WO2023202144A1 - 薄膜、电致发光器件及其制备方法 - Google Patents

薄膜、电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2023202144A1
WO2023202144A1 PCT/CN2022/142728 CN2022142728W WO2023202144A1 WO 2023202144 A1 WO2023202144 A1 WO 2023202144A1 CN 2022142728 W CN2022142728 W CN 2022142728W WO 2023202144 A1 WO2023202144 A1 WO 2023202144A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
temperature
transport layer
layer
hole transport
Prior art date
Application number
PCT/CN2022/142728
Other languages
English (en)
French (fr)
Inventor
侯文军
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2023202144A1 publication Critical patent/WO2023202144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used

Definitions

  • the present application relates to the field of electroluminescence technology, and specifically to a thin film, an electroluminescence device and a preparation method thereof.
  • QLED Quantum Dot Light Emitting Diodes
  • OLED organic light-emitting diode
  • the present application provides a thin film, an electroluminescent device and a preparation method thereof.
  • Embodiments of the present application provide a film.
  • the material of the film includes a conductive polymer and a temperature-sensitive polymer compound.
  • the temperature-sensitive polymer compound is a compound having both a hydrophilic group and a hydrophobic group in the molecule.
  • the material of the film is composed of the conductive polymer and the temperature-sensitive polymer compound.
  • the distribution of the temperature-sensitive polymer compound gradually becomes larger or smaller along the thickness direction of the film.
  • the mass fraction of the temperature-sensitive polymer compound in the film is 3 to 10% wt based on the total mass of the film.
  • the temperature response range of the temperature-sensitive polymer compound is 28 to 35°C.
  • the temperature-sensitive polymer compound is poly(N-isopropylacrylamide).
  • the conductive polymer includes a homopolymer formed from any one of aniline monomers, thiophene monomers, and fluorene monomers, or a copolymer formed from any multiple combinations. .
  • the conductive polymer is a cross-linkable polymer.
  • embodiments of the present application also provide an electroluminescent device, which includes a stacked anode, a hole transport layer, a light-emitting layer, and a cathode, wherein the hole transport layer is a thin film as described above.
  • the thickness of the hole transport layer is 10 nm to 50 nm.
  • the luminescent layer includes quantum dots, and the quantum dots are selected from one or more of single structure quantum dots and core-shell structure quantum dots.
  • the single structure quantum dots are One or more of Group II-VI compounds, Group III-V compounds and Group I-III-VI compounds are selected, and the Group II-VI compounds are selected from the group consisting of CdSe, CdS, CdTe, ZnSe, ZnS, CdTe , one or more of ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe and CdZnSTe, the III-V compound is selected from InP, InAs, GaP, GaAs , one or more of GaSb, AlN, AlP, InAsP, InNP
  • the electroluminescent device is further provided with a hole injection layer between the anode and the hole transport layer; and/or, the electroluminescent device An electron transport layer is also provided between the cathode and the light-emitting layer.
  • embodiments of the present application also provide a method for preparing an electroluminescent device, which includes the following steps:
  • an organic solution including a conductive polymer and a temperature-sensitive polymer compound. After the organic solution is placed on the anode substrate to form a film layer, the film layer is dried to obtain a hole transport layer;
  • a cathode is provided on the light-emitting layer
  • the temperature-sensitive polymer compound is a compound having both a hydrophilic group and a hydrophobic group in the molecule.
  • the organic solution is disposed on the anode substrate to form the film layer through a solution method.
  • the drying process includes a first drying process, the first drying process is a vacuum and reduced pressure drying process, and the working temperature during the vacuum and reduced pressure drying process is 35°C. ⁇ 80°C, duration is 2min ⁇ 15min.
  • the drying process also includes a second drying process, the second drying process is a high-temperature annealing process, and the operating temperature during the high-temperature annealing process is 100°C to 250°C. , the duration is 5min ⁇ 60min.
  • the mass fraction of the temperature-sensitive polymer compound in the hole transport layer is 3 to 10% wt based on the total mass of the hole transport layer.
  • the temperature response range of the temperature-sensitive polymer compound is 28 to 35°C;
  • the temperature-sensitive polymer compound is poly(N-isopropylacrylamide).
  • the conductive polymer includes a homopolymer formed from any one of aniline monomers, thiophene monomers, and fluorene monomers, or a copolymer formed from any multiple combinations. ;and / or,
  • the conductive polymer is a cross-linkable polymer.
  • a hole injection layer is provided between the anode substrate and the hole transport layer; and or an electron transport layer is provided between the cathode and the light-emitting layer.
  • Figure 1 is a schematic structural diagram of a film provided by an embodiment of the present application.
  • Figure 2 is a flow chart of a method for preparing a film provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of an electroluminescent device provided by an embodiment of the present application.
  • FIG. 4 is another structural schematic diagram of the electroluminescent device shown in FIG. 3 .
  • Figure 5 is a flow chart of a method for manufacturing an electroluminescent device provided by an embodiment of the present application.
  • one or more means one or more
  • plural means two or more.
  • “One or more”, “at least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • “at least one of a, b, or c”, or “at least one of a, b, and c” can mean: a, b, c, a-b ( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple respectively.
  • this embodiment provides a film 100.
  • the material of the film 100 includes a conductive polymer 110 and a temperature-sensitive polymer compound 120.
  • the temperature-sensitive polymer compound 120 has both hydrophilic groups and hydrophobic groups in the molecule. group compounds.
  • FIG. 1 is only a simple illustration of the mixing of various compounds in the film 100, rather than the actual structure of the film 100.
  • the above-mentioned conductive polymer is a type of polymer material with conductivity. It can be a polymer material that has conductive function itself or has conductive function after being doped with other materials. It can also be filled with composite materials, surface mixed or laminated with ordinary materials. Polymer materials and various conductive materials acquire electrical conductivity.
  • the above-mentioned conductive polymer may specifically include a homopolymer formed from any one of aniline monomers, thiophene monomers and fluorene monomers or a copolymer formed from any combination thereof.
  • the temperature-sensitive polymer compound 120 since the temperature-sensitive polymer compound 120 has both a hydrophilic group and a hydrophobic group in the molecule, it will produce a reversible conformational change between hydrophilic/hydrophobic within a temperature response range, which is specifically reflected in the temperature-sensitive polymer compound 120. When the temperature of the polymer compound 120 is higher than its temperature response range, the temperature-sensitive polymer compound will cause the surface of the film 100 to be in a hydrophobic state.
  • the temperature-sensitive polymer compound 120 when a new film is formed on the surface of the film 100 in the embodiment of the present application by solution drying, it can be used that when the temperature of the temperature-sensitive polymer compound 120 is higher than its temperature response range during the solution drying process, the temperature-sensitive polymer compound 120 will make the surface of the film 100 in a hydrophobic state, which will facilitate the film formation control of the new film, thereby ensuring the uniformity of the film formation of the new film.
  • a temperature-sensitive polymer compound can also be used to dry the emitting layer solution to form the emitting layer (especially the quantum dot emitting layer of the QLED device), so that the current
  • the surface of the hole transport layer is in a hydrophobic state, which facilitates the film formation control of the light-emitting layer, thereby ensuring the uniformity of film formation of the light-emitting layer (especially the quantum dot light-emitting layer of QLED devices).
  • the material of the film 100 is only composed of a conductive polymer 110 and a temperature-sensitive polymer compound 120, so that the film 100 is formed by mixing the two.
  • the distribution of the temperature-sensitive polymer compound 120 gradually becomes larger or smaller along the thickness direction of the film 100 , that is, in the direction shown in FIG. 1 , the distribution goes up.
  • the larger the distribution of the temperature-sensitive polymer compound 120 the smaller the distribution of the temperature-sensitive polymer compound 120 goes downwards, so that the distribution of the temperature-sensitive polymer compound 120 is mainly concentrated on the surface of the film 100 (specifically, as shown in Figure 1), so that the surface of the film 100 can be better placed in a hydrophobic state under the action of the temperature-sensitive polymer compound 120.
  • the mass fraction of the temperature-sensitive polymer compound 120 in the film 100 is 3 to 10% wt.
  • the conductive polymer 110 in the film 100 The mass fraction is 90 ⁇ 97%wt.
  • the temperature response range of the temperature-sensitive polymer compound 120 may be 28-35°C.
  • the temperature-sensitive polymer compound 120 may be poly(N-isopropylacrylamide). Since poly(N-isopropylacrylamide) has both a hydrophilic amido group and a hydrophobic isopropyl group in its molecule, it will produce a hydrophilic/hydrophobic gap in the temperature response range of 28°C to 35°C. Reversible conformational changes. That is, when the surrounding temperature is lower than the temperature response range, there is a strong hydrogen bonding force (hydrophilic force) between the amido group in the polymer chain of poly(N-isopropylacrylamide) and the surrounding water molecules.
  • the polymer chain of poly(N-isopropylacrylamide) is in an extended state and has certain hydrophilic characteristics.
  • the hydrophilic force between water molecules and amido groups weakens, and the hydrophobic force between isopropyl groups in the polymer chain of poly(N-isopropylacrylamide) can be strengthened, so that the hydrophobic interaction in the polymer chain gradually strengthens and plays a leading role, which in turn causes the polymer chains to aggregate with each other through the hydrophobic interaction to form a hydrophobic layer.
  • the polymer chain of poly(N-isopropylacrylamide) It changes from a loose coil structure to a compact colloidal particle shape, which has certain hydrophobic water properties. Since when a new film is formed by drying the solution, the operating temperature is generally higher than the temperature response range. Therefore, when a new film is formed on the surface of the film 100 by drying the solution, poly(N-isopropylacrylamide) can be used. ) During the drying process of the solution, its temperature is higher than its critical temperature, which makes the surface of the film 100 in a hydrophobic state, which facilitates the control of film formation of the new film, thereby ensuring the uniformity of film formation of the new film.
  • poly(N-isopropylacrylamide) can also be used to dry the solution in the luminescent layer to form a luminescent layer (especially the quantum dot luminescent layer of a QLED device) ), the surface of the current hole transport layer is in a hydrophobic state, which facilitates the film formation control of the luminescent layer, thereby ensuring the uniformity of the film formation of the luminescent layer (especially the quantum dot luminescent layer of the QLED device).
  • the temperature-sensitive polymer compound 120 may also be other temperature-sensitive polymer compounds whose temperature response range is close to that of poly(N-isopropylacrylamide).
  • the above-mentioned conductive polymer 110 can be a cross-linkable polymer, which means that the conductive polymer contains cross-linking groups (cross-linking groups are unreacted functional groups, that is, chain-like polymers pass through Network polymers formed by other functional groups under certain conditions can reduce the solubility of polymers in solvents and can further undergo chemical reactions under high temperature and other conditions.
  • the cross-linking groups can be double bonds, cyclobutene, or cyclic polymers. oxygen group).
  • the conductive polymer 110 is a cross-linkable polymer, which can effectively avoid the problem of interfacial miscibility in the film.
  • conductive structural units without cross-linking groups can be combined with cross-linking groups (such as double bonds, cyclobutene, or epoxy groups, etc.)
  • cross-linking groups such as double bonds, cyclobutene, or epoxy groups, etc.
  • Conductive structural units such as aniline monomers, thiophene units, or fluorene units, etc.
  • non-conductive structural units such as styrene groups or methylene groups, etc.
  • the proportion of structural units of the group in the corresponding polymer can be 1 to 5%.
