • the invention relates to a carbazole derivative, a luminescent material, a luminescent element, a display device and a lighting device.
  • the carbazole derivative of the invention has a high triplet energy level and a high glass transition temperature, and is suitable as an organic electronic device. Materials used in electroluminescent components. Materials for organic electroluminescent elements containing the carbazole derivative have the characteristics of low starting voltage and high luminous efficiency and brightness.
  • the carbazole derivative of the present invention has good thermal stability and film-forming properties, and can be used in materials for organic electroluminescent elements, organic electroluminescent elements, display devices, and lighting devices to extend the service life, thereby enabling Reduce the manufacturing costs of materials for organic electroluminescent elements, organic electroluminescent elements, display devices, and lighting devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种咔唑衍生物、发光材料、发光元件、显示装置和照明装置,本发明所述的咔唑衍生物具有较高的三重态能级、高的玻璃化温度,适宜作为有机电致发光元件用材料使用。含有所述的咔唑衍生物的有机电致发光元件用材料,具有启动电压低,发光效率和亮度高的特点。另外,本发明的咔唑衍生物具有良好的热稳定性和成膜性能,应用在有机电致发光元件用材料、有机电致发光元件、显示装置、照明装置中,能够延长使用寿命,从而能够降低有机电致发光元件用材料、有机电致发光元件、显示装置、照明装置的制造成本。

