WO2023202308A1 - 射频放大器电路和射频芯片射频放大器电路和射频芯片 - Google Patents

射频放大器电路和射频芯片射频放大器电路和射频芯片 Download PDF

Info

Publication number
WO2023202308A1
WO2023202308A1 PCT/CN2023/082952 CN2023082952W WO2023202308A1 WO 2023202308 A1 WO2023202308 A1 WO 2023202308A1 CN 2023082952 W CN2023082952 W CN 2023082952W WO 2023202308 A1 WO2023202308 A1 WO 2023202308A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
amplifier circuit
circuit
frequency amplifier
resistor
Prior art date
Application number
PCT/CN2023/082952
Other languages
English (en)
French (fr)
Inventor
朱魏
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023202308A1 publication Critical patent/WO2023202308A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the utility model relates to the field of amplifier circuits, and in particular to a radio frequency amplifier circuit and a radio frequency chip.
  • radio frequency amplifiers are one of the important components.
  • the radio frequency amplifier circuit in the related art includes an input matching circuit, a DC blocking capacitor, a bias circuit, a radio frequency amplifying transistor, a choke inductor and an output matching circuit.
  • the radio frequency amplifier circuit shown in Figure 1 is a radio frequency amplifier circuit commonly used in related technologies.
  • the radio frequency amplifier circuit includes an input matching circuit U1, a DC blocking capacitor C, a bias circuit U2, a radio frequency amplifying transistor Q, a choke inductor L and an output matching circuit U3.
  • the connection relationship of the radio frequency amplifier circuit is: the input terminal of the input matching circuit U1 serves as the input terminal RFIN of the radio frequency amplifier circuit, and the output terminal of the input matching circuit U1 is connected to the first terminal of the DC blocking capacitor C.
  • the bias circuit U2 is used to provide the base voltage of the radio frequency amplifier circuit.
  • circuit stability refers to the ability of an RF amplifier circuit to resist potential spurious oscillations. Oscillations can be a full-power, large-signal problem, or they can be hidden spectrum problems that go unnoticed without proper analysis. Even unwanted signals outside the expected frequency range can cause system oscillation and degraded gain performance.
  • Related art radio frequency amplifier circuits At low frequencies, generally around 1.85GHz, the stability measurement parameters show a clear turning point. The frequency of 1.85GHz is the transition frequency between the conditionally and unconditionally stable regions. When the frequency is higher than 1.85GHz, the RF amplifier circuit remains stable unconditionally; when the frequency is lower than 1.85GHz, the RF amplifier circuit remains stable conditionally. Therefore, how to achieve unconditional stability of the radio frequency amplifier circuit when the frequency is lower than the conversion frequency, so that the radio frequency amplifier circuit has unconditional stability in the entire operating frequency range is a technical problem that needs to be solved.
  • the present utility model proposes a radio frequency amplifier circuit and radio frequency chip with good circuit stability.
  • an embodiment of the present invention provides a radio frequency amplifier circuit, which includes an input matching circuit, a first capacitor, a bias circuit, a radio frequency amplifying transistor, a first inductor, an output matching circuit, A low-pass filter and a stable network module, the low-pass filter includes a second inductor and a second capacitor; the stable network module includes a first resistor and a second resistor; the input end of the input matching circuit serves as the radio frequency The input end of the amplifier circuit, the output end of the input matching circuit is connected to the first end of the first capacitor; the second end of the first capacitor is respectively connected to the first end of the second inductor and the The first end of the first resistor; the output end of the bias circuit is connected to the second end of the second inductor and the first end of the second capacitor respectively, and the second end of the second capacitor is connected to Ground; the second end of the first resistor is connected to the base of the radio frequency amplification transistor and the first end of the second resist
  • both the first resistor and the second resistor are resistors with adjustable parameters.
  • the radio frequency amplification transistor is an NPN bipolar transistor.
  • the second inductor is an inductor with adjustable parameters
  • the second capacitor is a capacitor with adjustable parameters
  • an embodiment of the present invention further provides a radio frequency chip, which includes the above-mentioned radio frequency amplifier circuit as provided in the embodiment of the present invention.
  • the radio frequency amplifier circuit and radio frequency chip of the present invention add a low-pass filter and a stabilizing network module to the circuit.
  • the input end of the input matching circuit sequentially passes through the first capacitor, the low-pass filter and the stabilizing network module.
  • the network module is then connected to the base of the radio frequency amplification transistor.
  • the first capacitor serves as a DC blocking capacitor
  • the low-pass filter includes a second inductor and a second capacitor
  • the stabilizing network module includes a first resistor and a second resistor.
  • Figure 1 is a circuit structure diagram of a radio frequency amplifier circuit in the related art
  • Figure 2 is a circuit structure diagram of a radio frequency amplifier circuit according to an embodiment of the present invention.
