WO2023202309A1 - 射频放大器电路和射频芯片 - Google Patents

射频放大器电路和射频芯片 Download PDF

Info

Publication number
WO2023202309A1
WO2023202309A1 PCT/CN2023/082958 CN2023082958W WO2023202309A1 WO 2023202309 A1 WO2023202309 A1 WO 2023202309A1 CN 2023082958 W CN2023082958 W CN 2023082958W WO 2023202309 A1 WO2023202309 A1 WO 2023202309A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
capacitor
amplifier circuit
resistor
frequency amplifier
Prior art date
Application number
PCT/CN2023/082958
Other languages
English (en)
French (fr)
Inventor
朱魏
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023202309A1 publication Critical patent/WO2023202309A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the utility model relates to the field of amplifier circuits, and in particular to a radio frequency amplifier circuit and a radio frequency chip.
  • radio frequency amplifiers are one of the important components.
  • the radio frequency amplifier circuit in the related art includes an input matching circuit, a DC blocking capacitor, a bias circuit, a radio frequency amplifying transistor, a choke inductor and an output matching circuit.
  • the radio frequency amplifier circuit shown in Figure 1 is a radio frequency amplifier circuit commonly used in related technologies.
  • the radio frequency amplifier circuit includes an input matching circuit U1, a DC blocking capacitor C, a bias circuit U2, a radio frequency amplifying transistor Q, a choke inductor L and an output matching circuit U3.
  • the connection relationship of the radio frequency amplifier circuit is: the input terminal of the input matching circuit U1 serves as the input terminal RFIN of the radio frequency amplifier circuit, and the output terminal of the input matching circuit U1 is connected to the first terminal of the DC blocking capacitor C.
  • the bias circuit U2 is used to provide the base voltage of the radio frequency amplifier circuit.
  • circuit stability refers to the ability of an RF amplifier circuit to resist potential spurious oscillations. Oscillations can be a full-power, large-signal problem, or they can be hidden spectrum problems that go unnoticed without proper analysis. Even unwanted signals outside the expected frequency range can cause system oscillation and degraded gain performance.
  • Related art radio frequency amplifier circuits At low frequencies, generally around 1.85GHz, the stability measurement parameters show a clear turning point. The frequency of 1.85GHz is the transition frequency between the conditionally and unconditionally stable regions. When the frequency is higher than 1.85GHz, the RF amplifier circuit remains stable unconditionally; when the frequency is lower than 1.85GHz, the RF amplifier circuit remains stable conditionally.
  • the radio frequency amplifier circuit can achieve unconditional stability and reduce the gain performance degradation of the circuit, so that the radio frequency amplifier circuit has unconditional stability and gain reduction performance throughout the entire operating frequency range.
  • the descent is a technical problem that needs to be solved.
  • the present utility model proposes a radio frequency amplifier circuit and radio frequency chip with good circuit stability and high gain.
  • an embodiment of the present invention provides a radio frequency amplifier circuit, which includes an input matching circuit, a first capacitor, a bias circuit, a radio frequency amplifying transistor, a first inductor, an output matching circuit, A low-pass filter, a resonant network module, a second resistor and a third capacitor, the low-pass filter includes a second inductor and a second capacitor; the resonant network module includes a first resistor and a fourth capacitor; the input matching The input end of the circuit serves as the input end of the radio frequency amplifier circuit, the output end of the input matching circuit is connected to the first end of the first capacitor; the second end of the first capacitor is respectively connected to the second The first end of the inductor, the first end of the first resistor and the first end of the fourth capacitor; the output end of the bias circuit is connected to the first end of the second resistor and the first end of the fourth capacitor respectively.
  • the first end of the three capacitors, the second end of the third capacitor is connected to ground; the second end of the second resistor is connected to the second end of the second inductor and the first end of the second capacitor respectively. terminal, the second terminal of the second capacitor is connected to ground; the second terminal of the first resistor is respectively connected to the second terminal of the fourth capacitor and the base of the radio frequency amplification transistor; the radio frequency amplification transistor
  • the collector of the transistor is connected to the second end of the first inductor and the input end of the output matching circuit respectively, the emitter of the radio frequency amplification transistor is connected to ground; the first end of the first inductor is connected to to the power supply voltage; the output terminal of the output matching circuit serves as the output terminal of the radio frequency amplifier circuit.
  • the first resistor is a resistor with adjustable parameters
  • the fourth capacitor is a capacitor with adjustable parameters.
  • the radio frequency amplification transistor is an NPN bipolar transistor.
  • the second inductor is an inductor with adjustable parameters
  • the second capacitor is a capacitor with adjustable parameters
  • the second resistor is a resistor with adjustable parameters.
  • the third capacitor is a capacitor with adjustable parameters.
  • an embodiment of the present invention further provides a radio frequency chip, which includes the above-mentioned radio frequency amplifier circuit as provided in the embodiment of the present invention.
  • the radio frequency amplifier circuit and radio frequency chip of the present invention add a low-pass filter and a resonance network module to the circuit.
  • the input end of the input matching circuit passes through the first capacitor, the low-pass filter and the resonance in sequence.
  • the network module is then connected to the base of the radio frequency amplification transistor.
  • the first capacitor serves as a DC blocking capacitor
  • the low-pass filter includes a second inductor and a second capacitor
  • the resonant network module includes a first resistor and a fourth capacitor.
  • the first resistor and the fourth capacitor of the resonant network module achieve unconditional stability; the low-pass filter composed of the second inductor and the second capacitor can prevent the resonant network module composed of the first resistor and the fourth capacitor from changing.
  • the low-pass filter is equivalent to an LC filter network.
  • the second resistor is equivalent to a voltage dividing resistor.
  • the second resistor divides the voltage of the resonant network module composed of the first resistor and the fourth capacitor, so that the first resistor and the second resistor jointly form a resistor network.
  • the resistance value of the network can be used to adjust the voltage of the base of the RF amplification transistor, thereby controlling the working status and stability of the RF amplification transistor.
  • Sampling the third capacitor as a bypass capacitor can filter out high-frequency signals from the third capacitor, so that no clutter in the power supply voltage interferes with the RF amplification transistor, preventing the RF amplification transistor from oscillating, thereby improving the stability of the circuit.
  • the circuit has a small number of components and each component interacts with each other, so that the radio frequency amplifier circuit has unconditional stability in the entire operating frequency range and reduces the performance degradation of the gain, thereby realizing the radio frequency amplifier of the present invention. Circuits and RF chip circuits Good stability and high gain.
  • Figure 1 is a circuit structure diagram of a radio frequency amplifier circuit in the related art
  • Figure 2 is a circuit structure diagram of a radio frequency amplifier circuit according to an embodiment of the present invention.
  • Figure 3 is a graph showing the relationship between the maximum gain and frequency of a radio frequency amplifier circuit in the related art
  • Figure 4 is a graph showing the relationship between stability measurement value and frequency of a radio frequency amplifier circuit in the related art
  • Figure 5 is a Smith chart of S11 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art
  • Figure 6 is a Smith chart of S12 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art
  • Figure 7 is a Smith chart of S21 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art
  • Figure 8 is a Smith chart of S22 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art
  • Figure 9 shows the input stability circle obtained by circuit simulation of the radio frequency amplifier circuit of the related art
  • Figure 10 shows the output stability circle obtained by circuit simulation of the radio frequency amplifier circuit of the related art
  • Figure 11 is a graph showing the relationship between the maximum gain and frequency of the circuit after removing the fourth capacitor in the radio frequency amplifier circuit according to the embodiment of the present invention.
  • Figure 12 is a graph showing the relationship between the maximum gain and frequency of the radio frequency amplifier circuit according to the embodiment of the present invention.
  • Figure 13 is a graph showing the relationship between the stability measurement value and frequency of the radio frequency amplifier circuit according to the embodiment of the present invention.
  • Figure 14 is the input stability circle obtained by circuit simulation of the radio frequency amplifier circuit according to the embodiment of the present invention.
  • Figure 15 is an output stability circle obtained by circuit simulation of the radio frequency amplifier circuit according to the embodiment of the present invention.