  • the total thickness of the thin film 100 formed by blending the conductive polymer 110 and the temperature-sensitive polymer compound 120 can specifically range from 10 nm to 50 nm to meet the requirements for the hole transport layer of the corresponding electroluminescent device.
  • this embodiment provides a method for preparing a thin film.
  • the preparation method includes the following steps:
  • Step S110 Provide a substrate.
  • the preparation method of this embodiment is mainly used in the preparation process of the film 100 in the above embodiment. Therefore, taking the film 100 in FIG. 1 as an example, each method step of this embodiment will be described accordingly.
  • the substrate is mainly used as a carrier for preparing the film 100, so the completed film 100 shown in FIG. 1 does not show the substrate.
  • Step S120 Provide an organic solution including a conductive polymer and a temperature-sensitive polymer compound. After the organic solution is placed on the substrate to form a film layer, the film layer is dried to obtain a thin film.
  • an organic solution including a conductive polymer 110 and a temperature-sensitive polymer compound 120 is provided, and the organic solution is placed on the substrate to form a film layer.
  • the specific arrangement method may be to place the organic solution through a solution method.
  • the solution method may be spin coating, inkjet printing or slit coating to place an organic solution on the substrate to form a film layer.
  • the film layer can be dried to obtain the film 100.
  • the drying process may specifically include a first drying process and a second drying process.
  • the first drying process may specifically be a vacuum drying process under reduced pressure.
  • the working temperature during the vacuum reduced pressure drying process is 35°C to 80°C, and the duration is 2 min to 15 min.
  • the second drying treatment may specifically be a high-temperature annealing treatment.
  • the working temperature during the high-temperature annealing treatment is 100°C to 250°C, and the duration is 5min to 60min.
  • the purpose of obtaining the film 100 by arranging two drying processes is to form a prototype of the film 100 during the first drying process (in this prototype, the temperature-sensitive polymer compound 120 will be on its surface (specifically, as shown in Figure 1 The upper surface shown) is aggregated, that is, the closer to the surface, the greater the distribution of the temperature-sensitive polymer compound), and then the excess solvent in the prototype is removed during the second drying process to obtain the film 100, and the finally obtained film Within 100 , along the thickness direction of the film 100 , the distribution of the temperature-sensitive polymer compound 120 gradually becomes larger or smaller.
  • the working temperature during the vacuum reduced pressure drying process is 35°C ⁇ 80°C, which can achieve the preliminary drying treatment of the film layer at a relatively low temperature to form
  • the prototype of the thin film 100 can facilitate the film formation control of the thin film 100 and ensure the uniformity of the thin film 100.
  • the conductive polymer 110 may include a homopolymer formed from any one of aniline monomers, thiophene monomers, and fluorene monomers or a copolymer formed from any combination.
  • the above-mentioned temperature-sensitive polymer compound 120 is a compound having both a hydrophilic group and a hydrophobic group in the molecule.
  • the temperature response range of the temperature-sensitive polymer compound 120 can be 28 to 35°C.
  • the temperature-sensitive polymer compound 120 can specifically It can be poly(N-isopropylacrylamide), and based on the total mass of the film 100, the mass fraction of the temperature-sensitive polymer compound 120 in the film 100 is 3 to 10% wt.
  • the conductive polymer 110 is The mass fraction in the film 100 is 90-97%wt.
  • the total thickness of the finally prepared hole transport layer 220 can specifically range from 10 nm to 50 nm.
  • the conductive polymer 110 can be a cross-linkable polymer, that is, the polymer contains cross-linking groups, which can effectively avoid damage to the surface of the film 100 when a new film is disposed on the film 100 .
  • the temperature-sensitive polymer compound 120 of the present application Since the temperature-sensitive polymer compound 120 of the present application has both a hydrophilic group and a hydrophobic group in the molecule, it will produce a reversible conformational change between hydrophilic/hydrophobic within a temperature response range, which is specifically reflected in the temperature-sensitive high molecular compound 120.
  • the temperature-sensitive polymer compound When the temperature of the molecular compound 120 is higher than its temperature response range, the temperature-sensitive polymer compound will cause the surface of the film 100 to be in a hydrophobic state. Therefore, when a new film is formed on the surface of the film 100 prepared in the embodiment of the present application by solution drying, the temperature-sensitive polymer compound 120 can be used to cause the temperature of the temperature-sensitive polymer compound 120 to be higher than the preset temperature response range during the solution drying process.
  • the polymer compound 120 will make the surface of the film 100 in a hydrophobic state, which facilitates the control of film formation of the new film, thereby ensuring the uniformity of the film formation of the new film.
  • a temperature-sensitive polymer compound can also be used to dry the emitting layer solution to form the emitting layer (especially the quantum dot emitting layer of the QLED device), so that the current
  • the surface of the hole transport layer is in a hydrophobic state, which facilitates the film formation control of the light-emitting layer, thereby ensuring the uniformity of film formation of the light-emitting layer (especially the quantum dot light-emitting layer of QLED devices).
  • this embodiment provides an electroluminescent device.
  • the electroluminescent device 200 includes a stacked anode 210, a hole transport layer 220, a luminescent layer 230, and a cathode 240, wherein , the hole transport layer 220 can be specifically the film 100 in the above embodiment, and the thickness of the hole transport layer is 10 nm to 50 nm.
  • the electroluminescent device can be a QLED device or an OLED device.
  • the luminescent layer 230 can specifically include quantum dots, and the quantum dots are selected from the group consisting of single-structure quantum dots and core-shell One or more structural quantum dots, the single structural quantum dot is selected from one or more group II-VI compounds, III-V compounds and I-III-VI compounds, the II-VI compound One or more selected from CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdCdSeTe, CdTeS, CdZnSeS, CdCdS, CdZnSeS, CdCdS, CdSeTe, CdT
  • the core of the quantum dots with a core-shell structure is selected from any one of the above-mentioned single-structure quantum dots, and the shell material of the quantum dots with the core-shell structure is selected from the group consisting of CdS, CdTe, CdSeTe, CdZnSe, CdZnS, CdSeS, ZnSe, and ZnSeS. and one or more of ZnS.
  • the hole transport layer 220 of the electroluminescent device 200 in the embodiment of the present application uses the above-mentioned film 100, and the temperature-sensitive polymer compound can be dried in the emitting layer solution to form the emitting layer 230 (especially QLED devices) (quantum dot light-emitting layer), the surface of the current hole transport layer 220 is in a hydrophobic state, which facilitates the film formation control of the light-emitting layer 230, thereby ensuring the stability of the light-emitting layer 230 (especially the quantum dot light-emitting layer of the QLED device). Film formation uniformity.
  • the electroluminescent device 200 may further be provided with a hole injection layer 250 between the anode 210 and the hole transport layer 220 ; and or, the electroluminescent device 200 may be provided with a hole injection layer 250 between the cathode 240 and the hole transport layer 220 .
  • An electron transport layer 260 may also be provided between the layers 230 to realize the basic light-emitting function of the electroluminescent device 200.
  • this embodiment provides a display screen including a plurality of pixels, each pixel being the above-mentioned electroluminescent device 200.
  • the electroluminescent device 200 When used for display, it will place higher requirements on the film formation uniformity of the luminescent layer 230 to ensure the display effect of the display screen.
  • the pixels of the display screen of the embodiment of the present application adopt the above-mentioned electroluminescent device, and its hole transport layer 220 can use a temperature-sensitive polymer compound to be dried in the luminescent layer solution to form the luminescent layer 230 (especially the quantum dots of the QLED device) (emitting layer), the surface of the current hole transport layer 220 is in a hydrophobic state, which facilitates the film formation control of the luminescent layer 230, thereby ensuring uniform film formation of the luminescent layer 230 (especially the quantum dot luminescent layer of the QLED device) performance, thereby ensuring the display effect of this display.
  • this embodiment provides a method for preparing an electroluminescent device.
  • the preparation method specifically includes the following steps:
  • Step S210 Provide an anode substrate.
  • the preparation method of this embodiment is mainly used in the preparation process of the electroluminescent device in the above embodiment. Therefore, taking the electroluminescent device 200 in FIG. 3 as an example, each method step of this embodiment will be described accordingly.
  • an anode substrate is provided.
  • the anode substrate can be a substrate with an anode 210 evaporated or sputtered.
  • the anode can be ITO, IZO, AZO, Conductive transparent oxides such as IGZO
  • the anode when the prepared quantum dot electroluminescent device has a top-emission structure, can also be metals such as Ag, Au, Al, Mg, and metal alloys.
  • Step S220 Provide an organic solution including a conductive polymer and a temperature-sensitive polymer compound. After the organic solution is placed on the anode substrate to form a film layer, the film layer is dried to obtain a hole transport layer.
  • an organic solution including a conductive polymer and a temperature-sensitive polymer compound is provided, and the organic solution is placed on the anode 210 of the anode substrate to form a film layer.
  • the specific arrangement method may be a solution method.
  • the organic solution is disposed on the anode 210 of the anode substrate to form a film layer.
  • the above solution method may specifically be spin coating, inkjet printing or slit coating to dispose the organic solution on the substrate to form a film layer.
  • the film layer can be dried to obtain the hole transport layer 220.
  • the drying process may specifically include a first drying process and a second drying process.
  • the first drying process may specifically be a vacuum drying process under reduced pressure.
  • the working temperature during the vacuum reduced pressure drying process is 35°C to 80°C, and the duration is 2 min to 15 min.
  • the second drying treatment may specifically be a high-temperature annealing treatment.
  • the working temperature during the high-temperature annealing treatment is 100°C to 250°C, and the duration is 5min to 60min.
  • the purpose of obtaining the hole transport layer 220 by arranging two drying processes here is to form a prototype of the hole transport layer 220 during the first drying process (in this prototype, the temperature-sensitive polymer compound 120 will be on its surface.
  • the distribution of the temperature-sensitive polymer compound gradually becomes larger or smaller along the thickness direction of the hole transport layer 220.
  • the working temperature during the vacuum reduced pressure drying process is 35°C ⁇ 80°C, which can achieve the preliminary drying treatment of the film layer at a relatively low temperature to form
  • the prototype of the hole transport layer 220 which can facilitate the film formation control of the hole transport layer 220, ensure the uniformity of the film formation of the hole transport layer 220, and avoid excessively high temperatures in the process to bring heat to the temperature-sensitive polymer compound. adverse effects.
  • the conductive polymer may include a homopolymer formed from any one of aniline monomers, thiophene monomers, and fluorene monomers, or a copolymer formed from any combination thereof.
  • the above-mentioned temperature-sensitive polymer compound is a compound having both a hydrophilic group and a hydrophobic group in the molecule.
  • the temperature response range of the temperature-sensitive polymer compound can be specifically 28-35°C.
  • the temperature-sensitive polymer compound can specifically be a polymer. (N-isopropylacrylamide), and based on the total mass of the film 100, the mass fraction of the temperature-sensitive polymer compound in the hole transport layer 220 is 3 to 10% wt.
  • the conductive polymer is in the hole
  • the mass fraction in the transmission layer 220 is 90 to 97%wt.
  • the total thickness of the finally prepared hole transport layer 220 can specifically range from 10 nm to 50 nm.
  • the conductive polymer can be a cross-linkable polymer, that is, the polymer contains cross-linking groups, which can effectively avoid the damage to the hole transport layer when the light-emitting layer 230 is disposed on the hole transport layer 220. 220 surface causing damage.