  • Figure 3 is a graph showing the relationship between stability measurement value and frequency of a radio frequency amplifier circuit in the related art
  • Figure 4 is a Smith chart of S11 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art
  • Figure 5 is a Smith chart of S12 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art
  • Figure 6 is a Smith chart of S21 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art
  • Figure 7 is a Smith chart of S22 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art
  • Figure 8 shows the input stability circle obtained by circuit simulation of the radio frequency amplifier circuit of the related art
  • Figure 9 shows the output stability circle obtained by circuit simulation of the radio frequency amplifier circuit of the related art
  • Figure 10 is a graph showing the relationship between the stability measurement value and frequency of the radio frequency amplifier circuit according to the embodiment of the present invention.
  • Figure 11 is the input stability circle obtained by circuit simulation of the radio frequency amplifier circuit according to the embodiment of the present invention.
  • Figure 12 is an output stability circle obtained by circuit simulation of the radio frequency amplifier circuit according to the embodiment of the present invention.
  • the utility model provides a radio frequency amplifier circuit 100.
  • FIG. 2 is a circuit structure diagram of a radio frequency amplifier circuit 100 according to an embodiment of the present invention.
  • the RF amplifier circuit 100 includes an input matching circuit 1 , a first capacitor C1 , a bias circuit 2 , a RF amplification transistor Q1 , a first inductor L1 , an output matching circuit 3 , a low-pass filter 4 and a stabilizing network module 5 .
  • the low-pass filter 4 includes a second inductor L2 and a second capacitor C2.
  • the stable network module 5 includes a first resistor R1 and a second resistor R2.
  • the circuit connection relationship of the radio frequency amplifier circuit 100 is:
  • the input terminal of the input matching circuit 1 serves as the input terminal RFIN of the radio frequency amplifier circuit 100 .
  • the output terminal of the input matching circuit 1 is connected to the first terminal of the first capacitor C1.
  • the second terminal of the first capacitor C1 is connected to the first terminal of the second inductor L2 and the first terminal of the first resistor R1 respectively.
  • the output terminal of the bias circuit 2 is connected to the second terminal of the second inductor L2 and the first terminal of the second capacitor C2 respectively.
  • the second terminal of the second capacitor C2 is connected to the ground GND.
  • the second end of the first resistor R1 is connected to the base of the radio frequency amplification transistor Q1 and the first end of the second resistor R2 respectively.
  • the second end of the second resistor R2 is connected to the ground GND.
  • the collector of the radio frequency amplification transistor Q1 is connected to the second terminal of the first inductor L1 and the input terminal of the output matching circuit 3 respectively.
  • the emitter of the radio frequency amplification transistor Q1 is connected to the ground GND.
  • the first terminal of the first inductor L1 is connected to the power supply voltage VCC.
  • the output terminal of the output matching circuit 3 serves as the output terminal RFOUT of the radio frequency amplifier circuit 100 .
  • the circuit principle of the radio frequency amplifier circuit 100 is:
  • the input matching circuit 1 is used to match external input characteristic impedance, which is generally 50 ⁇ or 75 ⁇ .
  • the first capacitor C1 serves as a DC blocking capacitor for isolating DC signals.
  • the bias circuit 2 is used to provide voltage to the base of the radio frequency amplification transistor Q1.
  • the radio frequency amplification transistor Q1 is used to amplify signals.
  • the radio frequency amplification transistor Q1 is an NPN bipolar transistor.
  • the first inductor L1 serves as a choke inductor to prevent the radio frequency signal output by the collector of the radio frequency amplification transistor Q1 from leaking to the power supply voltage VCC;
  • the output matching circuit 3 is used to match the characteristic impedance of the output load, which is generally 50 ⁇ or 75 ⁇ .
  • the low-pass filter 4 filters lower frequencies.
  • the low-pass filter 4 is beneficial to the stability of the operating frequency range of the radio frequency amplifier circuit 100.
  • the low-pass filter 4 needs to be consistent with the stability of the radio frequency amplifier circuit 100.
  • the network modules 5 work together to act on the circuit.
  • the second inductor L2 is an inductor with adjustable parameters
  • the second capacitor C2 is a capacitor with adjustable parameters.
  • the device parameters of the low-pass filter 4 are adjustable, which is beneficial to adjusting the low-frequency filtering effect.
  • the stable network module 5 is used to make the circuit unconditionally stable when the frequency is low.
  • both the first resistor R1 and the second resistor R2 are resistors with adjustable parameters.
  • the reference of the first resistor R1 and the second resistor R2 of the stable network module 5 is adjustable, which is helpful for designers to realize the circuit design by adjusting the resistance values of the first resistor R1 and the second resistor R2. stability.
  • the low-pass filter 4 of the radio frequency amplifier circuit 100 needs to cooperate with the stable network module 5 to realize the operation of the radio frequency amplifier circuit. Unconditional stability over the entire operating frequency range.
  • S-parameter matching is generally used to maximize gain and gain flatness. These S-parameter data will also be used to develop matching network-related circuits to solve the stability problem of RF amplifier circuits.
  • the RF amplifier circuit 100 uses basic S-parameters, models, and resistor stability techniques during the design process to help avoid device instability, thereby enhancing circuit stability.