  • the utility model provides a radio frequency amplifier circuit 100.
  • FIG. 2 is a circuit structure diagram of a radio frequency amplifier circuit 100 according to an embodiment of the present invention.
  • the radio frequency amplifier circuit 100 includes an input matching circuit 1, a first capacitor C1, a bias circuit 2, a radio frequency amplification transistor Q1, a first inductor L1, an output matching circuit 3, a low-pass filter 4, a resonant network module 5, a second Resistor R2 and third capacitor C3.
  • the low-pass filter 4 includes a second inductor L2 and a second capacitor C2.
  • the resonant network module 5 includes a first resistor R1 and a fourth capacitor C4.
  • the circuit connection relationship of the radio frequency amplifier circuit 100 is:
  • the input terminal of the input matching circuit 1 serves as the input terminal RFIN of the radio frequency amplifier circuit 100 .
  • the output terminal of the input matching circuit 1 is connected to the first terminal of the first capacitor C1.
  • the second terminal of the first capacitor C1 is connected to the first terminal of the second inductor L2, the first terminal of the first resistor R1 and the first terminal of the fourth capacitor C4 respectively.
  • the output terminal of the bias circuit 2 is connected to the first terminal of the second resistor R2 and the first terminal of the third capacitor C3 respectively.
  • the second end of the third capacitor C3 is connected to to ground GND.
  • the second terminal of the second resistor R2 is connected to the second terminal of the second inductor L2 and the first terminal of the second capacitor C2 respectively.
  • the second terminal of the second capacitor C2 is connected to the ground GND.
  • the second terminal of the first resistor R1 is connected to the second terminal of the fourth capacitor C4 and the base of the radio frequency amplification transistor Q1 respectively.
  • the collector of the radio frequency amplification transistor Q1 is connected to the second terminal of the first inductor L1 and the input terminal of the output matching circuit 3 respectively.
  • the emitter of the radio frequency amplification transistor Q1 is connected to the ground GND.
  • the first terminal of the first inductor L1 is connected to the power supply voltage VCC.
  • the output terminal of the output matching circuit 3 serves as the output terminal RFOUT of the radio frequency amplifier circuit 100 .
  • the circuit principle of the radio frequency amplifier circuit 100 is:
  • the input matching circuit 1 is used to match external input characteristic impedance, which is generally 50 ⁇ or 75 ⁇ .
  • the internal power supply voltage of the input matching circuit 1 is realized by connecting to the power supply voltage VCC.
  • the first capacitor C1 serves as a DC blocking capacitor for isolating DC signals.
  • the bias circuit 2 is used to provide voltage to the base of the radio frequency amplification transistor Q1.
  • the internal power supply voltage of the bias circuit 2 is realized by connecting to the power supply voltage VCC.
  • the radio frequency amplification transistor Q1 is used to amplify signals.
  • the radio frequency amplification transistor Q1 is an NPN bipolar transistor.
  • the first inductor L1 is used as a choke inductor to prevent the radio frequency signal output by the collector of the radio frequency amplification transistor Q1 from leaking to the power supply voltage VCC.
  • the output matching circuit 3 is used to match the characteristic impedance of the output load, which is generally 50 ⁇ or 75 ⁇ .
  • the internal power supply voltage of the output matching circuit 3 is realized by connecting to the power supply voltage VCC.
  • the low-pass filter 4 is beneficial to the stability of the operating frequency range of the radio frequency amplifier circuit 100, and the low-pass filter 4 needs to work together with the resonant network module 5 to affect the circuit.
  • the second inductor L2 and the second capacitor C2 are composed of The low-pass filter 4 can prevent the resonant network module 5 composed of the first resistor R1 and the fourth capacitor C4 from affecting circuit performance at higher or lower frequencies.
  • the low-pass filter is equivalent to a LC filter network.
  • the second inductor L2 is an inductor with adjustable parameters
  • the second capacitor C2 is a capacitor with adjustable parameters.
  • the device parameters of the low-pass filter 4 are adjustable, which is beneficial to adjusting the frequency filtering effect.
  • the resonant network module 5 is used to achieve unconditional stability of the circuit.
  • the specific circuit settings are:
  • the first resistor R1 is disposed between the second end of the first capacitor C1 and the base of the radio frequency amplification transistor Q1.
  • the fourth capacitor C4 is disposed in parallel on the first resistor R1 and can be passed through The capacitance value of the fourth capacitor C4 is adjusted to adjust the frequency of the first resistor R1 in series, so that the first resistor R1 forms an effective short circuit and increases the available gain of the radio frequency amplifier circuit 100 .
  • the first resistor R1 is a resistor with adjustable parameters.
  • the fourth capacitor C4 is a capacitor with adjustable parameters.
  • the parameters of the first resistor R1 and the fourth capacitor C4 of the resonant network module 5 are adjustable, which is beneficial to designers by adjusting the resistance value of the first resistor R1 and the capacitance value of the fourth capacitor C4. Achieve circuit stability.
  • the second resistor R2 is equivalent to a voltage dividing resistor.
  • the second resistor R2 divides the voltage of the resonant network module 5 composed of the first resistor R1 and the fourth capacitor C4, so that the The first resistor R1 and the second resistor R2 together form a resistor network.
  • the resistance value of the resistor network can be used to adjust the voltage of the base of the radio frequency amplification transistor Q1, thereby controlling the working state of the radio frequency amplification transistor Q1. and stability.
  • the second resistor R2 is a resistor with adjustable parameters. By adjusting the resistance value of the second resistor R2, the working state of the radio frequency amplification transistor Q1 and the stability of the radio frequency amplifier circuit 100 can be flexibly controlled.
  • Sampling the third capacitor C3 as a bypass capacitor can filter out high-frequency signals from the third capacitor C3 so that no noise in the power supply voltage VCC interferes with the radio frequency amplification transistor Q1 and prevents the radio frequency amplification transistor Q1 from being interfered with. Oscillation is generated, thereby improving the stability of the radio frequency amplifier circuit 100 .
  • the third capacitor C3 is Adjustable parameter capacitor. By adjusting the capacitance value of the third capacitor C3, the stability of the radio frequency amplifier circuit 100 can be improved.
  • the low-pass filter 4 is formed by adding the second resistor R2, the second inductor L2 and the second capacitor C2, as well as the first resistor R1 and the fourth capacitor C4.
  • the resonant network module 5 has a small number of components and each component interacts with each other, so that the radio frequency amplifier circuit 100 has unconditional stability in the entire operating frequency range and reduces the performance degradation of the gain, thereby realizing the utility model.
  • the radio frequency amplifier circuit 100 has good stability and high gain.
  • the low-pass filter 4 of the radio frequency amplifier circuit 100 needs to cooperate with the resonant network module 5 to realize the operation of the radio frequency amplifier circuit. Unconditional stability over the entire operating frequency range.
  • S-parameter matching is generally used to maximize gain and gain flatness. These S-parameter data will also be used to develop matching network-related circuits to solve the stability problem of RF amplifier circuits.
  • the RF amplifier circuit 100 uses basic S-parameters, models, and resistor stability techniques during the design process to help avoid device instability, thereby enhancing circuit stability.
  • Stability refers to the ability of the RF amplifier circuit 100 to withstand potential spurious oscillations. Oscillations can be a full-power, large-signal problem, or they can be hidden spectrum problems that go unnoticed without proper analysis. Even unwanted signals outside the expected frequency range can cause system oscillation and degraded gain performance.
  • Stability can be divided into two types: One type of stability is conditional stability.
  • the RF amplifier circuit 100 is designed to remain stable when the input and output present the expected characteristic impedance Z0 (50 ⁇ or 75 ⁇ ), but may be subject to oscillation due to other input or output impedances (the input or output port shows negative impedance).
  • Another type of stability is unconditional stability.
  • the system remains stable at any possible positive real part impedance within the Smith chart. Any system design that encounters negative real part impedance (outside of the Smith chart) will oscillate. In general, if a system is defined to be unconditionally stable, then it will be stable at all frequencies and at all positive real impedances.
  • mu_prime ⁇ 1-
  • S-parameter data can be used to design a matching network to obtain the stability of the radio frequency amplifier circuit 100.
  • parameter k, parameter b and parameter mu_prime can be calculated using the S parameters of the device.
  • Figure 3 is a graph showing the relationship between the maximum gain and frequency of a radio frequency amplifier circuit in the related art.
  • Figure 4 is a stability measurement value of a radio frequency amplifier circuit in the related art. Graph versus frequency.
  • Figure 4 shows the values of parameter k, parameter b and parameter mu_prime of the stability coefficient.
  • curve A1 is parameter b.
  • Curve A2 is the parameter mu_prime.
  • Curve A3 is parameter k. It can be seen that the stability measurement value b>0 and the stability coefficient k>1.