  • Step S230 Provide a light-emitting layer on the hole transport layer.
  • the luminescent layer 230 is disposed on the hole transport layer 220 .
  • a compound solution containing the luminescent layer material can be inkjet printed on the hole transport layer 220 .
  • the hole transport layer 220 has The temperature-sensitive polymer compound may specifically be poly(N-isopropylacrylamide), the mass fraction of the poly(N-isopropylacrylamide) may be 3 to 10% wt, and the poly(N-isopropyl acrylamide) Acrylamide) has a temperature response range of 28°C to 35°C. When the temperature response range is higher than the temperature response range, the surface of the hole transport layer 220 can be placed in a hydrophobic state.
  • the temperature during vacuum drying is 35-80°C, and the temperature during baking drying is 80-180°C, both of which are higher than this. critical temperature.
  • the above-mentioned temperature-sensitive polymer compound can make the surface of the hole transport layer 220 in a hydrophobic state, which facilitates the film formation control of the light-emitting layer 230 (especially the quantum dot light-emitting layer of the QLED device), thereby ensuring that the light-emitting layer 230 (especially the quantum dot light-emitting layer of QLED devices) film formation uniformity.
  • the above-mentioned light-emitting layer material may specifically include quantum dots.
  • the quantum dots may be selected from one or more of single-structure quantum dots and core-shell structure quantum dots.
  • the single-structure quantum dots may be selected from the group consisting of single-structure quantum dots and core-shell structure quantum dots.
  • the Group II-VI compound is selected from the group consisting of CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, One or more of CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeS, CdZnSeTe and CdZnSTe
  • the III-V compound is selected from InP, InAs, GaP, GaAs, GaSb, AlN , one or more of AlP, InAsP, InNP, InNSb, GaAlNP and InAlNP
  • the Group I-III-VI compound is selected from one or more of CuInS2, CuInSe2 and AgInS2.
  • the core of the quantum dots with a core-shell structure is selected from any one of the above-mentioned single-structure quantum dots, and the shell material of the quantum dots with the core-shell structure is selected from the group consisting of CdS, CdTe, CdSeTe, CdZnSe, CdZnS, CdSeS, ZnSe, and ZnSeS. and one or more of ZnS.
  • the solvent of the above compound solution may specifically include any one of toluene, chlorobenzene, cyclohexylbenzene, or other compounds containing aromatic hydrocarbons, and the thickness of the finally prepared light-emitting layer 230 may specifically be 10 nm to 50 nm.
  • Step S240 Set a cathode on the light-emitting layer.
  • a cathode 240 is prepared on the light-emitting layer 230 .
  • the cathode 240 may be provided on the light-emitting layer 230 through an evaporation or sputtering process.
  • the cathode 240 may be a metal electrode such as Al, Ag, or Mg.
  • the thickness of the cathode 240 may be 80 nm to 150 nm.
  • the thickness of the cathode 240 may be 5 nm to 40 nm.
  • the hole transport layer 220 of the electroluminescent device prepared can use a temperature-sensitive polymer compound to be dried in the luminescent layer solution to form a luminescent layer (especially When the quantum dot light-emitting layer of the QLED device), the surface of the current hole transport layer 220 is in a hydrophobic state, which facilitates the film formation control of the light-emitting layer 230, thereby ensuring that the light-emitting layer 230 (especially the quantum dot light-emitting layer of the QLED device) ) film formation uniformity.
  • the method for preparing an electroluminescent device in this embodiment can also provide a hole injection layer 250 between the anode substrate and the hole transport layer 220 .
  • the specific process may be as follows: first, the anode substrate 210 A hole injection layer 250 is provided on the anode substrate (the specific setting process may be to inkjet-print a solution containing the hole injection material on the anode 210 of the anode substrate, and perform a baking and drying process to obtain a hole injection layer, and bake and dry it.
  • the baking temperature of the treatment is 180°C ⁇ 250°C, and the thickness of the hole injection layer can be specifically 10nm ⁇ 60nm.
  • the above hole injection materials include polythiophene, polyaniline and other conductive polymer materials and their derivatives.
  • the hole injection material can also be disposed on the anode 210 of the anode substrate by spin coating or slit coating), and then the hole injection layer 250 can be formed by the above method steps.
  • a hole transport layer 220 is provided above.
  • the method for preparing the electroluminescent device of this embodiment can also provide an electron transport layer 260 between the cathode 240 and the luminescent layer 230.
  • the electron transport layer 260 is first provided on the luminescent layer 230 (specifically
  • the setting process may be to inkjet print a solution containing the electron transport material on the light-emitting layer 230, and perform a baking and drying process to obtain the electron transport layer 260.
  • the electron transport material is a metal oxide Zn x Mgy O , where x is 0.9 and y is 0.1.
  • the baking temperature of the above baking and drying process can be 60°C to 150°C, and the thickness of the finally prepared electron transport layer 260 can be 10nm to 100nm.
  • it can also use spin coating or slit coating to place the solution containing the electron transport material on the light-emitting layer 230), and then set the cathode on the electron transport layer 260 through the above method steps. 240.
  • This embodiment provides an electroluminescent device and a preparation method thereof.
  • the electroluminescent device of this embodiment includes an anode 210, a hole injection layer 250, and a hole injection layer 250, which are stacked in sequence.
  • a hole injection layer 250 is provided on the anode 210 of the anode substrate.
  • the material of the hole injection layer 250 is polythiophene, and the thickness of the hole injection layer 250 is 40 nm;
  • the hole transport layer 220 is provided on the hole injection layer 250, specifically, a crosslinkable copolymer formed by copolymerization of an aniline monomer and an aniline monomer containing a double bond is provided, wherein the conductive polymer contains a double bond.
  • the molar ratio of aniline monomer in the copolymer is 3%) and an organic solution of a temperature-sensitive polymer compound (specifically poly(N-isopropylacrylamide)), and the organic solution is placed on the substrate to form a film
  • the film layer is sequentially subjected to vacuum decompression drying treatment (the working temperature is specifically 60°C, the duration is 10min) and high-temperature annealing treatment (the working temperature is specifically 150°C, the duration is 15min), to obtain the hole transport layer 220 , its thickness is 40nm, and based on the total mass of the hole transport layer 220, the mass fraction of poly(N-isopropylacrylamide) in the hole transport layer 220 is 10%wt;
  • a light-emitting layer 230 is provided on the hole transport layer 220.
  • the light-emitting layer 230 is specifically the quantum dot light-emitting layer of the QLED device.
  • the quantum dot material used is CdZnSe and the thickness is 40nm;
  • An electron transport layer 260 is prepared on the light-emitting layer 230.
  • the material of the electron transport layer 260 is metal oxide Zn x Mg y O, where x is 0.9 and y is 0.1.
  • the thickness of the electron transport layer 260 is 80 nm.
  • a cathode 240 is provided on the electron transport layer 260.
  • the cathode 240 is an Al cathode, and the thickness of the cathode 240 is 120 nm.
  • the film formation uniformity of the luminescent layer 230 of the electroluminescent device of this embodiment is 85%, its current efficiency at 1000 nits is 38cd/A, and its lifespan with 5% attenuation is 8000h.
  • the electroluminescent device of Embodiment 2 is different from the electroluminescent device of Embodiment 1 only in the arrangement of the hole transport layer 220 provided therein. Specifically, in the hole transport layer 220 of Embodiment 1 , based on the total mass of the hole transport layer 220, the mass fraction of poly(N-isopropylacrylamide) in the hole transport layer 220 is 10%wt, and in the hole transport layer 220 of this embodiment 2, Based on the total mass of the hole transport layer 220 , the mass fraction of poly(N-isopropylacrylamide) in the hole transport layer 220 is 5% wt.
  • the film formation uniformity of the luminescent layer 230 of the electroluminescent device of this embodiment is 84%, its current efficiency at 1000 nits is 37cd/A, and its lifespan with 5% attenuation is 7900 hours.
  • the electroluminescent device of Embodiment 3 is different from the electroluminescent device of Embodiment 1 only in the arrangement of the hole transport layer 220 provided therein. Specifically, in the hole transport layer 220 of Embodiment 1 , based on the total mass of the hole transport layer 220, the mass fraction of poly(N-isopropylacrylamide) in the hole transport layer 220 is 10%wt, and in the hole transport layer 220 of this embodiment 3, Based on the total mass of the hole transport layer 220 , the mass fraction of poly(N-isopropylacrylamide) in the hole transport layer 220 is 3% wt.
  • the film formation uniformity of the luminescent layer 230 of the electroluminescent device of this embodiment is 83%, its current efficiency at 1000 nits is 37cd/A, and its lifespan with 5% attenuation is 7800h.
  • the electroluminescent device of Embodiment 4 is different from the electroluminescent device of Embodiment 1 only in the arrangement of the hole transport layer 220 provided therein. Specifically, in the hole transport layer 220 of Embodiment 1 , based on the total mass of the hole transport layer 220, the mass fraction of poly(N-isopropylacrylamide) in the hole transport layer 220 is 10%wt, and in the hole transport layer 220 of this embodiment 4, Based on the total mass of the hole transport layer 220 , the mass fraction of poly(N-isopropylacrylamide) in the hole transport layer 220 is 1% wt.
  • the film formation uniformity of the luminescent layer 230 of the electroluminescent device of this embodiment is 76%
  • the current efficiency at 1000 nits is 36 cd/A
  • the lifespan with 5% attenuation is 7000 hours.
  • the electroluminescent device of Embodiment 5 is different from the electroluminescent device of Embodiment 1 only in the arrangement of the hole transport layer 220 provided therein.
  • the conductive polymer is specifically a cross-linkable copolymer formed by copolymerization of aniline monomer and aniline monomer containing double bonds, in which the molar ratio of aniline monomer containing double bonds in the copolymer is 3%, and in this embodiment
  • the conductive polymer in the hole transport layer 220 of Example 5 is specifically a non-crosslinked homopolymer formed of aniline monomer.
  • the film formation uniformity of the luminescent layer 230 of the electroluminescent device of this embodiment is 75%, its current efficiency at 1000 nits is 36cd/A, and its lifespan with 5% attenuation is 7000h.
  • the electroluminescent device of Comparative Example 1 is different from the electroluminescent device of Embodiment 1 only in the hole transport layer 220 provided therewith.
  • the hole transport layer 220 is provided in the following manner: during hole injection
  • the hole transport layer 220 is provided on the layer 250 by inkjet printing.
  • the material of the hole transport layer 220 is only a homopolymer formed of polyaniline.
  • the thickness of the hole transport layer 220 is 40 nm, which is the hole transport layer in Comparative Example 1.
  • the hole transport layer adopts a conventional structure that is conventionally prepared.
  • the electroluminescent device of this comparative example had a film formation uniformity of 70% of the luminescent layer, a current efficiency of 35cd/A at 1000nits, and a lifespan of 5% attenuation of 6000h.
  • Comparison between Comparative Example 1 and Examples 1-5 can illustrate that the electroluminescent device prepared by the preparation method of the embodiment of the present application has better film formation uniformity and current efficiency of the luminescent layer than the traditional electroluminescent device ( That is, device performance) and service life are greatly improved.
  • Comparison of Examples 1-5 shows that when the conductive polymer of the hole transport layer 220 is a cross-linkable polymer, the mass fraction of the temperature-sensitive polymer compound in the hole transport layer 220 is within the above-mentioned right. Within the given value range, the film formation uniformity, current efficiency (i.e. device performance) and service life of the light-emitting layer are greatly improved.
  • the light-emitting layer When the conductive polymer of the hole transport layer 220 is a non-crosslinked polymer and the mass fraction of the temperature-sensitive polymer compound in the hole transport layer 220 is not within the value range given in the above-mentioned rights, the light-emitting layer
  • the film formation uniformity, current efficiency (i.e. device performance) and service life improvement effects are all reduced to varying degrees.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开一种薄膜、电致发光器件及其制备方法,属于电致发光技术领域。本申请的薄膜的材料包括导电聚合物和温敏高分子化合物,所述温敏高分子化合物为分子内同时具有亲水基团和疏水基团的化合物。本申请能够在该薄膜的表面上通过溶液干燥形成新薄膜时,确保新薄膜的成膜均匀性。