  • Stability refers to the ability of the RF amplifier circuit 100 to withstand potential spurious oscillations. Oscillations can be a full-power, large-signal problem, or they can be hidden spectrum problems that go unnoticed without proper analysis. Even unwanted signals outside the expected frequency range can cause system oscillation and degraded gain performance.
  • Stability can be divided into two types: One type of stability is conditional stability.
  • the RF amplifier circuit 100 is designed to remain stable when the input and output present the expected characteristic impedance Z0 (50 ⁇ or 75 ⁇ ), but may be subject to oscillation due to other input or output impedances (the input or output port shows negative impedance).
  • Another type of stability is unconditional stability. The system remains stable at any possible positive real part impedance within the Smith chart. Any system design encountering negative real part impedance (other than the Smith chart) , oscillation will occur. In general, if a system is defined to be unconditionally stable, then it will be stable at all frequencies and at all positive real impedances.
  • mu_prime ⁇ 1-
  • S-parameter data can be used to design a matching network to obtain the stability of the radio frequency amplifier circuit 100.
  • parameter k, parameter b and parameter mu_prime can be calculated using the S parameters of the device.
  • Figure 3 is a graph showing the relationship between the stability measurement value and frequency of a radio frequency amplifier circuit in the related art.
  • Figure 3 shows the values of parameter k, parameter b and parameter mu_prime of the stability coefficient.
  • curve A1 is parameter b.
  • Curve A2 is the parameter mu_prime.
  • Curve A3 is parameter k. It can be seen that the stability measurement value b>0 and the stability coefficient k>1.
  • the stability measurement parameters show a clear turning point. This is the frequency of transition between conditionally and unconditionally stable regions.
  • Figure 4 is a Smith chart of the S11 parameters obtained from the circuit simulation of the related art radio frequency amplifier circuit.
  • Figure 5 shows a radio frequency amplifier of related technology.
  • Figure 6 is a Smith chart of S21 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art.
  • Figure 7 is a Smith chart of S22 parameters obtained from circuit simulation of a radio frequency amplifier circuit in the related art. S11 and S22 are displayed on the Smith chart, and the polar area chart is used to display S21 and S12.
  • Figure 8 is an input stability circle obtained by circuit simulation of a radio frequency amplifier circuit in the related art.
  • Figure 9 is an output stability circle obtained by circuit simulation of a radio frequency amplifier circuit in the related art. .
  • each point on the stability circle represents a ⁇ s value. According to the following formula, each value can be derived as A value of ⁇ out equal to 1.
  • the stability network module 5 is used, that is, the first resistor R1 and the second resistor R2 are used to form Match resistors to increase circuit stability.
  • FIG. 10 is a graph showing the relationship between the stability measurement value and frequency of the radio frequency amplifier circuit 100 according to the embodiment of the present invention.
  • Figure 10 shows the values of parameter k, parameter b and parameter mu_prime of the stability coefficient.
  • curve B1 is parameter b.
  • song Line B2 is the parameter mu_prime.
  • Curve B3 is parameter k. It can be seen that the stability measurement value b>0 and the stability coefficient k>1.
  • the stability measurement parameter shows an obvious turning point.
  • the conversion frequency of the radio frequency amplifier circuit 100 of the embodiment of the present invention is 155.0 MHz is lower in frequency.
  • the low-pass filter 4 is beneficial to broadening the frequency working range of the radio frequency amplifier circuit 100 according to the embodiment of the present invention.
  • FIG. 11 is an input stability circle obtained by circuit simulation of the radio frequency amplifier circuit 100 according to the embodiment of the present invention.
  • the input matching circuit 1 of the radio frequency amplifier circuit 100 in the embodiment of the present invention is configured by adding a first resistor R1 in series and a second resistor R2 in parallel.
  • the resistance values of the first resistor R1 and the second resistor R2 can be adjusted to achieve unconditional stability of the radio frequency amplifier circuit 100.
  • the second inductor L2 and the second capacitor C2 form the low-pass filter 4 so that the radio frequency amplifier circuit 100 has unconditional stability in the entire frequency range.
  • FIG. 12 is an output stability circle obtained by circuit simulation of the radio frequency amplifier circuit 100 according to the embodiment of the present invention.
  • the stability network module 5 in the radio frequency amplifier circuit 100, in the source and load planes of the output stability circle, the stability circles now fall outside the Smith chart, so that the radio frequency amplifier circuit 100 is stable in the entire frequency range. Has unconditional stability.
  • An embodiment of the present invention also provides a radio frequency chip.
  • the radio frequency chip includes the radio frequency amplifier circuit 100 .
  • the radio frequency amplifier circuit and radio frequency chip of the present invention add a low-pass filter and a stabilizing network module to the circuit.
  • the input end of the input matching circuit sequentially passes through the first capacitor, the low-pass filter and the stabilizing network module.
  • the network module is then connected to the base of the radio frequency amplification transistor.
  • the first capacitor serves as a DC blocking capacitor
  • the low-pass filter includes a second inductor and a second capacitor
  • the stabilizing network module includes a first resistor and a second resistor.