  • the stability measurement parameters show a clear turning point. This is the frequency of transition between conditionally and unconditionally stable regions.
  • the maximum gain represented by this simulation parameter is approximately 18.4dB.
  • Figure 5 is a Smith chart of the S11 parameters obtained from the circuit simulation of the related art radio frequency amplifier circuit.
  • Figure 6 shows a radio frequency amplifier of related technology.
  • FIG. 7 is a Smith chart of S21 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art.
  • Figure 8 is a Smith chart of S22 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art. S11 and S22 are displayed on the Smith chart, and the polar area chart is used to display S21 and S12.
  • Figure 9 is an input stability circle derived from circuit simulation of a radio frequency amplifier circuit in related art.
  • Figure 10 is an output stability circle derived from circuit simulation of a radio frequency amplifier circuit in related art. .
  • the radio frequency amplifier circuit 100 cannot meet the requirement of unconditional stability (for example, in our example, the frequency is lower than 1.85GHz)
  • two circuit methods are used to increase the stability of the radio frequency amplifier circuit 100: the first is Adding a matching resistor network provides stability; the second method uses resistors, inductors and capacitors to provide frequency selection characteristics to stabilize the circuit, that is, the radio frequency amplifier circuit 100 of the embodiment of the present invention is used.
  • the first adds a matching resistor network to provide stability.
  • the stability of the circuit can be increased by deleting the fourth capacitor C4 of the radio frequency amplifier circuit 100 and using the remaining first resistor R1 and the second resistor R2 of the radio frequency amplifier circuit 100 to form a matching resistor.
  • the input matching circuit 1 of the RF amplifier circuit that deletes the fourth capacitor C4 is set by adding a first resistor R1 in series and a second resistor R2 in parallel.
  • the resistance values of the first resistor R1 and the second resistor R2 can be adjusted to achieve unconditional stability of the radio frequency amplifier circuit.
  • the second inductor L2 and the second capacitor C2 form the low-pass filter 4, so that the radio frequency amplifier circuit has unconditional stability in the entire frequency range. Please refer to FIG. 11 .
  • FIG. 11 Please refer to FIG. 11 .
  • FIG. 11 is a graph showing the relationship between the maximum gain and frequency of the radio frequency amplifier circuit after removing the fourth capacitor according to the embodiment of the present invention.
  • the maximum gain represented by this simulation parameter is approximately 12.3dB.
  • the maximum gain in Figure 3 is about 18.4dB, and the maximum available gain of the two circuits is reduced by about 6dB. This is caused by the addition of a purely resistive input stabilization network.
  • the resonant network module 5 is set through the circuit of the first resistor R1 and the fourth capacitor C4.
  • the first resistor R1 is set on the third capacitor C4.
  • the fourth capacitor C4 is arranged in parallel on the first resistor R1.
  • the capacitance value of the fourth capacitor C4 can be adjusted to adjust the series.
  • the frequency of the first resistor R1 causes the first resistor R1 to form an effective short circuit and increases the available gain of the radio frequency amplifier circuit 100 .
  • the second inductor L2 and the second capacitor C2 form the low-pass filter 4 to prevent the first resistor R1 from functioning at a higher RF frequency or a lower RF frequency, so as to realize the RF amplifier circuit 100 stability.
  • FIG. 12 is a graph showing the relationship between the maximum gain and frequency of the radio frequency amplifier circuit 100 according to the embodiment of the present invention.
  • the maximum gain represented by this simulation parameter is approximately 17.5dB.
  • the maximum gain in Figure 3 is approximately 18.4dB.
  • the maximum gain of the radio frequency amplifier circuit 100 of the embodiment of the present invention is reduced by approximately 1 dB relative to the maximum available gain of the radio frequency amplifier circuit of the related art. That is, pass.
  • the radio frequency amplifier circuit 100 uses the joint action of the resonant network module 5 and the low-pass filter 4 to reduce the gain performance degradation of the circuit, thereby achieving high gain of the radio frequency amplifier circuit 100 of the present invention.
  • FIG. 13 is a graph showing the relationship between the stability measurement value and frequency of the radio frequency amplifier circuit 100 according to the embodiment of the present invention.
  • Figure 13 shows the values of parameter k, parameter b and parameter mu_prime of the stability coefficient.
  • curve B1 is parameter b.
  • Curve B2 is the parameter mu_prime.
  • Curve B3 is parameter k. It can be seen that the stability measurement value b>0 and the stability coefficient k>1.
  • the stability measurement parameters show an obvious turning point.
  • the conversion frequency of the radio frequency amplifier circuit 100 of the embodiment of the present invention is 155.0 MHz is lower in frequency.
  • the low-pass filter 4 and the resonant network module 5 are beneficial to broadening the frequency working range of the radio frequency amplifier circuit 100 according to the embodiment of the present invention.
  • FIG. 14 is an input stability circle obtained by circuit simulation of the radio frequency amplifier circuit 100 according to the embodiment of the present invention.
  • the input matching circuit 1 of the radio frequency amplifier circuit 100 in the embodiment of the present invention adds a first resistor R1 and a fourth capacitor C4 in series.
  • the resistance value of the first resistor R1 can be adjusted, and the capacitance value of the fourth capacitor C4 can achieve unconditional stability of the radio frequency amplifier circuit 100 .
  • the second inductor L2 and the second capacitor C2 form the low-pass filter 4 so that the radio frequency amplifier circuit 100 has unconditional stability in the entire frequency range.
  • FIG. 15 is an output stability circle obtained by circuit simulation of the radio frequency amplifier circuit 100 according to the embodiment of the present invention.
  • the radio frequency amplifier circuit 100 by setting the resonant network module 5 and the low-pass filter 4, the second resistor R2 pairs with the resonant network module composed of the first resistor R1 and the fourth capacitor C4. 5 performs a voltage division, so that the first resistor R1 and the second resistor R2 together form a resistor network, and the resistance value of the resistor network can be used to adjust the voltage of the base of the radio frequency amplification transistor Q1, Thereby controlling the working state and stability of the radio frequency amplification transistor Q1.
  • the high-frequency signal can be filtered out from the third capacitor C3 so that no clutter of the power supply voltage VCC interferes with the RF amplification transistor Q1 and prevents the RF amplification transistor Q1 from oscillating, thereby improving the performance of the RF amplifier circuit 100 stability.
  • the stability circle now falls outside the Smith chart in both the source and load planes of the output stability circle, making the RF amplifier circuit 100 unconditionally stable over the entire frequency range.
  • An embodiment of the present invention also provides a radio frequency chip.
  • the radio frequency chip includes the radio frequency amplifier circuit 100 .
  • the radio frequency amplifier circuit and radio frequency chip of the present invention add a low-pass filter and a resonance network module to the circuit.
  • the input end of the input matching circuit passes through the first capacitor, the low-pass filter and the resonance in sequence.
  • the network module is then connected to the base of the radio frequency amplification transistor.
  • the first capacitor serves as a DC blocking capacitor
  • the low-pass filter includes a second inductor and a second capacitor
  • the resonant network module includes a first resistor and a fourth capacitor.
  • the first resistor and the fourth capacitor of the resonant network module achieve unconditional stability; the low-pass filter composed of the second inductor and the second capacitor can prevent the resonant network module composed of the first resistor and the fourth capacitor from changing.
  • the low-pass filter is equivalent to an LC filter network.
  • the second resistor is equivalent to a voltage dividing resistor.
  • the second resistor divides the voltage of the resonant network module composed of the first resistor and the fourth capacitor, so that the first resistor and the second resistor jointly form a resistor network.
  • the resistor value of the network can be used to adjust the voltage of the base of the RF amplification transistor, thereby controlling the working status and stability of the RF amplification transistor.
  • Sampling the third capacitor as a bypass capacitor can filter out high-frequency signals from the third capacitor, so that no clutter in the power supply voltage interferes with the RF amplification transistor, preventing the RF amplification transistor from oscillating, thereby improving the stability of the circuit.
  • the circuit has a small number of components and each component interacts with each other, so that the radio frequency amplifier circuit has unconditional stability in the entire operating frequency range and reduces the performance degradation of the gain, thereby realizing the radio frequency amplifier of the present invention.
  • the circuit and RF chip circuit have good stability and high gain.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种射频放大器电路和射频芯片,射频放大器电路包括输入匹配电路(1)、第一电容(C1)、偏置电路(2)、射频放大晶体管(Q1)、第一电感(L1)、输出匹配电路(3)、低通滤波器(4)、谐振网络模块(5)、第二电阻(R2)以及第三电容(C3),所述低通滤波器(4)包括第二电感(L2)和第二电容(C2);所述谐振网络模块(5)包括第一电阻(R1)和第四电容(C4)。与相关技术相比,稳定性好且增益高。