Description

薄膜、电致发光器件及其制备方法
本申请要求于2022年04月20日在中国专利局提交的、申请号为202210419147.9、申请名称为“一种薄膜、电致发光器件、显示屏及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电致发光技术领域,具体涉及一种薄膜、电致发光器件及其制备方法。
背景技术
现有量子点电致发光(Quantum Dot Light Emitting Diodes,简称QLED)器件/有机电激光显示(Organic Light-Emitting Diode,简称OLED)器件均为有机无机复合器件,即空穴注入与传输是有机材料,电子注入与传输为无机材料。在实际喷墨打印这种结构的QLED器件/OLED器件时,我们发现无法确保发光层(尤其是QLED器件的量子点发光层)的成膜均匀性,进行影响这些QLED器件/OLED器件用于显示时的发光效果。
技术解决方案
因此,本申请提供一种薄膜、电致发光器件及其制备方法。
本申请实施例提供一种薄膜,所述薄膜的材料包括导电聚合物和温敏高分子化合物,所述温敏高分子化合物为分子内同时具有亲水基团和疏水基团的化合物。
可选的,在本申请的一些实施例中,所述薄膜的材料由所述导电聚合物和所述温敏高分子化合物组成。
可选的,在本申请的一些实施例中,所述薄膜内,沿着所述薄膜的厚度方向,所述温敏高分子化合物的分布逐渐变大或变小。
可选的,在本申请的一些实施例中,以所述薄膜的总质量计,所述温敏高分子化合物在所述薄膜中的质量分数为3~10%wt。
可选的,在本申请的一些实施例中,所述温敏高分子化合物的温度响应范围为28~35℃。
可选的,在本申请的一些实施例中,所述温敏高分子化合物为聚(N-异丙基丙烯酰胺)。
可选的,在本申请的一些实施例中,所述导电聚合物包括苯胺单体、噻吩单体以及芴类单体中的任意一种形成的均聚物或任意多种组合形成的共聚物。
可选的,在本申请的一些实施例中,所述导电聚合物为可交联的聚合物。
相应的,本申请实施例还提供一种电致发光器件,其中,包括层叠设置的阳极、空穴传输层、发光层、阴极,其中,所述空穴传输层为如上文所述的薄膜。
可选的,在本申请的一些实施例中,所述空穴传输层的厚度为10nm~50nm。
可选的,在本申请的一些实施例中,所述发光层包括量子点,所述量子点选自单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe及CdZnSTe中的一种或多种,所述III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的一种或多种,所述I-III-VI族化合物选自CuInS 2、CuInSe 2及AgInS 2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种。
可选的,在本申请的一些实施例中,所述电致发光器件在所述阳极和所述空穴传输层之间还设置有空穴注入层;和/或,所述电致发光器件在所述阴极和所述发光层之间还设置有电子传输层。
相应的,本申请实施例还提供一种电致发光器件的制备方法,其中,包括以下步骤:
提供阳极基板;
提供包括导电聚合物与温敏高分子化合物的有机溶液,将所述有机溶液设置于所述阳极基板上形成膜层后,对所述膜层进行干燥处理,得到空穴传输层;
在所述空穴传输层上设置发光层;
在所述发光层设置阴极;
其中,所述温敏高分子化合物为分子内同时具有亲水基团和疏水基团的化合物。
可选的,在本申请的一些实施例中,通过溶液法将所述有机溶液设置于所述阳极基板上形成所述膜层。
可选的,在本申请的一些实施例中,所述干燥处理包括第一干燥处理,所述第一干燥处理为真空减压干燥处理,所述真空减压干燥处理时的工作温度为35℃~80℃,持续时间为2min~15min。
可选的,在本申请的一些实施例中,所述干燥处理还包括第二干燥处理,所述第二干燥处理为高温退火处理,所述高温退火处理时的工作温度为100℃~250℃,持续时间为5min~60min。
可选的,在本申请的一些实施例中,以所述空穴传输层的总质量计,所述温敏高分子化合物在所述空穴传输层中的质量分数为3~10%wt。
可选的,在本申请的一些实施例中,所述温敏高分子化合物的温度响应范围为28~35℃;
和/或,所述温敏高分子化合物为聚(N-异丙基丙烯酰胺)。
可选的,在本申请的一些实施例中,所述导电聚合物包括苯胺单体、噻吩单体以及芴类单体中的任意一种形成的均聚物或任意多种组合形成的共聚物;和/或,
所述导电聚合物为可交联的聚合物。
可选的,在本申请的一些实施例中,还包括以下步骤:
在所述阳极基板和所述空穴传输层之间设置空穴注入层;和或,在所述阴极和所述发光层之间设置电子传输层。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的薄膜的结构示意图。
图2是本申请实施例提供的薄膜的制备方法的流程框图。
图3是本申请实施例提供的电致发光器件的结构示意图。
图4是图3所示电致发光器件的另一种结构示意图。
图5是本申请实施例提供的电致发光器件的制备方法的流程框图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。
本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,“一个或多个”是指一个或者多个,“多个”是指两个或两个以上。“一种或多种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
如图1所示,本实施例提供一种薄膜100,该薄膜100的材料包括导电聚合物110和温敏高分子化合物120,温敏高分子化合物120为分子内同时具有亲水基团和疏水基团的化合物。
需要说明的是,图1仅为薄膜100内各化合物混合的简单示意,而非薄膜100的实际结构。上述导电聚合物是具有导电性的一类聚合材料,可以是本身具有导电功能或掺杂其他材料后也具有导电功能的一种聚合物材料,也可以通过填充复合材料,表面混合或层压普通聚合物材料和各种导电材料获得导电性。上述导电聚合物具体可以包括苯胺单体、噻吩单体以及芴类单体中的任意一种形成的均聚物或任意多种组合形成的共聚物。
这样一来,由于温敏高分子化合物120的分子内同时具有亲水基团和疏水基团,其会在一温度响应范围内产生亲水/疏水间的可逆构象变化,具体体现在当温敏高分子化合物120的温度高于其温度响应范围时,温敏高分子化合物会使得该薄膜100的表面处于疏水状态。因而,当在本申请实施例的薄膜100的表面上通过溶液干燥形成新薄膜时,可利用溶液干燥过程中使得温敏高分子化合物120的温度高于其温度响应范围时,温敏高分子化合物120会使得该薄膜100的表面处于疏水状态的特性,来利于新薄膜的成膜调控,进而能够确保新薄膜的成膜均匀性。同时,当该薄膜100用作电致发光器件的空穴传输层时,亦可利用温敏高分子化合物在发光层溶液干燥形成发光层(尤其是QLED器件的量子点发光层)时,使得当前空穴传输层的表面处于疏水状态的特性,来利于发光层的成膜调控,进而确保发光层(尤其是QLED器件的量子点发光层)的成膜均匀性。
在一些示例中,如图1所示,该薄膜100的材料仅由导电聚合物110和温敏高分子化合物120组成,以通过两者混合形成该薄膜100。
在一些示例中,如图1所示,该薄膜100内,沿着薄膜100的厚度方向,温敏高分子化合物120的分布逐变大或变小,即以图1所示方向,越往上,温敏高分子化合物120的分布越大,越往下,温敏高分子化合物120的分布越小,这样可使得温敏高分子化合物120的分布主要集中在薄膜100的表面(具体可为图1所示的上表面),以便于薄膜100的表面更好地在温敏高分子化合物120的作用下,处于疏水状态。
在一些示例中,如图1所示,以薄膜100的总质量计,温敏高分子化合物120在薄膜100中的质量分数为3~10%wt,相应的,导电聚合物110在薄膜100中的质量分数为90~97%wt。