Description

一种咔唑衍生物、有机电致发光元件、显示装置和照明装置
交叉引用
本申请要求2022年4月20日提交的专利名称为“一种咔唑衍生物、有机电致发光元件、显示装置和照明装置”的第202210420441.1号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明属于有机电致发光材料技术领域,具体涉及一种咔唑衍生物、有机电致发光元件、显示装置和照明装置。
背景技术
最近几年有机电致发光显示技术已趋于成熟,一些产品已进入市场,但在产业化时程中,仍有许多问题亟待解决,特别是用于制作元件的各种有机材料,其载流子注入、传输性能,材料电发光性能、使用寿命、色纯度、各种材料之间及与各电极之间的匹配等,尚有许多问题还未解决。尤其是发光元件在发光效率和使用寿命方面还达不到实用化要求,这大大限制了OLED技术的发展。
有机电致发光主要分为荧光和磷光,但根据自旋量子统计理论,单重态激子和三重态激子的概率为1∶3,即来自单重态激子辐射跃迁的荧光的理论极限为25%,三重态激子辐射跃迁的荧光的理论极限为75%。如何利用75%的三线态激子的能量成为当务之急。1997年Forrest等发现磷光电致发光现象突破了有机电致发光材料量子效率25%效率的限制,引起人们对金属配合物磷光材料的广泛关注。从此,人们对磷光材料进行大量的研究。
鉴于以上原因,特提出本发明。
发明内容
为了解决现有技术存在的以上问题,本发明提供了一种咔唑衍生物、有机电致发光元件、显示装置和照明装置,本发明所述的咔唑衍生物作为有机电致发光元件用材料的原料,能够提供启动电压降低、发光效率高、亮度提高的有机电致发光元件用材料以及有机电致发光元件。
为了实现上述目的,本发明采用如下技术方案:
一种咔唑衍生物,所述咔唑衍生物的结构如式(I)所示:
其中,X1~X4各自相同或不同地代表CR0或N;
Ar选自由取代或未取代的C6-C60芳基、取代或未取代的C2-C60杂环芳基组成的群组;
L选自由取代或未取代的C6-C60亚芳基、取代或未取代的C2-C60亚杂环芳基组成的群组;
R0、R1、R2、R3、R4、R5、R6、R7、R8、R9各自独立地选自由以下基团组成的群组:氢、氘、氟、腈基、具有C1~C40的直链烷基、具有C1~C40的直链杂烷基、具有C3~C40的支链或环状的烷基、具有C3~C40的支链或环状的杂烷基、具有C2~C40的烯基或炔基、取代或未取代的C6-C60芳基或取代或未取代的C2-C60杂环芳基,任意相邻的两个或多个取代基可任选地接合或稠合形成环,所述环中含有或不含有N、O、S、Si、P或B。
本发明意义上的芳基含有6~60个碳原子,在本发明意义上的杂芳基含有2~60个碳原子和至少一个杂原子,其条件是碳原子和杂原子的总和至少是5;所述杂原子优选选自N、O或S。此处的芳基或杂芳基涵盖单环基团和多环系统。多环可以具有两个碳为两个邻接环或称为“稠合的”共用的两个或更多个 环,其中所述环中的至少一者是芳香族的,例如其它环可以是环烷基、环烯基、芳基、杂环和/或杂芳基。另外,多个芳基或杂芳基还可以由非芳族单元例如C、N、O或S原子连接,例如,和其中两个或更多个芳基被例如短的烷基连接的体系一样,诸如芴、9,9’-螺二芴、9,9-二芳基芴,三芳基胺、二芳基醚、二苯并呋喃或二苯并噻吩等。
本发明中使用的烷基是指碳原子数从1至40的直链或支链的饱和烃去除一个氢原子而得到的一价官能团。作为其非限制性例子,有甲基、乙基、丙基、异丁基、仲丁基、戊基、异戊基、己基等。杂烷基是指烷基上的氢原子或-CH2-被至少一个杂原子取代,所述杂原子选自卤素、腈基、N、O、S或硅,作为非限制性的例子,有二氟甲基、三氟甲基、三氟乙基、五氟乙基、腈基、乙腈基、甲氧基甲基、甲氧基乙基、三甲基硅基、三异丙基硅基等。
本发明中使用的烯基是指从具有一个以上碳碳双键的碳原子数从2至40的直链或支链的不饱和烃去除一个氢原子而得到的一价官能团。作为其非限制性例子,有乙烯基、烯丙基、异丙烯基、2-丁烯基等。
本发明中使用的炔基是指具有一个以上碳碳三键的碳原子数从2至40的直链或支链的不饱和烃去除一个氢原子而得到的一价官能团。作为其非限制性例子,有乙炔基、2-丙炔基等。
一般来说,根据本发明的环烷基、环烯基是指碳原子数从3至40的单环或多环非芳族烃去除一个氢原子而得到的一价官能团。作为其非限制性例子,有环丙基、环丁基、环戊基、环己基、降冰片基、金刚烷基、环丁烯基、环戊烯基、环己烯基、环庚基、环庚烯基,其中一个或多个-CH2-基团可被上述基团代替;此外,一个或多个氢原子还可被氘原子、卤素原子或腈基代替。
本发明中使用的杂环烷基是指原子核数从3至40的非芳香族烃去除一个氢原子而得到的一价官能团。此时,环中一个以上的碳、优选为1至3个碳被诸如N、O或S之类的杂原子取代。作为其非限制性例子,有四氢呋喃、四氢噻吩、吗啉、哌嗪等。
如本文所使用,“其组合”或“群组”表示适用清单的一或多个成员被组合以形成本领域普通技术人员能够从适用清单中设想的已知或化学稳定的布置。举例来说,烷基和氘可以组合形成部分或完全氘化的烷基;卤素和烷基可以组合形成卤代烷基取代基,例如三氟甲基等;并且卤素、烷基和芳基可以组合形成卤代芳烷基。
进一步地,所述X1~X4各自独立地为CR0
进一步地,所述Ar选自取代或未取代的C2-C60杂环芳基。
进一步地,所述R0、R1、R2、R3、R4、R5、R6、R7、R8、R9各自独立地选自由以下基团组成的群组:氢、氘、取代或未取代的C6-C60芳基或取代或未取代的C2-C60杂环芳基,任意相邻的两个或多个取代基可任选地接合或稠合形成环,所述环中含有或不含有N、O、S、Si、P或B。
进一步地,所述杂芳基选自由以下II-1~II-17所示基团组成的群组:
其中,
Z1、Z2各自独立地选自由氢、氘、卤素、羟基、腈基、硝基、氨基、脒基、肼基、腙基、羧基或其羧酸盐、磺酸基或其磺酸盐、磷酸基或其磷酸盐、C1-C40烷基、C2-C40烯基、C2-C40炔基、C1-C40烷氧基、C3-C40环烷烃基、C3-C40环烯烃基、取代或未取代的C6-C60芳基、取代或未取代的C6-C60芳氧基、取代或未取代的C6-C60芳硫醚基、或者取代或未取代的C2-C60杂环芳基组成的群组;
x1表示1-4的整数;x2表示1-3的整数;x3表示1或2;x4表示1-6的整数;x5表示1-5的整数;
T1表示O、S、CR’R”或NAr’;
R’、R”各自独立地选自由氢、氘、C1~C40的烷基、C1~C40的杂烷基、取代或未取代的C6-C60芳基、取代或未取代的C6-C60芳胺基、或者取代或未取代的C2-C60杂环芳基组成的群组,R’和R”可任选地接合或稠合形成另外的一个多个取代或未取代的环,在所形成的环中含有或不含有一个或多个杂原子N、P、B、O或S;优选地,R’、R”为甲基、苯基或芴基;
Ar’选自由C1~C40的烷基、C1~C40的杂烷基、C3~C40的环烷基、取代或未取代的C6-C60芳基、取代或 未取代的C6-C60稠环芳基、取代或未取代的C6-C60芳胺基、或者取代或未取代的C2-C60杂环芳基组成的群组;优选地,Ar’为甲基、乙基、苯基、联苯基或萘基;
表示取代基与杂芳基的连接键。
进一步地,所述Ar选自由以下III-1~III-13所示基团组成的群组:
其中,T2选自O或S;
R10、R11各自独立地选自由氢、氘、取代或未取代的C6~C60芳基、取代或未取代的C2~C60杂芳基组成的群组;
R12选自由氢、氘、C1~C40的烷基、取代或未取代的C6-C60芳基、或者取代或未取代的C2-C60杂芳基组成的群组;R1 2为一个或多个至饱和取代;
*-表示Ar取代基与L的连接键。
根据本发明的实施例,所述R10、R11各自独立地选自由苯基、联苯基、三联苯基、萘基、菲基、三亚苯基、萘取代的苯基、菲取代的苯基、二苯并呋喃基、二苯并噻吩基、咔唑基、二苯并呋喃取代的苯基、二苯并噻吩取代的苯基、苯基取代的咔唑基、萘基取代的咔唑基、联苯取代的咔唑基、9-苯基咔唑基、苯并萘并呋喃基、苯并萘并噻吩基或苯基取代的苯并咔唑基组成的群组。
根据本发明的实施例,R12为氢或氘。
进一步地,所述L选自单键、亚苯基、亚吡啶基或萘二基。
进一步地,所述R0、R1、R2、R3、R4、R5、R6、R7、R8和R9都为氢,或R1、R2各自独立地选自由苯基、联苯基、三联苯基、萘基、菲基、三亚苯基、萘取代的苯基、菲取代的苯基、二苯并呋喃基、二苯并噻吩基、咔唑基、二苯并呋喃取代的苯基、二苯并噻吩取代的苯基、苯基取代的咔唑基、萘基取代的咔唑基、联苯取代的咔唑基、9-苯基咔唑基、苯并萘并呋喃基、苯并萘并噻吩基或苯基取代的苯并咔唑基组成的群组。
进一步的,所述的咔唑衍生物为以下N151~N312所示结构中的一种:







其中,*-T3-*各自独立地选自*-O-*、*-S-*或下述结构中的一种:
*-和-*表示连接键。
另一方面,本发明提供了一种式(I)所示化合物的制备方法,以如下方案1为例:
方案1:
在方案1中,所用符号如式(I)中所定义,并且X为Cl、Br、I或OTf;
具体地,式(I)所示的化合物是由具有母核结构的化合物C和含有受体取代基的化合物D通过钯催化或碱催化偶联反应制备。
作为可用于钯催化偶联反应的钯催化剂可选自:Pd(P-tBu3)2、Pd(PPh3)4、Pd2(dba)3、Pd2(dba)3CHCl3、PdCl2(PPh3)2、PdCl2(CH3CN)2、Pd(OAc)2、Pd(acac)2、Pd/C、PdCl2、[Pd(allyl)Cl]2等任意一种,或使用两种或更多种的混合物。
此外,钯催化的偶联反应或碱催化的偶联反应使用的碱可选自:叔丁醇钠、叔丁醇钾、氢化钠、氢化锂、叔戊醇钠、乙醇钠、甲醇钠、碳酸钠、碳酸钾、碳酸铯、锂、氢化钾、三乙胺、氟化铯等,以及其中一种或两种或更多种的混合物。
偶联反应可以在有机溶剂中进行,其中有机溶剂可选自:乙醚、四氢呋喃、2-甲基四氢呋喃、1,4-二氧六环、乙二醇乙醚、乙二醇二乙醚、乙二醇甲醚、二甘醇二乙醚、或苯甲醚等醚类溶剂、苯、甲苯、二甲苯等芳烃类剂、氯苯、二氯苯、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜、环丁砜等,可以使用一种或两种以上的混合物。
此外,化合物D可使用常规有机反应制备,或者可以从商业途径获得。
另外,本发明提供一种有机电致发光元件,包括第一电极、第二电极、封盖层和置于第一电极和第二 电极之间的至少一层有机层,所述的有机层或封盖层中至少一层包括所述的咔唑衍生物。
所述有机电致发光元件包含阴极、阳极和至少一个发光层。除了这些层之外,它还可以包含其它的层,例如在每种情况下,包含一个或多个空穴注入层、空穴传输层、空穴阻挡层、电子传输层、电子注入层、激子阻挡层、电子阻挡层和/或电荷产生层。具有例如激子阻挡功能的中间层同样可引入两个发光层之间。然而,应当指出,这些层中的每个并非必须都存在。此处所述有机电致发光装置可包含一个发光层,或者它可包含多个发光层。即,将能够发光的多种发光化合物用于所述发光层中。特别优选具有三个发光层的体系,其中所述三个层可显示蓝色、绿色和红色发光。如果存在多于一个的发光层,则根据本发明,这些层中的至少一个层包含本发明的咔唑衍生物。
在根据本发明的有机电致发光元件的其它层中,特别是在发光层和薄膜封装层中,所有材料可以按照根据现有技术通常所使用的方式来使用。本领域普通技术人员因此将能够在不付出创造性劳动的情况下与根据本发明的发光层组合使用关于有机电致发光元件所知的所有材料。
此外优选如下的有机电致发光元件,借助于升华方法施加一个或多个层,其中在真空升华装置中在低于10-5Pa、优选低于10-6Pa的初压下通过气相沉积来施加所述材料。然而,所述初压还可能甚至更低,例如低于10-7Pa。
同样优选如下的有机电致发光元件,借助于有机气相沉积方法或借助于载气升华来施加一个或多个层,其中,在10-5Pa至1Pa之间的压力下施加所述材料。该方法的特别的例子是有机蒸汽喷印方法,其中所述材料通过喷嘴直接施加,并且因此是结构化的。
此外优选如下的有机电致发光元件,从溶液中,例如通过旋涂,或借助于任何所希望的印刷方法例如丝网印刷、柔性版印刷、平版印刷、光引发热成像、热转印、喷墨印刷或喷嘴印刷,来产生一个或多个层。可溶性化合物,例如通过适当的取代式(I)所示的化合物获得可溶性化合物。这些方法也特别适于低聚物、树枝状大分子和聚合物。此外可行的是混合方法,其中例如从溶液中施加一个或多个层并且通过气相沉积施加一个或多个另外的层。
进一步地,所述有机层还包括选自电子注入层、电子输送层、空穴阻挡层、电子阻挡层、空穴输送层、空穴注入层、发光层、光折射层的一种以上。
本发明的有机电致发光元件既可以是顶发射光元件,又可以是底发射光元件。本发明的有机电致发光元件的结构和制备方法没有限定。采用本发明的化合物制得的有机电致发光元件可降低启动电压、提高发光效率和亮度。
一种显示装置,包括所述的有机电致发光元件。
一种照明装置,包括所述的有机电致发光元件。
本发明的有机元件用材料含有本发明的咔唑衍生物。有机元件用材料可以单独使用本发明的化合物构成,也可以同时含有其他化合物。
本发明的有机电致发光元件用材料中所含有的本发明的咔唑衍生物可以用作主体材料。此时,本发明的有机电致发光元件用材料中可以含有作为掺杂材料的其他化合物。
本发明的有机电致发光元件用材料还可以作为空穴传输层、增强层、发光层、电子传输层、电荷产生层、电子阻挡层、封盖层或光折射层用材料。
本发明还涉及包含至少一种式(I)化合物或上述优选实施方式和至少一种其它化合物的混合物。如果将根据本发明的化合物用作基质材料,则其它化合物可以是荧光或磷光发光体。于是该混合物还可以另外包含其它材料作为附加基质材料。本发明还涉及本发明的化合物在电子元件中的用途。优选地,如上下文提及的,将根据本发明的化合物用于电子传输层中或用作发光层中的基质材料。根据本发明的化合物和可由此获得的电子元件、特别是有机电致发光元件与现有技术的区别在于以下令人惊讶的优势中的一种或多种:
1.与使用常规化合物获得的电子元件相比,使用本发明的化合物可获得的电子元件表现出非常高的稳定性和非常长的寿命。
2.使用本发明的化合物可获得的电子元件表现出高的效率,特别是高的发光效率和高的外量子效率。
3.本发明的化合物提供低工作电压。
4.可以使用常规方法处理根据本发明的化合物,从而也能够实现成本优势。
5.使用本发明的化合物可获得的薄膜表现出优异的品质,特别是在薄膜的均匀性方面更是如此。
6.可以使用常规方法以非常快速且容易的方式产生本发明的化合物,从而也能够实现成本优势。
上文提及的这些优势并未伴随其它电子性质的削弱。
应该指出,本发明中所述的实施方式的变化落入本发明的范围内。本发明中公开的每个特征除非被明确排除,否则可被具有相同、等效或类似目的的替代特征代替。因此,除非另外说明,否则本发明中公开的每个特征均应被视为类属系列的实例或者等效或类似特征。
本发明的所有特征可以以任何方式彼此组合,除非特定特征和/或步骤是互斥的。这特别适用于本发明 的优选特征。同样,非必须组合的特征可以单独(且不组合)使用。此外应该指出,许多特征,特别是本发明的优选实施方式的特征本身是创造性的,并且不应仅视为本发明实施方式的一部分。对于这些特征,除当前要求保护的每个发明以外或作为其替代,可以寻求独立的保护。