Description

射频放大器电路和射频芯片 技术领域
本实用新型涉及放大器电路领域,尤其涉及一种射频放大器电路和射频芯片。
背景技术
随着人类进入信息化时代,无线通信技术有了飞速发展,从手机,无线局域网,蓝牙等已成为社会生活和发展不可或缺的一部分。无线通信技术的进步离不开射频电路和微波技术的发展。目前,在无线收发系统中,射频放大器是重要的组成部分之一。
相关技术的射频放大器电路包括输入匹配电路、隔直电容、偏置电路、射频放大晶体管、扼流电感以及输出匹配电路。如图1所示的射频放大器电路为相关技术中常用的一种射频放大器电路。其中,所述射频放大器电路包括输入匹配电路U1、隔直电容C、偏置电路U2、射频放大晶体管Q、扼流电感L以及输出匹配电路U3。所述射频放大器电路的连接关系为:所述输入匹配电路U1的输入端作为所述射频放大器电路的输入端RFIN,所述输入匹配电路U1的输出端连接至所述隔直电容C的第一端;所述隔直电容C的第二端分别连接至所述偏置电路U2的输出端和所述射频放大晶体管Q的基极;所述射频放大晶体管Q的集电极分别连接至所述扼流电感L的第二端和所述输出匹配电路U3的输入端,所述射频放大晶体管Q的发射极连接至接地;所述扼流电感L的第一端连接至电源电压VCC;所述输出匹配电路U3的输出端作为所述射频放大器电路的输出端RFOUT。其中,所述偏置电路U2用于提供给所述射频放大器电路的基极电压。
然而,电路稳定性是指射频放大器电路抵抗潜在的杂散振荡的能力。振荡可能是全功率大信号问题,也可能是未经正确分析,无法觉察的隐蔽频谱问题。甚至是预期频率范围以外的无用信号,都可能导致系统振荡和增益性能下降。相关技术的射频放大器电路 在低频时,一般约为频率为1.85GHz时,稳定性测量参数显示有一个明显的转折点。频率为1.85GHz是有条件和无条件保持稳定区域之间的转换频率。频率高于1.85GHz时,射频放大器电路无条件保持稳定;频率低于1.85GHz频率时,射频放大器电路有条件保持稳定。因此,如何在频率低于转换频率时,频放大器电路实现无条件保持稳定,并减少电路的增益性能下降,从而使得所述射频放大器电路在整个工作的频率范围内都具有无条件稳定性和减少增益性能下降是一个需要解决的技术问题。
因此,实有必要提供一种新的射频放大器电路和射频芯片解决上述问题。
实用新型内容
针对以上现有技术的不足,本实用新型提出一种电路稳定性好且增益高的射频放大器电路和射频芯片。
为了解决上述技术问题,第一方面,本实用新型的实施例提供了一种射频放大器电路,其包括输入匹配电路、第一电容、偏置电路、射频放大晶体管、第一电感、输出匹配电路、低通滤波器、谐振网络模块、第二电阻以及第三电容,所述低通滤波器包括第二电感和第二电容;所述谐振网络模块包括第一电阻和第四电容;所述输入匹配电路的输入端作为所述射频放大器电路的输入端,所述输入匹配电路的输出端连接至所述第一电容的第一端;所述第一电容的第二端分别连接至所述第二电感的第一端、所述第一电阻的第一端以及所述第四电容的第一端;所述偏置电路的输出端分别连接至所述第二电阻的第一端和所述第三电容的第一端,所述第三电容的第二端连接至接地;所述第二电阻的第二端分别连接至所述第二电感的第二端和所述第二电容的第一端,所述第二电容的第二端连接至接地;所述第一电阻的第二端分别连接至所述第四电容的第二端和所述射频放大晶体管的基极;所述射频放大晶体管的集电极分别连接至所述第一电感的第二端和所述输出匹配电路的输入端,所述射频放大晶体管的发射极连接至接地;所述第一电感的第一端连接 至电源电压;所述输出匹配电路的输出端作为所述射频放大器电路的输出端。
优选的,所述第一电阻为可调参数的电阻,所述第四电容为可调参数的电容。
优选的,所述射频放大晶体管为NPN型双极性晶体管。
优选的,所述第二电感为可调参数的电感,所述第二电容为可调参数的电容。
优选的,所述第二电阻为可调参数的电阻。
优选的,所述第三电容为可调参数的电容。
第二方面,本实用新型的实施例还提供了一种射频芯片,所述射频芯片包括如本实用新型的实施例提供上述的射频放大器电路。
与相关技术相比,本实用新型的射频放大器电路和射频芯片通过在电路上增加低通滤波器和谐振网络模块,所述输入匹配电路的输入端依次通过第一电容、低通滤波器和谐振网络模块后连接至所述射频放大晶体管的基极。其中,所述第一电容作为隔直电容;所述低通滤波器包括第二电感和第二电容;所述谐振网络模块包括第一电阻和和第四电容。所述谐振网络模块的第一电阻和第四电容实现无条件稳定性;第二电感和第二电容组成所述低通滤波器可以防止第一电阻和第四电容组成的所述谐振网络模块在更高频或者更低频下出现影响电路性能的作用,所述低通滤波器相当于一个LC滤波网络。第二电阻相当于分压电阻,第二电阻对第一电阻和第四电容组成的所述谐振网络模块进行了一个分压,从而使得第一电阻和第二电阻共同形成一个电阻网络,该电阻网络的电阻数值可以用来调节射频放大晶体管的基极的电压,从而控制射频放大晶体管的工作状态以及稳定性。采样第三电容作为旁路电容,可以将高频信号从第三电容滤除,使得电源电压的无杂波干扰射频放大晶体管,避免射频放大晶体管产生震荡,从而提升电路的稳定性。该电路的元器件数量少,各个元器件相互作用,从而使得所述射频放大器电路在整个工作的频率范围内都具有无条件稳定性,并减少了增益的性能下降,从而实现本实用新型的射频放大器电路和射频芯片电路 稳定性好且增益高。
附图说明
下面结合附图详细说明本实用新型。通过结合以下附图所作的详细描述,本实用新型的上述或其他方面的内容将变得更清楚和更容易理解。附图中,
图1为相关技术的射频放大器电路的电路结构图;
图2为本实用新型实施例的射频放大器电路的电路结构图;
图3为相关技术的射频放大器电路的最大增益与频率关系曲线图;
图4为相关技术的射频放大器电路的稳定性测量值与频率关系曲线图;
图5为相关技术的射频放大器电路的电路仿真得出的S11参数的史密斯圆图;
图6为相关技术的射频放大器电路的电路仿真得出的S12参数的史密斯圆图;
图7为相关技术的射频放大器电路的电路仿真得出的S21参数的史密斯圆图;
图8为相关技术的射频放大器电路的电路仿真得出的S22参数的史密斯圆图;
图9为相关技术的射频放大器电路的电路仿真得出的输入稳定性圈;
图10为相关技术的射频放大器电路的电路仿真得出的输出稳定性圈;
图11为本实用新型实施例的射频放大器电路中除去第四电容后的电路的最大增益与频率关系曲线图;
图12为本实用新型实施例的射频放大器电路的最大增益与频率关系曲线图;
图13为本实用新型实施例的射频放大器电路的稳定性测量值与频率关系曲线图;
图14为本实用新型实施例的射频放大器电路的电路仿真得出的输入稳定性圈;
图15为本实用新型实施例的射频放大器电路的电路仿真得出的输出稳定性圈。
具体实施方式
下面结合附图详细说明本实用新型的具体实施方式。
在此记载的具体实施方式/实施例为本实用新型的特定的具体实施方式,用于说明本实用新型的构思,均是解释性和示例性的,不应解释为对本实用新型实施方式及本实用新型范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本实用新型的保护范围之内。
本实用新型提供一种射频放大器电路100。
请参考图2所示,图2为本实用新型实施例的射频放大器电路100的电路结构图。
所述射频放大器电路100包括输入匹配电路1、第一电容C1、偏置电路2、射频放大晶体管Q1、第一电感L1、输出匹配电路3、低通滤波器4、谐振网络模块5、第二电阻R2以及第三电容C3。
所述低通滤波器4包括第二电感L2和第二电容C2。
所述谐振网络模块5包括第一电阻R1和第四电容C4。
所述射频放大器电路100的电路连接关系为:
所述输入匹配电路1的输入端作为所述射频放大器电路100的输入端RFIN。所述输入匹配电路1的输出端连接至所述第一电容C1的第一端。
所述第一电容C1的第二端分别连接至所述第二电感L2的第一端、所述第一电阻R1的第一端以及所述第四电容C4的第一端。