在一些实施例中,温敏高分子化合物120的温度响应范围可以为28~35℃。该温敏高分子化合物120具体可以为聚(N-异丙基丙烯酰胺)。由于聚(N-异丙基丙烯酰胺)的分子内同时具有亲水性的酰氨基和疏水性的异丙基,其在28℃~35℃的温度响应范围内会产生亲水/疏水间的可逆构象变化。即当周围的温度低于该温度响应范围时,聚(N-异丙基丙烯酰胺)的高分子链中酰氨基与周围水分子间存在着强烈的氢键作用力(亲水作用力),使高分子链与溶剂具有较好的亲和性,此时聚(N-异丙基丙烯酰胺)的高分子链呈现出伸展状态,具有一定的亲水特性。而当周围的温度高于该温度响应范围时,水分子与酰氨基之间的亲水作用力减弱,聚(N-异丙基丙烯酰胺)的高分子链中异丙基间的疏水作用力得以加强,使高分子链中的疏水作用逐渐加强并起主导作用,进而使得高分子链通过疏水作用互相聚集,形成疏水层,此时,聚(N-异丙基丙烯酰胺)的高分子链由疏松的线团结构转变为紧密的胶粒状,具有一定的疏水水特性。由于在溶液干燥形成新薄膜时,其工作温度一般都高于该温度响应范围,因而,当在该薄膜100的表面上通过溶液干燥形成新薄膜时,可利用聚(N-异丙基丙烯酰胺)在溶液干燥过程中,其温度高于其临界温度,使得薄膜100的表面处于疏水状态的特性,来利于新薄膜的成膜调控,进而能够确保新薄膜的成膜均匀性。同时,当该薄膜100用作电致发光器件的空穴传输层时,亦可利用聚(N-异丙基丙烯酰胺)在发光层溶液干燥形成发光层(尤其是QLED器件的量子点发光层)时,使得当前空穴传输层的表面处疏水状态的特性,来利于发光层的成膜调控,进而确保发光层(尤其是QLED器件的量子点发光层)的成膜均匀性。除此之外,上述温敏高分子化合物120亦可以是其它温度响应范围与聚(N-异丙基丙烯酰胺)相接近的温敏高分子化合物。
在一些示例中,上述导电聚合物110具体可为可交联的聚合物,即表明该导电聚合物内含有交联基团(交联基团就是未发生反应的官能团,即链状高分子通过其它功能团在一定条件下形成的网状聚合物,可降低高分子在溶剂的可溶性,能够在高温等条件下进一步发生化学反应,交联基团具体可以是双键、 环丁烯、或环氧基团)。由于制备双层薄膜时会有界面互溶问题,而薄膜100的材料包括导电聚合物110和温敏高分子化合物120,上述导电聚合物110为可交联的聚合物,则可有效避免在上述薄膜100上设置新薄膜时,对上述薄膜100的表面造成破坏。另外,可通过不含交联基团的导电结构单元(如苯胺单体、噻吩单元、或者芴单元等)与含有交联基团(如双键、环丁烯、或者环氧基团等)的导电结构单元(如苯胺单体、噻吩单元、或者芴单元等)或非导电结构单元(如苯乙烯基或亚甲基等)共聚形成上述的可交联的聚合物,其中含有交联基团的结构单元在相应聚合物中的占比可以为1~5%。
在一些示例中,导电聚合物110与温敏高分子化合物120共混形成薄膜100的总厚度具体可在10nm~50nm,以满足相应电致发光器件对空穴传输层的要求。
在一些实施例中,如图2所示,本实施例提供一种薄膜的制备方法,该制备方法包括以下步骤:
步骤S110:提供基板。
具体地,本实施例的制备方法主要应用于上述实施例中薄膜100的制备过程中,因而,以图1的薄膜100为例,对本实施例的各方法步骤进行相应说明。
需要说明的是,基板主要作为制备薄膜100的载体,故图1所示制作完成的薄膜100并未图示该基板。
步骤S120:提供包括导电聚合物与温敏高分子化合物的有机溶液,将有机溶液设置于基板上形成膜层后,对该膜层进行干燥处理,得到薄膜。
具体地,如图1所示,提供包括导电聚合物110与温敏高分子化合物120的有机溶液,将有机溶液设置于基板上形成膜层,其具体设置方式可以是通过溶液法将有机溶液设置于基板上形成膜层,上述溶液法具体可以是旋涂、喷墨打印或狭缝式涂布的方式将有机溶液设置于基板上形成膜层。
当形成膜层后,便可对该膜层进行干燥处理,来得到薄膜100,该干燥处理具体可包括第一干燥处理与第二干燥处理。其中,第一干燥处理具体可为真空减压干燥处理,该真空减压干燥处理时的工作温度为35℃~80℃,持续时间为2min~15min。第二干燥处理具体可为高温退火处理,该高温退火处理时的工作温度为100℃~250℃,持续时间为5min~60min。这里通过设置两次干燥处 理来得到薄膜100的目的在于,可在第一干燥处理时先形成薄膜100的雏形(在该雏形中,温敏高分子化合物120会在其表面(具体可以是图1所示的上表面)聚集,即越临近其表面,温敏高分子化合物的分布越大),再在第二干燥处理时除掉该雏形内多余的溶剂,来得到薄膜100,最终得到的薄膜100内,沿着薄膜100的厚度方向,温敏高分子化合物120的分布逐渐变大或变小。另外,由于第一干燥处理采用的是真空减压干燥处理,该真空减压干燥处理时的工作温度为35℃~80℃,即可在比较低的温度下实现膜层的初步干燥处理来形成薄膜100的雏形,这样可利于薄膜100的成膜调控,确保薄膜100的成膜均匀性。
在一些实施例中,上述导电聚合物110可以包括苯胺单体、噻吩单体以及芴类单体中的任意一种形成的均聚物或任意组合形成的共聚物。上述温敏高分子化合物120为分子内同时具有亲水基团和疏水基团的化合物,该温敏高分子化合物120的温度响应范围具体可为28~35℃,该温敏高分子化合物120具体可为聚(N-异丙基丙烯酰胺),且以薄膜100的总质量计,温敏高分子化合物120在薄膜100中的质量分数为3~10%wt,相应的,导电聚合物110在薄膜100中的质量分数为90~97%wt。最终制备出来的空穴传输层220的总厚度具体可在10nm~50nm。
同时,上述导电聚合物110具体可为可交联的聚合物,即其聚合物内含有交联基团,可有效避免在上述薄膜100上设置新薄膜时,对上述薄膜100的表面造成破坏。
由于本申请的温敏高分子化合物120的分子内同时具有亲水基团和疏水基团,其会在一温度响应范围内产生亲水/疏水间的可逆构象变化,具体体现在当温敏高分子化合物120的温度高于其温度响应范围时,温敏高分子化合物会使得该薄膜100的表面处于疏水状态。因而,当在本申请实施例制备出来的薄膜100的表面上通过溶液干燥形成新薄膜时,可利用溶液干燥过程中使得温敏高分子化合物120的温度高于预设温度响应范围时,温敏高分子化合物120会使得该薄膜100的表面处于疏水状态的特性,来利于新薄膜的成膜调控,进而能够确保新薄膜的成膜均匀性。同时,当该薄膜100用作电致发光器件的空穴传输层时,亦可利用温敏高分子化合物在发光层溶液干燥形成发光层(尤其是QLED器件的量子点发光层)时,使得当前空穴传输层的表面处于疏水状态的 特性,来利于发光层的成膜调控,进而确保发光层(尤其是QLED器件的量子点发光层)的成膜均匀性。
在一个实施例中,如图3所示,本实施例提供一种电致发光器件,该电致发光器件200包括层叠设置的阳极210、空穴传输层220、发光层230、阴极240,其中,空穴传输层220具体可为上述实施例中的薄膜100,且该空穴传输层的厚度为10nm~50nm。
需要说明的是,图3仅为电致发光器件的各层布局的简单示意,而非电致发光器件的实际结构。该电致发光器件具体可以是QLED器件,亦可以是OLED器件,当该电致发光器件为QLED器件时,该发光层230具体可包括量子点,该量子点选自单一结构量子点及核壳结构量子点中的一种或多种,单一结构量子点选自II-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,该II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe及CdZnSTe中的一种或多种,该III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的一种或多种,该I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的一种或多种。该核壳结构的量子点的核选自上述单一结构量子点中的任意一种,该核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种。
这样一来,本申请实施例的电致发光器件200,其空穴传输层220由于选用了上述的薄膜100,可利用温敏高分子化合物在发光层溶液干燥形成发光层230(尤其是QLED器件的量子点发光层)时,使得当前空穴传输层220的表面处于疏水状态的特性,来利于发光层230的成膜调控,进而确保发光层230(尤其是QLED器件的量子点发光层)的成膜均匀性。
在一些示例中,如图4所示,电致发光器件200在阳极210和空穴传输层220之间还可以设置有空穴注入层250;和或,电致发光器件200在阴极240和发光层230之间还可以设置有电子传输层260,以实现电致发光器件200的基本发光功能。
在一个实施例中,本实施例提供一种显示屏,包括若干像素,每一像素为 上述的电致发光器件200。由于电致发光器件200用于显示时,其会对发光层230的成膜均匀性提出更高的要求,以确保本显示屏的显示效果。因而,本申请实施例的显示屏的像素采用了上述的电致发光器件,其空穴传输层220可利用温敏高分子化合物在发光层溶液干燥形成发光层230(尤其是QLED器件的量子点发光层)时,使得当前空穴传输层220的表面处于疏水状态的特性,来利于发光层230的成膜调控,进而确保发光层230(尤其是QLED器件的量子点发光层)的成膜均匀性,从而,确保本显示屏的显示效果。
在一个实施例中,如图5所示,本实施例提供一种电致发光器件的制备方法,该制备方法具体包括以下步骤:
步骤S210:提供阳极基板。
具体地,本实施例的制备方法主要应用于上述实施例中电致发光器件的制备过程中,因而,以图3的电致发光器件200为例,对本实施例的各方法步骤进行相应说明。