  • Input signals with frequencies lower than the preset value pass through the low-pass filter
  • unconditional stability is achieved by the first resistor and the second resistor of the stabilizing network module, so that the radio frequency amplifier circuit has unconditional stability in the entire operating frequency range, thereby realizing the radio frequency amplifier of the present invention.
  • the circuit and radio frequency chip circuit have good stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本实用新型提供了一种射频放大器电路和射频芯片,射频放大器电路包括输入匹配电路、第一电容、偏置电路、射频放大晶体管、第一电感、输出匹配电路、低通滤波器以及稳定网络模块,所述低通滤波器包括第二电感和第二电容;所述稳定网络模块包括第一电阻和第二电阻。与相关技术相比,采用本实用新型的射频放大器电路和射频芯片的电路稳定性好。

Description

射频放大器电路和射频芯片 技术领域
本实用新型涉及放大器电路领域,尤其涉及一种射频放大器电路和射频芯片。
背景技术
随着人类进入信息化时代,无线通信技术有了飞速发展,从手机,无线局域网,蓝牙等已成为社会生活和发展不可或缺的一部分。无线通信技术的进步离不开射频电路和微波技术的发展。目前,在无线收发系统中,射频放大器是重要的组成部分之一。
相关技术的射频放大器电路包括输入匹配电路、隔直电容、偏置电路、射频放大晶体管、扼流电感以及输出匹配电路。如图1所示的射频放大器电路为相关技术中常用的一种射频放大器电路。其中,所述射频放大器电路包括输入匹配电路U1、隔直电容C、偏置电路U2、射频放大晶体管Q、扼流电感L以及输出匹配电路U3。所述射频放大器电路的连接关系为:所述输入匹配电路U1的输入端作为所述射频放大器电路的输入端RFIN,所述输入匹配电路U1的输出端连接至所述隔直电容C的第一端;所述隔直电容C的第二端分别连接至所述偏置电路U2的输出端和所述射频放大晶体管Q的基极;所述射频放大晶体管Q的集电极分别连接至所述扼流电感L的第二端和所述输出匹配电路U3的输入端,所述射频放大晶体管Q的发射极连接至接地;所述扼流电感L的第一端连接至电源电压VCC;所述输出匹配电路U3的输出端作为所述射频放大器电路的输出端RFOUT。其中,所述偏置电路U2用于提供给所述射频放大器电路的基极电压。
然而,电路稳定性是指射频放大器电路抵抗潜在的杂散振荡的能力。振荡可能是全功率大信号问题,也可能是未经正确分析,无法觉察的隐蔽频谱问题。甚至是预期频率范围以外的无用信号,都可能导致系统振荡和增益性能下降。相关技术的射频放大器电路 在低频时,一般约为频率为1.85GHz时,稳定性测量参数显示有一个明显的转折点。频率为1.85GHz是有条件和无条件保持稳定区域之间的转换频率。频率高于1.85GHz时,射频放大器电路无条件保持稳定;频率低于1.85GHz频率时,射频放大器电路有条件保持稳定。因此,如何在频率低于转换频率时,频放大器电路实现无条件保持稳定,从而使得所述射频放大器电路在整个工作的频率范围内都具有无条件稳定性是一个需要解决的技术问题。
因此,实有必要提供一种新的射频放大器电路和射频芯片解决上述问题。
实用新型内容
针对以上现有技术的不足,本实用新型提出一种电路稳定性好的射频放大器电路和射频芯片。
为了解决上述技术问题,第一方面,本实用新型的实施例提供了一种射频放大器电路,其包括输入匹配电路、第一电容、偏置电路、射频放大晶体管、第一电感、输出匹配电路、低通滤波器以及稳定网络模块,所述低通滤波器包括第二电感和第二电容;所述稳定网络模块包括第一电阻和第二电阻;所述输入匹配电路的输入端作为所述射频放大器电路的输入端,所述输入匹配电路的输出端连接至所述第一电容的第一端;所述第一电容的第二端分别连接至所述第二电感的第一端和所述第一电阻的第一端;所述偏置电路的输出端分别连接至所述第二电感的第二端和所述第二电容的第一端,所述第二电容的第二端连接至接地;所述第一电阻的第二端分别连接至所述射频放大晶体管的基极和所述第二电阻的第一端,所述第二电阻的第二端连接至接地;所述射频放大晶体管的集电极分别连接至所述第一电感的第二端和所述输出匹配电路的输入端,所述射频放大晶体管的发射极连接至接地;所述第一电感的第一端连接至电源电压;所述输出匹配电路的输出端作为所述射频放大器电路的输出端。
优选的,所述第一电阻和所述第二电阻均为可调参数的电阻。
优选的,所述射频放大晶体管为NPN型双极性晶体管。
优选的,所述第二电感为可调参数的电感,所述第二电容为可调参数的电容。
第二方面,本实用新型的实施例还提供了一种射频芯片,所述射频芯片包括如本实用新型的实施例提供上述的射频放大器电路。