所述偏置电路2的输出端分别连接至所述第二电阻R2的第一端和所述第三电容C3的第一端。所述第三电容C3的第二端连接 至接地GND。
所述第二电阻R2的第二端分别连接至所述第二电感L2的第二端和所述第二电容C2的第一端。所述第二电容C2的第二端连接至接地GND。
所述第一电阻R1的第二端分别连接至所述第四电容C4的第二端和所述射频放大晶体管Q1的基极。
所述射频放大晶体管Q1的集电极分别连接至所述第一电感L1的第二端和所述输出匹配电路3的输入端。所述射频放大晶体管Q1的发射极连接至接地GND。
所述第一电感L1的第一端连接至电源电压VCC。
所述输出匹配电路3的输出端作为所述射频放大器电路100的输出端RFOUT。
所述射频放大器电路100的电路原理为:
所述输入匹配电路1用于将外部的输入特性阻抗进行匹配,输入特性阻抗一般为50Ω或75Ω。所述输入匹配电路1的内部供电电源电压通过连接至电源电压VCC实现。
所述第一电容C1作为隔直电容,用于隔离直流信号。
所述偏置电路2用于向所述射频放大晶体管Q1的基极提供电压。所述偏置电路2的内部供电电源电压通过连接至电源电压VCC实现。
所述射频放大晶体管Q1用于放大信号。本实施例中,所述射频放大晶体管Q1为NPN型双极性晶体管。
所述第一电感L1作为扼流电感,用于防止所述射频放大晶体管Q1的集电极输出的射频信号泄露到电源电压VCC。
所述输出匹配电路3用于与输出负载的特性阻抗进行匹配,输出负载的特性阻抗一般为50Ω或75Ω。所述输出匹配电路3的内部供电电源电压通过连接至电源电压VCC实现。
所述低通滤波器4有利于所述射频放大器电路100的工作频率范围的稳定性,所述低通滤波器4需要与所述谐振网络模块5共同进行对电路进行作用。具体的,第二电感L2和第二电容C2组成 所述低通滤波器4可以防止第一电阻R1和第四电容C4组成的所述谐振网络模块5在更高频或者更低频下出现影响电路性能的作用,所述低通滤波器相当于一个LC滤波网络。本实施例中,所述第二电感L2为可调参数的电感,所述第二电容C2为可调参数的电容。所述低通滤波器4的器件参数可调,有利于调整频率的滤波效果。
所述谐振网络模块5用于实现电路达到无条件保持稳定。具体的电路设置为:
所述第一电阻R1设置于所述第一电容C1的第二端和所述射频放大晶体管Q1的基极之间,所述第四电容C4并列设置于所述第一电阻R1上,可以通过调整第四电容C4的电容值来调节串行的所述第一电阻R1的频率,使所述第一电阻R1形成有效短路,并且提高所述射频放大器电路100的可用增益。本实施例中,所述第一电阻R1为可调参数的电阻。所述第四电容C4为可调参数的电容。所述谐振网络模块5的所述第一电阻R1和所述第四电容C4的参数可调,有利于设计者通过调整所述第一电阻R1的电阻值和所述第四电容C4的电容值实现电路的稳定性。
所述第二电阻R2相当于分压电阻,所述第二电阻R2对所述第一电阻R1和所述第四电容C4组成的所述谐振网络模块5进行了一个分压,从而使得所述第一电阻R1和所述第二电阻R2共同形成一个电阻网络,该电阻网络的电阻数值可以用来调节所述射频放大晶体管Q1的基极的电压,从而控制所述射频放大晶体管Q1的工作状态以及稳定性。本实施例中,所述第二电阻R2为可调参数的电阻。通过调整所述第二电阻R2的电阻值,可以灵活控制所述射频放大晶体管Q1的工作状态以及所述射频放大器电路100的稳定性。
采样所述第三电容C3作为旁路电容,可以将高频信号从所述第三电容C3滤除,使得电源电压VCC的无杂波干扰所述射频放大晶体管Q1,避免所述射频放大晶体管Q1产生震荡,从而提升所述射频放大器电路100的稳定性。本实施例中,所述第三电容C3为 可调参数的电容。通过调整所述第三电容C3的电容值,可以提升所述射频放大器电路100的稳定性。
通过在相关技术的射频放大器电路的基础上,通过增加所述第二电阻R2、第二电感L2和第二电容C2组成所述低通滤波器4以及第一电阻R1和第四电容C4组成的所述谐振网络模块5。该增加的电路的元器件数量少,各个元器件相互作用,从而使得所述射频放大器电路100在整个工作的频率范围内都具有无条件稳定性,并减少了增益的性能下降,从而实现本实用新型的射频放大器电路100的稳定性好且增益高。
以下通过所述射频放大器电路100与相关技术的射频放大器电路进行对比说明:所述射频放大器电路100的所述低通滤波器4需要与所述谐振网络模块5配合共同实现所述射频放大器电路在整个工作的频率范围内都具有无条件稳定性。
在简单的线性射频/微波放大器设计中,一般利用S参数匹配使增益和增益平坦度最大。同样也会利用这些S参数数据来开发匹配网络相关的电路,以解决射频放大器电路的稳定性问题。所述射频放大器电路100在设计过程中使用基本的S参数、模型和电阻稳定性技术来帮助避免设备不稳定,从而增强电路稳定性。
稳定性是指所述射频放大器电路100抵抗潜在的杂散振荡的能力。振荡可能是全功率大信号问题,也可能是未经正确分析,无法觉察的隐蔽频谱问题。甚至是预期频率范围以外的无用信号,都可能导致系统振荡和增益性能下降。
稳定性可以分为两种类型:一种稳定性类型是有条件的稳定性。所述射频放大器电路100设计时在输入和输出呈现预期的特性阻抗Z0(50Ω或75Ω)时保持稳定,但可能因为其他输入或输出阻抗而受到振荡(输入或输出端口显示负阻抗)。另一种稳定性类型无条件的稳定性。在史密斯圆图内任何可能的正实部阻抗下,系统都保持稳定。任何系统设计在遭遇负实部阻抗(史密斯圆图以外)时,都会发生振荡。一般情况下,如果系统被定义为无条件保持稳定,那么它在所有频率和所有正实部阻抗下,都能保持稳定。
为了检查无条件稳定性,本实施例中采用两个参数:参数k和参数b分别作为稳定性度量参数。参数k和参数b确定在给定偏置下引起不稳定的频率范围。这些数值由以下公式计算得出:
k={1-|S11|2-|S22|2+|S11*S22-S12*S21|2}/{2*|S12*S21|}
以及
b=1+|S11|2-|S22|2-|S11*S22-S12*S21|2
无条件稳定性用k>1和b>0表示。因此可用一个更加简洁的公式,使用参数mu-prime进行计算:
mu_prime={1-|S22|2}/{|S11-conj(S22)*Delta|+|S21*S12|}
如果mu_prime>1,表示无条件保持(线性)稳定。
如上公式所述,可利用S参数数据来设计匹配网络以获得所述射频放大器电路100的稳定性。
通过对相关技术的射频放大器电路单级非线性模型实施线性S参数分析,如图1的射频放大器电路。在图1中,参数k、参数b和参数mu_prime可以利用器件的S参数计算得出。
请同时参考图3至图4所示,图3为相关技术的射频放大器电路的最大增益与频率关系曲线图;请参考图4所示,图4为相关技术的射频放大器电路的稳定性测量值与频率关系曲线图。
如图4显示稳定性系数的参数k、参数b和参数mu_prime的值。其中,曲线A1为参数b。曲线A2为参数mu_prime。曲线A3为参数k。可以看出,稳定性测量值b>0,稳定性系数k>1。在约1.85GHz(m5直线对应的频率)时,稳定性测量参数显示有一个明显的转折点。这是有条件和无条件保持稳定区域之间的转换频率。分析后,我们可以得出:频率高于1.85GHz时,相关技术的射频放大器电路无条件保持稳定;频率低于1.85GHz频率时,相关技术的射频放大器电路有条件保持稳定。如图3显示M3直线对应的频率为3.5GHz时,此仿真参数表示的最大增益约为18.4dB。
从图1的相关技术的射频放大器电路的电路仿真得出的S参数如图5至图8所示,图5为相关技术的射频放大器电路的电路仿真得出的S11参数的史密斯圆图。图6为相关技术的射频放大器 电路的电路仿真得出的S12参数的史密斯圆图。图7为相关技术的射频放大器电路的电路仿真得出的S21参数的史密斯圆图。图8为相关技术的射频放大器电路的电路仿真得出的S22参数的史密斯圆图。S11和S22显示在史密斯圆图中,极区图则用于显示S21和S12。