如图3所示,提供阳极基板,该阳极基板具体可以是蒸镀或溅射有阳极210的基板,当制备的电致发光器件为底发射结构时,该阳极可以是ITO、IZO、AZO、IGZO等导电透明氧化物,当制备的量子点电致发光器件为顶发射结构时,该阳极也可以是Ag、Au、Al、Mg等金属以及金属合金。
步骤S220:提供包括导电聚合物与温敏高分子化合物的有机溶液,将有机溶液设置于阳极基板上形成膜层后,对膜层进行干燥处理,得到空穴传输层。
具体地,如图3所示,提供包括导电聚合物与温敏高分子化合物的有机溶液,将该有机溶液设置于阳极基板的阳极210上形成膜层,其具体设置方式可以是通过溶液法的方式将有机溶液设置于阳极基板的阳极210上形成膜层,上述溶液法具体可以是旋涂、喷墨打印或狭缝式涂布的方式将有机溶液设置于基板上形成膜层。
当形成膜层后,便可对该膜层进行干燥处理,来得到空穴传输层220,该干燥处理具体可包括第一干燥处理与第二干燥处理。其中,第一干燥处理具体可为真空减压干燥处理,该真空减压干燥处理时的工作温度为35℃~80℃,持续时间为2min~15min。第二干燥处理具体可为高温退火处理,该高温退火处理时的工作温度为100℃~250℃,持续时间为5min~60min。这里通过设置两次 干燥处理来得到空穴传输层220的目的在于,可在第一干燥处理时先形成空穴传输层220的雏形(在该雏形中,温敏高分子化合物120会在其表面(具体可以是图3所示的上表面)聚集,即越临近其表面,温敏高分子化合物的分布越大),再在第二干燥处理时除掉该雏形内多余的溶剂,来得到空穴传输层220,最终得到的空穴传输层220内,沿着空穴传输层220的厚度方向,温敏高分子化合物的分布逐渐变大或变小。另外,由于第一干燥处理采用的是真空减压干燥处理,该真空减压干燥处理时的工作温度为35℃~80℃,即可在比较低的温度下实现膜层的初步干燥处理来形成空穴传输层220的雏形,这样可利于空穴传输层220的成膜调控,确保空穴传输层220的成膜均匀性,且可避免此过程中过高的温度给温敏高分子化合物带来的不良影响。
在一些实施例中,上述导电聚合物可以包括苯胺单体、噻吩单体以及芴类单体中的任意一种形成的均聚物或任意多种组合形成的共聚物。上述温敏高分子化合物为分子内同时具有亲水基团和疏水基团的化合物,该温敏高分子化合物的温度响应范围具体可为28~35℃,该温敏高分子化合物具体可为聚(N-异丙基丙烯酰胺),且以薄膜100的总质量计,温敏高分子化合物在空穴传输层220中的质量分数为3~10%wt,相应的,导电聚合物在空穴传输层220中的质量分数为90~97%wt。最终制备出来的空穴传输层220的总厚度具体可在10nm~50nm。
同时,上述导电聚合物具体可为可交联的聚合物,即其聚合物内含有交联基团,可有效避免在上述空穴传输层220上设置发光层230时,对上述空穴传输层220的表面造成破坏。
步骤S230:在空穴传输层上设置发光层。
具体地,如图3所示,在空穴传输层220上设置发光层230,具体可以是将含有发光层材料的化合物溶液喷墨打印在空穴传输层220上,由于空穴传输层220的温敏高分子化合物具体可为聚(N-异丙基丙烯酰胺),该聚(N-异丙基丙烯酰胺)的质量分数可以为3~10%wt,且该聚(N-异丙基丙烯酰胺)以28℃~35℃作为温度响应范围,当高于该温度响应范围,可使得空穴传输层220的表面处于对疏水状态。
这样一来,当此时进行真空减压干燥处理或烘烤干燥处理时,真空减压干 燥时的温度为35~80℃,烘烤干燥处理时的温度为80-180℃,均高于该临界温度,此时,上述温敏高分子化合物可使得空穴传输层220的表面处于疏水状态,以利于发光层230(尤其是QLED器件的量子点发光层)的成膜调控,进而确保发光层230(尤其是QLED器件的量子点发光层)的成膜均匀性。
另外,上述电致发光器件为QLED器件时,上述发光层材料具体可包括量子点,该量子点选自单一结构量子点及核壳结构量子点中的一种或多种,单一结构量子点选自II-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,该II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe及CdZnSTe中的一种或多种,该III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的一种或多种,该I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的一种或多种。该核壳结构的量子点的核选自上述单一结构量子点中的任意一种,该核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种。上述化合物溶液的溶剂具体可包括甲苯、氯苯以及环己基苯中的任意一种,或者其它含有芳香烃的化合物,最终制备出来的发光层230的厚度具体可为10nm~50nm。
步骤S240:在发光层设置阴极。
具体地,如图3所示,在发光层230上制备阴极240,具体可以是通过蒸镀或溅射工艺在发光层230上设置阴极240,阴极240可以是Al、Ag、Mg等金属电极。当制备的电致发光器件为底发射结构时,该阴极240的厚度可以为80nm~150nm,当制备的电致发光器件为顶发射结构时,该阴极240的厚度可以为5nm~40nm。
这样一来,本申请实施例的电致发光器件的制备方法,其制备出来的电致发光器件,其空穴传输层220可利用温敏高分子化合物在发光层溶液干燥形成发光层(尤其是QLED器件的量子点发光层)时,使得当前空穴传输层220的表面处于疏水状态的特性,来利于发光层230的成膜调控,进而确保发光层230(尤其是QLED器件的量子点发光层)的成膜均匀性。
另外,请参阅图4,本实施例的电致发光器件的制备方法,还可在阳极基 板和空穴传输层220之间设置空穴注入层250,其具体过程可以是,先在阳极基板210上设置空穴注入层250(具体设置过程可以是,将含有空穴注入材料的溶液喷墨打印在阳极基板的阳极210上,并进行烘烤干燥处理,以得到空穴注入层,烘烤干燥处理的烘烤温度为180℃~250℃,空穴注入层的厚度具体可为10nm~60nm。上述空穴注入材料包括聚噻吩、聚苯胺等导电高分子材料及其衍生物,除了可采用喷墨打印的方式外,其还可采用旋涂的方式或狭缝式涂布的方式将空穴注入材料设置在阳极基板的阳极210上),再通过上述方法步骤的方式在空穴注入层250上设置空穴传输层220。
还有,请参阅图4,本实施例的电致发光器件的制备方法,亦可在阴极240和发光层230之间设置电子传输层260,先在发光层230上设置电子传输层260(具体设置过程可以是,将含有电子传输材料的溶液喷墨打印在发光层230上,并进行烘烤干燥处理,以得到电子传输层260。其中,该电子传输材料为金属氧化物Zn xMg yO,其中x是0.9,y是0.1。上述烘烤干燥处理的烘烤温度可以为60℃~150℃,最终制备出来的电子传输层260的厚度具体可为10nm~100nm,除了可采用喷墨打印的方式外,其还可采用旋涂的方式或狭缝式涂布的方式将含有电子传输材料的溶液设置在发光层230上),再通过上述方法步骤的方式在电子传输层260上设置阴极240。
下面通过具体实施例、对比例和实验例对本申请的技术方案及技术效果进行详细说明,以下实施例仅仅是本申请的部分实施例,并非对本申请作出具体限定。
实施例1
本实施例提供了一种电致发光器件及其制备方法,电致发光器件结构组成参阅图4,本实施例的电致发光器件包括依次层叠设置的阳极210、空穴注入层250、空穴传输层220、发光层230、电子传输层260以及阴极240。
本实施例中电致发光器件的制备方法包括如下步骤:
在阳极基板的阳极210上设置空穴注入层250,该空穴注入层250的材料为聚噻吩,空穴注入层250的厚度为40nm;
在空穴注入层250上设置空穴传输层220,具体为,提供包括导电聚合物(具体为苯胺单体与含有双键的苯胺单体共聚形成的可交联的共聚物,其中含有双 键的苯胺单体在该共聚物中的摩尔比为3%)与温敏高分子化合物(具体为聚(N-异丙基丙烯酰胺))的有机溶液,将该有机溶液设置于基板上形成膜层后,对膜层依次进行真空减压干燥处理(工作温度具体为60℃,持续时间为10min)及高温退火处理(工作温度具体为150℃,持续时间为15min),得到空穴传输层220,其厚度为40nm,且以空穴传输层220的总质量计,聚(N-异丙基丙烯酰胺)在空穴传输层220中的质量分数为10%wt;
在空穴传输层220上设置发光层230,发光层230具体为QLED器件的量子点发光层,其采用的量子点材料为CdZnSe,厚度为40nm;
在发光层230上制备电子传输层260,该电子传输层260材料为金属氧化物Zn xMg yO,其中x是0.9,y是0.1,该电子传输层260的厚度为80nm。
在该电子传输层260上设置阴极240,该阴极240为Al阴极,该阴极240的厚度为120nm。