与相关技术相比,本实用新型的射频放大器电路和射频芯片通过在电路上增加低通滤波器和稳定网络模块,所述输入匹配电路的输入端依次通过第一电容、低通滤波器和稳定网络模块后连接至所述射频放大晶体管的基极。其中,所述第一电容作为隔直电容;所述低通滤波器包括第二电感和第二电容;所述稳定网络模块包括第一电阻和第二电阻。频率低于预设值的输入信号通过所述低通滤波器后,由所述稳定网络模块的第一电阻和第二电阻实现无条件稳定性,从而使得所述射频放大器电路在整个工作的频率范围内都具有无条件稳定性,从而实现本实用新型的射频放大器电路和射频芯片电路稳定性好。
附图说明
下面结合附图详细说明本实用新型。通过结合以下附图所作的详细描述,本实用新型的上述或其他方面的内容将变得更清楚和更容易理解。附图中,
图1为相关技术的射频放大器电路的电路结构图;
图2为本实用新型实施例的射频放大器电路的电路结构图;
图3为相关技术的射频放大器电路的稳定性测量值与频率关系曲线图;
图4为相关技术的射频放大器电路的电路仿真得出的S11参数的史密斯圆图;
图5为相关技术的射频放大器电路的电路仿真得出的S12参数的史密斯圆图;
图6为相关技术的射频放大器电路的电路仿真得出的S21参数的史密斯圆图;
图7为相关技术的射频放大器电路的电路仿真得出的S22参数的史密斯圆图;
图8为相关技术的射频放大器电路的电路仿真得出的输入稳定性圈;
图9为相关技术的射频放大器电路的电路仿真得出的输出稳定性圈;
图10为本实用新型实施例的射频放大器电路的稳定性测量值与频率关系曲线图;
图11为本实用新型实施例的射频放大器电路的电路仿真得出的输入稳定性圈;
图12为本实用新型实施例的射频放大器电路的电路仿真得出的输出稳定性圈。
具体实施方式
下面结合附图详细说明本实用新型的具体实施方式。
在此记载的具体实施方式/实施例为本实用新型的特定的具体实施方式,用于说明本实用新型的构思,均是解释性和示例性的,不应解释为对本实用新型实施方式及本实用新型范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本实用新型的保护范围之内。
本实用新型提供一种射频放大器电路100。
请参考图2所示,图2为本实用新型实施例的射频放大器电路100的电路结构图。
所述射频放大器电路100包括输入匹配电路1、第一电容C1、偏置电路2、射频放大晶体管Q1、第一电感L1、输出匹配电路3、低通滤波器4以及稳定网络模块5。
所述低通滤波器4包括第二电感L2和第二电容C2。
所述稳定网络模块5包括第一电阻R1和第二电阻R2。
所述射频放大器电路100的电路连接关系为:
所述输入匹配电路1的输入端作为所述射频放大器电路100的输入端RFIN。所述输入匹配电路1的输出端连接至所述第一电容C1的第一端。
所述第一电容C1的第二端分别连接至所述第二电感L2的第一端和所述第一电阻R1的第一端。
所述偏置电路2的输出端分别连接至所述第二电感L2的第二端和所述第二电容C2的第一端。所述第二电容C2的第二端连接至接地GND。
所述第一电阻R1的第二端分别连接至所述射频放大晶体管Q1的基极和所述第二电阻R2的第一端,所述第二电阻R2的第二端连接至接地GND。
所述射频放大晶体管Q1的集电极分别连接至所述第一电感L1的第二端和所述输出匹配电路3的输入端。所述射频放大晶体管Q1的发射极连接至接地GND。
所述第一电感L1的第一端连接至电源电压VCC。
所述输出匹配电路3的输出端作为所述射频放大器电路100的输出端RFOUT。
所述射频放大器电路100的电路原理为:
所述输入匹配电路1用于将外部的输入特性阻抗进行匹配,输入特性阻抗一般为50Ω或75Ω。
所述第一电容C1作为隔直电容,用于隔离直流信号。
所述偏置电路2用于向所述射频放大晶体管Q1的基极提供电压。
所述射频放大晶体管Q1用于放大信号。本实施例中,所述射频放大晶体管Q1为NPN型双极性晶体管。
所述第一电感L1作为扼流电感,用于防止所述射频放大晶体管Q1的集电极输出的射频信号泄露到电源电压VCC;
所述输出匹配电路3用于与输出负载的特性阻抗进行匹配,输出负载的特性阻抗一般为50Ω或75Ω。
所述低通滤波器4将较低的频率进行滤波,所述低通滤波器4有利于所述射频放大器电路100的工作频率范围的稳定性,所述低通滤波器4需要与所述稳定网络模块5共同进行对电路进行作用。本实施例中,所述第二电感L2为可调参数的电感,所述第二电容C2为可调参数的电容。所述低通滤波器4的器件参数可调,有利于调整低频的滤波效果。
所述稳定网络模块5用于在频率较低时使得电路达到无条件保持稳定。本实施例中,所述第一电阻R1和所述第二电阻R2均为可调参数的电阻。所述稳定网络模块5的所述第一电阻R1和所述第二电阻R2的参考可调,有利于设计者通过调整所述第一电阻R1和所述第二电阻R2的电阻值实现电路的稳定性。
以下通过所述射频放大器电路100与相关技术的射频放大器电路进行对比说明:所述射频放大器电路100的所述低通滤波器4需要与所述稳定网络模块5配合共同实现所述射频放大器电路在整个工作的频率范围内都具有无条件稳定性。
在简单的线性射频/微波放大器设计中,一般利用S参数匹配使增益和增益平坦度最大。同样也会利用这些S参数数据来开发匹配网络相关的电路,以解决射频放大器电路的稳定性问题。所述射频放大器电路100在设计过程中使用基本的S参数、模型和电阻稳定性技术来帮助避免设备不稳定,从而增强电路稳定性。