对本发明中公开的技术动作的教导可以被提取出并且与其它实施例组合。本发明通过以下实施例更加详细地解释,但不希望由此限制本发明。基于所述描述,本领域技术人员将能够在所公开的整个范围内执行本发明,并且不付出创造性劳动就能够制备本发明的其它化合物并将其用于电子元件中,或使用本发明的方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1展示有机发光装置100示意图。图示不一定按比例绘制。装置100可包含衬底101、阳极102、空穴注入层103、空穴传输层104、电子阻挡层105、发光层106、空穴阻挡层107、电子传输层108、电子注入层109、阴极110以及封盖层(CPL)111。装置100可通过依序沉积所描述的层来制造。
图2展示两个发光层的有机发光装置200示意图。所述装置包含衬底201、阳极202、空穴注入203、空穴传输层204、第一发光层205、电子传输层206、、电荷产生层207、空穴注入层208、空穴传输层209、第二发光层210、电子传输层211、电子注入层212以及阴极213。可通过依序沉积所描述的层来制备装置200。因为最常见的OLED装置具有一个发光层,而装置200具有第一发光层和第二发光层,第一发光层和第二发光层的发光峰形可以是重叠的或交叉重叠的或非重叠的。在装置200的对应层中,可使用与关于装置100所描述的材料类似的材料。图2提供可如何从装置100的结构增加一些层的一个实例。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
以下实施例中OLED材料及元件进行性能测试的测试仪器及方法如下:
OLED元件性能检测条件:
亮度和色度坐标:使用光谱扫描仪PhotoResearch PR-715测试;
电流密度和起亮电压:使用数字源表Keithley 2420测试;
功率效率:使用NEWPORT 1931-C测试;
寿命测试:使用LTS-1004AC寿命测试装置。
实施例1
化合物N151的制备方法,包括如下步骤:
第一步:中间体Iht-1的制备
20.0mmol的1,8-二溴萘、22.0mmol的6-硝基-2-氟苯硼酸频哪醇酯、40.0mmol的磷酸钾、0.1mmol的Pd(PPh3)4催化剂,再加入60mL的甲苯、30mL的乙醇和30mL的水,在氮气保护下,升温至回流搅拌反应8小时,降到室温,加入50mL水稀释,用甲苯萃取,有机相干燥,过滤,滤液减压浓缩干,再用硅胶柱分离纯化,得黄色固体Int-1,收率:85%。
第二步:中间体Int-2的制备
参考第一步的合成方法,将第一步的1,8-二溴萘替换为Iht-1,将6-硝基-2-氟苯硼酸频哪醇酯替换为吲哚-2-硼酸频哪醇酯,乙醇重结晶,得黄色固体Iht-2,收率:86%。
第三步:中间体Int-3的制备
在氮气保护下,50.0mmol的中间体Int-2溶解于60mL的DMF中,加入55.0mmol的碳酸铯,升温至110℃搅拌反应12小时,降到室温,将反应液倒入150mL的水中,过滤,滤饼用水洗、乙醇洗,过硅胶短柱,乙酸乙酯-石油醚洗脱,洗脱液减压浓缩干,得黄色固体Int-3,收率:90%。
第四步:中间体Iht-4的制备
40.0mmol的中间体Int-3溶解于100mL的二氯甲烷中,降温至0℃,分批添加入41.0mmol的NIS,升至室温搅拌反应10小时,加入100mL的饱和亚硫酸氢钠水溶液,分出有机相用水洗,有机相干燥,过滤,滤液减压浓缩干,再用硅胶柱分离纯化,得黄色固体Iht-4,收率:88%。
第五步:中间体Int-5的制备
在氮气保护下,20.0mmol的中间体Int-4溶解于20mL的THF和20mL的三乙胺中,再加入22.0mmol的三甲基硅基乙炔、0.2mmol的PdCl2(PPh3)2和2.0mmol的碘化亚铜,室温搅拌反应12小时,过滤,滤液减压浓缩干,再用硅胶柱分离纯化,得黄色固体Iht-5,收率:92%。
第六步:中间体Int-6的制备
在氮气保护下,20.0mmol的中间体Int-5加入100mL的30%甲醇钠甲醇溶液中,室温搅拌反应12小时,减压浓缩干,加入50mL的水和50mL的二氯甲烷,分出有机相,水洗用二氯甲烷萃取,有机相合并,干燥,过滤,滤液减压浓缩干,再用硅胶柱分离纯化,得黄色固体Iht-6,收率:82%。
第七步:中间体Int-7的制备
在氮气保护下,20.0mmol的中间体Int-6溶于60mL的二氯甲烷中,室温下加入20.0mmol的甲烷磺酸,升温至回流搅拌反应12小时,降到室温,加入50mL的水,分出有机相,用水洗,有机相合并,干燥,过滤,滤液减压浓缩干,再用硅胶柱分离纯化,得黄色固体Int-7,收率:76%。
第八步:化合物C1的制备
在氮气保护下,20.0mmol的中间体Int-7、60.0mmol的三苯基磷和40mL的二氯苯混合,升温至120℃搅拌反应8小时,减压浓缩除去二氯苯,加入120mL的甲苯和70.0mmol的氯化锌,回流反应2小时, 降到室温,过滤,滤饼用二氯甲烷洗,滤液过硅胶短柱,减压浓缩干,再用THF-乙醇重结晶,得黄色固体C1,收率:86%。
参照上述类似的合成方法,制备如表1所示化合物:
表1
第九步:化合物N151的制备
10.0mmol化合物C1溶解于50mL干燥的DMF中,在氮气保护下,用冰水浴降温至0℃,分批加入12.0mmol的65%氢化钠固体,搅拌反应1小时,加入12.0mmol的2-氯-4-苯基喹唑啉,升温至45℃搅拌反应12小时,将反应液倒入250mL冰水中,过滤,滤饼用水洗、乙醇洗,用硅胶柱分离纯化,得到化合物N151,黄色固体,收率:87%,MS(MALDI-TOF):m/z 559.1926[M+H]+1HNMR(δ、CDCl3):8.78~8.76(1H,d);8.48~8.36(7H,m);8.24~8.22(1H,d);7.96~7.93(1H,d);7.89~7.78(4H,m);7.73~7.69(1H,m);7.65~7.53(4H,m);7.48~7.44(1H,m);7.38~7.29(2H,m)。
参照上述类似的合成方法,制备如表2所示化合物:
表2