经实验测得,本实施例的电致发光器件,其发光层230的成膜均匀性为85%,其在1000nits下电流效率是38cd/A,衰减5%的寿命是8000h。
实施例2
本实施例2的电致发光器件与实施例1的电致发光器件不同之处仅在与其设置的空穴传输层220的膜层设置不同,具体为,实施例1的空穴传输层220中,以空穴传输层220的总质量计,聚(N-异丙基丙烯酰胺)在空穴传输层220中的质量分数为10%wt,而本实施例2的空穴传输层220中,以空穴传输层220的总质量计,聚(N-异丙基丙烯酰胺)在空穴传输层220中的质量分数为5%wt。
经实验测得,本实施例的电致发光器件,其发光层230的成膜均匀性为84%,其在1000nits下电流效率是37cd/A,衰减5%的寿命是7900h。
实施例3
本实施例3的电致发光器件与实施例1的电致发光器件不同之处仅在与其设置的空穴传输层220的膜层设置不同,具体为,实施例1的空穴传输层220中,以空穴传输层220的总质量计,聚(N-异丙基丙烯酰胺)在空穴传输层220中的质量分数为10%wt,而本实施例3的空穴传输层220中,以空穴传输层220的总质量计,聚(N-异丙基丙烯酰胺)在空穴传输层220中的质量分数为3%wt。
经实验测得,本实施例的电致发光器件,其发光层230的成膜均匀性为 83%,其在1000nits下电流效率是37cd/A,衰减5%的寿命是7800h。
实施例4
本实施例4的电致发光器件与实施例1的电致发光器件不同之处仅在与其设置的空穴传输层220的膜层设置不同,具体为,实施例1的空穴传输层220中,以空穴传输层220的总质量计,聚(N-异丙基丙烯酰胺)在空穴传输层220中的质量分数为10%wt,而本实施例4的空穴传输层220中,以空穴传输层220的总质量计,聚(N-异丙基丙烯酰胺)在空穴传输层220中的质量分数为1%wt。
经实验测得,本实施例的电致发光器件,其发光层230的成膜均匀性为76%,其在1000nits下电流效率是36cd/A,衰减5%的寿命是7000h。
实施例5
本实施例5的电致发光器件与实施例1的电致发光器件不同之处仅在与其设置的空穴传输层220的膜层设置不同,具体为,实施例1的空穴传输层220中的导电聚合物具体为苯胺单体与含有双键的苯胺单体共聚形成的可交联的共聚物,其中含有双键的苯胺单体在该共聚物中的摩尔比为3%,而本实施例5的空穴传输层220中的导电聚合物具体为苯胺单体形成的非交联的均聚物。
经实验测得,本实施例的电致发光器件,其发光层230的成膜均匀性为75%,其在1000nits下电流效率是36cd/A,衰减5%的寿命是7000h。
对比例1
本对比例1的电致发光器件与实施例1的电致发光器件不同之处仅在与其设置的空穴传输层220的不同,同时,其空穴传输层的设置方式如下:在空穴注入层250上采用喷墨打印方式设置空穴传输层220,该空穴传输层220的材料仅为聚苯胺形成的均聚物,其空穴传输层220的厚度为40nm,即对比例1的空穴传输层采用的是常规制备的常规结构。
经实验测得,本对比例的电致发光器件,其发光层的成膜均匀性为70%,其在1000nits下电流效率是35cd/A,衰减5%的寿命是6000h。
通过对比例1与实施例1-5的比对,可说明本申请实施例的制备方法制备所得的电致发光器件相对于传统电致发光器件,其发光层的成膜均匀性、电流效率(即器件性能)及使用寿命均得到大大提高。通过实施例1-5的比对,可说明当其空穴传输层220的导电聚合物为可交联的聚合物,温敏高分子化合物 在空穴传输层220中的质量分数均在上述权要给出的值范围内时,其发光层的成膜均匀性、电流效率(即器件性能)及使用寿命均得到大幅提高。而当其空穴传输层220的导电聚合物为非交联的聚合物,温敏高分子化合物在空穴传输层220中的质量分数不在上述权要给出的值范围内时,其发光层的成膜均匀性、电流效率(即器件性能)及使用寿命的提升效果均存在不同程度的下降。
以上对本申请实施例所提供的一种薄膜、电致发光器件及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种薄膜,其中,所述薄膜的材料包括导电聚合物和温敏高分子化合物,所述温敏高分子化合物为分子内同时具有亲水基团和疏水基团的化合物。
  2. 根据权利要求1所述的薄膜,其中,所述薄膜的材料由所述导电聚合物和所述温敏高分子化合物组成。
  3. 根据权利要求1或2所述的薄膜,其中,所述薄膜内,沿着所述薄膜的厚度方向,所述温敏高分子化合物的分布逐渐变大或变小。
  4. 根据权利要求1至3任一项所述的薄膜,其中,以所述薄膜的总质量计,所述温敏高分子化合物在所述薄膜中的质量分数为3~10%wt。
  5. 根据权利要求1至4任一项所述的薄膜,其中,所述温敏高分子化合物的温度响应范围为28~35℃。
  6. 根据权利要求1至5任一项所述的薄膜,其中,所述温敏高分子化合物为聚(N-异丙基丙烯酰胺)。
  7. 根据权利要求1至6任一项所述的薄膜,其中,所述导电聚合物包括苯胺单体、噻吩单体以及芴类单体中的任意一种形成的均聚物或任意多种组合形成的共聚物。
  8. 根据权利要求1至7任一项所述的薄膜,其中,所述导电聚合物为可交联的聚合物。
  9. 一种电致发光器件,其中,包括层叠设置的阳极、空穴传输层、发光层、阴极,其中,所述空穴传输层为如权利要求1至8任一项所述的薄膜。
  10. 根据权利要求9所述的电致发光器件,其中,所述空穴传输层的厚度为10nm~50nm。
  11. 根据权利要求9或10所述的电致发光器件,其中,所述发光层包括量子点,所述量子点选自单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、 CdSeTe、CdTeS、CdZnSeS、CdZnSeTe及CdZnSTe中的一种或多种,所述III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的一种或多种,所述I-III-VI族化合物选自CuInS 2、CuInSe 2及AgInS 2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种。
  12. 根据权利要求9至11任一项所述的电致发光器件,其中,所述电致发光器件在所述阳极和所述空穴传输层之间还设置有空穴注入层;和/或,所述电致发光器件在所述阴极和所述发光层之间还设置有电子传输层。
  13. 一种电致发光器件的制备方法,其中,包括以下步骤:
    提供阳极基板;
    提供包括导电聚合物与温敏高分子化合物的有机溶液,将所述有机溶液设置于所述阳极基板上形成膜层后,对所述膜层进行干燥处理,得到空穴传输层;
    在所述空穴传输层上设置发光层;
    在所述发光层设置阴极;
    其中,所述温敏高分子化合物为分子内同时具有亲水基团和疏水基团的化合物。
  14. 根据权利要求13所述的制备方法,其中,通过溶液法将所述有机溶液设置于所述阳极基板上形成所述膜层。
  15. 根据权利要求13或14所述的制备方法,其中,所述干燥处理包括第一干燥处理,所述第一干燥处理为真空减压干燥处理,所述真空减压干燥处理时的工作温度为35℃~80℃,持续时间为2min~15min。
  16. 根据权利要求15所述的制备方法,其中,所述干燥处理还包括第二干燥处理,所述第二干燥处理为高温退火处理,所述高温退火处理时的工作温度为100℃~250℃,持续时间为5min~60min。
  17. 根据权利要求13至16任一项所述的制备方法,其中,以所述空穴传输层的总质量计,所述温敏高分子化合物在所述空穴传输层中的质量分数为3~10%wt。
  18. 根据权利要求13至17任一项所述的制备方法,其中,所述温敏高分 子化合物的温度响应范围为28~35℃;
    和/或,所述温敏高分子化合物为聚(N-异丙基丙烯酰胺)。
  19. 根据权利要求13至17任一项所述的制备方法,其中,所述导电聚合物包括苯胺单体、噻吩单体以及芴类单体中的任意一种形成的均聚物或任意多种组合形成的共聚物;和/或,
    所述导电聚合物为可交联的聚合物。
  20. 根据权利要求13至19任一项所述的制备方法,其中,还包括以下步骤:
    在所述阳极基板和所述空穴传输层之间设置空穴注入层;和或,在所述阴极和所述发光层之间设置电子传输层。
PCT/CN2022/142728 2022-04-20 2022-12-28 薄膜、电致发光器件及其制备方法 WO2023202144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210419147.9A CN116981276A (zh) 2022-04-20 2022-04-20 一种薄膜、电致发光器件、显示屏及其制备方法
CN202210419147.9 2022-04-20