稳定性是指所述射频放大器电路100抵抗潜在的杂散振荡的能力。振荡可能是全功率大信号问题,也可能是未经正确分析,无法觉察的隐蔽频谱问题。甚至是预期频率范围以外的无用信号,都可能导致系统振荡和增益性能下降。
稳定性可以分为两种类型:一种稳定性类型是有条件的稳定性。所述射频放大器电路100设计时在输入和输出呈现预期的特性阻抗Z0(50Ω或75Ω)时保持稳定,但可能因为其他输入或输出阻抗而受到振荡(输入或输出端口显示负阻抗)。另一种稳定性类型无条件的稳定性。在史密斯圆图内任何可能的正实部阻抗下,系统都保持稳定。任何系统设计在遭遇负实部阻抗(史密斯圆图以外) 时,都会发生振荡。一般情况下,如果系统被定义为无条件保持稳定,那么它在所有频率和所有正实部阻抗下,都能保持稳定。
为了检查无条件稳定性,本实施例中采用两个参数:参数k和参数b分别作为稳定性度量参数。参数k和参数b确定在给定偏置下引起不稳定的频率范围。这些数值由以下公式计算得出:
k={1-|S11|2-|S22|2+|S11*S22-S12*S21|2}/{2*|S12*S21|}
以及
b=1+|S11|2-|S22|2-|S11*S22-S12*S21|2
无条件稳定性用k>1和b>0表示。因此可用一个更加简洁的公式,使用参数mu-prime进行计算:
mu_prime={1-|S22|2}/{|S11-conj(S22)*Delta|+|S21*S12|}
如果mu_prime>1,表示无条件保持(线性)稳定。
如上公式所述,可利用S参数数据来设计匹配网络以获得所述射频放大器电路100的稳定性。
通过对相关技术的射频放大器电路单级非线性模型实施线性S参数分析,如图1的射频放大器电路。在图1中,参数k、参数b和参数mu_prime可以利用器件的S参数计算得出。
请参考图3所示,图3为相关技术的射频放大器电路的稳定性测量值与频率关系曲线图。
如图3显示稳定性系数的参数k、参数b和参数mu_prime的值。其中,曲线A1为参数b。曲线A2为参数mu_prime。曲线A3为参数k。可以看出,稳定性测量值b>0,稳定性系数k>1。在约1.85GHz(m1直线对应的频率)时,稳定性测量参数显示有一个明显的转折点。这是有条件和无条件保持稳定区域之间的转换频率。分析后,我们可以得出:频率高于1.85GHz时,相关技术的射频放大器电路无条件保持稳定;频率低于1.85GHz频率时,相关技术的射频放大器电路有条件保持稳定。
从图1的相关技术的射频放大器电路的电路仿真得出的S参数如图4至图7所示,图4为相关技术的射频放大器电路的电路仿真得出的S11参数的史密斯圆图。图5为相关技术的射频放大器 电路的电路仿真得出的S12参数的史密斯圆图。图6为相关技术的射频放大器电路的电路仿真得出的S21参数的史密斯圆图。图7为相关技术的射频放大器电路的电路仿真得出的S22参数的史密斯圆图。S11和S22显示在史密斯圆图中,极区图则用于显示S21和S12。
请同时参考图8至图9所示,图8为相关技术的射频放大器电路的电路仿真得出的输入稳定性圈;图9为相关技术的射频放大器电路的电路仿真得出的输出稳定性圈。
在输入和输出平面内绘制稳定性圈直观的判定是否处于稳定状态。这些圈的含义如下所述。在某个频率时,输入稳定性圈在图8和图9中的稳定性圈表示,该稳定性圈上的每个点都表示一个Γs值,按照如下公式,每个值都可以得出一个等于1的Γout值。
Γout=S22+S12*S21*{Γs/(1-S11*Γs)}
这个圈设定了Γout<1和Γout>1之间的边界,其意义在于,Γout>1对应输出端口的负阻抗,这种情况可能导致出现震荡。之后,问题变成,圈内或者圈外是否是不稳定(Γout>1)区域。在Γs=0(即50Ω点)时,根据上述公式,Γout=S22时,对所有频率下都小于1展开分析。由此,我们可以断定,圈外为稳定区域,圈内为不稳定区域。
对输出稳定性圈同理处理,公式如下:
Γin=S11+S12*S21*{ΓL/(1-S22*ΓL)}
除了此时绘制的ΓL点的圈图中,Γin=1。经过分析得出,图9中所示的圈图内部对应的是不稳定区域。
所以,当射频放大器电路无法达到无条件保持稳定的要求时(例如,在我们的示例中,频率低于1.85GHz),利用所述稳定网络模块5,即利用第一电阻R1和第二电阻R2形成匹配电阻来增加电路稳定性。
请参考图10,图10为本实用新型实施例的射频放大器电路100的稳定性测量值与频率关系曲线图。如图10显示稳定性系数的参数k、参数b和参数mu_prime的值。其中,曲线B1为参数b。曲 线B2为参数mu_prime。曲线B3为参数k。可以看出,稳定性测量值b>0,稳定性系数k>1。在约155.0MHz(m17直线对应的频率)时,稳定性测量参数显示有一个明显的转折点,与相关技术的1.85GHz的转换频率相比,本实用新型实施例的射频放大器电路100的转换频率155.0MHz的频率较低。分析后,所述低通滤波器4有利于将本实用新型实施例的射频放大器电路100的频率工作范围扩宽。
请参考图11,图11为本实用新型实施例的射频放大器电路100的电路仿真得出的输入稳定性圈。本实用新型实施例的射频放大器电路100的所述输入匹配电路1通过添加串联第一电阻R1和并联第二电阻R2置。可调整第一电阻R1和第二电阻R2的电阻值,可以实现射频放大器电路100无条件稳定性。另外,第二电感L2和第二电容C2形成了所述低通滤波器滤波4,使得射频放大器电路100在整个频率范围内都具有无条件稳定性。