请同时参考图9至图10所示,图9为相关技术的射频放大器电路的电路仿真得出的输入稳定性圈;图10为相关技术的射频放大器电路的电路仿真得出的输出稳定性圈。
在输入和输出平面内绘制稳定性圈直观的判定是否处于稳定状态。这些圈的含义如下所述。在某个频率时,输入稳定性圈在图8和图9中的稳定性圈表示,该稳定性圈上的每个点都表示一个Γs值,按照如下公式,每个值都可以得出一个等于1的Γout值。
Γout=S22+S12*S21*{Γs/(1-S11*Γs)}
这个圈设定了Γout<1和Γout>1之间的边界,其意义在于,Γout>1对应输出端口的负阻抗,这种情况可能导致出现震荡。之后,问题变成,圈内或者圈外是否是不稳定(Γout>1)区域。在Γs=0(即50Ω点)时,根据上述公式,Γout=S22时,对所有频率下都小于1展开分析。由此,我们可以断定,圈外为稳定区域,圈内为不稳定区域。
对输出稳定性圈同理处理,公式如下:
Γin=S11+S12*S21*{ΓL/(1-S22*ΓL)}
除了此时绘制的ΓL点的圈图中,Γin=1。经过分析得出,图10中所示的圈图内部对应的是不稳定区域。
所以,当射频放大器电路无法达到无条件保持稳定的要求时(例如,在我们的示例中,频率低于1.85GHz),利用两种电路方式增加所述射频放大器电路100的稳定性:第一种是添加匹配电阻网络提供稳定性;第二种是用电阻、电感和电容来提供选频特性来稳定电路,即采用本实用新型实施例的射频放大器电路100。
以下分别对上述两种增加所述射频放大器电路100的稳定性进行说明比较:
第一种添加匹配电阻网络提供稳定性。可以通过将所述射频放大器电路100的第四电容C4删除,利用所述射频放大器电路100的剩余的第一电阻R1和第二电阻R2形成匹配电阻来增加电路稳定性。该删除第四电容C4的射频放大器电路的所述输入匹配电路1通过添加串联第一电阻R1和并联第二电阻R2置。可调整第一电阻R1和第二电阻R2的电阻值,可以实现该射频放大器电路无条件稳定性。另外,第二电感L2和第二电容C2形成了所述低通滤波器滤波4,使得该射频放大器电路在整个频率范围内都具有无条件稳定性。请参考图11,图11为本实用新型实施例的射频放大器电路中除去第四电容后的电路的最大增益与频率关系曲线图。由图11中显示的M15直线对应的频率为3.5GHz时,此仿真参数表示的最大增益约为12.3dB。对比相关技术的射频放大器电路中,图3的最大增益约为18.4dB,两种电路的最大可用增益降低了约6dB。这是添加了纯电阻输入稳定网络造成的。
以下为第二种是用电阻、电感和电容来提供选频特性来稳定电路,即采用本实用新型实施例的射频放大器电路100情况。
通过图2中的射频放大器电路100进行说明,所述谐振网络模块5通过所述第一电阻R1和所述第四电容C4的电路设置,具体为:所述第一电阻R1设置于所述第一电容C1的第二端和所述射频放大晶体管Q1的基极之间,所述第四电容C4并列设置于所述第一电阻R1上,可以通过调整第四电容C4的电容值来调节串行的所述第一电阻R1的频率,使所述第一电阻R1形成有效短路,并且提高所述射频放大器电路100的可用增益。第二电感L2和第二电容C2形成了所述低通滤波器滤波4可以防止所述第一电阻R1在更高的射频频率或者更低的射频频率下发挥作用,以实现射频放大器电路100的稳定性。
请参考图12,图12为本实用新型实施例的射频放大器电路100的最大增益与频率关系曲线图。由图12中显示的M19直线对应的频率为3.5GHz时,此仿真参数表示的最大增益约为17.5dB。对比相关技术的射频放大器电路中,图3的最大增益约为18.4dB, 本实用新型实施例的射频放大器电路100的最大增益相对于相关技术的射频放大器电路的最大可用增益降低了约1dB。也就是说,通过。射频放大器电路100通过所述谐振网络模块5和所述低通滤波器滤波4的共同作用,使得电路减少了增益的性能下降,从而实现本实用新型的射频放大器电路100增益高。
请参考图13,图13为本实用新型实施例的射频放大器电路100的稳定性测量值与频率关系曲线图。如图13显示稳定性系数的参数k、参数b和参数mu_prime的值。其中,曲线B1为参数b。曲线B2为参数mu_prime。曲线B3为参数k。可以看出,稳定性测量值b>0,稳定性系数k>1。在约155.0MHz(m21直线对应的频率)时,稳定性测量参数显示有一个明显的转折点,与相关技术的1.85GHz的转换频率相比,本实用新型实施例的射频放大器电路100的转换频率155.0MHz的频率较低。分析后,所述低通滤波器4和所述谐振网络模块5有利于将本实用新型实施例的射频放大器电路100的频率工作范围扩宽。
请参考图14,图14为本实用新型实施例的射频放大器电路100的电路仿真得出的输入稳定性圈。本实用新型实施例的射频放大器电路100的所述输入匹配电路1通过添加串联第一电阻R1和第四电容C4。可调整第一电阻R1的电阻值,第四电容C4的电容值可以实现射频放大器电路100无条件稳定性。另外,第二电感L2和第二电容C2形成了所述低通滤波器滤波4,使得射频放大器电路100在整个频率范围内都具有无条件稳定性。
请参考图15,图15为本实用新型实施例的射频放大器电路100的电路仿真得出的输出稳定性圈。。在射频放大器电路100通过设置所述谐振网络模块5和所述低通滤波器滤波4,所述第二电阻R2对所述第一电阻R1和所述第四电容C4组成的所述谐振网络模块5进行了一个分压,从而使得所述第一电阻R1和所述第二电阻R2共同形成一个电阻网络,该电阻网络的电阻数值可以用来调节所述射频放大晶体管Q1的基极的电压,从而控制所述射频放大晶体管Q1的工作状态以及稳定性。采样所述第三电容C3作为旁路电容, 可以将高频信号从所述第三电容C3滤除,使得电源电压VCC的无杂波干扰所述射频放大晶体管Q1,避免所述射频放大晶体管Q1产生震荡,从而提升所述射频放大器电路100的稳定性。在输出稳定性圈的源和负载平面中,稳定性圈现在都落在史密斯圆图之外,使得射频放大器电路100在整个频率范围内都具有无条件稳定性。
本实用新型的实施例还提供一种射频芯片。所述射频芯片包括所述射频放大器电路100。
需要指出的是,本实用新型采用的相关电路模块、电阻、电容、电感及晶体管均为本领域常用的电路模块、元器件,对应的具体的指标和参数根据实际应用进行调整,在此,不作详细赘述。
与相关技术相比,本实用新型的射频放大器电路和射频芯片通过在电路上增加低通滤波器和谐振网络模块,所述输入匹配电路的输入端依次通过第一电容、低通滤波器和谐振网络模块后连接至所述射频放大晶体管的基极。其中,所述第一电容作为隔直电容;所述低通滤波器包括第二电感和第二电容;所述谐振网络模块包括第一电阻和和第四电容。所述谐振网络模块的第一电阻和第四电容实现无条件稳定性;第二电感和第二电容组成所述低通滤波器可以防止第一电阻和第四电容组成的所述谐振网络模块在更高频或者更低频下出现影响电路性能的作用,所述低通滤波器相当于一个LC滤波网络。第二电阻相当于分压电阻,第二电阻对第一电阻和第四电容组成的所述谐振网络模块进行了一个分压,从而使得第一电阻和第二电阻共同形成一个电阻网络,该电阻网络的电阻数值可以用来调节射频放大晶体管的基极的电压,从而控制射频放大晶体管的工作状态以及稳定性。采样第三电容作为旁路电容,可以将高频信号从第三电容滤除,使得电源电压的无杂波干扰射频放大晶体管,避免射频放大晶体管产生震荡,从而提升电路的稳定性。该电路的元器件数量少,各个元器件相互作用,从而使得所述射频放大器电路在整个工作的频率范围内都具有无条件稳定性,并减少了增益的性能下降,从而实现本实用新型的射频放大器电路和射频芯片电路稳定性好且增益高。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本实用新型而非限制本实用新型的范围,本领域的普通技术人员应当理解,在不脱离本实用新型的精神和范围的前提下对本实用新型进行的修改或者等同替换,均应涵盖在本实用新型的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (7)