Publications (1)

Publication Number Publication Date
WO2023202144A1 true WO2023202144A1 (zh) 2023-10-26

Family

ID=88419048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142728 WO2023202144A1 (zh) 2022-04-20 2022-12-28 薄膜、电致发光器件及其制备方法

Country Status (2)

Country Link
CN (1) CN116981276A (zh)
WO (1) WO2023202144A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050019602A1 (en) * 2000-12-27 2005-01-27 Alan Sellinger Self-assembly of organic-inorganic nanocomposite thin films for use in hybrid organic light emitting devices (hled)
CN108063189A (zh) * 2017-12-12 2018-05-22 京东方科技集团股份有限公司 有机薄膜的制备方法、有机发光二极管以及显示装置
CN111138788A (zh) * 2019-12-26 2020-05-12 浙江清华柔性电子技术研究院 温敏凝胶、温敏传感器及其制备方法
CN111384272A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 量子点发光二极管及其制备方法
CN112117378A (zh) * 2020-09-23 2020-12-22 京东方科技集团股份有限公司 量子点修饰方法、发光器件、其制作方法及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050019602A1 (en) * 2000-12-27 2005-01-27 Alan Sellinger Self-assembly of organic-inorganic nanocomposite thin films for use in hybrid organic light emitting devices (hled)
CN108063189A (zh) * 2017-12-12 2018-05-22 京东方科技集团股份有限公司 有机薄膜的制备方法、有机发光二极管以及显示装置
CN111384272A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 量子点发光二极管及其制备方法
CN111138788A (zh) * 2019-12-26 2020-05-12 浙江清华柔性电子技术研究院 温敏凝胶、温敏传感器及其制备方法
CN112117378A (zh) * 2020-09-23 2020-12-22 京东方科技集团股份有限公司 量子点修饰方法、发光器件、其制作方法及显示装置

Also Published As

Publication number Publication date
CN116981276A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
CN109256476B (zh) 量子点发光层、量子点发光器件及制备方法
WO2011005859A2 (en) Stable and all solution processable quantum dot light-emitting diodes
CN105206761A (zh) 一种发光二极管及其制备方法
WO2023202144A1 (zh) 薄膜、电致发光器件及其制备方法
WO2022143822A1 (zh) 光电器件
CN114039002B (zh) 电子传输墨水、电子传输薄膜、电致发光二极管及显示器件
WO2023202142A1 (zh) 空穴传输薄膜、电致发光器件及其制备方法
CN116234345A (zh) 电致发光器件及其制备方法、显示装置
WO2023202146A1 (zh) 空穴传输薄膜、光电器件和光电器件的制备方法
WO2022143821A1 (zh) 光电器件
WO2022143824A1 (zh) 光电器件
WO2022143827A1 (zh) 光电器件
WO2022143960A1 (zh) 光电器件
WO2022143823A1 (zh) 光电器件
WO2022143831A1 (zh) 光电器件
WO2022143825A1 (zh) 光电器件
WO2022143829A1 (zh) 光电器件
WO2022143826A1 (zh) 光电器件
WO2022143832A1 (zh) 光电器件
WO2022143830A1 (zh) 光电器件
WO2023056829A1 (zh) 量子点发光层、量子点发光层的制备方法和量子点发光二极管器件
WO2023078233A1 (zh) 发光器件的制备方法、发光器件及显示装置
CN113130809B (zh) 复合电极及其制备方法、量子点发光二极管
CN113948667B (zh) 发光器件及其制备方法
CN220210912U (zh) 一种发光器件及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938362

Country of ref document: EP

Kind code of ref document: A1