请参考图12,图12为本实用新型实施例的射频放大器电路100的电路仿真得出的输出稳定性圈。在射频放大器电路100通过设置所述稳定网络模块5,在输出稳定性圈的源和负载平面中,稳定性圈现在都落在史密斯圆图之外,使得射频放大器电路100在整个频率范围内都具有无条件稳定性。
本实用新型的实施例还提供一种射频芯片。所述射频芯片包括所述射频放大器电路100。
需要指出的是,本实用新型采用的相关电路模块、电阻、电容、电感及晶体管均为本领域常用的电路模块、元器件,对应的具体的指标和参数根据实际应用进行调整,在此,不作详细赘述。
与相关技术相比,本实用新型的射频放大器电路和射频芯片通过在电路上增加低通滤波器和稳定网络模块,所述输入匹配电路的输入端依次通过第一电容、低通滤波器和稳定网络模块后连接至所述射频放大晶体管的基极。其中,所述第一电容作为隔直电容;所述低通滤波器包括第二电感和第二电容;所述稳定网络模块包括第一电阻和第二电阻。频率低于预设值的输入信号通过所述低通滤波 器后,由所述稳定网络模块的第一电阻和第二电阻实现无条件稳定性,从而使得所述射频放大器电路在整个工作的频率范围内都具有无条件稳定性,从而实现本实用新型的射频放大器电路和射频芯片电路稳定性好。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本实用新型而非限制本实用新型的范围,本领域的普通技术人员应当理解,在不脱离本实用新型的精神和范围的前提下对本实用新型进行的修改或者等同替换,均应涵盖在本实用新型的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (5)

  1. 一种射频放大器电路,其包括输入匹配电路、第一电容、偏置电路、射频放大晶体管、第一电感以及输出匹配电路,其特征在于,所述射频放大器电路还包括低通滤波器和稳定网络模块,所述低通滤波器包括第二电感和第二电容;所述稳定网络模块包括第一电阻和第二电阻;
    所述输入匹配电路的输入端作为所述射频放大器电路的输入端,所述输入匹配电路的输出端连接至所述第一电容的第一端;
    所述第一电容的第二端分别连接至所述第二电感的第一端和所述第一电阻的第一端;
    所述偏置电路的输出端分别连接至所述第二电感的第二端和所述第二电容的第一端,所述第二电容的第二端连接至接地;
    所述第一电阻的第二端分别连接至所述射频放大晶体管的基极和所述第二电阻的第一端,所述第二电阻的第二端连接至接地;
    所述射频放大晶体管的集电极分别连接至所述第一电感的第二端和所述输出匹配电路的输入端,所述射频放大晶体管的发射极连接至接地;
    所述第一电感的第一端连接至电源电压;
    所述输出匹配电路的输出端作为所述射频放大器电路的输出端。
  2. 根据权利要求1所述的射频放大器电路,其特征在于,所述第一电阻和所述第二电阻均为可调参数的电阻。
  3. 根据权利要求1所述的射频放大器电路,其特征在于,所述射频放大晶体管为NPN型双极性晶体管。
  4. 根据权利要求1所述的射频放大器电路,其特征在于,所述第二电感为可调参数的电感,所述第二电容为可调参数的电容。
  5. 一种射频芯片,其特征在于,所述射频芯片包括如权利要求1-5中任意一项所述的射频放大器电路。
PCT/CN2023/082952 2022-04-18 2023-03-22 射频放大器电路和射频芯片射频放大器电路和射频芯片 WO2023202308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220897850.6U CN219227561U (zh) 2022-04-18 2022-04-18 射频放大器电路和射频芯片
CN202220897850.6 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023202308A1 true WO2023202308A1 (zh) 2023-10-26

Family

ID=86733638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082952 WO2023202308A1 (zh) 2022-04-18 2023-03-22 射频放大器电路和射频芯片射频放大器电路和射频芯片

Country Status (2)

Country Link
CN (1) CN219227561U (zh)
WO (1) WO2023202308A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983268A (ja) * 1995-09-20 1997-03-28 Fujitsu Ltd 高周波増幅器
JPH1174740A (ja) * 1997-06-25 1999-03-16 Sanyo Electric Co Ltd 安定化回路および増幅器
CN201430573Y (zh) * 2009-07-03 2010-03-24 深圳新飞通光电子技术有限公司 稳定射频功率放大器工作电流的控制电路
CN104506143A (zh) * 2014-12-25 2015-04-08 天津大学 一种射频功率放大器高次谐波抑制电路