  1. 一种射频放大器电路,其包括输入匹配电路、第一电容、偏置电路、射频放大晶体管、第一电感以及输出匹配电路,其特征在于,所述射频放大器电路还包括低通滤波器、谐振网络模块、第二电阻以及第三电容,所述低通滤波器包括第二电感和第二电容;所述谐振网络模块包括第一电阻和第四电容;
    所述输入匹配电路的输入端作为所述射频放大器电路的输入端,所述输入匹配电路的输出端连接至所述第一电容的第一端;
    所述第一电容的第二端分别连接至所述第二电感的第一端、所述第一电阻的第一端以及所述第四电容的第一端;
    所述偏置电路的输出端分别连接至所述第二电阻的第一端和所述第三电容的第一端,所述第三电容的第二端连接至接地;
    所述第二电阻的第二端分别连接至所述第二电感的第二端和所述第二电容的第一端,所述第二电容的第二端连接至接地;
    所述第一电阻的第二端分别连接至所述第四电容的第二端和所述射频放大晶体管的基极;
    所述射频放大晶体管的集电极分别连接至所述第一电感的第二端和所述输出匹配电路的输入端,所述射频放大晶体管的发射极连接至接地;
    所述第一电感的第一端连接至电源电压;
    所述输出匹配电路的输出端作为所述射频放大器电路的输出端。
  2. 根据权利要求1所述的射频放大器电路,其特征在于,所述第一电阻为可调参数的电阻,所述第四电容为可调参数的电容。
  3. 根据权利要求1所述的射频放大器电路,其特征在于,所述射频放大晶体管为NPN型双极性晶体管。
  4. 根据权利要求1所述的射频放大器电路,其特征在于,所述第二电感为可调参数的电感,所述第二电容为可调参数的电容。
  5. 根据权利要求1所述的射频放大器电路,其特征在于,所述第二电阻为可调参数的电阻。
  6. 根据权利要求1所述的射频放大器电路,其特征在于,所述第三电容为可调参数的电容。
  7. 一种射频芯片,其特征在于,所述射频芯片包括如权利要求1-6中任意一项所述的射频放大器电路。
PCT/CN2023/082958 2022-04-18 2023-03-22 射频放大器电路和射频芯片 WO2023202309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220898086.4 2022-04-18
CN202220898086.4U CN217216506U (zh) 2022-04-18 2022-04-18 射频放大器电路和射频芯片