实施例2
化合物N287的制备:
15.0mmol化合物C1溶解于80mL干燥的甲苯中,在氮气保护下,加入16.5mmol的2-([1,1′-联苯基]-4-基)-4-(2-溴苯基)-6-苯基-1,3,5-三嗪和22.5mmol的叔丁醇钠,再加入0.1mmol的Pd2(dba)3CHCl3和0.02mL的10%三叔丁基磷甲苯溶液,升温至100℃,搅拌反应15小时,冷却到室温,加入50mL水稀释,用二氯甲烷萃取,收集有机相,干燥,过滤,滤液减压浓缩干,用硅胶柱分离纯化,得到化合物N287,黄色固体,收率:86%,MS(MALDI-TOF):m/z 738.2671[M+H]+1HNMR(δ、CDCl3):8.81~8.78(3H,m);8.52(1H,s);8.42~8.30(8H,m);8.14~8.12(1H,d);7.96~7.91(3H,m);7.72~7.68(2H,m);7.59~7.48(7H,m);7.44~7.36(5H,m);7.33~7.29(1H,m)。
参照上述类似的合成方法,制备如表3所示化合物:
表3

有机电致发光元件的制备
对比例1
将下述的化合物C作为空穴注入材料,化合物D作为空穴传输材料、化合物E作为红光主体材料,化合物F作为红光掺杂材料,化合物G作为电子传输掺杂材料,LiQ作为电子传输主体材料。