CN108768312A (zh) * 2018-07-23 2018-11-06 上海亮牛半导体科技有限公司 利用可调电感和改善功率放大器线性度的电路结构及方法
CN110138350A (zh) * 2019-04-30 2019-08-16 杭州中科微电子有限公司 一种带谐波抑制电路的功率放大器
US20210050824A1 (en) * 2019-08-13 2021-02-18 Richwave Technology Corp. Radio frequency amplifier circuit
CN217216506U (zh) * 2022-04-18 2022-08-16 深圳飞骧科技股份有限公司 射频放大器电路和射频芯片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983268A (ja) * 1995-09-20 1997-03-28 Fujitsu Ltd 高周波増幅器
JPH1174740A (ja) * 1997-06-25 1999-03-16 Sanyo Electric Co Ltd 安定化回路および増幅器
CN201430573Y (zh) * 2009-07-03 2010-03-24 深圳新飞通光电子技术有限公司 稳定射频功率放大器工作电流的控制电路
CN104506143A (zh) * 2014-12-25 2015-04-08 天津大学 一种射频功率放大器高次谐波抑制电路
CN108768312A (zh) * 2018-07-23 2018-11-06 上海亮牛半导体科技有限公司 利用可调电感和改善功率放大器线性度的电路结构及方法
CN110138350A (zh) * 2019-04-30 2019-08-16 杭州中科微电子有限公司 一种带谐波抑制电路的功率放大器
US20210050824A1 (en) * 2019-08-13 2021-02-18 Richwave Technology Corp. Radio frequency amplifier circuit
CN217216506U (zh) * 2022-04-18 2022-08-16 深圳飞骧科技股份有限公司 射频放大器电路和射频芯片

Also Published As

Publication number Publication date
CN219227561U (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2023202309A1 (zh) 射频放大器电路和射频芯片
Ye et al. 2.5 A 2-to-6GHz Class-AB power amplifier with 28.4% PAE in 65nm CMOS supporting 256QAM
CN109525207B (zh) 适用于5g网络的射频功率放大器
CN109560777B (zh) 一种有源偏置Cascode射频放大器
WO2023082933A1 (zh) 射频功率放大器
WO2019119879A1 (zh) 一种有效抑制手机功率放大器低频杂波的匹配电路结构及方法
CN209330069U (zh) 一种有源偏置Cascode射频放大器
WO2023078061A1 (zh) Doherty射频功率放大器
WO2023088000A1 (zh) 自适应线性偏置电路、射频功率放大器及射频芯片
WO2023078062A1 (zh) Doherty射频功率放大器
CN106487344A (zh) 一种CMOS工艺2400MHz线性功率放大器
CN107863939A (zh) 低功耗反馈型功率放大电路
WO2023061089A1 (zh) 应用于5G-Sub6G频段通信系统的射频功率放大器
WO2023082938A1 (zh) 射频功率放大器、射频芯片及无线通讯设备
Gao et al. A 1–17 GHz stacked distributed power amplifier with 19–21 dBm saturated output power in 45nm CMOS SOI technology
WO2023040238A1 (zh) 一种差分功率放大器
WO2020108176A1 (zh) 一种超宽带低噪声放大器
CN211063579U (zh) 一种x波段低噪声放大器
WO2024007727A1 (zh) 功率放大器
WO2023202308A1 (zh) 射频放大器电路和射频芯片射频放大器电路和射频芯片
KR101590605B1 (ko) 무선 송수신기용 선형 전력증폭기
WO2016101627A1 (zh) 提升射频功率放大器dpd性能的方法及装置
CN109474243B (zh) 一种超宽带低噪声放大器
WO2023093360A1 (zh) 功率放大器和射频芯片
WO2023082932A1 (zh) 低噪声放大器、相关设备及芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790969

Country of ref document: EP

Kind code of ref document: A1