Publications (1)

Publication Number Publication Date
WO2023202309A1 true WO2023202309A1 (zh) 2023-10-26

Family

ID=82773366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082958 WO2023202309A1 (zh) 2022-04-18 2023-03-22 射频放大器电路和射频芯片

Country Status (2)

Country Link
CN (1) CN217216506U (zh)
WO (1) WO2023202309A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217216506U (zh) * 2022-04-18 2022-08-16 深圳飞骧科技股份有限公司 射频放大器电路和射频芯片
CN219227561U (zh) * 2022-04-18 2023-06-20 深圳飞骧科技股份有限公司 射频放大器电路和射频芯片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203942502U (zh) * 2014-06-25 2014-11-12 中国科学院微电子研究所 一种lte高效射频功率放大器
CN108768312A (zh) * 2018-07-23 2018-11-06 上海亮牛半导体科技有限公司 利用可调电感和改善功率放大器线性度的电路结构及方法
CN208797908U (zh) * 2018-07-23 2019-04-26 上海亮牛半导体科技有限公司 利用可调电感和改善功率放大器线性度的电路结构
US20210050824A1 (en) * 2019-08-13 2021-02-18 Richwave Technology Corp. Radio frequency amplifier circuit
CN112751535A (zh) * 2019-10-29 2021-05-04 恩智浦美国有限公司 具有输入侧分数谐波谐振器电路的rf放大器
CN217216506U (zh) * 2022-04-18 2022-08-16 深圳飞骧科技股份有限公司 射频放大器电路和射频芯片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203942502U (zh) * 2014-06-25 2014-11-12 中国科学院微电子研究所 一种lte高效射频功率放大器
CN108768312A (zh) * 2018-07-23 2018-11-06 上海亮牛半导体科技有限公司 利用可调电感和改善功率放大器线性度的电路结构及方法
CN208797908U (zh) * 2018-07-23 2019-04-26 上海亮牛半导体科技有限公司 利用可调电感和改善功率放大器线性度的电路结构
US20210050824A1 (en) * 2019-08-13 2021-02-18 Richwave Technology Corp. Radio frequency amplifier circuit
CN112751535A (zh) * 2019-10-29 2021-05-04 恩智浦美国有限公司 具有输入侧分数谐波谐振器电路的rf放大器
CN217216506U (zh) * 2022-04-18 2022-08-16 深圳飞骧科技股份有限公司 射频放大器电路和射频芯片

Also Published As

Publication number Publication date
CN217216506U (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2023202309A1 (zh) 射频放大器电路和射频芯片
CN109525207B (zh) 适用于5g网络的射频功率放大器
CN106656069A (zh) 一种应用于gsm射频功率放大器的多频输出匹配网络
WO2022205975A1 (zh) 偏置电路及射频功率放大器
WO2023078061A1 (zh) Doherty射频功率放大器
WO2023082934A1 (zh) Mmic射频功率放大器
WO2023078062A1 (zh) Doherty射频功率放大器
CN114094950A (zh) 射频功率放大器
WO2023040238A1 (zh) 一种差分功率放大器
WO2020108176A1 (zh) 一种超宽带低噪声放大器
CN111010090A (zh) 一种宽带有源二倍频器
CN113098403A (zh) 基于GaAs pHEMT工艺的超宽带低电流驱动放大器
WO2024007727A1 (zh) 功率放大器
KR101590605B1 (ko) 무선 송수신기용 선형 전력증폭기
CN109474243B (zh) 一种超宽带低噪声放大器
Pantoli et al. A single-transistor tunable filter for bluetooth applications
WO2023202308A1 (zh) 射频放大器电路和射频芯片射频放大器电路和射频芯片
Kang et al. Differential CMOS linear power amplifier with 2nd harmonic termination at common source node
CN207691763U (zh) 用于wi-fi模块的射频功率放大器
CN115865013A (zh) 一种基于Baseband阻抗匹配的高线性功率放大器
CN114531121B (zh) 一种对温度不敏感的线性功率放大器
CN216649630U (zh) 功率放大器和射频芯片
CN211063579U (zh) 一种x波段低噪声放大器
CN208820750U (zh) 一种应用于x波段的宽带低噪声放大器
CN216390929U (zh) 5g通信低噪声放大器、移动通信设备及芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790970

Country of ref document: EP

Kind code of ref document: A1