将化合物 依次采用DOV公司制造的EL蒸镀机蒸镀到ITO玻璃上制作OLED对比元件1。
对比例2
按照对比例1的方法制备OLED元件,其中,将前述的化合物E替换为化合物H,制备OLED对比元件2,化合物H的结构为:
试验例1
按照对比例1的方法制备OLED元件,其中,将前述的化合物E替换为本发明的化合物N151~N312中的任一种或多种,制备有机电致发光元件,
元件结构:
对上述过程制备的有机电致发光元件进行如下性能测试:
在同样亮度下,使用数字源表及亮度计测定试验例1及对比例1、对比例2中制备得到的有机电致发光元件的驱动电压和电流效率以及元件的寿命。具体而言,以每秒0.1V的速率提升电压,测定当有机电致发光元件的亮度达到1000cd/m2时的电压即驱动电压,同时测出此时的电流密度;亮度与电流密度的比值即为电流效率;LT90%寿命测试如下:使用亮度计在1000cd/m2亮度下,保持恒定的电流,测量有机电致发光元件的亮度衰减为900cd/m2的时间,单位为小时。
表4各元件性能检测结果







表4中,NPh、NNap、NPhPh表示的结构如下:
由表4可知,本发明的化合物用于有机电致发光元件的主体材料时,电流效率可达到23.0cd/A以上,同时寿命大幅度提高,是性能良好的主体材料。
对比例1中的化合物E与本发明的化合物相比,区别在于吲哚通过单键与苯并咔唑连接,平面共轭能力弱,而本发明的化合物为菲基平面的大共轭结构,所以其在分子成膜及电荷的传输上性能均较优异,元件内电荷的传输更加平衡,元件性能提高。
对比例2中的化合物H与本发明的化合物相比,区别在于两个咔唑通过单键相连接,平面共轭能力弱,分子对空穴和电子的传输不平衡,其接受空穴的能力强于接受电子的能力,这种传输的不平衡影响了激子在发光层中的形成,导致效率偏低,寿命下降。由此可知,本发明的具有大共轭母核的咔唑衍生物用作主体材料时能够获得更为优异的性能,和更加持久的寿命。
表4中仅列举了N151~N312中部分化合物的性能,其他化合物性能与表中列举的化合物的数据基本一致,由于篇幅有限,不再一一列举。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明涉及一种咔唑衍生物、发光材料、发光元件、显示装置和照明装置,本发明所述的咔唑衍生物具有较高的三重态能级、高的玻璃化温度,适宜作为有机电致发光元件用材料使用。含有所述的咔唑衍生物的有机电致发光元件用材料,具有启动电压低,发光效率和亮度高的特点。另外,本发明的咔唑衍生物具有良好的热稳定性和成膜性能,应用在有机电致发光元件用材料、有机电致发光元件、显示装置、照明装置中,能够延长使用寿命,从而能够降低有机电致发光元件用材料、有机电致发光元件、显示装置、照明装置的制造成本。

Claims (10)

  1. 一种咔唑衍生物,其特征在于,所述咔唑衍生物的结构如式(I)所示:
    其中,X1~X4各自相同或不同地代表CR0或N;
    Ar选自由取代或未取代的C6-C60芳基、取代或未取代的C2-C60杂环芳基组成的群组;
    L选自由取代或未取代的C6-C60亚芳基、取代或未取代的C2-C60亚杂环芳基组成的群组;
    R0、R1、R2、R3、R4、R5、R6、R7、R8、R9各自独立地选自由以下基团组成的群组:氢、氘、氟、腈基、具有C1~C40的直链烷基、具有C1~C40的直链杂烷基、具有C3~C40的支链或环状的烷基、具有C3~C40的支链或环状的杂烷基、具有C2~C40的烯基或炔基、取代或未取代的C6-C60芳基或取代或未取代的C2-C60杂环芳基,任意相邻的两个或多个取代基可任选地接合或稠合形成环,所述环中含有或不含有N、O、S、Si、P或B。
  2. 根据权利要求1所述的咔唑衍生物,其特征在于,所述X1~X4各自独立地为CR0
    Ar选自取代或未取代的C2-C60杂环芳基;
    L选自由取代或未取代的C6-C60亚芳基、取代或未取代的C2-C60亚杂环芳基组成的群组;
    R0、R1、R2、R3、R4、R5、R6、R7、R8、R9各自独立地选自由以下基团组成的群组:氢、氘、取代或未取代的C6-C60芳基或取代或未取代的C2-C60杂环芳基,任意相邻的两个或多个取代基可任选地接合或稠合形成环,所述环中含有或不含有N、O、S、Si、P或B。
  3. 根据权利要求1或2所述的咔唑衍生物,其特征在于,所述杂芳基选自由以下II-1~II-17所示基团组成的群组:
    其中,
    Z1、Z2各自独立地选自由氢、氘、卤素、羟基、腈基、硝基、氨基、脒基、肼基、腙基、羧基或其羧酸盐、磺酸基或其磺酸盐、磷酸基或其磷酸盐、C1-C40烷基、C2-C40烯基、C2-C40炔基、C1-C40烷氧基、C3-C40环烷烃基、C3-C40环烯烃基、取代或未取代的C6-C60芳基、取代或未取代的C6-C60芳氧基、取代或未取代 的C6-C60芳硫醚基、或者取代或未取代的C2-C60杂环芳基组成的群组;
    x1表示1-4的整数;x2表示1-3的整数;x3表示1或2;x4表示1-6的整数;x5表示1-5的整数;
    T1表示O、S、CR’R”或NAr’;
    R’、R”各自独立地选自由氢、氘、C1~C40的烷基、C1~C40的杂烷基、取代或未取代的C6-C60芳基、取代或未取代的C6-C60芳胺基、或者取代或未取代的C2-C60杂环芳基组成的群组,R’和R”可任选地接合或稠合形成另外的一个多个取代或未取代的环,在所形成的环中含有或不含有一个或多个杂原子N、P、B、O或S;优选地,R’、R”为甲基、苯基或芴基;
    Ar’选自由C1~C40的烷基、C1~C40的杂烷基、C3~C40的环烷基、取代或未取代的C6-C60芳基、取代或未取代的C6-C60稠环芳基、取代或未取代的C6-C60芳胺基、或者取代或未取代的C2-C60杂环芳基组成的群组;优选地,Ar’为甲基、乙基、苯基、联苯基或萘基;
    表示取代基与杂芳基的连接键。
  4. 根据权利要求1~3任一项所述的咔唑衍生物,其特征在于,所述Ar选自由以下III-1~III-13所示基团组成的群组:
    其中,T2选自O或S;
    R10、R11各自独立地选自由氢、氘、取代或未取代的C6~C60芳基、取代或未取代的C2~C60杂芳基组成的群组;
    R12选自由氢、氘、C1~C40的烷基、取代或未取代的C6-C60芳基、或者取代或未取代的C2-C60杂芳基组成的群组;R12为一个或多个至饱和取代;
    *-表示Ar取代基与L的连接键。
  5. 根据权利要求1-4任意一项所述的咔唑衍生物,其特征在于,所述R10、R11各自独立地选自由苯基、联苯基、三联苯基、萘基、菲基、三亚苯基、萘取代的苯基、菲取代的苯基、二苯并呋喃基、二苯并噻吩基、咔唑基、二苯并呋喃取代的苯基、二苯并噻吩取代的苯基、苯基取代的咔唑基、萘基取代的咔唑基、联苯取代的咔唑基、9-苯基咔唑基、苯并萘并呋喃基、苯并萘并噻吩基或苯基取代的苯并咔唑基组成的群组;
    R12为氢或氘。
  6. 根据权利要求1所述的咔唑衍生物,其特征在于,所述L选自单键、亚苯基、亚吡啶基或萘二基;
    R0、R1、R2、R3、R4、R5、R6、R7、R8和R9都为氢,或R1、R2各自独立地选自由苯基、联苯基、三联苯基、萘基、菲基、三亚苯基、萘取代的苯基、菲取代的苯基、二苯并呋喃基、二苯并噻吩基、咔唑基、二苯并呋喃取代的苯基、二苯并噻吩取代的苯基、苯基取代的咔唑基、萘基取代的咔唑基、联苯取代的咔唑基、9-苯基咔唑基、苯并萘并呋喃基、苯并萘并噻吩基或苯基取代的苯并咔唑基组成的群组。
  7. 根据权利要求1~6任一项所述的咔唑衍生物,其特征在于,所述的咔唑衍生物为以下N151~N312所示结构中的一种:







    其中,*-T3-*选自*-O-*、*-S-*或下述结构中的一种:
    *-和-*表示连接键。
  8. 一种有机电致发光元件,其特征在于,包括第一电极、第二电极、封盖层和置于第一电极和第二电极之间的至少一层有机层,所述的有机层或封盖层中至少一层包括权利要求1-7任意一项所述的咔唑衍生物。
  9. 一种显示装置,其特征在于,包括权利要求8所述的有机电致发光元件。
  10. 一种照明装置,其特征在于,包括权利要求8所述的有机电致发光元件。
PCT/CN2023/088700 2022-04-20 2023-04-17 一种咔唑衍生物、有机电致发光元件、显示装置和照明装置 WO2023202531A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210420441.1 2022-04-20
CN202210420441.1A CN114853769B (zh) 2022-04-20 2022-04-20 一种咔唑衍生物、有机电致发光元件、显示装置和照明装置

Publications (1)

Publication Number Publication Date
WO2023202531A1 true WO2023202531A1 (zh) 2023-10-26

Family

ID=82631017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088700 WO2023202531A1 (zh) 2022-04-20 2023-04-17 一种咔唑衍生物、有机电致发光元件、显示装置和照明装置

Country Status (2)

Country Link
CN (1) CN114853769B (zh)
WO (1) WO2023202531A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853769B (zh) * 2022-04-20 2023-07-21 北京八亿时空液晶科技股份有限公司 一种咔唑衍生物、有机电致发光元件、显示装置和照明装置
CN115073461B (zh) * 2022-07-14 2024-01-02 上海八亿时空先进材料有限公司 一种咔唑衍生物及其在有机发光元件中的应用
CN115724826A (zh) * 2022-10-27 2023-03-03 上海八亿时空先进材料有限公司 一种杂环化合物及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112480136A (zh) * 2020-11-23 2021-03-12 北京八亿时空液晶科技股份有限公司 杂原子桥联咔唑衍生物及其应用
CN112480128A (zh) * 2020-11-23 2021-03-12 北京八亿时空液晶科技股份有限公司 一种咔唑衍生物及其应用
KR20210045944A (ko) * 2019-10-17 2021-04-27 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN114853769A (zh) * 2022-04-20 2022-08-05 北京八亿时空液晶科技股份有限公司 一种咔唑衍生物、有机电致发光元件、显示装置和照明装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206431B (zh) * 2018-08-01 2021-09-24 北京绿人科技有限责任公司 有机电致发光化合物及其应用和有机电致发光器件
CN111039800B (zh) * 2019-11-05 2022-11-04 北京绿人科技有限责任公司 含稠环结构的有机化合物及有机电致发光器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210045944A (ko) * 2019-10-17 2021-04-27 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN112480136A (zh) * 2020-11-23 2021-03-12 北京八亿时空液晶科技股份有限公司 杂原子桥联咔唑衍生物及其应用
CN112480128A (zh) * 2020-11-23 2021-03-12 北京八亿时空液晶科技股份有限公司 一种咔唑衍生物及其应用
CN114853769A (zh) * 2022-04-20 2022-08-05 北京八亿时空液晶科技股份有限公司 一种咔唑衍生物、有机电致发光元件、显示装置和照明装置

Also Published As

Publication number Publication date
CN114853769B (zh) 2023-07-21
CN114853769A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2023202531A1 (zh) 一种咔唑衍生物、有机电致发光元件、显示装置和照明装置
WO2023160187A1 (zh) 一种咔唑衍生物及其应用
EP3919482A1 (en) Organic light-emitting compound, and organic electroluminescent device using same
WO2024012469A1 (zh) 一种咔唑衍生物及其在有机发光元件中的应用
WO2024012522A1 (zh) 一种咔唑衍生物及其在oled中的应用
WO2023236955A1 (zh) 一种多取代咔唑衍生物及其应用
CN113429395A (zh) 咪唑衍生物、有机电致发光材料、发光元件及消费型产品
WO2024012512A1 (zh) 一种咔唑衍生物及包含它的有机发光元件
CN113540369A (zh) 有机电致发光装置
CN111875592A (zh) 化合物其制备方法以及有机发光器件
WO2023236982A1 (zh) 一种菲啶衍生物及及其应用
CN114516861B (zh) 咔唑衍生物、有机电致发光元件、显示装置和照明装置
KR20140115636A (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2022242521A1 (zh) 一种稠合氮杂环化合物及其应用以及包含该化合物的有机电致发光器件
CN106892903B (zh) 基于酚嗪和咔唑的有机电致发光化合物及其发光器件
WO2023207992A1 (zh) 一种吲哚衍生物、有机电致发光元件、显示装置和照明装置
CN111777614B (zh) 一种有机电致发光化合物及其应用
WO2023241569A1 (zh) 一种氮杂金刚烷化合物、有机电致发光元件
JP2023506660A (ja) 電子素子のための化合物
CN114907352A (zh) 一种咔唑衍生物及其应用
CN112778307B (zh) 一种咔唑衍生物及其应用
WO2022088460A1 (zh) 一种有机化合物、有机电致发光材料及有机电致发光元件
CN115873025A (zh) 一种稠合杂环类化合物及其应用以及包含该化合物的有机电致发光器件
CN115010710B (zh) 一种喹唑啉衍生物、有机电致发光元件、显示装置和照明装置
CN114605413B (zh) 一种咔啉衍生物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791186

Country of ref document: EP

Kind code of ref document: A1